1 /*
2  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 #include <linux/netdevice.h>
9 #include <linux/types.h>
10 #include <linux/skbuff.h>
11 #include <linux/debugfs.h>
12 #include <linux/random.h>
13 #include <linux/moduleparam.h>
14 #include <linux/ieee80211.h>
15 #include <net/mac80211.h>
16 #include "rate.h"
17 #include "sta_info.h"
18 #include "rc80211_minstrel.h"
19 #include "rc80211_minstrel_ht.h"
20 
21 #define AVG_AMPDU_SIZE	16
22 #define AVG_PKT_SIZE	1200
23 
24 /* Number of bits for an average sized packet */
25 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
26 
27 /* Number of symbols for a packet with (bps) bits per symbol */
28 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
29 
30 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
31 #define MCS_SYMBOL_TIME(sgi, syms)					\
32 	(sgi ?								\
33 	  ((syms) * 18000 + 4000) / 5 :	/* syms * 3.6 us */		\
34 	  ((syms) * 1000) << 2		/* syms * 4 us */		\
35 	)
36 
37 /* Transmit duration for the raw data part of an average sized packet */
38 #define MCS_DURATION(streams, sgi, bps) \
39 	(MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
40 
41 #define BW_20			0
42 #define BW_40			1
43 #define BW_80			2
44 
45 /*
46  * Define group sort order: HT40 -> SGI -> #streams
47  */
48 #define GROUP_IDX(_streams, _sgi, _ht40)	\
49 	MINSTREL_HT_GROUP_0 +			\
50 	MINSTREL_MAX_STREAMS * 2 * _ht40 +	\
51 	MINSTREL_MAX_STREAMS * _sgi +	\
52 	_streams - 1
53 
54 /* MCS rate information for an MCS group */
55 #define MCS_GROUP(_streams, _sgi, _ht40)				\
56 	[GROUP_IDX(_streams, _sgi, _ht40)] = {				\
57 	.streams = _streams,						\
58 	.flags =							\
59 		IEEE80211_TX_RC_MCS |					\
60 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
61 		(_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),		\
62 	.duration = {							\
63 		MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26),		\
64 		MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52),		\
65 		MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78),		\
66 		MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104),	\
67 		MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156),	\
68 		MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208),	\
69 		MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234),	\
70 		MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260)		\
71 	}								\
72 }
73 
74 #define VHT_GROUP_IDX(_streams, _sgi, _bw)				\
75 	(MINSTREL_VHT_GROUP_0 +						\
76 	 MINSTREL_MAX_STREAMS * 2 * (_bw) +				\
77 	 MINSTREL_MAX_STREAMS * (_sgi) +				\
78 	 (_streams) - 1)
79 
80 #define BW2VBPS(_bw, r3, r2, r1)					\
81 	(_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
82 
83 #define VHT_GROUP(_streams, _sgi, _bw)					\
84 	[VHT_GROUP_IDX(_streams, _sgi, _bw)] = {			\
85 	.streams = _streams,						\
86 	.flags =							\
87 		IEEE80211_TX_RC_VHT_MCS |				\
88 		(_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |			\
89 		(_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :		\
90 		 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),	\
91 	.duration = {							\
92 		MCS_DURATION(_streams, _sgi,				\
93 			     BW2VBPS(_bw,  117,  54,  26)),		\
94 		MCS_DURATION(_streams, _sgi,				\
95 			     BW2VBPS(_bw,  234, 108,  52)),		\
96 		MCS_DURATION(_streams, _sgi,				\
97 			     BW2VBPS(_bw,  351, 162,  78)),		\
98 		MCS_DURATION(_streams, _sgi,				\
99 			     BW2VBPS(_bw,  468, 216, 104)),		\
100 		MCS_DURATION(_streams, _sgi,				\
101 			     BW2VBPS(_bw,  702, 324, 156)),		\
102 		MCS_DURATION(_streams, _sgi,				\
103 			     BW2VBPS(_bw,  936, 432, 208)),		\
104 		MCS_DURATION(_streams, _sgi,				\
105 			     BW2VBPS(_bw, 1053, 486, 234)),		\
106 		MCS_DURATION(_streams, _sgi,				\
107 			     BW2VBPS(_bw, 1170, 540, 260)),		\
108 		MCS_DURATION(_streams, _sgi,				\
109 			     BW2VBPS(_bw, 1404, 648, 312)),		\
110 		MCS_DURATION(_streams, _sgi,				\
111 			     BW2VBPS(_bw, 1560, 720, 346))		\
112 	}								\
113 }
114 
115 #define CCK_DURATION(_bitrate, _short, _len)		\
116 	(1000 * (10 /* SIFS */ +			\
117 	 (_short ? 72 + 24 : 144 + 48) +		\
118 	 (8 * (_len + 4) * 10) / (_bitrate)))
119 
120 #define CCK_ACK_DURATION(_bitrate, _short)			\
121 	(CCK_DURATION((_bitrate > 10 ? 20 : 10), false, 60) +	\
122 	 CCK_DURATION(_bitrate, _short, AVG_PKT_SIZE))
123 
124 #define CCK_DURATION_LIST(_short)			\
125 	CCK_ACK_DURATION(10, _short),			\
126 	CCK_ACK_DURATION(20, _short),			\
127 	CCK_ACK_DURATION(55, _short),			\
128 	CCK_ACK_DURATION(110, _short)
129 
130 #define CCK_GROUP					\
131 	[MINSTREL_CCK_GROUP] = {			\
132 		.streams = 0,				\
133 		.flags = 0,				\
134 		.duration = {				\
135 			CCK_DURATION_LIST(false),	\
136 			CCK_DURATION_LIST(true)		\
137 		}					\
138 	}
139 
140 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
141 static bool minstrel_vht_only = true;
142 module_param(minstrel_vht_only, bool, 0644);
143 MODULE_PARM_DESC(minstrel_vht_only,
144 		 "Use only VHT rates when VHT is supported by sta.");
145 #endif
146 
147 /*
148  * To enable sufficiently targeted rate sampling, MCS rates are divided into
149  * groups, based on the number of streams and flags (HT40, SGI) that they
150  * use.
151  *
152  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
153  * BW -> SGI -> #streams
154  */
155 const struct mcs_group minstrel_mcs_groups[] = {
156 	MCS_GROUP(1, 0, BW_20),
157 	MCS_GROUP(2, 0, BW_20),
158 	MCS_GROUP(3, 0, BW_20),
159 
160 	MCS_GROUP(1, 1, BW_20),
161 	MCS_GROUP(2, 1, BW_20),
162 	MCS_GROUP(3, 1, BW_20),
163 
164 	MCS_GROUP(1, 0, BW_40),
165 	MCS_GROUP(2, 0, BW_40),
166 	MCS_GROUP(3, 0, BW_40),
167 
168 	MCS_GROUP(1, 1, BW_40),
169 	MCS_GROUP(2, 1, BW_40),
170 	MCS_GROUP(3, 1, BW_40),
171 
172 	CCK_GROUP,
173 
174 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
175 	VHT_GROUP(1, 0, BW_20),
176 	VHT_GROUP(2, 0, BW_20),
177 	VHT_GROUP(3, 0, BW_20),
178 
179 	VHT_GROUP(1, 1, BW_20),
180 	VHT_GROUP(2, 1, BW_20),
181 	VHT_GROUP(3, 1, BW_20),
182 
183 	VHT_GROUP(1, 0, BW_40),
184 	VHT_GROUP(2, 0, BW_40),
185 	VHT_GROUP(3, 0, BW_40),
186 
187 	VHT_GROUP(1, 1, BW_40),
188 	VHT_GROUP(2, 1, BW_40),
189 	VHT_GROUP(3, 1, BW_40),
190 
191 	VHT_GROUP(1, 0, BW_80),
192 	VHT_GROUP(2, 0, BW_80),
193 	VHT_GROUP(3, 0, BW_80),
194 
195 	VHT_GROUP(1, 1, BW_80),
196 	VHT_GROUP(2, 1, BW_80),
197 	VHT_GROUP(3, 1, BW_80),
198 #endif
199 };
200 
201 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
202 
203 static void
204 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
205 
206 /*
207  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
208  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
209  *
210  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
211  */
212 static u16
213 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
214 {
215 	u16 mask = 0;
216 
217 	if (bw == BW_20) {
218 		if (nss != 3 && nss != 6)
219 			mask = BIT(9);
220 	} else if (bw == BW_80) {
221 		if (nss == 3 || nss == 7)
222 			mask = BIT(6);
223 		else if (nss == 6)
224 			mask = BIT(9);
225 	} else {
226 		WARN_ON(bw != BW_40);
227 	}
228 
229 	switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
230 	case IEEE80211_VHT_MCS_SUPPORT_0_7:
231 		mask |= 0x300;
232 		break;
233 	case IEEE80211_VHT_MCS_SUPPORT_0_8:
234 		mask |= 0x200;
235 		break;
236 	case IEEE80211_VHT_MCS_SUPPORT_0_9:
237 		break;
238 	default:
239 		mask = 0x3ff;
240 	}
241 
242 	return 0x3ff & ~mask;
243 }
244 
245 /*
246  * Look up an MCS group index based on mac80211 rate information
247  */
248 static int
249 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
250 {
251 	return GROUP_IDX((rate->idx / 8) + 1,
252 			 !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
253 			 !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
254 }
255 
256 static int
257 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
258 {
259 	return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
260 			     !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
261 			     !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
262 			     2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
263 }
264 
265 static struct minstrel_rate_stats *
266 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
267 		      struct ieee80211_tx_rate *rate)
268 {
269 	int group, idx;
270 
271 	if (rate->flags & IEEE80211_TX_RC_MCS) {
272 		group = minstrel_ht_get_group_idx(rate);
273 		idx = rate->idx % 8;
274 	} else if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
275 		group = minstrel_vht_get_group_idx(rate);
276 		idx = ieee80211_rate_get_vht_mcs(rate);
277 	} else {
278 		group = MINSTREL_CCK_GROUP;
279 
280 		for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++)
281 			if (rate->idx == mp->cck_rates[idx])
282 				break;
283 
284 		/* short preamble */
285 		if (!(mi->supported[group] & BIT(idx)))
286 			idx += 4;
287 	}
288 	return &mi->groups[group].rates[idx];
289 }
290 
291 static inline struct minstrel_rate_stats *
292 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
293 {
294 	return &mi->groups[index / MCS_GROUP_RATES].rates[index % MCS_GROUP_RATES];
295 }
296 
297 /*
298  * Return current throughput based on the average A-MPDU length, taking into
299  * account the expected number of retransmissions and their expected length
300  */
301 int
302 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
303 		       int prob_ewma)
304 {
305 	unsigned int nsecs = 0;
306 
307 	/* do not account throughput if sucess prob is below 10% */
308 	if (prob_ewma < MINSTREL_FRAC(10, 100))
309 		return 0;
310 
311 	if (group != MINSTREL_CCK_GROUP)
312 		nsecs = 1000 * mi->overhead / MINSTREL_TRUNC(mi->avg_ampdu_len);
313 
314 	nsecs += minstrel_mcs_groups[group].duration[rate];
315 
316 	/*
317 	 * For the throughput calculation, limit the probability value to 90% to
318 	 * account for collision related packet error rate fluctuation
319 	 * (prob is scaled - see MINSTREL_FRAC above)
320 	 */
321 	if (prob_ewma > MINSTREL_FRAC(90, 100))
322 		return MINSTREL_TRUNC(100000 * ((MINSTREL_FRAC(90, 100) * 1000)
323 								      / nsecs));
324 	else
325 		return MINSTREL_TRUNC(100000 * ((prob_ewma * 1000) / nsecs));
326 }
327 
328 /*
329  * Find & sort topmost throughput rates
330  *
331  * If multiple rates provide equal throughput the sorting is based on their
332  * current success probability. Higher success probability is preferred among
333  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
334  */
335 static void
336 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
337 			       u16 *tp_list)
338 {
339 	int cur_group, cur_idx, cur_tp_avg, cur_prob;
340 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
341 	int j = MAX_THR_RATES;
342 
343 	cur_group = index / MCS_GROUP_RATES;
344 	cur_idx = index  % MCS_GROUP_RATES;
345 	cur_prob = mi->groups[cur_group].rates[cur_idx].prob_ewma;
346 	cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
347 
348 	do {
349 		tmp_group = tp_list[j - 1] / MCS_GROUP_RATES;
350 		tmp_idx = tp_list[j - 1] % MCS_GROUP_RATES;
351 		tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
352 		tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
353 						    tmp_prob);
354 		if (cur_tp_avg < tmp_tp_avg ||
355 		    (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
356 			break;
357 		j--;
358 	} while (j > 0);
359 
360 	if (j < MAX_THR_RATES - 1) {
361 		memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
362 		       (MAX_THR_RATES - (j + 1))));
363 	}
364 	if (j < MAX_THR_RATES)
365 		tp_list[j] = index;
366 }
367 
368 /*
369  * Find and set the topmost probability rate per sta and per group
370  */
371 static void
372 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 index)
373 {
374 	struct minstrel_mcs_group_data *mg;
375 	struct minstrel_rate_stats *mrs;
376 	int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
377 	int max_tp_group, cur_tp_avg, cur_group, cur_idx;
378 	int max_gpr_group, max_gpr_idx;
379 	int max_gpr_tp_avg, max_gpr_prob;
380 
381 	cur_group = index / MCS_GROUP_RATES;
382 	cur_idx = index % MCS_GROUP_RATES;
383 	mg = &mi->groups[index / MCS_GROUP_RATES];
384 	mrs = &mg->rates[index % MCS_GROUP_RATES];
385 
386 	tmp_group = mi->max_prob_rate / MCS_GROUP_RATES;
387 	tmp_idx = mi->max_prob_rate % MCS_GROUP_RATES;
388 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
389 	tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
390 
391 	/* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
392 	 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
393 	max_tp_group = mi->max_tp_rate[0] / MCS_GROUP_RATES;
394 	if((index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) &&
395 	    (max_tp_group != MINSTREL_CCK_GROUP))
396 		return;
397 
398 	max_gpr_group = mg->max_group_prob_rate / MCS_GROUP_RATES;
399 	max_gpr_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
400 	max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_ewma;
401 
402 	if (mrs->prob_ewma > MINSTREL_FRAC(75, 100)) {
403 		cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
404 						    mrs->prob_ewma);
405 		if (cur_tp_avg > tmp_tp_avg)
406 			mi->max_prob_rate = index;
407 
408 		max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
409 							max_gpr_idx,
410 							max_gpr_prob);
411 		if (cur_tp_avg > max_gpr_tp_avg)
412 			mg->max_group_prob_rate = index;
413 	} else {
414 		if (mrs->prob_ewma > tmp_prob)
415 			mi->max_prob_rate = index;
416 		if (mrs->prob_ewma > max_gpr_prob)
417 			mg->max_group_prob_rate = index;
418 	}
419 }
420 
421 
422 /*
423  * Assign new rate set per sta and use CCK rates only if the fastest
424  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
425  * rate sets where MCS and CCK rates are mixed, because CCK rates can
426  * not use aggregation.
427  */
428 static void
429 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
430 				 u16 tmp_mcs_tp_rate[MAX_THR_RATES],
431 				 u16 tmp_cck_tp_rate[MAX_THR_RATES])
432 {
433 	unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
434 	int i;
435 
436 	tmp_group = tmp_cck_tp_rate[0] / MCS_GROUP_RATES;
437 	tmp_idx = tmp_cck_tp_rate[0] % MCS_GROUP_RATES;
438 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
439 	tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
440 
441 	tmp_group = tmp_mcs_tp_rate[0] / MCS_GROUP_RATES;
442 	tmp_idx = tmp_mcs_tp_rate[0] % MCS_GROUP_RATES;
443 	tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_ewma;
444 	tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
445 
446 	if (tmp_cck_tp > tmp_mcs_tp) {
447 		for(i = 0; i < MAX_THR_RATES; i++) {
448 			minstrel_ht_sort_best_tp_rates(mi, tmp_cck_tp_rate[i],
449 						       tmp_mcs_tp_rate);
450 		}
451 	}
452 
453 }
454 
455 /*
456  * Try to increase robustness of max_prob rate by decrease number of
457  * streams if possible.
458  */
459 static inline void
460 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
461 {
462 	struct minstrel_mcs_group_data *mg;
463 	int tmp_max_streams, group, tmp_idx, tmp_prob;
464 	int tmp_tp = 0;
465 
466 	tmp_max_streams = minstrel_mcs_groups[mi->max_tp_rate[0] /
467 			  MCS_GROUP_RATES].streams;
468 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
469 		mg = &mi->groups[group];
470 		if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
471 			continue;
472 
473 		tmp_idx = mg->max_group_prob_rate % MCS_GROUP_RATES;
474 		tmp_prob = mi->groups[group].rates[tmp_idx].prob_ewma;
475 
476 		if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
477 		   (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
478 				mi->max_prob_rate = mg->max_group_prob_rate;
479 				tmp_tp = minstrel_ht_get_tp_avg(mi, group,
480 								tmp_idx,
481 								tmp_prob);
482 		}
483 	}
484 }
485 
486 /*
487  * Update rate statistics and select new primary rates
488  *
489  * Rules for rate selection:
490  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
491  *    probability and throughput during strong fluctuations
492  *  - as long as the max prob rate has a probability of more than 75%, pick
493  *    higher throughput rates, even if the probablity is a bit lower
494  */
495 static void
496 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
497 {
498 	struct minstrel_mcs_group_data *mg;
499 	struct minstrel_rate_stats *mrs;
500 	int group, i, j, cur_prob;
501 	u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
502 	u16 tmp_cck_tp_rate[MAX_THR_RATES], index;
503 
504 	if (mi->ampdu_packets > 0) {
505 		mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
506 			MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets), EWMA_LEVEL);
507 		mi->ampdu_len = 0;
508 		mi->ampdu_packets = 0;
509 	}
510 
511 	mi->sample_slow = 0;
512 	mi->sample_count = 0;
513 
514 	/* Initialize global rate indexes */
515 	for(j = 0; j < MAX_THR_RATES; j++){
516 		tmp_mcs_tp_rate[j] = 0;
517 		tmp_cck_tp_rate[j] = 0;
518 	}
519 
520 	/* Find best rate sets within all MCS groups*/
521 	for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
522 
523 		mg = &mi->groups[group];
524 		if (!mi->supported[group])
525 			continue;
526 
527 		mi->sample_count++;
528 
529 		/* (re)Initialize group rate indexes */
530 		for(j = 0; j < MAX_THR_RATES; j++)
531 			tmp_group_tp_rate[j] = group;
532 
533 		for (i = 0; i < MCS_GROUP_RATES; i++) {
534 			if (!(mi->supported[group] & BIT(i)))
535 				continue;
536 
537 			index = MCS_GROUP_RATES * group + i;
538 
539 			mrs = &mg->rates[i];
540 			mrs->retry_updated = false;
541 			minstrel_calc_rate_stats(mrs);
542 			cur_prob = mrs->prob_ewma;
543 
544 			if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
545 				continue;
546 
547 			/* Find max throughput rate set */
548 			if (group != MINSTREL_CCK_GROUP) {
549 				minstrel_ht_sort_best_tp_rates(mi, index,
550 							       tmp_mcs_tp_rate);
551 			} else if (group == MINSTREL_CCK_GROUP) {
552 				minstrel_ht_sort_best_tp_rates(mi, index,
553 							       tmp_cck_tp_rate);
554 			}
555 
556 			/* Find max throughput rate set within a group */
557 			minstrel_ht_sort_best_tp_rates(mi, index,
558 						       tmp_group_tp_rate);
559 
560 			/* Find max probability rate per group and global */
561 			minstrel_ht_set_best_prob_rate(mi, index);
562 		}
563 
564 		memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
565 		       sizeof(mg->max_group_tp_rate));
566 	}
567 
568 	/* Assign new rate set per sta */
569 	minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate, tmp_cck_tp_rate);
570 	memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
571 
572 	/* Try to increase robustness of max_prob_rate*/
573 	minstrel_ht_prob_rate_reduce_streams(mi);
574 
575 	/* try to sample all available rates during each interval */
576 	mi->sample_count *= 8;
577 
578 #ifdef CONFIG_MAC80211_DEBUGFS
579 	/* use fixed index if set */
580 	if (mp->fixed_rate_idx != -1) {
581 		for (i = 0; i < 4; i++)
582 			mi->max_tp_rate[i] = mp->fixed_rate_idx;
583 		mi->max_prob_rate = mp->fixed_rate_idx;
584 	}
585 #endif
586 
587 	/* Reset update timer */
588 	mi->last_stats_update = jiffies;
589 }
590 
591 static bool
592 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct ieee80211_tx_rate *rate)
593 {
594 	if (rate->idx < 0)
595 		return false;
596 
597 	if (!rate->count)
598 		return false;
599 
600 	if (rate->flags & IEEE80211_TX_RC_MCS ||
601 	    rate->flags & IEEE80211_TX_RC_VHT_MCS)
602 		return true;
603 
604 	return rate->idx == mp->cck_rates[0] ||
605 	       rate->idx == mp->cck_rates[1] ||
606 	       rate->idx == mp->cck_rates[2] ||
607 	       rate->idx == mp->cck_rates[3];
608 }
609 
610 static void
611 minstrel_set_next_sample_idx(struct minstrel_ht_sta *mi)
612 {
613 	struct minstrel_mcs_group_data *mg;
614 
615 	for (;;) {
616 		mi->sample_group++;
617 		mi->sample_group %= ARRAY_SIZE(minstrel_mcs_groups);
618 		mg = &mi->groups[mi->sample_group];
619 
620 		if (!mi->supported[mi->sample_group])
621 			continue;
622 
623 		if (++mg->index >= MCS_GROUP_RATES) {
624 			mg->index = 0;
625 			if (++mg->column >= ARRAY_SIZE(sample_table))
626 				mg->column = 0;
627 		}
628 		break;
629 	}
630 }
631 
632 static void
633 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
634 {
635 	int group, orig_group;
636 
637 	orig_group = group = *idx / MCS_GROUP_RATES;
638 	while (group > 0) {
639 		group--;
640 
641 		if (!mi->supported[group])
642 			continue;
643 
644 		if (minstrel_mcs_groups[group].streams >
645 		    minstrel_mcs_groups[orig_group].streams)
646 			continue;
647 
648 		if (primary)
649 			*idx = mi->groups[group].max_group_tp_rate[0];
650 		else
651 			*idx = mi->groups[group].max_group_tp_rate[1];
652 		break;
653 	}
654 }
655 
656 static void
657 minstrel_aggr_check(struct ieee80211_sta *pubsta, struct sk_buff *skb)
658 {
659 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
660 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
661 	u16 tid;
662 
663 	if (skb_get_queue_mapping(skb) == IEEE80211_AC_VO)
664 		return;
665 
666 	if (unlikely(!ieee80211_is_data_qos(hdr->frame_control)))
667 		return;
668 
669 	if (unlikely(skb->protocol == cpu_to_be16(ETH_P_PAE)))
670 		return;
671 
672 	tid = ieee80211_get_tid(hdr);
673 	if (likely(sta->ampdu_mlme.tid_tx[tid]))
674 		return;
675 
676 	ieee80211_start_tx_ba_session(pubsta, tid, 0);
677 }
678 
679 static void
680 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
681                       void *priv_sta, struct ieee80211_tx_status *st)
682 {
683 	struct ieee80211_tx_info *info = st->info;
684 	struct minstrel_ht_sta_priv *msp = priv_sta;
685 	struct minstrel_ht_sta *mi = &msp->ht;
686 	struct ieee80211_tx_rate *ar = info->status.rates;
687 	struct minstrel_rate_stats *rate, *rate2;
688 	struct minstrel_priv *mp = priv;
689 	bool last, update = false;
690 	int i;
691 
692 	if (!msp->is_ht)
693 		return mac80211_minstrel.tx_status_ext(priv, sband,
694 						       &msp->legacy, st);
695 
696 	/* This packet was aggregated but doesn't carry status info */
697 	if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
698 	    !(info->flags & IEEE80211_TX_STAT_AMPDU))
699 		return;
700 
701 	if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
702 		info->status.ampdu_ack_len =
703 			(info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
704 		info->status.ampdu_len = 1;
705 	}
706 
707 	mi->ampdu_packets++;
708 	mi->ampdu_len += info->status.ampdu_len;
709 
710 	if (!mi->sample_wait && !mi->sample_tries && mi->sample_count > 0) {
711 		mi->sample_wait = 16 + 2 * MINSTREL_TRUNC(mi->avg_ampdu_len);
712 		mi->sample_tries = 1;
713 		mi->sample_count--;
714 	}
715 
716 	if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
717 		mi->sample_packets += info->status.ampdu_len;
718 
719 	last = !minstrel_ht_txstat_valid(mp, &ar[0]);
720 	for (i = 0; !last; i++) {
721 		last = (i == IEEE80211_TX_MAX_RATES - 1) ||
722 		       !minstrel_ht_txstat_valid(mp, &ar[i + 1]);
723 
724 		rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
725 
726 		if (last)
727 			rate->success += info->status.ampdu_ack_len;
728 
729 		rate->attempts += ar[i].count * info->status.ampdu_len;
730 	}
731 
732 	/*
733 	 * check for sudden death of spatial multiplexing,
734 	 * downgrade to a lower number of streams if necessary.
735 	 */
736 	rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
737 	if (rate->attempts > 30 &&
738 	    MINSTREL_FRAC(rate->success, rate->attempts) <
739 	    MINSTREL_FRAC(20, 100)) {
740 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
741 		update = true;
742 	}
743 
744 	rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
745 	if (rate2->attempts > 30 &&
746 	    MINSTREL_FRAC(rate2->success, rate2->attempts) <
747 	    MINSTREL_FRAC(20, 100)) {
748 		minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
749 		update = true;
750 	}
751 
752 	if (time_after(jiffies, mi->last_stats_update +
753 				(mp->update_interval / 2 * HZ) / 1000)) {
754 		update = true;
755 		minstrel_ht_update_stats(mp, mi);
756 	}
757 
758 	if (update)
759 		minstrel_ht_update_rates(mp, mi);
760 }
761 
762 static void
763 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
764                          int index)
765 {
766 	struct minstrel_rate_stats *mrs;
767 	const struct mcs_group *group;
768 	unsigned int tx_time, tx_time_rtscts, tx_time_data;
769 	unsigned int cw = mp->cw_min;
770 	unsigned int ctime = 0;
771 	unsigned int t_slot = 9; /* FIXME */
772 	unsigned int ampdu_len = MINSTREL_TRUNC(mi->avg_ampdu_len);
773 	unsigned int overhead = 0, overhead_rtscts = 0;
774 
775 	mrs = minstrel_get_ratestats(mi, index);
776 	if (mrs->prob_ewma < MINSTREL_FRAC(1, 10)) {
777 		mrs->retry_count = 1;
778 		mrs->retry_count_rtscts = 1;
779 		return;
780 	}
781 
782 	mrs->retry_count = 2;
783 	mrs->retry_count_rtscts = 2;
784 	mrs->retry_updated = true;
785 
786 	group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
787 	tx_time_data = group->duration[index % MCS_GROUP_RATES] * ampdu_len / 1000;
788 
789 	/* Contention time for first 2 tries */
790 	ctime = (t_slot * cw) >> 1;
791 	cw = min((cw << 1) | 1, mp->cw_max);
792 	ctime += (t_slot * cw) >> 1;
793 	cw = min((cw << 1) | 1, mp->cw_max);
794 
795 	if (index / MCS_GROUP_RATES != MINSTREL_CCK_GROUP) {
796 		overhead = mi->overhead;
797 		overhead_rtscts = mi->overhead_rtscts;
798 	}
799 
800 	/* Total TX time for data and Contention after first 2 tries */
801 	tx_time = ctime + 2 * (overhead + tx_time_data);
802 	tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
803 
804 	/* See how many more tries we can fit inside segment size */
805 	do {
806 		/* Contention time for this try */
807 		ctime = (t_slot * cw) >> 1;
808 		cw = min((cw << 1) | 1, mp->cw_max);
809 
810 		/* Total TX time after this try */
811 		tx_time += ctime + overhead + tx_time_data;
812 		tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
813 
814 		if (tx_time_rtscts < mp->segment_size)
815 			mrs->retry_count_rtscts++;
816 	} while ((tx_time < mp->segment_size) &&
817 	         (++mrs->retry_count < mp->max_retry));
818 }
819 
820 
821 static void
822 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
823                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
824 {
825 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
826 	struct minstrel_rate_stats *mrs;
827 	u8 idx;
828 	u16 flags = group->flags;
829 
830 	mrs = minstrel_get_ratestats(mi, index);
831 	if (!mrs->retry_updated)
832 		minstrel_calc_retransmit(mp, mi, index);
833 
834 	if (mrs->prob_ewma < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
835 		ratetbl->rate[offset].count = 2;
836 		ratetbl->rate[offset].count_rts = 2;
837 		ratetbl->rate[offset].count_cts = 2;
838 	} else {
839 		ratetbl->rate[offset].count = mrs->retry_count;
840 		ratetbl->rate[offset].count_cts = mrs->retry_count;
841 		ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
842 	}
843 
844 	if (index / MCS_GROUP_RATES == MINSTREL_CCK_GROUP)
845 		idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
846 	else if (flags & IEEE80211_TX_RC_VHT_MCS)
847 		idx = ((group->streams - 1) << 4) |
848 		      ((index % MCS_GROUP_RATES) & 0xF);
849 	else
850 		idx = index % MCS_GROUP_RATES + (group->streams - 1) * 8;
851 
852 	/* enable RTS/CTS if needed:
853 	 *  - if station is in dynamic SMPS (and streams > 1)
854 	 *  - for fallback rates, to increase chances of getting through
855 	 */
856 	if (offset > 0 ||
857 	    (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
858 	     group->streams > 1)) {
859 		ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
860 		flags |= IEEE80211_TX_RC_USE_RTS_CTS;
861 	}
862 
863 	ratetbl->rate[offset].idx = idx;
864 	ratetbl->rate[offset].flags = flags;
865 }
866 
867 static inline int
868 minstrel_ht_get_prob_ewma(struct minstrel_ht_sta *mi, int rate)
869 {
870 	int group = rate / MCS_GROUP_RATES;
871 	rate %= MCS_GROUP_RATES;
872 	return mi->groups[group].rates[rate].prob_ewma;
873 }
874 
875 static int
876 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
877 {
878 	int group = mi->max_prob_rate / MCS_GROUP_RATES;
879 	const struct mcs_group *g = &minstrel_mcs_groups[group];
880 	int rate = mi->max_prob_rate % MCS_GROUP_RATES;
881 
882 	/* Disable A-MSDU if max_prob_rate is bad */
883 	if (mi->groups[group].rates[rate].prob_ewma < MINSTREL_FRAC(50, 100))
884 		return 1;
885 
886 	/* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
887 	if (g->duration[rate] > MCS_DURATION(1, 0, 52))
888 		return 500;
889 
890 	/*
891 	 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
892 	 * data packet size
893 	 */
894 	if (g->duration[rate] > MCS_DURATION(1, 0, 104))
895 		return 1600;
896 
897 	/*
898 	 * If the rate is slower than single-stream MCS7, or if the max throughput
899 	 * rate success probability is less than 75%, limit A-MSDU to twice the usual
900 	 * data packet size
901 	 */
902 	if (g->duration[rate] > MCS_DURATION(1, 0, 260) ||
903 	    (minstrel_ht_get_prob_ewma(mi, mi->max_tp_rate[0]) <
904 	     MINSTREL_FRAC(75, 100)))
905 		return 3200;
906 
907 	/*
908 	 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
909 	 * Since aggregation sessions are started/stopped without txq flush, use
910 	 * the limit here to avoid the complexity of having to de-aggregate
911 	 * packets in the queue.
912 	 */
913 	if (!mi->sta->vht_cap.vht_supported)
914 		return IEEE80211_MAX_MPDU_LEN_HT_BA;
915 
916 	/* unlimited */
917 	return 0;
918 }
919 
920 static void
921 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
922 {
923 	struct ieee80211_sta_rates *rates;
924 	int i = 0;
925 
926 	rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
927 	if (!rates)
928 		return;
929 
930 	/* Start with max_tp_rate[0] */
931 	minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
932 
933 	if (mp->hw->max_rates >= 3) {
934 		/* At least 3 tx rates supported, use max_tp_rate[1] next */
935 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[1]);
936 	}
937 
938 	if (mp->hw->max_rates >= 2) {
939 		/*
940 		 * At least 2 tx rates supported, use max_prob_rate next */
941 		minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
942 	}
943 
944 	mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
945 	rates->rate[i].idx = -1;
946 	rate_control_set_rates(mp->hw, mi->sta, rates);
947 }
948 
949 static inline int
950 minstrel_get_duration(int index)
951 {
952 	const struct mcs_group *group = &minstrel_mcs_groups[index / MCS_GROUP_RATES];
953 	return group->duration[index % MCS_GROUP_RATES];
954 }
955 
956 static int
957 minstrel_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
958 {
959 	struct minstrel_rate_stats *mrs;
960 	struct minstrel_mcs_group_data *mg;
961 	unsigned int sample_dur, sample_group, cur_max_tp_streams;
962 	int tp_rate1, tp_rate2;
963 	int sample_idx = 0;
964 
965 	if (mi->sample_wait > 0) {
966 		mi->sample_wait--;
967 		return -1;
968 	}
969 
970 	if (!mi->sample_tries)
971 		return -1;
972 
973 	sample_group = mi->sample_group;
974 	mg = &mi->groups[sample_group];
975 	sample_idx = sample_table[mg->column][mg->index];
976 	minstrel_set_next_sample_idx(mi);
977 
978 	if (!(mi->supported[sample_group] & BIT(sample_idx)))
979 		return -1;
980 
981 	mrs = &mg->rates[sample_idx];
982 	sample_idx += sample_group * MCS_GROUP_RATES;
983 
984 	/* Set tp_rate1, tp_rate2 to the highest / second highest max_tp_rate */
985 	if (minstrel_get_duration(mi->max_tp_rate[0]) >
986 	    minstrel_get_duration(mi->max_tp_rate[1])) {
987 		tp_rate1 = mi->max_tp_rate[1];
988 		tp_rate2 = mi->max_tp_rate[0];
989 	} else {
990 		tp_rate1 = mi->max_tp_rate[0];
991 		tp_rate2 = mi->max_tp_rate[1];
992 	}
993 
994 	/*
995 	 * Sampling might add some overhead (RTS, no aggregation)
996 	 * to the frame. Hence, don't use sampling for the highest currently
997 	 * used highest throughput or probability rate.
998 	 */
999 	if (sample_idx == mi->max_tp_rate[0] || sample_idx == mi->max_prob_rate)
1000 		return -1;
1001 
1002 	/*
1003 	 * Do not sample if the probability is already higher than 95%
1004 	 * to avoid wasting airtime.
1005 	 */
1006 	if (mrs->prob_ewma > MINSTREL_FRAC(95, 100))
1007 		return -1;
1008 
1009 	/*
1010 	 * Make sure that lower rates get sampled only occasionally,
1011 	 * if the link is working perfectly.
1012 	 */
1013 
1014 	cur_max_tp_streams = minstrel_mcs_groups[tp_rate1 /
1015 		MCS_GROUP_RATES].streams;
1016 	sample_dur = minstrel_get_duration(sample_idx);
1017 	if (sample_dur >= minstrel_get_duration(tp_rate2) &&
1018 	    (cur_max_tp_streams - 1 <
1019 	     minstrel_mcs_groups[sample_group].streams ||
1020 	     sample_dur >= minstrel_get_duration(mi->max_prob_rate))) {
1021 		if (mrs->sample_skipped < 20)
1022 			return -1;
1023 
1024 		if (mi->sample_slow++ > 2)
1025 			return -1;
1026 	}
1027 	mi->sample_tries--;
1028 
1029 	return sample_idx;
1030 }
1031 
1032 static void
1033 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1034                      struct ieee80211_tx_rate_control *txrc)
1035 {
1036 	const struct mcs_group *sample_group;
1037 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1038 	struct ieee80211_tx_rate *rate = &info->status.rates[0];
1039 	struct minstrel_ht_sta_priv *msp = priv_sta;
1040 	struct minstrel_ht_sta *mi = &msp->ht;
1041 	struct minstrel_priv *mp = priv;
1042 	int sample_idx;
1043 
1044 	if (rate_control_send_low(sta, priv_sta, txrc))
1045 		return;
1046 
1047 	if (!msp->is_ht)
1048 		return mac80211_minstrel.get_rate(priv, sta, &msp->legacy, txrc);
1049 
1050 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU) &&
1051 	    mi->max_prob_rate / MCS_GROUP_RATES != MINSTREL_CCK_GROUP)
1052 		minstrel_aggr_check(sta, txrc->skb);
1053 
1054 	info->flags |= mi->tx_flags;
1055 
1056 #ifdef CONFIG_MAC80211_DEBUGFS
1057 	if (mp->fixed_rate_idx != -1)
1058 		return;
1059 #endif
1060 
1061 	/* Don't use EAPOL frames for sampling on non-mrr hw */
1062 	if (mp->hw->max_rates == 1 &&
1063 	    (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1064 		sample_idx = -1;
1065 	else
1066 		sample_idx = minstrel_get_sample_rate(mp, mi);
1067 
1068 	mi->total_packets++;
1069 
1070 	/* wraparound */
1071 	if (mi->total_packets == ~0) {
1072 		mi->total_packets = 0;
1073 		mi->sample_packets = 0;
1074 	}
1075 
1076 	if (sample_idx < 0)
1077 		return;
1078 
1079 	sample_group = &minstrel_mcs_groups[sample_idx / MCS_GROUP_RATES];
1080 	info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1081 	rate->count = 1;
1082 
1083 	if (sample_idx / MCS_GROUP_RATES == MINSTREL_CCK_GROUP) {
1084 		int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1085 		rate->idx = mp->cck_rates[idx];
1086 	} else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1087 		ieee80211_rate_set_vht(rate, sample_idx % MCS_GROUP_RATES,
1088 				       sample_group->streams);
1089 	} else {
1090 		rate->idx = sample_idx % MCS_GROUP_RATES +
1091 			    (sample_group->streams - 1) * 8;
1092 	}
1093 
1094 	rate->flags = sample_group->flags;
1095 }
1096 
1097 static void
1098 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1099 		       struct ieee80211_supported_band *sband,
1100 		       struct ieee80211_sta *sta)
1101 {
1102 	int i;
1103 
1104 	if (sband->band != NL80211_BAND_2GHZ)
1105 		return;
1106 
1107 	if (!ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1108 		return;
1109 
1110 	mi->cck_supported = 0;
1111 	mi->cck_supported_short = 0;
1112 	for (i = 0; i < 4; i++) {
1113 		if (!rate_supported(sta, sband->band, mp->cck_rates[i]))
1114 			continue;
1115 
1116 		mi->cck_supported |= BIT(i);
1117 		if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1118 			mi->cck_supported_short |= BIT(i);
1119 	}
1120 
1121 	mi->supported[MINSTREL_CCK_GROUP] = mi->cck_supported;
1122 }
1123 
1124 static void
1125 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1126 			struct cfg80211_chan_def *chandef,
1127                         struct ieee80211_sta *sta, void *priv_sta)
1128 {
1129 	struct minstrel_priv *mp = priv;
1130 	struct minstrel_ht_sta_priv *msp = priv_sta;
1131 	struct minstrel_ht_sta *mi = &msp->ht;
1132 	struct ieee80211_mcs_info *mcs = &sta->ht_cap.mcs;
1133 	u16 sta_cap = sta->ht_cap.cap;
1134 	struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap;
1135 	struct sta_info *sinfo = container_of(sta, struct sta_info, sta);
1136 	int use_vht;
1137 	int n_supported = 0;
1138 	int ack_dur;
1139 	int stbc;
1140 	int i;
1141 
1142 	/* fall back to the old minstrel for legacy stations */
1143 	if (!sta->ht_cap.ht_supported)
1144 		goto use_legacy;
1145 
1146 	BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1147 
1148 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1149 	if (vht_cap->vht_supported)
1150 		use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1151 	else
1152 #endif
1153 	use_vht = 0;
1154 
1155 	msp->is_ht = true;
1156 	memset(mi, 0, sizeof(*mi));
1157 
1158 	mi->sta = sta;
1159 	mi->last_stats_update = jiffies;
1160 
1161 	ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1162 	mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1163 	mi->overhead += ack_dur;
1164 	mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1165 
1166 	mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1167 
1168 	/* When using MRR, sample more on the first attempt, without delay */
1169 	if (mp->has_mrr) {
1170 		mi->sample_count = 16;
1171 		mi->sample_wait = 0;
1172 	} else {
1173 		mi->sample_count = 8;
1174 		mi->sample_wait = 8;
1175 	}
1176 	mi->sample_tries = 4;
1177 
1178 	/* TODO tx_flags for vht - ATM the RC API is not fine-grained enough */
1179 	if (!use_vht) {
1180 		stbc = (sta_cap & IEEE80211_HT_CAP_RX_STBC) >>
1181 			IEEE80211_HT_CAP_RX_STBC_SHIFT;
1182 		mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1183 
1184 		if (sta_cap & IEEE80211_HT_CAP_LDPC_CODING)
1185 			mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1186 	}
1187 
1188 	for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1189 		u32 gflags = minstrel_mcs_groups[i].flags;
1190 		int bw, nss;
1191 
1192 		mi->supported[i] = 0;
1193 		if (i == MINSTREL_CCK_GROUP) {
1194 			minstrel_ht_update_cck(mp, mi, sband, sta);
1195 			continue;
1196 		}
1197 
1198 		if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1199 			if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1200 				if (!(sta_cap & IEEE80211_HT_CAP_SGI_40))
1201 					continue;
1202 			} else {
1203 				if (!(sta_cap & IEEE80211_HT_CAP_SGI_20))
1204 					continue;
1205 			}
1206 		}
1207 
1208 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1209 		    sta->bandwidth < IEEE80211_STA_RX_BW_40)
1210 			continue;
1211 
1212 		nss = minstrel_mcs_groups[i].streams;
1213 
1214 		/* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1215 		if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1216 			continue;
1217 
1218 		/* HT rate */
1219 		if (gflags & IEEE80211_TX_RC_MCS) {
1220 #ifdef CONFIG_MAC80211_RC_MINSTREL_VHT
1221 			if (use_vht && minstrel_vht_only)
1222 				continue;
1223 #endif
1224 			mi->supported[i] = mcs->rx_mask[nss - 1];
1225 			if (mi->supported[i])
1226 				n_supported++;
1227 			continue;
1228 		}
1229 
1230 		/* VHT rate */
1231 		if (!vht_cap->vht_supported ||
1232 		    WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1233 		    WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1234 			continue;
1235 
1236 		if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1237 			if (sta->bandwidth < IEEE80211_STA_RX_BW_80 ||
1238 			    ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1239 			     !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1240 				continue;
1241 			}
1242 		}
1243 
1244 		if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1245 			bw = BW_40;
1246 		else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1247 			bw = BW_80;
1248 		else
1249 			bw = BW_20;
1250 
1251 		mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1252 				vht_cap->vht_mcs.tx_mcs_map);
1253 
1254 		if (mi->supported[i])
1255 			n_supported++;
1256 	}
1257 
1258 	if (!n_supported)
1259 		goto use_legacy;
1260 
1261 	if (test_sta_flag(sinfo, WLAN_STA_SHORT_PREAMBLE))
1262 		mi->cck_supported_short |= mi->cck_supported_short << 4;
1263 
1264 	/* create an initial rate table with the lowest supported rates */
1265 	minstrel_ht_update_stats(mp, mi);
1266 	minstrel_ht_update_rates(mp, mi);
1267 
1268 	return;
1269 
1270 use_legacy:
1271 	msp->is_ht = false;
1272 	memset(&msp->legacy, 0, sizeof(msp->legacy));
1273 	msp->legacy.r = msp->ratelist;
1274 	msp->legacy.sample_table = msp->sample_table;
1275 	return mac80211_minstrel.rate_init(priv, sband, chandef, sta,
1276 					   &msp->legacy);
1277 }
1278 
1279 static void
1280 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1281 		      struct cfg80211_chan_def *chandef,
1282                       struct ieee80211_sta *sta, void *priv_sta)
1283 {
1284 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1285 }
1286 
1287 static void
1288 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1289 			struct cfg80211_chan_def *chandef,
1290                         struct ieee80211_sta *sta, void *priv_sta,
1291                         u32 changed)
1292 {
1293 	minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1294 }
1295 
1296 static void *
1297 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1298 {
1299 	struct ieee80211_supported_band *sband;
1300 	struct minstrel_ht_sta_priv *msp;
1301 	struct minstrel_priv *mp = priv;
1302 	struct ieee80211_hw *hw = mp->hw;
1303 	int max_rates = 0;
1304 	int i;
1305 
1306 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1307 		sband = hw->wiphy->bands[i];
1308 		if (sband && sband->n_bitrates > max_rates)
1309 			max_rates = sband->n_bitrates;
1310 	}
1311 
1312 	msp = kzalloc(sizeof(*msp), gfp);
1313 	if (!msp)
1314 		return NULL;
1315 
1316 	msp->ratelist = kcalloc(max_rates, sizeof(struct minstrel_rate), gfp);
1317 	if (!msp->ratelist)
1318 		goto error;
1319 
1320 	msp->sample_table = kmalloc_array(max_rates, SAMPLE_COLUMNS, gfp);
1321 	if (!msp->sample_table)
1322 		goto error1;
1323 
1324 	return msp;
1325 
1326 error1:
1327 	kfree(msp->ratelist);
1328 error:
1329 	kfree(msp);
1330 	return NULL;
1331 }
1332 
1333 static void
1334 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1335 {
1336 	struct minstrel_ht_sta_priv *msp = priv_sta;
1337 
1338 	kfree(msp->sample_table);
1339 	kfree(msp->ratelist);
1340 	kfree(msp);
1341 }
1342 
1343 static void *
1344 minstrel_ht_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1345 {
1346 	return mac80211_minstrel.alloc(hw, debugfsdir);
1347 }
1348 
1349 static void
1350 minstrel_ht_free(void *priv)
1351 {
1352 	mac80211_minstrel.free(priv);
1353 }
1354 
1355 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1356 {
1357 	struct minstrel_ht_sta_priv *msp = priv_sta;
1358 	struct minstrel_ht_sta *mi = &msp->ht;
1359 	int i, j, prob, tp_avg;
1360 
1361 	if (!msp->is_ht)
1362 		return mac80211_minstrel.get_expected_throughput(priv_sta);
1363 
1364 	i = mi->max_tp_rate[0] / MCS_GROUP_RATES;
1365 	j = mi->max_tp_rate[0] % MCS_GROUP_RATES;
1366 	prob = mi->groups[i].rates[j].prob_ewma;
1367 
1368 	/* convert tp_avg from pkt per second in kbps */
1369 	tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
1370 	tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
1371 
1372 	return tp_avg;
1373 }
1374 
1375 static const struct rate_control_ops mac80211_minstrel_ht = {
1376 	.name = "minstrel_ht",
1377 	.tx_status_ext = minstrel_ht_tx_status,
1378 	.get_rate = minstrel_ht_get_rate,
1379 	.rate_init = minstrel_ht_rate_init,
1380 	.rate_update = minstrel_ht_rate_update,
1381 	.alloc_sta = minstrel_ht_alloc_sta,
1382 	.free_sta = minstrel_ht_free_sta,
1383 	.alloc = minstrel_ht_alloc,
1384 	.free = minstrel_ht_free,
1385 #ifdef CONFIG_MAC80211_DEBUGFS
1386 	.add_sta_debugfs = minstrel_ht_add_sta_debugfs,
1387 	.remove_sta_debugfs = minstrel_ht_remove_sta_debugfs,
1388 #endif
1389 	.get_expected_throughput = minstrel_ht_get_expected_throughput,
1390 };
1391 
1392 
1393 static void __init init_sample_table(void)
1394 {
1395 	int col, i, new_idx;
1396 	u8 rnd[MCS_GROUP_RATES];
1397 
1398 	memset(sample_table, 0xff, sizeof(sample_table));
1399 	for (col = 0; col < SAMPLE_COLUMNS; col++) {
1400 		prandom_bytes(rnd, sizeof(rnd));
1401 		for (i = 0; i < MCS_GROUP_RATES; i++) {
1402 			new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
1403 			while (sample_table[col][new_idx] != 0xff)
1404 				new_idx = (new_idx + 1) % MCS_GROUP_RATES;
1405 
1406 			sample_table[col][new_idx] = i;
1407 		}
1408 	}
1409 }
1410 
1411 int __init
1412 rc80211_minstrel_ht_init(void)
1413 {
1414 	init_sample_table();
1415 	return ieee80211_rate_control_register(&mac80211_minstrel_ht);
1416 }
1417 
1418 void
1419 rc80211_minstrel_ht_exit(void)
1420 {
1421 	ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
1422 }
1423