1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright 2015-2017 Intel Deutschland GmbH 9 * Copyright 2018-2019 Intel Corporation 10 */ 11 12 #include <linux/if_ether.h> 13 #include <linux/etherdevice.h> 14 #include <linux/list.h> 15 #include <linux/rcupdate.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <net/mac80211.h> 20 #include <crypto/algapi.h> 21 #include <asm/unaligned.h> 22 #include "ieee80211_i.h" 23 #include "driver-ops.h" 24 #include "debugfs_key.h" 25 #include "aes_ccm.h" 26 #include "aes_cmac.h" 27 #include "aes_gmac.h" 28 #include "aes_gcm.h" 29 30 31 /** 32 * DOC: Key handling basics 33 * 34 * Key handling in mac80211 is done based on per-interface (sub_if_data) 35 * keys and per-station keys. Since each station belongs to an interface, 36 * each station key also belongs to that interface. 37 * 38 * Hardware acceleration is done on a best-effort basis for algorithms 39 * that are implemented in software, for each key the hardware is asked 40 * to enable that key for offloading but if it cannot do that the key is 41 * simply kept for software encryption (unless it is for an algorithm 42 * that isn't implemented in software). 43 * There is currently no way of knowing whether a key is handled in SW 44 * or HW except by looking into debugfs. 45 * 46 * All key management is internally protected by a mutex. Within all 47 * other parts of mac80211, key references are, just as STA structure 48 * references, protected by RCU. Note, however, that some things are 49 * unprotected, namely the key->sta dereferences within the hardware 50 * acceleration functions. This means that sta_info_destroy() must 51 * remove the key which waits for an RCU grace period. 52 */ 53 54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 55 56 static void assert_key_lock(struct ieee80211_local *local) 57 { 58 lockdep_assert_held(&local->key_mtx); 59 } 60 61 static void 62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta) 63 { 64 struct ieee80211_sub_if_data *vlan; 65 66 if (sdata->vif.type != NL80211_IFTYPE_AP) 67 return; 68 69 /* crypto_tx_tailroom_needed_cnt is protected by this */ 70 assert_key_lock(sdata->local); 71 72 rcu_read_lock(); 73 74 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list) 75 vlan->crypto_tx_tailroom_needed_cnt += delta; 76 77 rcu_read_unlock(); 78 } 79 80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) 81 { 82 /* 83 * When this count is zero, SKB resizing for allocating tailroom 84 * for IV or MMIC is skipped. But, this check has created two race 85 * cases in xmit path while transiting from zero count to one: 86 * 87 * 1. SKB resize was skipped because no key was added but just before 88 * the xmit key is added and SW encryption kicks off. 89 * 90 * 2. SKB resize was skipped because all the keys were hw planted but 91 * just before xmit one of the key is deleted and SW encryption kicks 92 * off. 93 * 94 * In both the above case SW encryption will find not enough space for 95 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) 96 * 97 * Solution has been explained at 98 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net 99 */ 100 101 assert_key_lock(sdata->local); 102 103 update_vlan_tailroom_need_count(sdata, 1); 104 105 if (!sdata->crypto_tx_tailroom_needed_cnt++) { 106 /* 107 * Flush all XMIT packets currently using HW encryption or no 108 * encryption at all if the count transition is from 0 -> 1. 109 */ 110 synchronize_net(); 111 } 112 } 113 114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata, 115 int delta) 116 { 117 assert_key_lock(sdata->local); 118 119 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta); 120 121 update_vlan_tailroom_need_count(sdata, -delta); 122 sdata->crypto_tx_tailroom_needed_cnt -= delta; 123 } 124 125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) 126 { 127 struct ieee80211_sub_if_data *sdata = key->sdata; 128 struct sta_info *sta; 129 int ret = -EOPNOTSUPP; 130 131 might_sleep(); 132 133 if (key->flags & KEY_FLAG_TAINTED) { 134 /* If we get here, it's during resume and the key is 135 * tainted so shouldn't be used/programmed any more. 136 * However, its flags may still indicate that it was 137 * programmed into the device (since we're in resume) 138 * so clear that flag now to avoid trying to remove 139 * it again later. 140 */ 141 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && 142 !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 143 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 144 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 145 increment_tailroom_need_count(sdata); 146 147 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 148 return -EINVAL; 149 } 150 151 if (!key->local->ops->set_key) 152 goto out_unsupported; 153 154 assert_key_lock(key->local); 155 156 sta = key->sta; 157 158 /* 159 * If this is a per-STA GTK, check if it 160 * is supported; if not, return. 161 */ 162 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && 163 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK)) 164 goto out_unsupported; 165 166 if (sta && !sta->uploaded) 167 goto out_unsupported; 168 169 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 170 /* 171 * The driver doesn't know anything about VLAN interfaces. 172 * Hence, don't send GTKs for VLAN interfaces to the driver. 173 */ 174 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { 175 ret = 1; 176 goto out_unsupported; 177 } 178 } 179 180 ret = drv_set_key(key->local, SET_KEY, sdata, 181 sta ? &sta->sta : NULL, &key->conf); 182 183 if (!ret) { 184 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; 185 186 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 187 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 188 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 189 decrease_tailroom_need_count(sdata, 1); 190 191 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 192 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); 193 194 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) && 195 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC)); 196 197 return 0; 198 } 199 200 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1) 201 sdata_err(sdata, 202 "failed to set key (%d, %pM) to hardware (%d)\n", 203 key->conf.keyidx, 204 sta ? sta->sta.addr : bcast_addr, ret); 205 206 out_unsupported: 207 switch (key->conf.cipher) { 208 case WLAN_CIPHER_SUITE_WEP40: 209 case WLAN_CIPHER_SUITE_WEP104: 210 case WLAN_CIPHER_SUITE_TKIP: 211 case WLAN_CIPHER_SUITE_CCMP: 212 case WLAN_CIPHER_SUITE_CCMP_256: 213 case WLAN_CIPHER_SUITE_AES_CMAC: 214 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 215 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 216 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 217 case WLAN_CIPHER_SUITE_GCMP: 218 case WLAN_CIPHER_SUITE_GCMP_256: 219 /* all of these we can do in software - if driver can */ 220 if (ret == 1) 221 return 0; 222 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL)) 223 return -EINVAL; 224 return 0; 225 default: 226 return -EINVAL; 227 } 228 } 229 230 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) 231 { 232 struct ieee80211_sub_if_data *sdata; 233 struct sta_info *sta; 234 int ret; 235 236 might_sleep(); 237 238 if (!key || !key->local->ops->set_key) 239 return; 240 241 assert_key_lock(key->local); 242 243 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 244 return; 245 246 sta = key->sta; 247 sdata = key->sdata; 248 249 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 250 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 251 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 252 increment_tailroom_need_count(sdata); 253 254 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 255 ret = drv_set_key(key->local, DISABLE_KEY, sdata, 256 sta ? &sta->sta : NULL, &key->conf); 257 258 if (ret) 259 sdata_err(sdata, 260 "failed to remove key (%d, %pM) from hardware (%d)\n", 261 key->conf.keyidx, 262 sta ? sta->sta.addr : bcast_addr, ret); 263 } 264 265 int ieee80211_set_tx_key(struct ieee80211_key *key) 266 { 267 struct sta_info *sta = key->sta; 268 struct ieee80211_local *local = key->local; 269 270 assert_key_lock(local); 271 272 sta->ptk_idx = key->conf.keyidx; 273 274 if (!ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) 275 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 276 ieee80211_check_fast_xmit(sta); 277 278 return 0; 279 } 280 281 static void ieee80211_pairwise_rekey(struct ieee80211_key *old, 282 struct ieee80211_key *new) 283 { 284 struct ieee80211_local *local = new->local; 285 struct sta_info *sta = new->sta; 286 int i; 287 288 assert_key_lock(local); 289 290 if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) { 291 /* Extended Key ID key install, initial one or rekey */ 292 293 if (sta->ptk_idx != INVALID_PTK_KEYIDX && 294 !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) { 295 /* Aggregation Sessions with Extended Key ID must not 296 * mix MPDUs with different keyIDs within one A-MPDU. 297 * Tear down running Tx aggregation sessions and block 298 * new Rx/Tx aggregation requests during rekey to 299 * ensure there are no A-MPDUs when the driver is not 300 * supporting A-MPDU key borders. (Blocking Tx only 301 * would be sufficient but WLAN_STA_BLOCK_BA gets the 302 * job done for the few ms we need it.) 303 */ 304 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 305 mutex_lock(&sta->ampdu_mlme.mtx); 306 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 307 ___ieee80211_stop_tx_ba_session(sta, i, 308 AGG_STOP_LOCAL_REQUEST); 309 mutex_unlock(&sta->ampdu_mlme.mtx); 310 } 311 } else if (old) { 312 /* Rekey without Extended Key ID. 313 * Aggregation sessions are OK when running on SW crypto. 314 * A broken remote STA may cause issues not observed with HW 315 * crypto, though. 316 */ 317 if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 318 return; 319 320 /* Stop Tx till we are on the new key */ 321 old->flags |= KEY_FLAG_TAINTED; 322 ieee80211_clear_fast_xmit(sta); 323 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { 324 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 325 ieee80211_sta_tear_down_BA_sessions(sta, 326 AGG_STOP_LOCAL_REQUEST); 327 } 328 if (!wiphy_ext_feature_isset(local->hw.wiphy, 329 NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) { 330 pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.", 331 sta->sta.addr); 332 /* Flushing the driver queues *may* help prevent 333 * the clear text leaks and freezes. 334 */ 335 ieee80211_flush_queues(local, old->sdata, false); 336 } 337 } 338 } 339 340 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, 341 int idx, bool uni, bool multi) 342 { 343 struct ieee80211_key *key = NULL; 344 345 assert_key_lock(sdata->local); 346 347 if (idx >= 0 && idx < NUM_DEFAULT_KEYS) 348 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 349 350 if (uni) { 351 rcu_assign_pointer(sdata->default_unicast_key, key); 352 ieee80211_check_fast_xmit_iface(sdata); 353 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 354 drv_set_default_unicast_key(sdata->local, sdata, idx); 355 } 356 357 if (multi) 358 rcu_assign_pointer(sdata->default_multicast_key, key); 359 360 ieee80211_debugfs_key_update_default(sdata); 361 } 362 363 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, 364 bool uni, bool multi) 365 { 366 mutex_lock(&sdata->local->key_mtx); 367 __ieee80211_set_default_key(sdata, idx, uni, multi); 368 mutex_unlock(&sdata->local->key_mtx); 369 } 370 371 static void 372 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) 373 { 374 struct ieee80211_key *key = NULL; 375 376 assert_key_lock(sdata->local); 377 378 if (idx >= NUM_DEFAULT_KEYS && 379 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 380 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 381 382 rcu_assign_pointer(sdata->default_mgmt_key, key); 383 384 ieee80211_debugfs_key_update_default(sdata); 385 } 386 387 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, 388 int idx) 389 { 390 mutex_lock(&sdata->local->key_mtx); 391 __ieee80211_set_default_mgmt_key(sdata, idx); 392 mutex_unlock(&sdata->local->key_mtx); 393 } 394 395 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, 396 struct sta_info *sta, 397 bool pairwise, 398 struct ieee80211_key *old, 399 struct ieee80211_key *new) 400 { 401 int idx; 402 int ret = 0; 403 bool defunikey, defmultikey, defmgmtkey; 404 405 /* caller must provide at least one old/new */ 406 if (WARN_ON(!new && !old)) 407 return 0; 408 409 if (new) 410 list_add_tail_rcu(&new->list, &sdata->key_list); 411 412 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); 413 414 if (new && sta && pairwise) { 415 /* Unicast rekey needs special handling. With Extended Key ID 416 * old is still NULL for the first rekey. 417 */ 418 ieee80211_pairwise_rekey(old, new); 419 } 420 421 if (old) { 422 idx = old->conf.keyidx; 423 424 if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { 425 ieee80211_key_disable_hw_accel(old); 426 427 if (new) 428 ret = ieee80211_key_enable_hw_accel(new); 429 } 430 } else { 431 /* new must be provided in case old is not */ 432 idx = new->conf.keyidx; 433 if (!new->local->wowlan) 434 ret = ieee80211_key_enable_hw_accel(new); 435 } 436 437 if (ret) 438 return ret; 439 440 if (sta) { 441 if (pairwise) { 442 rcu_assign_pointer(sta->ptk[idx], new); 443 if (new && 444 !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX)) { 445 sta->ptk_idx = idx; 446 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 447 ieee80211_check_fast_xmit(sta); 448 } 449 } else { 450 rcu_assign_pointer(sta->gtk[idx], new); 451 } 452 /* Only needed for transition from no key -> key. 453 * Still triggers unnecessary when using Extended Key ID 454 * and installing the second key ID the first time. 455 */ 456 if (new && !old) 457 ieee80211_check_fast_rx(sta); 458 } else { 459 defunikey = old && 460 old == key_mtx_dereference(sdata->local, 461 sdata->default_unicast_key); 462 defmultikey = old && 463 old == key_mtx_dereference(sdata->local, 464 sdata->default_multicast_key); 465 defmgmtkey = old && 466 old == key_mtx_dereference(sdata->local, 467 sdata->default_mgmt_key); 468 469 if (defunikey && !new) 470 __ieee80211_set_default_key(sdata, -1, true, false); 471 if (defmultikey && !new) 472 __ieee80211_set_default_key(sdata, -1, false, true); 473 if (defmgmtkey && !new) 474 __ieee80211_set_default_mgmt_key(sdata, -1); 475 476 rcu_assign_pointer(sdata->keys[idx], new); 477 if (defunikey && new) 478 __ieee80211_set_default_key(sdata, new->conf.keyidx, 479 true, false); 480 if (defmultikey && new) 481 __ieee80211_set_default_key(sdata, new->conf.keyidx, 482 false, true); 483 if (defmgmtkey && new) 484 __ieee80211_set_default_mgmt_key(sdata, 485 new->conf.keyidx); 486 } 487 488 if (old) 489 list_del_rcu(&old->list); 490 491 return 0; 492 } 493 494 struct ieee80211_key * 495 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, 496 const u8 *key_data, 497 size_t seq_len, const u8 *seq, 498 const struct ieee80211_cipher_scheme *cs) 499 { 500 struct ieee80211_key *key; 501 int i, j, err; 502 503 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)) 504 return ERR_PTR(-EINVAL); 505 506 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); 507 if (!key) 508 return ERR_PTR(-ENOMEM); 509 510 /* 511 * Default to software encryption; we'll later upload the 512 * key to the hardware if possible. 513 */ 514 key->conf.flags = 0; 515 key->flags = 0; 516 517 key->conf.cipher = cipher; 518 key->conf.keyidx = idx; 519 key->conf.keylen = key_len; 520 switch (cipher) { 521 case WLAN_CIPHER_SUITE_WEP40: 522 case WLAN_CIPHER_SUITE_WEP104: 523 key->conf.iv_len = IEEE80211_WEP_IV_LEN; 524 key->conf.icv_len = IEEE80211_WEP_ICV_LEN; 525 break; 526 case WLAN_CIPHER_SUITE_TKIP: 527 key->conf.iv_len = IEEE80211_TKIP_IV_LEN; 528 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; 529 if (seq) { 530 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 531 key->u.tkip.rx[i].iv32 = 532 get_unaligned_le32(&seq[2]); 533 key->u.tkip.rx[i].iv16 = 534 get_unaligned_le16(seq); 535 } 536 } 537 spin_lock_init(&key->u.tkip.txlock); 538 break; 539 case WLAN_CIPHER_SUITE_CCMP: 540 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; 541 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; 542 if (seq) { 543 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 544 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) 545 key->u.ccmp.rx_pn[i][j] = 546 seq[IEEE80211_CCMP_PN_LEN - j - 1]; 547 } 548 /* 549 * Initialize AES key state here as an optimization so that 550 * it does not need to be initialized for every packet. 551 */ 552 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( 553 key_data, key_len, IEEE80211_CCMP_MIC_LEN); 554 if (IS_ERR(key->u.ccmp.tfm)) { 555 err = PTR_ERR(key->u.ccmp.tfm); 556 kfree(key); 557 return ERR_PTR(err); 558 } 559 break; 560 case WLAN_CIPHER_SUITE_CCMP_256: 561 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN; 562 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN; 563 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) 564 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++) 565 key->u.ccmp.rx_pn[i][j] = 566 seq[IEEE80211_CCMP_256_PN_LEN - j - 1]; 567 /* Initialize AES key state here as an optimization so that 568 * it does not need to be initialized for every packet. 569 */ 570 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt( 571 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN); 572 if (IS_ERR(key->u.ccmp.tfm)) { 573 err = PTR_ERR(key->u.ccmp.tfm); 574 kfree(key); 575 return ERR_PTR(err); 576 } 577 break; 578 case WLAN_CIPHER_SUITE_AES_CMAC: 579 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 580 key->conf.iv_len = 0; 581 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC) 582 key->conf.icv_len = sizeof(struct ieee80211_mmie); 583 else 584 key->conf.icv_len = sizeof(struct ieee80211_mmie_16); 585 if (seq) 586 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) 587 key->u.aes_cmac.rx_pn[j] = 588 seq[IEEE80211_CMAC_PN_LEN - j - 1]; 589 /* 590 * Initialize AES key state here as an optimization so that 591 * it does not need to be initialized for every packet. 592 */ 593 key->u.aes_cmac.tfm = 594 ieee80211_aes_cmac_key_setup(key_data, key_len); 595 if (IS_ERR(key->u.aes_cmac.tfm)) { 596 err = PTR_ERR(key->u.aes_cmac.tfm); 597 kfree(key); 598 return ERR_PTR(err); 599 } 600 break; 601 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 602 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 603 key->conf.iv_len = 0; 604 key->conf.icv_len = sizeof(struct ieee80211_mmie_16); 605 if (seq) 606 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++) 607 key->u.aes_gmac.rx_pn[j] = 608 seq[IEEE80211_GMAC_PN_LEN - j - 1]; 609 /* Initialize AES key state here as an optimization so that 610 * it does not need to be initialized for every packet. 611 */ 612 key->u.aes_gmac.tfm = 613 ieee80211_aes_gmac_key_setup(key_data, key_len); 614 if (IS_ERR(key->u.aes_gmac.tfm)) { 615 err = PTR_ERR(key->u.aes_gmac.tfm); 616 kfree(key); 617 return ERR_PTR(err); 618 } 619 break; 620 case WLAN_CIPHER_SUITE_GCMP: 621 case WLAN_CIPHER_SUITE_GCMP_256: 622 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN; 623 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN; 624 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++) 625 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++) 626 key->u.gcmp.rx_pn[i][j] = 627 seq[IEEE80211_GCMP_PN_LEN - j - 1]; 628 /* Initialize AES key state here as an optimization so that 629 * it does not need to be initialized for every packet. 630 */ 631 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data, 632 key_len); 633 if (IS_ERR(key->u.gcmp.tfm)) { 634 err = PTR_ERR(key->u.gcmp.tfm); 635 kfree(key); 636 return ERR_PTR(err); 637 } 638 break; 639 default: 640 if (cs) { 641 if (seq_len && seq_len != cs->pn_len) { 642 kfree(key); 643 return ERR_PTR(-EINVAL); 644 } 645 646 key->conf.iv_len = cs->hdr_len; 647 key->conf.icv_len = cs->mic_len; 648 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 649 for (j = 0; j < seq_len; j++) 650 key->u.gen.rx_pn[i][j] = 651 seq[seq_len - j - 1]; 652 key->flags |= KEY_FLAG_CIPHER_SCHEME; 653 } 654 } 655 memcpy(key->conf.key, key_data, key_len); 656 INIT_LIST_HEAD(&key->list); 657 658 return key; 659 } 660 661 static void ieee80211_key_free_common(struct ieee80211_key *key) 662 { 663 switch (key->conf.cipher) { 664 case WLAN_CIPHER_SUITE_CCMP: 665 case WLAN_CIPHER_SUITE_CCMP_256: 666 ieee80211_aes_key_free(key->u.ccmp.tfm); 667 break; 668 case WLAN_CIPHER_SUITE_AES_CMAC: 669 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 670 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); 671 break; 672 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 673 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 674 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm); 675 break; 676 case WLAN_CIPHER_SUITE_GCMP: 677 case WLAN_CIPHER_SUITE_GCMP_256: 678 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm); 679 break; 680 } 681 kzfree(key); 682 } 683 684 static void __ieee80211_key_destroy(struct ieee80211_key *key, 685 bool delay_tailroom) 686 { 687 if (key->local) { 688 struct ieee80211_sub_if_data *sdata = key->sdata; 689 690 ieee80211_debugfs_key_remove(key); 691 692 if (delay_tailroom) { 693 /* see ieee80211_delayed_tailroom_dec */ 694 sdata->crypto_tx_tailroom_pending_dec++; 695 schedule_delayed_work(&sdata->dec_tailroom_needed_wk, 696 HZ/2); 697 } else { 698 decrease_tailroom_need_count(sdata, 1); 699 } 700 } 701 702 ieee80211_key_free_common(key); 703 } 704 705 static void ieee80211_key_destroy(struct ieee80211_key *key, 706 bool delay_tailroom) 707 { 708 if (!key) 709 return; 710 711 /* 712 * Synchronize so the TX path and rcu key iterators 713 * can no longer be using this key before we free/remove it. 714 */ 715 synchronize_net(); 716 717 __ieee80211_key_destroy(key, delay_tailroom); 718 } 719 720 void ieee80211_key_free_unused(struct ieee80211_key *key) 721 { 722 WARN_ON(key->sdata || key->local); 723 ieee80211_key_free_common(key); 724 } 725 726 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata, 727 struct ieee80211_key *old, 728 struct ieee80211_key *new) 729 { 730 u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP]; 731 u8 *tk_old, *tk_new; 732 733 if (!old || new->conf.keylen != old->conf.keylen) 734 return false; 735 736 tk_old = old->conf.key; 737 tk_new = new->conf.key; 738 739 /* 740 * In station mode, don't compare the TX MIC key, as it's never used 741 * and offloaded rekeying may not care to send it to the host. This 742 * is the case in iwlwifi, for example. 743 */ 744 if (sdata->vif.type == NL80211_IFTYPE_STATION && 745 new->conf.cipher == WLAN_CIPHER_SUITE_TKIP && 746 new->conf.keylen == WLAN_KEY_LEN_TKIP && 747 !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) { 748 memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP); 749 memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP); 750 memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); 751 memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8); 752 tk_old = tkip_old; 753 tk_new = tkip_new; 754 } 755 756 return !crypto_memneq(tk_old, tk_new, new->conf.keylen); 757 } 758 759 int ieee80211_key_link(struct ieee80211_key *key, 760 struct ieee80211_sub_if_data *sdata, 761 struct sta_info *sta) 762 { 763 struct ieee80211_key *old_key; 764 int idx = key->conf.keyidx; 765 bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; 766 /* 767 * We want to delay tailroom updates only for station - in that 768 * case it helps roaming speed, but in other cases it hurts and 769 * can cause warnings to appear. 770 */ 771 bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION; 772 int ret = -EOPNOTSUPP; 773 774 mutex_lock(&sdata->local->key_mtx); 775 776 if (sta && pairwise) { 777 struct ieee80211_key *alt_key; 778 779 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); 780 alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]); 781 782 /* The rekey code assumes that the old and new key are using 783 * the same cipher. Enforce the assumption for pairwise keys. 784 */ 785 if ((alt_key && alt_key->conf.cipher != key->conf.cipher) || 786 (old_key && old_key->conf.cipher != key->conf.cipher)) 787 goto out; 788 } else if (sta) { 789 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]); 790 } else { 791 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 792 } 793 794 /* Non-pairwise keys must also not switch the cipher on rekey */ 795 if (!pairwise) { 796 if (old_key && old_key->conf.cipher != key->conf.cipher) 797 goto out; 798 } 799 800 /* 801 * Silently accept key re-installation without really installing the 802 * new version of the key to avoid nonce reuse or replay issues. 803 */ 804 if (ieee80211_key_identical(sdata, old_key, key)) { 805 ieee80211_key_free_unused(key); 806 ret = 0; 807 goto out; 808 } 809 810 key->local = sdata->local; 811 key->sdata = sdata; 812 key->sta = sta; 813 814 increment_tailroom_need_count(sdata); 815 816 ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key); 817 818 if (!ret) { 819 ieee80211_debugfs_key_add(key); 820 ieee80211_key_destroy(old_key, delay_tailroom); 821 } else { 822 ieee80211_key_free(key, delay_tailroom); 823 } 824 825 out: 826 mutex_unlock(&sdata->local->key_mtx); 827 828 return ret; 829 } 830 831 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) 832 { 833 if (!key) 834 return; 835 836 /* 837 * Replace key with nothingness if it was ever used. 838 */ 839 if (key->sdata) 840 ieee80211_key_replace(key->sdata, key->sta, 841 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 842 key, NULL); 843 ieee80211_key_destroy(key, delay_tailroom); 844 } 845 846 void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata) 847 { 848 struct ieee80211_key *key; 849 struct ieee80211_sub_if_data *vlan; 850 851 ASSERT_RTNL(); 852 853 mutex_lock(&sdata->local->key_mtx); 854 855 sdata->crypto_tx_tailroom_needed_cnt = 0; 856 sdata->crypto_tx_tailroom_pending_dec = 0; 857 858 if (sdata->vif.type == NL80211_IFTYPE_AP) { 859 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) { 860 vlan->crypto_tx_tailroom_needed_cnt = 0; 861 vlan->crypto_tx_tailroom_pending_dec = 0; 862 } 863 } 864 865 if (ieee80211_sdata_running(sdata)) { 866 list_for_each_entry(key, &sdata->key_list, list) { 867 increment_tailroom_need_count(sdata); 868 ieee80211_key_enable_hw_accel(key); 869 } 870 } 871 872 mutex_unlock(&sdata->local->key_mtx); 873 } 874 875 void ieee80211_iter_keys(struct ieee80211_hw *hw, 876 struct ieee80211_vif *vif, 877 void (*iter)(struct ieee80211_hw *hw, 878 struct ieee80211_vif *vif, 879 struct ieee80211_sta *sta, 880 struct ieee80211_key_conf *key, 881 void *data), 882 void *iter_data) 883 { 884 struct ieee80211_local *local = hw_to_local(hw); 885 struct ieee80211_key *key, *tmp; 886 struct ieee80211_sub_if_data *sdata; 887 888 ASSERT_RTNL(); 889 890 mutex_lock(&local->key_mtx); 891 if (vif) { 892 sdata = vif_to_sdata(vif); 893 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) 894 iter(hw, &sdata->vif, 895 key->sta ? &key->sta->sta : NULL, 896 &key->conf, iter_data); 897 } else { 898 list_for_each_entry(sdata, &local->interfaces, list) 899 list_for_each_entry_safe(key, tmp, 900 &sdata->key_list, list) 901 iter(hw, &sdata->vif, 902 key->sta ? &key->sta->sta : NULL, 903 &key->conf, iter_data); 904 } 905 mutex_unlock(&local->key_mtx); 906 } 907 EXPORT_SYMBOL(ieee80211_iter_keys); 908 909 static void 910 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, 911 struct ieee80211_sub_if_data *sdata, 912 void (*iter)(struct ieee80211_hw *hw, 913 struct ieee80211_vif *vif, 914 struct ieee80211_sta *sta, 915 struct ieee80211_key_conf *key, 916 void *data), 917 void *iter_data) 918 { 919 struct ieee80211_key *key; 920 921 list_for_each_entry_rcu(key, &sdata->key_list, list) { 922 /* skip keys of station in removal process */ 923 if (key->sta && key->sta->removed) 924 continue; 925 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 926 continue; 927 928 iter(hw, &sdata->vif, 929 key->sta ? &key->sta->sta : NULL, 930 &key->conf, iter_data); 931 } 932 } 933 934 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw, 935 struct ieee80211_vif *vif, 936 void (*iter)(struct ieee80211_hw *hw, 937 struct ieee80211_vif *vif, 938 struct ieee80211_sta *sta, 939 struct ieee80211_key_conf *key, 940 void *data), 941 void *iter_data) 942 { 943 struct ieee80211_local *local = hw_to_local(hw); 944 struct ieee80211_sub_if_data *sdata; 945 946 if (vif) { 947 sdata = vif_to_sdata(vif); 948 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); 949 } else { 950 list_for_each_entry_rcu(sdata, &local->interfaces, list) 951 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data); 952 } 953 } 954 EXPORT_SYMBOL(ieee80211_iter_keys_rcu); 955 956 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, 957 struct list_head *keys) 958 { 959 struct ieee80211_key *key, *tmp; 960 961 decrease_tailroom_need_count(sdata, 962 sdata->crypto_tx_tailroom_pending_dec); 963 sdata->crypto_tx_tailroom_pending_dec = 0; 964 965 ieee80211_debugfs_key_remove_mgmt_default(sdata); 966 967 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { 968 ieee80211_key_replace(key->sdata, key->sta, 969 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 970 key, NULL); 971 list_add_tail(&key->list, keys); 972 } 973 974 ieee80211_debugfs_key_update_default(sdata); 975 } 976 977 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, 978 bool force_synchronize) 979 { 980 struct ieee80211_local *local = sdata->local; 981 struct ieee80211_sub_if_data *vlan; 982 struct ieee80211_sub_if_data *master; 983 struct ieee80211_key *key, *tmp; 984 LIST_HEAD(keys); 985 986 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); 987 988 mutex_lock(&local->key_mtx); 989 990 ieee80211_free_keys_iface(sdata, &keys); 991 992 if (sdata->vif.type == NL80211_IFTYPE_AP) { 993 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 994 ieee80211_free_keys_iface(vlan, &keys); 995 } 996 997 if (!list_empty(&keys) || force_synchronize) 998 synchronize_net(); 999 list_for_each_entry_safe(key, tmp, &keys, list) 1000 __ieee80211_key_destroy(key, false); 1001 1002 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1003 if (sdata->bss) { 1004 master = container_of(sdata->bss, 1005 struct ieee80211_sub_if_data, 1006 u.ap); 1007 1008 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt != 1009 master->crypto_tx_tailroom_needed_cnt); 1010 } 1011 } else { 1012 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || 1013 sdata->crypto_tx_tailroom_pending_dec); 1014 } 1015 1016 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1017 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 1018 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || 1019 vlan->crypto_tx_tailroom_pending_dec); 1020 } 1021 1022 mutex_unlock(&local->key_mtx); 1023 } 1024 1025 void ieee80211_free_sta_keys(struct ieee80211_local *local, 1026 struct sta_info *sta) 1027 { 1028 struct ieee80211_key *key; 1029 int i; 1030 1031 mutex_lock(&local->key_mtx); 1032 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) { 1033 key = key_mtx_dereference(local, sta->gtk[i]); 1034 if (!key) 1035 continue; 1036 ieee80211_key_replace(key->sdata, key->sta, 1037 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 1038 key, NULL); 1039 __ieee80211_key_destroy(key, key->sdata->vif.type == 1040 NL80211_IFTYPE_STATION); 1041 } 1042 1043 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1044 key = key_mtx_dereference(local, sta->ptk[i]); 1045 if (!key) 1046 continue; 1047 ieee80211_key_replace(key->sdata, key->sta, 1048 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 1049 key, NULL); 1050 __ieee80211_key_destroy(key, key->sdata->vif.type == 1051 NL80211_IFTYPE_STATION); 1052 } 1053 1054 mutex_unlock(&local->key_mtx); 1055 } 1056 1057 void ieee80211_delayed_tailroom_dec(struct work_struct *wk) 1058 { 1059 struct ieee80211_sub_if_data *sdata; 1060 1061 sdata = container_of(wk, struct ieee80211_sub_if_data, 1062 dec_tailroom_needed_wk.work); 1063 1064 /* 1065 * The reason for the delayed tailroom needed decrementing is to 1066 * make roaming faster: during roaming, all keys are first deleted 1067 * and then new keys are installed. The first new key causes the 1068 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes 1069 * the cost of synchronize_net() (which can be slow). Avoid this 1070 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on 1071 * key removal for a while, so if we roam the value is larger than 1072 * zero and no 0->1 transition happens. 1073 * 1074 * The cost is that if the AP switching was from an AP with keys 1075 * to one without, we still allocate tailroom while it would no 1076 * longer be needed. However, in the typical (fast) roaming case 1077 * within an ESS this usually won't happen. 1078 */ 1079 1080 mutex_lock(&sdata->local->key_mtx); 1081 decrease_tailroom_need_count(sdata, 1082 sdata->crypto_tx_tailroom_pending_dec); 1083 sdata->crypto_tx_tailroom_pending_dec = 0; 1084 mutex_unlock(&sdata->local->key_mtx); 1085 } 1086 1087 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 1088 const u8 *replay_ctr, gfp_t gfp) 1089 { 1090 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 1091 1092 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); 1093 1094 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); 1095 } 1096 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); 1097 1098 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 1099 int tid, struct ieee80211_key_seq *seq) 1100 { 1101 struct ieee80211_key *key; 1102 const u8 *pn; 1103 1104 key = container_of(keyconf, struct ieee80211_key, conf); 1105 1106 switch (key->conf.cipher) { 1107 case WLAN_CIPHER_SUITE_TKIP: 1108 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 1109 return; 1110 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; 1111 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; 1112 break; 1113 case WLAN_CIPHER_SUITE_CCMP: 1114 case WLAN_CIPHER_SUITE_CCMP_256: 1115 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1116 return; 1117 if (tid < 0) 1118 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 1119 else 1120 pn = key->u.ccmp.rx_pn[tid]; 1121 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); 1122 break; 1123 case WLAN_CIPHER_SUITE_AES_CMAC: 1124 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1125 if (WARN_ON(tid != 0)) 1126 return; 1127 pn = key->u.aes_cmac.rx_pn; 1128 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); 1129 break; 1130 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1131 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1132 if (WARN_ON(tid != 0)) 1133 return; 1134 pn = key->u.aes_gmac.rx_pn; 1135 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN); 1136 break; 1137 case WLAN_CIPHER_SUITE_GCMP: 1138 case WLAN_CIPHER_SUITE_GCMP_256: 1139 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1140 return; 1141 if (tid < 0) 1142 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; 1143 else 1144 pn = key->u.gcmp.rx_pn[tid]; 1145 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN); 1146 break; 1147 } 1148 } 1149 EXPORT_SYMBOL(ieee80211_get_key_rx_seq); 1150 1151 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, 1152 int tid, struct ieee80211_key_seq *seq) 1153 { 1154 struct ieee80211_key *key; 1155 u8 *pn; 1156 1157 key = container_of(keyconf, struct ieee80211_key, conf); 1158 1159 switch (key->conf.cipher) { 1160 case WLAN_CIPHER_SUITE_TKIP: 1161 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 1162 return; 1163 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; 1164 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; 1165 break; 1166 case WLAN_CIPHER_SUITE_CCMP: 1167 case WLAN_CIPHER_SUITE_CCMP_256: 1168 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1169 return; 1170 if (tid < 0) 1171 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 1172 else 1173 pn = key->u.ccmp.rx_pn[tid]; 1174 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); 1175 break; 1176 case WLAN_CIPHER_SUITE_AES_CMAC: 1177 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1178 if (WARN_ON(tid != 0)) 1179 return; 1180 pn = key->u.aes_cmac.rx_pn; 1181 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); 1182 break; 1183 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1184 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1185 if (WARN_ON(tid != 0)) 1186 return; 1187 pn = key->u.aes_gmac.rx_pn; 1188 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN); 1189 break; 1190 case WLAN_CIPHER_SUITE_GCMP: 1191 case WLAN_CIPHER_SUITE_GCMP_256: 1192 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 1193 return; 1194 if (tid < 0) 1195 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS]; 1196 else 1197 pn = key->u.gcmp.rx_pn[tid]; 1198 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN); 1199 break; 1200 default: 1201 WARN_ON(1); 1202 break; 1203 } 1204 } 1205 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); 1206 1207 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) 1208 { 1209 struct ieee80211_key *key; 1210 1211 key = container_of(keyconf, struct ieee80211_key, conf); 1212 1213 assert_key_lock(key->local); 1214 1215 /* 1216 * if key was uploaded, we assume the driver will/has remove(d) 1217 * it, so adjust bookkeeping accordingly 1218 */ 1219 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { 1220 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 1221 1222 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC | 1223 IEEE80211_KEY_FLAG_PUT_MIC_SPACE | 1224 IEEE80211_KEY_FLAG_RESERVE_TAILROOM))) 1225 increment_tailroom_need_count(key->sdata); 1226 } 1227 1228 ieee80211_key_free(key, false); 1229 } 1230 EXPORT_SYMBOL_GPL(ieee80211_remove_key); 1231 1232 struct ieee80211_key_conf * 1233 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, 1234 struct ieee80211_key_conf *keyconf) 1235 { 1236 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 1237 struct ieee80211_local *local = sdata->local; 1238 struct ieee80211_key *key; 1239 int err; 1240 1241 if (WARN_ON(!local->wowlan)) 1242 return ERR_PTR(-EINVAL); 1243 1244 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 1245 return ERR_PTR(-EINVAL); 1246 1247 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, 1248 keyconf->keylen, keyconf->key, 1249 0, NULL, NULL); 1250 if (IS_ERR(key)) 1251 return ERR_CAST(key); 1252 1253 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) 1254 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; 1255 1256 err = ieee80211_key_link(key, sdata, NULL); 1257 if (err) 1258 return ERR_PTR(err); 1259 1260 return &key->conf; 1261 } 1262 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add); 1263