xref: /openbmc/linux/net/mac80211/key.c (revision ca79522c)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "debugfs_key.h"
24 #include "aes_ccm.h"
25 #include "aes_cmac.h"
26 
27 
28 /**
29  * DOC: Key handling basics
30  *
31  * Key handling in mac80211 is done based on per-interface (sub_if_data)
32  * keys and per-station keys. Since each station belongs to an interface,
33  * each station key also belongs to that interface.
34  *
35  * Hardware acceleration is done on a best-effort basis for algorithms
36  * that are implemented in software,  for each key the hardware is asked
37  * to enable that key for offloading but if it cannot do that the key is
38  * simply kept for software encryption (unless it is for an algorithm
39  * that isn't implemented in software).
40  * There is currently no way of knowing whether a key is handled in SW
41  * or HW except by looking into debugfs.
42  *
43  * All key management is internally protected by a mutex. Within all
44  * other parts of mac80211, key references are, just as STA structure
45  * references, protected by RCU. Note, however, that some things are
46  * unprotected, namely the key->sta dereferences within the hardware
47  * acceleration functions. This means that sta_info_destroy() must
48  * remove the key which waits for an RCU grace period.
49  */
50 
51 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
52 
53 static void assert_key_lock(struct ieee80211_local *local)
54 {
55 	lockdep_assert_held(&local->key_mtx);
56 }
57 
58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
59 {
60 	/*
61 	 * When this count is zero, SKB resizing for allocating tailroom
62 	 * for IV or MMIC is skipped. But, this check has created two race
63 	 * cases in xmit path while transiting from zero count to one:
64 	 *
65 	 * 1. SKB resize was skipped because no key was added but just before
66 	 * the xmit key is added and SW encryption kicks off.
67 	 *
68 	 * 2. SKB resize was skipped because all the keys were hw planted but
69 	 * just before xmit one of the key is deleted and SW encryption kicks
70 	 * off.
71 	 *
72 	 * In both the above case SW encryption will find not enough space for
73 	 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
74 	 *
75 	 * Solution has been explained at
76 	 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
77 	 */
78 
79 	if (!sdata->crypto_tx_tailroom_needed_cnt++) {
80 		/*
81 		 * Flush all XMIT packets currently using HW encryption or no
82 		 * encryption at all if the count transition is from 0 -> 1.
83 		 */
84 		synchronize_net();
85 	}
86 }
87 
88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
89 {
90 	struct ieee80211_sub_if_data *sdata;
91 	struct sta_info *sta;
92 	int ret;
93 
94 	might_sleep();
95 
96 	if (!key->local->ops->set_key)
97 		goto out_unsupported;
98 
99 	assert_key_lock(key->local);
100 
101 	sta = key->sta;
102 
103 	/*
104 	 * If this is a per-STA GTK, check if it
105 	 * is supported; if not, return.
106 	 */
107 	if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
108 	    !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
109 		goto out_unsupported;
110 
111 	if (sta && !sta->uploaded)
112 		goto out_unsupported;
113 
114 	sdata = key->sdata;
115 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
116 		/*
117 		 * The driver doesn't know anything about VLAN interfaces.
118 		 * Hence, don't send GTKs for VLAN interfaces to the driver.
119 		 */
120 		if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
121 			goto out_unsupported;
122 	}
123 
124 	ret = drv_set_key(key->local, SET_KEY, sdata,
125 			  sta ? &sta->sta : NULL, &key->conf);
126 
127 	if (!ret) {
128 		key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
129 
130 		if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
131 		      (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
132 		      (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
133 			sdata->crypto_tx_tailroom_needed_cnt--;
134 
135 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
136 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
137 
138 		return 0;
139 	}
140 
141 	if (ret != -ENOSPC && ret != -EOPNOTSUPP)
142 		sdata_err(sdata,
143 			  "failed to set key (%d, %pM) to hardware (%d)\n",
144 			  key->conf.keyidx,
145 			  sta ? sta->sta.addr : bcast_addr, ret);
146 
147  out_unsupported:
148 	switch (key->conf.cipher) {
149 	case WLAN_CIPHER_SUITE_WEP40:
150 	case WLAN_CIPHER_SUITE_WEP104:
151 	case WLAN_CIPHER_SUITE_TKIP:
152 	case WLAN_CIPHER_SUITE_CCMP:
153 	case WLAN_CIPHER_SUITE_AES_CMAC:
154 		/* all of these we can do in software */
155 		return 0;
156 	default:
157 		return -EINVAL;
158 	}
159 }
160 
161 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
162 {
163 	struct ieee80211_sub_if_data *sdata;
164 	struct sta_info *sta;
165 	int ret;
166 
167 	might_sleep();
168 
169 	if (!key || !key->local->ops->set_key)
170 		return;
171 
172 	assert_key_lock(key->local);
173 
174 	if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
175 		return;
176 
177 	sta = key->sta;
178 	sdata = key->sdata;
179 
180 	if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
181 	      (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
182 	      (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
183 		increment_tailroom_need_count(sdata);
184 
185 	ret = drv_set_key(key->local, DISABLE_KEY, sdata,
186 			  sta ? &sta->sta : NULL, &key->conf);
187 
188 	if (ret)
189 		sdata_err(sdata,
190 			  "failed to remove key (%d, %pM) from hardware (%d)\n",
191 			  key->conf.keyidx,
192 			  sta ? sta->sta.addr : bcast_addr, ret);
193 
194 	key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
195 }
196 
197 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
198 					int idx, bool uni, bool multi)
199 {
200 	struct ieee80211_key *key = NULL;
201 
202 	assert_key_lock(sdata->local);
203 
204 	if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
205 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
206 
207 	if (uni) {
208 		rcu_assign_pointer(sdata->default_unicast_key, key);
209 		drv_set_default_unicast_key(sdata->local, sdata, idx);
210 	}
211 
212 	if (multi)
213 		rcu_assign_pointer(sdata->default_multicast_key, key);
214 
215 	ieee80211_debugfs_key_update_default(sdata);
216 }
217 
218 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
219 			       bool uni, bool multi)
220 {
221 	mutex_lock(&sdata->local->key_mtx);
222 	__ieee80211_set_default_key(sdata, idx, uni, multi);
223 	mutex_unlock(&sdata->local->key_mtx);
224 }
225 
226 static void
227 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
228 {
229 	struct ieee80211_key *key = NULL;
230 
231 	assert_key_lock(sdata->local);
232 
233 	if (idx >= NUM_DEFAULT_KEYS &&
234 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
235 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
236 
237 	rcu_assign_pointer(sdata->default_mgmt_key, key);
238 
239 	ieee80211_debugfs_key_update_default(sdata);
240 }
241 
242 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
243 				    int idx)
244 {
245 	mutex_lock(&sdata->local->key_mtx);
246 	__ieee80211_set_default_mgmt_key(sdata, idx);
247 	mutex_unlock(&sdata->local->key_mtx);
248 }
249 
250 
251 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
252 				  struct sta_info *sta,
253 				  bool pairwise,
254 				  struct ieee80211_key *old,
255 				  struct ieee80211_key *new)
256 {
257 	int idx;
258 	bool defunikey, defmultikey, defmgmtkey;
259 
260 	if (new)
261 		list_add_tail(&new->list, &sdata->key_list);
262 
263 	if (sta && pairwise) {
264 		rcu_assign_pointer(sta->ptk, new);
265 	} else if (sta) {
266 		if (old)
267 			idx = old->conf.keyidx;
268 		else
269 			idx = new->conf.keyidx;
270 		rcu_assign_pointer(sta->gtk[idx], new);
271 	} else {
272 		WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
273 
274 		if (old)
275 			idx = old->conf.keyidx;
276 		else
277 			idx = new->conf.keyidx;
278 
279 		defunikey = old &&
280 			old == key_mtx_dereference(sdata->local,
281 						sdata->default_unicast_key);
282 		defmultikey = old &&
283 			old == key_mtx_dereference(sdata->local,
284 						sdata->default_multicast_key);
285 		defmgmtkey = old &&
286 			old == key_mtx_dereference(sdata->local,
287 						sdata->default_mgmt_key);
288 
289 		if (defunikey && !new)
290 			__ieee80211_set_default_key(sdata, -1, true, false);
291 		if (defmultikey && !new)
292 			__ieee80211_set_default_key(sdata, -1, false, true);
293 		if (defmgmtkey && !new)
294 			__ieee80211_set_default_mgmt_key(sdata, -1);
295 
296 		rcu_assign_pointer(sdata->keys[idx], new);
297 		if (defunikey && new)
298 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
299 						    true, false);
300 		if (defmultikey && new)
301 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
302 						    false, true);
303 		if (defmgmtkey && new)
304 			__ieee80211_set_default_mgmt_key(sdata,
305 							 new->conf.keyidx);
306 	}
307 
308 	if (old)
309 		list_del(&old->list);
310 }
311 
312 struct ieee80211_key *ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
313 					  const u8 *key_data,
314 					  size_t seq_len, const u8 *seq)
315 {
316 	struct ieee80211_key *key;
317 	int i, j, err;
318 
319 	BUG_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS);
320 
321 	key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
322 	if (!key)
323 		return ERR_PTR(-ENOMEM);
324 
325 	/*
326 	 * Default to software encryption; we'll later upload the
327 	 * key to the hardware if possible.
328 	 */
329 	key->conf.flags = 0;
330 	key->flags = 0;
331 
332 	key->conf.cipher = cipher;
333 	key->conf.keyidx = idx;
334 	key->conf.keylen = key_len;
335 	switch (cipher) {
336 	case WLAN_CIPHER_SUITE_WEP40:
337 	case WLAN_CIPHER_SUITE_WEP104:
338 		key->conf.iv_len = WEP_IV_LEN;
339 		key->conf.icv_len = WEP_ICV_LEN;
340 		break;
341 	case WLAN_CIPHER_SUITE_TKIP:
342 		key->conf.iv_len = TKIP_IV_LEN;
343 		key->conf.icv_len = TKIP_ICV_LEN;
344 		if (seq) {
345 			for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
346 				key->u.tkip.rx[i].iv32 =
347 					get_unaligned_le32(&seq[2]);
348 				key->u.tkip.rx[i].iv16 =
349 					get_unaligned_le16(seq);
350 			}
351 		}
352 		spin_lock_init(&key->u.tkip.txlock);
353 		break;
354 	case WLAN_CIPHER_SUITE_CCMP:
355 		key->conf.iv_len = CCMP_HDR_LEN;
356 		key->conf.icv_len = CCMP_MIC_LEN;
357 		if (seq) {
358 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
359 				for (j = 0; j < CCMP_PN_LEN; j++)
360 					key->u.ccmp.rx_pn[i][j] =
361 						seq[CCMP_PN_LEN - j - 1];
362 		}
363 		/*
364 		 * Initialize AES key state here as an optimization so that
365 		 * it does not need to be initialized for every packet.
366 		 */
367 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
368 		if (IS_ERR(key->u.ccmp.tfm)) {
369 			err = PTR_ERR(key->u.ccmp.tfm);
370 			kfree(key);
371 			return ERR_PTR(err);
372 		}
373 		break;
374 	case WLAN_CIPHER_SUITE_AES_CMAC:
375 		key->conf.iv_len = 0;
376 		key->conf.icv_len = sizeof(struct ieee80211_mmie);
377 		if (seq)
378 			for (j = 0; j < CMAC_PN_LEN; j++)
379 				key->u.aes_cmac.rx_pn[j] =
380 					seq[CMAC_PN_LEN - j - 1];
381 		/*
382 		 * Initialize AES key state here as an optimization so that
383 		 * it does not need to be initialized for every packet.
384 		 */
385 		key->u.aes_cmac.tfm =
386 			ieee80211_aes_cmac_key_setup(key_data);
387 		if (IS_ERR(key->u.aes_cmac.tfm)) {
388 			err = PTR_ERR(key->u.aes_cmac.tfm);
389 			kfree(key);
390 			return ERR_PTR(err);
391 		}
392 		break;
393 	}
394 	memcpy(key->conf.key, key_data, key_len);
395 	INIT_LIST_HEAD(&key->list);
396 
397 	return key;
398 }
399 
400 static void ieee80211_key_free_common(struct ieee80211_key *key)
401 {
402 	if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
403 		ieee80211_aes_key_free(key->u.ccmp.tfm);
404 	if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
405 		ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
406 	kfree(key);
407 }
408 
409 static void __ieee80211_key_destroy(struct ieee80211_key *key,
410 				    bool delay_tailroom)
411 {
412 	if (key->local)
413 		ieee80211_key_disable_hw_accel(key);
414 
415 	if (key->local) {
416 		struct ieee80211_sub_if_data *sdata = key->sdata;
417 
418 		ieee80211_debugfs_key_remove(key);
419 
420 		if (delay_tailroom) {
421 			/* see ieee80211_delayed_tailroom_dec */
422 			sdata->crypto_tx_tailroom_pending_dec++;
423 			schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
424 					      HZ/2);
425 		} else {
426 			sdata->crypto_tx_tailroom_needed_cnt--;
427 		}
428 	}
429 
430 	ieee80211_key_free_common(key);
431 }
432 
433 static void ieee80211_key_destroy(struct ieee80211_key *key,
434 				  bool delay_tailroom)
435 {
436 	if (!key)
437 		return;
438 
439 	/*
440 	 * Synchronize so the TX path can no longer be using
441 	 * this key before we free/remove it.
442 	 */
443 	synchronize_net();
444 
445 	__ieee80211_key_destroy(key, delay_tailroom);
446 }
447 
448 void ieee80211_key_free_unused(struct ieee80211_key *key)
449 {
450 	WARN_ON(key->sdata || key->local);
451 	ieee80211_key_free_common(key);
452 }
453 
454 int ieee80211_key_link(struct ieee80211_key *key,
455 		       struct ieee80211_sub_if_data *sdata,
456 		       struct sta_info *sta)
457 {
458 	struct ieee80211_key *old_key;
459 	int idx, ret;
460 	bool pairwise;
461 
462 	BUG_ON(!sdata);
463 	BUG_ON(!key);
464 
465 	pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
466 	idx = key->conf.keyidx;
467 	key->local = sdata->local;
468 	key->sdata = sdata;
469 	key->sta = sta;
470 
471 	mutex_lock(&sdata->local->key_mtx);
472 
473 	if (sta && pairwise)
474 		old_key = key_mtx_dereference(sdata->local, sta->ptk);
475 	else if (sta)
476 		old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
477 	else
478 		old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
479 
480 	increment_tailroom_need_count(sdata);
481 
482 	ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
483 	ieee80211_key_destroy(old_key, true);
484 
485 	ieee80211_debugfs_key_add(key);
486 
487 	ret = ieee80211_key_enable_hw_accel(key);
488 
489 	if (ret)
490 		ieee80211_key_free(key, true);
491 
492 	mutex_unlock(&sdata->local->key_mtx);
493 
494 	return ret;
495 }
496 
497 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
498 {
499 	if (!key)
500 		return;
501 
502 	/*
503 	 * Replace key with nothingness if it was ever used.
504 	 */
505 	if (key->sdata)
506 		ieee80211_key_replace(key->sdata, key->sta,
507 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
508 				key, NULL);
509 	ieee80211_key_destroy(key, delay_tailroom);
510 }
511 
512 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
513 {
514 	struct ieee80211_key *key;
515 
516 	ASSERT_RTNL();
517 
518 	if (WARN_ON(!ieee80211_sdata_running(sdata)))
519 		return;
520 
521 	mutex_lock(&sdata->local->key_mtx);
522 
523 	sdata->crypto_tx_tailroom_needed_cnt = 0;
524 
525 	list_for_each_entry(key, &sdata->key_list, list) {
526 		increment_tailroom_need_count(sdata);
527 		ieee80211_key_enable_hw_accel(key);
528 	}
529 
530 	mutex_unlock(&sdata->local->key_mtx);
531 }
532 
533 void ieee80211_iter_keys(struct ieee80211_hw *hw,
534 			 struct ieee80211_vif *vif,
535 			 void (*iter)(struct ieee80211_hw *hw,
536 				      struct ieee80211_vif *vif,
537 				      struct ieee80211_sta *sta,
538 				      struct ieee80211_key_conf *key,
539 				      void *data),
540 			 void *iter_data)
541 {
542 	struct ieee80211_local *local = hw_to_local(hw);
543 	struct ieee80211_key *key;
544 	struct ieee80211_sub_if_data *sdata;
545 
546 	ASSERT_RTNL();
547 
548 	mutex_lock(&local->key_mtx);
549 	if (vif) {
550 		sdata = vif_to_sdata(vif);
551 		list_for_each_entry(key, &sdata->key_list, list)
552 			iter(hw, &sdata->vif,
553 			     key->sta ? &key->sta->sta : NULL,
554 			     &key->conf, iter_data);
555 	} else {
556 		list_for_each_entry(sdata, &local->interfaces, list)
557 			list_for_each_entry(key, &sdata->key_list, list)
558 				iter(hw, &sdata->vif,
559 				     key->sta ? &key->sta->sta : NULL,
560 				     &key->conf, iter_data);
561 	}
562 	mutex_unlock(&local->key_mtx);
563 }
564 EXPORT_SYMBOL(ieee80211_iter_keys);
565 
566 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata)
567 {
568 	struct ieee80211_key *key, *tmp;
569 	LIST_HEAD(keys);
570 
571 	cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
572 
573 	mutex_lock(&sdata->local->key_mtx);
574 
575 	sdata->crypto_tx_tailroom_needed_cnt -=
576 		sdata->crypto_tx_tailroom_pending_dec;
577 	sdata->crypto_tx_tailroom_pending_dec = 0;
578 
579 	ieee80211_debugfs_key_remove_mgmt_default(sdata);
580 
581 	list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
582 		ieee80211_key_replace(key->sdata, key->sta,
583 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
584 				key, NULL);
585 		list_add_tail(&key->list, &keys);
586 	}
587 
588 	ieee80211_debugfs_key_update_default(sdata);
589 
590 	if (!list_empty(&keys)) {
591 		synchronize_net();
592 		list_for_each_entry_safe(key, tmp, &keys, list)
593 			__ieee80211_key_destroy(key, false);
594 	}
595 
596 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
597 		     sdata->crypto_tx_tailroom_pending_dec);
598 
599 	mutex_unlock(&sdata->local->key_mtx);
600 }
601 
602 void ieee80211_free_sta_keys(struct ieee80211_local *local,
603 			     struct sta_info *sta)
604 {
605 	struct ieee80211_key *key, *tmp;
606 	LIST_HEAD(keys);
607 	int i;
608 
609 	mutex_lock(&local->key_mtx);
610 	for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
611 		key = key_mtx_dereference(local, sta->gtk[i]);
612 		if (!key)
613 			continue;
614 		ieee80211_key_replace(key->sdata, key->sta,
615 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
616 				key, NULL);
617 		list_add(&key->list, &keys);
618 	}
619 
620 	key = key_mtx_dereference(local, sta->ptk);
621 	if (key) {
622 		ieee80211_key_replace(key->sdata, key->sta,
623 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
624 				key, NULL);
625 		list_add(&key->list, &keys);
626 	}
627 
628 	/*
629 	 * NB: the station code relies on this being
630 	 * done even if there aren't any keys
631 	 */
632 	synchronize_net();
633 
634 	list_for_each_entry_safe(key, tmp, &keys, list)
635 		__ieee80211_key_destroy(key, true);
636 
637 	mutex_unlock(&local->key_mtx);
638 }
639 
640 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
641 {
642 	struct ieee80211_sub_if_data *sdata;
643 
644 	sdata = container_of(wk, struct ieee80211_sub_if_data,
645 			     dec_tailroom_needed_wk.work);
646 
647 	/*
648 	 * The reason for the delayed tailroom needed decrementing is to
649 	 * make roaming faster: during roaming, all keys are first deleted
650 	 * and then new keys are installed. The first new key causes the
651 	 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
652 	 * the cost of synchronize_net() (which can be slow). Avoid this
653 	 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
654 	 * key removal for a while, so if we roam the value is larger than
655 	 * zero and no 0->1 transition happens.
656 	 *
657 	 * The cost is that if the AP switching was from an AP with keys
658 	 * to one without, we still allocate tailroom while it would no
659 	 * longer be needed. However, in the typical (fast) roaming case
660 	 * within an ESS this usually won't happen.
661 	 */
662 
663 	mutex_lock(&sdata->local->key_mtx);
664 	sdata->crypto_tx_tailroom_needed_cnt -=
665 		sdata->crypto_tx_tailroom_pending_dec;
666 	sdata->crypto_tx_tailroom_pending_dec = 0;
667 	mutex_unlock(&sdata->local->key_mtx);
668 }
669 
670 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
671 				const u8 *replay_ctr, gfp_t gfp)
672 {
673 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
674 
675 	trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
676 
677 	cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
678 }
679 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
680 
681 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
682 			      struct ieee80211_key_seq *seq)
683 {
684 	struct ieee80211_key *key;
685 	u64 pn64;
686 
687 	if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
688 		return;
689 
690 	key = container_of(keyconf, struct ieee80211_key, conf);
691 
692 	switch (key->conf.cipher) {
693 	case WLAN_CIPHER_SUITE_TKIP:
694 		seq->tkip.iv32 = key->u.tkip.tx.iv32;
695 		seq->tkip.iv16 = key->u.tkip.tx.iv16;
696 		break;
697 	case WLAN_CIPHER_SUITE_CCMP:
698 		pn64 = atomic64_read(&key->u.ccmp.tx_pn);
699 		seq->ccmp.pn[5] = pn64;
700 		seq->ccmp.pn[4] = pn64 >> 8;
701 		seq->ccmp.pn[3] = pn64 >> 16;
702 		seq->ccmp.pn[2] = pn64 >> 24;
703 		seq->ccmp.pn[1] = pn64 >> 32;
704 		seq->ccmp.pn[0] = pn64 >> 40;
705 		break;
706 	case WLAN_CIPHER_SUITE_AES_CMAC:
707 		pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
708 		seq->ccmp.pn[5] = pn64;
709 		seq->ccmp.pn[4] = pn64 >> 8;
710 		seq->ccmp.pn[3] = pn64 >> 16;
711 		seq->ccmp.pn[2] = pn64 >> 24;
712 		seq->ccmp.pn[1] = pn64 >> 32;
713 		seq->ccmp.pn[0] = pn64 >> 40;
714 		break;
715 	default:
716 		WARN_ON(1);
717 	}
718 }
719 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
720 
721 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
722 			      int tid, struct ieee80211_key_seq *seq)
723 {
724 	struct ieee80211_key *key;
725 	const u8 *pn;
726 
727 	key = container_of(keyconf, struct ieee80211_key, conf);
728 
729 	switch (key->conf.cipher) {
730 	case WLAN_CIPHER_SUITE_TKIP:
731 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
732 			return;
733 		seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
734 		seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
735 		break;
736 	case WLAN_CIPHER_SUITE_CCMP:
737 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
738 			return;
739 		if (tid < 0)
740 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
741 		else
742 			pn = key->u.ccmp.rx_pn[tid];
743 		memcpy(seq->ccmp.pn, pn, CCMP_PN_LEN);
744 		break;
745 	case WLAN_CIPHER_SUITE_AES_CMAC:
746 		if (WARN_ON(tid != 0))
747 			return;
748 		pn = key->u.aes_cmac.rx_pn;
749 		memcpy(seq->aes_cmac.pn, pn, CMAC_PN_LEN);
750 		break;
751 	}
752 }
753 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
754