1 /* 2 * net/key/af_key.c An implementation of PF_KEYv2 sockets. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Maxim Giryaev <gem@asplinux.ru> 10 * David S. Miller <davem@redhat.com> 11 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 12 * Kunihiro Ishiguro <kunihiro@ipinfusion.com> 13 * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org> 14 * Derek Atkins <derek@ihtfp.com> 15 */ 16 17 #include <linux/capability.h> 18 #include <linux/module.h> 19 #include <linux/kernel.h> 20 #include <linux/socket.h> 21 #include <linux/pfkeyv2.h> 22 #include <linux/ipsec.h> 23 #include <linux/skbuff.h> 24 #include <linux/rtnetlink.h> 25 #include <linux/in.h> 26 #include <linux/in6.h> 27 #include <linux/proc_fs.h> 28 #include <linux/init.h> 29 #include <net/net_namespace.h> 30 #include <net/xfrm.h> 31 32 #include <net/sock.h> 33 34 #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x)) 35 #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x)) 36 37 38 /* List of all pfkey sockets. */ 39 static HLIST_HEAD(pfkey_table); 40 static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait); 41 static DEFINE_RWLOCK(pfkey_table_lock); 42 static atomic_t pfkey_table_users = ATOMIC_INIT(0); 43 44 static atomic_t pfkey_socks_nr = ATOMIC_INIT(0); 45 46 struct pfkey_sock { 47 /* struct sock must be the first member of struct pfkey_sock */ 48 struct sock sk; 49 int registered; 50 int promisc; 51 }; 52 53 static inline struct pfkey_sock *pfkey_sk(struct sock *sk) 54 { 55 return (struct pfkey_sock *)sk; 56 } 57 58 static void pfkey_sock_destruct(struct sock *sk) 59 { 60 skb_queue_purge(&sk->sk_receive_queue); 61 62 if (!sock_flag(sk, SOCK_DEAD)) { 63 printk("Attempt to release alive pfkey socket: %p\n", sk); 64 return; 65 } 66 67 BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc)); 68 BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc)); 69 70 atomic_dec(&pfkey_socks_nr); 71 } 72 73 static void pfkey_table_grab(void) 74 { 75 write_lock_bh(&pfkey_table_lock); 76 77 if (atomic_read(&pfkey_table_users)) { 78 DECLARE_WAITQUEUE(wait, current); 79 80 add_wait_queue_exclusive(&pfkey_table_wait, &wait); 81 for(;;) { 82 set_current_state(TASK_UNINTERRUPTIBLE); 83 if (atomic_read(&pfkey_table_users) == 0) 84 break; 85 write_unlock_bh(&pfkey_table_lock); 86 schedule(); 87 write_lock_bh(&pfkey_table_lock); 88 } 89 90 __set_current_state(TASK_RUNNING); 91 remove_wait_queue(&pfkey_table_wait, &wait); 92 } 93 } 94 95 static __inline__ void pfkey_table_ungrab(void) 96 { 97 write_unlock_bh(&pfkey_table_lock); 98 wake_up(&pfkey_table_wait); 99 } 100 101 static __inline__ void pfkey_lock_table(void) 102 { 103 /* read_lock() synchronizes us to pfkey_table_grab */ 104 105 read_lock(&pfkey_table_lock); 106 atomic_inc(&pfkey_table_users); 107 read_unlock(&pfkey_table_lock); 108 } 109 110 static __inline__ void pfkey_unlock_table(void) 111 { 112 if (atomic_dec_and_test(&pfkey_table_users)) 113 wake_up(&pfkey_table_wait); 114 } 115 116 117 static const struct proto_ops pfkey_ops; 118 119 static void pfkey_insert(struct sock *sk) 120 { 121 pfkey_table_grab(); 122 sk_add_node(sk, &pfkey_table); 123 pfkey_table_ungrab(); 124 } 125 126 static void pfkey_remove(struct sock *sk) 127 { 128 pfkey_table_grab(); 129 sk_del_node_init(sk); 130 pfkey_table_ungrab(); 131 } 132 133 static struct proto key_proto = { 134 .name = "KEY", 135 .owner = THIS_MODULE, 136 .obj_size = sizeof(struct pfkey_sock), 137 }; 138 139 static int pfkey_create(struct net *net, struct socket *sock, int protocol) 140 { 141 struct sock *sk; 142 int err; 143 144 if (net != &init_net) 145 return -EAFNOSUPPORT; 146 147 if (!capable(CAP_NET_ADMIN)) 148 return -EPERM; 149 if (sock->type != SOCK_RAW) 150 return -ESOCKTNOSUPPORT; 151 if (protocol != PF_KEY_V2) 152 return -EPROTONOSUPPORT; 153 154 err = -ENOMEM; 155 sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto); 156 if (sk == NULL) 157 goto out; 158 159 sock->ops = &pfkey_ops; 160 sock_init_data(sock, sk); 161 162 sk->sk_family = PF_KEY; 163 sk->sk_destruct = pfkey_sock_destruct; 164 165 atomic_inc(&pfkey_socks_nr); 166 167 pfkey_insert(sk); 168 169 return 0; 170 out: 171 return err; 172 } 173 174 static int pfkey_release(struct socket *sock) 175 { 176 struct sock *sk = sock->sk; 177 178 if (!sk) 179 return 0; 180 181 pfkey_remove(sk); 182 183 sock_orphan(sk); 184 sock->sk = NULL; 185 skb_queue_purge(&sk->sk_write_queue); 186 sock_put(sk); 187 188 return 0; 189 } 190 191 static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2, 192 gfp_t allocation, struct sock *sk) 193 { 194 int err = -ENOBUFS; 195 196 sock_hold(sk); 197 if (*skb2 == NULL) { 198 if (atomic_read(&skb->users) != 1) { 199 *skb2 = skb_clone(skb, allocation); 200 } else { 201 *skb2 = skb; 202 atomic_inc(&skb->users); 203 } 204 } 205 if (*skb2 != NULL) { 206 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) { 207 skb_orphan(*skb2); 208 skb_set_owner_r(*skb2, sk); 209 skb_queue_tail(&sk->sk_receive_queue, *skb2); 210 sk->sk_data_ready(sk, (*skb2)->len); 211 *skb2 = NULL; 212 err = 0; 213 } 214 } 215 sock_put(sk); 216 return err; 217 } 218 219 /* Send SKB to all pfkey sockets matching selected criteria. */ 220 #define BROADCAST_ALL 0 221 #define BROADCAST_ONE 1 222 #define BROADCAST_REGISTERED 2 223 #define BROADCAST_PROMISC_ONLY 4 224 static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation, 225 int broadcast_flags, struct sock *one_sk) 226 { 227 struct sock *sk; 228 struct hlist_node *node; 229 struct sk_buff *skb2 = NULL; 230 int err = -ESRCH; 231 232 /* XXX Do we need something like netlink_overrun? I think 233 * XXX PF_KEY socket apps will not mind current behavior. 234 */ 235 if (!skb) 236 return -ENOMEM; 237 238 pfkey_lock_table(); 239 sk_for_each(sk, node, &pfkey_table) { 240 struct pfkey_sock *pfk = pfkey_sk(sk); 241 int err2; 242 243 /* Yes, it means that if you are meant to receive this 244 * pfkey message you receive it twice as promiscuous 245 * socket. 246 */ 247 if (pfk->promisc) 248 pfkey_broadcast_one(skb, &skb2, allocation, sk); 249 250 /* the exact target will be processed later */ 251 if (sk == one_sk) 252 continue; 253 if (broadcast_flags != BROADCAST_ALL) { 254 if (broadcast_flags & BROADCAST_PROMISC_ONLY) 255 continue; 256 if ((broadcast_flags & BROADCAST_REGISTERED) && 257 !pfk->registered) 258 continue; 259 if (broadcast_flags & BROADCAST_ONE) 260 continue; 261 } 262 263 err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk); 264 265 /* Error is cleare after succecful sending to at least one 266 * registered KM */ 267 if ((broadcast_flags & BROADCAST_REGISTERED) && err) 268 err = err2; 269 } 270 pfkey_unlock_table(); 271 272 if (one_sk != NULL) 273 err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk); 274 275 if (skb2) 276 kfree_skb(skb2); 277 kfree_skb(skb); 278 return err; 279 } 280 281 static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig) 282 { 283 *new = *orig; 284 } 285 286 static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk) 287 { 288 struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL); 289 struct sadb_msg *hdr; 290 291 if (!skb) 292 return -ENOBUFS; 293 294 /* Woe be to the platform trying to support PFKEY yet 295 * having normal errnos outside the 1-255 range, inclusive. 296 */ 297 err = -err; 298 if (err == ERESTARTSYS || 299 err == ERESTARTNOHAND || 300 err == ERESTARTNOINTR) 301 err = EINTR; 302 if (err >= 512) 303 err = EINVAL; 304 BUG_ON(err <= 0 || err >= 256); 305 306 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 307 pfkey_hdr_dup(hdr, orig); 308 hdr->sadb_msg_errno = (uint8_t) err; 309 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / 310 sizeof(uint64_t)); 311 312 pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk); 313 314 return 0; 315 } 316 317 static u8 sadb_ext_min_len[] = { 318 [SADB_EXT_RESERVED] = (u8) 0, 319 [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa), 320 [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime), 321 [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime), 322 [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime), 323 [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address), 324 [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address), 325 [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address), 326 [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key), 327 [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key), 328 [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident), 329 [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident), 330 [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens), 331 [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop), 332 [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported), 333 [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported), 334 [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange), 335 [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate), 336 [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy), 337 [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2), 338 [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type), 339 [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port), 340 [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port), 341 [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address), 342 [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx), 343 }; 344 345 /* Verify sadb_address_{len,prefixlen} against sa_family. */ 346 static int verify_address_len(void *p) 347 { 348 struct sadb_address *sp = p; 349 struct sockaddr *addr = (struct sockaddr *)(sp + 1); 350 struct sockaddr_in *sin; 351 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 352 struct sockaddr_in6 *sin6; 353 #endif 354 int len; 355 356 switch (addr->sa_family) { 357 case AF_INET: 358 len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t)); 359 if (sp->sadb_address_len != len || 360 sp->sadb_address_prefixlen > 32) 361 return -EINVAL; 362 break; 363 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 364 case AF_INET6: 365 len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t)); 366 if (sp->sadb_address_len != len || 367 sp->sadb_address_prefixlen > 128) 368 return -EINVAL; 369 break; 370 #endif 371 default: 372 /* It is user using kernel to keep track of security 373 * associations for another protocol, such as 374 * OSPF/RSVP/RIPV2/MIP. It is user's job to verify 375 * lengths. 376 * 377 * XXX Actually, association/policy database is not yet 378 * XXX able to cope with arbitrary sockaddr families. 379 * XXX When it can, remove this -EINVAL. -DaveM 380 */ 381 return -EINVAL; 382 break; 383 } 384 385 return 0; 386 } 387 388 static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx) 389 { 390 return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) + 391 sec_ctx->sadb_x_ctx_len, 392 sizeof(uint64_t)); 393 } 394 395 static inline int verify_sec_ctx_len(void *p) 396 { 397 struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p; 398 int len = sec_ctx->sadb_x_ctx_len; 399 400 if (len > PAGE_SIZE) 401 return -EINVAL; 402 403 len = pfkey_sec_ctx_len(sec_ctx); 404 405 if (sec_ctx->sadb_x_sec_len != len) 406 return -EINVAL; 407 408 return 0; 409 } 410 411 static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx) 412 { 413 struct xfrm_user_sec_ctx *uctx = NULL; 414 int ctx_size = sec_ctx->sadb_x_ctx_len; 415 416 uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL); 417 418 if (!uctx) 419 return NULL; 420 421 uctx->len = pfkey_sec_ctx_len(sec_ctx); 422 uctx->exttype = sec_ctx->sadb_x_sec_exttype; 423 uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi; 424 uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg; 425 uctx->ctx_len = sec_ctx->sadb_x_ctx_len; 426 memcpy(uctx + 1, sec_ctx + 1, 427 uctx->ctx_len); 428 429 return uctx; 430 } 431 432 static int present_and_same_family(struct sadb_address *src, 433 struct sadb_address *dst) 434 { 435 struct sockaddr *s_addr, *d_addr; 436 437 if (!src || !dst) 438 return 0; 439 440 s_addr = (struct sockaddr *)(src + 1); 441 d_addr = (struct sockaddr *)(dst + 1); 442 if (s_addr->sa_family != d_addr->sa_family) 443 return 0; 444 if (s_addr->sa_family != AF_INET 445 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 446 && s_addr->sa_family != AF_INET6 447 #endif 448 ) 449 return 0; 450 451 return 1; 452 } 453 454 static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 455 { 456 char *p = (char *) hdr; 457 int len = skb->len; 458 459 len -= sizeof(*hdr); 460 p += sizeof(*hdr); 461 while (len > 0) { 462 struct sadb_ext *ehdr = (struct sadb_ext *) p; 463 uint16_t ext_type; 464 int ext_len; 465 466 ext_len = ehdr->sadb_ext_len; 467 ext_len *= sizeof(uint64_t); 468 ext_type = ehdr->sadb_ext_type; 469 if (ext_len < sizeof(uint64_t) || 470 ext_len > len || 471 ext_type == SADB_EXT_RESERVED) 472 return -EINVAL; 473 474 if (ext_type <= SADB_EXT_MAX) { 475 int min = (int) sadb_ext_min_len[ext_type]; 476 if (ext_len < min) 477 return -EINVAL; 478 if (ext_hdrs[ext_type-1] != NULL) 479 return -EINVAL; 480 if (ext_type == SADB_EXT_ADDRESS_SRC || 481 ext_type == SADB_EXT_ADDRESS_DST || 482 ext_type == SADB_EXT_ADDRESS_PROXY || 483 ext_type == SADB_X_EXT_NAT_T_OA) { 484 if (verify_address_len(p)) 485 return -EINVAL; 486 } 487 if (ext_type == SADB_X_EXT_SEC_CTX) { 488 if (verify_sec_ctx_len(p)) 489 return -EINVAL; 490 } 491 ext_hdrs[ext_type-1] = p; 492 } 493 p += ext_len; 494 len -= ext_len; 495 } 496 497 return 0; 498 } 499 500 static uint16_t 501 pfkey_satype2proto(uint8_t satype) 502 { 503 switch (satype) { 504 case SADB_SATYPE_UNSPEC: 505 return IPSEC_PROTO_ANY; 506 case SADB_SATYPE_AH: 507 return IPPROTO_AH; 508 case SADB_SATYPE_ESP: 509 return IPPROTO_ESP; 510 case SADB_X_SATYPE_IPCOMP: 511 return IPPROTO_COMP; 512 break; 513 default: 514 return 0; 515 } 516 /* NOTREACHED */ 517 } 518 519 static uint8_t 520 pfkey_proto2satype(uint16_t proto) 521 { 522 switch (proto) { 523 case IPPROTO_AH: 524 return SADB_SATYPE_AH; 525 case IPPROTO_ESP: 526 return SADB_SATYPE_ESP; 527 case IPPROTO_COMP: 528 return SADB_X_SATYPE_IPCOMP; 529 break; 530 default: 531 return 0; 532 } 533 /* NOTREACHED */ 534 } 535 536 /* BTW, this scheme means that there is no way with PFKEY2 sockets to 537 * say specifically 'just raw sockets' as we encode them as 255. 538 */ 539 540 static uint8_t pfkey_proto_to_xfrm(uint8_t proto) 541 { 542 return (proto == IPSEC_PROTO_ANY ? 0 : proto); 543 } 544 545 static uint8_t pfkey_proto_from_xfrm(uint8_t proto) 546 { 547 return (proto ? proto : IPSEC_PROTO_ANY); 548 } 549 550 static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, 551 xfrm_address_t *xaddr) 552 { 553 switch (((struct sockaddr*)(addr + 1))->sa_family) { 554 case AF_INET: 555 xaddr->a4 = 556 ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr; 557 return AF_INET; 558 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 559 case AF_INET6: 560 memcpy(xaddr->a6, 561 &((struct sockaddr_in6 *)(addr + 1))->sin6_addr, 562 sizeof(struct in6_addr)); 563 return AF_INET6; 564 #endif 565 default: 566 return 0; 567 } 568 /* NOTREACHED */ 569 } 570 571 static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs) 572 { 573 struct sadb_sa *sa; 574 struct sadb_address *addr; 575 uint16_t proto; 576 unsigned short family; 577 xfrm_address_t *xaddr; 578 579 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1]; 580 if (sa == NULL) 581 return NULL; 582 583 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 584 if (proto == 0) 585 return NULL; 586 587 /* sadb_address_len should be checked by caller */ 588 addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1]; 589 if (addr == NULL) 590 return NULL; 591 592 family = ((struct sockaddr *)(addr + 1))->sa_family; 593 switch (family) { 594 case AF_INET: 595 xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr; 596 break; 597 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 598 case AF_INET6: 599 xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr; 600 break; 601 #endif 602 default: 603 xaddr = NULL; 604 } 605 606 if (!xaddr) 607 return NULL; 608 609 return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family); 610 } 611 612 #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1))) 613 static int 614 pfkey_sockaddr_size(sa_family_t family) 615 { 616 switch (family) { 617 case AF_INET: 618 return PFKEY_ALIGN8(sizeof(struct sockaddr_in)); 619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 620 case AF_INET6: 621 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6)); 622 #endif 623 default: 624 return 0; 625 } 626 /* NOTREACHED */ 627 } 628 629 static inline int pfkey_mode_from_xfrm(int mode) 630 { 631 switch(mode) { 632 case XFRM_MODE_TRANSPORT: 633 return IPSEC_MODE_TRANSPORT; 634 case XFRM_MODE_TUNNEL: 635 return IPSEC_MODE_TUNNEL; 636 case XFRM_MODE_BEET: 637 return IPSEC_MODE_BEET; 638 default: 639 return -1; 640 } 641 } 642 643 static inline int pfkey_mode_to_xfrm(int mode) 644 { 645 switch(mode) { 646 case IPSEC_MODE_ANY: /*XXX*/ 647 case IPSEC_MODE_TRANSPORT: 648 return XFRM_MODE_TRANSPORT; 649 case IPSEC_MODE_TUNNEL: 650 return XFRM_MODE_TUNNEL; 651 case IPSEC_MODE_BEET: 652 return XFRM_MODE_BEET; 653 default: 654 return -1; 655 } 656 } 657 658 static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x, 659 int add_keys, int hsc) 660 { 661 struct sk_buff *skb; 662 struct sadb_msg *hdr; 663 struct sadb_sa *sa; 664 struct sadb_lifetime *lifetime; 665 struct sadb_address *addr; 666 struct sadb_key *key; 667 struct sadb_x_sa2 *sa2; 668 struct sockaddr_in *sin; 669 struct sadb_x_sec_ctx *sec_ctx; 670 struct xfrm_sec_ctx *xfrm_ctx; 671 int ctx_size = 0; 672 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 673 struct sockaddr_in6 *sin6; 674 #endif 675 int size; 676 int auth_key_size = 0; 677 int encrypt_key_size = 0; 678 int sockaddr_size; 679 struct xfrm_encap_tmpl *natt = NULL; 680 int mode; 681 682 /* address family check */ 683 sockaddr_size = pfkey_sockaddr_size(x->props.family); 684 if (!sockaddr_size) 685 return ERR_PTR(-EINVAL); 686 687 /* base, SA, (lifetime (HSC),) address(SD), (address(P),) 688 key(AE), (identity(SD),) (sensitivity)> */ 689 size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) + 690 sizeof(struct sadb_lifetime) + 691 ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) + 692 ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) + 693 sizeof(struct sadb_address)*2 + 694 sockaddr_size*2 + 695 sizeof(struct sadb_x_sa2); 696 697 if ((xfrm_ctx = x->security)) { 698 ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len); 699 size += sizeof(struct sadb_x_sec_ctx) + ctx_size; 700 } 701 702 /* identity & sensitivity */ 703 704 if ((x->props.family == AF_INET && 705 x->sel.saddr.a4 != x->props.saddr.a4) 706 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 707 || (x->props.family == AF_INET6 && 708 memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr))) 709 #endif 710 ) 711 size += sizeof(struct sadb_address) + sockaddr_size; 712 713 if (add_keys) { 714 if (x->aalg && x->aalg->alg_key_len) { 715 auth_key_size = 716 PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8); 717 size += sizeof(struct sadb_key) + auth_key_size; 718 } 719 if (x->ealg && x->ealg->alg_key_len) { 720 encrypt_key_size = 721 PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8); 722 size += sizeof(struct sadb_key) + encrypt_key_size; 723 } 724 } 725 if (x->encap) 726 natt = x->encap; 727 728 if (natt && natt->encap_type) { 729 size += sizeof(struct sadb_x_nat_t_type); 730 size += sizeof(struct sadb_x_nat_t_port); 731 size += sizeof(struct sadb_x_nat_t_port); 732 } 733 734 skb = alloc_skb(size + 16, GFP_ATOMIC); 735 if (skb == NULL) 736 return ERR_PTR(-ENOBUFS); 737 738 /* call should fill header later */ 739 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 740 memset(hdr, 0, size); /* XXX do we need this ? */ 741 hdr->sadb_msg_len = size / sizeof(uint64_t); 742 743 /* sa */ 744 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa)); 745 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); 746 sa->sadb_sa_exttype = SADB_EXT_SA; 747 sa->sadb_sa_spi = x->id.spi; 748 sa->sadb_sa_replay = x->props.replay_window; 749 switch (x->km.state) { 750 case XFRM_STATE_VALID: 751 sa->sadb_sa_state = x->km.dying ? 752 SADB_SASTATE_DYING : SADB_SASTATE_MATURE; 753 break; 754 case XFRM_STATE_ACQ: 755 sa->sadb_sa_state = SADB_SASTATE_LARVAL; 756 break; 757 default: 758 sa->sadb_sa_state = SADB_SASTATE_DEAD; 759 break; 760 } 761 sa->sadb_sa_auth = 0; 762 if (x->aalg) { 763 struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0); 764 sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0; 765 } 766 sa->sadb_sa_encrypt = 0; 767 BUG_ON(x->ealg && x->calg); 768 if (x->ealg) { 769 struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0); 770 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0; 771 } 772 /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */ 773 if (x->calg) { 774 struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0); 775 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0; 776 } 777 778 sa->sadb_sa_flags = 0; 779 if (x->props.flags & XFRM_STATE_NOECN) 780 sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN; 781 if (x->props.flags & XFRM_STATE_DECAP_DSCP) 782 sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP; 783 if (x->props.flags & XFRM_STATE_NOPMTUDISC) 784 sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC; 785 786 /* hard time */ 787 if (hsc & 2) { 788 lifetime = (struct sadb_lifetime *) skb_put(skb, 789 sizeof(struct sadb_lifetime)); 790 lifetime->sadb_lifetime_len = 791 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 792 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 793 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit); 794 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit); 795 lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds; 796 lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds; 797 } 798 /* soft time */ 799 if (hsc & 1) { 800 lifetime = (struct sadb_lifetime *) skb_put(skb, 801 sizeof(struct sadb_lifetime)); 802 lifetime->sadb_lifetime_len = 803 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 804 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 805 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit); 806 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit); 807 lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds; 808 lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds; 809 } 810 /* current time */ 811 lifetime = (struct sadb_lifetime *) skb_put(skb, 812 sizeof(struct sadb_lifetime)); 813 lifetime->sadb_lifetime_len = 814 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 815 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 816 lifetime->sadb_lifetime_allocations = x->curlft.packets; 817 lifetime->sadb_lifetime_bytes = x->curlft.bytes; 818 lifetime->sadb_lifetime_addtime = x->curlft.add_time; 819 lifetime->sadb_lifetime_usetime = x->curlft.use_time; 820 /* src address */ 821 addr = (struct sadb_address*) skb_put(skb, 822 sizeof(struct sadb_address)+sockaddr_size); 823 addr->sadb_address_len = 824 (sizeof(struct sadb_address)+sockaddr_size)/ 825 sizeof(uint64_t); 826 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 827 /* "if the ports are non-zero, then the sadb_address_proto field, 828 normally zero, MUST be filled in with the transport 829 protocol's number." - RFC2367 */ 830 addr->sadb_address_proto = 0; 831 addr->sadb_address_reserved = 0; 832 if (x->props.family == AF_INET) { 833 addr->sadb_address_prefixlen = 32; 834 835 sin = (struct sockaddr_in *) (addr + 1); 836 sin->sin_family = AF_INET; 837 sin->sin_addr.s_addr = x->props.saddr.a4; 838 sin->sin_port = 0; 839 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 840 } 841 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 842 else if (x->props.family == AF_INET6) { 843 addr->sadb_address_prefixlen = 128; 844 845 sin6 = (struct sockaddr_in6 *) (addr + 1); 846 sin6->sin6_family = AF_INET6; 847 sin6->sin6_port = 0; 848 sin6->sin6_flowinfo = 0; 849 memcpy(&sin6->sin6_addr, x->props.saddr.a6, 850 sizeof(struct in6_addr)); 851 sin6->sin6_scope_id = 0; 852 } 853 #endif 854 else 855 BUG(); 856 857 /* dst address */ 858 addr = (struct sadb_address*) skb_put(skb, 859 sizeof(struct sadb_address)+sockaddr_size); 860 addr->sadb_address_len = 861 (sizeof(struct sadb_address)+sockaddr_size)/ 862 sizeof(uint64_t); 863 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 864 addr->sadb_address_proto = 0; 865 addr->sadb_address_prefixlen = 32; /* XXX */ 866 addr->sadb_address_reserved = 0; 867 if (x->props.family == AF_INET) { 868 sin = (struct sockaddr_in *) (addr + 1); 869 sin->sin_family = AF_INET; 870 sin->sin_addr.s_addr = x->id.daddr.a4; 871 sin->sin_port = 0; 872 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 873 874 if (x->sel.saddr.a4 != x->props.saddr.a4) { 875 addr = (struct sadb_address*) skb_put(skb, 876 sizeof(struct sadb_address)+sockaddr_size); 877 addr->sadb_address_len = 878 (sizeof(struct sadb_address)+sockaddr_size)/ 879 sizeof(uint64_t); 880 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; 881 addr->sadb_address_proto = 882 pfkey_proto_from_xfrm(x->sel.proto); 883 addr->sadb_address_prefixlen = x->sel.prefixlen_s; 884 addr->sadb_address_reserved = 0; 885 886 sin = (struct sockaddr_in *) (addr + 1); 887 sin->sin_family = AF_INET; 888 sin->sin_addr.s_addr = x->sel.saddr.a4; 889 sin->sin_port = x->sel.sport; 890 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 891 } 892 } 893 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 894 else if (x->props.family == AF_INET6) { 895 addr->sadb_address_prefixlen = 128; 896 897 sin6 = (struct sockaddr_in6 *) (addr + 1); 898 sin6->sin6_family = AF_INET6; 899 sin6->sin6_port = 0; 900 sin6->sin6_flowinfo = 0; 901 memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr)); 902 sin6->sin6_scope_id = 0; 903 904 if (memcmp (x->sel.saddr.a6, x->props.saddr.a6, 905 sizeof(struct in6_addr))) { 906 addr = (struct sadb_address *) skb_put(skb, 907 sizeof(struct sadb_address)+sockaddr_size); 908 addr->sadb_address_len = 909 (sizeof(struct sadb_address)+sockaddr_size)/ 910 sizeof(uint64_t); 911 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY; 912 addr->sadb_address_proto = 913 pfkey_proto_from_xfrm(x->sel.proto); 914 addr->sadb_address_prefixlen = x->sel.prefixlen_s; 915 addr->sadb_address_reserved = 0; 916 917 sin6 = (struct sockaddr_in6 *) (addr + 1); 918 sin6->sin6_family = AF_INET6; 919 sin6->sin6_port = x->sel.sport; 920 sin6->sin6_flowinfo = 0; 921 memcpy(&sin6->sin6_addr, x->sel.saddr.a6, 922 sizeof(struct in6_addr)); 923 sin6->sin6_scope_id = 0; 924 } 925 } 926 #endif 927 else 928 BUG(); 929 930 /* auth key */ 931 if (add_keys && auth_key_size) { 932 key = (struct sadb_key *) skb_put(skb, 933 sizeof(struct sadb_key)+auth_key_size); 934 key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) / 935 sizeof(uint64_t); 936 key->sadb_key_exttype = SADB_EXT_KEY_AUTH; 937 key->sadb_key_bits = x->aalg->alg_key_len; 938 key->sadb_key_reserved = 0; 939 memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8); 940 } 941 /* encrypt key */ 942 if (add_keys && encrypt_key_size) { 943 key = (struct sadb_key *) skb_put(skb, 944 sizeof(struct sadb_key)+encrypt_key_size); 945 key->sadb_key_len = (sizeof(struct sadb_key) + 946 encrypt_key_size) / sizeof(uint64_t); 947 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT; 948 key->sadb_key_bits = x->ealg->alg_key_len; 949 key->sadb_key_reserved = 0; 950 memcpy(key + 1, x->ealg->alg_key, 951 (x->ealg->alg_key_len+7)/8); 952 } 953 954 /* sa */ 955 sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2)); 956 sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t); 957 sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 958 if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) { 959 kfree_skb(skb); 960 return ERR_PTR(-EINVAL); 961 } 962 sa2->sadb_x_sa2_mode = mode; 963 sa2->sadb_x_sa2_reserved1 = 0; 964 sa2->sadb_x_sa2_reserved2 = 0; 965 sa2->sadb_x_sa2_sequence = 0; 966 sa2->sadb_x_sa2_reqid = x->props.reqid; 967 968 if (natt && natt->encap_type) { 969 struct sadb_x_nat_t_type *n_type; 970 struct sadb_x_nat_t_port *n_port; 971 972 /* type */ 973 n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type)); 974 n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t); 975 n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 976 n_type->sadb_x_nat_t_type_type = natt->encap_type; 977 n_type->sadb_x_nat_t_type_reserved[0] = 0; 978 n_type->sadb_x_nat_t_type_reserved[1] = 0; 979 n_type->sadb_x_nat_t_type_reserved[2] = 0; 980 981 /* source port */ 982 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 983 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 984 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; 985 n_port->sadb_x_nat_t_port_port = natt->encap_sport; 986 n_port->sadb_x_nat_t_port_reserved = 0; 987 988 /* dest port */ 989 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 990 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 991 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; 992 n_port->sadb_x_nat_t_port_port = natt->encap_dport; 993 n_port->sadb_x_nat_t_port_reserved = 0; 994 } 995 996 /* security context */ 997 if (xfrm_ctx) { 998 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, 999 sizeof(struct sadb_x_sec_ctx) + ctx_size); 1000 sec_ctx->sadb_x_sec_len = 1001 (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t); 1002 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; 1003 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; 1004 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; 1005 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; 1006 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, 1007 xfrm_ctx->ctx_len); 1008 } 1009 1010 return skb; 1011 } 1012 1013 1014 static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x) 1015 { 1016 struct sk_buff *skb; 1017 1018 skb = __pfkey_xfrm_state2msg(x, 1, 3); 1019 1020 return skb; 1021 } 1022 1023 static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x, 1024 int hsc) 1025 { 1026 return __pfkey_xfrm_state2msg(x, 0, hsc); 1027 } 1028 1029 static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr, 1030 void **ext_hdrs) 1031 { 1032 struct xfrm_state *x; 1033 struct sadb_lifetime *lifetime; 1034 struct sadb_sa *sa; 1035 struct sadb_key *key; 1036 struct sadb_x_sec_ctx *sec_ctx; 1037 uint16_t proto; 1038 int err; 1039 1040 1041 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1]; 1042 if (!sa || 1043 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1044 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1045 return ERR_PTR(-EINVAL); 1046 if (hdr->sadb_msg_satype == SADB_SATYPE_ESP && 1047 !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]) 1048 return ERR_PTR(-EINVAL); 1049 if (hdr->sadb_msg_satype == SADB_SATYPE_AH && 1050 !ext_hdrs[SADB_EXT_KEY_AUTH-1]) 1051 return ERR_PTR(-EINVAL); 1052 if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] != 1053 !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) 1054 return ERR_PTR(-EINVAL); 1055 1056 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1057 if (proto == 0) 1058 return ERR_PTR(-EINVAL); 1059 1060 /* default error is no buffer space */ 1061 err = -ENOBUFS; 1062 1063 /* RFC2367: 1064 1065 Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message. 1066 SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not 1067 sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state. 1068 Therefore, the sadb_sa_state field of all submitted SAs MUST be 1069 SADB_SASTATE_MATURE and the kernel MUST return an error if this is 1070 not true. 1071 1072 However, KAME setkey always uses SADB_SASTATE_LARVAL. 1073 Hence, we have to _ignore_ sadb_sa_state, which is also reasonable. 1074 */ 1075 if (sa->sadb_sa_auth > SADB_AALG_MAX || 1076 (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP && 1077 sa->sadb_sa_encrypt > SADB_X_CALG_MAX) || 1078 sa->sadb_sa_encrypt > SADB_EALG_MAX) 1079 return ERR_PTR(-EINVAL); 1080 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1]; 1081 if (key != NULL && 1082 sa->sadb_sa_auth != SADB_X_AALG_NULL && 1083 ((key->sadb_key_bits+7) / 8 == 0 || 1084 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t))) 1085 return ERR_PTR(-EINVAL); 1086 key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; 1087 if (key != NULL && 1088 sa->sadb_sa_encrypt != SADB_EALG_NULL && 1089 ((key->sadb_key_bits+7) / 8 == 0 || 1090 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t))) 1091 return ERR_PTR(-EINVAL); 1092 1093 x = xfrm_state_alloc(); 1094 if (x == NULL) 1095 return ERR_PTR(-ENOBUFS); 1096 1097 x->id.proto = proto; 1098 x->id.spi = sa->sadb_sa_spi; 1099 x->props.replay_window = sa->sadb_sa_replay; 1100 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN) 1101 x->props.flags |= XFRM_STATE_NOECN; 1102 if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP) 1103 x->props.flags |= XFRM_STATE_DECAP_DSCP; 1104 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC) 1105 x->props.flags |= XFRM_STATE_NOPMTUDISC; 1106 1107 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1]; 1108 if (lifetime != NULL) { 1109 x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 1110 x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 1111 x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; 1112 x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; 1113 } 1114 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]; 1115 if (lifetime != NULL) { 1116 x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 1117 x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 1118 x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; 1119 x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; 1120 } 1121 1122 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; 1123 if (sec_ctx != NULL) { 1124 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); 1125 1126 if (!uctx) 1127 goto out; 1128 1129 err = security_xfrm_state_alloc(x, uctx); 1130 kfree(uctx); 1131 1132 if (err) 1133 goto out; 1134 } 1135 1136 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1]; 1137 if (sa->sadb_sa_auth) { 1138 int keysize = 0; 1139 struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth); 1140 if (!a) { 1141 err = -ENOSYS; 1142 goto out; 1143 } 1144 if (key) 1145 keysize = (key->sadb_key_bits + 7) / 8; 1146 x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL); 1147 if (!x->aalg) 1148 goto out; 1149 strcpy(x->aalg->alg_name, a->name); 1150 x->aalg->alg_key_len = 0; 1151 if (key) { 1152 x->aalg->alg_key_len = key->sadb_key_bits; 1153 memcpy(x->aalg->alg_key, key+1, keysize); 1154 } 1155 x->props.aalgo = sa->sadb_sa_auth; 1156 /* x->algo.flags = sa->sadb_sa_flags; */ 1157 } 1158 if (sa->sadb_sa_encrypt) { 1159 if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) { 1160 struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt); 1161 if (!a) { 1162 err = -ENOSYS; 1163 goto out; 1164 } 1165 x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL); 1166 if (!x->calg) 1167 goto out; 1168 strcpy(x->calg->alg_name, a->name); 1169 x->props.calgo = sa->sadb_sa_encrypt; 1170 } else { 1171 int keysize = 0; 1172 struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt); 1173 if (!a) { 1174 err = -ENOSYS; 1175 goto out; 1176 } 1177 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1]; 1178 if (key) 1179 keysize = (key->sadb_key_bits + 7) / 8; 1180 x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL); 1181 if (!x->ealg) 1182 goto out; 1183 strcpy(x->ealg->alg_name, a->name); 1184 x->ealg->alg_key_len = 0; 1185 if (key) { 1186 x->ealg->alg_key_len = key->sadb_key_bits; 1187 memcpy(x->ealg->alg_key, key+1, keysize); 1188 } 1189 x->props.ealgo = sa->sadb_sa_encrypt; 1190 } 1191 } 1192 /* x->algo.flags = sa->sadb_sa_flags; */ 1193 1194 x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1195 &x->props.saddr); 1196 if (!x->props.family) { 1197 err = -EAFNOSUPPORT; 1198 goto out; 1199 } 1200 pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1], 1201 &x->id.daddr); 1202 1203 if (ext_hdrs[SADB_X_EXT_SA2-1]) { 1204 struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1]; 1205 int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode); 1206 if (mode < 0) { 1207 err = -EINVAL; 1208 goto out; 1209 } 1210 x->props.mode = mode; 1211 x->props.reqid = sa2->sadb_x_sa2_reqid; 1212 } 1213 1214 if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) { 1215 struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]; 1216 1217 /* Nobody uses this, but we try. */ 1218 x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr); 1219 x->sel.prefixlen_s = addr->sadb_address_prefixlen; 1220 } 1221 1222 if (x->props.mode == XFRM_MODE_TRANSPORT) 1223 x->sel.family = x->props.family; 1224 1225 if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) { 1226 struct sadb_x_nat_t_type* n_type; 1227 struct xfrm_encap_tmpl *natt; 1228 1229 x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL); 1230 if (!x->encap) 1231 goto out; 1232 1233 natt = x->encap; 1234 n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]; 1235 natt->encap_type = n_type->sadb_x_nat_t_type_type; 1236 1237 if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) { 1238 struct sadb_x_nat_t_port* n_port = 1239 ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]; 1240 natt->encap_sport = n_port->sadb_x_nat_t_port_port; 1241 } 1242 if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) { 1243 struct sadb_x_nat_t_port* n_port = 1244 ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]; 1245 natt->encap_dport = n_port->sadb_x_nat_t_port_port; 1246 } 1247 } 1248 1249 err = xfrm_init_state(x); 1250 if (err) 1251 goto out; 1252 1253 x->km.seq = hdr->sadb_msg_seq; 1254 return x; 1255 1256 out: 1257 x->km.state = XFRM_STATE_DEAD; 1258 xfrm_state_put(x); 1259 return ERR_PTR(err); 1260 } 1261 1262 static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1263 { 1264 return -EOPNOTSUPP; 1265 } 1266 1267 static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1268 { 1269 struct sk_buff *resp_skb; 1270 struct sadb_x_sa2 *sa2; 1271 struct sadb_address *saddr, *daddr; 1272 struct sadb_msg *out_hdr; 1273 struct sadb_spirange *range; 1274 struct xfrm_state *x = NULL; 1275 int mode; 1276 int err; 1277 u32 min_spi, max_spi; 1278 u32 reqid; 1279 u8 proto; 1280 unsigned short family; 1281 xfrm_address_t *xsaddr = NULL, *xdaddr = NULL; 1282 1283 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1284 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1285 return -EINVAL; 1286 1287 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1288 if (proto == 0) 1289 return -EINVAL; 1290 1291 if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) { 1292 mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode); 1293 if (mode < 0) 1294 return -EINVAL; 1295 reqid = sa2->sadb_x_sa2_reqid; 1296 } else { 1297 mode = 0; 1298 reqid = 0; 1299 } 1300 1301 saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1]; 1302 daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1]; 1303 1304 family = ((struct sockaddr *)(saddr + 1))->sa_family; 1305 switch (family) { 1306 case AF_INET: 1307 xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr; 1308 xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr; 1309 break; 1310 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1311 case AF_INET6: 1312 xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr; 1313 xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr; 1314 break; 1315 #endif 1316 } 1317 1318 if (hdr->sadb_msg_seq) { 1319 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq); 1320 if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) { 1321 xfrm_state_put(x); 1322 x = NULL; 1323 } 1324 } 1325 1326 if (!x) 1327 x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family); 1328 1329 if (x == NULL) 1330 return -ENOENT; 1331 1332 min_spi = 0x100; 1333 max_spi = 0x0fffffff; 1334 1335 range = ext_hdrs[SADB_EXT_SPIRANGE-1]; 1336 if (range) { 1337 min_spi = range->sadb_spirange_min; 1338 max_spi = range->sadb_spirange_max; 1339 } 1340 1341 err = xfrm_alloc_spi(x, min_spi, max_spi); 1342 resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x); 1343 1344 if (IS_ERR(resp_skb)) { 1345 xfrm_state_put(x); 1346 return PTR_ERR(resp_skb); 1347 } 1348 1349 out_hdr = (struct sadb_msg *) resp_skb->data; 1350 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 1351 out_hdr->sadb_msg_type = SADB_GETSPI; 1352 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); 1353 out_hdr->sadb_msg_errno = 0; 1354 out_hdr->sadb_msg_reserved = 0; 1355 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 1356 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 1357 1358 xfrm_state_put(x); 1359 1360 pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk); 1361 1362 return 0; 1363 } 1364 1365 static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1366 { 1367 struct xfrm_state *x; 1368 1369 if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8) 1370 return -EOPNOTSUPP; 1371 1372 if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0) 1373 return 0; 1374 1375 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq); 1376 if (x == NULL) 1377 return 0; 1378 1379 spin_lock_bh(&x->lock); 1380 if (x->km.state == XFRM_STATE_ACQ) { 1381 x->km.state = XFRM_STATE_ERROR; 1382 wake_up(&km_waitq); 1383 } 1384 spin_unlock_bh(&x->lock); 1385 xfrm_state_put(x); 1386 return 0; 1387 } 1388 1389 static inline int event2poltype(int event) 1390 { 1391 switch (event) { 1392 case XFRM_MSG_DELPOLICY: 1393 return SADB_X_SPDDELETE; 1394 case XFRM_MSG_NEWPOLICY: 1395 return SADB_X_SPDADD; 1396 case XFRM_MSG_UPDPOLICY: 1397 return SADB_X_SPDUPDATE; 1398 case XFRM_MSG_POLEXPIRE: 1399 // return SADB_X_SPDEXPIRE; 1400 default: 1401 printk("pfkey: Unknown policy event %d\n", event); 1402 break; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static inline int event2keytype(int event) 1409 { 1410 switch (event) { 1411 case XFRM_MSG_DELSA: 1412 return SADB_DELETE; 1413 case XFRM_MSG_NEWSA: 1414 return SADB_ADD; 1415 case XFRM_MSG_UPDSA: 1416 return SADB_UPDATE; 1417 case XFRM_MSG_EXPIRE: 1418 return SADB_EXPIRE; 1419 default: 1420 printk("pfkey: Unknown SA event %d\n", event); 1421 break; 1422 } 1423 1424 return 0; 1425 } 1426 1427 /* ADD/UPD/DEL */ 1428 static int key_notify_sa(struct xfrm_state *x, struct km_event *c) 1429 { 1430 struct sk_buff *skb; 1431 struct sadb_msg *hdr; 1432 1433 skb = pfkey_xfrm_state2msg(x); 1434 1435 if (IS_ERR(skb)) 1436 return PTR_ERR(skb); 1437 1438 hdr = (struct sadb_msg *) skb->data; 1439 hdr->sadb_msg_version = PF_KEY_V2; 1440 hdr->sadb_msg_type = event2keytype(c->event); 1441 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 1442 hdr->sadb_msg_errno = 0; 1443 hdr->sadb_msg_reserved = 0; 1444 hdr->sadb_msg_seq = c->seq; 1445 hdr->sadb_msg_pid = c->pid; 1446 1447 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 1448 1449 return 0; 1450 } 1451 1452 static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1453 { 1454 struct xfrm_state *x; 1455 int err; 1456 struct km_event c; 1457 1458 x = pfkey_msg2xfrm_state(hdr, ext_hdrs); 1459 if (IS_ERR(x)) 1460 return PTR_ERR(x); 1461 1462 xfrm_state_hold(x); 1463 if (hdr->sadb_msg_type == SADB_ADD) 1464 err = xfrm_state_add(x); 1465 else 1466 err = xfrm_state_update(x); 1467 1468 xfrm_audit_state_add(x, err ? 0 : 1, 1469 audit_get_loginuid(current), 0); 1470 1471 if (err < 0) { 1472 x->km.state = XFRM_STATE_DEAD; 1473 __xfrm_state_put(x); 1474 goto out; 1475 } 1476 1477 if (hdr->sadb_msg_type == SADB_ADD) 1478 c.event = XFRM_MSG_NEWSA; 1479 else 1480 c.event = XFRM_MSG_UPDSA; 1481 c.seq = hdr->sadb_msg_seq; 1482 c.pid = hdr->sadb_msg_pid; 1483 km_state_notify(x, &c); 1484 out: 1485 xfrm_state_put(x); 1486 return err; 1487 } 1488 1489 static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1490 { 1491 struct xfrm_state *x; 1492 struct km_event c; 1493 int err; 1494 1495 if (!ext_hdrs[SADB_EXT_SA-1] || 1496 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1497 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1498 return -EINVAL; 1499 1500 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs); 1501 if (x == NULL) 1502 return -ESRCH; 1503 1504 if ((err = security_xfrm_state_delete(x))) 1505 goto out; 1506 1507 if (xfrm_state_kern(x)) { 1508 err = -EPERM; 1509 goto out; 1510 } 1511 1512 err = xfrm_state_delete(x); 1513 1514 if (err < 0) 1515 goto out; 1516 1517 c.seq = hdr->sadb_msg_seq; 1518 c.pid = hdr->sadb_msg_pid; 1519 c.event = XFRM_MSG_DELSA; 1520 km_state_notify(x, &c); 1521 out: 1522 xfrm_audit_state_delete(x, err ? 0 : 1, 1523 audit_get_loginuid(current), 0); 1524 xfrm_state_put(x); 1525 1526 return err; 1527 } 1528 1529 static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1530 { 1531 __u8 proto; 1532 struct sk_buff *out_skb; 1533 struct sadb_msg *out_hdr; 1534 struct xfrm_state *x; 1535 1536 if (!ext_hdrs[SADB_EXT_SA-1] || 1537 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 1538 ext_hdrs[SADB_EXT_ADDRESS_DST-1])) 1539 return -EINVAL; 1540 1541 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs); 1542 if (x == NULL) 1543 return -ESRCH; 1544 1545 out_skb = pfkey_xfrm_state2msg(x); 1546 proto = x->id.proto; 1547 xfrm_state_put(x); 1548 if (IS_ERR(out_skb)) 1549 return PTR_ERR(out_skb); 1550 1551 out_hdr = (struct sadb_msg *) out_skb->data; 1552 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 1553 out_hdr->sadb_msg_type = SADB_GET; 1554 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto); 1555 out_hdr->sadb_msg_errno = 0; 1556 out_hdr->sadb_msg_reserved = 0; 1557 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 1558 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 1559 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk); 1560 1561 return 0; 1562 } 1563 1564 static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig, 1565 gfp_t allocation) 1566 { 1567 struct sk_buff *skb; 1568 struct sadb_msg *hdr; 1569 int len, auth_len, enc_len, i; 1570 1571 auth_len = xfrm_count_auth_supported(); 1572 if (auth_len) { 1573 auth_len *= sizeof(struct sadb_alg); 1574 auth_len += sizeof(struct sadb_supported); 1575 } 1576 1577 enc_len = xfrm_count_enc_supported(); 1578 if (enc_len) { 1579 enc_len *= sizeof(struct sadb_alg); 1580 enc_len += sizeof(struct sadb_supported); 1581 } 1582 1583 len = enc_len + auth_len + sizeof(struct sadb_msg); 1584 1585 skb = alloc_skb(len + 16, allocation); 1586 if (!skb) 1587 goto out_put_algs; 1588 1589 hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr)); 1590 pfkey_hdr_dup(hdr, orig); 1591 hdr->sadb_msg_errno = 0; 1592 hdr->sadb_msg_len = len / sizeof(uint64_t); 1593 1594 if (auth_len) { 1595 struct sadb_supported *sp; 1596 struct sadb_alg *ap; 1597 1598 sp = (struct sadb_supported *) skb_put(skb, auth_len); 1599 ap = (struct sadb_alg *) (sp + 1); 1600 1601 sp->sadb_supported_len = auth_len / sizeof(uint64_t); 1602 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 1603 1604 for (i = 0; ; i++) { 1605 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 1606 if (!aalg) 1607 break; 1608 if (aalg->available) 1609 *ap++ = aalg->desc; 1610 } 1611 } 1612 1613 if (enc_len) { 1614 struct sadb_supported *sp; 1615 struct sadb_alg *ap; 1616 1617 sp = (struct sadb_supported *) skb_put(skb, enc_len); 1618 ap = (struct sadb_alg *) (sp + 1); 1619 1620 sp->sadb_supported_len = enc_len / sizeof(uint64_t); 1621 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 1622 1623 for (i = 0; ; i++) { 1624 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 1625 if (!ealg) 1626 break; 1627 if (ealg->available) 1628 *ap++ = ealg->desc; 1629 } 1630 } 1631 1632 out_put_algs: 1633 return skb; 1634 } 1635 1636 static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1637 { 1638 struct pfkey_sock *pfk = pfkey_sk(sk); 1639 struct sk_buff *supp_skb; 1640 1641 if (hdr->sadb_msg_satype > SADB_SATYPE_MAX) 1642 return -EINVAL; 1643 1644 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) { 1645 if (pfk->registered&(1<<hdr->sadb_msg_satype)) 1646 return -EEXIST; 1647 pfk->registered |= (1<<hdr->sadb_msg_satype); 1648 } 1649 1650 xfrm_probe_algs(); 1651 1652 supp_skb = compose_sadb_supported(hdr, GFP_KERNEL); 1653 if (!supp_skb) { 1654 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) 1655 pfk->registered &= ~(1<<hdr->sadb_msg_satype); 1656 1657 return -ENOBUFS; 1658 } 1659 1660 pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk); 1661 1662 return 0; 1663 } 1664 1665 static int key_notify_sa_flush(struct km_event *c) 1666 { 1667 struct sk_buff *skb; 1668 struct sadb_msg *hdr; 1669 1670 skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); 1671 if (!skb) 1672 return -ENOBUFS; 1673 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 1674 hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto); 1675 hdr->sadb_msg_type = SADB_FLUSH; 1676 hdr->sadb_msg_seq = c->seq; 1677 hdr->sadb_msg_pid = c->pid; 1678 hdr->sadb_msg_version = PF_KEY_V2; 1679 hdr->sadb_msg_errno = (uint8_t) 0; 1680 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); 1681 1682 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 1683 1684 return 0; 1685 } 1686 1687 static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1688 { 1689 unsigned proto; 1690 struct km_event c; 1691 struct xfrm_audit audit_info; 1692 int err; 1693 1694 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1695 if (proto == 0) 1696 return -EINVAL; 1697 1698 audit_info.loginuid = audit_get_loginuid(current); 1699 audit_info.secid = 0; 1700 err = xfrm_state_flush(proto, &audit_info); 1701 if (err) 1702 return err; 1703 c.data.proto = proto; 1704 c.seq = hdr->sadb_msg_seq; 1705 c.pid = hdr->sadb_msg_pid; 1706 c.event = XFRM_MSG_FLUSHSA; 1707 km_state_notify(NULL, &c); 1708 1709 return 0; 1710 } 1711 1712 struct pfkey_dump_data 1713 { 1714 struct sk_buff *skb; 1715 struct sadb_msg *hdr; 1716 struct sock *sk; 1717 }; 1718 1719 static int dump_sa(struct xfrm_state *x, int count, void *ptr) 1720 { 1721 struct pfkey_dump_data *data = ptr; 1722 struct sk_buff *out_skb; 1723 struct sadb_msg *out_hdr; 1724 1725 out_skb = pfkey_xfrm_state2msg(x); 1726 if (IS_ERR(out_skb)) 1727 return PTR_ERR(out_skb); 1728 1729 out_hdr = (struct sadb_msg *) out_skb->data; 1730 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version; 1731 out_hdr->sadb_msg_type = SADB_DUMP; 1732 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 1733 out_hdr->sadb_msg_errno = 0; 1734 out_hdr->sadb_msg_reserved = 0; 1735 out_hdr->sadb_msg_seq = count; 1736 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid; 1737 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk); 1738 return 0; 1739 } 1740 1741 static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1742 { 1743 u8 proto; 1744 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk }; 1745 1746 proto = pfkey_satype2proto(hdr->sadb_msg_satype); 1747 if (proto == 0) 1748 return -EINVAL; 1749 1750 return xfrm_state_walk(proto, dump_sa, &data); 1751 } 1752 1753 static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 1754 { 1755 struct pfkey_sock *pfk = pfkey_sk(sk); 1756 int satype = hdr->sadb_msg_satype; 1757 1758 if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) { 1759 /* XXX we mangle packet... */ 1760 hdr->sadb_msg_errno = 0; 1761 if (satype != 0 && satype != 1) 1762 return -EINVAL; 1763 pfk->promisc = satype; 1764 } 1765 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL); 1766 return 0; 1767 } 1768 1769 static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr) 1770 { 1771 int i; 1772 u32 reqid = *(u32*)ptr; 1773 1774 for (i=0; i<xp->xfrm_nr; i++) { 1775 if (xp->xfrm_vec[i].reqid == reqid) 1776 return -EEXIST; 1777 } 1778 return 0; 1779 } 1780 1781 static u32 gen_reqid(void) 1782 { 1783 u32 start; 1784 static u32 reqid = IPSEC_MANUAL_REQID_MAX; 1785 1786 start = reqid; 1787 do { 1788 ++reqid; 1789 if (reqid == 0) 1790 reqid = IPSEC_MANUAL_REQID_MAX+1; 1791 if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid, 1792 (void*)&reqid) != -EEXIST) 1793 return reqid; 1794 } while (reqid != start); 1795 return 0; 1796 } 1797 1798 static int 1799 parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq) 1800 { 1801 struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr; 1802 struct sockaddr_in *sin; 1803 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1804 struct sockaddr_in6 *sin6; 1805 #endif 1806 int mode; 1807 1808 if (xp->xfrm_nr >= XFRM_MAX_DEPTH) 1809 return -ELOOP; 1810 1811 if (rq->sadb_x_ipsecrequest_mode == 0) 1812 return -EINVAL; 1813 1814 t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */ 1815 if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0) 1816 return -EINVAL; 1817 t->mode = mode; 1818 if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE) 1819 t->optional = 1; 1820 else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) { 1821 t->reqid = rq->sadb_x_ipsecrequest_reqid; 1822 if (t->reqid > IPSEC_MANUAL_REQID_MAX) 1823 t->reqid = 0; 1824 if (!t->reqid && !(t->reqid = gen_reqid())) 1825 return -ENOBUFS; 1826 } 1827 1828 /* addresses present only in tunnel mode */ 1829 if (t->mode == XFRM_MODE_TUNNEL) { 1830 struct sockaddr *sa; 1831 sa = (struct sockaddr *)(rq+1); 1832 switch(sa->sa_family) { 1833 case AF_INET: 1834 sin = (struct sockaddr_in*)sa; 1835 t->saddr.a4 = sin->sin_addr.s_addr; 1836 sin++; 1837 if (sin->sin_family != AF_INET) 1838 return -EINVAL; 1839 t->id.daddr.a4 = sin->sin_addr.s_addr; 1840 break; 1841 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1842 case AF_INET6: 1843 sin6 = (struct sockaddr_in6*)sa; 1844 memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr)); 1845 sin6++; 1846 if (sin6->sin6_family != AF_INET6) 1847 return -EINVAL; 1848 memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr)); 1849 break; 1850 #endif 1851 default: 1852 return -EINVAL; 1853 } 1854 t->encap_family = sa->sa_family; 1855 } else 1856 t->encap_family = xp->family; 1857 1858 /* No way to set this via kame pfkey */ 1859 t->aalgos = t->ealgos = t->calgos = ~0; 1860 xp->xfrm_nr++; 1861 return 0; 1862 } 1863 1864 static int 1865 parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol) 1866 { 1867 int err; 1868 int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy); 1869 struct sadb_x_ipsecrequest *rq = (void*)(pol+1); 1870 1871 while (len >= sizeof(struct sadb_x_ipsecrequest)) { 1872 if ((err = parse_ipsecrequest(xp, rq)) < 0) 1873 return err; 1874 len -= rq->sadb_x_ipsecrequest_len; 1875 rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len); 1876 } 1877 return 0; 1878 } 1879 1880 static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp) 1881 { 1882 struct xfrm_sec_ctx *xfrm_ctx = xp->security; 1883 1884 if (xfrm_ctx) { 1885 int len = sizeof(struct sadb_x_sec_ctx); 1886 len += xfrm_ctx->ctx_len; 1887 return PFKEY_ALIGN8(len); 1888 } 1889 return 0; 1890 } 1891 1892 static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp) 1893 { 1894 struct xfrm_tmpl *t; 1895 int sockaddr_size = pfkey_sockaddr_size(xp->family); 1896 int socklen = 0; 1897 int i; 1898 1899 for (i=0; i<xp->xfrm_nr; i++) { 1900 t = xp->xfrm_vec + i; 1901 socklen += (t->encap_family == AF_INET ? 1902 sizeof(struct sockaddr_in) : 1903 sizeof(struct sockaddr_in6)); 1904 } 1905 1906 return sizeof(struct sadb_msg) + 1907 (sizeof(struct sadb_lifetime) * 3) + 1908 (sizeof(struct sadb_address) * 2) + 1909 (sockaddr_size * 2) + 1910 sizeof(struct sadb_x_policy) + 1911 (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) + 1912 (socklen * 2) + 1913 pfkey_xfrm_policy2sec_ctx_size(xp); 1914 } 1915 1916 static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp) 1917 { 1918 struct sk_buff *skb; 1919 int size; 1920 1921 size = pfkey_xfrm_policy2msg_size(xp); 1922 1923 skb = alloc_skb(size + 16, GFP_ATOMIC); 1924 if (skb == NULL) 1925 return ERR_PTR(-ENOBUFS); 1926 1927 return skb; 1928 } 1929 1930 static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir) 1931 { 1932 struct sadb_msg *hdr; 1933 struct sadb_address *addr; 1934 struct sadb_lifetime *lifetime; 1935 struct sadb_x_policy *pol; 1936 struct sockaddr_in *sin; 1937 struct sadb_x_sec_ctx *sec_ctx; 1938 struct xfrm_sec_ctx *xfrm_ctx; 1939 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1940 struct sockaddr_in6 *sin6; 1941 #endif 1942 int i; 1943 int size; 1944 int sockaddr_size = pfkey_sockaddr_size(xp->family); 1945 int socklen = (xp->family == AF_INET ? 1946 sizeof(struct sockaddr_in) : 1947 sizeof(struct sockaddr_in6)); 1948 1949 size = pfkey_xfrm_policy2msg_size(xp); 1950 1951 /* call should fill header later */ 1952 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 1953 memset(hdr, 0, size); /* XXX do we need this ? */ 1954 1955 /* src address */ 1956 addr = (struct sadb_address*) skb_put(skb, 1957 sizeof(struct sadb_address)+sockaddr_size); 1958 addr->sadb_address_len = 1959 (sizeof(struct sadb_address)+sockaddr_size)/ 1960 sizeof(uint64_t); 1961 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 1962 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); 1963 addr->sadb_address_prefixlen = xp->selector.prefixlen_s; 1964 addr->sadb_address_reserved = 0; 1965 /* src address */ 1966 if (xp->family == AF_INET) { 1967 sin = (struct sockaddr_in *) (addr + 1); 1968 sin->sin_family = AF_INET; 1969 sin->sin_addr.s_addr = xp->selector.saddr.a4; 1970 sin->sin_port = xp->selector.sport; 1971 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 1972 } 1973 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1974 else if (xp->family == AF_INET6) { 1975 sin6 = (struct sockaddr_in6 *) (addr + 1); 1976 sin6->sin6_family = AF_INET6; 1977 sin6->sin6_port = xp->selector.sport; 1978 sin6->sin6_flowinfo = 0; 1979 memcpy(&sin6->sin6_addr, xp->selector.saddr.a6, 1980 sizeof(struct in6_addr)); 1981 sin6->sin6_scope_id = 0; 1982 } 1983 #endif 1984 else 1985 BUG(); 1986 1987 /* dst address */ 1988 addr = (struct sadb_address*) skb_put(skb, 1989 sizeof(struct sadb_address)+sockaddr_size); 1990 addr->sadb_address_len = 1991 (sizeof(struct sadb_address)+sockaddr_size)/ 1992 sizeof(uint64_t); 1993 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 1994 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto); 1995 addr->sadb_address_prefixlen = xp->selector.prefixlen_d; 1996 addr->sadb_address_reserved = 0; 1997 if (xp->family == AF_INET) { 1998 sin = (struct sockaddr_in *) (addr + 1); 1999 sin->sin_family = AF_INET; 2000 sin->sin_addr.s_addr = xp->selector.daddr.a4; 2001 sin->sin_port = xp->selector.dport; 2002 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2003 } 2004 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2005 else if (xp->family == AF_INET6) { 2006 sin6 = (struct sockaddr_in6 *) (addr + 1); 2007 sin6->sin6_family = AF_INET6; 2008 sin6->sin6_port = xp->selector.dport; 2009 sin6->sin6_flowinfo = 0; 2010 memcpy(&sin6->sin6_addr, xp->selector.daddr.a6, 2011 sizeof(struct in6_addr)); 2012 sin6->sin6_scope_id = 0; 2013 } 2014 #endif 2015 else 2016 BUG(); 2017 2018 /* hard time */ 2019 lifetime = (struct sadb_lifetime *) skb_put(skb, 2020 sizeof(struct sadb_lifetime)); 2021 lifetime->sadb_lifetime_len = 2022 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 2023 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2024 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit); 2025 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit); 2026 lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds; 2027 lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds; 2028 /* soft time */ 2029 lifetime = (struct sadb_lifetime *) skb_put(skb, 2030 sizeof(struct sadb_lifetime)); 2031 lifetime->sadb_lifetime_len = 2032 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 2033 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 2034 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit); 2035 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit); 2036 lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds; 2037 lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds; 2038 /* current time */ 2039 lifetime = (struct sadb_lifetime *) skb_put(skb, 2040 sizeof(struct sadb_lifetime)); 2041 lifetime->sadb_lifetime_len = 2042 sizeof(struct sadb_lifetime)/sizeof(uint64_t); 2043 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2044 lifetime->sadb_lifetime_allocations = xp->curlft.packets; 2045 lifetime->sadb_lifetime_bytes = xp->curlft.bytes; 2046 lifetime->sadb_lifetime_addtime = xp->curlft.add_time; 2047 lifetime->sadb_lifetime_usetime = xp->curlft.use_time; 2048 2049 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy)); 2050 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); 2051 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2052 pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD; 2053 if (xp->action == XFRM_POLICY_ALLOW) { 2054 if (xp->xfrm_nr) 2055 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; 2056 else 2057 pol->sadb_x_policy_type = IPSEC_POLICY_NONE; 2058 } 2059 pol->sadb_x_policy_dir = dir+1; 2060 pol->sadb_x_policy_id = xp->index; 2061 pol->sadb_x_policy_priority = xp->priority; 2062 2063 for (i=0; i<xp->xfrm_nr; i++) { 2064 struct sadb_x_ipsecrequest *rq; 2065 struct xfrm_tmpl *t = xp->xfrm_vec + i; 2066 int req_size; 2067 int mode; 2068 2069 req_size = sizeof(struct sadb_x_ipsecrequest); 2070 if (t->mode == XFRM_MODE_TUNNEL) 2071 req_size += ((t->encap_family == AF_INET ? 2072 sizeof(struct sockaddr_in) : 2073 sizeof(struct sockaddr_in6)) * 2); 2074 else 2075 size -= 2*socklen; 2076 rq = (void*)skb_put(skb, req_size); 2077 pol->sadb_x_policy_len += req_size/8; 2078 memset(rq, 0, sizeof(*rq)); 2079 rq->sadb_x_ipsecrequest_len = req_size; 2080 rq->sadb_x_ipsecrequest_proto = t->id.proto; 2081 if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0) 2082 return -EINVAL; 2083 rq->sadb_x_ipsecrequest_mode = mode; 2084 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE; 2085 if (t->reqid) 2086 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE; 2087 if (t->optional) 2088 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE; 2089 rq->sadb_x_ipsecrequest_reqid = t->reqid; 2090 if (t->mode == XFRM_MODE_TUNNEL) { 2091 switch (t->encap_family) { 2092 case AF_INET: 2093 sin = (void*)(rq+1); 2094 sin->sin_family = AF_INET; 2095 sin->sin_addr.s_addr = t->saddr.a4; 2096 sin->sin_port = 0; 2097 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2098 sin++; 2099 sin->sin_family = AF_INET; 2100 sin->sin_addr.s_addr = t->id.daddr.a4; 2101 sin->sin_port = 0; 2102 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 2103 break; 2104 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2105 case AF_INET6: 2106 sin6 = (void*)(rq+1); 2107 sin6->sin6_family = AF_INET6; 2108 sin6->sin6_port = 0; 2109 sin6->sin6_flowinfo = 0; 2110 memcpy(&sin6->sin6_addr, t->saddr.a6, 2111 sizeof(struct in6_addr)); 2112 sin6->sin6_scope_id = 0; 2113 2114 sin6++; 2115 sin6->sin6_family = AF_INET6; 2116 sin6->sin6_port = 0; 2117 sin6->sin6_flowinfo = 0; 2118 memcpy(&sin6->sin6_addr, t->id.daddr.a6, 2119 sizeof(struct in6_addr)); 2120 sin6->sin6_scope_id = 0; 2121 break; 2122 #endif 2123 default: 2124 break; 2125 } 2126 } 2127 } 2128 2129 /* security context */ 2130 if ((xfrm_ctx = xp->security)) { 2131 int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp); 2132 2133 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size); 2134 sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t); 2135 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; 2136 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; 2137 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; 2138 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; 2139 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, 2140 xfrm_ctx->ctx_len); 2141 } 2142 2143 hdr->sadb_msg_len = size / sizeof(uint64_t); 2144 hdr->sadb_msg_reserved = atomic_read(&xp->refcnt); 2145 2146 return 0; 2147 } 2148 2149 static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c) 2150 { 2151 struct sk_buff *out_skb; 2152 struct sadb_msg *out_hdr; 2153 int err; 2154 2155 out_skb = pfkey_xfrm_policy2msg_prep(xp); 2156 if (IS_ERR(out_skb)) { 2157 err = PTR_ERR(out_skb); 2158 goto out; 2159 } 2160 err = pfkey_xfrm_policy2msg(out_skb, xp, dir); 2161 if (err < 0) 2162 return err; 2163 2164 out_hdr = (struct sadb_msg *) out_skb->data; 2165 out_hdr->sadb_msg_version = PF_KEY_V2; 2166 2167 if (c->data.byid && c->event == XFRM_MSG_DELPOLICY) 2168 out_hdr->sadb_msg_type = SADB_X_SPDDELETE2; 2169 else 2170 out_hdr->sadb_msg_type = event2poltype(c->event); 2171 out_hdr->sadb_msg_errno = 0; 2172 out_hdr->sadb_msg_seq = c->seq; 2173 out_hdr->sadb_msg_pid = c->pid; 2174 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 2175 out: 2176 return 0; 2177 2178 } 2179 2180 static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2181 { 2182 int err = 0; 2183 struct sadb_lifetime *lifetime; 2184 struct sadb_address *sa; 2185 struct sadb_x_policy *pol; 2186 struct xfrm_policy *xp; 2187 struct km_event c; 2188 struct sadb_x_sec_ctx *sec_ctx; 2189 2190 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2191 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || 2192 !ext_hdrs[SADB_X_EXT_POLICY-1]) 2193 return -EINVAL; 2194 2195 pol = ext_hdrs[SADB_X_EXT_POLICY-1]; 2196 if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC) 2197 return -EINVAL; 2198 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) 2199 return -EINVAL; 2200 2201 xp = xfrm_policy_alloc(GFP_KERNEL); 2202 if (xp == NULL) 2203 return -ENOBUFS; 2204 2205 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? 2206 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); 2207 xp->priority = pol->sadb_x_policy_priority; 2208 2209 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2210 xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr); 2211 if (!xp->family) { 2212 err = -EINVAL; 2213 goto out; 2214 } 2215 xp->selector.family = xp->family; 2216 xp->selector.prefixlen_s = sa->sadb_address_prefixlen; 2217 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2218 xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port; 2219 if (xp->selector.sport) 2220 xp->selector.sport_mask = htons(0xffff); 2221 2222 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1], 2223 pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr); 2224 xp->selector.prefixlen_d = sa->sadb_address_prefixlen; 2225 2226 /* Amusing, we set this twice. KAME apps appear to set same value 2227 * in both addresses. 2228 */ 2229 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2230 2231 xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port; 2232 if (xp->selector.dport) 2233 xp->selector.dport_mask = htons(0xffff); 2234 2235 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; 2236 if (sec_ctx != NULL) { 2237 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); 2238 2239 if (!uctx) { 2240 err = -ENOBUFS; 2241 goto out; 2242 } 2243 2244 err = security_xfrm_policy_alloc(xp, uctx); 2245 kfree(uctx); 2246 2247 if (err) 2248 goto out; 2249 } 2250 2251 xp->lft.soft_byte_limit = XFRM_INF; 2252 xp->lft.hard_byte_limit = XFRM_INF; 2253 xp->lft.soft_packet_limit = XFRM_INF; 2254 xp->lft.hard_packet_limit = XFRM_INF; 2255 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) { 2256 xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 2257 xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 2258 xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime; 2259 xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime; 2260 } 2261 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) { 2262 xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations); 2263 xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes); 2264 xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime; 2265 xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime; 2266 } 2267 xp->xfrm_nr = 0; 2268 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2269 (err = parse_ipsecrequests(xp, pol)) < 0) 2270 goto out; 2271 2272 err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp, 2273 hdr->sadb_msg_type != SADB_X_SPDUPDATE); 2274 2275 xfrm_audit_policy_add(xp, err ? 0 : 1, 2276 audit_get_loginuid(current), 0); 2277 2278 if (err) 2279 goto out; 2280 2281 if (hdr->sadb_msg_type == SADB_X_SPDUPDATE) 2282 c.event = XFRM_MSG_UPDPOLICY; 2283 else 2284 c.event = XFRM_MSG_NEWPOLICY; 2285 2286 c.seq = hdr->sadb_msg_seq; 2287 c.pid = hdr->sadb_msg_pid; 2288 2289 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); 2290 xfrm_pol_put(xp); 2291 return 0; 2292 2293 out: 2294 xp->dead = 1; 2295 xfrm_policy_destroy(xp); 2296 return err; 2297 } 2298 2299 static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2300 { 2301 int err; 2302 struct sadb_address *sa; 2303 struct sadb_x_policy *pol; 2304 struct xfrm_policy *xp, tmp; 2305 struct xfrm_selector sel; 2306 struct km_event c; 2307 struct sadb_x_sec_ctx *sec_ctx; 2308 2309 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2310 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) || 2311 !ext_hdrs[SADB_X_EXT_POLICY-1]) 2312 return -EINVAL; 2313 2314 pol = ext_hdrs[SADB_X_EXT_POLICY-1]; 2315 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) 2316 return -EINVAL; 2317 2318 memset(&sel, 0, sizeof(sel)); 2319 2320 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1], 2321 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr); 2322 sel.prefixlen_s = sa->sadb_address_prefixlen; 2323 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2324 sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port; 2325 if (sel.sport) 2326 sel.sport_mask = htons(0xffff); 2327 2328 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1], 2329 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr); 2330 sel.prefixlen_d = sa->sadb_address_prefixlen; 2331 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2332 sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port; 2333 if (sel.dport) 2334 sel.dport_mask = htons(0xffff); 2335 2336 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1]; 2337 memset(&tmp, 0, sizeof(struct xfrm_policy)); 2338 2339 if (sec_ctx != NULL) { 2340 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); 2341 2342 if (!uctx) 2343 return -ENOMEM; 2344 2345 err = security_xfrm_policy_alloc(&tmp, uctx); 2346 kfree(uctx); 2347 2348 if (err) 2349 return err; 2350 } 2351 2352 xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1, 2353 &sel, tmp.security, 1, &err); 2354 security_xfrm_policy_free(&tmp); 2355 2356 if (xp == NULL) 2357 return -ENOENT; 2358 2359 xfrm_audit_policy_delete(xp, err ? 0 : 1, 2360 audit_get_loginuid(current), 0); 2361 2362 if (err) 2363 goto out; 2364 2365 c.seq = hdr->sadb_msg_seq; 2366 c.pid = hdr->sadb_msg_pid; 2367 c.event = XFRM_MSG_DELPOLICY; 2368 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c); 2369 2370 out: 2371 xfrm_pol_put(xp); 2372 return err; 2373 } 2374 2375 static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir) 2376 { 2377 int err; 2378 struct sk_buff *out_skb; 2379 struct sadb_msg *out_hdr; 2380 err = 0; 2381 2382 out_skb = pfkey_xfrm_policy2msg_prep(xp); 2383 if (IS_ERR(out_skb)) { 2384 err = PTR_ERR(out_skb); 2385 goto out; 2386 } 2387 err = pfkey_xfrm_policy2msg(out_skb, xp, dir); 2388 if (err < 0) 2389 goto out; 2390 2391 out_hdr = (struct sadb_msg *) out_skb->data; 2392 out_hdr->sadb_msg_version = hdr->sadb_msg_version; 2393 out_hdr->sadb_msg_type = hdr->sadb_msg_type; 2394 out_hdr->sadb_msg_satype = 0; 2395 out_hdr->sadb_msg_errno = 0; 2396 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq; 2397 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid; 2398 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk); 2399 err = 0; 2400 2401 out: 2402 return err; 2403 } 2404 2405 #ifdef CONFIG_NET_KEY_MIGRATE 2406 static int pfkey_sockaddr_pair_size(sa_family_t family) 2407 { 2408 switch (family) { 2409 case AF_INET: 2410 return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2); 2411 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2412 case AF_INET6: 2413 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2); 2414 #endif 2415 default: 2416 return 0; 2417 } 2418 /* NOTREACHED */ 2419 } 2420 2421 static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq, 2422 xfrm_address_t *saddr, xfrm_address_t *daddr, 2423 u16 *family) 2424 { 2425 struct sockaddr *sa = (struct sockaddr *)(rq + 1); 2426 if (rq->sadb_x_ipsecrequest_len < 2427 pfkey_sockaddr_pair_size(sa->sa_family)) 2428 return -EINVAL; 2429 2430 switch (sa->sa_family) { 2431 case AF_INET: 2432 { 2433 struct sockaddr_in *sin; 2434 sin = (struct sockaddr_in *)sa; 2435 if ((sin+1)->sin_family != AF_INET) 2436 return -EINVAL; 2437 memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4)); 2438 sin++; 2439 memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4)); 2440 *family = AF_INET; 2441 break; 2442 } 2443 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2444 case AF_INET6: 2445 { 2446 struct sockaddr_in6 *sin6; 2447 sin6 = (struct sockaddr_in6 *)sa; 2448 if ((sin6+1)->sin6_family != AF_INET6) 2449 return -EINVAL; 2450 memcpy(&saddr->a6, &sin6->sin6_addr, 2451 sizeof(saddr->a6)); 2452 sin6++; 2453 memcpy(&daddr->a6, &sin6->sin6_addr, 2454 sizeof(daddr->a6)); 2455 *family = AF_INET6; 2456 break; 2457 } 2458 #endif 2459 default: 2460 return -EINVAL; 2461 } 2462 2463 return 0; 2464 } 2465 2466 static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len, 2467 struct xfrm_migrate *m) 2468 { 2469 int err; 2470 struct sadb_x_ipsecrequest *rq2; 2471 int mode; 2472 2473 if (len <= sizeof(struct sadb_x_ipsecrequest) || 2474 len < rq1->sadb_x_ipsecrequest_len) 2475 return -EINVAL; 2476 2477 /* old endoints */ 2478 err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr, 2479 &m->old_family); 2480 if (err) 2481 return err; 2482 2483 rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len); 2484 len -= rq1->sadb_x_ipsecrequest_len; 2485 2486 if (len <= sizeof(struct sadb_x_ipsecrequest) || 2487 len < rq2->sadb_x_ipsecrequest_len) 2488 return -EINVAL; 2489 2490 /* new endpoints */ 2491 err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr, 2492 &m->new_family); 2493 if (err) 2494 return err; 2495 2496 if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto || 2497 rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode || 2498 rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid) 2499 return -EINVAL; 2500 2501 m->proto = rq1->sadb_x_ipsecrequest_proto; 2502 if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0) 2503 return -EINVAL; 2504 m->mode = mode; 2505 m->reqid = rq1->sadb_x_ipsecrequest_reqid; 2506 2507 return ((int)(rq1->sadb_x_ipsecrequest_len + 2508 rq2->sadb_x_ipsecrequest_len)); 2509 } 2510 2511 static int pfkey_migrate(struct sock *sk, struct sk_buff *skb, 2512 struct sadb_msg *hdr, void **ext_hdrs) 2513 { 2514 int i, len, ret, err = -EINVAL; 2515 u8 dir; 2516 struct sadb_address *sa; 2517 struct sadb_x_policy *pol; 2518 struct sadb_x_ipsecrequest *rq; 2519 struct xfrm_selector sel; 2520 struct xfrm_migrate m[XFRM_MAX_DEPTH]; 2521 2522 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1], 2523 ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) || 2524 !ext_hdrs[SADB_X_EXT_POLICY - 1]) { 2525 err = -EINVAL; 2526 goto out; 2527 } 2528 2529 pol = ext_hdrs[SADB_X_EXT_POLICY - 1]; 2530 if (!pol) { 2531 err = -EINVAL; 2532 goto out; 2533 } 2534 2535 if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) { 2536 err = -EINVAL; 2537 goto out; 2538 } 2539 2540 dir = pol->sadb_x_policy_dir - 1; 2541 memset(&sel, 0, sizeof(sel)); 2542 2543 /* set source address info of selector */ 2544 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1]; 2545 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr); 2546 sel.prefixlen_s = sa->sadb_address_prefixlen; 2547 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2548 sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port; 2549 if (sel.sport) 2550 sel.sport_mask = htons(0xffff); 2551 2552 /* set destination address info of selector */ 2553 sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1], 2554 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr); 2555 sel.prefixlen_d = sa->sadb_address_prefixlen; 2556 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto); 2557 sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port; 2558 if (sel.dport) 2559 sel.dport_mask = htons(0xffff); 2560 2561 rq = (struct sadb_x_ipsecrequest *)(pol + 1); 2562 2563 /* extract ipsecrequests */ 2564 i = 0; 2565 len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy); 2566 2567 while (len > 0 && i < XFRM_MAX_DEPTH) { 2568 ret = ipsecrequests_to_migrate(rq, len, &m[i]); 2569 if (ret < 0) { 2570 err = ret; 2571 goto out; 2572 } else { 2573 rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret); 2574 len -= ret; 2575 i++; 2576 } 2577 } 2578 2579 if (!i || len > 0) { 2580 err = -EINVAL; 2581 goto out; 2582 } 2583 2584 return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i); 2585 2586 out: 2587 return err; 2588 } 2589 #else 2590 static int pfkey_migrate(struct sock *sk, struct sk_buff *skb, 2591 struct sadb_msg *hdr, void **ext_hdrs) 2592 { 2593 return -ENOPROTOOPT; 2594 } 2595 #endif 2596 2597 2598 static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2599 { 2600 unsigned int dir; 2601 int err = 0, delete; 2602 struct sadb_x_policy *pol; 2603 struct xfrm_policy *xp; 2604 struct km_event c; 2605 2606 if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL) 2607 return -EINVAL; 2608 2609 dir = xfrm_policy_id2dir(pol->sadb_x_policy_id); 2610 if (dir >= XFRM_POLICY_MAX) 2611 return -EINVAL; 2612 2613 delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2); 2614 xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id, 2615 delete, &err); 2616 if (xp == NULL) 2617 return -ENOENT; 2618 2619 if (delete) { 2620 xfrm_audit_policy_delete(xp, err ? 0 : 1, 2621 audit_get_loginuid(current), 0); 2622 2623 if (err) 2624 goto out; 2625 c.seq = hdr->sadb_msg_seq; 2626 c.pid = hdr->sadb_msg_pid; 2627 c.data.byid = 1; 2628 c.event = XFRM_MSG_DELPOLICY; 2629 km_policy_notify(xp, dir, &c); 2630 } else { 2631 err = key_pol_get_resp(sk, xp, hdr, dir); 2632 } 2633 2634 out: 2635 xfrm_pol_put(xp); 2636 return err; 2637 } 2638 2639 static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr) 2640 { 2641 struct pfkey_dump_data *data = ptr; 2642 struct sk_buff *out_skb; 2643 struct sadb_msg *out_hdr; 2644 int err; 2645 2646 out_skb = pfkey_xfrm_policy2msg_prep(xp); 2647 if (IS_ERR(out_skb)) 2648 return PTR_ERR(out_skb); 2649 2650 err = pfkey_xfrm_policy2msg(out_skb, xp, dir); 2651 if (err < 0) 2652 return err; 2653 2654 out_hdr = (struct sadb_msg *) out_skb->data; 2655 out_hdr->sadb_msg_version = data->hdr->sadb_msg_version; 2656 out_hdr->sadb_msg_type = SADB_X_SPDDUMP; 2657 out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC; 2658 out_hdr->sadb_msg_errno = 0; 2659 out_hdr->sadb_msg_seq = count; 2660 out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid; 2661 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk); 2662 return 0; 2663 } 2664 2665 static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2666 { 2667 struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk }; 2668 2669 return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data); 2670 } 2671 2672 static int key_notify_policy_flush(struct km_event *c) 2673 { 2674 struct sk_buff *skb_out; 2675 struct sadb_msg *hdr; 2676 2677 skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC); 2678 if (!skb_out) 2679 return -ENOBUFS; 2680 hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg)); 2681 hdr->sadb_msg_type = SADB_X_SPDFLUSH; 2682 hdr->sadb_msg_seq = c->seq; 2683 hdr->sadb_msg_pid = c->pid; 2684 hdr->sadb_msg_version = PF_KEY_V2; 2685 hdr->sadb_msg_errno = (uint8_t) 0; 2686 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t)); 2687 pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL); 2688 return 0; 2689 2690 } 2691 2692 static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs) 2693 { 2694 struct km_event c; 2695 struct xfrm_audit audit_info; 2696 int err; 2697 2698 audit_info.loginuid = audit_get_loginuid(current); 2699 audit_info.secid = 0; 2700 err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info); 2701 if (err) 2702 return err; 2703 c.data.type = XFRM_POLICY_TYPE_MAIN; 2704 c.event = XFRM_MSG_FLUSHPOLICY; 2705 c.pid = hdr->sadb_msg_pid; 2706 c.seq = hdr->sadb_msg_seq; 2707 km_policy_notify(NULL, 0, &c); 2708 2709 return 0; 2710 } 2711 2712 typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb, 2713 struct sadb_msg *hdr, void **ext_hdrs); 2714 static pfkey_handler pfkey_funcs[SADB_MAX + 1] = { 2715 [SADB_RESERVED] = pfkey_reserved, 2716 [SADB_GETSPI] = pfkey_getspi, 2717 [SADB_UPDATE] = pfkey_add, 2718 [SADB_ADD] = pfkey_add, 2719 [SADB_DELETE] = pfkey_delete, 2720 [SADB_GET] = pfkey_get, 2721 [SADB_ACQUIRE] = pfkey_acquire, 2722 [SADB_REGISTER] = pfkey_register, 2723 [SADB_EXPIRE] = NULL, 2724 [SADB_FLUSH] = pfkey_flush, 2725 [SADB_DUMP] = pfkey_dump, 2726 [SADB_X_PROMISC] = pfkey_promisc, 2727 [SADB_X_PCHANGE] = NULL, 2728 [SADB_X_SPDUPDATE] = pfkey_spdadd, 2729 [SADB_X_SPDADD] = pfkey_spdadd, 2730 [SADB_X_SPDDELETE] = pfkey_spddelete, 2731 [SADB_X_SPDGET] = pfkey_spdget, 2732 [SADB_X_SPDACQUIRE] = NULL, 2733 [SADB_X_SPDDUMP] = pfkey_spddump, 2734 [SADB_X_SPDFLUSH] = pfkey_spdflush, 2735 [SADB_X_SPDSETIDX] = pfkey_spdadd, 2736 [SADB_X_SPDDELETE2] = pfkey_spdget, 2737 [SADB_X_MIGRATE] = pfkey_migrate, 2738 }; 2739 2740 static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr) 2741 { 2742 void *ext_hdrs[SADB_EXT_MAX]; 2743 int err; 2744 2745 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, 2746 BROADCAST_PROMISC_ONLY, NULL); 2747 2748 memset(ext_hdrs, 0, sizeof(ext_hdrs)); 2749 err = parse_exthdrs(skb, hdr, ext_hdrs); 2750 if (!err) { 2751 err = -EOPNOTSUPP; 2752 if (pfkey_funcs[hdr->sadb_msg_type]) 2753 err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs); 2754 } 2755 return err; 2756 } 2757 2758 static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp) 2759 { 2760 struct sadb_msg *hdr = NULL; 2761 2762 if (skb->len < sizeof(*hdr)) { 2763 *errp = -EMSGSIZE; 2764 } else { 2765 hdr = (struct sadb_msg *) skb->data; 2766 if (hdr->sadb_msg_version != PF_KEY_V2 || 2767 hdr->sadb_msg_reserved != 0 || 2768 (hdr->sadb_msg_type <= SADB_RESERVED || 2769 hdr->sadb_msg_type > SADB_MAX)) { 2770 hdr = NULL; 2771 *errp = -EINVAL; 2772 } else if (hdr->sadb_msg_len != (skb->len / 2773 sizeof(uint64_t)) || 2774 hdr->sadb_msg_len < (sizeof(struct sadb_msg) / 2775 sizeof(uint64_t))) { 2776 hdr = NULL; 2777 *errp = -EMSGSIZE; 2778 } else { 2779 *errp = 0; 2780 } 2781 } 2782 return hdr; 2783 } 2784 2785 static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d) 2786 { 2787 unsigned int id = d->desc.sadb_alg_id; 2788 2789 if (id >= sizeof(t->aalgos) * 8) 2790 return 0; 2791 2792 return (t->aalgos >> id) & 1; 2793 } 2794 2795 static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d) 2796 { 2797 unsigned int id = d->desc.sadb_alg_id; 2798 2799 if (id >= sizeof(t->ealgos) * 8) 2800 return 0; 2801 2802 return (t->ealgos >> id) & 1; 2803 } 2804 2805 static int count_ah_combs(struct xfrm_tmpl *t) 2806 { 2807 int i, sz = 0; 2808 2809 for (i = 0; ; i++) { 2810 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 2811 if (!aalg) 2812 break; 2813 if (aalg_tmpl_set(t, aalg) && aalg->available) 2814 sz += sizeof(struct sadb_comb); 2815 } 2816 return sz + sizeof(struct sadb_prop); 2817 } 2818 2819 static int count_esp_combs(struct xfrm_tmpl *t) 2820 { 2821 int i, k, sz = 0; 2822 2823 for (i = 0; ; i++) { 2824 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 2825 if (!ealg) 2826 break; 2827 2828 if (!(ealg_tmpl_set(t, ealg) && ealg->available)) 2829 continue; 2830 2831 for (k = 1; ; k++) { 2832 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); 2833 if (!aalg) 2834 break; 2835 2836 if (aalg_tmpl_set(t, aalg) && aalg->available) 2837 sz += sizeof(struct sadb_comb); 2838 } 2839 } 2840 return sz + sizeof(struct sadb_prop); 2841 } 2842 2843 static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t) 2844 { 2845 struct sadb_prop *p; 2846 int i; 2847 2848 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop)); 2849 p->sadb_prop_len = sizeof(struct sadb_prop)/8; 2850 p->sadb_prop_exttype = SADB_EXT_PROPOSAL; 2851 p->sadb_prop_replay = 32; 2852 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); 2853 2854 for (i = 0; ; i++) { 2855 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i); 2856 if (!aalg) 2857 break; 2858 2859 if (aalg_tmpl_set(t, aalg) && aalg->available) { 2860 struct sadb_comb *c; 2861 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb)); 2862 memset(c, 0, sizeof(*c)); 2863 p->sadb_prop_len += sizeof(struct sadb_comb)/8; 2864 c->sadb_comb_auth = aalg->desc.sadb_alg_id; 2865 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; 2866 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; 2867 c->sadb_comb_hard_addtime = 24*60*60; 2868 c->sadb_comb_soft_addtime = 20*60*60; 2869 c->sadb_comb_hard_usetime = 8*60*60; 2870 c->sadb_comb_soft_usetime = 7*60*60; 2871 } 2872 } 2873 } 2874 2875 static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t) 2876 { 2877 struct sadb_prop *p; 2878 int i, k; 2879 2880 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop)); 2881 p->sadb_prop_len = sizeof(struct sadb_prop)/8; 2882 p->sadb_prop_exttype = SADB_EXT_PROPOSAL; 2883 p->sadb_prop_replay = 32; 2884 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved)); 2885 2886 for (i=0; ; i++) { 2887 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i); 2888 if (!ealg) 2889 break; 2890 2891 if (!(ealg_tmpl_set(t, ealg) && ealg->available)) 2892 continue; 2893 2894 for (k = 1; ; k++) { 2895 struct sadb_comb *c; 2896 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k); 2897 if (!aalg) 2898 break; 2899 if (!(aalg_tmpl_set(t, aalg) && aalg->available)) 2900 continue; 2901 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb)); 2902 memset(c, 0, sizeof(*c)); 2903 p->sadb_prop_len += sizeof(struct sadb_comb)/8; 2904 c->sadb_comb_auth = aalg->desc.sadb_alg_id; 2905 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits; 2906 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits; 2907 c->sadb_comb_encrypt = ealg->desc.sadb_alg_id; 2908 c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits; 2909 c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits; 2910 c->sadb_comb_hard_addtime = 24*60*60; 2911 c->sadb_comb_soft_addtime = 20*60*60; 2912 c->sadb_comb_hard_usetime = 8*60*60; 2913 c->sadb_comb_soft_usetime = 7*60*60; 2914 } 2915 } 2916 } 2917 2918 static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c) 2919 { 2920 return 0; 2921 } 2922 2923 static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c) 2924 { 2925 struct sk_buff *out_skb; 2926 struct sadb_msg *out_hdr; 2927 int hard; 2928 int hsc; 2929 2930 hard = c->data.hard; 2931 if (hard) 2932 hsc = 2; 2933 else 2934 hsc = 1; 2935 2936 out_skb = pfkey_xfrm_state2msg_expire(x, hsc); 2937 if (IS_ERR(out_skb)) 2938 return PTR_ERR(out_skb); 2939 2940 out_hdr = (struct sadb_msg *) out_skb->data; 2941 out_hdr->sadb_msg_version = PF_KEY_V2; 2942 out_hdr->sadb_msg_type = SADB_EXPIRE; 2943 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 2944 out_hdr->sadb_msg_errno = 0; 2945 out_hdr->sadb_msg_reserved = 0; 2946 out_hdr->sadb_msg_seq = 0; 2947 out_hdr->sadb_msg_pid = 0; 2948 2949 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 2950 return 0; 2951 } 2952 2953 static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c) 2954 { 2955 switch (c->event) { 2956 case XFRM_MSG_EXPIRE: 2957 return key_notify_sa_expire(x, c); 2958 case XFRM_MSG_DELSA: 2959 case XFRM_MSG_NEWSA: 2960 case XFRM_MSG_UPDSA: 2961 return key_notify_sa(x, c); 2962 case XFRM_MSG_FLUSHSA: 2963 return key_notify_sa_flush(c); 2964 case XFRM_MSG_NEWAE: /* not yet supported */ 2965 break; 2966 default: 2967 printk("pfkey: Unknown SA event %d\n", c->event); 2968 break; 2969 } 2970 2971 return 0; 2972 } 2973 2974 static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c) 2975 { 2976 if (xp && xp->type != XFRM_POLICY_TYPE_MAIN) 2977 return 0; 2978 2979 switch (c->event) { 2980 case XFRM_MSG_POLEXPIRE: 2981 return key_notify_policy_expire(xp, c); 2982 case XFRM_MSG_DELPOLICY: 2983 case XFRM_MSG_NEWPOLICY: 2984 case XFRM_MSG_UPDPOLICY: 2985 return key_notify_policy(xp, dir, c); 2986 case XFRM_MSG_FLUSHPOLICY: 2987 if (c->data.type != XFRM_POLICY_TYPE_MAIN) 2988 break; 2989 return key_notify_policy_flush(c); 2990 default: 2991 printk("pfkey: Unknown policy event %d\n", c->event); 2992 break; 2993 } 2994 2995 return 0; 2996 } 2997 2998 static u32 get_acqseq(void) 2999 { 3000 u32 res; 3001 static u32 acqseq; 3002 static DEFINE_SPINLOCK(acqseq_lock); 3003 3004 spin_lock_bh(&acqseq_lock); 3005 res = (++acqseq ? : ++acqseq); 3006 spin_unlock_bh(&acqseq_lock); 3007 return res; 3008 } 3009 3010 static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir) 3011 { 3012 struct sk_buff *skb; 3013 struct sadb_msg *hdr; 3014 struct sadb_address *addr; 3015 struct sadb_x_policy *pol; 3016 struct sockaddr_in *sin; 3017 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3018 struct sockaddr_in6 *sin6; 3019 #endif 3020 int sockaddr_size; 3021 int size; 3022 struct sadb_x_sec_ctx *sec_ctx; 3023 struct xfrm_sec_ctx *xfrm_ctx; 3024 int ctx_size = 0; 3025 3026 sockaddr_size = pfkey_sockaddr_size(x->props.family); 3027 if (!sockaddr_size) 3028 return -EINVAL; 3029 3030 size = sizeof(struct sadb_msg) + 3031 (sizeof(struct sadb_address) * 2) + 3032 (sockaddr_size * 2) + 3033 sizeof(struct sadb_x_policy); 3034 3035 if (x->id.proto == IPPROTO_AH) 3036 size += count_ah_combs(t); 3037 else if (x->id.proto == IPPROTO_ESP) 3038 size += count_esp_combs(t); 3039 3040 if ((xfrm_ctx = x->security)) { 3041 ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len); 3042 size += sizeof(struct sadb_x_sec_ctx) + ctx_size; 3043 } 3044 3045 skb = alloc_skb(size + 16, GFP_ATOMIC); 3046 if (skb == NULL) 3047 return -ENOMEM; 3048 3049 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 3050 hdr->sadb_msg_version = PF_KEY_V2; 3051 hdr->sadb_msg_type = SADB_ACQUIRE; 3052 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto); 3053 hdr->sadb_msg_len = size / sizeof(uint64_t); 3054 hdr->sadb_msg_errno = 0; 3055 hdr->sadb_msg_reserved = 0; 3056 hdr->sadb_msg_seq = x->km.seq = get_acqseq(); 3057 hdr->sadb_msg_pid = 0; 3058 3059 /* src address */ 3060 addr = (struct sadb_address*) skb_put(skb, 3061 sizeof(struct sadb_address)+sockaddr_size); 3062 addr->sadb_address_len = 3063 (sizeof(struct sadb_address)+sockaddr_size)/ 3064 sizeof(uint64_t); 3065 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 3066 addr->sadb_address_proto = 0; 3067 addr->sadb_address_reserved = 0; 3068 if (x->props.family == AF_INET) { 3069 addr->sadb_address_prefixlen = 32; 3070 3071 sin = (struct sockaddr_in *) (addr + 1); 3072 sin->sin_family = AF_INET; 3073 sin->sin_addr.s_addr = x->props.saddr.a4; 3074 sin->sin_port = 0; 3075 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3076 } 3077 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3078 else if (x->props.family == AF_INET6) { 3079 addr->sadb_address_prefixlen = 128; 3080 3081 sin6 = (struct sockaddr_in6 *) (addr + 1); 3082 sin6->sin6_family = AF_INET6; 3083 sin6->sin6_port = 0; 3084 sin6->sin6_flowinfo = 0; 3085 memcpy(&sin6->sin6_addr, 3086 x->props.saddr.a6, sizeof(struct in6_addr)); 3087 sin6->sin6_scope_id = 0; 3088 } 3089 #endif 3090 else 3091 BUG(); 3092 3093 /* dst address */ 3094 addr = (struct sadb_address*) skb_put(skb, 3095 sizeof(struct sadb_address)+sockaddr_size); 3096 addr->sadb_address_len = 3097 (sizeof(struct sadb_address)+sockaddr_size)/ 3098 sizeof(uint64_t); 3099 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 3100 addr->sadb_address_proto = 0; 3101 addr->sadb_address_reserved = 0; 3102 if (x->props.family == AF_INET) { 3103 addr->sadb_address_prefixlen = 32; 3104 3105 sin = (struct sockaddr_in *) (addr + 1); 3106 sin->sin_family = AF_INET; 3107 sin->sin_addr.s_addr = x->id.daddr.a4; 3108 sin->sin_port = 0; 3109 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3110 } 3111 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3112 else if (x->props.family == AF_INET6) { 3113 addr->sadb_address_prefixlen = 128; 3114 3115 sin6 = (struct sockaddr_in6 *) (addr + 1); 3116 sin6->sin6_family = AF_INET6; 3117 sin6->sin6_port = 0; 3118 sin6->sin6_flowinfo = 0; 3119 memcpy(&sin6->sin6_addr, 3120 x->id.daddr.a6, sizeof(struct in6_addr)); 3121 sin6->sin6_scope_id = 0; 3122 } 3123 #endif 3124 else 3125 BUG(); 3126 3127 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy)); 3128 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t); 3129 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3130 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; 3131 pol->sadb_x_policy_dir = dir+1; 3132 pol->sadb_x_policy_id = xp->index; 3133 3134 /* Set sadb_comb's. */ 3135 if (x->id.proto == IPPROTO_AH) 3136 dump_ah_combs(skb, t); 3137 else if (x->id.proto == IPPROTO_ESP) 3138 dump_esp_combs(skb, t); 3139 3140 /* security context */ 3141 if (xfrm_ctx) { 3142 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, 3143 sizeof(struct sadb_x_sec_ctx) + ctx_size); 3144 sec_ctx->sadb_x_sec_len = 3145 (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t); 3146 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX; 3147 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi; 3148 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg; 3149 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len; 3150 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str, 3151 xfrm_ctx->ctx_len); 3152 } 3153 3154 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 3155 } 3156 3157 static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt, 3158 u8 *data, int len, int *dir) 3159 { 3160 struct xfrm_policy *xp; 3161 struct sadb_x_policy *pol = (struct sadb_x_policy*)data; 3162 struct sadb_x_sec_ctx *sec_ctx; 3163 3164 switch (sk->sk_family) { 3165 case AF_INET: 3166 if (opt != IP_IPSEC_POLICY) { 3167 *dir = -EOPNOTSUPP; 3168 return NULL; 3169 } 3170 break; 3171 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3172 case AF_INET6: 3173 if (opt != IPV6_IPSEC_POLICY) { 3174 *dir = -EOPNOTSUPP; 3175 return NULL; 3176 } 3177 break; 3178 #endif 3179 default: 3180 *dir = -EINVAL; 3181 return NULL; 3182 } 3183 3184 *dir = -EINVAL; 3185 3186 if (len < sizeof(struct sadb_x_policy) || 3187 pol->sadb_x_policy_len*8 > len || 3188 pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS || 3189 (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND)) 3190 return NULL; 3191 3192 xp = xfrm_policy_alloc(GFP_ATOMIC); 3193 if (xp == NULL) { 3194 *dir = -ENOBUFS; 3195 return NULL; 3196 } 3197 3198 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ? 3199 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW); 3200 3201 xp->lft.soft_byte_limit = XFRM_INF; 3202 xp->lft.hard_byte_limit = XFRM_INF; 3203 xp->lft.soft_packet_limit = XFRM_INF; 3204 xp->lft.hard_packet_limit = XFRM_INF; 3205 xp->family = sk->sk_family; 3206 3207 xp->xfrm_nr = 0; 3208 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 3209 (*dir = parse_ipsecrequests(xp, pol)) < 0) 3210 goto out; 3211 3212 /* security context too */ 3213 if (len >= (pol->sadb_x_policy_len*8 + 3214 sizeof(struct sadb_x_sec_ctx))) { 3215 char *p = (char *)pol; 3216 struct xfrm_user_sec_ctx *uctx; 3217 3218 p += pol->sadb_x_policy_len*8; 3219 sec_ctx = (struct sadb_x_sec_ctx *)p; 3220 if (len < pol->sadb_x_policy_len*8 + 3221 sec_ctx->sadb_x_sec_len) { 3222 *dir = -EINVAL; 3223 goto out; 3224 } 3225 if ((*dir = verify_sec_ctx_len(p))) 3226 goto out; 3227 uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx); 3228 *dir = security_xfrm_policy_alloc(xp, uctx); 3229 kfree(uctx); 3230 3231 if (*dir) 3232 goto out; 3233 } 3234 3235 *dir = pol->sadb_x_policy_dir-1; 3236 return xp; 3237 3238 out: 3239 xfrm_policy_destroy(xp); 3240 return NULL; 3241 } 3242 3243 static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport) 3244 { 3245 struct sk_buff *skb; 3246 struct sadb_msg *hdr; 3247 struct sadb_sa *sa; 3248 struct sadb_address *addr; 3249 struct sadb_x_nat_t_port *n_port; 3250 struct sockaddr_in *sin; 3251 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3252 struct sockaddr_in6 *sin6; 3253 #endif 3254 int sockaddr_size; 3255 int size; 3256 __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0); 3257 struct xfrm_encap_tmpl *natt = NULL; 3258 3259 sockaddr_size = pfkey_sockaddr_size(x->props.family); 3260 if (!sockaddr_size) 3261 return -EINVAL; 3262 3263 if (!satype) 3264 return -EINVAL; 3265 3266 if (!x->encap) 3267 return -EINVAL; 3268 3269 natt = x->encap; 3270 3271 /* Build an SADB_X_NAT_T_NEW_MAPPING message: 3272 * 3273 * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) | 3274 * ADDRESS_DST (new addr) | NAT_T_DPORT (new port) 3275 */ 3276 3277 size = sizeof(struct sadb_msg) + 3278 sizeof(struct sadb_sa) + 3279 (sizeof(struct sadb_address) * 2) + 3280 (sockaddr_size * 2) + 3281 (sizeof(struct sadb_x_nat_t_port) * 2); 3282 3283 skb = alloc_skb(size + 16, GFP_ATOMIC); 3284 if (skb == NULL) 3285 return -ENOMEM; 3286 3287 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg)); 3288 hdr->sadb_msg_version = PF_KEY_V2; 3289 hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING; 3290 hdr->sadb_msg_satype = satype; 3291 hdr->sadb_msg_len = size / sizeof(uint64_t); 3292 hdr->sadb_msg_errno = 0; 3293 hdr->sadb_msg_reserved = 0; 3294 hdr->sadb_msg_seq = x->km.seq = get_acqseq(); 3295 hdr->sadb_msg_pid = 0; 3296 3297 /* SA */ 3298 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa)); 3299 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t); 3300 sa->sadb_sa_exttype = SADB_EXT_SA; 3301 sa->sadb_sa_spi = x->id.spi; 3302 sa->sadb_sa_replay = 0; 3303 sa->sadb_sa_state = 0; 3304 sa->sadb_sa_auth = 0; 3305 sa->sadb_sa_encrypt = 0; 3306 sa->sadb_sa_flags = 0; 3307 3308 /* ADDRESS_SRC (old addr) */ 3309 addr = (struct sadb_address*) 3310 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); 3311 addr->sadb_address_len = 3312 (sizeof(struct sadb_address)+sockaddr_size)/ 3313 sizeof(uint64_t); 3314 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC; 3315 addr->sadb_address_proto = 0; 3316 addr->sadb_address_reserved = 0; 3317 if (x->props.family == AF_INET) { 3318 addr->sadb_address_prefixlen = 32; 3319 3320 sin = (struct sockaddr_in *) (addr + 1); 3321 sin->sin_family = AF_INET; 3322 sin->sin_addr.s_addr = x->props.saddr.a4; 3323 sin->sin_port = 0; 3324 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3325 } 3326 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3327 else if (x->props.family == AF_INET6) { 3328 addr->sadb_address_prefixlen = 128; 3329 3330 sin6 = (struct sockaddr_in6 *) (addr + 1); 3331 sin6->sin6_family = AF_INET6; 3332 sin6->sin6_port = 0; 3333 sin6->sin6_flowinfo = 0; 3334 memcpy(&sin6->sin6_addr, 3335 x->props.saddr.a6, sizeof(struct in6_addr)); 3336 sin6->sin6_scope_id = 0; 3337 } 3338 #endif 3339 else 3340 BUG(); 3341 3342 /* NAT_T_SPORT (old port) */ 3343 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 3344 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 3345 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT; 3346 n_port->sadb_x_nat_t_port_port = natt->encap_sport; 3347 n_port->sadb_x_nat_t_port_reserved = 0; 3348 3349 /* ADDRESS_DST (new addr) */ 3350 addr = (struct sadb_address*) 3351 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size); 3352 addr->sadb_address_len = 3353 (sizeof(struct sadb_address)+sockaddr_size)/ 3354 sizeof(uint64_t); 3355 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST; 3356 addr->sadb_address_proto = 0; 3357 addr->sadb_address_reserved = 0; 3358 if (x->props.family == AF_INET) { 3359 addr->sadb_address_prefixlen = 32; 3360 3361 sin = (struct sockaddr_in *) (addr + 1); 3362 sin->sin_family = AF_INET; 3363 sin->sin_addr.s_addr = ipaddr->a4; 3364 sin->sin_port = 0; 3365 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3366 } 3367 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3368 else if (x->props.family == AF_INET6) { 3369 addr->sadb_address_prefixlen = 128; 3370 3371 sin6 = (struct sockaddr_in6 *) (addr + 1); 3372 sin6->sin6_family = AF_INET6; 3373 sin6->sin6_port = 0; 3374 sin6->sin6_flowinfo = 0; 3375 memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr)); 3376 sin6->sin6_scope_id = 0; 3377 } 3378 #endif 3379 else 3380 BUG(); 3381 3382 /* NAT_T_DPORT (new port) */ 3383 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port)); 3384 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t); 3385 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT; 3386 n_port->sadb_x_nat_t_port_port = sport; 3387 n_port->sadb_x_nat_t_port_reserved = 0; 3388 3389 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL); 3390 } 3391 3392 #ifdef CONFIG_NET_KEY_MIGRATE 3393 static int set_sadb_address(struct sk_buff *skb, int sasize, int type, 3394 struct xfrm_selector *sel) 3395 { 3396 struct sadb_address *addr; 3397 struct sockaddr_in *sin; 3398 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3399 struct sockaddr_in6 *sin6; 3400 #endif 3401 addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize); 3402 addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8; 3403 addr->sadb_address_exttype = type; 3404 addr->sadb_address_proto = sel->proto; 3405 addr->sadb_address_reserved = 0; 3406 3407 switch (type) { 3408 case SADB_EXT_ADDRESS_SRC: 3409 if (sel->family == AF_INET) { 3410 addr->sadb_address_prefixlen = sel->prefixlen_s; 3411 sin = (struct sockaddr_in *)(addr + 1); 3412 sin->sin_family = AF_INET; 3413 memcpy(&sin->sin_addr.s_addr, &sel->saddr, 3414 sizeof(sin->sin_addr.s_addr)); 3415 sin->sin_port = 0; 3416 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3417 } 3418 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3419 else if (sel->family == AF_INET6) { 3420 addr->sadb_address_prefixlen = sel->prefixlen_s; 3421 sin6 = (struct sockaddr_in6 *)(addr + 1); 3422 sin6->sin6_family = AF_INET6; 3423 sin6->sin6_port = 0; 3424 sin6->sin6_flowinfo = 0; 3425 sin6->sin6_scope_id = 0; 3426 memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr, 3427 sizeof(sin6->sin6_addr.s6_addr)); 3428 } 3429 #endif 3430 break; 3431 case SADB_EXT_ADDRESS_DST: 3432 if (sel->family == AF_INET) { 3433 addr->sadb_address_prefixlen = sel->prefixlen_d; 3434 sin = (struct sockaddr_in *)(addr + 1); 3435 sin->sin_family = AF_INET; 3436 memcpy(&sin->sin_addr.s_addr, &sel->daddr, 3437 sizeof(sin->sin_addr.s_addr)); 3438 sin->sin_port = 0; 3439 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 3440 } 3441 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3442 else if (sel->family == AF_INET6) { 3443 addr->sadb_address_prefixlen = sel->prefixlen_d; 3444 sin6 = (struct sockaddr_in6 *)(addr + 1); 3445 sin6->sin6_family = AF_INET6; 3446 sin6->sin6_port = 0; 3447 sin6->sin6_flowinfo = 0; 3448 sin6->sin6_scope_id = 0; 3449 memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr, 3450 sizeof(sin6->sin6_addr.s6_addr)); 3451 } 3452 #endif 3453 break; 3454 default: 3455 return -EINVAL; 3456 } 3457 3458 return 0; 3459 } 3460 3461 static int set_ipsecrequest(struct sk_buff *skb, 3462 uint8_t proto, uint8_t mode, int level, 3463 uint32_t reqid, uint8_t family, 3464 xfrm_address_t *src, xfrm_address_t *dst) 3465 { 3466 struct sadb_x_ipsecrequest *rq; 3467 struct sockaddr_in *sin; 3468 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3469 struct sockaddr_in6 *sin6; 3470 #endif 3471 int size_req; 3472 3473 size_req = sizeof(struct sadb_x_ipsecrequest) + 3474 pfkey_sockaddr_pair_size(family); 3475 3476 rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req); 3477 memset(rq, 0, size_req); 3478 rq->sadb_x_ipsecrequest_len = size_req; 3479 rq->sadb_x_ipsecrequest_proto = proto; 3480 rq->sadb_x_ipsecrequest_mode = mode; 3481 rq->sadb_x_ipsecrequest_level = level; 3482 rq->sadb_x_ipsecrequest_reqid = reqid; 3483 3484 switch (family) { 3485 case AF_INET: 3486 sin = (struct sockaddr_in *)(rq + 1); 3487 sin->sin_family = AF_INET; 3488 memcpy(&sin->sin_addr.s_addr, src, 3489 sizeof(sin->sin_addr.s_addr)); 3490 sin++; 3491 sin->sin_family = AF_INET; 3492 memcpy(&sin->sin_addr.s_addr, dst, 3493 sizeof(sin->sin_addr.s_addr)); 3494 break; 3495 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3496 case AF_INET6: 3497 sin6 = (struct sockaddr_in6 *)(rq + 1); 3498 sin6->sin6_family = AF_INET6; 3499 sin6->sin6_port = 0; 3500 sin6->sin6_flowinfo = 0; 3501 sin6->sin6_scope_id = 0; 3502 memcpy(&sin6->sin6_addr.s6_addr, src, 3503 sizeof(sin6->sin6_addr.s6_addr)); 3504 sin6++; 3505 sin6->sin6_family = AF_INET6; 3506 sin6->sin6_port = 0; 3507 sin6->sin6_flowinfo = 0; 3508 sin6->sin6_scope_id = 0; 3509 memcpy(&sin6->sin6_addr.s6_addr, dst, 3510 sizeof(sin6->sin6_addr.s6_addr)); 3511 break; 3512 #endif 3513 default: 3514 return -EINVAL; 3515 } 3516 3517 return 0; 3518 } 3519 #endif 3520 3521 #ifdef CONFIG_NET_KEY_MIGRATE 3522 static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type, 3523 struct xfrm_migrate *m, int num_bundles) 3524 { 3525 int i; 3526 int sasize_sel; 3527 int size = 0; 3528 int size_pol = 0; 3529 struct sk_buff *skb; 3530 struct sadb_msg *hdr; 3531 struct sadb_x_policy *pol; 3532 struct xfrm_migrate *mp; 3533 3534 if (type != XFRM_POLICY_TYPE_MAIN) 3535 return 0; 3536 3537 if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH) 3538 return -EINVAL; 3539 3540 /* selector */ 3541 sasize_sel = pfkey_sockaddr_size(sel->family); 3542 if (!sasize_sel) 3543 return -EINVAL; 3544 size += (sizeof(struct sadb_address) + sasize_sel) * 2; 3545 3546 /* policy info */ 3547 size_pol += sizeof(struct sadb_x_policy); 3548 3549 /* ipsecrequests */ 3550 for (i = 0, mp = m; i < num_bundles; i++, mp++) { 3551 /* old locator pair */ 3552 size_pol += sizeof(struct sadb_x_ipsecrequest) + 3553 pfkey_sockaddr_pair_size(mp->old_family); 3554 /* new locator pair */ 3555 size_pol += sizeof(struct sadb_x_ipsecrequest) + 3556 pfkey_sockaddr_pair_size(mp->new_family); 3557 } 3558 3559 size += sizeof(struct sadb_msg) + size_pol; 3560 3561 /* alloc buffer */ 3562 skb = alloc_skb(size, GFP_ATOMIC); 3563 if (skb == NULL) 3564 return -ENOMEM; 3565 3566 hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg)); 3567 hdr->sadb_msg_version = PF_KEY_V2; 3568 hdr->sadb_msg_type = SADB_X_MIGRATE; 3569 hdr->sadb_msg_satype = pfkey_proto2satype(m->proto); 3570 hdr->sadb_msg_len = size / 8; 3571 hdr->sadb_msg_errno = 0; 3572 hdr->sadb_msg_reserved = 0; 3573 hdr->sadb_msg_seq = 0; 3574 hdr->sadb_msg_pid = 0; 3575 3576 /* selector src */ 3577 set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel); 3578 3579 /* selector dst */ 3580 set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel); 3581 3582 /* policy information */ 3583 pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy)); 3584 pol->sadb_x_policy_len = size_pol / 8; 3585 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3586 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC; 3587 pol->sadb_x_policy_dir = dir + 1; 3588 pol->sadb_x_policy_id = 0; 3589 pol->sadb_x_policy_priority = 0; 3590 3591 for (i = 0, mp = m; i < num_bundles; i++, mp++) { 3592 /* old ipsecrequest */ 3593 int mode = pfkey_mode_from_xfrm(mp->mode); 3594 if (mode < 0) 3595 goto err; 3596 if (set_ipsecrequest(skb, mp->proto, mode, 3597 (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE), 3598 mp->reqid, mp->old_family, 3599 &mp->old_saddr, &mp->old_daddr) < 0) 3600 goto err; 3601 3602 /* new ipsecrequest */ 3603 if (set_ipsecrequest(skb, mp->proto, mode, 3604 (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE), 3605 mp->reqid, mp->new_family, 3606 &mp->new_saddr, &mp->new_daddr) < 0) 3607 goto err; 3608 } 3609 3610 /* broadcast migrate message to sockets */ 3611 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL); 3612 3613 return 0; 3614 3615 err: 3616 kfree_skb(skb); 3617 return -EINVAL; 3618 } 3619 #else 3620 static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type, 3621 struct xfrm_migrate *m, int num_bundles) 3622 { 3623 return -ENOPROTOOPT; 3624 } 3625 #endif 3626 3627 static int pfkey_sendmsg(struct kiocb *kiocb, 3628 struct socket *sock, struct msghdr *msg, size_t len) 3629 { 3630 struct sock *sk = sock->sk; 3631 struct sk_buff *skb = NULL; 3632 struct sadb_msg *hdr = NULL; 3633 int err; 3634 3635 err = -EOPNOTSUPP; 3636 if (msg->msg_flags & MSG_OOB) 3637 goto out; 3638 3639 err = -EMSGSIZE; 3640 if ((unsigned)len > sk->sk_sndbuf - 32) 3641 goto out; 3642 3643 err = -ENOBUFS; 3644 skb = alloc_skb(len, GFP_KERNEL); 3645 if (skb == NULL) 3646 goto out; 3647 3648 err = -EFAULT; 3649 if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) 3650 goto out; 3651 3652 hdr = pfkey_get_base_msg(skb, &err); 3653 if (!hdr) 3654 goto out; 3655 3656 mutex_lock(&xfrm_cfg_mutex); 3657 err = pfkey_process(sk, skb, hdr); 3658 mutex_unlock(&xfrm_cfg_mutex); 3659 3660 out: 3661 if (err && hdr && pfkey_error(hdr, err, sk) == 0) 3662 err = 0; 3663 if (skb) 3664 kfree_skb(skb); 3665 3666 return err ? : len; 3667 } 3668 3669 static int pfkey_recvmsg(struct kiocb *kiocb, 3670 struct socket *sock, struct msghdr *msg, size_t len, 3671 int flags) 3672 { 3673 struct sock *sk = sock->sk; 3674 struct sk_buff *skb; 3675 int copied, err; 3676 3677 err = -EINVAL; 3678 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT)) 3679 goto out; 3680 3681 msg->msg_namelen = 0; 3682 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 3683 if (skb == NULL) 3684 goto out; 3685 3686 copied = skb->len; 3687 if (copied > len) { 3688 msg->msg_flags |= MSG_TRUNC; 3689 copied = len; 3690 } 3691 3692 skb_reset_transport_header(skb); 3693 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 3694 if (err) 3695 goto out_free; 3696 3697 sock_recv_timestamp(msg, sk, skb); 3698 3699 err = (flags & MSG_TRUNC) ? skb->len : copied; 3700 3701 out_free: 3702 skb_free_datagram(sk, skb); 3703 out: 3704 return err; 3705 } 3706 3707 static const struct proto_ops pfkey_ops = { 3708 .family = PF_KEY, 3709 .owner = THIS_MODULE, 3710 /* Operations that make no sense on pfkey sockets. */ 3711 .bind = sock_no_bind, 3712 .connect = sock_no_connect, 3713 .socketpair = sock_no_socketpair, 3714 .accept = sock_no_accept, 3715 .getname = sock_no_getname, 3716 .ioctl = sock_no_ioctl, 3717 .listen = sock_no_listen, 3718 .shutdown = sock_no_shutdown, 3719 .setsockopt = sock_no_setsockopt, 3720 .getsockopt = sock_no_getsockopt, 3721 .mmap = sock_no_mmap, 3722 .sendpage = sock_no_sendpage, 3723 3724 /* Now the operations that really occur. */ 3725 .release = pfkey_release, 3726 .poll = datagram_poll, 3727 .sendmsg = pfkey_sendmsg, 3728 .recvmsg = pfkey_recvmsg, 3729 }; 3730 3731 static struct net_proto_family pfkey_family_ops = { 3732 .family = PF_KEY, 3733 .create = pfkey_create, 3734 .owner = THIS_MODULE, 3735 }; 3736 3737 #ifdef CONFIG_PROC_FS 3738 static int pfkey_seq_show(struct seq_file *f, void *v) 3739 { 3740 struct sock *s; 3741 3742 s = (struct sock *)v; 3743 if (v == SEQ_START_TOKEN) 3744 seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n"); 3745 else 3746 seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n", 3747 s, 3748 atomic_read(&s->sk_refcnt), 3749 atomic_read(&s->sk_rmem_alloc), 3750 atomic_read(&s->sk_wmem_alloc), 3751 sock_i_uid(s), 3752 sock_i_ino(s) 3753 ); 3754 return 0; 3755 } 3756 3757 static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos) 3758 { 3759 struct sock *s; 3760 struct hlist_node *node; 3761 loff_t pos = *ppos; 3762 3763 read_lock(&pfkey_table_lock); 3764 if (pos == 0) 3765 return SEQ_START_TOKEN; 3766 3767 sk_for_each(s, node, &pfkey_table) 3768 if (pos-- == 1) 3769 return s; 3770 3771 return NULL; 3772 } 3773 3774 static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos) 3775 { 3776 ++*ppos; 3777 return (v == SEQ_START_TOKEN) ? 3778 sk_head(&pfkey_table) : 3779 sk_next((struct sock *)v); 3780 } 3781 3782 static void pfkey_seq_stop(struct seq_file *f, void *v) 3783 { 3784 read_unlock(&pfkey_table_lock); 3785 } 3786 3787 static struct seq_operations pfkey_seq_ops = { 3788 .start = pfkey_seq_start, 3789 .next = pfkey_seq_next, 3790 .stop = pfkey_seq_stop, 3791 .show = pfkey_seq_show, 3792 }; 3793 3794 static int pfkey_seq_open(struct inode *inode, struct file *file) 3795 { 3796 return seq_open(file, &pfkey_seq_ops); 3797 } 3798 3799 static struct file_operations pfkey_proc_ops = { 3800 .open = pfkey_seq_open, 3801 .read = seq_read, 3802 .llseek = seq_lseek, 3803 .release = seq_release, 3804 }; 3805 3806 static int pfkey_init_proc(void) 3807 { 3808 struct proc_dir_entry *e; 3809 3810 e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops); 3811 if (e == NULL) 3812 return -ENOMEM; 3813 3814 return 0; 3815 } 3816 3817 static void pfkey_exit_proc(void) 3818 { 3819 proc_net_remove(&init_net, "pfkey"); 3820 } 3821 #else 3822 static inline int pfkey_init_proc(void) 3823 { 3824 return 0; 3825 } 3826 3827 static inline void pfkey_exit_proc(void) 3828 { 3829 } 3830 #endif 3831 3832 static struct xfrm_mgr pfkeyv2_mgr = 3833 { 3834 .id = "pfkeyv2", 3835 .notify = pfkey_send_notify, 3836 .acquire = pfkey_send_acquire, 3837 .compile_policy = pfkey_compile_policy, 3838 .new_mapping = pfkey_send_new_mapping, 3839 .notify_policy = pfkey_send_policy_notify, 3840 .migrate = pfkey_send_migrate, 3841 }; 3842 3843 static void __exit ipsec_pfkey_exit(void) 3844 { 3845 xfrm_unregister_km(&pfkeyv2_mgr); 3846 pfkey_exit_proc(); 3847 sock_unregister(PF_KEY); 3848 proto_unregister(&key_proto); 3849 } 3850 3851 static int __init ipsec_pfkey_init(void) 3852 { 3853 int err = proto_register(&key_proto, 0); 3854 3855 if (err != 0) 3856 goto out; 3857 3858 err = sock_register(&pfkey_family_ops); 3859 if (err != 0) 3860 goto out_unregister_key_proto; 3861 err = pfkey_init_proc(); 3862 if (err != 0) 3863 goto out_sock_unregister; 3864 err = xfrm_register_km(&pfkeyv2_mgr); 3865 if (err != 0) 3866 goto out_remove_proc_entry; 3867 out: 3868 return err; 3869 out_remove_proc_entry: 3870 pfkey_exit_proc(); 3871 out_sock_unregister: 3872 sock_unregister(PF_KEY); 3873 out_unregister_key_proto: 3874 proto_unregister(&key_proto); 3875 goto out; 3876 } 3877 3878 module_init(ipsec_pfkey_init); 3879 module_exit(ipsec_pfkey_exit); 3880 MODULE_LICENSE("GPL"); 3881 MODULE_ALIAS_NETPROTO(PF_KEY); 3882