xref: /openbmc/linux/net/mac80211/key.c (revision f276e20b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright 2015-2017	Intel Deutschland GmbH
9  * Copyright 2018-2020, 2022  Intel Corporation
10  */
11 
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <crypto/algapi.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29 
30 
31 /**
32  * DOC: Key handling basics
33  *
34  * Key handling in mac80211 is done based on per-interface (sub_if_data)
35  * keys and per-station keys. Since each station belongs to an interface,
36  * each station key also belongs to that interface.
37  *
38  * Hardware acceleration is done on a best-effort basis for algorithms
39  * that are implemented in software,  for each key the hardware is asked
40  * to enable that key for offloading but if it cannot do that the key is
41  * simply kept for software encryption (unless it is for an algorithm
42  * that isn't implemented in software).
43  * There is currently no way of knowing whether a key is handled in SW
44  * or HW except by looking into debugfs.
45  *
46  * All key management is internally protected by a mutex. Within all
47  * other parts of mac80211, key references are, just as STA structure
48  * references, protected by RCU. Note, however, that some things are
49  * unprotected, namely the key->sta dereferences within the hardware
50  * acceleration functions. This means that sta_info_destroy() must
51  * remove the key which waits for an RCU grace period.
52  */
53 
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55 
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58 	lockdep_assert_held(&local->key_mtx);
59 }
60 
61 static void
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63 {
64 	struct ieee80211_sub_if_data *vlan;
65 
66 	if (sdata->vif.type != NL80211_IFTYPE_AP)
67 		return;
68 
69 	/* crypto_tx_tailroom_needed_cnt is protected by this */
70 	assert_key_lock(sdata->local);
71 
72 	rcu_read_lock();
73 
74 	list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 		vlan->crypto_tx_tailroom_needed_cnt += delta;
76 
77 	rcu_read_unlock();
78 }
79 
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
81 {
82 	/*
83 	 * When this count is zero, SKB resizing for allocating tailroom
84 	 * for IV or MMIC is skipped. But, this check has created two race
85 	 * cases in xmit path while transiting from zero count to one:
86 	 *
87 	 * 1. SKB resize was skipped because no key was added but just before
88 	 * the xmit key is added and SW encryption kicks off.
89 	 *
90 	 * 2. SKB resize was skipped because all the keys were hw planted but
91 	 * just before xmit one of the key is deleted and SW encryption kicks
92 	 * off.
93 	 *
94 	 * In both the above case SW encryption will find not enough space for
95 	 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 	 *
97 	 * Solution has been explained at
98 	 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
99 	 */
100 
101 	assert_key_lock(sdata->local);
102 
103 	update_vlan_tailroom_need_count(sdata, 1);
104 
105 	if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 		/*
107 		 * Flush all XMIT packets currently using HW encryption or no
108 		 * encryption at all if the count transition is from 0 -> 1.
109 		 */
110 		synchronize_net();
111 	}
112 }
113 
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 					 int delta)
116 {
117 	assert_key_lock(sdata->local);
118 
119 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120 
121 	update_vlan_tailroom_need_count(sdata, -delta);
122 	sdata->crypto_tx_tailroom_needed_cnt -= delta;
123 }
124 
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126 {
127 	struct ieee80211_sub_if_data *sdata = key->sdata;
128 	struct sta_info *sta;
129 	int ret = -EOPNOTSUPP;
130 
131 	might_sleep();
132 
133 	if (key->flags & KEY_FLAG_TAINTED) {
134 		/* If we get here, it's during resume and the key is
135 		 * tainted so shouldn't be used/programmed any more.
136 		 * However, its flags may still indicate that it was
137 		 * programmed into the device (since we're in resume)
138 		 * so clear that flag now to avoid trying to remove
139 		 * it again later.
140 		 */
141 		if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
142 		    !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
143 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
144 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
145 			increment_tailroom_need_count(sdata);
146 
147 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
148 		return -EINVAL;
149 	}
150 
151 	if (!key->local->ops->set_key)
152 		goto out_unsupported;
153 
154 	assert_key_lock(key->local);
155 
156 	sta = key->sta;
157 
158 	/*
159 	 * If this is a per-STA GTK, check if it
160 	 * is supported; if not, return.
161 	 */
162 	if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
163 	    !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
164 		goto out_unsupported;
165 
166 	if (sta && !sta->uploaded)
167 		goto out_unsupported;
168 
169 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
170 		/*
171 		 * The driver doesn't know anything about VLAN interfaces.
172 		 * Hence, don't send GTKs for VLAN interfaces to the driver.
173 		 */
174 		if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
175 			ret = 1;
176 			goto out_unsupported;
177 		}
178 	}
179 
180 	ret = drv_set_key(key->local, SET_KEY, sdata,
181 			  sta ? &sta->sta : NULL, &key->conf);
182 
183 	if (!ret) {
184 		key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
185 
186 		if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
187 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
188 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
189 			decrease_tailroom_need_count(sdata, 1);
190 
191 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
192 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
193 
194 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
195 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
196 
197 		return 0;
198 	}
199 
200 	if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
201 		sdata_err(sdata,
202 			  "failed to set key (%d, %pM) to hardware (%d)\n",
203 			  key->conf.keyidx,
204 			  sta ? sta->sta.addr : bcast_addr, ret);
205 
206  out_unsupported:
207 	switch (key->conf.cipher) {
208 	case WLAN_CIPHER_SUITE_WEP40:
209 	case WLAN_CIPHER_SUITE_WEP104:
210 	case WLAN_CIPHER_SUITE_TKIP:
211 	case WLAN_CIPHER_SUITE_CCMP:
212 	case WLAN_CIPHER_SUITE_CCMP_256:
213 	case WLAN_CIPHER_SUITE_GCMP:
214 	case WLAN_CIPHER_SUITE_GCMP_256:
215 	case WLAN_CIPHER_SUITE_AES_CMAC:
216 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
217 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
218 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
219 		/* all of these we can do in software - if driver can */
220 		if (ret == 1)
221 			return 0;
222 		if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
223 			return -EINVAL;
224 		return 0;
225 	default:
226 		return -EINVAL;
227 	}
228 }
229 
230 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
231 {
232 	struct ieee80211_sub_if_data *sdata;
233 	struct sta_info *sta;
234 	int ret;
235 
236 	might_sleep();
237 
238 	if (!key || !key->local->ops->set_key)
239 		return;
240 
241 	assert_key_lock(key->local);
242 
243 	if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
244 		return;
245 
246 	sta = key->sta;
247 	sdata = key->sdata;
248 
249 	if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
250 				 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
251 				 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
252 		increment_tailroom_need_count(sdata);
253 
254 	key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
255 	ret = drv_set_key(key->local, DISABLE_KEY, sdata,
256 			  sta ? &sta->sta : NULL, &key->conf);
257 
258 	if (ret)
259 		sdata_err(sdata,
260 			  "failed to remove key (%d, %pM) from hardware (%d)\n",
261 			  key->conf.keyidx,
262 			  sta ? sta->sta.addr : bcast_addr, ret);
263 }
264 
265 static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force)
266 {
267 	struct sta_info *sta = key->sta;
268 	struct ieee80211_local *local = key->local;
269 
270 	assert_key_lock(local);
271 
272 	set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION);
273 
274 	sta->ptk_idx = key->conf.keyidx;
275 
276 	if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT))
277 		clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
278 	ieee80211_check_fast_xmit(sta);
279 
280 	return 0;
281 }
282 
283 int ieee80211_set_tx_key(struct ieee80211_key *key)
284 {
285 	return _ieee80211_set_tx_key(key, false);
286 }
287 
288 static void ieee80211_pairwise_rekey(struct ieee80211_key *old,
289 				     struct ieee80211_key *new)
290 {
291 	struct ieee80211_local *local = new->local;
292 	struct sta_info *sta = new->sta;
293 	int i;
294 
295 	assert_key_lock(local);
296 
297 	if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) {
298 		/* Extended Key ID key install, initial one or rekey */
299 
300 		if (sta->ptk_idx != INVALID_PTK_KEYIDX &&
301 		    !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) {
302 			/* Aggregation Sessions with Extended Key ID must not
303 			 * mix MPDUs with different keyIDs within one A-MPDU.
304 			 * Tear down running Tx aggregation sessions and block
305 			 * new Rx/Tx aggregation requests during rekey to
306 			 * ensure there are no A-MPDUs when the driver is not
307 			 * supporting A-MPDU key borders. (Blocking Tx only
308 			 * would be sufficient but WLAN_STA_BLOCK_BA gets the
309 			 * job done for the few ms we need it.)
310 			 */
311 			set_sta_flag(sta, WLAN_STA_BLOCK_BA);
312 			mutex_lock(&sta->ampdu_mlme.mtx);
313 			for (i = 0; i <  IEEE80211_NUM_TIDS; i++)
314 				___ieee80211_stop_tx_ba_session(sta, i,
315 								AGG_STOP_LOCAL_REQUEST);
316 			mutex_unlock(&sta->ampdu_mlme.mtx);
317 		}
318 	} else if (old) {
319 		/* Rekey without Extended Key ID.
320 		 * Aggregation sessions are OK when running on SW crypto.
321 		 * A broken remote STA may cause issues not observed with HW
322 		 * crypto, though.
323 		 */
324 		if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
325 			return;
326 
327 		/* Stop Tx till we are on the new key */
328 		old->flags |= KEY_FLAG_TAINTED;
329 		ieee80211_clear_fast_xmit(sta);
330 		if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
331 			set_sta_flag(sta, WLAN_STA_BLOCK_BA);
332 			ieee80211_sta_tear_down_BA_sessions(sta,
333 							    AGG_STOP_LOCAL_REQUEST);
334 		}
335 		if (!wiphy_ext_feature_isset(local->hw.wiphy,
336 					     NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
337 			pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
338 					    sta->sta.addr);
339 			/* Flushing the driver queues *may* help prevent
340 			 * the clear text leaks and freezes.
341 			 */
342 			ieee80211_flush_queues(local, old->sdata, false);
343 		}
344 	}
345 }
346 
347 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
348 					int idx, bool uni, bool multi)
349 {
350 	struct ieee80211_key *key = NULL;
351 
352 	assert_key_lock(sdata->local);
353 
354 	if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
355 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
356 
357 	if (uni) {
358 		rcu_assign_pointer(sdata->default_unicast_key, key);
359 		ieee80211_check_fast_xmit_iface(sdata);
360 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
361 			drv_set_default_unicast_key(sdata->local, sdata, idx);
362 	}
363 
364 	if (multi)
365 		rcu_assign_pointer(sdata->default_multicast_key, key);
366 
367 	ieee80211_debugfs_key_update_default(sdata);
368 }
369 
370 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
371 			       bool uni, bool multi)
372 {
373 	mutex_lock(&sdata->local->key_mtx);
374 	__ieee80211_set_default_key(sdata, idx, uni, multi);
375 	mutex_unlock(&sdata->local->key_mtx);
376 }
377 
378 static void
379 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
380 {
381 	struct ieee80211_key *key = NULL;
382 
383 	assert_key_lock(sdata->local);
384 
385 	if (idx >= NUM_DEFAULT_KEYS &&
386 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
387 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
388 
389 	rcu_assign_pointer(sdata->default_mgmt_key, key);
390 
391 	ieee80211_debugfs_key_update_default(sdata);
392 }
393 
394 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
395 				    int idx)
396 {
397 	mutex_lock(&sdata->local->key_mtx);
398 	__ieee80211_set_default_mgmt_key(sdata, idx);
399 	mutex_unlock(&sdata->local->key_mtx);
400 }
401 
402 static void
403 __ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, int idx)
404 {
405 	struct ieee80211_key *key = NULL;
406 
407 	assert_key_lock(sdata->local);
408 
409 	if (idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS &&
410 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
411 	    NUM_DEFAULT_BEACON_KEYS)
412 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
413 
414 	rcu_assign_pointer(sdata->default_beacon_key, key);
415 
416 	ieee80211_debugfs_key_update_default(sdata);
417 }
418 
419 void ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata,
420 				      int idx)
421 {
422 	mutex_lock(&sdata->local->key_mtx);
423 	__ieee80211_set_default_beacon_key(sdata, idx);
424 	mutex_unlock(&sdata->local->key_mtx);
425 }
426 
427 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
428 				  struct sta_info *sta,
429 				  bool pairwise,
430 				  struct ieee80211_key *old,
431 				  struct ieee80211_key *new)
432 {
433 	int idx;
434 	int ret = 0;
435 	bool defunikey, defmultikey, defmgmtkey, defbeaconkey;
436 	bool is_wep;
437 
438 	/* caller must provide at least one old/new */
439 	if (WARN_ON(!new && !old))
440 		return 0;
441 
442 	if (new) {
443 		idx = new->conf.keyidx;
444 		list_add_tail_rcu(&new->list, &sdata->key_list);
445 		is_wep = new->conf.cipher == WLAN_CIPHER_SUITE_WEP40 ||
446 			 new->conf.cipher == WLAN_CIPHER_SUITE_WEP104;
447 	} else {
448 		idx = old->conf.keyidx;
449 		is_wep = old->conf.cipher == WLAN_CIPHER_SUITE_WEP40 ||
450 			 old->conf.cipher == WLAN_CIPHER_SUITE_WEP104;
451 	}
452 
453 	if ((is_wep || pairwise) && idx >= NUM_DEFAULT_KEYS)
454 		return -EINVAL;
455 
456 	WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
457 
458 	if (new && sta && pairwise) {
459 		/* Unicast rekey needs special handling. With Extended Key ID
460 		 * old is still NULL for the first rekey.
461 		 */
462 		ieee80211_pairwise_rekey(old, new);
463 	}
464 
465 	if (old) {
466 		if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
467 			ieee80211_key_disable_hw_accel(old);
468 
469 			if (new)
470 				ret = ieee80211_key_enable_hw_accel(new);
471 		}
472 	} else {
473 		if (!new->local->wowlan)
474 			ret = ieee80211_key_enable_hw_accel(new);
475 	}
476 
477 	if (ret)
478 		return ret;
479 
480 	if (sta) {
481 		if (pairwise) {
482 			rcu_assign_pointer(sta->ptk[idx], new);
483 			if (new &&
484 			    !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX))
485 				_ieee80211_set_tx_key(new, true);
486 		} else {
487 			rcu_assign_pointer(sta->deflink.gtk[idx], new);
488 		}
489 		/* Only needed for transition from no key -> key.
490 		 * Still triggers unnecessary when using Extended Key ID
491 		 * and installing the second key ID the first time.
492 		 */
493 		if (new && !old)
494 			ieee80211_check_fast_rx(sta);
495 	} else {
496 		defunikey = old &&
497 			old == key_mtx_dereference(sdata->local,
498 						sdata->default_unicast_key);
499 		defmultikey = old &&
500 			old == key_mtx_dereference(sdata->local,
501 						sdata->default_multicast_key);
502 		defmgmtkey = old &&
503 			old == key_mtx_dereference(sdata->local,
504 						sdata->default_mgmt_key);
505 		defbeaconkey = old &&
506 			old == key_mtx_dereference(sdata->local,
507 						   sdata->default_beacon_key);
508 
509 		if (defunikey && !new)
510 			__ieee80211_set_default_key(sdata, -1, true, false);
511 		if (defmultikey && !new)
512 			__ieee80211_set_default_key(sdata, -1, false, true);
513 		if (defmgmtkey && !new)
514 			__ieee80211_set_default_mgmt_key(sdata, -1);
515 		if (defbeaconkey && !new)
516 			__ieee80211_set_default_beacon_key(sdata, -1);
517 
518 		rcu_assign_pointer(sdata->keys[idx], new);
519 		if (defunikey && new)
520 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
521 						    true, false);
522 		if (defmultikey && new)
523 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
524 						    false, true);
525 		if (defmgmtkey && new)
526 			__ieee80211_set_default_mgmt_key(sdata,
527 							 new->conf.keyidx);
528 		if (defbeaconkey && new)
529 			__ieee80211_set_default_beacon_key(sdata,
530 							   new->conf.keyidx);
531 	}
532 
533 	if (old)
534 		list_del_rcu(&old->list);
535 
536 	return 0;
537 }
538 
539 struct ieee80211_key *
540 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
541 		    const u8 *key_data,
542 		    size_t seq_len, const u8 *seq)
543 {
544 	struct ieee80211_key *key;
545 	int i, j, err;
546 
547 	if (WARN_ON(idx < 0 ||
548 		    idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
549 		    NUM_DEFAULT_BEACON_KEYS))
550 		return ERR_PTR(-EINVAL);
551 
552 	key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
553 	if (!key)
554 		return ERR_PTR(-ENOMEM);
555 
556 	/*
557 	 * Default to software encryption; we'll later upload the
558 	 * key to the hardware if possible.
559 	 */
560 	key->conf.flags = 0;
561 	key->flags = 0;
562 
563 	key->conf.cipher = cipher;
564 	key->conf.keyidx = idx;
565 	key->conf.keylen = key_len;
566 	switch (cipher) {
567 	case WLAN_CIPHER_SUITE_WEP40:
568 	case WLAN_CIPHER_SUITE_WEP104:
569 		key->conf.iv_len = IEEE80211_WEP_IV_LEN;
570 		key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
571 		break;
572 	case WLAN_CIPHER_SUITE_TKIP:
573 		key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
574 		key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
575 		if (seq) {
576 			for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
577 				key->u.tkip.rx[i].iv32 =
578 					get_unaligned_le32(&seq[2]);
579 				key->u.tkip.rx[i].iv16 =
580 					get_unaligned_le16(seq);
581 			}
582 		}
583 		spin_lock_init(&key->u.tkip.txlock);
584 		break;
585 	case WLAN_CIPHER_SUITE_CCMP:
586 		key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
587 		key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
588 		if (seq) {
589 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
590 				for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
591 					key->u.ccmp.rx_pn[i][j] =
592 						seq[IEEE80211_CCMP_PN_LEN - j - 1];
593 		}
594 		/*
595 		 * Initialize AES key state here as an optimization so that
596 		 * it does not need to be initialized for every packet.
597 		 */
598 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
599 			key_data, key_len, IEEE80211_CCMP_MIC_LEN);
600 		if (IS_ERR(key->u.ccmp.tfm)) {
601 			err = PTR_ERR(key->u.ccmp.tfm);
602 			kfree(key);
603 			return ERR_PTR(err);
604 		}
605 		break;
606 	case WLAN_CIPHER_SUITE_CCMP_256:
607 		key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
608 		key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
609 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
610 			for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
611 				key->u.ccmp.rx_pn[i][j] =
612 					seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
613 		/* Initialize AES key state here as an optimization so that
614 		 * it does not need to be initialized for every packet.
615 		 */
616 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
617 			key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
618 		if (IS_ERR(key->u.ccmp.tfm)) {
619 			err = PTR_ERR(key->u.ccmp.tfm);
620 			kfree(key);
621 			return ERR_PTR(err);
622 		}
623 		break;
624 	case WLAN_CIPHER_SUITE_AES_CMAC:
625 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
626 		key->conf.iv_len = 0;
627 		if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
628 			key->conf.icv_len = sizeof(struct ieee80211_mmie);
629 		else
630 			key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
631 		if (seq)
632 			for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
633 				key->u.aes_cmac.rx_pn[j] =
634 					seq[IEEE80211_CMAC_PN_LEN - j - 1];
635 		/*
636 		 * Initialize AES key state here as an optimization so that
637 		 * it does not need to be initialized for every packet.
638 		 */
639 		key->u.aes_cmac.tfm =
640 			ieee80211_aes_cmac_key_setup(key_data, key_len);
641 		if (IS_ERR(key->u.aes_cmac.tfm)) {
642 			err = PTR_ERR(key->u.aes_cmac.tfm);
643 			kfree(key);
644 			return ERR_PTR(err);
645 		}
646 		break;
647 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
648 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
649 		key->conf.iv_len = 0;
650 		key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
651 		if (seq)
652 			for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
653 				key->u.aes_gmac.rx_pn[j] =
654 					seq[IEEE80211_GMAC_PN_LEN - j - 1];
655 		/* Initialize AES key state here as an optimization so that
656 		 * it does not need to be initialized for every packet.
657 		 */
658 		key->u.aes_gmac.tfm =
659 			ieee80211_aes_gmac_key_setup(key_data, key_len);
660 		if (IS_ERR(key->u.aes_gmac.tfm)) {
661 			err = PTR_ERR(key->u.aes_gmac.tfm);
662 			kfree(key);
663 			return ERR_PTR(err);
664 		}
665 		break;
666 	case WLAN_CIPHER_SUITE_GCMP:
667 	case WLAN_CIPHER_SUITE_GCMP_256:
668 		key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
669 		key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
670 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
671 			for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
672 				key->u.gcmp.rx_pn[i][j] =
673 					seq[IEEE80211_GCMP_PN_LEN - j - 1];
674 		/* Initialize AES key state here as an optimization so that
675 		 * it does not need to be initialized for every packet.
676 		 */
677 		key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
678 								      key_len);
679 		if (IS_ERR(key->u.gcmp.tfm)) {
680 			err = PTR_ERR(key->u.gcmp.tfm);
681 			kfree(key);
682 			return ERR_PTR(err);
683 		}
684 		break;
685 	}
686 	memcpy(key->conf.key, key_data, key_len);
687 	INIT_LIST_HEAD(&key->list);
688 
689 	return key;
690 }
691 
692 static void ieee80211_key_free_common(struct ieee80211_key *key)
693 {
694 	switch (key->conf.cipher) {
695 	case WLAN_CIPHER_SUITE_CCMP:
696 	case WLAN_CIPHER_SUITE_CCMP_256:
697 		ieee80211_aes_key_free(key->u.ccmp.tfm);
698 		break;
699 	case WLAN_CIPHER_SUITE_AES_CMAC:
700 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
701 		ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
702 		break;
703 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
704 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
705 		ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
706 		break;
707 	case WLAN_CIPHER_SUITE_GCMP:
708 	case WLAN_CIPHER_SUITE_GCMP_256:
709 		ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
710 		break;
711 	}
712 	kfree_sensitive(key);
713 }
714 
715 static void __ieee80211_key_destroy(struct ieee80211_key *key,
716 				    bool delay_tailroom)
717 {
718 	if (key->local) {
719 		struct ieee80211_sub_if_data *sdata = key->sdata;
720 
721 		ieee80211_debugfs_key_remove(key);
722 
723 		if (delay_tailroom) {
724 			/* see ieee80211_delayed_tailroom_dec */
725 			sdata->crypto_tx_tailroom_pending_dec++;
726 			schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
727 					      HZ/2);
728 		} else {
729 			decrease_tailroom_need_count(sdata, 1);
730 		}
731 	}
732 
733 	ieee80211_key_free_common(key);
734 }
735 
736 static void ieee80211_key_destroy(struct ieee80211_key *key,
737 				  bool delay_tailroom)
738 {
739 	if (!key)
740 		return;
741 
742 	/*
743 	 * Synchronize so the TX path and rcu key iterators
744 	 * can no longer be using this key before we free/remove it.
745 	 */
746 	synchronize_net();
747 
748 	__ieee80211_key_destroy(key, delay_tailroom);
749 }
750 
751 void ieee80211_key_free_unused(struct ieee80211_key *key)
752 {
753 	WARN_ON(key->sdata || key->local);
754 	ieee80211_key_free_common(key);
755 }
756 
757 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
758 				    struct ieee80211_key *old,
759 				    struct ieee80211_key *new)
760 {
761 	u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
762 	u8 *tk_old, *tk_new;
763 
764 	if (!old || new->conf.keylen != old->conf.keylen)
765 		return false;
766 
767 	tk_old = old->conf.key;
768 	tk_new = new->conf.key;
769 
770 	/*
771 	 * In station mode, don't compare the TX MIC key, as it's never used
772 	 * and offloaded rekeying may not care to send it to the host. This
773 	 * is the case in iwlwifi, for example.
774 	 */
775 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
776 	    new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
777 	    new->conf.keylen == WLAN_KEY_LEN_TKIP &&
778 	    !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
779 		memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
780 		memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
781 		memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
782 		memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
783 		tk_old = tkip_old;
784 		tk_new = tkip_new;
785 	}
786 
787 	return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
788 }
789 
790 int ieee80211_key_link(struct ieee80211_key *key,
791 		       struct ieee80211_sub_if_data *sdata,
792 		       struct sta_info *sta)
793 {
794 	static atomic_t key_color = ATOMIC_INIT(0);
795 	struct ieee80211_key *old_key;
796 	int idx = key->conf.keyidx;
797 	bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
798 	/*
799 	 * We want to delay tailroom updates only for station - in that
800 	 * case it helps roaming speed, but in other cases it hurts and
801 	 * can cause warnings to appear.
802 	 */
803 	bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
804 	int ret = -EOPNOTSUPP;
805 
806 	mutex_lock(&sdata->local->key_mtx);
807 
808 	if (sta && pairwise) {
809 		struct ieee80211_key *alt_key;
810 
811 		old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
812 		alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]);
813 
814 		/* The rekey code assumes that the old and new key are using
815 		 * the same cipher. Enforce the assumption for pairwise keys.
816 		 */
817 		if ((alt_key && alt_key->conf.cipher != key->conf.cipher) ||
818 		    (old_key && old_key->conf.cipher != key->conf.cipher))
819 			goto out;
820 	} else if (sta) {
821 		old_key = key_mtx_dereference(sdata->local,
822 					      sta->deflink.gtk[idx]);
823 	} else {
824 		old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
825 	}
826 
827 	/* Non-pairwise keys must also not switch the cipher on rekey */
828 	if (!pairwise) {
829 		if (old_key && old_key->conf.cipher != key->conf.cipher)
830 			goto out;
831 	}
832 
833 	/*
834 	 * Silently accept key re-installation without really installing the
835 	 * new version of the key to avoid nonce reuse or replay issues.
836 	 */
837 	if (ieee80211_key_identical(sdata, old_key, key)) {
838 		ieee80211_key_free_unused(key);
839 		ret = 0;
840 		goto out;
841 	}
842 
843 	key->local = sdata->local;
844 	key->sdata = sdata;
845 	key->sta = sta;
846 
847 	/*
848 	 * Assign a unique ID to every key so we can easily prevent mixed
849 	 * key and fragment cache attacks.
850 	 */
851 	key->color = atomic_inc_return(&key_color);
852 
853 	increment_tailroom_need_count(sdata);
854 
855 	ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
856 
857 	if (!ret) {
858 		ieee80211_debugfs_key_add(key);
859 		ieee80211_key_destroy(old_key, delay_tailroom);
860 	} else {
861 		ieee80211_key_free(key, delay_tailroom);
862 	}
863 
864  out:
865 	mutex_unlock(&sdata->local->key_mtx);
866 
867 	return ret;
868 }
869 
870 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
871 {
872 	if (!key)
873 		return;
874 
875 	/*
876 	 * Replace key with nothingness if it was ever used.
877 	 */
878 	if (key->sdata)
879 		ieee80211_key_replace(key->sdata, key->sta,
880 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
881 				key, NULL);
882 	ieee80211_key_destroy(key, delay_tailroom);
883 }
884 
885 void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata)
886 {
887 	struct ieee80211_key *key;
888 	struct ieee80211_sub_if_data *vlan;
889 
890 	lockdep_assert_wiphy(sdata->local->hw.wiphy);
891 
892 	mutex_lock(&sdata->local->key_mtx);
893 
894 	sdata->crypto_tx_tailroom_needed_cnt = 0;
895 	sdata->crypto_tx_tailroom_pending_dec = 0;
896 
897 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
898 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
899 			vlan->crypto_tx_tailroom_needed_cnt = 0;
900 			vlan->crypto_tx_tailroom_pending_dec = 0;
901 		}
902 	}
903 
904 	if (ieee80211_sdata_running(sdata)) {
905 		list_for_each_entry(key, &sdata->key_list, list) {
906 			increment_tailroom_need_count(sdata);
907 			ieee80211_key_enable_hw_accel(key);
908 		}
909 	}
910 
911 	mutex_unlock(&sdata->local->key_mtx);
912 }
913 
914 void ieee80211_iter_keys(struct ieee80211_hw *hw,
915 			 struct ieee80211_vif *vif,
916 			 void (*iter)(struct ieee80211_hw *hw,
917 				      struct ieee80211_vif *vif,
918 				      struct ieee80211_sta *sta,
919 				      struct ieee80211_key_conf *key,
920 				      void *data),
921 			 void *iter_data)
922 {
923 	struct ieee80211_local *local = hw_to_local(hw);
924 	struct ieee80211_key *key, *tmp;
925 	struct ieee80211_sub_if_data *sdata;
926 
927 	lockdep_assert_wiphy(hw->wiphy);
928 
929 	mutex_lock(&local->key_mtx);
930 	if (vif) {
931 		sdata = vif_to_sdata(vif);
932 		list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
933 			iter(hw, &sdata->vif,
934 			     key->sta ? &key->sta->sta : NULL,
935 			     &key->conf, iter_data);
936 	} else {
937 		list_for_each_entry(sdata, &local->interfaces, list)
938 			list_for_each_entry_safe(key, tmp,
939 						 &sdata->key_list, list)
940 				iter(hw, &sdata->vif,
941 				     key->sta ? &key->sta->sta : NULL,
942 				     &key->conf, iter_data);
943 	}
944 	mutex_unlock(&local->key_mtx);
945 }
946 EXPORT_SYMBOL(ieee80211_iter_keys);
947 
948 static void
949 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
950 			 struct ieee80211_sub_if_data *sdata,
951 			 void (*iter)(struct ieee80211_hw *hw,
952 				      struct ieee80211_vif *vif,
953 				      struct ieee80211_sta *sta,
954 				      struct ieee80211_key_conf *key,
955 				      void *data),
956 			 void *iter_data)
957 {
958 	struct ieee80211_key *key;
959 
960 	list_for_each_entry_rcu(key, &sdata->key_list, list) {
961 		/* skip keys of station in removal process */
962 		if (key->sta && key->sta->removed)
963 			continue;
964 		if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
965 			continue;
966 
967 		iter(hw, &sdata->vif,
968 		     key->sta ? &key->sta->sta : NULL,
969 		     &key->conf, iter_data);
970 	}
971 }
972 
973 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
974 			     struct ieee80211_vif *vif,
975 			     void (*iter)(struct ieee80211_hw *hw,
976 					  struct ieee80211_vif *vif,
977 					  struct ieee80211_sta *sta,
978 					  struct ieee80211_key_conf *key,
979 					  void *data),
980 			     void *iter_data)
981 {
982 	struct ieee80211_local *local = hw_to_local(hw);
983 	struct ieee80211_sub_if_data *sdata;
984 
985 	if (vif) {
986 		sdata = vif_to_sdata(vif);
987 		_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
988 	} else {
989 		list_for_each_entry_rcu(sdata, &local->interfaces, list)
990 			_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
991 	}
992 }
993 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
994 
995 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
996 				      struct list_head *keys)
997 {
998 	struct ieee80211_key *key, *tmp;
999 
1000 	decrease_tailroom_need_count(sdata,
1001 				     sdata->crypto_tx_tailroom_pending_dec);
1002 	sdata->crypto_tx_tailroom_pending_dec = 0;
1003 
1004 	ieee80211_debugfs_key_remove_mgmt_default(sdata);
1005 	ieee80211_debugfs_key_remove_beacon_default(sdata);
1006 
1007 	list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
1008 		ieee80211_key_replace(key->sdata, key->sta,
1009 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1010 				key, NULL);
1011 		list_add_tail(&key->list, keys);
1012 	}
1013 
1014 	ieee80211_debugfs_key_update_default(sdata);
1015 }
1016 
1017 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
1018 			 bool force_synchronize)
1019 {
1020 	struct ieee80211_local *local = sdata->local;
1021 	struct ieee80211_sub_if_data *vlan;
1022 	struct ieee80211_sub_if_data *master;
1023 	struct ieee80211_key *key, *tmp;
1024 	LIST_HEAD(keys);
1025 
1026 	cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
1027 
1028 	mutex_lock(&local->key_mtx);
1029 
1030 	ieee80211_free_keys_iface(sdata, &keys);
1031 
1032 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
1033 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1034 			ieee80211_free_keys_iface(vlan, &keys);
1035 	}
1036 
1037 	if (!list_empty(&keys) || force_synchronize)
1038 		synchronize_net();
1039 	list_for_each_entry_safe(key, tmp, &keys, list)
1040 		__ieee80211_key_destroy(key, false);
1041 
1042 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1043 		if (sdata->bss) {
1044 			master = container_of(sdata->bss,
1045 					      struct ieee80211_sub_if_data,
1046 					      u.ap);
1047 
1048 			WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
1049 				     master->crypto_tx_tailroom_needed_cnt);
1050 		}
1051 	} else {
1052 		WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
1053 			     sdata->crypto_tx_tailroom_pending_dec);
1054 	}
1055 
1056 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
1057 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1058 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
1059 				     vlan->crypto_tx_tailroom_pending_dec);
1060 	}
1061 
1062 	mutex_unlock(&local->key_mtx);
1063 }
1064 
1065 void ieee80211_free_sta_keys(struct ieee80211_local *local,
1066 			     struct sta_info *sta)
1067 {
1068 	struct ieee80211_key *key;
1069 	int i;
1070 
1071 	mutex_lock(&local->key_mtx);
1072 	for (i = 0; i < ARRAY_SIZE(sta->deflink.gtk); i++) {
1073 		key = key_mtx_dereference(local, sta->deflink.gtk[i]);
1074 		if (!key)
1075 			continue;
1076 		ieee80211_key_replace(key->sdata, key->sta,
1077 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1078 				key, NULL);
1079 		__ieee80211_key_destroy(key, key->sdata->vif.type ==
1080 					NL80211_IFTYPE_STATION);
1081 	}
1082 
1083 	for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1084 		key = key_mtx_dereference(local, sta->ptk[i]);
1085 		if (!key)
1086 			continue;
1087 		ieee80211_key_replace(key->sdata, key->sta,
1088 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1089 				key, NULL);
1090 		__ieee80211_key_destroy(key, key->sdata->vif.type ==
1091 					NL80211_IFTYPE_STATION);
1092 	}
1093 
1094 	mutex_unlock(&local->key_mtx);
1095 }
1096 
1097 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
1098 {
1099 	struct ieee80211_sub_if_data *sdata;
1100 
1101 	sdata = container_of(wk, struct ieee80211_sub_if_data,
1102 			     dec_tailroom_needed_wk.work);
1103 
1104 	/*
1105 	 * The reason for the delayed tailroom needed decrementing is to
1106 	 * make roaming faster: during roaming, all keys are first deleted
1107 	 * and then new keys are installed. The first new key causes the
1108 	 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
1109 	 * the cost of synchronize_net() (which can be slow). Avoid this
1110 	 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
1111 	 * key removal for a while, so if we roam the value is larger than
1112 	 * zero and no 0->1 transition happens.
1113 	 *
1114 	 * The cost is that if the AP switching was from an AP with keys
1115 	 * to one without, we still allocate tailroom while it would no
1116 	 * longer be needed. However, in the typical (fast) roaming case
1117 	 * within an ESS this usually won't happen.
1118 	 */
1119 
1120 	mutex_lock(&sdata->local->key_mtx);
1121 	decrease_tailroom_need_count(sdata,
1122 				     sdata->crypto_tx_tailroom_pending_dec);
1123 	sdata->crypto_tx_tailroom_pending_dec = 0;
1124 	mutex_unlock(&sdata->local->key_mtx);
1125 }
1126 
1127 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
1128 				const u8 *replay_ctr, gfp_t gfp)
1129 {
1130 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1131 
1132 	trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
1133 
1134 	cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
1135 }
1136 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
1137 
1138 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
1139 			      int tid, struct ieee80211_key_seq *seq)
1140 {
1141 	struct ieee80211_key *key;
1142 	const u8 *pn;
1143 
1144 	key = container_of(keyconf, struct ieee80211_key, conf);
1145 
1146 	switch (key->conf.cipher) {
1147 	case WLAN_CIPHER_SUITE_TKIP:
1148 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1149 			return;
1150 		seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
1151 		seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
1152 		break;
1153 	case WLAN_CIPHER_SUITE_CCMP:
1154 	case WLAN_CIPHER_SUITE_CCMP_256:
1155 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1156 			return;
1157 		if (tid < 0)
1158 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1159 		else
1160 			pn = key->u.ccmp.rx_pn[tid];
1161 		memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
1162 		break;
1163 	case WLAN_CIPHER_SUITE_AES_CMAC:
1164 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1165 		if (WARN_ON(tid != 0))
1166 			return;
1167 		pn = key->u.aes_cmac.rx_pn;
1168 		memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
1169 		break;
1170 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1171 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1172 		if (WARN_ON(tid != 0))
1173 			return;
1174 		pn = key->u.aes_gmac.rx_pn;
1175 		memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
1176 		break;
1177 	case WLAN_CIPHER_SUITE_GCMP:
1178 	case WLAN_CIPHER_SUITE_GCMP_256:
1179 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1180 			return;
1181 		if (tid < 0)
1182 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1183 		else
1184 			pn = key->u.gcmp.rx_pn[tid];
1185 		memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
1186 		break;
1187 	}
1188 }
1189 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
1190 
1191 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1192 			      int tid, struct ieee80211_key_seq *seq)
1193 {
1194 	struct ieee80211_key *key;
1195 	u8 *pn;
1196 
1197 	key = container_of(keyconf, struct ieee80211_key, conf);
1198 
1199 	switch (key->conf.cipher) {
1200 	case WLAN_CIPHER_SUITE_TKIP:
1201 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1202 			return;
1203 		key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1204 		key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1205 		break;
1206 	case WLAN_CIPHER_SUITE_CCMP:
1207 	case WLAN_CIPHER_SUITE_CCMP_256:
1208 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1209 			return;
1210 		if (tid < 0)
1211 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1212 		else
1213 			pn = key->u.ccmp.rx_pn[tid];
1214 		memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1215 		break;
1216 	case WLAN_CIPHER_SUITE_AES_CMAC:
1217 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1218 		if (WARN_ON(tid != 0))
1219 			return;
1220 		pn = key->u.aes_cmac.rx_pn;
1221 		memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1222 		break;
1223 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1224 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1225 		if (WARN_ON(tid != 0))
1226 			return;
1227 		pn = key->u.aes_gmac.rx_pn;
1228 		memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1229 		break;
1230 	case WLAN_CIPHER_SUITE_GCMP:
1231 	case WLAN_CIPHER_SUITE_GCMP_256:
1232 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1233 			return;
1234 		if (tid < 0)
1235 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1236 		else
1237 			pn = key->u.gcmp.rx_pn[tid];
1238 		memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1239 		break;
1240 	default:
1241 		WARN_ON(1);
1242 		break;
1243 	}
1244 }
1245 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1246 
1247 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1248 {
1249 	struct ieee80211_key *key;
1250 
1251 	key = container_of(keyconf, struct ieee80211_key, conf);
1252 
1253 	assert_key_lock(key->local);
1254 
1255 	/*
1256 	 * if key was uploaded, we assume the driver will/has remove(d)
1257 	 * it, so adjust bookkeeping accordingly
1258 	 */
1259 	if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1260 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1261 
1262 		if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
1263 					 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
1264 					 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1265 			increment_tailroom_need_count(key->sdata);
1266 	}
1267 
1268 	ieee80211_key_free(key, false);
1269 }
1270 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1271 
1272 struct ieee80211_key_conf *
1273 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1274 			struct ieee80211_key_conf *keyconf)
1275 {
1276 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1277 	struct ieee80211_local *local = sdata->local;
1278 	struct ieee80211_key *key;
1279 	int err;
1280 
1281 	if (WARN_ON(!local->wowlan))
1282 		return ERR_PTR(-EINVAL);
1283 
1284 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1285 		return ERR_PTR(-EINVAL);
1286 
1287 	key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1288 				  keyconf->keylen, keyconf->key,
1289 				  0, NULL);
1290 	if (IS_ERR(key))
1291 		return ERR_CAST(key);
1292 
1293 	if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1294 		key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1295 
1296 	err = ieee80211_key_link(key, sdata, NULL);
1297 	if (err)
1298 		return ERR_PTR(err);
1299 
1300 	return &key->conf;
1301 }
1302 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
1303 
1304 void ieee80211_key_mic_failure(struct ieee80211_key_conf *keyconf)
1305 {
1306 	struct ieee80211_key *key;
1307 
1308 	key = container_of(keyconf, struct ieee80211_key, conf);
1309 
1310 	switch (key->conf.cipher) {
1311 	case WLAN_CIPHER_SUITE_AES_CMAC:
1312 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1313 		key->u.aes_cmac.icverrors++;
1314 		break;
1315 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1316 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1317 		key->u.aes_gmac.icverrors++;
1318 		break;
1319 	default:
1320 		/* ignore the others for now, we don't keep counters now */
1321 		break;
1322 	}
1323 }
1324 EXPORT_SYMBOL_GPL(ieee80211_key_mic_failure);
1325 
1326 void ieee80211_key_replay(struct ieee80211_key_conf *keyconf)
1327 {
1328 	struct ieee80211_key *key;
1329 
1330 	key = container_of(keyconf, struct ieee80211_key, conf);
1331 
1332 	switch (key->conf.cipher) {
1333 	case WLAN_CIPHER_SUITE_CCMP:
1334 	case WLAN_CIPHER_SUITE_CCMP_256:
1335 		key->u.ccmp.replays++;
1336 		break;
1337 	case WLAN_CIPHER_SUITE_AES_CMAC:
1338 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1339 		key->u.aes_cmac.replays++;
1340 		break;
1341 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1342 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1343 		key->u.aes_gmac.replays++;
1344 		break;
1345 	case WLAN_CIPHER_SUITE_GCMP:
1346 	case WLAN_CIPHER_SUITE_GCMP_256:
1347 		key->u.gcmp.replays++;
1348 		break;
1349 	}
1350 }
1351 EXPORT_SYMBOL_GPL(ieee80211_key_replay);
1352