xref: /openbmc/linux/net/mac80211/key.c (revision f2d8e15b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright 2015-2017	Intel Deutschland GmbH
9  * Copyright 2018-2020, 2022  Intel Corporation
10  */
11 
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <crypto/algapi.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29 
30 
31 /**
32  * DOC: Key handling basics
33  *
34  * Key handling in mac80211 is done based on per-interface (sub_if_data)
35  * keys and per-station keys. Since each station belongs to an interface,
36  * each station key also belongs to that interface.
37  *
38  * Hardware acceleration is done on a best-effort basis for algorithms
39  * that are implemented in software,  for each key the hardware is asked
40  * to enable that key for offloading but if it cannot do that the key is
41  * simply kept for software encryption (unless it is for an algorithm
42  * that isn't implemented in software).
43  * There is currently no way of knowing whether a key is handled in SW
44  * or HW except by looking into debugfs.
45  *
46  * All key management is internally protected by a mutex. Within all
47  * other parts of mac80211, key references are, just as STA structure
48  * references, protected by RCU. Note, however, that some things are
49  * unprotected, namely the key->sta dereferences within the hardware
50  * acceleration functions. This means that sta_info_destroy() must
51  * remove the key which waits for an RCU grace period.
52  */
53 
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55 
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58 	lockdep_assert_held(&local->key_mtx);
59 }
60 
61 static void
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63 {
64 	struct ieee80211_sub_if_data *vlan;
65 
66 	if (sdata->vif.type != NL80211_IFTYPE_AP)
67 		return;
68 
69 	/* crypto_tx_tailroom_needed_cnt is protected by this */
70 	assert_key_lock(sdata->local);
71 
72 	rcu_read_lock();
73 
74 	list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 		vlan->crypto_tx_tailroom_needed_cnt += delta;
76 
77 	rcu_read_unlock();
78 }
79 
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
81 {
82 	/*
83 	 * When this count is zero, SKB resizing for allocating tailroom
84 	 * for IV or MMIC is skipped. But, this check has created two race
85 	 * cases in xmit path while transiting from zero count to one:
86 	 *
87 	 * 1. SKB resize was skipped because no key was added but just before
88 	 * the xmit key is added and SW encryption kicks off.
89 	 *
90 	 * 2. SKB resize was skipped because all the keys were hw planted but
91 	 * just before xmit one of the key is deleted and SW encryption kicks
92 	 * off.
93 	 *
94 	 * In both the above case SW encryption will find not enough space for
95 	 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 	 *
97 	 * Solution has been explained at
98 	 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
99 	 */
100 
101 	assert_key_lock(sdata->local);
102 
103 	update_vlan_tailroom_need_count(sdata, 1);
104 
105 	if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 		/*
107 		 * Flush all XMIT packets currently using HW encryption or no
108 		 * encryption at all if the count transition is from 0 -> 1.
109 		 */
110 		synchronize_net();
111 	}
112 }
113 
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 					 int delta)
116 {
117 	assert_key_lock(sdata->local);
118 
119 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120 
121 	update_vlan_tailroom_need_count(sdata, -delta);
122 	sdata->crypto_tx_tailroom_needed_cnt -= delta;
123 }
124 
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126 {
127 	struct ieee80211_sub_if_data *sdata = key->sdata;
128 	struct sta_info *sta;
129 	int ret = -EOPNOTSUPP;
130 
131 	might_sleep();
132 
133 	if (key->flags & KEY_FLAG_TAINTED) {
134 		/* If we get here, it's during resume and the key is
135 		 * tainted so shouldn't be used/programmed any more.
136 		 * However, its flags may still indicate that it was
137 		 * programmed into the device (since we're in resume)
138 		 * so clear that flag now to avoid trying to remove
139 		 * it again later.
140 		 */
141 		if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
142 		    !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
143 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
144 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
145 			increment_tailroom_need_count(sdata);
146 
147 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
148 		return -EINVAL;
149 	}
150 
151 	if (!key->local->ops->set_key)
152 		goto out_unsupported;
153 
154 	assert_key_lock(key->local);
155 
156 	sta = key->sta;
157 
158 	/*
159 	 * If this is a per-STA GTK, check if it
160 	 * is supported; if not, return.
161 	 */
162 	if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
163 	    !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
164 		goto out_unsupported;
165 
166 	if (sta && !sta->uploaded)
167 		goto out_unsupported;
168 
169 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
170 		/*
171 		 * The driver doesn't know anything about VLAN interfaces.
172 		 * Hence, don't send GTKs for VLAN interfaces to the driver.
173 		 */
174 		if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
175 			ret = 1;
176 			goto out_unsupported;
177 		}
178 	}
179 
180 	ret = drv_set_key(key->local, SET_KEY, sdata,
181 			  sta ? &sta->sta : NULL, &key->conf);
182 
183 	if (!ret) {
184 		key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
185 
186 		if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
187 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
188 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
189 			decrease_tailroom_need_count(sdata, 1);
190 
191 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
192 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
193 
194 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
195 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
196 
197 		return 0;
198 	}
199 
200 	if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
201 		sdata_err(sdata,
202 			  "failed to set key (%d, %pM) to hardware (%d)\n",
203 			  key->conf.keyidx,
204 			  sta ? sta->sta.addr : bcast_addr, ret);
205 
206  out_unsupported:
207 	switch (key->conf.cipher) {
208 	case WLAN_CIPHER_SUITE_WEP40:
209 	case WLAN_CIPHER_SUITE_WEP104:
210 	case WLAN_CIPHER_SUITE_TKIP:
211 	case WLAN_CIPHER_SUITE_CCMP:
212 	case WLAN_CIPHER_SUITE_CCMP_256:
213 	case WLAN_CIPHER_SUITE_GCMP:
214 	case WLAN_CIPHER_SUITE_GCMP_256:
215 	case WLAN_CIPHER_SUITE_AES_CMAC:
216 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
217 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
218 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
219 		/* all of these we can do in software - if driver can */
220 		if (ret == 1)
221 			return 0;
222 		if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
223 			return -EINVAL;
224 		return 0;
225 	default:
226 		return -EINVAL;
227 	}
228 }
229 
230 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
231 {
232 	struct ieee80211_sub_if_data *sdata;
233 	struct sta_info *sta;
234 	int ret;
235 
236 	might_sleep();
237 
238 	if (!key || !key->local->ops->set_key)
239 		return;
240 
241 	assert_key_lock(key->local);
242 
243 	if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
244 		return;
245 
246 	sta = key->sta;
247 	sdata = key->sdata;
248 
249 	if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
250 				 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
251 				 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
252 		increment_tailroom_need_count(sdata);
253 
254 	key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
255 	ret = drv_set_key(key->local, DISABLE_KEY, sdata,
256 			  sta ? &sta->sta : NULL, &key->conf);
257 
258 	if (ret)
259 		sdata_err(sdata,
260 			  "failed to remove key (%d, %pM) from hardware (%d)\n",
261 			  key->conf.keyidx,
262 			  sta ? sta->sta.addr : bcast_addr, ret);
263 }
264 
265 static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force)
266 {
267 	struct sta_info *sta = key->sta;
268 	struct ieee80211_local *local = key->local;
269 
270 	assert_key_lock(local);
271 
272 	set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION);
273 
274 	sta->ptk_idx = key->conf.keyidx;
275 
276 	if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT))
277 		clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
278 	ieee80211_check_fast_xmit(sta);
279 
280 	return 0;
281 }
282 
283 int ieee80211_set_tx_key(struct ieee80211_key *key)
284 {
285 	return _ieee80211_set_tx_key(key, false);
286 }
287 
288 static void ieee80211_pairwise_rekey(struct ieee80211_key *old,
289 				     struct ieee80211_key *new)
290 {
291 	struct ieee80211_local *local = new->local;
292 	struct sta_info *sta = new->sta;
293 	int i;
294 
295 	assert_key_lock(local);
296 
297 	if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) {
298 		/* Extended Key ID key install, initial one or rekey */
299 
300 		if (sta->ptk_idx != INVALID_PTK_KEYIDX &&
301 		    !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) {
302 			/* Aggregation Sessions with Extended Key ID must not
303 			 * mix MPDUs with different keyIDs within one A-MPDU.
304 			 * Tear down running Tx aggregation sessions and block
305 			 * new Rx/Tx aggregation requests during rekey to
306 			 * ensure there are no A-MPDUs when the driver is not
307 			 * supporting A-MPDU key borders. (Blocking Tx only
308 			 * would be sufficient but WLAN_STA_BLOCK_BA gets the
309 			 * job done for the few ms we need it.)
310 			 */
311 			set_sta_flag(sta, WLAN_STA_BLOCK_BA);
312 			mutex_lock(&sta->ampdu_mlme.mtx);
313 			for (i = 0; i <  IEEE80211_NUM_TIDS; i++)
314 				___ieee80211_stop_tx_ba_session(sta, i,
315 								AGG_STOP_LOCAL_REQUEST);
316 			mutex_unlock(&sta->ampdu_mlme.mtx);
317 		}
318 	} else if (old) {
319 		/* Rekey without Extended Key ID.
320 		 * Aggregation sessions are OK when running on SW crypto.
321 		 * A broken remote STA may cause issues not observed with HW
322 		 * crypto, though.
323 		 */
324 		if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
325 			return;
326 
327 		/* Stop Tx till we are on the new key */
328 		old->flags |= KEY_FLAG_TAINTED;
329 		ieee80211_clear_fast_xmit(sta);
330 		if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
331 			set_sta_flag(sta, WLAN_STA_BLOCK_BA);
332 			ieee80211_sta_tear_down_BA_sessions(sta,
333 							    AGG_STOP_LOCAL_REQUEST);
334 		}
335 		if (!wiphy_ext_feature_isset(local->hw.wiphy,
336 					     NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
337 			pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
338 					    sta->sta.addr);
339 			/* Flushing the driver queues *may* help prevent
340 			 * the clear text leaks and freezes.
341 			 */
342 			ieee80211_flush_queues(local, old->sdata, false);
343 		}
344 	}
345 }
346 
347 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
348 					int idx, bool uni, bool multi)
349 {
350 	struct ieee80211_key *key = NULL;
351 
352 	assert_key_lock(sdata->local);
353 
354 	if (idx >= 0 && idx < NUM_DEFAULT_KEYS) {
355 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
356 		if (!key)
357 			key = key_mtx_dereference(sdata->local, sdata->deflink.gtk[idx]);
358 	}
359 
360 	if (uni) {
361 		rcu_assign_pointer(sdata->default_unicast_key, key);
362 		ieee80211_check_fast_xmit_iface(sdata);
363 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
364 			drv_set_default_unicast_key(sdata->local, sdata, idx);
365 	}
366 
367 	if (multi)
368 		rcu_assign_pointer(sdata->deflink.default_multicast_key, key);
369 
370 	ieee80211_debugfs_key_update_default(sdata);
371 }
372 
373 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
374 			       bool uni, bool multi)
375 {
376 	mutex_lock(&sdata->local->key_mtx);
377 	__ieee80211_set_default_key(sdata, idx, uni, multi);
378 	mutex_unlock(&sdata->local->key_mtx);
379 }
380 
381 static void
382 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
383 {
384 	struct ieee80211_key *key = NULL;
385 
386 	assert_key_lock(sdata->local);
387 
388 	if (idx >= NUM_DEFAULT_KEYS &&
389 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
390 		key = key_mtx_dereference(sdata->local,
391 					  sdata->deflink.gtk[idx]);
392 
393 	rcu_assign_pointer(sdata->deflink.default_mgmt_key, key);
394 
395 	ieee80211_debugfs_key_update_default(sdata);
396 }
397 
398 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
399 				    int idx)
400 {
401 	mutex_lock(&sdata->local->key_mtx);
402 	__ieee80211_set_default_mgmt_key(sdata, idx);
403 	mutex_unlock(&sdata->local->key_mtx);
404 }
405 
406 static void
407 __ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, int idx)
408 {
409 	struct ieee80211_key *key = NULL;
410 
411 	assert_key_lock(sdata->local);
412 
413 	if (idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS &&
414 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
415 	    NUM_DEFAULT_BEACON_KEYS)
416 		key = key_mtx_dereference(sdata->local,
417 					  sdata->deflink.gtk[idx]);
418 
419 	rcu_assign_pointer(sdata->deflink.default_beacon_key, key);
420 
421 	ieee80211_debugfs_key_update_default(sdata);
422 }
423 
424 void ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata,
425 				      int idx)
426 {
427 	mutex_lock(&sdata->local->key_mtx);
428 	__ieee80211_set_default_beacon_key(sdata, idx);
429 	mutex_unlock(&sdata->local->key_mtx);
430 }
431 
432 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
433 				  struct sta_info *sta,
434 				  bool pairwise,
435 				  struct ieee80211_key *old,
436 				  struct ieee80211_key *new)
437 {
438 	int idx;
439 	int ret = 0;
440 	bool defunikey, defmultikey, defmgmtkey, defbeaconkey;
441 	bool is_wep;
442 
443 	/* caller must provide at least one old/new */
444 	if (WARN_ON(!new && !old))
445 		return 0;
446 
447 	if (new) {
448 		idx = new->conf.keyidx;
449 		list_add_tail_rcu(&new->list, &sdata->key_list);
450 		is_wep = new->conf.cipher == WLAN_CIPHER_SUITE_WEP40 ||
451 			 new->conf.cipher == WLAN_CIPHER_SUITE_WEP104;
452 	} else {
453 		idx = old->conf.keyidx;
454 		is_wep = old->conf.cipher == WLAN_CIPHER_SUITE_WEP40 ||
455 			 old->conf.cipher == WLAN_CIPHER_SUITE_WEP104;
456 	}
457 
458 	if ((is_wep || pairwise) && idx >= NUM_DEFAULT_KEYS)
459 		return -EINVAL;
460 
461 	WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
462 
463 	if (new && sta && pairwise) {
464 		/* Unicast rekey needs special handling. With Extended Key ID
465 		 * old is still NULL for the first rekey.
466 		 */
467 		ieee80211_pairwise_rekey(old, new);
468 	}
469 
470 	if (old) {
471 		if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
472 			ieee80211_key_disable_hw_accel(old);
473 
474 			if (new)
475 				ret = ieee80211_key_enable_hw_accel(new);
476 		}
477 	} else {
478 		if (!new->local->wowlan)
479 			ret = ieee80211_key_enable_hw_accel(new);
480 	}
481 
482 	if (ret)
483 		return ret;
484 
485 	if (sta) {
486 		if (pairwise) {
487 			rcu_assign_pointer(sta->ptk[idx], new);
488 			if (new &&
489 			    !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX))
490 				_ieee80211_set_tx_key(new, true);
491 		} else {
492 			rcu_assign_pointer(sta->deflink.gtk[idx], new);
493 		}
494 		/* Only needed for transition from no key -> key.
495 		 * Still triggers unnecessary when using Extended Key ID
496 		 * and installing the second key ID the first time.
497 		 */
498 		if (new && !old)
499 			ieee80211_check_fast_rx(sta);
500 	} else {
501 		defunikey = old &&
502 			old == key_mtx_dereference(sdata->local,
503 						sdata->default_unicast_key);
504 		defmultikey = old &&
505 			old == key_mtx_dereference(sdata->local,
506 						sdata->deflink.default_multicast_key);
507 		defmgmtkey = old &&
508 			old == key_mtx_dereference(sdata->local,
509 						sdata->deflink.default_mgmt_key);
510 		defbeaconkey = old &&
511 			old == key_mtx_dereference(sdata->local,
512 						   sdata->deflink.default_beacon_key);
513 
514 		if (defunikey && !new)
515 			__ieee80211_set_default_key(sdata, -1, true, false);
516 		if (defmultikey && !new)
517 			__ieee80211_set_default_key(sdata, -1, false, true);
518 		if (defmgmtkey && !new)
519 			__ieee80211_set_default_mgmt_key(sdata, -1);
520 		if (defbeaconkey && !new)
521 			__ieee80211_set_default_beacon_key(sdata, -1);
522 
523 		if (is_wep || pairwise)
524 			rcu_assign_pointer(sdata->keys[idx], new);
525 		else
526 			rcu_assign_pointer(sdata->deflink.gtk[idx], new);
527 
528 		if (defunikey && new)
529 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
530 						    true, false);
531 		if (defmultikey && new)
532 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
533 						    false, true);
534 		if (defmgmtkey && new)
535 			__ieee80211_set_default_mgmt_key(sdata,
536 							 new->conf.keyidx);
537 		if (defbeaconkey && new)
538 			__ieee80211_set_default_beacon_key(sdata,
539 							   new->conf.keyidx);
540 	}
541 
542 	if (old)
543 		list_del_rcu(&old->list);
544 
545 	return 0;
546 }
547 
548 struct ieee80211_key *
549 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
550 		    const u8 *key_data,
551 		    size_t seq_len, const u8 *seq)
552 {
553 	struct ieee80211_key *key;
554 	int i, j, err;
555 
556 	if (WARN_ON(idx < 0 ||
557 		    idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
558 		    NUM_DEFAULT_BEACON_KEYS))
559 		return ERR_PTR(-EINVAL);
560 
561 	key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
562 	if (!key)
563 		return ERR_PTR(-ENOMEM);
564 
565 	/*
566 	 * Default to software encryption; we'll later upload the
567 	 * key to the hardware if possible.
568 	 */
569 	key->conf.flags = 0;
570 	key->flags = 0;
571 
572 	key->conf.cipher = cipher;
573 	key->conf.keyidx = idx;
574 	key->conf.keylen = key_len;
575 	switch (cipher) {
576 	case WLAN_CIPHER_SUITE_WEP40:
577 	case WLAN_CIPHER_SUITE_WEP104:
578 		key->conf.iv_len = IEEE80211_WEP_IV_LEN;
579 		key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
580 		break;
581 	case WLAN_CIPHER_SUITE_TKIP:
582 		key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
583 		key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
584 		if (seq) {
585 			for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
586 				key->u.tkip.rx[i].iv32 =
587 					get_unaligned_le32(&seq[2]);
588 				key->u.tkip.rx[i].iv16 =
589 					get_unaligned_le16(seq);
590 			}
591 		}
592 		spin_lock_init(&key->u.tkip.txlock);
593 		break;
594 	case WLAN_CIPHER_SUITE_CCMP:
595 		key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
596 		key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
597 		if (seq) {
598 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
599 				for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
600 					key->u.ccmp.rx_pn[i][j] =
601 						seq[IEEE80211_CCMP_PN_LEN - j - 1];
602 		}
603 		/*
604 		 * Initialize AES key state here as an optimization so that
605 		 * it does not need to be initialized for every packet.
606 		 */
607 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
608 			key_data, key_len, IEEE80211_CCMP_MIC_LEN);
609 		if (IS_ERR(key->u.ccmp.tfm)) {
610 			err = PTR_ERR(key->u.ccmp.tfm);
611 			kfree(key);
612 			return ERR_PTR(err);
613 		}
614 		break;
615 	case WLAN_CIPHER_SUITE_CCMP_256:
616 		key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
617 		key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
618 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
619 			for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
620 				key->u.ccmp.rx_pn[i][j] =
621 					seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
622 		/* Initialize AES key state here as an optimization so that
623 		 * it does not need to be initialized for every packet.
624 		 */
625 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
626 			key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
627 		if (IS_ERR(key->u.ccmp.tfm)) {
628 			err = PTR_ERR(key->u.ccmp.tfm);
629 			kfree(key);
630 			return ERR_PTR(err);
631 		}
632 		break;
633 	case WLAN_CIPHER_SUITE_AES_CMAC:
634 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
635 		key->conf.iv_len = 0;
636 		if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
637 			key->conf.icv_len = sizeof(struct ieee80211_mmie);
638 		else
639 			key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
640 		if (seq)
641 			for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
642 				key->u.aes_cmac.rx_pn[j] =
643 					seq[IEEE80211_CMAC_PN_LEN - j - 1];
644 		/*
645 		 * Initialize AES key state here as an optimization so that
646 		 * it does not need to be initialized for every packet.
647 		 */
648 		key->u.aes_cmac.tfm =
649 			ieee80211_aes_cmac_key_setup(key_data, key_len);
650 		if (IS_ERR(key->u.aes_cmac.tfm)) {
651 			err = PTR_ERR(key->u.aes_cmac.tfm);
652 			kfree(key);
653 			return ERR_PTR(err);
654 		}
655 		break;
656 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
657 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
658 		key->conf.iv_len = 0;
659 		key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
660 		if (seq)
661 			for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
662 				key->u.aes_gmac.rx_pn[j] =
663 					seq[IEEE80211_GMAC_PN_LEN - j - 1];
664 		/* Initialize AES key state here as an optimization so that
665 		 * it does not need to be initialized for every packet.
666 		 */
667 		key->u.aes_gmac.tfm =
668 			ieee80211_aes_gmac_key_setup(key_data, key_len);
669 		if (IS_ERR(key->u.aes_gmac.tfm)) {
670 			err = PTR_ERR(key->u.aes_gmac.tfm);
671 			kfree(key);
672 			return ERR_PTR(err);
673 		}
674 		break;
675 	case WLAN_CIPHER_SUITE_GCMP:
676 	case WLAN_CIPHER_SUITE_GCMP_256:
677 		key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
678 		key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
679 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
680 			for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
681 				key->u.gcmp.rx_pn[i][j] =
682 					seq[IEEE80211_GCMP_PN_LEN - j - 1];
683 		/* Initialize AES key state here as an optimization so that
684 		 * it does not need to be initialized for every packet.
685 		 */
686 		key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
687 								      key_len);
688 		if (IS_ERR(key->u.gcmp.tfm)) {
689 			err = PTR_ERR(key->u.gcmp.tfm);
690 			kfree(key);
691 			return ERR_PTR(err);
692 		}
693 		break;
694 	}
695 	memcpy(key->conf.key, key_data, key_len);
696 	INIT_LIST_HEAD(&key->list);
697 
698 	return key;
699 }
700 
701 static void ieee80211_key_free_common(struct ieee80211_key *key)
702 {
703 	switch (key->conf.cipher) {
704 	case WLAN_CIPHER_SUITE_CCMP:
705 	case WLAN_CIPHER_SUITE_CCMP_256:
706 		ieee80211_aes_key_free(key->u.ccmp.tfm);
707 		break;
708 	case WLAN_CIPHER_SUITE_AES_CMAC:
709 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
710 		ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
711 		break;
712 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
713 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
714 		ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
715 		break;
716 	case WLAN_CIPHER_SUITE_GCMP:
717 	case WLAN_CIPHER_SUITE_GCMP_256:
718 		ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
719 		break;
720 	}
721 	kfree_sensitive(key);
722 }
723 
724 static void __ieee80211_key_destroy(struct ieee80211_key *key,
725 				    bool delay_tailroom)
726 {
727 	if (key->local) {
728 		struct ieee80211_sub_if_data *sdata = key->sdata;
729 
730 		ieee80211_debugfs_key_remove(key);
731 
732 		if (delay_tailroom) {
733 			/* see ieee80211_delayed_tailroom_dec */
734 			sdata->crypto_tx_tailroom_pending_dec++;
735 			schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
736 					      HZ/2);
737 		} else {
738 			decrease_tailroom_need_count(sdata, 1);
739 		}
740 	}
741 
742 	ieee80211_key_free_common(key);
743 }
744 
745 static void ieee80211_key_destroy(struct ieee80211_key *key,
746 				  bool delay_tailroom)
747 {
748 	if (!key)
749 		return;
750 
751 	/*
752 	 * Synchronize so the TX path and rcu key iterators
753 	 * can no longer be using this key before we free/remove it.
754 	 */
755 	synchronize_net();
756 
757 	__ieee80211_key_destroy(key, delay_tailroom);
758 }
759 
760 void ieee80211_key_free_unused(struct ieee80211_key *key)
761 {
762 	WARN_ON(key->sdata || key->local);
763 	ieee80211_key_free_common(key);
764 }
765 
766 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
767 				    struct ieee80211_key *old,
768 				    struct ieee80211_key *new)
769 {
770 	u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
771 	u8 *tk_old, *tk_new;
772 
773 	if (!old || new->conf.keylen != old->conf.keylen)
774 		return false;
775 
776 	tk_old = old->conf.key;
777 	tk_new = new->conf.key;
778 
779 	/*
780 	 * In station mode, don't compare the TX MIC key, as it's never used
781 	 * and offloaded rekeying may not care to send it to the host. This
782 	 * is the case in iwlwifi, for example.
783 	 */
784 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
785 	    new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
786 	    new->conf.keylen == WLAN_KEY_LEN_TKIP &&
787 	    !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
788 		memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
789 		memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
790 		memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
791 		memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
792 		tk_old = tkip_old;
793 		tk_new = tkip_new;
794 	}
795 
796 	return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
797 }
798 
799 int ieee80211_key_link(struct ieee80211_key *key,
800 		       struct ieee80211_sub_if_data *sdata,
801 		       struct sta_info *sta)
802 {
803 	static atomic_t key_color = ATOMIC_INIT(0);
804 	struct ieee80211_key *old_key = NULL;
805 	int idx = key->conf.keyidx;
806 	bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
807 	/*
808 	 * We want to delay tailroom updates only for station - in that
809 	 * case it helps roaming speed, but in other cases it hurts and
810 	 * can cause warnings to appear.
811 	 */
812 	bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
813 	int ret = -EOPNOTSUPP;
814 
815 	mutex_lock(&sdata->local->key_mtx);
816 
817 	if (sta && pairwise) {
818 		struct ieee80211_key *alt_key;
819 
820 		old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
821 		alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]);
822 
823 		/* The rekey code assumes that the old and new key are using
824 		 * the same cipher. Enforce the assumption for pairwise keys.
825 		 */
826 		if ((alt_key && alt_key->conf.cipher != key->conf.cipher) ||
827 		    (old_key && old_key->conf.cipher != key->conf.cipher))
828 			goto out;
829 	} else if (sta) {
830 		old_key = key_mtx_dereference(sdata->local,
831 					      sta->deflink.gtk[idx]);
832 	} else {
833 		if (idx < NUM_DEFAULT_KEYS)
834 			old_key = key_mtx_dereference(sdata->local,
835 						      sdata->keys[idx]);
836 		if (!old_key)
837 			old_key = key_mtx_dereference(sdata->local,
838 						      sdata->deflink.gtk[idx]);
839 	}
840 
841 	/* Non-pairwise keys must also not switch the cipher on rekey */
842 	if (!pairwise) {
843 		if (old_key && old_key->conf.cipher != key->conf.cipher)
844 			goto out;
845 	}
846 
847 	/*
848 	 * Silently accept key re-installation without really installing the
849 	 * new version of the key to avoid nonce reuse or replay issues.
850 	 */
851 	if (ieee80211_key_identical(sdata, old_key, key)) {
852 		ieee80211_key_free_unused(key);
853 		ret = 0;
854 		goto out;
855 	}
856 
857 	key->local = sdata->local;
858 	key->sdata = sdata;
859 	key->sta = sta;
860 
861 	/*
862 	 * Assign a unique ID to every key so we can easily prevent mixed
863 	 * key and fragment cache attacks.
864 	 */
865 	key->color = atomic_inc_return(&key_color);
866 
867 	increment_tailroom_need_count(sdata);
868 
869 	ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
870 
871 	if (!ret) {
872 		ieee80211_debugfs_key_add(key);
873 		ieee80211_key_destroy(old_key, delay_tailroom);
874 	} else {
875 		ieee80211_key_free(key, delay_tailroom);
876 	}
877 
878  out:
879 	mutex_unlock(&sdata->local->key_mtx);
880 
881 	return ret;
882 }
883 
884 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
885 {
886 	if (!key)
887 		return;
888 
889 	/*
890 	 * Replace key with nothingness if it was ever used.
891 	 */
892 	if (key->sdata)
893 		ieee80211_key_replace(key->sdata, key->sta,
894 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
895 				key, NULL);
896 	ieee80211_key_destroy(key, delay_tailroom);
897 }
898 
899 void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata)
900 {
901 	struct ieee80211_key *key;
902 	struct ieee80211_sub_if_data *vlan;
903 
904 	lockdep_assert_wiphy(sdata->local->hw.wiphy);
905 
906 	mutex_lock(&sdata->local->key_mtx);
907 
908 	sdata->crypto_tx_tailroom_needed_cnt = 0;
909 	sdata->crypto_tx_tailroom_pending_dec = 0;
910 
911 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
912 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
913 			vlan->crypto_tx_tailroom_needed_cnt = 0;
914 			vlan->crypto_tx_tailroom_pending_dec = 0;
915 		}
916 	}
917 
918 	if (ieee80211_sdata_running(sdata)) {
919 		list_for_each_entry(key, &sdata->key_list, list) {
920 			increment_tailroom_need_count(sdata);
921 			ieee80211_key_enable_hw_accel(key);
922 		}
923 	}
924 
925 	mutex_unlock(&sdata->local->key_mtx);
926 }
927 
928 void ieee80211_iter_keys(struct ieee80211_hw *hw,
929 			 struct ieee80211_vif *vif,
930 			 void (*iter)(struct ieee80211_hw *hw,
931 				      struct ieee80211_vif *vif,
932 				      struct ieee80211_sta *sta,
933 				      struct ieee80211_key_conf *key,
934 				      void *data),
935 			 void *iter_data)
936 {
937 	struct ieee80211_local *local = hw_to_local(hw);
938 	struct ieee80211_key *key, *tmp;
939 	struct ieee80211_sub_if_data *sdata;
940 
941 	lockdep_assert_wiphy(hw->wiphy);
942 
943 	mutex_lock(&local->key_mtx);
944 	if (vif) {
945 		sdata = vif_to_sdata(vif);
946 		list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
947 			iter(hw, &sdata->vif,
948 			     key->sta ? &key->sta->sta : NULL,
949 			     &key->conf, iter_data);
950 	} else {
951 		list_for_each_entry(sdata, &local->interfaces, list)
952 			list_for_each_entry_safe(key, tmp,
953 						 &sdata->key_list, list)
954 				iter(hw, &sdata->vif,
955 				     key->sta ? &key->sta->sta : NULL,
956 				     &key->conf, iter_data);
957 	}
958 	mutex_unlock(&local->key_mtx);
959 }
960 EXPORT_SYMBOL(ieee80211_iter_keys);
961 
962 static void
963 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
964 			 struct ieee80211_sub_if_data *sdata,
965 			 void (*iter)(struct ieee80211_hw *hw,
966 				      struct ieee80211_vif *vif,
967 				      struct ieee80211_sta *sta,
968 				      struct ieee80211_key_conf *key,
969 				      void *data),
970 			 void *iter_data)
971 {
972 	struct ieee80211_key *key;
973 
974 	list_for_each_entry_rcu(key, &sdata->key_list, list) {
975 		/* skip keys of station in removal process */
976 		if (key->sta && key->sta->removed)
977 			continue;
978 		if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
979 			continue;
980 
981 		iter(hw, &sdata->vif,
982 		     key->sta ? &key->sta->sta : NULL,
983 		     &key->conf, iter_data);
984 	}
985 }
986 
987 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
988 			     struct ieee80211_vif *vif,
989 			     void (*iter)(struct ieee80211_hw *hw,
990 					  struct ieee80211_vif *vif,
991 					  struct ieee80211_sta *sta,
992 					  struct ieee80211_key_conf *key,
993 					  void *data),
994 			     void *iter_data)
995 {
996 	struct ieee80211_local *local = hw_to_local(hw);
997 	struct ieee80211_sub_if_data *sdata;
998 
999 	if (vif) {
1000 		sdata = vif_to_sdata(vif);
1001 		_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
1002 	} else {
1003 		list_for_each_entry_rcu(sdata, &local->interfaces, list)
1004 			_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
1005 	}
1006 }
1007 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
1008 
1009 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
1010 				      struct list_head *keys)
1011 {
1012 	struct ieee80211_key *key, *tmp;
1013 
1014 	decrease_tailroom_need_count(sdata,
1015 				     sdata->crypto_tx_tailroom_pending_dec);
1016 	sdata->crypto_tx_tailroom_pending_dec = 0;
1017 
1018 	ieee80211_debugfs_key_remove_mgmt_default(sdata);
1019 	ieee80211_debugfs_key_remove_beacon_default(sdata);
1020 
1021 	list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
1022 		ieee80211_key_replace(key->sdata, key->sta,
1023 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1024 				key, NULL);
1025 		list_add_tail(&key->list, keys);
1026 	}
1027 
1028 	ieee80211_debugfs_key_update_default(sdata);
1029 }
1030 
1031 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
1032 			 bool force_synchronize)
1033 {
1034 	struct ieee80211_local *local = sdata->local;
1035 	struct ieee80211_sub_if_data *vlan;
1036 	struct ieee80211_sub_if_data *master;
1037 	struct ieee80211_key *key, *tmp;
1038 	LIST_HEAD(keys);
1039 
1040 	cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
1041 
1042 	mutex_lock(&local->key_mtx);
1043 
1044 	ieee80211_free_keys_iface(sdata, &keys);
1045 
1046 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
1047 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1048 			ieee80211_free_keys_iface(vlan, &keys);
1049 	}
1050 
1051 	if (!list_empty(&keys) || force_synchronize)
1052 		synchronize_net();
1053 	list_for_each_entry_safe(key, tmp, &keys, list)
1054 		__ieee80211_key_destroy(key, false);
1055 
1056 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1057 		if (sdata->bss) {
1058 			master = container_of(sdata->bss,
1059 					      struct ieee80211_sub_if_data,
1060 					      u.ap);
1061 
1062 			WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
1063 				     master->crypto_tx_tailroom_needed_cnt);
1064 		}
1065 	} else {
1066 		WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
1067 			     sdata->crypto_tx_tailroom_pending_dec);
1068 	}
1069 
1070 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
1071 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1072 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
1073 				     vlan->crypto_tx_tailroom_pending_dec);
1074 	}
1075 
1076 	mutex_unlock(&local->key_mtx);
1077 }
1078 
1079 void ieee80211_free_sta_keys(struct ieee80211_local *local,
1080 			     struct sta_info *sta)
1081 {
1082 	struct ieee80211_key *key;
1083 	int i;
1084 
1085 	mutex_lock(&local->key_mtx);
1086 	for (i = 0; i < ARRAY_SIZE(sta->deflink.gtk); i++) {
1087 		key = key_mtx_dereference(local, sta->deflink.gtk[i]);
1088 		if (!key)
1089 			continue;
1090 		ieee80211_key_replace(key->sdata, key->sta,
1091 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1092 				key, NULL);
1093 		__ieee80211_key_destroy(key, key->sdata->vif.type ==
1094 					NL80211_IFTYPE_STATION);
1095 	}
1096 
1097 	for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1098 		key = key_mtx_dereference(local, sta->ptk[i]);
1099 		if (!key)
1100 			continue;
1101 		ieee80211_key_replace(key->sdata, key->sta,
1102 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1103 				key, NULL);
1104 		__ieee80211_key_destroy(key, key->sdata->vif.type ==
1105 					NL80211_IFTYPE_STATION);
1106 	}
1107 
1108 	mutex_unlock(&local->key_mtx);
1109 }
1110 
1111 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
1112 {
1113 	struct ieee80211_sub_if_data *sdata;
1114 
1115 	sdata = container_of(wk, struct ieee80211_sub_if_data,
1116 			     dec_tailroom_needed_wk.work);
1117 
1118 	/*
1119 	 * The reason for the delayed tailroom needed decrementing is to
1120 	 * make roaming faster: during roaming, all keys are first deleted
1121 	 * and then new keys are installed. The first new key causes the
1122 	 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
1123 	 * the cost of synchronize_net() (which can be slow). Avoid this
1124 	 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
1125 	 * key removal for a while, so if we roam the value is larger than
1126 	 * zero and no 0->1 transition happens.
1127 	 *
1128 	 * The cost is that if the AP switching was from an AP with keys
1129 	 * to one without, we still allocate tailroom while it would no
1130 	 * longer be needed. However, in the typical (fast) roaming case
1131 	 * within an ESS this usually won't happen.
1132 	 */
1133 
1134 	mutex_lock(&sdata->local->key_mtx);
1135 	decrease_tailroom_need_count(sdata,
1136 				     sdata->crypto_tx_tailroom_pending_dec);
1137 	sdata->crypto_tx_tailroom_pending_dec = 0;
1138 	mutex_unlock(&sdata->local->key_mtx);
1139 }
1140 
1141 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
1142 				const u8 *replay_ctr, gfp_t gfp)
1143 {
1144 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1145 
1146 	trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
1147 
1148 	cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
1149 }
1150 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
1151 
1152 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
1153 			      int tid, struct ieee80211_key_seq *seq)
1154 {
1155 	struct ieee80211_key *key;
1156 	const u8 *pn;
1157 
1158 	key = container_of(keyconf, struct ieee80211_key, conf);
1159 
1160 	switch (key->conf.cipher) {
1161 	case WLAN_CIPHER_SUITE_TKIP:
1162 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1163 			return;
1164 		seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
1165 		seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
1166 		break;
1167 	case WLAN_CIPHER_SUITE_CCMP:
1168 	case WLAN_CIPHER_SUITE_CCMP_256:
1169 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1170 			return;
1171 		if (tid < 0)
1172 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1173 		else
1174 			pn = key->u.ccmp.rx_pn[tid];
1175 		memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
1176 		break;
1177 	case WLAN_CIPHER_SUITE_AES_CMAC:
1178 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1179 		if (WARN_ON(tid != 0))
1180 			return;
1181 		pn = key->u.aes_cmac.rx_pn;
1182 		memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
1183 		break;
1184 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1185 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1186 		if (WARN_ON(tid != 0))
1187 			return;
1188 		pn = key->u.aes_gmac.rx_pn;
1189 		memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
1190 		break;
1191 	case WLAN_CIPHER_SUITE_GCMP:
1192 	case WLAN_CIPHER_SUITE_GCMP_256:
1193 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1194 			return;
1195 		if (tid < 0)
1196 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1197 		else
1198 			pn = key->u.gcmp.rx_pn[tid];
1199 		memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
1200 		break;
1201 	}
1202 }
1203 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
1204 
1205 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1206 			      int tid, struct ieee80211_key_seq *seq)
1207 {
1208 	struct ieee80211_key *key;
1209 	u8 *pn;
1210 
1211 	key = container_of(keyconf, struct ieee80211_key, conf);
1212 
1213 	switch (key->conf.cipher) {
1214 	case WLAN_CIPHER_SUITE_TKIP:
1215 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1216 			return;
1217 		key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1218 		key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1219 		break;
1220 	case WLAN_CIPHER_SUITE_CCMP:
1221 	case WLAN_CIPHER_SUITE_CCMP_256:
1222 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1223 			return;
1224 		if (tid < 0)
1225 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1226 		else
1227 			pn = key->u.ccmp.rx_pn[tid];
1228 		memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1229 		break;
1230 	case WLAN_CIPHER_SUITE_AES_CMAC:
1231 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1232 		if (WARN_ON(tid != 0))
1233 			return;
1234 		pn = key->u.aes_cmac.rx_pn;
1235 		memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1236 		break;
1237 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1238 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1239 		if (WARN_ON(tid != 0))
1240 			return;
1241 		pn = key->u.aes_gmac.rx_pn;
1242 		memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1243 		break;
1244 	case WLAN_CIPHER_SUITE_GCMP:
1245 	case WLAN_CIPHER_SUITE_GCMP_256:
1246 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1247 			return;
1248 		if (tid < 0)
1249 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1250 		else
1251 			pn = key->u.gcmp.rx_pn[tid];
1252 		memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1253 		break;
1254 	default:
1255 		WARN_ON(1);
1256 		break;
1257 	}
1258 }
1259 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1260 
1261 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1262 {
1263 	struct ieee80211_key *key;
1264 
1265 	key = container_of(keyconf, struct ieee80211_key, conf);
1266 
1267 	assert_key_lock(key->local);
1268 
1269 	/*
1270 	 * if key was uploaded, we assume the driver will/has remove(d)
1271 	 * it, so adjust bookkeeping accordingly
1272 	 */
1273 	if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1274 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1275 
1276 		if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
1277 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
1278 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1279 			increment_tailroom_need_count(key->sdata);
1280 	}
1281 
1282 	ieee80211_key_free(key, false);
1283 }
1284 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1285 
1286 struct ieee80211_key_conf *
1287 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1288 			struct ieee80211_key_conf *keyconf)
1289 {
1290 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1291 	struct ieee80211_local *local = sdata->local;
1292 	struct ieee80211_key *key;
1293 	int err;
1294 
1295 	if (WARN_ON(!local->wowlan))
1296 		return ERR_PTR(-EINVAL);
1297 
1298 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1299 		return ERR_PTR(-EINVAL);
1300 
1301 	key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1302 				  keyconf->keylen, keyconf->key,
1303 				  0, NULL);
1304 	if (IS_ERR(key))
1305 		return ERR_CAST(key);
1306 
1307 	if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1308 		key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1309 
1310 	err = ieee80211_key_link(key, sdata, NULL);
1311 	if (err)
1312 		return ERR_PTR(err);
1313 
1314 	return &key->conf;
1315 }
1316 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
1317 
1318 void ieee80211_key_mic_failure(struct ieee80211_key_conf *keyconf)
1319 {
1320 	struct ieee80211_key *key;
1321 
1322 	key = container_of(keyconf, struct ieee80211_key, conf);
1323 
1324 	switch (key->conf.cipher) {
1325 	case WLAN_CIPHER_SUITE_AES_CMAC:
1326 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1327 		key->u.aes_cmac.icverrors++;
1328 		break;
1329 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1330 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1331 		key->u.aes_gmac.icverrors++;
1332 		break;
1333 	default:
1334 		/* ignore the others for now, we don't keep counters now */
1335 		break;
1336 	}
1337 }
1338 EXPORT_SYMBOL_GPL(ieee80211_key_mic_failure);
1339 
1340 void ieee80211_key_replay(struct ieee80211_key_conf *keyconf)
1341 {
1342 	struct ieee80211_key *key;
1343 
1344 	key = container_of(keyconf, struct ieee80211_key, conf);
1345 
1346 	switch (key->conf.cipher) {
1347 	case WLAN_CIPHER_SUITE_CCMP:
1348 	case WLAN_CIPHER_SUITE_CCMP_256:
1349 		key->u.ccmp.replays++;
1350 		break;
1351 	case WLAN_CIPHER_SUITE_AES_CMAC:
1352 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1353 		key->u.aes_cmac.replays++;
1354 		break;
1355 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1356 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1357 		key->u.aes_gmac.replays++;
1358 		break;
1359 	case WLAN_CIPHER_SUITE_GCMP:
1360 	case WLAN_CIPHER_SUITE_GCMP_256:
1361 		key->u.gcmp.replays++;
1362 		break;
1363 	}
1364 }
1365 EXPORT_SYMBOL_GPL(ieee80211_key_replay);
1366