xref: /openbmc/linux/net/mac80211/key.c (revision c0e297dc)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29 
30 
31 /**
32  * DOC: Key handling basics
33  *
34  * Key handling in mac80211 is done based on per-interface (sub_if_data)
35  * keys and per-station keys. Since each station belongs to an interface,
36  * each station key also belongs to that interface.
37  *
38  * Hardware acceleration is done on a best-effort basis for algorithms
39  * that are implemented in software,  for each key the hardware is asked
40  * to enable that key for offloading but if it cannot do that the key is
41  * simply kept for software encryption (unless it is for an algorithm
42  * that isn't implemented in software).
43  * There is currently no way of knowing whether a key is handled in SW
44  * or HW except by looking into debugfs.
45  *
46  * All key management is internally protected by a mutex. Within all
47  * other parts of mac80211, key references are, just as STA structure
48  * references, protected by RCU. Note, however, that some things are
49  * unprotected, namely the key->sta dereferences within the hardware
50  * acceleration functions. This means that sta_info_destroy() must
51  * remove the key which waits for an RCU grace period.
52  */
53 
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55 
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58 	lockdep_assert_held(&local->key_mtx);
59 }
60 
61 static void
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63 {
64 	struct ieee80211_sub_if_data *vlan;
65 
66 	if (sdata->vif.type != NL80211_IFTYPE_AP)
67 		return;
68 
69 	/* crypto_tx_tailroom_needed_cnt is protected by this */
70 	assert_key_lock(sdata->local);
71 
72 	rcu_read_lock();
73 
74 	list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 		vlan->crypto_tx_tailroom_needed_cnt += delta;
76 
77 	rcu_read_unlock();
78 }
79 
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
81 {
82 	/*
83 	 * When this count is zero, SKB resizing for allocating tailroom
84 	 * for IV or MMIC is skipped. But, this check has created two race
85 	 * cases in xmit path while transiting from zero count to one:
86 	 *
87 	 * 1. SKB resize was skipped because no key was added but just before
88 	 * the xmit key is added and SW encryption kicks off.
89 	 *
90 	 * 2. SKB resize was skipped because all the keys were hw planted but
91 	 * just before xmit one of the key is deleted and SW encryption kicks
92 	 * off.
93 	 *
94 	 * In both the above case SW encryption will find not enough space for
95 	 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 	 *
97 	 * Solution has been explained at
98 	 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
99 	 */
100 
101 	assert_key_lock(sdata->local);
102 
103 	update_vlan_tailroom_need_count(sdata, 1);
104 
105 	if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 		/*
107 		 * Flush all XMIT packets currently using HW encryption or no
108 		 * encryption at all if the count transition is from 0 -> 1.
109 		 */
110 		synchronize_net();
111 	}
112 }
113 
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 					 int delta)
116 {
117 	assert_key_lock(sdata->local);
118 
119 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120 
121 	update_vlan_tailroom_need_count(sdata, -delta);
122 	sdata->crypto_tx_tailroom_needed_cnt -= delta;
123 }
124 
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126 {
127 	struct ieee80211_sub_if_data *sdata;
128 	struct sta_info *sta;
129 	int ret = -EOPNOTSUPP;
130 
131 	might_sleep();
132 
133 	if (key->flags & KEY_FLAG_TAINTED) {
134 		/* If we get here, it's during resume and the key is
135 		 * tainted so shouldn't be used/programmed any more.
136 		 * However, its flags may still indicate that it was
137 		 * programmed into the device (since we're in resume)
138 		 * so clear that flag now to avoid trying to remove
139 		 * it again later.
140 		 */
141 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
142 		return -EINVAL;
143 	}
144 
145 	if (!key->local->ops->set_key)
146 		goto out_unsupported;
147 
148 	assert_key_lock(key->local);
149 
150 	sta = key->sta;
151 
152 	/*
153 	 * If this is a per-STA GTK, check if it
154 	 * is supported; if not, return.
155 	 */
156 	if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
157 	    !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
158 		goto out_unsupported;
159 
160 	if (sta && !sta->uploaded)
161 		goto out_unsupported;
162 
163 	sdata = key->sdata;
164 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
165 		/*
166 		 * The driver doesn't know anything about VLAN interfaces.
167 		 * Hence, don't send GTKs for VLAN interfaces to the driver.
168 		 */
169 		if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
170 			goto out_unsupported;
171 	}
172 
173 	ret = drv_set_key(key->local, SET_KEY, sdata,
174 			  sta ? &sta->sta : NULL, &key->conf);
175 
176 	if (!ret) {
177 		key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
178 
179 		if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
180 		      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
181 			decrease_tailroom_need_count(sdata, 1);
182 
183 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
184 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
185 
186 		return 0;
187 	}
188 
189 	if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
190 		sdata_err(sdata,
191 			  "failed to set key (%d, %pM) to hardware (%d)\n",
192 			  key->conf.keyidx,
193 			  sta ? sta->sta.addr : bcast_addr, ret);
194 
195  out_unsupported:
196 	switch (key->conf.cipher) {
197 	case WLAN_CIPHER_SUITE_WEP40:
198 	case WLAN_CIPHER_SUITE_WEP104:
199 	case WLAN_CIPHER_SUITE_TKIP:
200 	case WLAN_CIPHER_SUITE_CCMP:
201 	case WLAN_CIPHER_SUITE_CCMP_256:
202 	case WLAN_CIPHER_SUITE_AES_CMAC:
203 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
204 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
205 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
206 	case WLAN_CIPHER_SUITE_GCMP:
207 	case WLAN_CIPHER_SUITE_GCMP_256:
208 		/* all of these we can do in software - if driver can */
209 		if (ret == 1)
210 			return 0;
211 		if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
212 			return -EINVAL;
213 		return 0;
214 	default:
215 		return -EINVAL;
216 	}
217 }
218 
219 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
220 {
221 	struct ieee80211_sub_if_data *sdata;
222 	struct sta_info *sta;
223 	int ret;
224 
225 	might_sleep();
226 
227 	if (!key || !key->local->ops->set_key)
228 		return;
229 
230 	assert_key_lock(key->local);
231 
232 	if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
233 		return;
234 
235 	sta = key->sta;
236 	sdata = key->sdata;
237 
238 	if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
239 	      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
240 		increment_tailroom_need_count(sdata);
241 
242 	ret = drv_set_key(key->local, DISABLE_KEY, sdata,
243 			  sta ? &sta->sta : NULL, &key->conf);
244 
245 	if (ret)
246 		sdata_err(sdata,
247 			  "failed to remove key (%d, %pM) from hardware (%d)\n",
248 			  key->conf.keyidx,
249 			  sta ? sta->sta.addr : bcast_addr, ret);
250 
251 	key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
252 }
253 
254 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
255 					int idx, bool uni, bool multi)
256 {
257 	struct ieee80211_key *key = NULL;
258 
259 	assert_key_lock(sdata->local);
260 
261 	if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
262 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
263 
264 	if (uni) {
265 		rcu_assign_pointer(sdata->default_unicast_key, key);
266 		ieee80211_check_fast_xmit_iface(sdata);
267 		drv_set_default_unicast_key(sdata->local, sdata, idx);
268 	}
269 
270 	if (multi)
271 		rcu_assign_pointer(sdata->default_multicast_key, key);
272 
273 	ieee80211_debugfs_key_update_default(sdata);
274 }
275 
276 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
277 			       bool uni, bool multi)
278 {
279 	mutex_lock(&sdata->local->key_mtx);
280 	__ieee80211_set_default_key(sdata, idx, uni, multi);
281 	mutex_unlock(&sdata->local->key_mtx);
282 }
283 
284 static void
285 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
286 {
287 	struct ieee80211_key *key = NULL;
288 
289 	assert_key_lock(sdata->local);
290 
291 	if (idx >= NUM_DEFAULT_KEYS &&
292 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
293 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
294 
295 	rcu_assign_pointer(sdata->default_mgmt_key, key);
296 
297 	ieee80211_debugfs_key_update_default(sdata);
298 }
299 
300 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
301 				    int idx)
302 {
303 	mutex_lock(&sdata->local->key_mtx);
304 	__ieee80211_set_default_mgmt_key(sdata, idx);
305 	mutex_unlock(&sdata->local->key_mtx);
306 }
307 
308 
309 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
310 				  struct sta_info *sta,
311 				  bool pairwise,
312 				  struct ieee80211_key *old,
313 				  struct ieee80211_key *new)
314 {
315 	int idx;
316 	bool defunikey, defmultikey, defmgmtkey;
317 
318 	/* caller must provide at least one old/new */
319 	if (WARN_ON(!new && !old))
320 		return;
321 
322 	if (new)
323 		list_add_tail(&new->list, &sdata->key_list);
324 
325 	WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
326 
327 	if (old)
328 		idx = old->conf.keyidx;
329 	else
330 		idx = new->conf.keyidx;
331 
332 	if (sta) {
333 		if (pairwise) {
334 			rcu_assign_pointer(sta->ptk[idx], new);
335 			sta->ptk_idx = idx;
336 			ieee80211_check_fast_xmit(sta);
337 		} else {
338 			rcu_assign_pointer(sta->gtk[idx], new);
339 			sta->gtk_idx = idx;
340 		}
341 	} else {
342 		defunikey = old &&
343 			old == key_mtx_dereference(sdata->local,
344 						sdata->default_unicast_key);
345 		defmultikey = old &&
346 			old == key_mtx_dereference(sdata->local,
347 						sdata->default_multicast_key);
348 		defmgmtkey = old &&
349 			old == key_mtx_dereference(sdata->local,
350 						sdata->default_mgmt_key);
351 
352 		if (defunikey && !new)
353 			__ieee80211_set_default_key(sdata, -1, true, false);
354 		if (defmultikey && !new)
355 			__ieee80211_set_default_key(sdata, -1, false, true);
356 		if (defmgmtkey && !new)
357 			__ieee80211_set_default_mgmt_key(sdata, -1);
358 
359 		rcu_assign_pointer(sdata->keys[idx], new);
360 		if (defunikey && new)
361 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
362 						    true, false);
363 		if (defmultikey && new)
364 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
365 						    false, true);
366 		if (defmgmtkey && new)
367 			__ieee80211_set_default_mgmt_key(sdata,
368 							 new->conf.keyidx);
369 	}
370 
371 	if (old)
372 		list_del(&old->list);
373 }
374 
375 struct ieee80211_key *
376 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
377 		    const u8 *key_data,
378 		    size_t seq_len, const u8 *seq,
379 		    const struct ieee80211_cipher_scheme *cs)
380 {
381 	struct ieee80211_key *key;
382 	int i, j, err;
383 
384 	if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
385 		return ERR_PTR(-EINVAL);
386 
387 	key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
388 	if (!key)
389 		return ERR_PTR(-ENOMEM);
390 
391 	/*
392 	 * Default to software encryption; we'll later upload the
393 	 * key to the hardware if possible.
394 	 */
395 	key->conf.flags = 0;
396 	key->flags = 0;
397 
398 	key->conf.cipher = cipher;
399 	key->conf.keyidx = idx;
400 	key->conf.keylen = key_len;
401 	switch (cipher) {
402 	case WLAN_CIPHER_SUITE_WEP40:
403 	case WLAN_CIPHER_SUITE_WEP104:
404 		key->conf.iv_len = IEEE80211_WEP_IV_LEN;
405 		key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
406 		break;
407 	case WLAN_CIPHER_SUITE_TKIP:
408 		key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
409 		key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
410 		if (seq) {
411 			for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
412 				key->u.tkip.rx[i].iv32 =
413 					get_unaligned_le32(&seq[2]);
414 				key->u.tkip.rx[i].iv16 =
415 					get_unaligned_le16(seq);
416 			}
417 		}
418 		spin_lock_init(&key->u.tkip.txlock);
419 		break;
420 	case WLAN_CIPHER_SUITE_CCMP:
421 		key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
422 		key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
423 		if (seq) {
424 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
425 				for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
426 					key->u.ccmp.rx_pn[i][j] =
427 						seq[IEEE80211_CCMP_PN_LEN - j - 1];
428 		}
429 		/*
430 		 * Initialize AES key state here as an optimization so that
431 		 * it does not need to be initialized for every packet.
432 		 */
433 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
434 			key_data, key_len, IEEE80211_CCMP_MIC_LEN);
435 		if (IS_ERR(key->u.ccmp.tfm)) {
436 			err = PTR_ERR(key->u.ccmp.tfm);
437 			kfree(key);
438 			return ERR_PTR(err);
439 		}
440 		break;
441 	case WLAN_CIPHER_SUITE_CCMP_256:
442 		key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
443 		key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
444 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
445 			for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
446 				key->u.ccmp.rx_pn[i][j] =
447 					seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
448 		/* Initialize AES key state here as an optimization so that
449 		 * it does not need to be initialized for every packet.
450 		 */
451 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
452 			key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
453 		if (IS_ERR(key->u.ccmp.tfm)) {
454 			err = PTR_ERR(key->u.ccmp.tfm);
455 			kfree(key);
456 			return ERR_PTR(err);
457 		}
458 		break;
459 	case WLAN_CIPHER_SUITE_AES_CMAC:
460 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
461 		key->conf.iv_len = 0;
462 		if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
463 			key->conf.icv_len = sizeof(struct ieee80211_mmie);
464 		else
465 			key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
466 		if (seq)
467 			for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
468 				key->u.aes_cmac.rx_pn[j] =
469 					seq[IEEE80211_CMAC_PN_LEN - j - 1];
470 		/*
471 		 * Initialize AES key state here as an optimization so that
472 		 * it does not need to be initialized for every packet.
473 		 */
474 		key->u.aes_cmac.tfm =
475 			ieee80211_aes_cmac_key_setup(key_data, key_len);
476 		if (IS_ERR(key->u.aes_cmac.tfm)) {
477 			err = PTR_ERR(key->u.aes_cmac.tfm);
478 			kfree(key);
479 			return ERR_PTR(err);
480 		}
481 		break;
482 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
483 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
484 		key->conf.iv_len = 0;
485 		key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
486 		if (seq)
487 			for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
488 				key->u.aes_gmac.rx_pn[j] =
489 					seq[IEEE80211_GMAC_PN_LEN - j - 1];
490 		/* Initialize AES key state here as an optimization so that
491 		 * it does not need to be initialized for every packet.
492 		 */
493 		key->u.aes_gmac.tfm =
494 			ieee80211_aes_gmac_key_setup(key_data, key_len);
495 		if (IS_ERR(key->u.aes_gmac.tfm)) {
496 			err = PTR_ERR(key->u.aes_gmac.tfm);
497 			kfree(key);
498 			return ERR_PTR(err);
499 		}
500 		break;
501 	case WLAN_CIPHER_SUITE_GCMP:
502 	case WLAN_CIPHER_SUITE_GCMP_256:
503 		key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
504 		key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
505 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
506 			for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
507 				key->u.gcmp.rx_pn[i][j] =
508 					seq[IEEE80211_GCMP_PN_LEN - j - 1];
509 		/* Initialize AES key state here as an optimization so that
510 		 * it does not need to be initialized for every packet.
511 		 */
512 		key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
513 								      key_len);
514 		if (IS_ERR(key->u.gcmp.tfm)) {
515 			err = PTR_ERR(key->u.gcmp.tfm);
516 			kfree(key);
517 			return ERR_PTR(err);
518 		}
519 		break;
520 	default:
521 		if (cs) {
522 			if (seq_len && seq_len != cs->pn_len) {
523 				kfree(key);
524 				return ERR_PTR(-EINVAL);
525 			}
526 
527 			key->conf.iv_len = cs->hdr_len;
528 			key->conf.icv_len = cs->mic_len;
529 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
530 				for (j = 0; j < seq_len; j++)
531 					key->u.gen.rx_pn[i][j] =
532 							seq[seq_len - j - 1];
533 			key->flags |= KEY_FLAG_CIPHER_SCHEME;
534 		}
535 	}
536 	memcpy(key->conf.key, key_data, key_len);
537 	INIT_LIST_HEAD(&key->list);
538 
539 	return key;
540 }
541 
542 static void ieee80211_key_free_common(struct ieee80211_key *key)
543 {
544 	switch (key->conf.cipher) {
545 	case WLAN_CIPHER_SUITE_CCMP:
546 	case WLAN_CIPHER_SUITE_CCMP_256:
547 		ieee80211_aes_key_free(key->u.ccmp.tfm);
548 		break;
549 	case WLAN_CIPHER_SUITE_AES_CMAC:
550 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
551 		ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
552 		break;
553 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
554 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
555 		ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
556 		break;
557 	case WLAN_CIPHER_SUITE_GCMP:
558 	case WLAN_CIPHER_SUITE_GCMP_256:
559 		ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
560 		break;
561 	}
562 	kzfree(key);
563 }
564 
565 static void __ieee80211_key_destroy(struct ieee80211_key *key,
566 				    bool delay_tailroom)
567 {
568 	if (key->local)
569 		ieee80211_key_disable_hw_accel(key);
570 
571 	if (key->local) {
572 		struct ieee80211_sub_if_data *sdata = key->sdata;
573 
574 		ieee80211_debugfs_key_remove(key);
575 
576 		if (delay_tailroom) {
577 			/* see ieee80211_delayed_tailroom_dec */
578 			sdata->crypto_tx_tailroom_pending_dec++;
579 			schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
580 					      HZ/2);
581 		} else {
582 			decrease_tailroom_need_count(sdata, 1);
583 		}
584 	}
585 
586 	ieee80211_key_free_common(key);
587 }
588 
589 static void ieee80211_key_destroy(struct ieee80211_key *key,
590 				  bool delay_tailroom)
591 {
592 	if (!key)
593 		return;
594 
595 	/*
596 	 * Synchronize so the TX path can no longer be using
597 	 * this key before we free/remove it.
598 	 */
599 	synchronize_net();
600 
601 	__ieee80211_key_destroy(key, delay_tailroom);
602 }
603 
604 void ieee80211_key_free_unused(struct ieee80211_key *key)
605 {
606 	WARN_ON(key->sdata || key->local);
607 	ieee80211_key_free_common(key);
608 }
609 
610 int ieee80211_key_link(struct ieee80211_key *key,
611 		       struct ieee80211_sub_if_data *sdata,
612 		       struct sta_info *sta)
613 {
614 	struct ieee80211_local *local = sdata->local;
615 	struct ieee80211_key *old_key;
616 	int idx, ret;
617 	bool pairwise;
618 
619 	pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
620 	idx = key->conf.keyidx;
621 	key->local = sdata->local;
622 	key->sdata = sdata;
623 	key->sta = sta;
624 
625 	mutex_lock(&sdata->local->key_mtx);
626 
627 	if (sta && pairwise)
628 		old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
629 	else if (sta)
630 		old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
631 	else
632 		old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
633 
634 	increment_tailroom_need_count(sdata);
635 
636 	ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
637 	ieee80211_key_destroy(old_key, true);
638 
639 	ieee80211_debugfs_key_add(key);
640 
641 	if (!local->wowlan) {
642 		ret = ieee80211_key_enable_hw_accel(key);
643 		if (ret)
644 			ieee80211_key_free(key, true);
645 	} else {
646 		ret = 0;
647 	}
648 
649 	mutex_unlock(&sdata->local->key_mtx);
650 
651 	return ret;
652 }
653 
654 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
655 {
656 	if (!key)
657 		return;
658 
659 	/*
660 	 * Replace key with nothingness if it was ever used.
661 	 */
662 	if (key->sdata)
663 		ieee80211_key_replace(key->sdata, key->sta,
664 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
665 				key, NULL);
666 	ieee80211_key_destroy(key, delay_tailroom);
667 }
668 
669 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
670 {
671 	struct ieee80211_key *key;
672 	struct ieee80211_sub_if_data *vlan;
673 
674 	ASSERT_RTNL();
675 
676 	if (WARN_ON(!ieee80211_sdata_running(sdata)))
677 		return;
678 
679 	mutex_lock(&sdata->local->key_mtx);
680 
681 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
682 		     sdata->crypto_tx_tailroom_pending_dec);
683 
684 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
685 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
686 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
687 				     vlan->crypto_tx_tailroom_pending_dec);
688 	}
689 
690 	list_for_each_entry(key, &sdata->key_list, list) {
691 		increment_tailroom_need_count(sdata);
692 		ieee80211_key_enable_hw_accel(key);
693 	}
694 
695 	mutex_unlock(&sdata->local->key_mtx);
696 }
697 
698 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
699 {
700 	struct ieee80211_sub_if_data *vlan;
701 
702 	mutex_lock(&sdata->local->key_mtx);
703 
704 	sdata->crypto_tx_tailroom_needed_cnt = 0;
705 
706 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
707 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
708 			vlan->crypto_tx_tailroom_needed_cnt = 0;
709 	}
710 
711 	mutex_unlock(&sdata->local->key_mtx);
712 }
713 
714 void ieee80211_iter_keys(struct ieee80211_hw *hw,
715 			 struct ieee80211_vif *vif,
716 			 void (*iter)(struct ieee80211_hw *hw,
717 				      struct ieee80211_vif *vif,
718 				      struct ieee80211_sta *sta,
719 				      struct ieee80211_key_conf *key,
720 				      void *data),
721 			 void *iter_data)
722 {
723 	struct ieee80211_local *local = hw_to_local(hw);
724 	struct ieee80211_key *key, *tmp;
725 	struct ieee80211_sub_if_data *sdata;
726 
727 	ASSERT_RTNL();
728 
729 	mutex_lock(&local->key_mtx);
730 	if (vif) {
731 		sdata = vif_to_sdata(vif);
732 		list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
733 			iter(hw, &sdata->vif,
734 			     key->sta ? &key->sta->sta : NULL,
735 			     &key->conf, iter_data);
736 	} else {
737 		list_for_each_entry(sdata, &local->interfaces, list)
738 			list_for_each_entry_safe(key, tmp,
739 						 &sdata->key_list, list)
740 				iter(hw, &sdata->vif,
741 				     key->sta ? &key->sta->sta : NULL,
742 				     &key->conf, iter_data);
743 	}
744 	mutex_unlock(&local->key_mtx);
745 }
746 EXPORT_SYMBOL(ieee80211_iter_keys);
747 
748 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
749 				      struct list_head *keys)
750 {
751 	struct ieee80211_key *key, *tmp;
752 
753 	decrease_tailroom_need_count(sdata,
754 				     sdata->crypto_tx_tailroom_pending_dec);
755 	sdata->crypto_tx_tailroom_pending_dec = 0;
756 
757 	ieee80211_debugfs_key_remove_mgmt_default(sdata);
758 
759 	list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
760 		ieee80211_key_replace(key->sdata, key->sta,
761 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
762 				key, NULL);
763 		list_add_tail(&key->list, keys);
764 	}
765 
766 	ieee80211_debugfs_key_update_default(sdata);
767 }
768 
769 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
770 			 bool force_synchronize)
771 {
772 	struct ieee80211_local *local = sdata->local;
773 	struct ieee80211_sub_if_data *vlan;
774 	struct ieee80211_sub_if_data *master;
775 	struct ieee80211_key *key, *tmp;
776 	LIST_HEAD(keys);
777 
778 	cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
779 
780 	mutex_lock(&local->key_mtx);
781 
782 	ieee80211_free_keys_iface(sdata, &keys);
783 
784 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
785 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
786 			ieee80211_free_keys_iface(vlan, &keys);
787 	}
788 
789 	if (!list_empty(&keys) || force_synchronize)
790 		synchronize_net();
791 	list_for_each_entry_safe(key, tmp, &keys, list)
792 		__ieee80211_key_destroy(key, false);
793 
794 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
795 		if (sdata->bss) {
796 			master = container_of(sdata->bss,
797 					      struct ieee80211_sub_if_data,
798 					      u.ap);
799 
800 			WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
801 				     master->crypto_tx_tailroom_needed_cnt);
802 		}
803 	} else {
804 		WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
805 			     sdata->crypto_tx_tailroom_pending_dec);
806 	}
807 
808 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
809 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
810 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
811 				     vlan->crypto_tx_tailroom_pending_dec);
812 	}
813 
814 	mutex_unlock(&local->key_mtx);
815 }
816 
817 void ieee80211_free_sta_keys(struct ieee80211_local *local,
818 			     struct sta_info *sta)
819 {
820 	struct ieee80211_key *key;
821 	int i;
822 
823 	mutex_lock(&local->key_mtx);
824 	for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
825 		key = key_mtx_dereference(local, sta->gtk[i]);
826 		if (!key)
827 			continue;
828 		ieee80211_key_replace(key->sdata, key->sta,
829 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
830 				key, NULL);
831 		__ieee80211_key_destroy(key, true);
832 	}
833 
834 	for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
835 		key = key_mtx_dereference(local, sta->ptk[i]);
836 		if (!key)
837 			continue;
838 		ieee80211_key_replace(key->sdata, key->sta,
839 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
840 				key, NULL);
841 		__ieee80211_key_destroy(key, true);
842 	}
843 
844 	mutex_unlock(&local->key_mtx);
845 }
846 
847 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
848 {
849 	struct ieee80211_sub_if_data *sdata;
850 
851 	sdata = container_of(wk, struct ieee80211_sub_if_data,
852 			     dec_tailroom_needed_wk.work);
853 
854 	/*
855 	 * The reason for the delayed tailroom needed decrementing is to
856 	 * make roaming faster: during roaming, all keys are first deleted
857 	 * and then new keys are installed. The first new key causes the
858 	 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
859 	 * the cost of synchronize_net() (which can be slow). Avoid this
860 	 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
861 	 * key removal for a while, so if we roam the value is larger than
862 	 * zero and no 0->1 transition happens.
863 	 *
864 	 * The cost is that if the AP switching was from an AP with keys
865 	 * to one without, we still allocate tailroom while it would no
866 	 * longer be needed. However, in the typical (fast) roaming case
867 	 * within an ESS this usually won't happen.
868 	 */
869 
870 	mutex_lock(&sdata->local->key_mtx);
871 	decrease_tailroom_need_count(sdata,
872 				     sdata->crypto_tx_tailroom_pending_dec);
873 	sdata->crypto_tx_tailroom_pending_dec = 0;
874 	mutex_unlock(&sdata->local->key_mtx);
875 }
876 
877 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
878 				const u8 *replay_ctr, gfp_t gfp)
879 {
880 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
881 
882 	trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
883 
884 	cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
885 }
886 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
887 
888 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
889 			      struct ieee80211_key_seq *seq)
890 {
891 	struct ieee80211_key *key;
892 	u64 pn64;
893 
894 	if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
895 		return;
896 
897 	key = container_of(keyconf, struct ieee80211_key, conf);
898 
899 	switch (key->conf.cipher) {
900 	case WLAN_CIPHER_SUITE_TKIP:
901 		seq->tkip.iv32 = key->u.tkip.tx.iv32;
902 		seq->tkip.iv16 = key->u.tkip.tx.iv16;
903 		break;
904 	case WLAN_CIPHER_SUITE_CCMP:
905 	case WLAN_CIPHER_SUITE_CCMP_256:
906 	case WLAN_CIPHER_SUITE_AES_CMAC:
907 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
908 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
909 			     offsetof(typeof(*seq), aes_cmac));
910 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
911 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
912 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
913 			     offsetof(typeof(*seq), aes_gmac));
914 	case WLAN_CIPHER_SUITE_GCMP:
915 	case WLAN_CIPHER_SUITE_GCMP_256:
916 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
917 			     offsetof(typeof(*seq), gcmp));
918 		pn64 = atomic64_read(&key->conf.tx_pn);
919 		seq->ccmp.pn[5] = pn64;
920 		seq->ccmp.pn[4] = pn64 >> 8;
921 		seq->ccmp.pn[3] = pn64 >> 16;
922 		seq->ccmp.pn[2] = pn64 >> 24;
923 		seq->ccmp.pn[1] = pn64 >> 32;
924 		seq->ccmp.pn[0] = pn64 >> 40;
925 		break;
926 	default:
927 		WARN_ON(1);
928 	}
929 }
930 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
931 
932 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
933 			      int tid, struct ieee80211_key_seq *seq)
934 {
935 	struct ieee80211_key *key;
936 	const u8 *pn;
937 
938 	key = container_of(keyconf, struct ieee80211_key, conf);
939 
940 	switch (key->conf.cipher) {
941 	case WLAN_CIPHER_SUITE_TKIP:
942 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
943 			return;
944 		seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
945 		seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
946 		break;
947 	case WLAN_CIPHER_SUITE_CCMP:
948 	case WLAN_CIPHER_SUITE_CCMP_256:
949 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
950 			return;
951 		if (tid < 0)
952 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
953 		else
954 			pn = key->u.ccmp.rx_pn[tid];
955 		memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
956 		break;
957 	case WLAN_CIPHER_SUITE_AES_CMAC:
958 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
959 		if (WARN_ON(tid != 0))
960 			return;
961 		pn = key->u.aes_cmac.rx_pn;
962 		memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
963 		break;
964 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
965 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
966 		if (WARN_ON(tid != 0))
967 			return;
968 		pn = key->u.aes_gmac.rx_pn;
969 		memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
970 		break;
971 	case WLAN_CIPHER_SUITE_GCMP:
972 	case WLAN_CIPHER_SUITE_GCMP_256:
973 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
974 			return;
975 		if (tid < 0)
976 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
977 		else
978 			pn = key->u.gcmp.rx_pn[tid];
979 		memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
980 		break;
981 	}
982 }
983 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
984 
985 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
986 			      struct ieee80211_key_seq *seq)
987 {
988 	struct ieee80211_key *key;
989 	u64 pn64;
990 
991 	key = container_of(keyconf, struct ieee80211_key, conf);
992 
993 	switch (key->conf.cipher) {
994 	case WLAN_CIPHER_SUITE_TKIP:
995 		key->u.tkip.tx.iv32 = seq->tkip.iv32;
996 		key->u.tkip.tx.iv16 = seq->tkip.iv16;
997 		break;
998 	case WLAN_CIPHER_SUITE_CCMP:
999 	case WLAN_CIPHER_SUITE_CCMP_256:
1000 	case WLAN_CIPHER_SUITE_AES_CMAC:
1001 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1002 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1003 			     offsetof(typeof(*seq), aes_cmac));
1004 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1005 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1006 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1007 			     offsetof(typeof(*seq), aes_gmac));
1008 	case WLAN_CIPHER_SUITE_GCMP:
1009 	case WLAN_CIPHER_SUITE_GCMP_256:
1010 		BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1011 			     offsetof(typeof(*seq), gcmp));
1012 		pn64 = (u64)seq->ccmp.pn[5] |
1013 		       ((u64)seq->ccmp.pn[4] << 8) |
1014 		       ((u64)seq->ccmp.pn[3] << 16) |
1015 		       ((u64)seq->ccmp.pn[2] << 24) |
1016 		       ((u64)seq->ccmp.pn[1] << 32) |
1017 		       ((u64)seq->ccmp.pn[0] << 40);
1018 		atomic64_set(&key->conf.tx_pn, pn64);
1019 		break;
1020 	default:
1021 		WARN_ON(1);
1022 		break;
1023 	}
1024 }
1025 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
1026 
1027 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1028 			      int tid, struct ieee80211_key_seq *seq)
1029 {
1030 	struct ieee80211_key *key;
1031 	u8 *pn;
1032 
1033 	key = container_of(keyconf, struct ieee80211_key, conf);
1034 
1035 	switch (key->conf.cipher) {
1036 	case WLAN_CIPHER_SUITE_TKIP:
1037 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1038 			return;
1039 		key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1040 		key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1041 		break;
1042 	case WLAN_CIPHER_SUITE_CCMP:
1043 	case WLAN_CIPHER_SUITE_CCMP_256:
1044 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1045 			return;
1046 		if (tid < 0)
1047 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1048 		else
1049 			pn = key->u.ccmp.rx_pn[tid];
1050 		memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1051 		break;
1052 	case WLAN_CIPHER_SUITE_AES_CMAC:
1053 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1054 		if (WARN_ON(tid != 0))
1055 			return;
1056 		pn = key->u.aes_cmac.rx_pn;
1057 		memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1058 		break;
1059 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1060 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1061 		if (WARN_ON(tid != 0))
1062 			return;
1063 		pn = key->u.aes_gmac.rx_pn;
1064 		memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1065 		break;
1066 	case WLAN_CIPHER_SUITE_GCMP:
1067 	case WLAN_CIPHER_SUITE_GCMP_256:
1068 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1069 			return;
1070 		if (tid < 0)
1071 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1072 		else
1073 			pn = key->u.gcmp.rx_pn[tid];
1074 		memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1075 		break;
1076 	default:
1077 		WARN_ON(1);
1078 		break;
1079 	}
1080 }
1081 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1082 
1083 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1084 {
1085 	struct ieee80211_key *key;
1086 
1087 	key = container_of(keyconf, struct ieee80211_key, conf);
1088 
1089 	assert_key_lock(key->local);
1090 
1091 	/*
1092 	 * if key was uploaded, we assume the driver will/has remove(d)
1093 	 * it, so adjust bookkeeping accordingly
1094 	 */
1095 	if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1096 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1097 
1098 		if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1099 		      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1100 			increment_tailroom_need_count(key->sdata);
1101 	}
1102 
1103 	ieee80211_key_free(key, false);
1104 }
1105 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1106 
1107 struct ieee80211_key_conf *
1108 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1109 			struct ieee80211_key_conf *keyconf)
1110 {
1111 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1112 	struct ieee80211_local *local = sdata->local;
1113 	struct ieee80211_key *key;
1114 	int err;
1115 
1116 	if (WARN_ON(!local->wowlan))
1117 		return ERR_PTR(-EINVAL);
1118 
1119 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1120 		return ERR_PTR(-EINVAL);
1121 
1122 	key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1123 				  keyconf->keylen, keyconf->key,
1124 				  0, NULL, NULL);
1125 	if (IS_ERR(key))
1126 		return ERR_CAST(key);
1127 
1128 	if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1129 		key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1130 
1131 	err = ieee80211_key_link(key, sdata, NULL);
1132 	if (err)
1133 		return ERR_PTR(err);
1134 
1135 	return &key->conf;
1136 }
1137 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
1138