xref: /openbmc/linux/net/mac80211/key.c (revision 0013aceb)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2008	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2015-2017	Intel Deutschland GmbH
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/if_ether.h>
15 #include <linux/etherdevice.h>
16 #include <linux/list.h>
17 #include <linux/rcupdate.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <crypto/algapi.h>
23 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "debugfs_key.h"
27 #include "aes_ccm.h"
28 #include "aes_cmac.h"
29 #include "aes_gmac.h"
30 #include "aes_gcm.h"
31 
32 
33 /**
34  * DOC: Key handling basics
35  *
36  * Key handling in mac80211 is done based on per-interface (sub_if_data)
37  * keys and per-station keys. Since each station belongs to an interface,
38  * each station key also belongs to that interface.
39  *
40  * Hardware acceleration is done on a best-effort basis for algorithms
41  * that are implemented in software,  for each key the hardware is asked
42  * to enable that key for offloading but if it cannot do that the key is
43  * simply kept for software encryption (unless it is for an algorithm
44  * that isn't implemented in software).
45  * There is currently no way of knowing whether a key is handled in SW
46  * or HW except by looking into debugfs.
47  *
48  * All key management is internally protected by a mutex. Within all
49  * other parts of mac80211, key references are, just as STA structure
50  * references, protected by RCU. Note, however, that some things are
51  * unprotected, namely the key->sta dereferences within the hardware
52  * acceleration functions. This means that sta_info_destroy() must
53  * remove the key which waits for an RCU grace period.
54  */
55 
56 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
57 
58 static void assert_key_lock(struct ieee80211_local *local)
59 {
60 	lockdep_assert_held(&local->key_mtx);
61 }
62 
63 static void
64 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
65 {
66 	struct ieee80211_sub_if_data *vlan;
67 
68 	if (sdata->vif.type != NL80211_IFTYPE_AP)
69 		return;
70 
71 	/* crypto_tx_tailroom_needed_cnt is protected by this */
72 	assert_key_lock(sdata->local);
73 
74 	rcu_read_lock();
75 
76 	list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
77 		vlan->crypto_tx_tailroom_needed_cnt += delta;
78 
79 	rcu_read_unlock();
80 }
81 
82 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
83 {
84 	/*
85 	 * When this count is zero, SKB resizing for allocating tailroom
86 	 * for IV or MMIC is skipped. But, this check has created two race
87 	 * cases in xmit path while transiting from zero count to one:
88 	 *
89 	 * 1. SKB resize was skipped because no key was added but just before
90 	 * the xmit key is added and SW encryption kicks off.
91 	 *
92 	 * 2. SKB resize was skipped because all the keys were hw planted but
93 	 * just before xmit one of the key is deleted and SW encryption kicks
94 	 * off.
95 	 *
96 	 * In both the above case SW encryption will find not enough space for
97 	 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
98 	 *
99 	 * Solution has been explained at
100 	 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
101 	 */
102 
103 	assert_key_lock(sdata->local);
104 
105 	update_vlan_tailroom_need_count(sdata, 1);
106 
107 	if (!sdata->crypto_tx_tailroom_needed_cnt++) {
108 		/*
109 		 * Flush all XMIT packets currently using HW encryption or no
110 		 * encryption at all if the count transition is from 0 -> 1.
111 		 */
112 		synchronize_net();
113 	}
114 }
115 
116 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
117 					 int delta)
118 {
119 	assert_key_lock(sdata->local);
120 
121 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
122 
123 	update_vlan_tailroom_need_count(sdata, -delta);
124 	sdata->crypto_tx_tailroom_needed_cnt -= delta;
125 }
126 
127 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
128 {
129 	struct ieee80211_sub_if_data *sdata;
130 	struct sta_info *sta;
131 	int ret = -EOPNOTSUPP;
132 
133 	might_sleep();
134 
135 	if (key->flags & KEY_FLAG_TAINTED) {
136 		/* If we get here, it's during resume and the key is
137 		 * tainted so shouldn't be used/programmed any more.
138 		 * However, its flags may still indicate that it was
139 		 * programmed into the device (since we're in resume)
140 		 * so clear that flag now to avoid trying to remove
141 		 * it again later.
142 		 */
143 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
144 		return -EINVAL;
145 	}
146 
147 	if (!key->local->ops->set_key)
148 		goto out_unsupported;
149 
150 	assert_key_lock(key->local);
151 
152 	sta = key->sta;
153 
154 	/*
155 	 * If this is a per-STA GTK, check if it
156 	 * is supported; if not, return.
157 	 */
158 	if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
159 	    !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
160 		goto out_unsupported;
161 
162 	if (sta && !sta->uploaded)
163 		goto out_unsupported;
164 
165 	sdata = key->sdata;
166 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
167 		/*
168 		 * The driver doesn't know anything about VLAN interfaces.
169 		 * Hence, don't send GTKs for VLAN interfaces to the driver.
170 		 */
171 		if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
172 			goto out_unsupported;
173 	}
174 
175 	ret = drv_set_key(key->local, SET_KEY, sdata,
176 			  sta ? &sta->sta : NULL, &key->conf);
177 
178 	if (!ret) {
179 		key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
180 
181 		if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
182 		      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
183 			decrease_tailroom_need_count(sdata, 1);
184 
185 		WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
186 			(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
187 
188 		return 0;
189 	}
190 
191 	if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
192 		sdata_err(sdata,
193 			  "failed to set key (%d, %pM) to hardware (%d)\n",
194 			  key->conf.keyidx,
195 			  sta ? sta->sta.addr : bcast_addr, ret);
196 
197  out_unsupported:
198 	switch (key->conf.cipher) {
199 	case WLAN_CIPHER_SUITE_WEP40:
200 	case WLAN_CIPHER_SUITE_WEP104:
201 	case WLAN_CIPHER_SUITE_TKIP:
202 	case WLAN_CIPHER_SUITE_CCMP:
203 	case WLAN_CIPHER_SUITE_CCMP_256:
204 	case WLAN_CIPHER_SUITE_AES_CMAC:
205 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
206 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
207 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
208 	case WLAN_CIPHER_SUITE_GCMP:
209 	case WLAN_CIPHER_SUITE_GCMP_256:
210 		/* all of these we can do in software - if driver can */
211 		if (ret == 1)
212 			return 0;
213 		if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
214 			return -EINVAL;
215 		return 0;
216 	default:
217 		return -EINVAL;
218 	}
219 }
220 
221 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
222 {
223 	struct ieee80211_sub_if_data *sdata;
224 	struct sta_info *sta;
225 	int ret;
226 
227 	might_sleep();
228 
229 	if (!key || !key->local->ops->set_key)
230 		return;
231 
232 	assert_key_lock(key->local);
233 
234 	if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
235 		return;
236 
237 	sta = key->sta;
238 	sdata = key->sdata;
239 
240 	if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
241 	      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
242 		increment_tailroom_need_count(sdata);
243 
244 	ret = drv_set_key(key->local, DISABLE_KEY, sdata,
245 			  sta ? &sta->sta : NULL, &key->conf);
246 
247 	if (ret)
248 		sdata_err(sdata,
249 			  "failed to remove key (%d, %pM) from hardware (%d)\n",
250 			  key->conf.keyidx,
251 			  sta ? sta->sta.addr : bcast_addr, ret);
252 
253 	key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
254 }
255 
256 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
257 					int idx, bool uni, bool multi)
258 {
259 	struct ieee80211_key *key = NULL;
260 
261 	assert_key_lock(sdata->local);
262 
263 	if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
264 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
265 
266 	if (uni) {
267 		rcu_assign_pointer(sdata->default_unicast_key, key);
268 		ieee80211_check_fast_xmit_iface(sdata);
269 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
270 			drv_set_default_unicast_key(sdata->local, sdata, idx);
271 	}
272 
273 	if (multi)
274 		rcu_assign_pointer(sdata->default_multicast_key, key);
275 
276 	ieee80211_debugfs_key_update_default(sdata);
277 }
278 
279 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
280 			       bool uni, bool multi)
281 {
282 	mutex_lock(&sdata->local->key_mtx);
283 	__ieee80211_set_default_key(sdata, idx, uni, multi);
284 	mutex_unlock(&sdata->local->key_mtx);
285 }
286 
287 static void
288 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
289 {
290 	struct ieee80211_key *key = NULL;
291 
292 	assert_key_lock(sdata->local);
293 
294 	if (idx >= NUM_DEFAULT_KEYS &&
295 	    idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
296 		key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
297 
298 	rcu_assign_pointer(sdata->default_mgmt_key, key);
299 
300 	ieee80211_debugfs_key_update_default(sdata);
301 }
302 
303 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
304 				    int idx)
305 {
306 	mutex_lock(&sdata->local->key_mtx);
307 	__ieee80211_set_default_mgmt_key(sdata, idx);
308 	mutex_unlock(&sdata->local->key_mtx);
309 }
310 
311 
312 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
313 				  struct sta_info *sta,
314 				  bool pairwise,
315 				  struct ieee80211_key *old,
316 				  struct ieee80211_key *new)
317 {
318 	int idx;
319 	bool defunikey, defmultikey, defmgmtkey;
320 
321 	/* caller must provide at least one old/new */
322 	if (WARN_ON(!new && !old))
323 		return;
324 
325 	if (new)
326 		list_add_tail_rcu(&new->list, &sdata->key_list);
327 
328 	WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
329 
330 	if (old)
331 		idx = old->conf.keyidx;
332 	else
333 		idx = new->conf.keyidx;
334 
335 	if (sta) {
336 		if (pairwise) {
337 			rcu_assign_pointer(sta->ptk[idx], new);
338 			sta->ptk_idx = idx;
339 			ieee80211_check_fast_xmit(sta);
340 		} else {
341 			rcu_assign_pointer(sta->gtk[idx], new);
342 		}
343 		ieee80211_check_fast_rx(sta);
344 	} else {
345 		defunikey = old &&
346 			old == key_mtx_dereference(sdata->local,
347 						sdata->default_unicast_key);
348 		defmultikey = old &&
349 			old == key_mtx_dereference(sdata->local,
350 						sdata->default_multicast_key);
351 		defmgmtkey = old &&
352 			old == key_mtx_dereference(sdata->local,
353 						sdata->default_mgmt_key);
354 
355 		if (defunikey && !new)
356 			__ieee80211_set_default_key(sdata, -1, true, false);
357 		if (defmultikey && !new)
358 			__ieee80211_set_default_key(sdata, -1, false, true);
359 		if (defmgmtkey && !new)
360 			__ieee80211_set_default_mgmt_key(sdata, -1);
361 
362 		rcu_assign_pointer(sdata->keys[idx], new);
363 		if (defunikey && new)
364 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
365 						    true, false);
366 		if (defmultikey && new)
367 			__ieee80211_set_default_key(sdata, new->conf.keyidx,
368 						    false, true);
369 		if (defmgmtkey && new)
370 			__ieee80211_set_default_mgmt_key(sdata,
371 							 new->conf.keyidx);
372 	}
373 
374 	if (old)
375 		list_del_rcu(&old->list);
376 }
377 
378 struct ieee80211_key *
379 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
380 		    const u8 *key_data,
381 		    size_t seq_len, const u8 *seq,
382 		    const struct ieee80211_cipher_scheme *cs)
383 {
384 	struct ieee80211_key *key;
385 	int i, j, err;
386 
387 	if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
388 		return ERR_PTR(-EINVAL);
389 
390 	key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
391 	if (!key)
392 		return ERR_PTR(-ENOMEM);
393 
394 	/*
395 	 * Default to software encryption; we'll later upload the
396 	 * key to the hardware if possible.
397 	 */
398 	key->conf.flags = 0;
399 	key->flags = 0;
400 
401 	key->conf.cipher = cipher;
402 	key->conf.keyidx = idx;
403 	key->conf.keylen = key_len;
404 	switch (cipher) {
405 	case WLAN_CIPHER_SUITE_WEP40:
406 	case WLAN_CIPHER_SUITE_WEP104:
407 		key->conf.iv_len = IEEE80211_WEP_IV_LEN;
408 		key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
409 		break;
410 	case WLAN_CIPHER_SUITE_TKIP:
411 		key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
412 		key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
413 		if (seq) {
414 			for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
415 				key->u.tkip.rx[i].iv32 =
416 					get_unaligned_le32(&seq[2]);
417 				key->u.tkip.rx[i].iv16 =
418 					get_unaligned_le16(seq);
419 			}
420 		}
421 		spin_lock_init(&key->u.tkip.txlock);
422 		break;
423 	case WLAN_CIPHER_SUITE_CCMP:
424 		key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
425 		key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
426 		if (seq) {
427 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
428 				for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
429 					key->u.ccmp.rx_pn[i][j] =
430 						seq[IEEE80211_CCMP_PN_LEN - j - 1];
431 		}
432 		/*
433 		 * Initialize AES key state here as an optimization so that
434 		 * it does not need to be initialized for every packet.
435 		 */
436 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
437 			key_data, key_len, IEEE80211_CCMP_MIC_LEN);
438 		if (IS_ERR(key->u.ccmp.tfm)) {
439 			err = PTR_ERR(key->u.ccmp.tfm);
440 			kfree(key);
441 			return ERR_PTR(err);
442 		}
443 		break;
444 	case WLAN_CIPHER_SUITE_CCMP_256:
445 		key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
446 		key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
447 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
448 			for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
449 				key->u.ccmp.rx_pn[i][j] =
450 					seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
451 		/* Initialize AES key state here as an optimization so that
452 		 * it does not need to be initialized for every packet.
453 		 */
454 		key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
455 			key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
456 		if (IS_ERR(key->u.ccmp.tfm)) {
457 			err = PTR_ERR(key->u.ccmp.tfm);
458 			kfree(key);
459 			return ERR_PTR(err);
460 		}
461 		break;
462 	case WLAN_CIPHER_SUITE_AES_CMAC:
463 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
464 		key->conf.iv_len = 0;
465 		if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
466 			key->conf.icv_len = sizeof(struct ieee80211_mmie);
467 		else
468 			key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
469 		if (seq)
470 			for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
471 				key->u.aes_cmac.rx_pn[j] =
472 					seq[IEEE80211_CMAC_PN_LEN - j - 1];
473 		/*
474 		 * Initialize AES key state here as an optimization so that
475 		 * it does not need to be initialized for every packet.
476 		 */
477 		key->u.aes_cmac.tfm =
478 			ieee80211_aes_cmac_key_setup(key_data, key_len);
479 		if (IS_ERR(key->u.aes_cmac.tfm)) {
480 			err = PTR_ERR(key->u.aes_cmac.tfm);
481 			kfree(key);
482 			return ERR_PTR(err);
483 		}
484 		break;
485 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
486 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
487 		key->conf.iv_len = 0;
488 		key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
489 		if (seq)
490 			for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
491 				key->u.aes_gmac.rx_pn[j] =
492 					seq[IEEE80211_GMAC_PN_LEN - j - 1];
493 		/* Initialize AES key state here as an optimization so that
494 		 * it does not need to be initialized for every packet.
495 		 */
496 		key->u.aes_gmac.tfm =
497 			ieee80211_aes_gmac_key_setup(key_data, key_len);
498 		if (IS_ERR(key->u.aes_gmac.tfm)) {
499 			err = PTR_ERR(key->u.aes_gmac.tfm);
500 			kfree(key);
501 			return ERR_PTR(err);
502 		}
503 		break;
504 	case WLAN_CIPHER_SUITE_GCMP:
505 	case WLAN_CIPHER_SUITE_GCMP_256:
506 		key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
507 		key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
508 		for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
509 			for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
510 				key->u.gcmp.rx_pn[i][j] =
511 					seq[IEEE80211_GCMP_PN_LEN - j - 1];
512 		/* Initialize AES key state here as an optimization so that
513 		 * it does not need to be initialized for every packet.
514 		 */
515 		key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
516 								      key_len);
517 		if (IS_ERR(key->u.gcmp.tfm)) {
518 			err = PTR_ERR(key->u.gcmp.tfm);
519 			kfree(key);
520 			return ERR_PTR(err);
521 		}
522 		break;
523 	default:
524 		if (cs) {
525 			if (seq_len && seq_len != cs->pn_len) {
526 				kfree(key);
527 				return ERR_PTR(-EINVAL);
528 			}
529 
530 			key->conf.iv_len = cs->hdr_len;
531 			key->conf.icv_len = cs->mic_len;
532 			for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
533 				for (j = 0; j < seq_len; j++)
534 					key->u.gen.rx_pn[i][j] =
535 							seq[seq_len - j - 1];
536 			key->flags |= KEY_FLAG_CIPHER_SCHEME;
537 		}
538 	}
539 	memcpy(key->conf.key, key_data, key_len);
540 	INIT_LIST_HEAD(&key->list);
541 
542 	return key;
543 }
544 
545 static void ieee80211_key_free_common(struct ieee80211_key *key)
546 {
547 	switch (key->conf.cipher) {
548 	case WLAN_CIPHER_SUITE_CCMP:
549 	case WLAN_CIPHER_SUITE_CCMP_256:
550 		ieee80211_aes_key_free(key->u.ccmp.tfm);
551 		break;
552 	case WLAN_CIPHER_SUITE_AES_CMAC:
553 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
554 		ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
555 		break;
556 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
557 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
558 		ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
559 		break;
560 	case WLAN_CIPHER_SUITE_GCMP:
561 	case WLAN_CIPHER_SUITE_GCMP_256:
562 		ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
563 		break;
564 	}
565 	kzfree(key);
566 }
567 
568 static void __ieee80211_key_destroy(struct ieee80211_key *key,
569 				    bool delay_tailroom)
570 {
571 	if (key->local)
572 		ieee80211_key_disable_hw_accel(key);
573 
574 	if (key->local) {
575 		struct ieee80211_sub_if_data *sdata = key->sdata;
576 
577 		ieee80211_debugfs_key_remove(key);
578 
579 		if (delay_tailroom) {
580 			/* see ieee80211_delayed_tailroom_dec */
581 			sdata->crypto_tx_tailroom_pending_dec++;
582 			schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
583 					      HZ/2);
584 		} else {
585 			decrease_tailroom_need_count(sdata, 1);
586 		}
587 	}
588 
589 	ieee80211_key_free_common(key);
590 }
591 
592 static void ieee80211_key_destroy(struct ieee80211_key *key,
593 				  bool delay_tailroom)
594 {
595 	if (!key)
596 		return;
597 
598 	/*
599 	 * Synchronize so the TX path and rcu key iterators
600 	 * can no longer be using this key before we free/remove it.
601 	 */
602 	synchronize_net();
603 
604 	__ieee80211_key_destroy(key, delay_tailroom);
605 }
606 
607 void ieee80211_key_free_unused(struct ieee80211_key *key)
608 {
609 	WARN_ON(key->sdata || key->local);
610 	ieee80211_key_free_common(key);
611 }
612 
613 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
614 				    struct ieee80211_key *old,
615 				    struct ieee80211_key *new)
616 {
617 	u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
618 	u8 *tk_old, *tk_new;
619 
620 	if (!old || new->conf.keylen != old->conf.keylen)
621 		return false;
622 
623 	tk_old = old->conf.key;
624 	tk_new = new->conf.key;
625 
626 	/*
627 	 * In station mode, don't compare the TX MIC key, as it's never used
628 	 * and offloaded rekeying may not care to send it to the host. This
629 	 * is the case in iwlwifi, for example.
630 	 */
631 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
632 	    new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
633 	    new->conf.keylen == WLAN_KEY_LEN_TKIP &&
634 	    !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
635 		memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
636 		memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
637 		memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
638 		memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
639 		tk_old = tkip_old;
640 		tk_new = tkip_new;
641 	}
642 
643 	return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
644 }
645 
646 int ieee80211_key_link(struct ieee80211_key *key,
647 		       struct ieee80211_sub_if_data *sdata,
648 		       struct sta_info *sta)
649 {
650 	struct ieee80211_local *local = sdata->local;
651 	struct ieee80211_key *old_key;
652 	int idx, ret;
653 	bool pairwise;
654 
655 	pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
656 	idx = key->conf.keyidx;
657 
658 	mutex_lock(&sdata->local->key_mtx);
659 
660 	if (sta && pairwise)
661 		old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
662 	else if (sta)
663 		old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
664 	else
665 		old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
666 
667 	/*
668 	 * Silently accept key re-installation without really installing the
669 	 * new version of the key to avoid nonce reuse or replay issues.
670 	 */
671 	if (ieee80211_key_identical(sdata, old_key, key)) {
672 		ieee80211_key_free_unused(key);
673 		ret = 0;
674 		goto out;
675 	}
676 
677 	key->local = sdata->local;
678 	key->sdata = sdata;
679 	key->sta = sta;
680 
681 	increment_tailroom_need_count(sdata);
682 
683 	ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
684 	ieee80211_key_destroy(old_key, true);
685 
686 	ieee80211_debugfs_key_add(key);
687 
688 	if (!local->wowlan) {
689 		ret = ieee80211_key_enable_hw_accel(key);
690 		if (ret)
691 			ieee80211_key_free(key, true);
692 	} else {
693 		ret = 0;
694 	}
695 
696  out:
697 	mutex_unlock(&sdata->local->key_mtx);
698 
699 	return ret;
700 }
701 
702 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
703 {
704 	if (!key)
705 		return;
706 
707 	/*
708 	 * Replace key with nothingness if it was ever used.
709 	 */
710 	if (key->sdata)
711 		ieee80211_key_replace(key->sdata, key->sta,
712 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
713 				key, NULL);
714 	ieee80211_key_destroy(key, delay_tailroom);
715 }
716 
717 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
718 {
719 	struct ieee80211_key *key;
720 	struct ieee80211_sub_if_data *vlan;
721 
722 	ASSERT_RTNL();
723 
724 	if (WARN_ON(!ieee80211_sdata_running(sdata)))
725 		return;
726 
727 	mutex_lock(&sdata->local->key_mtx);
728 
729 	WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
730 		     sdata->crypto_tx_tailroom_pending_dec);
731 
732 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
733 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
734 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
735 				     vlan->crypto_tx_tailroom_pending_dec);
736 	}
737 
738 	list_for_each_entry(key, &sdata->key_list, list) {
739 		increment_tailroom_need_count(sdata);
740 		ieee80211_key_enable_hw_accel(key);
741 	}
742 
743 	mutex_unlock(&sdata->local->key_mtx);
744 }
745 
746 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
747 {
748 	struct ieee80211_sub_if_data *vlan;
749 
750 	mutex_lock(&sdata->local->key_mtx);
751 
752 	sdata->crypto_tx_tailroom_needed_cnt = 0;
753 
754 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
755 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
756 			vlan->crypto_tx_tailroom_needed_cnt = 0;
757 	}
758 
759 	mutex_unlock(&sdata->local->key_mtx);
760 }
761 
762 void ieee80211_iter_keys(struct ieee80211_hw *hw,
763 			 struct ieee80211_vif *vif,
764 			 void (*iter)(struct ieee80211_hw *hw,
765 				      struct ieee80211_vif *vif,
766 				      struct ieee80211_sta *sta,
767 				      struct ieee80211_key_conf *key,
768 				      void *data),
769 			 void *iter_data)
770 {
771 	struct ieee80211_local *local = hw_to_local(hw);
772 	struct ieee80211_key *key, *tmp;
773 	struct ieee80211_sub_if_data *sdata;
774 
775 	ASSERT_RTNL();
776 
777 	mutex_lock(&local->key_mtx);
778 	if (vif) {
779 		sdata = vif_to_sdata(vif);
780 		list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
781 			iter(hw, &sdata->vif,
782 			     key->sta ? &key->sta->sta : NULL,
783 			     &key->conf, iter_data);
784 	} else {
785 		list_for_each_entry(sdata, &local->interfaces, list)
786 			list_for_each_entry_safe(key, tmp,
787 						 &sdata->key_list, list)
788 				iter(hw, &sdata->vif,
789 				     key->sta ? &key->sta->sta : NULL,
790 				     &key->conf, iter_data);
791 	}
792 	mutex_unlock(&local->key_mtx);
793 }
794 EXPORT_SYMBOL(ieee80211_iter_keys);
795 
796 static void
797 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
798 			 struct ieee80211_sub_if_data *sdata,
799 			 void (*iter)(struct ieee80211_hw *hw,
800 				      struct ieee80211_vif *vif,
801 				      struct ieee80211_sta *sta,
802 				      struct ieee80211_key_conf *key,
803 				      void *data),
804 			 void *iter_data)
805 {
806 	struct ieee80211_key *key;
807 
808 	list_for_each_entry_rcu(key, &sdata->key_list, list) {
809 		/* skip keys of station in removal process */
810 		if (key->sta && key->sta->removed)
811 			continue;
812 		if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
813 			continue;
814 
815 		iter(hw, &sdata->vif,
816 		     key->sta ? &key->sta->sta : NULL,
817 		     &key->conf, iter_data);
818 	}
819 }
820 
821 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
822 			     struct ieee80211_vif *vif,
823 			     void (*iter)(struct ieee80211_hw *hw,
824 					  struct ieee80211_vif *vif,
825 					  struct ieee80211_sta *sta,
826 					  struct ieee80211_key_conf *key,
827 					  void *data),
828 			     void *iter_data)
829 {
830 	struct ieee80211_local *local = hw_to_local(hw);
831 	struct ieee80211_sub_if_data *sdata;
832 
833 	if (vif) {
834 		sdata = vif_to_sdata(vif);
835 		_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
836 	} else {
837 		list_for_each_entry_rcu(sdata, &local->interfaces, list)
838 			_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
839 	}
840 }
841 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
842 
843 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
844 				      struct list_head *keys)
845 {
846 	struct ieee80211_key *key, *tmp;
847 
848 	decrease_tailroom_need_count(sdata,
849 				     sdata->crypto_tx_tailroom_pending_dec);
850 	sdata->crypto_tx_tailroom_pending_dec = 0;
851 
852 	ieee80211_debugfs_key_remove_mgmt_default(sdata);
853 
854 	list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
855 		ieee80211_key_replace(key->sdata, key->sta,
856 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
857 				key, NULL);
858 		list_add_tail(&key->list, keys);
859 	}
860 
861 	ieee80211_debugfs_key_update_default(sdata);
862 }
863 
864 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
865 			 bool force_synchronize)
866 {
867 	struct ieee80211_local *local = sdata->local;
868 	struct ieee80211_sub_if_data *vlan;
869 	struct ieee80211_sub_if_data *master;
870 	struct ieee80211_key *key, *tmp;
871 	LIST_HEAD(keys);
872 
873 	cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
874 
875 	mutex_lock(&local->key_mtx);
876 
877 	ieee80211_free_keys_iface(sdata, &keys);
878 
879 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
880 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
881 			ieee80211_free_keys_iface(vlan, &keys);
882 	}
883 
884 	if (!list_empty(&keys) || force_synchronize)
885 		synchronize_net();
886 	list_for_each_entry_safe(key, tmp, &keys, list)
887 		__ieee80211_key_destroy(key, false);
888 
889 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
890 		if (sdata->bss) {
891 			master = container_of(sdata->bss,
892 					      struct ieee80211_sub_if_data,
893 					      u.ap);
894 
895 			WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
896 				     master->crypto_tx_tailroom_needed_cnt);
897 		}
898 	} else {
899 		WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
900 			     sdata->crypto_tx_tailroom_pending_dec);
901 	}
902 
903 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
904 		list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
905 			WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
906 				     vlan->crypto_tx_tailroom_pending_dec);
907 	}
908 
909 	mutex_unlock(&local->key_mtx);
910 }
911 
912 void ieee80211_free_sta_keys(struct ieee80211_local *local,
913 			     struct sta_info *sta)
914 {
915 	struct ieee80211_key *key;
916 	int i;
917 
918 	mutex_lock(&local->key_mtx);
919 	for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
920 		key = key_mtx_dereference(local, sta->gtk[i]);
921 		if (!key)
922 			continue;
923 		ieee80211_key_replace(key->sdata, key->sta,
924 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
925 				key, NULL);
926 		__ieee80211_key_destroy(key, true);
927 	}
928 
929 	for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
930 		key = key_mtx_dereference(local, sta->ptk[i]);
931 		if (!key)
932 			continue;
933 		ieee80211_key_replace(key->sdata, key->sta,
934 				key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
935 				key, NULL);
936 		__ieee80211_key_destroy(key, true);
937 	}
938 
939 	mutex_unlock(&local->key_mtx);
940 }
941 
942 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
943 {
944 	struct ieee80211_sub_if_data *sdata;
945 
946 	sdata = container_of(wk, struct ieee80211_sub_if_data,
947 			     dec_tailroom_needed_wk.work);
948 
949 	/*
950 	 * The reason for the delayed tailroom needed decrementing is to
951 	 * make roaming faster: during roaming, all keys are first deleted
952 	 * and then new keys are installed. The first new key causes the
953 	 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
954 	 * the cost of synchronize_net() (which can be slow). Avoid this
955 	 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
956 	 * key removal for a while, so if we roam the value is larger than
957 	 * zero and no 0->1 transition happens.
958 	 *
959 	 * The cost is that if the AP switching was from an AP with keys
960 	 * to one without, we still allocate tailroom while it would no
961 	 * longer be needed. However, in the typical (fast) roaming case
962 	 * within an ESS this usually won't happen.
963 	 */
964 
965 	mutex_lock(&sdata->local->key_mtx);
966 	decrease_tailroom_need_count(sdata,
967 				     sdata->crypto_tx_tailroom_pending_dec);
968 	sdata->crypto_tx_tailroom_pending_dec = 0;
969 	mutex_unlock(&sdata->local->key_mtx);
970 }
971 
972 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
973 				const u8 *replay_ctr, gfp_t gfp)
974 {
975 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
976 
977 	trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
978 
979 	cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
980 }
981 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
982 
983 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
984 			      int tid, struct ieee80211_key_seq *seq)
985 {
986 	struct ieee80211_key *key;
987 	const u8 *pn;
988 
989 	key = container_of(keyconf, struct ieee80211_key, conf);
990 
991 	switch (key->conf.cipher) {
992 	case WLAN_CIPHER_SUITE_TKIP:
993 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
994 			return;
995 		seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
996 		seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
997 		break;
998 	case WLAN_CIPHER_SUITE_CCMP:
999 	case WLAN_CIPHER_SUITE_CCMP_256:
1000 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1001 			return;
1002 		if (tid < 0)
1003 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1004 		else
1005 			pn = key->u.ccmp.rx_pn[tid];
1006 		memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
1007 		break;
1008 	case WLAN_CIPHER_SUITE_AES_CMAC:
1009 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1010 		if (WARN_ON(tid != 0))
1011 			return;
1012 		pn = key->u.aes_cmac.rx_pn;
1013 		memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
1014 		break;
1015 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1016 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1017 		if (WARN_ON(tid != 0))
1018 			return;
1019 		pn = key->u.aes_gmac.rx_pn;
1020 		memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
1021 		break;
1022 	case WLAN_CIPHER_SUITE_GCMP:
1023 	case WLAN_CIPHER_SUITE_GCMP_256:
1024 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1025 			return;
1026 		if (tid < 0)
1027 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1028 		else
1029 			pn = key->u.gcmp.rx_pn[tid];
1030 		memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
1031 		break;
1032 	}
1033 }
1034 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
1035 
1036 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1037 			      int tid, struct ieee80211_key_seq *seq)
1038 {
1039 	struct ieee80211_key *key;
1040 	u8 *pn;
1041 
1042 	key = container_of(keyconf, struct ieee80211_key, conf);
1043 
1044 	switch (key->conf.cipher) {
1045 	case WLAN_CIPHER_SUITE_TKIP:
1046 		if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1047 			return;
1048 		key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1049 		key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1050 		break;
1051 	case WLAN_CIPHER_SUITE_CCMP:
1052 	case WLAN_CIPHER_SUITE_CCMP_256:
1053 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1054 			return;
1055 		if (tid < 0)
1056 			pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1057 		else
1058 			pn = key->u.ccmp.rx_pn[tid];
1059 		memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1060 		break;
1061 	case WLAN_CIPHER_SUITE_AES_CMAC:
1062 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1063 		if (WARN_ON(tid != 0))
1064 			return;
1065 		pn = key->u.aes_cmac.rx_pn;
1066 		memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1067 		break;
1068 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1069 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1070 		if (WARN_ON(tid != 0))
1071 			return;
1072 		pn = key->u.aes_gmac.rx_pn;
1073 		memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1074 		break;
1075 	case WLAN_CIPHER_SUITE_GCMP:
1076 	case WLAN_CIPHER_SUITE_GCMP_256:
1077 		if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1078 			return;
1079 		if (tid < 0)
1080 			pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1081 		else
1082 			pn = key->u.gcmp.rx_pn[tid];
1083 		memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1084 		break;
1085 	default:
1086 		WARN_ON(1);
1087 		break;
1088 	}
1089 }
1090 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1091 
1092 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1093 {
1094 	struct ieee80211_key *key;
1095 
1096 	key = container_of(keyconf, struct ieee80211_key, conf);
1097 
1098 	assert_key_lock(key->local);
1099 
1100 	/*
1101 	 * if key was uploaded, we assume the driver will/has remove(d)
1102 	 * it, so adjust bookkeeping accordingly
1103 	 */
1104 	if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1105 		key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1106 
1107 		if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1108 		      (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1109 			increment_tailroom_need_count(key->sdata);
1110 	}
1111 
1112 	ieee80211_key_free(key, false);
1113 }
1114 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1115 
1116 struct ieee80211_key_conf *
1117 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1118 			struct ieee80211_key_conf *keyconf)
1119 {
1120 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1121 	struct ieee80211_local *local = sdata->local;
1122 	struct ieee80211_key *key;
1123 	int err;
1124 
1125 	if (WARN_ON(!local->wowlan))
1126 		return ERR_PTR(-EINVAL);
1127 
1128 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1129 		return ERR_PTR(-EINVAL);
1130 
1131 	key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1132 				  keyconf->keylen, keyconf->key,
1133 				  0, NULL, NULL);
1134 	if (IS_ERR(key))
1135 		return ERR_CAST(key);
1136 
1137 	if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1138 		key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1139 
1140 	err = ieee80211_key_link(key, sdata, NULL);
1141 	if (err)
1142 		return ERR_PTR(err);
1143 
1144 	return &key->conf;
1145 }
1146 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
1147