1 /* 2 * Copyright (c) 2008 open80211s Ltd. 3 * Authors: Luis Carlos Cobo <luisca@cozybit.com> 4 * Javier Cardona <javier@cozybit.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <asm/unaligned.h> 12 #include "ieee80211_i.h" 13 #include "mesh.h" 14 15 #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ) 16 #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ) 17 18 #define PP_OFFSET 1 /* Path Selection Protocol */ 19 #define PM_OFFSET 5 /* Path Selection Metric */ 20 #define CC_OFFSET 9 /* Congestion Control Mode */ 21 #define CAPAB_OFFSET 17 22 #define ACCEPT_PLINKS 0x80 23 24 int mesh_allocated; 25 static struct kmem_cache *rm_cache; 26 27 void ieee80211s_init(void) 28 { 29 mesh_pathtbl_init(); 30 mesh_allocated = 1; 31 rm_cache = kmem_cache_create("mesh_rmc", sizeof(struct rmc_entry), 32 0, 0, NULL); 33 } 34 35 void ieee80211s_stop(void) 36 { 37 mesh_pathtbl_unregister(); 38 kmem_cache_destroy(rm_cache); 39 } 40 41 static void ieee80211_mesh_housekeeping_timer(unsigned long data) 42 { 43 struct ieee80211_sub_if_data *sdata = (void *) data; 44 struct ieee80211_local *local = sdata->local; 45 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 46 47 ifmsh->housekeeping = true; 48 queue_work(local->hw.workqueue, &ifmsh->work); 49 } 50 51 /** 52 * mesh_matches_local - check if the config of a mesh point matches ours 53 * 54 * @ie: information elements of a management frame from the mesh peer 55 * @sdata: local mesh subif 56 * 57 * This function checks if the mesh configuration of a mesh point matches the 58 * local mesh configuration, i.e. if both nodes belong to the same mesh network. 59 */ 60 bool mesh_matches_local(struct ieee802_11_elems *ie, struct ieee80211_sub_if_data *sdata) 61 { 62 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 63 64 /* 65 * As support for each feature is added, check for matching 66 * - On mesh config capabilities 67 * - Power Save Support En 68 * - Sync support enabled 69 * - Sync support active 70 * - Sync support required from peer 71 * - MDA enabled 72 * - Power management control on fc 73 */ 74 if (ifmsh->mesh_id_len == ie->mesh_id_len && 75 memcmp(ifmsh->mesh_id, ie->mesh_id, ie->mesh_id_len) == 0 && 76 memcmp(ifmsh->mesh_pp_id, ie->mesh_config + PP_OFFSET, 4) == 0 && 77 memcmp(ifmsh->mesh_pm_id, ie->mesh_config + PM_OFFSET, 4) == 0 && 78 memcmp(ifmsh->mesh_cc_id, ie->mesh_config + CC_OFFSET, 4) == 0) 79 return true; 80 81 return false; 82 } 83 84 /** 85 * mesh_peer_accepts_plinks - check if an mp is willing to establish peer links 86 * 87 * @ie: information elements of a management frame from the mesh peer 88 */ 89 bool mesh_peer_accepts_plinks(struct ieee802_11_elems *ie) 90 { 91 return (*(ie->mesh_config + CAPAB_OFFSET) & ACCEPT_PLINKS) != 0; 92 } 93 94 /** 95 * mesh_accept_plinks_update: update accepting_plink in local mesh beacons 96 * 97 * @sdata: mesh interface in which mesh beacons are going to be updated 98 */ 99 void mesh_accept_plinks_update(struct ieee80211_sub_if_data *sdata) 100 { 101 bool free_plinks; 102 103 /* In case mesh_plink_free_count > 0 and mesh_plinktbl_capacity == 0, 104 * the mesh interface might be able to establish plinks with peers that 105 * are already on the table but are not on PLINK_ESTAB state. However, 106 * in general the mesh interface is not accepting peer link requests 107 * from new peers, and that must be reflected in the beacon 108 */ 109 free_plinks = mesh_plink_availables(sdata); 110 111 if (free_plinks != sdata->u.mesh.accepting_plinks) 112 ieee80211_mesh_housekeeping_timer((unsigned long) sdata); 113 } 114 115 void mesh_ids_set_default(struct ieee80211_if_mesh *sta) 116 { 117 u8 def_id[4] = {0x00, 0x0F, 0xAC, 0xff}; 118 119 memcpy(sta->mesh_pp_id, def_id, 4); 120 memcpy(sta->mesh_pm_id, def_id, 4); 121 memcpy(sta->mesh_cc_id, def_id, 4); 122 } 123 124 int mesh_rmc_init(struct ieee80211_sub_if_data *sdata) 125 { 126 int i; 127 128 sdata->u.mesh.rmc = kmalloc(sizeof(struct mesh_rmc), GFP_KERNEL); 129 if (!sdata->u.mesh.rmc) 130 return -ENOMEM; 131 sdata->u.mesh.rmc->idx_mask = RMC_BUCKETS - 1; 132 for (i = 0; i < RMC_BUCKETS; i++) 133 INIT_LIST_HEAD(&sdata->u.mesh.rmc->bucket[i].list); 134 return 0; 135 } 136 137 void mesh_rmc_free(struct ieee80211_sub_if_data *sdata) 138 { 139 struct mesh_rmc *rmc = sdata->u.mesh.rmc; 140 struct rmc_entry *p, *n; 141 int i; 142 143 if (!sdata->u.mesh.rmc) 144 return; 145 146 for (i = 0; i < RMC_BUCKETS; i++) 147 list_for_each_entry_safe(p, n, &rmc->bucket[i].list, list) { 148 list_del(&p->list); 149 kmem_cache_free(rm_cache, p); 150 } 151 152 kfree(rmc); 153 sdata->u.mesh.rmc = NULL; 154 } 155 156 /** 157 * mesh_rmc_check - Check frame in recent multicast cache and add if absent. 158 * 159 * @sa: source address 160 * @mesh_hdr: mesh_header 161 * 162 * Returns: 0 if the frame is not in the cache, nonzero otherwise. 163 * 164 * Checks using the source address and the mesh sequence number if we have 165 * received this frame lately. If the frame is not in the cache, it is added to 166 * it. 167 */ 168 int mesh_rmc_check(u8 *sa, struct ieee80211s_hdr *mesh_hdr, 169 struct ieee80211_sub_if_data *sdata) 170 { 171 struct mesh_rmc *rmc = sdata->u.mesh.rmc; 172 u32 seqnum = 0; 173 int entries = 0; 174 u8 idx; 175 struct rmc_entry *p, *n; 176 177 /* Don't care about endianness since only match matters */ 178 memcpy(&seqnum, &mesh_hdr->seqnum, sizeof(mesh_hdr->seqnum)); 179 idx = le32_to_cpu(mesh_hdr->seqnum) & rmc->idx_mask; 180 list_for_each_entry_safe(p, n, &rmc->bucket[idx].list, list) { 181 ++entries; 182 if (time_after(jiffies, p->exp_time) || 183 (entries == RMC_QUEUE_MAX_LEN)) { 184 list_del(&p->list); 185 kmem_cache_free(rm_cache, p); 186 --entries; 187 } else if ((seqnum == p->seqnum) 188 && (memcmp(sa, p->sa, ETH_ALEN) == 0)) 189 return -1; 190 } 191 192 p = kmem_cache_alloc(rm_cache, GFP_ATOMIC); 193 if (!p) { 194 printk(KERN_DEBUG "o11s: could not allocate RMC entry\n"); 195 return 0; 196 } 197 p->seqnum = seqnum; 198 p->exp_time = jiffies + RMC_TIMEOUT; 199 memcpy(p->sa, sa, ETH_ALEN); 200 list_add(&p->list, &rmc->bucket[idx].list); 201 return 0; 202 } 203 204 void mesh_mgmt_ies_add(struct sk_buff *skb, struct ieee80211_sub_if_data *sdata) 205 { 206 struct ieee80211_local *local = sdata->local; 207 struct ieee80211_supported_band *sband; 208 u8 *pos; 209 int len, i, rate; 210 211 sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; 212 len = sband->n_bitrates; 213 if (len > 8) 214 len = 8; 215 pos = skb_put(skb, len + 2); 216 *pos++ = WLAN_EID_SUPP_RATES; 217 *pos++ = len; 218 for (i = 0; i < len; i++) { 219 rate = sband->bitrates[i].bitrate; 220 *pos++ = (u8) (rate / 5); 221 } 222 223 if (sband->n_bitrates > len) { 224 pos = skb_put(skb, sband->n_bitrates - len + 2); 225 *pos++ = WLAN_EID_EXT_SUPP_RATES; 226 *pos++ = sband->n_bitrates - len; 227 for (i = len; i < sband->n_bitrates; i++) { 228 rate = sband->bitrates[i].bitrate; 229 *pos++ = (u8) (rate / 5); 230 } 231 } 232 233 pos = skb_put(skb, 2 + sdata->u.mesh.mesh_id_len); 234 *pos++ = WLAN_EID_MESH_ID; 235 *pos++ = sdata->u.mesh.mesh_id_len; 236 if (sdata->u.mesh.mesh_id_len) 237 memcpy(pos, sdata->u.mesh.mesh_id, sdata->u.mesh.mesh_id_len); 238 239 pos = skb_put(skb, 21); 240 *pos++ = WLAN_EID_MESH_CONFIG; 241 *pos++ = IEEE80211_MESH_CONFIG_LEN; 242 /* Version */ 243 *pos++ = 1; 244 245 /* Active path selection protocol ID */ 246 memcpy(pos, sdata->u.mesh.mesh_pp_id, 4); 247 pos += 4; 248 249 /* Active path selection metric ID */ 250 memcpy(pos, sdata->u.mesh.mesh_pm_id, 4); 251 pos += 4; 252 253 /* Congestion control mode identifier */ 254 memcpy(pos, sdata->u.mesh.mesh_cc_id, 4); 255 pos += 4; 256 257 /* Channel precedence: 258 * Not running simple channel unification protocol 259 */ 260 memset(pos, 0x00, 4); 261 pos += 4; 262 263 /* Mesh capability */ 264 sdata->u.mesh.accepting_plinks = mesh_plink_availables(sdata); 265 *pos++ = sdata->u.mesh.accepting_plinks ? ACCEPT_PLINKS : 0x00; 266 *pos++ = 0x00; 267 268 return; 269 } 270 271 u32 mesh_table_hash(u8 *addr, struct ieee80211_sub_if_data *sdata, struct mesh_table *tbl) 272 { 273 /* Use last four bytes of hw addr and interface index as hash index */ 274 return jhash_2words(*(u32 *)(addr+2), sdata->dev->ifindex, tbl->hash_rnd) 275 & tbl->hash_mask; 276 } 277 278 struct mesh_table *mesh_table_alloc(int size_order) 279 { 280 int i; 281 struct mesh_table *newtbl; 282 283 newtbl = kmalloc(sizeof(struct mesh_table), GFP_KERNEL); 284 if (!newtbl) 285 return NULL; 286 287 newtbl->hash_buckets = kzalloc(sizeof(struct hlist_head) * 288 (1 << size_order), GFP_KERNEL); 289 290 if (!newtbl->hash_buckets) { 291 kfree(newtbl); 292 return NULL; 293 } 294 295 newtbl->hashwlock = kmalloc(sizeof(spinlock_t) * 296 (1 << size_order), GFP_KERNEL); 297 if (!newtbl->hashwlock) { 298 kfree(newtbl->hash_buckets); 299 kfree(newtbl); 300 return NULL; 301 } 302 303 newtbl->size_order = size_order; 304 newtbl->hash_mask = (1 << size_order) - 1; 305 atomic_set(&newtbl->entries, 0); 306 get_random_bytes(&newtbl->hash_rnd, 307 sizeof(newtbl->hash_rnd)); 308 for (i = 0; i <= newtbl->hash_mask; i++) 309 spin_lock_init(&newtbl->hashwlock[i]); 310 311 return newtbl; 312 } 313 314 static void __mesh_table_free(struct mesh_table *tbl) 315 { 316 kfree(tbl->hash_buckets); 317 kfree(tbl->hashwlock); 318 kfree(tbl); 319 } 320 321 void mesh_table_free(struct mesh_table *tbl, bool free_leafs) 322 { 323 struct hlist_head *mesh_hash; 324 struct hlist_node *p, *q; 325 int i; 326 327 mesh_hash = tbl->hash_buckets; 328 for (i = 0; i <= tbl->hash_mask; i++) { 329 spin_lock(&tbl->hashwlock[i]); 330 hlist_for_each_safe(p, q, &mesh_hash[i]) { 331 tbl->free_node(p, free_leafs); 332 atomic_dec(&tbl->entries); 333 } 334 spin_unlock(&tbl->hashwlock[i]); 335 } 336 __mesh_table_free(tbl); 337 } 338 339 static void ieee80211_mesh_path_timer(unsigned long data) 340 { 341 struct ieee80211_sub_if_data *sdata = 342 (struct ieee80211_sub_if_data *) data; 343 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 344 struct ieee80211_local *local = sdata->local; 345 346 queue_work(local->hw.workqueue, &ifmsh->work); 347 } 348 349 struct mesh_table *mesh_table_grow(struct mesh_table *tbl) 350 { 351 struct mesh_table *newtbl; 352 struct hlist_head *oldhash; 353 struct hlist_node *p, *q; 354 int i; 355 356 if (atomic_read(&tbl->entries) 357 < tbl->mean_chain_len * (tbl->hash_mask + 1)) 358 goto endgrow; 359 360 newtbl = mesh_table_alloc(tbl->size_order + 1); 361 if (!newtbl) 362 goto endgrow; 363 364 newtbl->free_node = tbl->free_node; 365 newtbl->mean_chain_len = tbl->mean_chain_len; 366 newtbl->copy_node = tbl->copy_node; 367 atomic_set(&newtbl->entries, atomic_read(&tbl->entries)); 368 369 oldhash = tbl->hash_buckets; 370 for (i = 0; i <= tbl->hash_mask; i++) 371 hlist_for_each(p, &oldhash[i]) 372 if (tbl->copy_node(p, newtbl) < 0) 373 goto errcopy; 374 375 return newtbl; 376 377 errcopy: 378 for (i = 0; i <= newtbl->hash_mask; i++) { 379 hlist_for_each_safe(p, q, &newtbl->hash_buckets[i]) 380 tbl->free_node(p, 0); 381 } 382 __mesh_table_free(newtbl); 383 endgrow: 384 return NULL; 385 } 386 387 /** 388 * ieee80211_new_mesh_header - create a new mesh header 389 * @meshhdr: uninitialized mesh header 390 * @sdata: mesh interface to be used 391 * 392 * Return the header length. 393 */ 394 int ieee80211_new_mesh_header(struct ieee80211s_hdr *meshhdr, 395 struct ieee80211_sub_if_data *sdata) 396 { 397 meshhdr->flags = 0; 398 meshhdr->ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; 399 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &meshhdr->seqnum); 400 sdata->u.mesh.mesh_seqnum++; 401 402 return 6; 403 } 404 405 static void ieee80211_mesh_housekeeping(struct ieee80211_sub_if_data *sdata, 406 struct ieee80211_if_mesh *ifmsh) 407 { 408 bool free_plinks; 409 410 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 411 printk(KERN_DEBUG "%s: running mesh housekeeping\n", 412 sdata->dev->name); 413 #endif 414 415 ieee80211_sta_expire(sdata, IEEE80211_MESH_PEER_INACTIVITY_LIMIT); 416 mesh_path_expire(sdata); 417 418 free_plinks = mesh_plink_availables(sdata); 419 if (free_plinks != sdata->u.mesh.accepting_plinks) 420 ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON); 421 422 ifmsh->housekeeping = false; 423 mod_timer(&ifmsh->housekeeping_timer, 424 round_jiffies(jiffies + IEEE80211_MESH_HOUSEKEEPING_INTERVAL)); 425 } 426 427 428 void ieee80211_start_mesh(struct ieee80211_sub_if_data *sdata) 429 { 430 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 431 struct ieee80211_local *local = sdata->local; 432 433 ifmsh->housekeeping = true; 434 queue_work(local->hw.workqueue, &ifmsh->work); 435 ieee80211_if_config(sdata, IEEE80211_IFCC_BEACON | 436 IEEE80211_IFCC_BEACON_ENABLED); 437 } 438 439 void ieee80211_stop_mesh(struct ieee80211_sub_if_data *sdata) 440 { 441 del_timer_sync(&sdata->u.mesh.housekeeping_timer); 442 /* 443 * If the timer fired while we waited for it, it will have 444 * requeued the work. Now the work will be running again 445 * but will not rearm the timer again because it checks 446 * whether the interface is running, which, at this point, 447 * it no longer is. 448 */ 449 cancel_work_sync(&sdata->u.mesh.work); 450 451 /* 452 * When we get here, the interface is marked down. 453 * Call synchronize_rcu() to wait for the RX path 454 * should it be using the interface and enqueuing 455 * frames at this very time on another CPU. 456 */ 457 synchronize_rcu(); 458 skb_queue_purge(&sdata->u.mesh.skb_queue); 459 } 460 461 static void ieee80211_mesh_rx_bcn_presp(struct ieee80211_sub_if_data *sdata, 462 u16 stype, 463 struct ieee80211_mgmt *mgmt, 464 size_t len, 465 struct ieee80211_rx_status *rx_status) 466 { 467 struct ieee80211_local *local = sdata->local; 468 struct ieee802_11_elems elems; 469 struct ieee80211_channel *channel; 470 u32 supp_rates = 0; 471 size_t baselen; 472 int freq; 473 enum ieee80211_band band = rx_status->band; 474 475 /* ignore ProbeResp to foreign address */ 476 if (stype == IEEE80211_STYPE_PROBE_RESP && 477 compare_ether_addr(mgmt->da, sdata->dev->dev_addr)) 478 return; 479 480 baselen = (u8 *) mgmt->u.probe_resp.variable - (u8 *) mgmt; 481 if (baselen > len) 482 return; 483 484 ieee802_11_parse_elems(mgmt->u.probe_resp.variable, len - baselen, 485 &elems); 486 487 if (elems.ds_params && elems.ds_params_len == 1) 488 freq = ieee80211_channel_to_frequency(elems.ds_params[0]); 489 else 490 freq = rx_status->freq; 491 492 channel = ieee80211_get_channel(local->hw.wiphy, freq); 493 494 if (!channel || channel->flags & IEEE80211_CHAN_DISABLED) 495 return; 496 497 if (elems.mesh_id && elems.mesh_config && 498 mesh_matches_local(&elems, sdata)) { 499 supp_rates = ieee80211_sta_get_rates(local, &elems, band); 500 501 mesh_neighbour_update(mgmt->sa, supp_rates, sdata, 502 mesh_peer_accepts_plinks(&elems)); 503 } 504 } 505 506 static void ieee80211_mesh_rx_mgmt_action(struct ieee80211_sub_if_data *sdata, 507 struct ieee80211_mgmt *mgmt, 508 size_t len, 509 struct ieee80211_rx_status *rx_status) 510 { 511 switch (mgmt->u.action.category) { 512 case PLINK_CATEGORY: 513 mesh_rx_plink_frame(sdata, mgmt, len, rx_status); 514 break; 515 case MESH_PATH_SEL_CATEGORY: 516 mesh_rx_path_sel_frame(sdata, mgmt, len); 517 break; 518 } 519 } 520 521 static void ieee80211_mesh_rx_queued_mgmt(struct ieee80211_sub_if_data *sdata, 522 struct sk_buff *skb) 523 { 524 struct ieee80211_rx_status *rx_status; 525 struct ieee80211_if_mesh *ifmsh; 526 struct ieee80211_mgmt *mgmt; 527 u16 stype; 528 529 ifmsh = &sdata->u.mesh; 530 531 rx_status = (struct ieee80211_rx_status *) skb->cb; 532 mgmt = (struct ieee80211_mgmt *) skb->data; 533 stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE; 534 535 switch (stype) { 536 case IEEE80211_STYPE_PROBE_RESP: 537 case IEEE80211_STYPE_BEACON: 538 ieee80211_mesh_rx_bcn_presp(sdata, stype, mgmt, skb->len, 539 rx_status); 540 break; 541 case IEEE80211_STYPE_ACTION: 542 ieee80211_mesh_rx_mgmt_action(sdata, mgmt, skb->len, rx_status); 543 break; 544 } 545 546 kfree_skb(skb); 547 } 548 549 static void ieee80211_mesh_work(struct work_struct *work) 550 { 551 struct ieee80211_sub_if_data *sdata = 552 container_of(work, struct ieee80211_sub_if_data, u.mesh.work); 553 struct ieee80211_local *local = sdata->local; 554 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 555 struct sk_buff *skb; 556 557 if (!netif_running(sdata->dev)) 558 return; 559 560 if (local->sw_scanning || local->hw_scanning) 561 return; 562 563 while ((skb = skb_dequeue(&ifmsh->skb_queue))) 564 ieee80211_mesh_rx_queued_mgmt(sdata, skb); 565 566 if (ifmsh->preq_queue_len && 567 time_after(jiffies, 568 ifmsh->last_preq + msecs_to_jiffies(ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval))) 569 mesh_path_start_discovery(sdata); 570 571 if (ifmsh->housekeeping) 572 ieee80211_mesh_housekeeping(sdata, ifmsh); 573 } 574 575 void ieee80211_mesh_notify_scan_completed(struct ieee80211_local *local) 576 { 577 struct ieee80211_sub_if_data *sdata; 578 579 rcu_read_lock(); 580 list_for_each_entry_rcu(sdata, &local->interfaces, list) 581 if (ieee80211_vif_is_mesh(&sdata->vif)) 582 queue_work(local->hw.workqueue, &sdata->u.mesh.work); 583 rcu_read_unlock(); 584 } 585 586 void ieee80211_mesh_init_sdata(struct ieee80211_sub_if_data *sdata) 587 { 588 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 589 590 INIT_WORK(&ifmsh->work, ieee80211_mesh_work); 591 setup_timer(&ifmsh->housekeeping_timer, 592 ieee80211_mesh_housekeeping_timer, 593 (unsigned long) sdata); 594 skb_queue_head_init(&sdata->u.mesh.skb_queue); 595 596 ifmsh->mshcfg.dot11MeshRetryTimeout = MESH_RET_T; 597 ifmsh->mshcfg.dot11MeshConfirmTimeout = MESH_CONF_T; 598 ifmsh->mshcfg.dot11MeshHoldingTimeout = MESH_HOLD_T; 599 ifmsh->mshcfg.dot11MeshMaxRetries = MESH_MAX_RETR; 600 ifmsh->mshcfg.dot11MeshTTL = MESH_TTL; 601 ifmsh->mshcfg.auto_open_plinks = true; 602 ifmsh->mshcfg.dot11MeshMaxPeerLinks = 603 MESH_MAX_ESTAB_PLINKS; 604 ifmsh->mshcfg.dot11MeshHWMPactivePathTimeout = 605 MESH_PATH_TIMEOUT; 606 ifmsh->mshcfg.dot11MeshHWMPpreqMinInterval = 607 MESH_PREQ_MIN_INT; 608 ifmsh->mshcfg.dot11MeshHWMPnetDiameterTraversalTime = 609 MESH_DIAM_TRAVERSAL_TIME; 610 ifmsh->mshcfg.dot11MeshHWMPmaxPREQretries = 611 MESH_MAX_PREQ_RETRIES; 612 ifmsh->mshcfg.path_refresh_time = 613 MESH_PATH_REFRESH_TIME; 614 ifmsh->mshcfg.min_discovery_timeout = 615 MESH_MIN_DISCOVERY_TIMEOUT; 616 ifmsh->accepting_plinks = true; 617 ifmsh->preq_id = 0; 618 ifmsh->dsn = 0; 619 atomic_set(&ifmsh->mpaths, 0); 620 mesh_rmc_init(sdata); 621 ifmsh->last_preq = jiffies; 622 /* Allocate all mesh structures when creating the first mesh interface. */ 623 if (!mesh_allocated) 624 ieee80211s_init(); 625 mesh_ids_set_default(ifmsh); 626 setup_timer(&ifmsh->mesh_path_timer, 627 ieee80211_mesh_path_timer, 628 (unsigned long) sdata); 629 INIT_LIST_HEAD(&ifmsh->preq_queue.list); 630 spin_lock_init(&ifmsh->mesh_preq_queue_lock); 631 } 632 633 ieee80211_rx_result 634 ieee80211_mesh_rx_mgmt(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, 635 struct ieee80211_rx_status *rx_status) 636 { 637 struct ieee80211_local *local = sdata->local; 638 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 639 struct ieee80211_mgmt *mgmt; 640 u16 fc; 641 642 if (skb->len < 24) 643 return RX_DROP_MONITOR; 644 645 mgmt = (struct ieee80211_mgmt *) skb->data; 646 fc = le16_to_cpu(mgmt->frame_control); 647 648 switch (fc & IEEE80211_FCTL_STYPE) { 649 case IEEE80211_STYPE_PROBE_RESP: 650 case IEEE80211_STYPE_BEACON: 651 case IEEE80211_STYPE_ACTION: 652 memcpy(skb->cb, rx_status, sizeof(*rx_status)); 653 skb_queue_tail(&ifmsh->skb_queue, skb); 654 queue_work(local->hw.workqueue, &ifmsh->work); 655 return RX_QUEUED; 656 } 657 658 return RX_CONTINUE; 659 } 660