1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/if_ether.h> 13 #include <linux/etherdevice.h> 14 #include <linux/list.h> 15 #include <linux/rcupdate.h> 16 #include <linux/rtnetlink.h> 17 #include <linux/slab.h> 18 #include <linux/export.h> 19 #include <net/mac80211.h> 20 #include <asm/unaligned.h> 21 #include "ieee80211_i.h" 22 #include "driver-ops.h" 23 #include "debugfs_key.h" 24 #include "aes_ccm.h" 25 #include "aes_cmac.h" 26 27 28 /** 29 * DOC: Key handling basics 30 * 31 * Key handling in mac80211 is done based on per-interface (sub_if_data) 32 * keys and per-station keys. Since each station belongs to an interface, 33 * each station key also belongs to that interface. 34 * 35 * Hardware acceleration is done on a best-effort basis for algorithms 36 * that are implemented in software, for each key the hardware is asked 37 * to enable that key for offloading but if it cannot do that the key is 38 * simply kept for software encryption (unless it is for an algorithm 39 * that isn't implemented in software). 40 * There is currently no way of knowing whether a key is handled in SW 41 * or HW except by looking into debugfs. 42 * 43 * All key management is internally protected by a mutex. Within all 44 * other parts of mac80211, key references are, just as STA structure 45 * references, protected by RCU. Note, however, that some things are 46 * unprotected, namely the key->sta dereferences within the hardware 47 * acceleration functions. This means that sta_info_destroy() must 48 * remove the key which waits for an RCU grace period. 49 */ 50 51 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 52 53 static void assert_key_lock(struct ieee80211_local *local) 54 { 55 lockdep_assert_held(&local->key_mtx); 56 } 57 58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata) 59 { 60 /* 61 * When this count is zero, SKB resizing for allocating tailroom 62 * for IV or MMIC is skipped. But, this check has created two race 63 * cases in xmit path while transiting from zero count to one: 64 * 65 * 1. SKB resize was skipped because no key was added but just before 66 * the xmit key is added and SW encryption kicks off. 67 * 68 * 2. SKB resize was skipped because all the keys were hw planted but 69 * just before xmit one of the key is deleted and SW encryption kicks 70 * off. 71 * 72 * In both the above case SW encryption will find not enough space for 73 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c) 74 * 75 * Solution has been explained at 76 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net 77 */ 78 79 if (!sdata->crypto_tx_tailroom_needed_cnt++) { 80 /* 81 * Flush all XMIT packets currently using HW encryption or no 82 * encryption at all if the count transition is from 0 -> 1. 83 */ 84 synchronize_net(); 85 } 86 } 87 88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key) 89 { 90 struct ieee80211_sub_if_data *sdata; 91 struct sta_info *sta; 92 int ret; 93 94 might_sleep(); 95 96 if (key->flags & KEY_FLAG_TAINTED) 97 return -EINVAL; 98 99 if (!key->local->ops->set_key) 100 goto out_unsupported; 101 102 assert_key_lock(key->local); 103 104 sta = key->sta; 105 106 /* 107 * If this is a per-STA GTK, check if it 108 * is supported; if not, return. 109 */ 110 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) && 111 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK)) 112 goto out_unsupported; 113 114 if (sta && !sta->uploaded) 115 goto out_unsupported; 116 117 sdata = key->sdata; 118 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 119 /* 120 * The driver doesn't know anything about VLAN interfaces. 121 * Hence, don't send GTKs for VLAN interfaces to the driver. 122 */ 123 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) 124 goto out_unsupported; 125 } 126 127 ret = drv_set_key(key->local, SET_KEY, sdata, 128 sta ? &sta->sta : NULL, &key->conf); 129 130 if (!ret) { 131 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE; 132 133 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || 134 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) || 135 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))) 136 sdata->crypto_tx_tailroom_needed_cnt--; 137 138 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) && 139 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)); 140 141 return 0; 142 } 143 144 if (ret != -ENOSPC && ret != -EOPNOTSUPP) 145 sdata_err(sdata, 146 "failed to set key (%d, %pM) to hardware (%d)\n", 147 key->conf.keyidx, 148 sta ? sta->sta.addr : bcast_addr, ret); 149 150 out_unsupported: 151 switch (key->conf.cipher) { 152 case WLAN_CIPHER_SUITE_WEP40: 153 case WLAN_CIPHER_SUITE_WEP104: 154 case WLAN_CIPHER_SUITE_TKIP: 155 case WLAN_CIPHER_SUITE_CCMP: 156 case WLAN_CIPHER_SUITE_AES_CMAC: 157 /* all of these we can do in software */ 158 return 0; 159 default: 160 return -EINVAL; 161 } 162 } 163 164 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key) 165 { 166 struct ieee80211_sub_if_data *sdata; 167 struct sta_info *sta; 168 int ret; 169 170 might_sleep(); 171 172 if (!key || !key->local->ops->set_key) 173 return; 174 175 assert_key_lock(key->local); 176 177 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 178 return; 179 180 sta = key->sta; 181 sdata = key->sdata; 182 183 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || 184 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) || 185 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))) 186 increment_tailroom_need_count(sdata); 187 188 ret = drv_set_key(key->local, DISABLE_KEY, sdata, 189 sta ? &sta->sta : NULL, &key->conf); 190 191 if (ret) 192 sdata_err(sdata, 193 "failed to remove key (%d, %pM) from hardware (%d)\n", 194 key->conf.keyidx, 195 sta ? sta->sta.addr : bcast_addr, ret); 196 197 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 198 } 199 200 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, 201 int idx, bool uni, bool multi) 202 { 203 struct ieee80211_key *key = NULL; 204 205 assert_key_lock(sdata->local); 206 207 if (idx >= 0 && idx < NUM_DEFAULT_KEYS) 208 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 209 210 if (uni) { 211 rcu_assign_pointer(sdata->default_unicast_key, key); 212 drv_set_default_unicast_key(sdata->local, sdata, idx); 213 } 214 215 if (multi) 216 rcu_assign_pointer(sdata->default_multicast_key, key); 217 218 ieee80211_debugfs_key_update_default(sdata); 219 } 220 221 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx, 222 bool uni, bool multi) 223 { 224 mutex_lock(&sdata->local->key_mtx); 225 __ieee80211_set_default_key(sdata, idx, uni, multi); 226 mutex_unlock(&sdata->local->key_mtx); 227 } 228 229 static void 230 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx) 231 { 232 struct ieee80211_key *key = NULL; 233 234 assert_key_lock(sdata->local); 235 236 if (idx >= NUM_DEFAULT_KEYS && 237 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 238 key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 239 240 rcu_assign_pointer(sdata->default_mgmt_key, key); 241 242 ieee80211_debugfs_key_update_default(sdata); 243 } 244 245 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, 246 int idx) 247 { 248 mutex_lock(&sdata->local->key_mtx); 249 __ieee80211_set_default_mgmt_key(sdata, idx); 250 mutex_unlock(&sdata->local->key_mtx); 251 } 252 253 254 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata, 255 struct sta_info *sta, 256 bool pairwise, 257 struct ieee80211_key *old, 258 struct ieee80211_key *new) 259 { 260 int idx; 261 bool defunikey, defmultikey, defmgmtkey; 262 263 /* caller must provide at least one old/new */ 264 if (WARN_ON(!new && !old)) 265 return; 266 267 if (new) 268 list_add_tail(&new->list, &sdata->key_list); 269 270 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx); 271 272 if (old) 273 idx = old->conf.keyidx; 274 else 275 idx = new->conf.keyidx; 276 277 if (sta) { 278 if (pairwise) { 279 rcu_assign_pointer(sta->ptk[idx], new); 280 sta->ptk_idx = idx; 281 } else { 282 rcu_assign_pointer(sta->gtk[idx], new); 283 sta->gtk_idx = idx; 284 } 285 } else { 286 defunikey = old && 287 old == key_mtx_dereference(sdata->local, 288 sdata->default_unicast_key); 289 defmultikey = old && 290 old == key_mtx_dereference(sdata->local, 291 sdata->default_multicast_key); 292 defmgmtkey = old && 293 old == key_mtx_dereference(sdata->local, 294 sdata->default_mgmt_key); 295 296 if (defunikey && !new) 297 __ieee80211_set_default_key(sdata, -1, true, false); 298 if (defmultikey && !new) 299 __ieee80211_set_default_key(sdata, -1, false, true); 300 if (defmgmtkey && !new) 301 __ieee80211_set_default_mgmt_key(sdata, -1); 302 303 rcu_assign_pointer(sdata->keys[idx], new); 304 if (defunikey && new) 305 __ieee80211_set_default_key(sdata, new->conf.keyidx, 306 true, false); 307 if (defmultikey && new) 308 __ieee80211_set_default_key(sdata, new->conf.keyidx, 309 false, true); 310 if (defmgmtkey && new) 311 __ieee80211_set_default_mgmt_key(sdata, 312 new->conf.keyidx); 313 } 314 315 if (old) 316 list_del(&old->list); 317 } 318 319 struct ieee80211_key * 320 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len, 321 const u8 *key_data, 322 size_t seq_len, const u8 *seq, 323 const struct ieee80211_cipher_scheme *cs) 324 { 325 struct ieee80211_key *key; 326 int i, j, err; 327 328 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)) 329 return ERR_PTR(-EINVAL); 330 331 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL); 332 if (!key) 333 return ERR_PTR(-ENOMEM); 334 335 /* 336 * Default to software encryption; we'll later upload the 337 * key to the hardware if possible. 338 */ 339 key->conf.flags = 0; 340 key->flags = 0; 341 342 key->conf.cipher = cipher; 343 key->conf.keyidx = idx; 344 key->conf.keylen = key_len; 345 switch (cipher) { 346 case WLAN_CIPHER_SUITE_WEP40: 347 case WLAN_CIPHER_SUITE_WEP104: 348 key->conf.iv_len = IEEE80211_WEP_IV_LEN; 349 key->conf.icv_len = IEEE80211_WEP_ICV_LEN; 350 break; 351 case WLAN_CIPHER_SUITE_TKIP: 352 key->conf.iv_len = IEEE80211_TKIP_IV_LEN; 353 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN; 354 if (seq) { 355 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 356 key->u.tkip.rx[i].iv32 = 357 get_unaligned_le32(&seq[2]); 358 key->u.tkip.rx[i].iv16 = 359 get_unaligned_le16(seq); 360 } 361 } 362 spin_lock_init(&key->u.tkip.txlock); 363 break; 364 case WLAN_CIPHER_SUITE_CCMP: 365 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN; 366 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN; 367 if (seq) { 368 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 369 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++) 370 key->u.ccmp.rx_pn[i][j] = 371 seq[IEEE80211_CCMP_PN_LEN - j - 1]; 372 } 373 /* 374 * Initialize AES key state here as an optimization so that 375 * it does not need to be initialized for every packet. 376 */ 377 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data); 378 if (IS_ERR(key->u.ccmp.tfm)) { 379 err = PTR_ERR(key->u.ccmp.tfm); 380 kfree(key); 381 return ERR_PTR(err); 382 } 383 break; 384 case WLAN_CIPHER_SUITE_AES_CMAC: 385 key->conf.iv_len = 0; 386 key->conf.icv_len = sizeof(struct ieee80211_mmie); 387 if (seq) 388 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++) 389 key->u.aes_cmac.rx_pn[j] = 390 seq[IEEE80211_CMAC_PN_LEN - j - 1]; 391 /* 392 * Initialize AES key state here as an optimization so that 393 * it does not need to be initialized for every packet. 394 */ 395 key->u.aes_cmac.tfm = 396 ieee80211_aes_cmac_key_setup(key_data); 397 if (IS_ERR(key->u.aes_cmac.tfm)) { 398 err = PTR_ERR(key->u.aes_cmac.tfm); 399 kfree(key); 400 return ERR_PTR(err); 401 } 402 break; 403 default: 404 if (cs) { 405 size_t len = (seq_len > MAX_PN_LEN) ? 406 MAX_PN_LEN : seq_len; 407 408 key->conf.iv_len = cs->hdr_len; 409 key->conf.icv_len = cs->mic_len; 410 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 411 for (j = 0; j < len; j++) 412 key->u.gen.rx_pn[i][j] = 413 seq[len - j - 1]; 414 } 415 } 416 memcpy(key->conf.key, key_data, key_len); 417 INIT_LIST_HEAD(&key->list); 418 419 return key; 420 } 421 422 static void ieee80211_key_free_common(struct ieee80211_key *key) 423 { 424 if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP) 425 ieee80211_aes_key_free(key->u.ccmp.tfm); 426 if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC) 427 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm); 428 kfree(key); 429 } 430 431 static void __ieee80211_key_destroy(struct ieee80211_key *key, 432 bool delay_tailroom) 433 { 434 if (key->local) 435 ieee80211_key_disable_hw_accel(key); 436 437 if (key->local) { 438 struct ieee80211_sub_if_data *sdata = key->sdata; 439 440 ieee80211_debugfs_key_remove(key); 441 442 if (delay_tailroom) { 443 /* see ieee80211_delayed_tailroom_dec */ 444 sdata->crypto_tx_tailroom_pending_dec++; 445 schedule_delayed_work(&sdata->dec_tailroom_needed_wk, 446 HZ/2); 447 } else { 448 sdata->crypto_tx_tailroom_needed_cnt--; 449 } 450 } 451 452 ieee80211_key_free_common(key); 453 } 454 455 static void ieee80211_key_destroy(struct ieee80211_key *key, 456 bool delay_tailroom) 457 { 458 if (!key) 459 return; 460 461 /* 462 * Synchronize so the TX path can no longer be using 463 * this key before we free/remove it. 464 */ 465 synchronize_net(); 466 467 __ieee80211_key_destroy(key, delay_tailroom); 468 } 469 470 void ieee80211_key_free_unused(struct ieee80211_key *key) 471 { 472 WARN_ON(key->sdata || key->local); 473 ieee80211_key_free_common(key); 474 } 475 476 int ieee80211_key_link(struct ieee80211_key *key, 477 struct ieee80211_sub_if_data *sdata, 478 struct sta_info *sta) 479 { 480 struct ieee80211_local *local = sdata->local; 481 struct ieee80211_key *old_key; 482 int idx, ret; 483 bool pairwise; 484 485 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE; 486 idx = key->conf.keyidx; 487 key->local = sdata->local; 488 key->sdata = sdata; 489 key->sta = sta; 490 491 mutex_lock(&sdata->local->key_mtx); 492 493 if (sta && pairwise) 494 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]); 495 else if (sta) 496 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]); 497 else 498 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]); 499 500 increment_tailroom_need_count(sdata); 501 502 ieee80211_key_replace(sdata, sta, pairwise, old_key, key); 503 ieee80211_key_destroy(old_key, true); 504 505 ieee80211_debugfs_key_add(key); 506 507 if (!local->wowlan) { 508 ret = ieee80211_key_enable_hw_accel(key); 509 if (ret) 510 ieee80211_key_free(key, true); 511 } else { 512 ret = 0; 513 } 514 515 mutex_unlock(&sdata->local->key_mtx); 516 517 return ret; 518 } 519 520 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom) 521 { 522 if (!key) 523 return; 524 525 /* 526 * Replace key with nothingness if it was ever used. 527 */ 528 if (key->sdata) 529 ieee80211_key_replace(key->sdata, key->sta, 530 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 531 key, NULL); 532 ieee80211_key_destroy(key, delay_tailroom); 533 } 534 535 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata) 536 { 537 struct ieee80211_key *key; 538 539 ASSERT_RTNL(); 540 541 if (WARN_ON(!ieee80211_sdata_running(sdata))) 542 return; 543 544 mutex_lock(&sdata->local->key_mtx); 545 546 sdata->crypto_tx_tailroom_needed_cnt = 0; 547 548 list_for_each_entry(key, &sdata->key_list, list) { 549 increment_tailroom_need_count(sdata); 550 ieee80211_key_enable_hw_accel(key); 551 } 552 553 mutex_unlock(&sdata->local->key_mtx); 554 } 555 556 void ieee80211_iter_keys(struct ieee80211_hw *hw, 557 struct ieee80211_vif *vif, 558 void (*iter)(struct ieee80211_hw *hw, 559 struct ieee80211_vif *vif, 560 struct ieee80211_sta *sta, 561 struct ieee80211_key_conf *key, 562 void *data), 563 void *iter_data) 564 { 565 struct ieee80211_local *local = hw_to_local(hw); 566 struct ieee80211_key *key, *tmp; 567 struct ieee80211_sub_if_data *sdata; 568 569 ASSERT_RTNL(); 570 571 mutex_lock(&local->key_mtx); 572 if (vif) { 573 sdata = vif_to_sdata(vif); 574 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) 575 iter(hw, &sdata->vif, 576 key->sta ? &key->sta->sta : NULL, 577 &key->conf, iter_data); 578 } else { 579 list_for_each_entry(sdata, &local->interfaces, list) 580 list_for_each_entry_safe(key, tmp, 581 &sdata->key_list, list) 582 iter(hw, &sdata->vif, 583 key->sta ? &key->sta->sta : NULL, 584 &key->conf, iter_data); 585 } 586 mutex_unlock(&local->key_mtx); 587 } 588 EXPORT_SYMBOL(ieee80211_iter_keys); 589 590 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata, 591 struct list_head *keys) 592 { 593 struct ieee80211_key *key, *tmp; 594 595 sdata->crypto_tx_tailroom_needed_cnt -= 596 sdata->crypto_tx_tailroom_pending_dec; 597 sdata->crypto_tx_tailroom_pending_dec = 0; 598 599 ieee80211_debugfs_key_remove_mgmt_default(sdata); 600 601 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) { 602 ieee80211_key_replace(key->sdata, key->sta, 603 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 604 key, NULL); 605 list_add_tail(&key->list, keys); 606 } 607 608 ieee80211_debugfs_key_update_default(sdata); 609 } 610 611 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata, 612 bool force_synchronize) 613 { 614 struct ieee80211_local *local = sdata->local; 615 struct ieee80211_sub_if_data *vlan; 616 struct ieee80211_key *key, *tmp; 617 LIST_HEAD(keys); 618 619 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk); 620 621 mutex_lock(&local->key_mtx); 622 623 ieee80211_free_keys_iface(sdata, &keys); 624 625 if (sdata->vif.type == NL80211_IFTYPE_AP) { 626 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 627 ieee80211_free_keys_iface(vlan, &keys); 628 } 629 630 if (!list_empty(&keys) || force_synchronize) 631 synchronize_net(); 632 list_for_each_entry_safe(key, tmp, &keys, list) 633 __ieee80211_key_destroy(key, false); 634 635 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt || 636 sdata->crypto_tx_tailroom_pending_dec); 637 if (sdata->vif.type == NL80211_IFTYPE_AP) { 638 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) 639 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt || 640 vlan->crypto_tx_tailroom_pending_dec); 641 } 642 643 mutex_unlock(&local->key_mtx); 644 } 645 646 void ieee80211_free_sta_keys(struct ieee80211_local *local, 647 struct sta_info *sta) 648 { 649 struct ieee80211_key *key; 650 int i; 651 652 mutex_lock(&local->key_mtx); 653 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 654 key = key_mtx_dereference(local, sta->gtk[i]); 655 if (!key) 656 continue; 657 ieee80211_key_replace(key->sdata, key->sta, 658 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 659 key, NULL); 660 __ieee80211_key_destroy(key, true); 661 } 662 663 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 664 key = key_mtx_dereference(local, sta->ptk[i]); 665 if (!key) 666 continue; 667 ieee80211_key_replace(key->sdata, key->sta, 668 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE, 669 key, NULL); 670 __ieee80211_key_destroy(key, true); 671 } 672 673 mutex_unlock(&local->key_mtx); 674 } 675 676 void ieee80211_delayed_tailroom_dec(struct work_struct *wk) 677 { 678 struct ieee80211_sub_if_data *sdata; 679 680 sdata = container_of(wk, struct ieee80211_sub_if_data, 681 dec_tailroom_needed_wk.work); 682 683 /* 684 * The reason for the delayed tailroom needed decrementing is to 685 * make roaming faster: during roaming, all keys are first deleted 686 * and then new keys are installed. The first new key causes the 687 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes 688 * the cost of synchronize_net() (which can be slow). Avoid this 689 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on 690 * key removal for a while, so if we roam the value is larger than 691 * zero and no 0->1 transition happens. 692 * 693 * The cost is that if the AP switching was from an AP with keys 694 * to one without, we still allocate tailroom while it would no 695 * longer be needed. However, in the typical (fast) roaming case 696 * within an ESS this usually won't happen. 697 */ 698 699 mutex_lock(&sdata->local->key_mtx); 700 sdata->crypto_tx_tailroom_needed_cnt -= 701 sdata->crypto_tx_tailroom_pending_dec; 702 sdata->crypto_tx_tailroom_pending_dec = 0; 703 mutex_unlock(&sdata->local->key_mtx); 704 } 705 706 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid, 707 const u8 *replay_ctr, gfp_t gfp) 708 { 709 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 710 711 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr); 712 713 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp); 714 } 715 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify); 716 717 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf, 718 struct ieee80211_key_seq *seq) 719 { 720 struct ieee80211_key *key; 721 u64 pn64; 722 723 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV))) 724 return; 725 726 key = container_of(keyconf, struct ieee80211_key, conf); 727 728 switch (key->conf.cipher) { 729 case WLAN_CIPHER_SUITE_TKIP: 730 seq->tkip.iv32 = key->u.tkip.tx.iv32; 731 seq->tkip.iv16 = key->u.tkip.tx.iv16; 732 break; 733 case WLAN_CIPHER_SUITE_CCMP: 734 pn64 = atomic64_read(&key->u.ccmp.tx_pn); 735 seq->ccmp.pn[5] = pn64; 736 seq->ccmp.pn[4] = pn64 >> 8; 737 seq->ccmp.pn[3] = pn64 >> 16; 738 seq->ccmp.pn[2] = pn64 >> 24; 739 seq->ccmp.pn[1] = pn64 >> 32; 740 seq->ccmp.pn[0] = pn64 >> 40; 741 break; 742 case WLAN_CIPHER_SUITE_AES_CMAC: 743 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn); 744 seq->ccmp.pn[5] = pn64; 745 seq->ccmp.pn[4] = pn64 >> 8; 746 seq->ccmp.pn[3] = pn64 >> 16; 747 seq->ccmp.pn[2] = pn64 >> 24; 748 seq->ccmp.pn[1] = pn64 >> 32; 749 seq->ccmp.pn[0] = pn64 >> 40; 750 break; 751 default: 752 WARN_ON(1); 753 } 754 } 755 EXPORT_SYMBOL(ieee80211_get_key_tx_seq); 756 757 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf, 758 int tid, struct ieee80211_key_seq *seq) 759 { 760 struct ieee80211_key *key; 761 const u8 *pn; 762 763 key = container_of(keyconf, struct ieee80211_key, conf); 764 765 switch (key->conf.cipher) { 766 case WLAN_CIPHER_SUITE_TKIP: 767 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 768 return; 769 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32; 770 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16; 771 break; 772 case WLAN_CIPHER_SUITE_CCMP: 773 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 774 return; 775 if (tid < 0) 776 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 777 else 778 pn = key->u.ccmp.rx_pn[tid]; 779 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN); 780 break; 781 case WLAN_CIPHER_SUITE_AES_CMAC: 782 if (WARN_ON(tid != 0)) 783 return; 784 pn = key->u.aes_cmac.rx_pn; 785 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN); 786 break; 787 } 788 } 789 EXPORT_SYMBOL(ieee80211_get_key_rx_seq); 790 791 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf, 792 struct ieee80211_key_seq *seq) 793 { 794 struct ieee80211_key *key; 795 u64 pn64; 796 797 key = container_of(keyconf, struct ieee80211_key, conf); 798 799 switch (key->conf.cipher) { 800 case WLAN_CIPHER_SUITE_TKIP: 801 key->u.tkip.tx.iv32 = seq->tkip.iv32; 802 key->u.tkip.tx.iv16 = seq->tkip.iv16; 803 break; 804 case WLAN_CIPHER_SUITE_CCMP: 805 pn64 = (u64)seq->ccmp.pn[5] | 806 ((u64)seq->ccmp.pn[4] << 8) | 807 ((u64)seq->ccmp.pn[3] << 16) | 808 ((u64)seq->ccmp.pn[2] << 24) | 809 ((u64)seq->ccmp.pn[1] << 32) | 810 ((u64)seq->ccmp.pn[0] << 40); 811 atomic64_set(&key->u.ccmp.tx_pn, pn64); 812 break; 813 case WLAN_CIPHER_SUITE_AES_CMAC: 814 pn64 = (u64)seq->aes_cmac.pn[5] | 815 ((u64)seq->aes_cmac.pn[4] << 8) | 816 ((u64)seq->aes_cmac.pn[3] << 16) | 817 ((u64)seq->aes_cmac.pn[2] << 24) | 818 ((u64)seq->aes_cmac.pn[1] << 32) | 819 ((u64)seq->aes_cmac.pn[0] << 40); 820 atomic64_set(&key->u.aes_cmac.tx_pn, pn64); 821 break; 822 default: 823 WARN_ON(1); 824 break; 825 } 826 } 827 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq); 828 829 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf, 830 int tid, struct ieee80211_key_seq *seq) 831 { 832 struct ieee80211_key *key; 833 u8 *pn; 834 835 key = container_of(keyconf, struct ieee80211_key, conf); 836 837 switch (key->conf.cipher) { 838 case WLAN_CIPHER_SUITE_TKIP: 839 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS)) 840 return; 841 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32; 842 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16; 843 break; 844 case WLAN_CIPHER_SUITE_CCMP: 845 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS)) 846 return; 847 if (tid < 0) 848 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS]; 849 else 850 pn = key->u.ccmp.rx_pn[tid]; 851 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN); 852 break; 853 case WLAN_CIPHER_SUITE_AES_CMAC: 854 if (WARN_ON(tid != 0)) 855 return; 856 pn = key->u.aes_cmac.rx_pn; 857 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN); 858 break; 859 default: 860 WARN_ON(1); 861 break; 862 } 863 } 864 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq); 865 866 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf) 867 { 868 struct ieee80211_key *key; 869 870 key = container_of(keyconf, struct ieee80211_key, conf); 871 872 assert_key_lock(key->local); 873 874 /* 875 * if key was uploaded, we assume the driver will/has remove(d) 876 * it, so adjust bookkeeping accordingly 877 */ 878 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) { 879 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE; 880 881 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) || 882 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) || 883 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE))) 884 increment_tailroom_need_count(key->sdata); 885 } 886 887 ieee80211_key_free(key, false); 888 } 889 EXPORT_SYMBOL_GPL(ieee80211_remove_key); 890 891 struct ieee80211_key_conf * 892 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif, 893 struct ieee80211_key_conf *keyconf) 894 { 895 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 896 struct ieee80211_local *local = sdata->local; 897 struct ieee80211_key *key; 898 int err; 899 900 if (WARN_ON(!local->wowlan)) 901 return ERR_PTR(-EINVAL); 902 903 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 904 return ERR_PTR(-EINVAL); 905 906 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx, 907 keyconf->keylen, keyconf->key, 908 0, NULL, NULL); 909 if (IS_ERR(key)) 910 return ERR_CAST(key); 911 912 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED) 913 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT; 914 915 err = ieee80211_key_link(key, sdata, NULL); 916 if (err) 917 return ERR_PTR(err); 918 919 return &key->conf; 920 } 921 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add); 922