1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HT handling 4 * 5 * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi> 6 * Copyright 2002-2005, Instant802 Networks, Inc. 7 * Copyright 2005-2006, Devicescape Software, Inc. 8 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 9 * Copyright 2007, Michael Wu <flamingice@sourmilk.net> 10 * Copyright 2007-2010, Intel Corporation 11 * Copyright 2017 Intel Deutschland GmbH 12 * Copyright(c) 2020-2021 Intel Corporation 13 */ 14 15 #include <linux/ieee80211.h> 16 #include <linux/export.h> 17 #include <net/mac80211.h> 18 #include "ieee80211_i.h" 19 #include "rate.h" 20 21 static void __check_htcap_disable(struct ieee80211_ht_cap *ht_capa, 22 struct ieee80211_ht_cap *ht_capa_mask, 23 struct ieee80211_sta_ht_cap *ht_cap, 24 u16 flag) 25 { 26 __le16 le_flag = cpu_to_le16(flag); 27 if (ht_capa_mask->cap_info & le_flag) { 28 if (!(ht_capa->cap_info & le_flag)) 29 ht_cap->cap &= ~flag; 30 } 31 } 32 33 static void __check_htcap_enable(struct ieee80211_ht_cap *ht_capa, 34 struct ieee80211_ht_cap *ht_capa_mask, 35 struct ieee80211_sta_ht_cap *ht_cap, 36 u16 flag) 37 { 38 __le16 le_flag = cpu_to_le16(flag); 39 40 if ((ht_capa_mask->cap_info & le_flag) && 41 (ht_capa->cap_info & le_flag)) 42 ht_cap->cap |= flag; 43 } 44 45 void ieee80211_apply_htcap_overrides(struct ieee80211_sub_if_data *sdata, 46 struct ieee80211_sta_ht_cap *ht_cap) 47 { 48 struct ieee80211_ht_cap *ht_capa, *ht_capa_mask; 49 u8 *scaps, *smask; 50 int i; 51 52 if (!ht_cap->ht_supported) 53 return; 54 55 switch (sdata->vif.type) { 56 case NL80211_IFTYPE_STATION: 57 ht_capa = &sdata->u.mgd.ht_capa; 58 ht_capa_mask = &sdata->u.mgd.ht_capa_mask; 59 break; 60 case NL80211_IFTYPE_ADHOC: 61 ht_capa = &sdata->u.ibss.ht_capa; 62 ht_capa_mask = &sdata->u.ibss.ht_capa_mask; 63 break; 64 default: 65 WARN_ON_ONCE(1); 66 return; 67 } 68 69 scaps = (u8 *)(&ht_capa->mcs.rx_mask); 70 smask = (u8 *)(&ht_capa_mask->mcs.rx_mask); 71 72 /* NOTE: If you add more over-rides here, update register_hw 73 * ht_capa_mod_mask logic in main.c as well. 74 * And, if this method can ever change ht_cap.ht_supported, fix 75 * the check in ieee80211_add_ht_ie. 76 */ 77 78 /* check for HT over-rides, MCS rates first. */ 79 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { 80 u8 m = smask[i]; 81 ht_cap->mcs.rx_mask[i] &= ~m; /* turn off all masked bits */ 82 /* Add back rates that are supported */ 83 ht_cap->mcs.rx_mask[i] |= (m & scaps[i]); 84 } 85 86 /* Force removal of HT-40 capabilities? */ 87 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 88 IEEE80211_HT_CAP_SUP_WIDTH_20_40); 89 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 90 IEEE80211_HT_CAP_SGI_40); 91 92 /* Allow user to disable SGI-20 (SGI-40 is handled above) */ 93 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 94 IEEE80211_HT_CAP_SGI_20); 95 96 /* Allow user to disable the max-AMSDU bit. */ 97 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 98 IEEE80211_HT_CAP_MAX_AMSDU); 99 100 /* Allow user to disable LDPC */ 101 __check_htcap_disable(ht_capa, ht_capa_mask, ht_cap, 102 IEEE80211_HT_CAP_LDPC_CODING); 103 104 /* Allow user to enable 40 MHz intolerant bit. */ 105 __check_htcap_enable(ht_capa, ht_capa_mask, ht_cap, 106 IEEE80211_HT_CAP_40MHZ_INTOLERANT); 107 108 /* Allow user to enable TX STBC bit */ 109 __check_htcap_enable(ht_capa, ht_capa_mask, ht_cap, 110 IEEE80211_HT_CAP_TX_STBC); 111 112 /* Allow user to configure RX STBC bits */ 113 if (ht_capa_mask->cap_info & cpu_to_le16(IEEE80211_HT_CAP_RX_STBC)) 114 ht_cap->cap |= le16_to_cpu(ht_capa->cap_info) & 115 IEEE80211_HT_CAP_RX_STBC; 116 117 /* Allow user to decrease AMPDU factor */ 118 if (ht_capa_mask->ampdu_params_info & 119 IEEE80211_HT_AMPDU_PARM_FACTOR) { 120 u8 n = ht_capa->ampdu_params_info & 121 IEEE80211_HT_AMPDU_PARM_FACTOR; 122 if (n < ht_cap->ampdu_factor) 123 ht_cap->ampdu_factor = n; 124 } 125 126 /* Allow the user to increase AMPDU density. */ 127 if (ht_capa_mask->ampdu_params_info & 128 IEEE80211_HT_AMPDU_PARM_DENSITY) { 129 u8 n = (ht_capa->ampdu_params_info & 130 IEEE80211_HT_AMPDU_PARM_DENSITY) 131 >> IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT; 132 if (n > ht_cap->ampdu_density) 133 ht_cap->ampdu_density = n; 134 } 135 } 136 137 138 bool ieee80211_ht_cap_ie_to_sta_ht_cap(struct ieee80211_sub_if_data *sdata, 139 struct ieee80211_supported_band *sband, 140 const struct ieee80211_ht_cap *ht_cap_ie, 141 struct sta_info *sta) 142 { 143 struct ieee80211_sta_ht_cap ht_cap, own_cap; 144 u8 ampdu_info, tx_mcs_set_cap; 145 int i, max_tx_streams; 146 bool changed; 147 enum ieee80211_sta_rx_bandwidth bw; 148 149 memset(&ht_cap, 0, sizeof(ht_cap)); 150 151 if (!ht_cap_ie || !sband->ht_cap.ht_supported) 152 goto apply; 153 154 ht_cap.ht_supported = true; 155 156 own_cap = sband->ht_cap; 157 158 /* 159 * If user has specified capability over-rides, take care 160 * of that if the station we're setting up is the AP or TDLS peer that 161 * we advertised a restricted capability set to. Override 162 * our own capabilities and then use those below. 163 */ 164 if (sdata->vif.type == NL80211_IFTYPE_STATION || 165 sdata->vif.type == NL80211_IFTYPE_ADHOC) 166 ieee80211_apply_htcap_overrides(sdata, &own_cap); 167 168 /* 169 * The bits listed in this expression should be 170 * the same for the peer and us, if the station 171 * advertises more then we can't use those thus 172 * we mask them out. 173 */ 174 ht_cap.cap = le16_to_cpu(ht_cap_ie->cap_info) & 175 (own_cap.cap | ~(IEEE80211_HT_CAP_LDPC_CODING | 176 IEEE80211_HT_CAP_SUP_WIDTH_20_40 | 177 IEEE80211_HT_CAP_GRN_FLD | 178 IEEE80211_HT_CAP_SGI_20 | 179 IEEE80211_HT_CAP_SGI_40 | 180 IEEE80211_HT_CAP_DSSSCCK40)); 181 182 /* 183 * The STBC bits are asymmetric -- if we don't have 184 * TX then mask out the peer's RX and vice versa. 185 */ 186 if (!(own_cap.cap & IEEE80211_HT_CAP_TX_STBC)) 187 ht_cap.cap &= ~IEEE80211_HT_CAP_RX_STBC; 188 if (!(own_cap.cap & IEEE80211_HT_CAP_RX_STBC)) 189 ht_cap.cap &= ~IEEE80211_HT_CAP_TX_STBC; 190 191 ampdu_info = ht_cap_ie->ampdu_params_info; 192 ht_cap.ampdu_factor = 193 ampdu_info & IEEE80211_HT_AMPDU_PARM_FACTOR; 194 ht_cap.ampdu_density = 195 (ampdu_info & IEEE80211_HT_AMPDU_PARM_DENSITY) >> 2; 196 197 /* own MCS TX capabilities */ 198 tx_mcs_set_cap = own_cap.mcs.tx_params; 199 200 /* Copy peer MCS TX capabilities, the driver might need them. */ 201 ht_cap.mcs.tx_params = ht_cap_ie->mcs.tx_params; 202 203 /* can we TX with MCS rates? */ 204 if (!(tx_mcs_set_cap & IEEE80211_HT_MCS_TX_DEFINED)) 205 goto apply; 206 207 /* Counting from 0, therefore +1 */ 208 if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_RX_DIFF) 209 max_tx_streams = 210 ((tx_mcs_set_cap & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 211 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 212 else 213 max_tx_streams = IEEE80211_HT_MCS_TX_MAX_STREAMS; 214 215 /* 216 * 802.11n-2009 20.3.5 / 20.6 says: 217 * - indices 0 to 7 and 32 are single spatial stream 218 * - 8 to 31 are multiple spatial streams using equal modulation 219 * [8..15 for two streams, 16..23 for three and 24..31 for four] 220 * - remainder are multiple spatial streams using unequal modulation 221 */ 222 for (i = 0; i < max_tx_streams; i++) 223 ht_cap.mcs.rx_mask[i] = 224 own_cap.mcs.rx_mask[i] & ht_cap_ie->mcs.rx_mask[i]; 225 226 if (tx_mcs_set_cap & IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION) 227 for (i = IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE; 228 i < IEEE80211_HT_MCS_MASK_LEN; i++) 229 ht_cap.mcs.rx_mask[i] = 230 own_cap.mcs.rx_mask[i] & 231 ht_cap_ie->mcs.rx_mask[i]; 232 233 /* handle MCS rate 32 too */ 234 if (own_cap.mcs.rx_mask[32/8] & ht_cap_ie->mcs.rx_mask[32/8] & 1) 235 ht_cap.mcs.rx_mask[32/8] |= 1; 236 237 /* set Rx highest rate */ 238 ht_cap.mcs.rx_highest = ht_cap_ie->mcs.rx_highest; 239 240 if (ht_cap.cap & IEEE80211_HT_CAP_MAX_AMSDU) 241 sta->sta.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_7935; 242 else 243 sta->sta.max_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_3839; 244 245 apply: 246 changed = memcmp(&sta->sta.deflink.ht_cap, &ht_cap, sizeof(ht_cap)); 247 248 memcpy(&sta->sta.deflink.ht_cap, &ht_cap, sizeof(ht_cap)); 249 250 switch (sdata->vif.bss_conf.chandef.width) { 251 default: 252 WARN_ON_ONCE(1); 253 fallthrough; 254 case NL80211_CHAN_WIDTH_20_NOHT: 255 case NL80211_CHAN_WIDTH_20: 256 bw = IEEE80211_STA_RX_BW_20; 257 break; 258 case NL80211_CHAN_WIDTH_40: 259 case NL80211_CHAN_WIDTH_80: 260 case NL80211_CHAN_WIDTH_80P80: 261 case NL80211_CHAN_WIDTH_160: 262 bw = ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? 263 IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; 264 break; 265 } 266 267 sta->sta.deflink.bandwidth = bw; 268 269 sta->deflink.cur_max_bandwidth = 270 ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 ? 271 IEEE80211_STA_RX_BW_40 : IEEE80211_STA_RX_BW_20; 272 273 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 274 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 275 enum ieee80211_smps_mode smps_mode; 276 277 switch ((ht_cap.cap & IEEE80211_HT_CAP_SM_PS) 278 >> IEEE80211_HT_CAP_SM_PS_SHIFT) { 279 case WLAN_HT_CAP_SM_PS_INVALID: 280 case WLAN_HT_CAP_SM_PS_STATIC: 281 smps_mode = IEEE80211_SMPS_STATIC; 282 break; 283 case WLAN_HT_CAP_SM_PS_DYNAMIC: 284 smps_mode = IEEE80211_SMPS_DYNAMIC; 285 break; 286 case WLAN_HT_CAP_SM_PS_DISABLED: 287 smps_mode = IEEE80211_SMPS_OFF; 288 break; 289 } 290 291 if (smps_mode != sta->sta.smps_mode) 292 changed = true; 293 sta->sta.smps_mode = smps_mode; 294 } else { 295 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 296 } 297 return changed; 298 } 299 300 void ieee80211_sta_tear_down_BA_sessions(struct sta_info *sta, 301 enum ieee80211_agg_stop_reason reason) 302 { 303 int i; 304 305 mutex_lock(&sta->ampdu_mlme.mtx); 306 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 307 ___ieee80211_stop_rx_ba_session(sta, i, WLAN_BACK_RECIPIENT, 308 WLAN_REASON_QSTA_LEAVE_QBSS, 309 reason != AGG_STOP_DESTROY_STA && 310 reason != AGG_STOP_PEER_REQUEST); 311 312 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 313 ___ieee80211_stop_tx_ba_session(sta, i, reason); 314 mutex_unlock(&sta->ampdu_mlme.mtx); 315 316 /* 317 * In case the tear down is part of a reconfigure due to HW restart 318 * request, it is possible that the low level driver requested to stop 319 * the BA session, so handle it to properly clean tid_tx data. 320 */ 321 if(reason == AGG_STOP_DESTROY_STA) { 322 cancel_work_sync(&sta->ampdu_mlme.work); 323 324 mutex_lock(&sta->ampdu_mlme.mtx); 325 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 326 struct tid_ampdu_tx *tid_tx = 327 rcu_dereference_protected_tid_tx(sta, i); 328 329 if (!tid_tx) 330 continue; 331 332 if (test_and_clear_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state)) 333 ieee80211_stop_tx_ba_cb(sta, i, tid_tx); 334 } 335 mutex_unlock(&sta->ampdu_mlme.mtx); 336 } 337 } 338 339 void ieee80211_ba_session_work(struct work_struct *work) 340 { 341 struct sta_info *sta = 342 container_of(work, struct sta_info, ampdu_mlme.work); 343 struct tid_ampdu_tx *tid_tx; 344 bool blocked; 345 int tid; 346 347 /* When this flag is set, new sessions should be blocked. */ 348 blocked = test_sta_flag(sta, WLAN_STA_BLOCK_BA); 349 350 mutex_lock(&sta->ampdu_mlme.mtx); 351 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 352 if (test_and_clear_bit(tid, sta->ampdu_mlme.tid_rx_timer_expired)) 353 ___ieee80211_stop_rx_ba_session( 354 sta, tid, WLAN_BACK_RECIPIENT, 355 WLAN_REASON_QSTA_TIMEOUT, true); 356 357 if (test_and_clear_bit(tid, 358 sta->ampdu_mlme.tid_rx_stop_requested)) 359 ___ieee80211_stop_rx_ba_session( 360 sta, tid, WLAN_BACK_RECIPIENT, 361 WLAN_REASON_UNSPECIFIED, true); 362 363 if (!blocked && 364 test_and_clear_bit(tid, 365 sta->ampdu_mlme.tid_rx_manage_offl)) 366 ___ieee80211_start_rx_ba_session(sta, 0, 0, 0, 1, tid, 367 IEEE80211_MAX_AMPDU_BUF_HT, 368 false, true, NULL); 369 370 if (test_and_clear_bit(tid + IEEE80211_NUM_TIDS, 371 sta->ampdu_mlme.tid_rx_manage_offl)) 372 ___ieee80211_stop_rx_ba_session( 373 sta, tid, WLAN_BACK_RECIPIENT, 374 0, false); 375 376 spin_lock_bh(&sta->lock); 377 378 tid_tx = sta->ampdu_mlme.tid_start_tx[tid]; 379 if (!blocked && tid_tx) { 380 /* 381 * Assign it over to the normal tid_tx array 382 * where it "goes live". 383 */ 384 385 sta->ampdu_mlme.tid_start_tx[tid] = NULL; 386 /* could there be a race? */ 387 if (sta->ampdu_mlme.tid_tx[tid]) 388 kfree(tid_tx); 389 else 390 ieee80211_assign_tid_tx(sta, tid, tid_tx); 391 spin_unlock_bh(&sta->lock); 392 393 ieee80211_tx_ba_session_handle_start(sta, tid); 394 continue; 395 } 396 spin_unlock_bh(&sta->lock); 397 398 tid_tx = rcu_dereference_protected_tid_tx(sta, tid); 399 if (!tid_tx) 400 continue; 401 402 if (!blocked && 403 test_and_clear_bit(HT_AGG_STATE_START_CB, &tid_tx->state)) 404 ieee80211_start_tx_ba_cb(sta, tid, tid_tx); 405 if (test_and_clear_bit(HT_AGG_STATE_WANT_STOP, &tid_tx->state)) 406 ___ieee80211_stop_tx_ba_session(sta, tid, 407 AGG_STOP_LOCAL_REQUEST); 408 if (test_and_clear_bit(HT_AGG_STATE_STOP_CB, &tid_tx->state)) 409 ieee80211_stop_tx_ba_cb(sta, tid, tid_tx); 410 } 411 mutex_unlock(&sta->ampdu_mlme.mtx); 412 } 413 414 void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, 415 const u8 *da, u16 tid, 416 u16 initiator, u16 reason_code) 417 { 418 struct ieee80211_local *local = sdata->local; 419 struct sk_buff *skb; 420 struct ieee80211_mgmt *mgmt; 421 u16 params; 422 423 skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom); 424 if (!skb) 425 return; 426 427 skb_reserve(skb, local->hw.extra_tx_headroom); 428 mgmt = skb_put_zero(skb, 24); 429 memcpy(mgmt->da, da, ETH_ALEN); 430 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 431 if (sdata->vif.type == NL80211_IFTYPE_AP || 432 sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 433 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 434 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 435 else if (sdata->vif.type == NL80211_IFTYPE_STATION) 436 memcpy(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN); 437 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 438 memcpy(mgmt->bssid, sdata->u.ibss.bssid, ETH_ALEN); 439 440 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 441 IEEE80211_STYPE_ACTION); 442 443 skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba)); 444 445 mgmt->u.action.category = WLAN_CATEGORY_BACK; 446 mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA; 447 params = (u16)(initiator << 11); /* bit 11 initiator */ 448 params |= (u16)(tid << 12); /* bit 15:12 TID number */ 449 450 mgmt->u.action.u.delba.params = cpu_to_le16(params); 451 mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code); 452 453 ieee80211_tx_skb(sdata, skb); 454 } 455 456 void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata, 457 struct sta_info *sta, 458 struct ieee80211_mgmt *mgmt, size_t len) 459 { 460 u16 tid, params; 461 u16 initiator; 462 463 params = le16_to_cpu(mgmt->u.action.u.delba.params); 464 tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12; 465 initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11; 466 467 ht_dbg_ratelimited(sdata, "delba from %pM (%s) tid %d reason code %d\n", 468 mgmt->sa, initiator ? "initiator" : "recipient", 469 tid, 470 le16_to_cpu(mgmt->u.action.u.delba.reason_code)); 471 472 if (initiator == WLAN_BACK_INITIATOR) 473 __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_INITIATOR, 0, 474 true); 475 else 476 __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_PEER_REQUEST); 477 } 478 479 enum nl80211_smps_mode 480 ieee80211_smps_mode_to_smps_mode(enum ieee80211_smps_mode smps) 481 { 482 switch (smps) { 483 case IEEE80211_SMPS_OFF: 484 return NL80211_SMPS_OFF; 485 case IEEE80211_SMPS_STATIC: 486 return NL80211_SMPS_STATIC; 487 case IEEE80211_SMPS_DYNAMIC: 488 return NL80211_SMPS_DYNAMIC; 489 default: 490 return NL80211_SMPS_OFF; 491 } 492 } 493 494 int ieee80211_send_smps_action(struct ieee80211_sub_if_data *sdata, 495 enum ieee80211_smps_mode smps, const u8 *da, 496 const u8 *bssid) 497 { 498 struct ieee80211_local *local = sdata->local; 499 struct sk_buff *skb; 500 struct ieee80211_mgmt *action_frame; 501 502 /* 27 = header + category + action + smps mode */ 503 skb = dev_alloc_skb(27 + local->hw.extra_tx_headroom); 504 if (!skb) 505 return -ENOMEM; 506 507 skb_reserve(skb, local->hw.extra_tx_headroom); 508 action_frame = skb_put(skb, 27); 509 memcpy(action_frame->da, da, ETH_ALEN); 510 memcpy(action_frame->sa, sdata->dev->dev_addr, ETH_ALEN); 511 memcpy(action_frame->bssid, bssid, ETH_ALEN); 512 action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 513 IEEE80211_STYPE_ACTION); 514 action_frame->u.action.category = WLAN_CATEGORY_HT; 515 action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS; 516 switch (smps) { 517 case IEEE80211_SMPS_AUTOMATIC: 518 case IEEE80211_SMPS_NUM_MODES: 519 WARN_ON(1); 520 fallthrough; 521 case IEEE80211_SMPS_OFF: 522 action_frame->u.action.u.ht_smps.smps_control = 523 WLAN_HT_SMPS_CONTROL_DISABLED; 524 break; 525 case IEEE80211_SMPS_STATIC: 526 action_frame->u.action.u.ht_smps.smps_control = 527 WLAN_HT_SMPS_CONTROL_STATIC; 528 break; 529 case IEEE80211_SMPS_DYNAMIC: 530 action_frame->u.action.u.ht_smps.smps_control = 531 WLAN_HT_SMPS_CONTROL_DYNAMIC; 532 break; 533 } 534 535 /* we'll do more on status of this frame */ 536 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 537 ieee80211_tx_skb(sdata, skb); 538 539 return 0; 540 } 541 542 void ieee80211_request_smps_mgd_work(struct work_struct *work) 543 { 544 struct ieee80211_sub_if_data *sdata = 545 container_of(work, struct ieee80211_sub_if_data, 546 u.mgd.request_smps_work); 547 548 sdata_lock(sdata); 549 __ieee80211_request_smps_mgd(sdata, sdata->u.mgd.driver_smps_mode); 550 sdata_unlock(sdata); 551 } 552 553 void ieee80211_request_smps(struct ieee80211_vif *vif, 554 enum ieee80211_smps_mode smps_mode) 555 { 556 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 557 558 if (WARN_ON_ONCE(vif->type != NL80211_IFTYPE_STATION)) 559 return; 560 561 if (sdata->u.mgd.driver_smps_mode == smps_mode) 562 return; 563 564 sdata->u.mgd.driver_smps_mode = smps_mode; 565 ieee80211_queue_work(&sdata->local->hw, 566 &sdata->u.mgd.request_smps_work); 567 } 568 /* this might change ... don't want non-open drivers using it */ 569 EXPORT_SYMBOL_GPL(ieee80211_request_smps); 570