xref: /openbmc/linux/net/key/af_key.c (revision 22246614)
1 /*
2  * net/key/af_key.c	An implementation of PF_KEYv2 sockets.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Maxim Giryaev	<gem@asplinux.ru>
10  *		David S. Miller	<davem@redhat.com>
11  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
12  *		Kunihiro Ishiguro <kunihiro@ipinfusion.com>
13  *		Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
14  *		Derek Atkins <derek@ihtfp.com>
15  */
16 
17 #include <linux/capability.h>
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/socket.h>
21 #include <linux/pfkeyv2.h>
22 #include <linux/ipsec.h>
23 #include <linux/skbuff.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/in.h>
26 #include <linux/in6.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <net/net_namespace.h>
30 #include <net/xfrm.h>
31 
32 #include <net/sock.h>
33 
34 #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
35 #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
36 
37 
38 /* List of all pfkey sockets. */
39 static HLIST_HEAD(pfkey_table);
40 static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
41 static DEFINE_RWLOCK(pfkey_table_lock);
42 static atomic_t pfkey_table_users = ATOMIC_INIT(0);
43 
44 static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
45 
46 struct pfkey_sock {
47 	/* struct sock must be the first member of struct pfkey_sock */
48 	struct sock	sk;
49 	int		registered;
50 	int		promisc;
51 
52 	struct {
53 		uint8_t		msg_version;
54 		uint32_t	msg_pid;
55 		int		(*dump)(struct pfkey_sock *sk);
56 		void		(*done)(struct pfkey_sock *sk);
57 		union {
58 			struct xfrm_policy_walk	policy;
59 			struct xfrm_state_walk	state;
60 		} u;
61 	} dump;
62 };
63 
64 static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
65 {
66 	return (struct pfkey_sock *)sk;
67 }
68 
69 static int pfkey_can_dump(struct sock *sk)
70 {
71 	if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
72 		return 1;
73 	return 0;
74 }
75 
76 static int pfkey_do_dump(struct pfkey_sock *pfk)
77 {
78 	int rc;
79 
80 	rc = pfk->dump.dump(pfk);
81 	if (rc == -ENOBUFS)
82 		return 0;
83 
84 	pfk->dump.done(pfk);
85 	pfk->dump.dump = NULL;
86 	pfk->dump.done = NULL;
87 	return rc;
88 }
89 
90 static void pfkey_sock_destruct(struct sock *sk)
91 {
92 	skb_queue_purge(&sk->sk_receive_queue);
93 
94 	if (!sock_flag(sk, SOCK_DEAD)) {
95 		printk("Attempt to release alive pfkey socket: %p\n", sk);
96 		return;
97 	}
98 
99 	BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
100 	BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
101 
102 	atomic_dec(&pfkey_socks_nr);
103 }
104 
105 static void pfkey_table_grab(void)
106 {
107 	write_lock_bh(&pfkey_table_lock);
108 
109 	if (atomic_read(&pfkey_table_users)) {
110 		DECLARE_WAITQUEUE(wait, current);
111 
112 		add_wait_queue_exclusive(&pfkey_table_wait, &wait);
113 		for(;;) {
114 			set_current_state(TASK_UNINTERRUPTIBLE);
115 			if (atomic_read(&pfkey_table_users) == 0)
116 				break;
117 			write_unlock_bh(&pfkey_table_lock);
118 			schedule();
119 			write_lock_bh(&pfkey_table_lock);
120 		}
121 
122 		__set_current_state(TASK_RUNNING);
123 		remove_wait_queue(&pfkey_table_wait, &wait);
124 	}
125 }
126 
127 static __inline__ void pfkey_table_ungrab(void)
128 {
129 	write_unlock_bh(&pfkey_table_lock);
130 	wake_up(&pfkey_table_wait);
131 }
132 
133 static __inline__ void pfkey_lock_table(void)
134 {
135 	/* read_lock() synchronizes us to pfkey_table_grab */
136 
137 	read_lock(&pfkey_table_lock);
138 	atomic_inc(&pfkey_table_users);
139 	read_unlock(&pfkey_table_lock);
140 }
141 
142 static __inline__ void pfkey_unlock_table(void)
143 {
144 	if (atomic_dec_and_test(&pfkey_table_users))
145 		wake_up(&pfkey_table_wait);
146 }
147 
148 
149 static const struct proto_ops pfkey_ops;
150 
151 static void pfkey_insert(struct sock *sk)
152 {
153 	pfkey_table_grab();
154 	sk_add_node(sk, &pfkey_table);
155 	pfkey_table_ungrab();
156 }
157 
158 static void pfkey_remove(struct sock *sk)
159 {
160 	pfkey_table_grab();
161 	sk_del_node_init(sk);
162 	pfkey_table_ungrab();
163 }
164 
165 static struct proto key_proto = {
166 	.name	  = "KEY",
167 	.owner	  = THIS_MODULE,
168 	.obj_size = sizeof(struct pfkey_sock),
169 };
170 
171 static int pfkey_create(struct net *net, struct socket *sock, int protocol)
172 {
173 	struct sock *sk;
174 	int err;
175 
176 	if (net != &init_net)
177 		return -EAFNOSUPPORT;
178 
179 	if (!capable(CAP_NET_ADMIN))
180 		return -EPERM;
181 	if (sock->type != SOCK_RAW)
182 		return -ESOCKTNOSUPPORT;
183 	if (protocol != PF_KEY_V2)
184 		return -EPROTONOSUPPORT;
185 
186 	err = -ENOMEM;
187 	sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
188 	if (sk == NULL)
189 		goto out;
190 
191 	sock->ops = &pfkey_ops;
192 	sock_init_data(sock, sk);
193 
194 	sk->sk_family = PF_KEY;
195 	sk->sk_destruct = pfkey_sock_destruct;
196 
197 	atomic_inc(&pfkey_socks_nr);
198 
199 	pfkey_insert(sk);
200 
201 	return 0;
202 out:
203 	return err;
204 }
205 
206 static int pfkey_release(struct socket *sock)
207 {
208 	struct sock *sk = sock->sk;
209 
210 	if (!sk)
211 		return 0;
212 
213 	pfkey_remove(sk);
214 
215 	sock_orphan(sk);
216 	sock->sk = NULL;
217 	skb_queue_purge(&sk->sk_write_queue);
218 	sock_put(sk);
219 
220 	return 0;
221 }
222 
223 static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
224 			       gfp_t allocation, struct sock *sk)
225 {
226 	int err = -ENOBUFS;
227 
228 	sock_hold(sk);
229 	if (*skb2 == NULL) {
230 		if (atomic_read(&skb->users) != 1) {
231 			*skb2 = skb_clone(skb, allocation);
232 		} else {
233 			*skb2 = skb;
234 			atomic_inc(&skb->users);
235 		}
236 	}
237 	if (*skb2 != NULL) {
238 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
239 			skb_orphan(*skb2);
240 			skb_set_owner_r(*skb2, sk);
241 			skb_queue_tail(&sk->sk_receive_queue, *skb2);
242 			sk->sk_data_ready(sk, (*skb2)->len);
243 			*skb2 = NULL;
244 			err = 0;
245 		}
246 	}
247 	sock_put(sk);
248 	return err;
249 }
250 
251 /* Send SKB to all pfkey sockets matching selected criteria.  */
252 #define BROADCAST_ALL		0
253 #define BROADCAST_ONE		1
254 #define BROADCAST_REGISTERED	2
255 #define BROADCAST_PROMISC_ONLY	4
256 static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
257 			   int broadcast_flags, struct sock *one_sk)
258 {
259 	struct sock *sk;
260 	struct hlist_node *node;
261 	struct sk_buff *skb2 = NULL;
262 	int err = -ESRCH;
263 
264 	/* XXX Do we need something like netlink_overrun?  I think
265 	 * XXX PF_KEY socket apps will not mind current behavior.
266 	 */
267 	if (!skb)
268 		return -ENOMEM;
269 
270 	pfkey_lock_table();
271 	sk_for_each(sk, node, &pfkey_table) {
272 		struct pfkey_sock *pfk = pfkey_sk(sk);
273 		int err2;
274 
275 		/* Yes, it means that if you are meant to receive this
276 		 * pfkey message you receive it twice as promiscuous
277 		 * socket.
278 		 */
279 		if (pfk->promisc)
280 			pfkey_broadcast_one(skb, &skb2, allocation, sk);
281 
282 		/* the exact target will be processed later */
283 		if (sk == one_sk)
284 			continue;
285 		if (broadcast_flags != BROADCAST_ALL) {
286 			if (broadcast_flags & BROADCAST_PROMISC_ONLY)
287 				continue;
288 			if ((broadcast_flags & BROADCAST_REGISTERED) &&
289 			    !pfk->registered)
290 				continue;
291 			if (broadcast_flags & BROADCAST_ONE)
292 				continue;
293 		}
294 
295 		err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
296 
297 		/* Error is cleare after succecful sending to at least one
298 		 * registered KM */
299 		if ((broadcast_flags & BROADCAST_REGISTERED) && err)
300 			err = err2;
301 	}
302 	pfkey_unlock_table();
303 
304 	if (one_sk != NULL)
305 		err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
306 
307 	if (skb2)
308 		kfree_skb(skb2);
309 	kfree_skb(skb);
310 	return err;
311 }
312 
313 static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
314 {
315 	*new = *orig;
316 }
317 
318 static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
319 {
320 	struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
321 	struct sadb_msg *hdr;
322 
323 	if (!skb)
324 		return -ENOBUFS;
325 
326 	/* Woe be to the platform trying to support PFKEY yet
327 	 * having normal errnos outside the 1-255 range, inclusive.
328 	 */
329 	err = -err;
330 	if (err == ERESTARTSYS ||
331 	    err == ERESTARTNOHAND ||
332 	    err == ERESTARTNOINTR)
333 		err = EINTR;
334 	if (err >= 512)
335 		err = EINVAL;
336 	BUG_ON(err <= 0 || err >= 256);
337 
338 	hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
339 	pfkey_hdr_dup(hdr, orig);
340 	hdr->sadb_msg_errno = (uint8_t) err;
341 	hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
342 			     sizeof(uint64_t));
343 
344 	pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
345 
346 	return 0;
347 }
348 
349 static u8 sadb_ext_min_len[] = {
350 	[SADB_EXT_RESERVED]		= (u8) 0,
351 	[SADB_EXT_SA]			= (u8) sizeof(struct sadb_sa),
352 	[SADB_EXT_LIFETIME_CURRENT]	= (u8) sizeof(struct sadb_lifetime),
353 	[SADB_EXT_LIFETIME_HARD]	= (u8) sizeof(struct sadb_lifetime),
354 	[SADB_EXT_LIFETIME_SOFT]	= (u8) sizeof(struct sadb_lifetime),
355 	[SADB_EXT_ADDRESS_SRC]		= (u8) sizeof(struct sadb_address),
356 	[SADB_EXT_ADDRESS_DST]		= (u8) sizeof(struct sadb_address),
357 	[SADB_EXT_ADDRESS_PROXY]	= (u8) sizeof(struct sadb_address),
358 	[SADB_EXT_KEY_AUTH]		= (u8) sizeof(struct sadb_key),
359 	[SADB_EXT_KEY_ENCRYPT]		= (u8) sizeof(struct sadb_key),
360 	[SADB_EXT_IDENTITY_SRC]		= (u8) sizeof(struct sadb_ident),
361 	[SADB_EXT_IDENTITY_DST]		= (u8) sizeof(struct sadb_ident),
362 	[SADB_EXT_SENSITIVITY]		= (u8) sizeof(struct sadb_sens),
363 	[SADB_EXT_PROPOSAL]		= (u8) sizeof(struct sadb_prop),
364 	[SADB_EXT_SUPPORTED_AUTH]	= (u8) sizeof(struct sadb_supported),
365 	[SADB_EXT_SUPPORTED_ENCRYPT]	= (u8) sizeof(struct sadb_supported),
366 	[SADB_EXT_SPIRANGE]		= (u8) sizeof(struct sadb_spirange),
367 	[SADB_X_EXT_KMPRIVATE]		= (u8) sizeof(struct sadb_x_kmprivate),
368 	[SADB_X_EXT_POLICY]		= (u8) sizeof(struct sadb_x_policy),
369 	[SADB_X_EXT_SA2]		= (u8) sizeof(struct sadb_x_sa2),
370 	[SADB_X_EXT_NAT_T_TYPE]		= (u8) sizeof(struct sadb_x_nat_t_type),
371 	[SADB_X_EXT_NAT_T_SPORT]	= (u8) sizeof(struct sadb_x_nat_t_port),
372 	[SADB_X_EXT_NAT_T_DPORT]	= (u8) sizeof(struct sadb_x_nat_t_port),
373 	[SADB_X_EXT_NAT_T_OA]		= (u8) sizeof(struct sadb_address),
374 	[SADB_X_EXT_SEC_CTX]		= (u8) sizeof(struct sadb_x_sec_ctx),
375 };
376 
377 /* Verify sadb_address_{len,prefixlen} against sa_family.  */
378 static int verify_address_len(void *p)
379 {
380 	struct sadb_address *sp = p;
381 	struct sockaddr *addr = (struct sockaddr *)(sp + 1);
382 	struct sockaddr_in *sin;
383 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
384 	struct sockaddr_in6 *sin6;
385 #endif
386 	int len;
387 
388 	switch (addr->sa_family) {
389 	case AF_INET:
390 		len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
391 		if (sp->sadb_address_len != len ||
392 		    sp->sadb_address_prefixlen > 32)
393 			return -EINVAL;
394 		break;
395 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
396 	case AF_INET6:
397 		len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
398 		if (sp->sadb_address_len != len ||
399 		    sp->sadb_address_prefixlen > 128)
400 			return -EINVAL;
401 		break;
402 #endif
403 	default:
404 		/* It is user using kernel to keep track of security
405 		 * associations for another protocol, such as
406 		 * OSPF/RSVP/RIPV2/MIP.  It is user's job to verify
407 		 * lengths.
408 		 *
409 		 * XXX Actually, association/policy database is not yet
410 		 * XXX able to cope with arbitrary sockaddr families.
411 		 * XXX When it can, remove this -EINVAL.  -DaveM
412 		 */
413 		return -EINVAL;
414 		break;
415 	}
416 
417 	return 0;
418 }
419 
420 static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
421 {
422 	return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
423 			    sec_ctx->sadb_x_ctx_len,
424 			    sizeof(uint64_t));
425 }
426 
427 static inline int verify_sec_ctx_len(void *p)
428 {
429 	struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
430 	int len = sec_ctx->sadb_x_ctx_len;
431 
432 	if (len > PAGE_SIZE)
433 		return -EINVAL;
434 
435 	len = pfkey_sec_ctx_len(sec_ctx);
436 
437 	if (sec_ctx->sadb_x_sec_len != len)
438 		return -EINVAL;
439 
440 	return 0;
441 }
442 
443 static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
444 {
445 	struct xfrm_user_sec_ctx *uctx = NULL;
446 	int ctx_size = sec_ctx->sadb_x_ctx_len;
447 
448 	uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
449 
450 	if (!uctx)
451 		return NULL;
452 
453 	uctx->len = pfkey_sec_ctx_len(sec_ctx);
454 	uctx->exttype = sec_ctx->sadb_x_sec_exttype;
455 	uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
456 	uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
457 	uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
458 	memcpy(uctx + 1, sec_ctx + 1,
459 	       uctx->ctx_len);
460 
461 	return uctx;
462 }
463 
464 static int present_and_same_family(struct sadb_address *src,
465 				   struct sadb_address *dst)
466 {
467 	struct sockaddr *s_addr, *d_addr;
468 
469 	if (!src || !dst)
470 		return 0;
471 
472 	s_addr = (struct sockaddr *)(src + 1);
473 	d_addr = (struct sockaddr *)(dst + 1);
474 	if (s_addr->sa_family != d_addr->sa_family)
475 		return 0;
476 	if (s_addr->sa_family != AF_INET
477 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
478 	    && s_addr->sa_family != AF_INET6
479 #endif
480 		)
481 		return 0;
482 
483 	return 1;
484 }
485 
486 static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
487 {
488 	char *p = (char *) hdr;
489 	int len = skb->len;
490 
491 	len -= sizeof(*hdr);
492 	p += sizeof(*hdr);
493 	while (len > 0) {
494 		struct sadb_ext *ehdr = (struct sadb_ext *) p;
495 		uint16_t ext_type;
496 		int ext_len;
497 
498 		ext_len  = ehdr->sadb_ext_len;
499 		ext_len *= sizeof(uint64_t);
500 		ext_type = ehdr->sadb_ext_type;
501 		if (ext_len < sizeof(uint64_t) ||
502 		    ext_len > len ||
503 		    ext_type == SADB_EXT_RESERVED)
504 			return -EINVAL;
505 
506 		if (ext_type <= SADB_EXT_MAX) {
507 			int min = (int) sadb_ext_min_len[ext_type];
508 			if (ext_len < min)
509 				return -EINVAL;
510 			if (ext_hdrs[ext_type-1] != NULL)
511 				return -EINVAL;
512 			if (ext_type == SADB_EXT_ADDRESS_SRC ||
513 			    ext_type == SADB_EXT_ADDRESS_DST ||
514 			    ext_type == SADB_EXT_ADDRESS_PROXY ||
515 			    ext_type == SADB_X_EXT_NAT_T_OA) {
516 				if (verify_address_len(p))
517 					return -EINVAL;
518 			}
519 			if (ext_type == SADB_X_EXT_SEC_CTX) {
520 				if (verify_sec_ctx_len(p))
521 					return -EINVAL;
522 			}
523 			ext_hdrs[ext_type-1] = p;
524 		}
525 		p   += ext_len;
526 		len -= ext_len;
527 	}
528 
529 	return 0;
530 }
531 
532 static uint16_t
533 pfkey_satype2proto(uint8_t satype)
534 {
535 	switch (satype) {
536 	case SADB_SATYPE_UNSPEC:
537 		return IPSEC_PROTO_ANY;
538 	case SADB_SATYPE_AH:
539 		return IPPROTO_AH;
540 	case SADB_SATYPE_ESP:
541 		return IPPROTO_ESP;
542 	case SADB_X_SATYPE_IPCOMP:
543 		return IPPROTO_COMP;
544 		break;
545 	default:
546 		return 0;
547 	}
548 	/* NOTREACHED */
549 }
550 
551 static uint8_t
552 pfkey_proto2satype(uint16_t proto)
553 {
554 	switch (proto) {
555 	case IPPROTO_AH:
556 		return SADB_SATYPE_AH;
557 	case IPPROTO_ESP:
558 		return SADB_SATYPE_ESP;
559 	case IPPROTO_COMP:
560 		return SADB_X_SATYPE_IPCOMP;
561 		break;
562 	default:
563 		return 0;
564 	}
565 	/* NOTREACHED */
566 }
567 
568 /* BTW, this scheme means that there is no way with PFKEY2 sockets to
569  * say specifically 'just raw sockets' as we encode them as 255.
570  */
571 
572 static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
573 {
574 	return (proto == IPSEC_PROTO_ANY ? 0 : proto);
575 }
576 
577 static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
578 {
579 	return (proto ? proto : IPSEC_PROTO_ANY);
580 }
581 
582 static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
583 				     xfrm_address_t *xaddr)
584 {
585 	switch (((struct sockaddr*)(addr + 1))->sa_family) {
586 	case AF_INET:
587 		xaddr->a4 =
588 			((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
589 		return AF_INET;
590 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
591 	case AF_INET6:
592 		memcpy(xaddr->a6,
593 		       &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
594 		       sizeof(struct in6_addr));
595 		return AF_INET6;
596 #endif
597 	default:
598 		return 0;
599 	}
600 	/* NOTREACHED */
601 }
602 
603 static struct  xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
604 {
605 	struct sadb_sa *sa;
606 	struct sadb_address *addr;
607 	uint16_t proto;
608 	unsigned short family;
609 	xfrm_address_t *xaddr;
610 
611 	sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
612 	if (sa == NULL)
613 		return NULL;
614 
615 	proto = pfkey_satype2proto(hdr->sadb_msg_satype);
616 	if (proto == 0)
617 		return NULL;
618 
619 	/* sadb_address_len should be checked by caller */
620 	addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
621 	if (addr == NULL)
622 		return NULL;
623 
624 	family = ((struct sockaddr *)(addr + 1))->sa_family;
625 	switch (family) {
626 	case AF_INET:
627 		xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
628 		break;
629 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
630 	case AF_INET6:
631 		xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
632 		break;
633 #endif
634 	default:
635 		xaddr = NULL;
636 	}
637 
638 	if (!xaddr)
639 		return NULL;
640 
641 	return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
642 }
643 
644 #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
645 static int
646 pfkey_sockaddr_size(sa_family_t family)
647 {
648 	switch (family) {
649 	case AF_INET:
650 		return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
651 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
652 	case AF_INET6:
653 		return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
654 #endif
655 	default:
656 		return 0;
657 	}
658 	/* NOTREACHED */
659 }
660 
661 static inline int pfkey_mode_from_xfrm(int mode)
662 {
663 	switch(mode) {
664 	case XFRM_MODE_TRANSPORT:
665 		return IPSEC_MODE_TRANSPORT;
666 	case XFRM_MODE_TUNNEL:
667 		return IPSEC_MODE_TUNNEL;
668 	case XFRM_MODE_BEET:
669 		return IPSEC_MODE_BEET;
670 	default:
671 		return -1;
672 	}
673 }
674 
675 static inline int pfkey_mode_to_xfrm(int mode)
676 {
677 	switch(mode) {
678 	case IPSEC_MODE_ANY:	/*XXX*/
679 	case IPSEC_MODE_TRANSPORT:
680 		return XFRM_MODE_TRANSPORT;
681 	case IPSEC_MODE_TUNNEL:
682 		return XFRM_MODE_TUNNEL;
683 	case IPSEC_MODE_BEET:
684 		return XFRM_MODE_BEET;
685 	default:
686 		return -1;
687 	}
688 }
689 
690 static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
691 					      int add_keys, int hsc)
692 {
693 	struct sk_buff *skb;
694 	struct sadb_msg *hdr;
695 	struct sadb_sa *sa;
696 	struct sadb_lifetime *lifetime;
697 	struct sadb_address *addr;
698 	struct sadb_key *key;
699 	struct sadb_x_sa2 *sa2;
700 	struct sockaddr_in *sin;
701 	struct sadb_x_sec_ctx *sec_ctx;
702 	struct xfrm_sec_ctx *xfrm_ctx;
703 	int ctx_size = 0;
704 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
705 	struct sockaddr_in6 *sin6;
706 #endif
707 	int size;
708 	int auth_key_size = 0;
709 	int encrypt_key_size = 0;
710 	int sockaddr_size;
711 	struct xfrm_encap_tmpl *natt = NULL;
712 	int mode;
713 
714 	/* address family check */
715 	sockaddr_size = pfkey_sockaddr_size(x->props.family);
716 	if (!sockaddr_size)
717 		return ERR_PTR(-EINVAL);
718 
719 	/* base, SA, (lifetime (HSC),) address(SD), (address(P),)
720 	   key(AE), (identity(SD),) (sensitivity)> */
721 	size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
722 		sizeof(struct sadb_lifetime) +
723 		((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
724 		((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
725 			sizeof(struct sadb_address)*2 +
726 				sockaddr_size*2 +
727 					sizeof(struct sadb_x_sa2);
728 
729 	if ((xfrm_ctx = x->security)) {
730 		ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
731 		size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
732 	}
733 
734 	/* identity & sensitivity */
735 
736 	if ((x->props.family == AF_INET &&
737 	     x->sel.saddr.a4 != x->props.saddr.a4)
738 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
739 	    || (x->props.family == AF_INET6 &&
740 		memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
741 #endif
742 		)
743 		size += sizeof(struct sadb_address) + sockaddr_size;
744 
745 	if (add_keys) {
746 		if (x->aalg && x->aalg->alg_key_len) {
747 			auth_key_size =
748 				PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
749 			size += sizeof(struct sadb_key) + auth_key_size;
750 		}
751 		if (x->ealg && x->ealg->alg_key_len) {
752 			encrypt_key_size =
753 				PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
754 			size += sizeof(struct sadb_key) + encrypt_key_size;
755 		}
756 	}
757 	if (x->encap)
758 		natt = x->encap;
759 
760 	if (natt && natt->encap_type) {
761 		size += sizeof(struct sadb_x_nat_t_type);
762 		size += sizeof(struct sadb_x_nat_t_port);
763 		size += sizeof(struct sadb_x_nat_t_port);
764 	}
765 
766 	skb =  alloc_skb(size + 16, GFP_ATOMIC);
767 	if (skb == NULL)
768 		return ERR_PTR(-ENOBUFS);
769 
770 	/* call should fill header later */
771 	hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
772 	memset(hdr, 0, size);	/* XXX do we need this ? */
773 	hdr->sadb_msg_len = size / sizeof(uint64_t);
774 
775 	/* sa */
776 	sa = (struct sadb_sa *)  skb_put(skb, sizeof(struct sadb_sa));
777 	sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
778 	sa->sadb_sa_exttype = SADB_EXT_SA;
779 	sa->sadb_sa_spi = x->id.spi;
780 	sa->sadb_sa_replay = x->props.replay_window;
781 	switch (x->km.state) {
782 	case XFRM_STATE_VALID:
783 		sa->sadb_sa_state = x->km.dying ?
784 			SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
785 		break;
786 	case XFRM_STATE_ACQ:
787 		sa->sadb_sa_state = SADB_SASTATE_LARVAL;
788 		break;
789 	default:
790 		sa->sadb_sa_state = SADB_SASTATE_DEAD;
791 		break;
792 	}
793 	sa->sadb_sa_auth = 0;
794 	if (x->aalg) {
795 		struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
796 		sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
797 	}
798 	sa->sadb_sa_encrypt = 0;
799 	BUG_ON(x->ealg && x->calg);
800 	if (x->ealg) {
801 		struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
802 		sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
803 	}
804 	/* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
805 	if (x->calg) {
806 		struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
807 		sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
808 	}
809 
810 	sa->sadb_sa_flags = 0;
811 	if (x->props.flags & XFRM_STATE_NOECN)
812 		sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
813 	if (x->props.flags & XFRM_STATE_DECAP_DSCP)
814 		sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
815 	if (x->props.flags & XFRM_STATE_NOPMTUDISC)
816 		sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
817 
818 	/* hard time */
819 	if (hsc & 2) {
820 		lifetime = (struct sadb_lifetime *)  skb_put(skb,
821 							     sizeof(struct sadb_lifetime));
822 		lifetime->sadb_lifetime_len =
823 			sizeof(struct sadb_lifetime)/sizeof(uint64_t);
824 		lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
825 		lifetime->sadb_lifetime_allocations =  _X2KEY(x->lft.hard_packet_limit);
826 		lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
827 		lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
828 		lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
829 	}
830 	/* soft time */
831 	if (hsc & 1) {
832 		lifetime = (struct sadb_lifetime *)  skb_put(skb,
833 							     sizeof(struct sadb_lifetime));
834 		lifetime->sadb_lifetime_len =
835 			sizeof(struct sadb_lifetime)/sizeof(uint64_t);
836 		lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
837 		lifetime->sadb_lifetime_allocations =  _X2KEY(x->lft.soft_packet_limit);
838 		lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
839 		lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
840 		lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
841 	}
842 	/* current time */
843 	lifetime = (struct sadb_lifetime *)  skb_put(skb,
844 						     sizeof(struct sadb_lifetime));
845 	lifetime->sadb_lifetime_len =
846 		sizeof(struct sadb_lifetime)/sizeof(uint64_t);
847 	lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
848 	lifetime->sadb_lifetime_allocations = x->curlft.packets;
849 	lifetime->sadb_lifetime_bytes = x->curlft.bytes;
850 	lifetime->sadb_lifetime_addtime = x->curlft.add_time;
851 	lifetime->sadb_lifetime_usetime = x->curlft.use_time;
852 	/* src address */
853 	addr = (struct sadb_address*) skb_put(skb,
854 					      sizeof(struct sadb_address)+sockaddr_size);
855 	addr->sadb_address_len =
856 		(sizeof(struct sadb_address)+sockaddr_size)/
857 			sizeof(uint64_t);
858 	addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
859 	/* "if the ports are non-zero, then the sadb_address_proto field,
860 	   normally zero, MUST be filled in with the transport
861 	   protocol's number." - RFC2367 */
862 	addr->sadb_address_proto = 0;
863 	addr->sadb_address_reserved = 0;
864 	if (x->props.family == AF_INET) {
865 		addr->sadb_address_prefixlen = 32;
866 
867 		sin = (struct sockaddr_in *) (addr + 1);
868 		sin->sin_family = AF_INET;
869 		sin->sin_addr.s_addr = x->props.saddr.a4;
870 		sin->sin_port = 0;
871 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
872 	}
873 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
874 	else if (x->props.family == AF_INET6) {
875 		addr->sadb_address_prefixlen = 128;
876 
877 		sin6 = (struct sockaddr_in6 *) (addr + 1);
878 		sin6->sin6_family = AF_INET6;
879 		sin6->sin6_port = 0;
880 		sin6->sin6_flowinfo = 0;
881 		memcpy(&sin6->sin6_addr, x->props.saddr.a6,
882 		       sizeof(struct in6_addr));
883 		sin6->sin6_scope_id = 0;
884 	}
885 #endif
886 	else
887 		BUG();
888 
889 	/* dst address */
890 	addr = (struct sadb_address*) skb_put(skb,
891 					      sizeof(struct sadb_address)+sockaddr_size);
892 	addr->sadb_address_len =
893 		(sizeof(struct sadb_address)+sockaddr_size)/
894 			sizeof(uint64_t);
895 	addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
896 	addr->sadb_address_proto = 0;
897 	addr->sadb_address_prefixlen = 32; /* XXX */
898 	addr->sadb_address_reserved = 0;
899 	if (x->props.family == AF_INET) {
900 		sin = (struct sockaddr_in *) (addr + 1);
901 		sin->sin_family = AF_INET;
902 		sin->sin_addr.s_addr = x->id.daddr.a4;
903 		sin->sin_port = 0;
904 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
905 
906 		if (x->sel.saddr.a4 != x->props.saddr.a4) {
907 			addr = (struct sadb_address*) skb_put(skb,
908 				sizeof(struct sadb_address)+sockaddr_size);
909 			addr->sadb_address_len =
910 				(sizeof(struct sadb_address)+sockaddr_size)/
911 				sizeof(uint64_t);
912 			addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
913 			addr->sadb_address_proto =
914 				pfkey_proto_from_xfrm(x->sel.proto);
915 			addr->sadb_address_prefixlen = x->sel.prefixlen_s;
916 			addr->sadb_address_reserved = 0;
917 
918 			sin = (struct sockaddr_in *) (addr + 1);
919 			sin->sin_family = AF_INET;
920 			sin->sin_addr.s_addr = x->sel.saddr.a4;
921 			sin->sin_port = x->sel.sport;
922 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
923 		}
924 	}
925 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
926 	else if (x->props.family == AF_INET6) {
927 		addr->sadb_address_prefixlen = 128;
928 
929 		sin6 = (struct sockaddr_in6 *) (addr + 1);
930 		sin6->sin6_family = AF_INET6;
931 		sin6->sin6_port = 0;
932 		sin6->sin6_flowinfo = 0;
933 		memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
934 		sin6->sin6_scope_id = 0;
935 
936 		if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
937 			    sizeof(struct in6_addr))) {
938 			addr = (struct sadb_address *) skb_put(skb,
939 				sizeof(struct sadb_address)+sockaddr_size);
940 			addr->sadb_address_len =
941 				(sizeof(struct sadb_address)+sockaddr_size)/
942 				sizeof(uint64_t);
943 			addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
944 			addr->sadb_address_proto =
945 				pfkey_proto_from_xfrm(x->sel.proto);
946 			addr->sadb_address_prefixlen = x->sel.prefixlen_s;
947 			addr->sadb_address_reserved = 0;
948 
949 			sin6 = (struct sockaddr_in6 *) (addr + 1);
950 			sin6->sin6_family = AF_INET6;
951 			sin6->sin6_port = x->sel.sport;
952 			sin6->sin6_flowinfo = 0;
953 			memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
954 			       sizeof(struct in6_addr));
955 			sin6->sin6_scope_id = 0;
956 		}
957 	}
958 #endif
959 	else
960 		BUG();
961 
962 	/* auth key */
963 	if (add_keys && auth_key_size) {
964 		key = (struct sadb_key *) skb_put(skb,
965 						  sizeof(struct sadb_key)+auth_key_size);
966 		key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
967 			sizeof(uint64_t);
968 		key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
969 		key->sadb_key_bits = x->aalg->alg_key_len;
970 		key->sadb_key_reserved = 0;
971 		memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
972 	}
973 	/* encrypt key */
974 	if (add_keys && encrypt_key_size) {
975 		key = (struct sadb_key *) skb_put(skb,
976 						  sizeof(struct sadb_key)+encrypt_key_size);
977 		key->sadb_key_len = (sizeof(struct sadb_key) +
978 				     encrypt_key_size) / sizeof(uint64_t);
979 		key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
980 		key->sadb_key_bits = x->ealg->alg_key_len;
981 		key->sadb_key_reserved = 0;
982 		memcpy(key + 1, x->ealg->alg_key,
983 		       (x->ealg->alg_key_len+7)/8);
984 	}
985 
986 	/* sa */
987 	sa2 = (struct sadb_x_sa2 *)  skb_put(skb, sizeof(struct sadb_x_sa2));
988 	sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
989 	sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
990 	if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
991 		kfree_skb(skb);
992 		return ERR_PTR(-EINVAL);
993 	}
994 	sa2->sadb_x_sa2_mode = mode;
995 	sa2->sadb_x_sa2_reserved1 = 0;
996 	sa2->sadb_x_sa2_reserved2 = 0;
997 	sa2->sadb_x_sa2_sequence = 0;
998 	sa2->sadb_x_sa2_reqid = x->props.reqid;
999 
1000 	if (natt && natt->encap_type) {
1001 		struct sadb_x_nat_t_type *n_type;
1002 		struct sadb_x_nat_t_port *n_port;
1003 
1004 		/* type */
1005 		n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
1006 		n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
1007 		n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
1008 		n_type->sadb_x_nat_t_type_type = natt->encap_type;
1009 		n_type->sadb_x_nat_t_type_reserved[0] = 0;
1010 		n_type->sadb_x_nat_t_type_reserved[1] = 0;
1011 		n_type->sadb_x_nat_t_type_reserved[2] = 0;
1012 
1013 		/* source port */
1014 		n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
1015 		n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
1016 		n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
1017 		n_port->sadb_x_nat_t_port_port = natt->encap_sport;
1018 		n_port->sadb_x_nat_t_port_reserved = 0;
1019 
1020 		/* dest port */
1021 		n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
1022 		n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
1023 		n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
1024 		n_port->sadb_x_nat_t_port_port = natt->encap_dport;
1025 		n_port->sadb_x_nat_t_port_reserved = 0;
1026 	}
1027 
1028 	/* security context */
1029 	if (xfrm_ctx) {
1030 		sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
1031 				sizeof(struct sadb_x_sec_ctx) + ctx_size);
1032 		sec_ctx->sadb_x_sec_len =
1033 		  (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
1034 		sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
1035 		sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
1036 		sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
1037 		sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
1038 		memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
1039 		       xfrm_ctx->ctx_len);
1040 	}
1041 
1042 	return skb;
1043 }
1044 
1045 
1046 static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
1047 {
1048 	struct sk_buff *skb;
1049 
1050 	skb = __pfkey_xfrm_state2msg(x, 1, 3);
1051 
1052 	return skb;
1053 }
1054 
1055 static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
1056 							  int hsc)
1057 {
1058 	return __pfkey_xfrm_state2msg(x, 0, hsc);
1059 }
1060 
1061 static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
1062 						void **ext_hdrs)
1063 {
1064 	struct xfrm_state *x;
1065 	struct sadb_lifetime *lifetime;
1066 	struct sadb_sa *sa;
1067 	struct sadb_key *key;
1068 	struct sadb_x_sec_ctx *sec_ctx;
1069 	uint16_t proto;
1070 	int err;
1071 
1072 
1073 	sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
1074 	if (!sa ||
1075 	    !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1076 				     ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1077 		return ERR_PTR(-EINVAL);
1078 	if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
1079 	    !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
1080 		return ERR_PTR(-EINVAL);
1081 	if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
1082 	    !ext_hdrs[SADB_EXT_KEY_AUTH-1])
1083 		return ERR_PTR(-EINVAL);
1084 	if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
1085 	    !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
1086 		return ERR_PTR(-EINVAL);
1087 
1088 	proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1089 	if (proto == 0)
1090 		return ERR_PTR(-EINVAL);
1091 
1092 	/* default error is no buffer space */
1093 	err = -ENOBUFS;
1094 
1095 	/* RFC2367:
1096 
1097    Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
1098    SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
1099    sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
1100    Therefore, the sadb_sa_state field of all submitted SAs MUST be
1101    SADB_SASTATE_MATURE and the kernel MUST return an error if this is
1102    not true.
1103 
1104 	   However, KAME setkey always uses SADB_SASTATE_LARVAL.
1105 	   Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
1106 	 */
1107 	if (sa->sadb_sa_auth > SADB_AALG_MAX ||
1108 	    (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
1109 	     sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
1110 	    sa->sadb_sa_encrypt > SADB_EALG_MAX)
1111 		return ERR_PTR(-EINVAL);
1112 	key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
1113 	if (key != NULL &&
1114 	    sa->sadb_sa_auth != SADB_X_AALG_NULL &&
1115 	    ((key->sadb_key_bits+7) / 8 == 0 ||
1116 	     (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
1117 		return ERR_PTR(-EINVAL);
1118 	key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
1119 	if (key != NULL &&
1120 	    sa->sadb_sa_encrypt != SADB_EALG_NULL &&
1121 	    ((key->sadb_key_bits+7) / 8 == 0 ||
1122 	     (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
1123 		return ERR_PTR(-EINVAL);
1124 
1125 	x = xfrm_state_alloc();
1126 	if (x == NULL)
1127 		return ERR_PTR(-ENOBUFS);
1128 
1129 	x->id.proto = proto;
1130 	x->id.spi = sa->sadb_sa_spi;
1131 	x->props.replay_window = sa->sadb_sa_replay;
1132 	if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
1133 		x->props.flags |= XFRM_STATE_NOECN;
1134 	if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
1135 		x->props.flags |= XFRM_STATE_DECAP_DSCP;
1136 	if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
1137 		x->props.flags |= XFRM_STATE_NOPMTUDISC;
1138 
1139 	lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
1140 	if (lifetime != NULL) {
1141 		x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
1142 		x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
1143 		x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
1144 		x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
1145 	}
1146 	lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
1147 	if (lifetime != NULL) {
1148 		x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
1149 		x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
1150 		x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
1151 		x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
1152 	}
1153 
1154 	sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
1155 	if (sec_ctx != NULL) {
1156 		struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
1157 
1158 		if (!uctx)
1159 			goto out;
1160 
1161 		err = security_xfrm_state_alloc(x, uctx);
1162 		kfree(uctx);
1163 
1164 		if (err)
1165 			goto out;
1166 	}
1167 
1168 	key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
1169 	if (sa->sadb_sa_auth) {
1170 		int keysize = 0;
1171 		struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
1172 		if (!a) {
1173 			err = -ENOSYS;
1174 			goto out;
1175 		}
1176 		if (key)
1177 			keysize = (key->sadb_key_bits + 7) / 8;
1178 		x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
1179 		if (!x->aalg)
1180 			goto out;
1181 		strcpy(x->aalg->alg_name, a->name);
1182 		x->aalg->alg_key_len = 0;
1183 		if (key) {
1184 			x->aalg->alg_key_len = key->sadb_key_bits;
1185 			memcpy(x->aalg->alg_key, key+1, keysize);
1186 		}
1187 		x->props.aalgo = sa->sadb_sa_auth;
1188 		/* x->algo.flags = sa->sadb_sa_flags; */
1189 	}
1190 	if (sa->sadb_sa_encrypt) {
1191 		if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
1192 			struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
1193 			if (!a) {
1194 				err = -ENOSYS;
1195 				goto out;
1196 			}
1197 			x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
1198 			if (!x->calg)
1199 				goto out;
1200 			strcpy(x->calg->alg_name, a->name);
1201 			x->props.calgo = sa->sadb_sa_encrypt;
1202 		} else {
1203 			int keysize = 0;
1204 			struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
1205 			if (!a) {
1206 				err = -ENOSYS;
1207 				goto out;
1208 			}
1209 			key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
1210 			if (key)
1211 				keysize = (key->sadb_key_bits + 7) / 8;
1212 			x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
1213 			if (!x->ealg)
1214 				goto out;
1215 			strcpy(x->ealg->alg_name, a->name);
1216 			x->ealg->alg_key_len = 0;
1217 			if (key) {
1218 				x->ealg->alg_key_len = key->sadb_key_bits;
1219 				memcpy(x->ealg->alg_key, key+1, keysize);
1220 			}
1221 			x->props.ealgo = sa->sadb_sa_encrypt;
1222 		}
1223 	}
1224 	/* x->algo.flags = sa->sadb_sa_flags; */
1225 
1226 	x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1227 						    &x->props.saddr);
1228 	if (!x->props.family) {
1229 		err = -EAFNOSUPPORT;
1230 		goto out;
1231 	}
1232 	pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
1233 				  &x->id.daddr);
1234 
1235 	if (ext_hdrs[SADB_X_EXT_SA2-1]) {
1236 		struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
1237 		int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
1238 		if (mode < 0) {
1239 			err = -EINVAL;
1240 			goto out;
1241 		}
1242 		x->props.mode = mode;
1243 		x->props.reqid = sa2->sadb_x_sa2_reqid;
1244 	}
1245 
1246 	if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
1247 		struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
1248 
1249 		/* Nobody uses this, but we try. */
1250 		x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
1251 		x->sel.prefixlen_s = addr->sadb_address_prefixlen;
1252 	}
1253 
1254 	if (x->props.mode == XFRM_MODE_TRANSPORT)
1255 		x->sel.family = x->props.family;
1256 
1257 	if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
1258 		struct sadb_x_nat_t_type* n_type;
1259 		struct xfrm_encap_tmpl *natt;
1260 
1261 		x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
1262 		if (!x->encap)
1263 			goto out;
1264 
1265 		natt = x->encap;
1266 		n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
1267 		natt->encap_type = n_type->sadb_x_nat_t_type_type;
1268 
1269 		if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
1270 			struct sadb_x_nat_t_port* n_port =
1271 				ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
1272 			natt->encap_sport = n_port->sadb_x_nat_t_port_port;
1273 		}
1274 		if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
1275 			struct sadb_x_nat_t_port* n_port =
1276 				ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
1277 			natt->encap_dport = n_port->sadb_x_nat_t_port_port;
1278 		}
1279 	}
1280 
1281 	err = xfrm_init_state(x);
1282 	if (err)
1283 		goto out;
1284 
1285 	x->km.seq = hdr->sadb_msg_seq;
1286 	return x;
1287 
1288 out:
1289 	x->km.state = XFRM_STATE_DEAD;
1290 	xfrm_state_put(x);
1291 	return ERR_PTR(err);
1292 }
1293 
1294 static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1295 {
1296 	return -EOPNOTSUPP;
1297 }
1298 
1299 static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1300 {
1301 	struct sk_buff *resp_skb;
1302 	struct sadb_x_sa2 *sa2;
1303 	struct sadb_address *saddr, *daddr;
1304 	struct sadb_msg *out_hdr;
1305 	struct sadb_spirange *range;
1306 	struct xfrm_state *x = NULL;
1307 	int mode;
1308 	int err;
1309 	u32 min_spi, max_spi;
1310 	u32 reqid;
1311 	u8 proto;
1312 	unsigned short family;
1313 	xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
1314 
1315 	if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1316 				     ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1317 		return -EINVAL;
1318 
1319 	proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1320 	if (proto == 0)
1321 		return -EINVAL;
1322 
1323 	if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
1324 		mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
1325 		if (mode < 0)
1326 			return -EINVAL;
1327 		reqid = sa2->sadb_x_sa2_reqid;
1328 	} else {
1329 		mode = 0;
1330 		reqid = 0;
1331 	}
1332 
1333 	saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
1334 	daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
1335 
1336 	family = ((struct sockaddr *)(saddr + 1))->sa_family;
1337 	switch (family) {
1338 	case AF_INET:
1339 		xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
1340 		xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
1341 		break;
1342 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1343 	case AF_INET6:
1344 		xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
1345 		xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
1346 		break;
1347 #endif
1348 	}
1349 
1350 	if (hdr->sadb_msg_seq) {
1351 		x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
1352 		if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
1353 			xfrm_state_put(x);
1354 			x = NULL;
1355 		}
1356 	}
1357 
1358 	if (!x)
1359 		x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
1360 
1361 	if (x == NULL)
1362 		return -ENOENT;
1363 
1364 	min_spi = 0x100;
1365 	max_spi = 0x0fffffff;
1366 
1367 	range = ext_hdrs[SADB_EXT_SPIRANGE-1];
1368 	if (range) {
1369 		min_spi = range->sadb_spirange_min;
1370 		max_spi = range->sadb_spirange_max;
1371 	}
1372 
1373 	err = xfrm_alloc_spi(x, min_spi, max_spi);
1374 	resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
1375 
1376 	if (IS_ERR(resp_skb)) {
1377 		xfrm_state_put(x);
1378 		return  PTR_ERR(resp_skb);
1379 	}
1380 
1381 	out_hdr = (struct sadb_msg *) resp_skb->data;
1382 	out_hdr->sadb_msg_version = hdr->sadb_msg_version;
1383 	out_hdr->sadb_msg_type = SADB_GETSPI;
1384 	out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
1385 	out_hdr->sadb_msg_errno = 0;
1386 	out_hdr->sadb_msg_reserved = 0;
1387 	out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
1388 	out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
1389 
1390 	xfrm_state_put(x);
1391 
1392 	pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
1393 
1394 	return 0;
1395 }
1396 
1397 static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1398 {
1399 	struct xfrm_state *x;
1400 
1401 	if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
1402 		return -EOPNOTSUPP;
1403 
1404 	if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
1405 		return 0;
1406 
1407 	x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
1408 	if (x == NULL)
1409 		return 0;
1410 
1411 	spin_lock_bh(&x->lock);
1412 	if (x->km.state == XFRM_STATE_ACQ) {
1413 		x->km.state = XFRM_STATE_ERROR;
1414 		wake_up(&km_waitq);
1415 	}
1416 	spin_unlock_bh(&x->lock);
1417 	xfrm_state_put(x);
1418 	return 0;
1419 }
1420 
1421 static inline int event2poltype(int event)
1422 {
1423 	switch (event) {
1424 	case XFRM_MSG_DELPOLICY:
1425 		return SADB_X_SPDDELETE;
1426 	case XFRM_MSG_NEWPOLICY:
1427 		return SADB_X_SPDADD;
1428 	case XFRM_MSG_UPDPOLICY:
1429 		return SADB_X_SPDUPDATE;
1430 	case XFRM_MSG_POLEXPIRE:
1431 	//	return SADB_X_SPDEXPIRE;
1432 	default:
1433 		printk("pfkey: Unknown policy event %d\n", event);
1434 		break;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 static inline int event2keytype(int event)
1441 {
1442 	switch (event) {
1443 	case XFRM_MSG_DELSA:
1444 		return SADB_DELETE;
1445 	case XFRM_MSG_NEWSA:
1446 		return SADB_ADD;
1447 	case XFRM_MSG_UPDSA:
1448 		return SADB_UPDATE;
1449 	case XFRM_MSG_EXPIRE:
1450 		return SADB_EXPIRE;
1451 	default:
1452 		printk("pfkey: Unknown SA event %d\n", event);
1453 		break;
1454 	}
1455 
1456 	return 0;
1457 }
1458 
1459 /* ADD/UPD/DEL */
1460 static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
1461 {
1462 	struct sk_buff *skb;
1463 	struct sadb_msg *hdr;
1464 
1465 	skb = pfkey_xfrm_state2msg(x);
1466 
1467 	if (IS_ERR(skb))
1468 		return PTR_ERR(skb);
1469 
1470 	hdr = (struct sadb_msg *) skb->data;
1471 	hdr->sadb_msg_version = PF_KEY_V2;
1472 	hdr->sadb_msg_type = event2keytype(c->event);
1473 	hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
1474 	hdr->sadb_msg_errno = 0;
1475 	hdr->sadb_msg_reserved = 0;
1476 	hdr->sadb_msg_seq = c->seq;
1477 	hdr->sadb_msg_pid = c->pid;
1478 
1479 	pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1480 
1481 	return 0;
1482 }
1483 
1484 static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1485 {
1486 	struct xfrm_state *x;
1487 	int err;
1488 	struct km_event c;
1489 
1490 	x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
1491 	if (IS_ERR(x))
1492 		return PTR_ERR(x);
1493 
1494 	xfrm_state_hold(x);
1495 	if (hdr->sadb_msg_type == SADB_ADD)
1496 		err = xfrm_state_add(x);
1497 	else
1498 		err = xfrm_state_update(x);
1499 
1500 	xfrm_audit_state_add(x, err ? 0 : 1,
1501 			     audit_get_loginuid(current),
1502 			     audit_get_sessionid(current), 0);
1503 
1504 	if (err < 0) {
1505 		x->km.state = XFRM_STATE_DEAD;
1506 		__xfrm_state_put(x);
1507 		goto out;
1508 	}
1509 
1510 	if (hdr->sadb_msg_type == SADB_ADD)
1511 		c.event = XFRM_MSG_NEWSA;
1512 	else
1513 		c.event = XFRM_MSG_UPDSA;
1514 	c.seq = hdr->sadb_msg_seq;
1515 	c.pid = hdr->sadb_msg_pid;
1516 	km_state_notify(x, &c);
1517 out:
1518 	xfrm_state_put(x);
1519 	return err;
1520 }
1521 
1522 static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1523 {
1524 	struct xfrm_state *x;
1525 	struct km_event c;
1526 	int err;
1527 
1528 	if (!ext_hdrs[SADB_EXT_SA-1] ||
1529 	    !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1530 				     ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1531 		return -EINVAL;
1532 
1533 	x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
1534 	if (x == NULL)
1535 		return -ESRCH;
1536 
1537 	if ((err = security_xfrm_state_delete(x)))
1538 		goto out;
1539 
1540 	if (xfrm_state_kern(x)) {
1541 		err = -EPERM;
1542 		goto out;
1543 	}
1544 
1545 	err = xfrm_state_delete(x);
1546 
1547 	if (err < 0)
1548 		goto out;
1549 
1550 	c.seq = hdr->sadb_msg_seq;
1551 	c.pid = hdr->sadb_msg_pid;
1552 	c.event = XFRM_MSG_DELSA;
1553 	km_state_notify(x, &c);
1554 out:
1555 	xfrm_audit_state_delete(x, err ? 0 : 1,
1556 				audit_get_loginuid(current),
1557 				audit_get_sessionid(current), 0);
1558 	xfrm_state_put(x);
1559 
1560 	return err;
1561 }
1562 
1563 static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1564 {
1565 	__u8 proto;
1566 	struct sk_buff *out_skb;
1567 	struct sadb_msg *out_hdr;
1568 	struct xfrm_state *x;
1569 
1570 	if (!ext_hdrs[SADB_EXT_SA-1] ||
1571 	    !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1572 				     ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1573 		return -EINVAL;
1574 
1575 	x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
1576 	if (x == NULL)
1577 		return -ESRCH;
1578 
1579 	out_skb = pfkey_xfrm_state2msg(x);
1580 	proto = x->id.proto;
1581 	xfrm_state_put(x);
1582 	if (IS_ERR(out_skb))
1583 		return  PTR_ERR(out_skb);
1584 
1585 	out_hdr = (struct sadb_msg *) out_skb->data;
1586 	out_hdr->sadb_msg_version = hdr->sadb_msg_version;
1587 	out_hdr->sadb_msg_type = SADB_GET;
1588 	out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
1589 	out_hdr->sadb_msg_errno = 0;
1590 	out_hdr->sadb_msg_reserved = 0;
1591 	out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
1592 	out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
1593 	pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
1594 
1595 	return 0;
1596 }
1597 
1598 static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
1599 					      gfp_t allocation)
1600 {
1601 	struct sk_buff *skb;
1602 	struct sadb_msg *hdr;
1603 	int len, auth_len, enc_len, i;
1604 
1605 	auth_len = xfrm_count_auth_supported();
1606 	if (auth_len) {
1607 		auth_len *= sizeof(struct sadb_alg);
1608 		auth_len += sizeof(struct sadb_supported);
1609 	}
1610 
1611 	enc_len = xfrm_count_enc_supported();
1612 	if (enc_len) {
1613 		enc_len *= sizeof(struct sadb_alg);
1614 		enc_len += sizeof(struct sadb_supported);
1615 	}
1616 
1617 	len = enc_len + auth_len + sizeof(struct sadb_msg);
1618 
1619 	skb = alloc_skb(len + 16, allocation);
1620 	if (!skb)
1621 		goto out_put_algs;
1622 
1623 	hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
1624 	pfkey_hdr_dup(hdr, orig);
1625 	hdr->sadb_msg_errno = 0;
1626 	hdr->sadb_msg_len = len / sizeof(uint64_t);
1627 
1628 	if (auth_len) {
1629 		struct sadb_supported *sp;
1630 		struct sadb_alg *ap;
1631 
1632 		sp = (struct sadb_supported *) skb_put(skb, auth_len);
1633 		ap = (struct sadb_alg *) (sp + 1);
1634 
1635 		sp->sadb_supported_len = auth_len / sizeof(uint64_t);
1636 		sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
1637 
1638 		for (i = 0; ; i++) {
1639 			struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
1640 			if (!aalg)
1641 				break;
1642 			if (aalg->available)
1643 				*ap++ = aalg->desc;
1644 		}
1645 	}
1646 
1647 	if (enc_len) {
1648 		struct sadb_supported *sp;
1649 		struct sadb_alg *ap;
1650 
1651 		sp = (struct sadb_supported *) skb_put(skb, enc_len);
1652 		ap = (struct sadb_alg *) (sp + 1);
1653 
1654 		sp->sadb_supported_len = enc_len / sizeof(uint64_t);
1655 		sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
1656 
1657 		for (i = 0; ; i++) {
1658 			struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
1659 			if (!ealg)
1660 				break;
1661 			if (ealg->available)
1662 				*ap++ = ealg->desc;
1663 		}
1664 	}
1665 
1666 out_put_algs:
1667 	return skb;
1668 }
1669 
1670 static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1671 {
1672 	struct pfkey_sock *pfk = pfkey_sk(sk);
1673 	struct sk_buff *supp_skb;
1674 
1675 	if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
1676 		return -EINVAL;
1677 
1678 	if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
1679 		if (pfk->registered&(1<<hdr->sadb_msg_satype))
1680 			return -EEXIST;
1681 		pfk->registered |= (1<<hdr->sadb_msg_satype);
1682 	}
1683 
1684 	xfrm_probe_algs();
1685 
1686 	supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
1687 	if (!supp_skb) {
1688 		if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
1689 			pfk->registered &= ~(1<<hdr->sadb_msg_satype);
1690 
1691 		return -ENOBUFS;
1692 	}
1693 
1694 	pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
1695 
1696 	return 0;
1697 }
1698 
1699 static int key_notify_sa_flush(struct km_event *c)
1700 {
1701 	struct sk_buff *skb;
1702 	struct sadb_msg *hdr;
1703 
1704 	skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
1705 	if (!skb)
1706 		return -ENOBUFS;
1707 	hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
1708 	hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
1709 	hdr->sadb_msg_type = SADB_FLUSH;
1710 	hdr->sadb_msg_seq = c->seq;
1711 	hdr->sadb_msg_pid = c->pid;
1712 	hdr->sadb_msg_version = PF_KEY_V2;
1713 	hdr->sadb_msg_errno = (uint8_t) 0;
1714 	hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
1715 
1716 	pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1717 
1718 	return 0;
1719 }
1720 
1721 static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1722 {
1723 	unsigned proto;
1724 	struct km_event c;
1725 	struct xfrm_audit audit_info;
1726 	int err;
1727 
1728 	proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1729 	if (proto == 0)
1730 		return -EINVAL;
1731 
1732 	audit_info.loginuid = audit_get_loginuid(current);
1733 	audit_info.sessionid = audit_get_sessionid(current);
1734 	audit_info.secid = 0;
1735 	err = xfrm_state_flush(proto, &audit_info);
1736 	if (err)
1737 		return err;
1738 	c.data.proto = proto;
1739 	c.seq = hdr->sadb_msg_seq;
1740 	c.pid = hdr->sadb_msg_pid;
1741 	c.event = XFRM_MSG_FLUSHSA;
1742 	km_state_notify(NULL, &c);
1743 
1744 	return 0;
1745 }
1746 
1747 static int dump_sa(struct xfrm_state *x, int count, void *ptr)
1748 {
1749 	struct pfkey_sock *pfk = ptr;
1750 	struct sk_buff *out_skb;
1751 	struct sadb_msg *out_hdr;
1752 
1753 	if (!pfkey_can_dump(&pfk->sk))
1754 		return -ENOBUFS;
1755 
1756 	out_skb = pfkey_xfrm_state2msg(x);
1757 	if (IS_ERR(out_skb))
1758 		return PTR_ERR(out_skb);
1759 
1760 	out_hdr = (struct sadb_msg *) out_skb->data;
1761 	out_hdr->sadb_msg_version = pfk->dump.msg_version;
1762 	out_hdr->sadb_msg_type = SADB_DUMP;
1763 	out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
1764 	out_hdr->sadb_msg_errno = 0;
1765 	out_hdr->sadb_msg_reserved = 0;
1766 	out_hdr->sadb_msg_seq = count;
1767 	out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
1768 	pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
1769 	return 0;
1770 }
1771 
1772 static int pfkey_dump_sa(struct pfkey_sock *pfk)
1773 {
1774 	return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
1775 }
1776 
1777 static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
1778 {
1779 	xfrm_state_walk_done(&pfk->dump.u.state);
1780 }
1781 
1782 static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1783 {
1784 	u8 proto;
1785 	struct pfkey_sock *pfk = pfkey_sk(sk);
1786 
1787 	if (pfk->dump.dump != NULL)
1788 		return -EBUSY;
1789 
1790 	proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1791 	if (proto == 0)
1792 		return -EINVAL;
1793 
1794 	pfk->dump.msg_version = hdr->sadb_msg_version;
1795 	pfk->dump.msg_pid = hdr->sadb_msg_pid;
1796 	pfk->dump.dump = pfkey_dump_sa;
1797 	pfk->dump.done = pfkey_dump_sa_done;
1798 	xfrm_state_walk_init(&pfk->dump.u.state, proto);
1799 
1800 	return pfkey_do_dump(pfk);
1801 }
1802 
1803 static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1804 {
1805 	struct pfkey_sock *pfk = pfkey_sk(sk);
1806 	int satype = hdr->sadb_msg_satype;
1807 
1808 	if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
1809 		/* XXX we mangle packet... */
1810 		hdr->sadb_msg_errno = 0;
1811 		if (satype != 0 && satype != 1)
1812 			return -EINVAL;
1813 		pfk->promisc = satype;
1814 	}
1815 	pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
1816 	return 0;
1817 }
1818 
1819 static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
1820 {
1821 	int i;
1822 	u32 reqid = *(u32*)ptr;
1823 
1824 	for (i=0; i<xp->xfrm_nr; i++) {
1825 		if (xp->xfrm_vec[i].reqid == reqid)
1826 			return -EEXIST;
1827 	}
1828 	return 0;
1829 }
1830 
1831 static u32 gen_reqid(void)
1832 {
1833 	struct xfrm_policy_walk walk;
1834 	u32 start;
1835 	int rc;
1836 	static u32 reqid = IPSEC_MANUAL_REQID_MAX;
1837 
1838 	start = reqid;
1839 	do {
1840 		++reqid;
1841 		if (reqid == 0)
1842 			reqid = IPSEC_MANUAL_REQID_MAX+1;
1843 		xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
1844 		rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
1845 		xfrm_policy_walk_done(&walk);
1846 		if (rc != -EEXIST)
1847 			return reqid;
1848 	} while (reqid != start);
1849 	return 0;
1850 }
1851 
1852 static int
1853 parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
1854 {
1855 	struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
1856 	struct sockaddr_in *sin;
1857 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1858 	struct sockaddr_in6 *sin6;
1859 #endif
1860 	int mode;
1861 
1862 	if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
1863 		return -ELOOP;
1864 
1865 	if (rq->sadb_x_ipsecrequest_mode == 0)
1866 		return -EINVAL;
1867 
1868 	t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
1869 	if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
1870 		return -EINVAL;
1871 	t->mode = mode;
1872 	if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
1873 		t->optional = 1;
1874 	else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
1875 		t->reqid = rq->sadb_x_ipsecrequest_reqid;
1876 		if (t->reqid > IPSEC_MANUAL_REQID_MAX)
1877 			t->reqid = 0;
1878 		if (!t->reqid && !(t->reqid = gen_reqid()))
1879 			return -ENOBUFS;
1880 	}
1881 
1882 	/* addresses present only in tunnel mode */
1883 	if (t->mode == XFRM_MODE_TUNNEL) {
1884 		struct sockaddr *sa;
1885 		sa = (struct sockaddr *)(rq+1);
1886 		switch(sa->sa_family) {
1887 		case AF_INET:
1888 			sin = (struct sockaddr_in*)sa;
1889 			t->saddr.a4 = sin->sin_addr.s_addr;
1890 			sin++;
1891 			if (sin->sin_family != AF_INET)
1892 				return -EINVAL;
1893 			t->id.daddr.a4 = sin->sin_addr.s_addr;
1894 			break;
1895 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1896 		case AF_INET6:
1897 			sin6 = (struct sockaddr_in6*)sa;
1898 			memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
1899 			sin6++;
1900 			if (sin6->sin6_family != AF_INET6)
1901 				return -EINVAL;
1902 			memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
1903 			break;
1904 #endif
1905 		default:
1906 			return -EINVAL;
1907 		}
1908 		t->encap_family = sa->sa_family;
1909 	} else
1910 		t->encap_family = xp->family;
1911 
1912 	/* No way to set this via kame pfkey */
1913 	t->allalgs = 1;
1914 	xp->xfrm_nr++;
1915 	return 0;
1916 }
1917 
1918 static int
1919 parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
1920 {
1921 	int err;
1922 	int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
1923 	struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
1924 
1925 	while (len >= sizeof(struct sadb_x_ipsecrequest)) {
1926 		if ((err = parse_ipsecrequest(xp, rq)) < 0)
1927 			return err;
1928 		len -= rq->sadb_x_ipsecrequest_len;
1929 		rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
1930 	}
1931 	return 0;
1932 }
1933 
1934 static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
1935 {
1936   struct xfrm_sec_ctx *xfrm_ctx = xp->security;
1937 
1938 	if (xfrm_ctx) {
1939 		int len = sizeof(struct sadb_x_sec_ctx);
1940 		len += xfrm_ctx->ctx_len;
1941 		return PFKEY_ALIGN8(len);
1942 	}
1943 	return 0;
1944 }
1945 
1946 static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
1947 {
1948 	struct xfrm_tmpl *t;
1949 	int sockaddr_size = pfkey_sockaddr_size(xp->family);
1950 	int socklen = 0;
1951 	int i;
1952 
1953 	for (i=0; i<xp->xfrm_nr; i++) {
1954 		t = xp->xfrm_vec + i;
1955 		socklen += (t->encap_family == AF_INET ?
1956 			    sizeof(struct sockaddr_in) :
1957 			    sizeof(struct sockaddr_in6));
1958 	}
1959 
1960 	return sizeof(struct sadb_msg) +
1961 		(sizeof(struct sadb_lifetime) * 3) +
1962 		(sizeof(struct sadb_address) * 2) +
1963 		(sockaddr_size * 2) +
1964 		sizeof(struct sadb_x_policy) +
1965 		(xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
1966 		(socklen * 2) +
1967 		pfkey_xfrm_policy2sec_ctx_size(xp);
1968 }
1969 
1970 static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
1971 {
1972 	struct sk_buff *skb;
1973 	int size;
1974 
1975 	size = pfkey_xfrm_policy2msg_size(xp);
1976 
1977 	skb =  alloc_skb(size + 16, GFP_ATOMIC);
1978 	if (skb == NULL)
1979 		return ERR_PTR(-ENOBUFS);
1980 
1981 	return skb;
1982 }
1983 
1984 static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
1985 {
1986 	struct sadb_msg *hdr;
1987 	struct sadb_address *addr;
1988 	struct sadb_lifetime *lifetime;
1989 	struct sadb_x_policy *pol;
1990 	struct sockaddr_in   *sin;
1991 	struct sadb_x_sec_ctx *sec_ctx;
1992 	struct xfrm_sec_ctx *xfrm_ctx;
1993 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1994 	struct sockaddr_in6  *sin6;
1995 #endif
1996 	int i;
1997 	int size;
1998 	int sockaddr_size = pfkey_sockaddr_size(xp->family);
1999 	int socklen = (xp->family == AF_INET ?
2000 		       sizeof(struct sockaddr_in) :
2001 		       sizeof(struct sockaddr_in6));
2002 
2003 	size = pfkey_xfrm_policy2msg_size(xp);
2004 
2005 	/* call should fill header later */
2006 	hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
2007 	memset(hdr, 0, size);	/* XXX do we need this ? */
2008 
2009 	/* src address */
2010 	addr = (struct sadb_address*) skb_put(skb,
2011 					      sizeof(struct sadb_address)+sockaddr_size);
2012 	addr->sadb_address_len =
2013 		(sizeof(struct sadb_address)+sockaddr_size)/
2014 			sizeof(uint64_t);
2015 	addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
2016 	addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
2017 	addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
2018 	addr->sadb_address_reserved = 0;
2019 	/* src address */
2020 	if (xp->family == AF_INET) {
2021 		sin = (struct sockaddr_in *) (addr + 1);
2022 		sin->sin_family = AF_INET;
2023 		sin->sin_addr.s_addr = xp->selector.saddr.a4;
2024 		sin->sin_port = xp->selector.sport;
2025 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2026 	}
2027 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2028 	else if (xp->family == AF_INET6) {
2029 		sin6 = (struct sockaddr_in6 *) (addr + 1);
2030 		sin6->sin6_family = AF_INET6;
2031 		sin6->sin6_port = xp->selector.sport;
2032 		sin6->sin6_flowinfo = 0;
2033 		memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
2034 		       sizeof(struct in6_addr));
2035 		sin6->sin6_scope_id = 0;
2036 	}
2037 #endif
2038 	else
2039 		BUG();
2040 
2041 	/* dst address */
2042 	addr = (struct sadb_address*) skb_put(skb,
2043 					      sizeof(struct sadb_address)+sockaddr_size);
2044 	addr->sadb_address_len =
2045 		(sizeof(struct sadb_address)+sockaddr_size)/
2046 			sizeof(uint64_t);
2047 	addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
2048 	addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
2049 	addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
2050 	addr->sadb_address_reserved = 0;
2051 	if (xp->family == AF_INET) {
2052 		sin = (struct sockaddr_in *) (addr + 1);
2053 		sin->sin_family = AF_INET;
2054 		sin->sin_addr.s_addr = xp->selector.daddr.a4;
2055 		sin->sin_port = xp->selector.dport;
2056 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2057 	}
2058 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2059 	else if (xp->family == AF_INET6) {
2060 		sin6 = (struct sockaddr_in6 *) (addr + 1);
2061 		sin6->sin6_family = AF_INET6;
2062 		sin6->sin6_port = xp->selector.dport;
2063 		sin6->sin6_flowinfo = 0;
2064 		memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
2065 		       sizeof(struct in6_addr));
2066 		sin6->sin6_scope_id = 0;
2067 	}
2068 #endif
2069 	else
2070 		BUG();
2071 
2072 	/* hard time */
2073 	lifetime = (struct sadb_lifetime *)  skb_put(skb,
2074 						     sizeof(struct sadb_lifetime));
2075 	lifetime->sadb_lifetime_len =
2076 		sizeof(struct sadb_lifetime)/sizeof(uint64_t);
2077 	lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2078 	lifetime->sadb_lifetime_allocations =  _X2KEY(xp->lft.hard_packet_limit);
2079 	lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
2080 	lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
2081 	lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
2082 	/* soft time */
2083 	lifetime = (struct sadb_lifetime *)  skb_put(skb,
2084 						     sizeof(struct sadb_lifetime));
2085 	lifetime->sadb_lifetime_len =
2086 		sizeof(struct sadb_lifetime)/sizeof(uint64_t);
2087 	lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
2088 	lifetime->sadb_lifetime_allocations =  _X2KEY(xp->lft.soft_packet_limit);
2089 	lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
2090 	lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
2091 	lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
2092 	/* current time */
2093 	lifetime = (struct sadb_lifetime *)  skb_put(skb,
2094 						     sizeof(struct sadb_lifetime));
2095 	lifetime->sadb_lifetime_len =
2096 		sizeof(struct sadb_lifetime)/sizeof(uint64_t);
2097 	lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2098 	lifetime->sadb_lifetime_allocations = xp->curlft.packets;
2099 	lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
2100 	lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
2101 	lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
2102 
2103 	pol = (struct sadb_x_policy *)  skb_put(skb, sizeof(struct sadb_x_policy));
2104 	pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
2105 	pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
2106 	pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
2107 	if (xp->action == XFRM_POLICY_ALLOW) {
2108 		if (xp->xfrm_nr)
2109 			pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
2110 		else
2111 			pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
2112 	}
2113 	pol->sadb_x_policy_dir = dir+1;
2114 	pol->sadb_x_policy_id = xp->index;
2115 	pol->sadb_x_policy_priority = xp->priority;
2116 
2117 	for (i=0; i<xp->xfrm_nr; i++) {
2118 		struct sadb_x_ipsecrequest *rq;
2119 		struct xfrm_tmpl *t = xp->xfrm_vec + i;
2120 		int req_size;
2121 		int mode;
2122 
2123 		req_size = sizeof(struct sadb_x_ipsecrequest);
2124 		if (t->mode == XFRM_MODE_TUNNEL)
2125 			req_size += ((t->encap_family == AF_INET ?
2126 				     sizeof(struct sockaddr_in) :
2127 				     sizeof(struct sockaddr_in6)) * 2);
2128 		else
2129 			size -= 2*socklen;
2130 		rq = (void*)skb_put(skb, req_size);
2131 		pol->sadb_x_policy_len += req_size/8;
2132 		memset(rq, 0, sizeof(*rq));
2133 		rq->sadb_x_ipsecrequest_len = req_size;
2134 		rq->sadb_x_ipsecrequest_proto = t->id.proto;
2135 		if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
2136 			return -EINVAL;
2137 		rq->sadb_x_ipsecrequest_mode = mode;
2138 		rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
2139 		if (t->reqid)
2140 			rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
2141 		if (t->optional)
2142 			rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
2143 		rq->sadb_x_ipsecrequest_reqid = t->reqid;
2144 		if (t->mode == XFRM_MODE_TUNNEL) {
2145 			switch (t->encap_family) {
2146 			case AF_INET:
2147 				sin = (void*)(rq+1);
2148 				sin->sin_family = AF_INET;
2149 				sin->sin_addr.s_addr = t->saddr.a4;
2150 				sin->sin_port = 0;
2151 				memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2152 				sin++;
2153 				sin->sin_family = AF_INET;
2154 				sin->sin_addr.s_addr = t->id.daddr.a4;
2155 				sin->sin_port = 0;
2156 				memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2157 				break;
2158 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2159 			case AF_INET6:
2160 				sin6 = (void*)(rq+1);
2161 				sin6->sin6_family = AF_INET6;
2162 				sin6->sin6_port = 0;
2163 				sin6->sin6_flowinfo = 0;
2164 				memcpy(&sin6->sin6_addr, t->saddr.a6,
2165 				       sizeof(struct in6_addr));
2166 				sin6->sin6_scope_id = 0;
2167 
2168 				sin6++;
2169 				sin6->sin6_family = AF_INET6;
2170 				sin6->sin6_port = 0;
2171 				sin6->sin6_flowinfo = 0;
2172 				memcpy(&sin6->sin6_addr, t->id.daddr.a6,
2173 				       sizeof(struct in6_addr));
2174 				sin6->sin6_scope_id = 0;
2175 				break;
2176 #endif
2177 			default:
2178 				break;
2179 			}
2180 		}
2181 	}
2182 
2183 	/* security context */
2184 	if ((xfrm_ctx = xp->security)) {
2185 		int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
2186 
2187 		sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
2188 		sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
2189 		sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
2190 		sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
2191 		sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
2192 		sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
2193 		memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
2194 		       xfrm_ctx->ctx_len);
2195 	}
2196 
2197 	hdr->sadb_msg_len = size / sizeof(uint64_t);
2198 	hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
2199 
2200 	return 0;
2201 }
2202 
2203 static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
2204 {
2205 	struct sk_buff *out_skb;
2206 	struct sadb_msg *out_hdr;
2207 	int err;
2208 
2209 	out_skb = pfkey_xfrm_policy2msg_prep(xp);
2210 	if (IS_ERR(out_skb)) {
2211 		err = PTR_ERR(out_skb);
2212 		goto out;
2213 	}
2214 	err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
2215 	if (err < 0)
2216 		return err;
2217 
2218 	out_hdr = (struct sadb_msg *) out_skb->data;
2219 	out_hdr->sadb_msg_version = PF_KEY_V2;
2220 
2221 	if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
2222 		out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
2223 	else
2224 		out_hdr->sadb_msg_type = event2poltype(c->event);
2225 	out_hdr->sadb_msg_errno = 0;
2226 	out_hdr->sadb_msg_seq = c->seq;
2227 	out_hdr->sadb_msg_pid = c->pid;
2228 	pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
2229 out:
2230 	return 0;
2231 
2232 }
2233 
2234 static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2235 {
2236 	int err = 0;
2237 	struct sadb_lifetime *lifetime;
2238 	struct sadb_address *sa;
2239 	struct sadb_x_policy *pol;
2240 	struct xfrm_policy *xp;
2241 	struct km_event c;
2242 	struct sadb_x_sec_ctx *sec_ctx;
2243 
2244 	if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2245 				     ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
2246 	    !ext_hdrs[SADB_X_EXT_POLICY-1])
2247 		return -EINVAL;
2248 
2249 	pol = ext_hdrs[SADB_X_EXT_POLICY-1];
2250 	if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
2251 		return -EINVAL;
2252 	if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
2253 		return -EINVAL;
2254 
2255 	xp = xfrm_policy_alloc(GFP_KERNEL);
2256 	if (xp == NULL)
2257 		return -ENOBUFS;
2258 
2259 	xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
2260 		      XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
2261 	xp->priority = pol->sadb_x_policy_priority;
2262 
2263 	sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2264 	xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
2265 	if (!xp->family) {
2266 		err = -EINVAL;
2267 		goto out;
2268 	}
2269 	xp->selector.family = xp->family;
2270 	xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
2271 	xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2272 	xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
2273 	if (xp->selector.sport)
2274 		xp->selector.sport_mask = htons(0xffff);
2275 
2276 	sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
2277 	pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
2278 	xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
2279 
2280 	/* Amusing, we set this twice.  KAME apps appear to set same value
2281 	 * in both addresses.
2282 	 */
2283 	xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2284 
2285 	xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
2286 	if (xp->selector.dport)
2287 		xp->selector.dport_mask = htons(0xffff);
2288 
2289 	sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
2290 	if (sec_ctx != NULL) {
2291 		struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
2292 
2293 		if (!uctx) {
2294 			err = -ENOBUFS;
2295 			goto out;
2296 		}
2297 
2298 		err = security_xfrm_policy_alloc(&xp->security, uctx);
2299 		kfree(uctx);
2300 
2301 		if (err)
2302 			goto out;
2303 	}
2304 
2305 	xp->lft.soft_byte_limit = XFRM_INF;
2306 	xp->lft.hard_byte_limit = XFRM_INF;
2307 	xp->lft.soft_packet_limit = XFRM_INF;
2308 	xp->lft.hard_packet_limit = XFRM_INF;
2309 	if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
2310 		xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
2311 		xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
2312 		xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
2313 		xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
2314 	}
2315 	if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
2316 		xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
2317 		xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
2318 		xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
2319 		xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
2320 	}
2321 	xp->xfrm_nr = 0;
2322 	if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2323 	    (err = parse_ipsecrequests(xp, pol)) < 0)
2324 		goto out;
2325 
2326 	err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
2327 				 hdr->sadb_msg_type != SADB_X_SPDUPDATE);
2328 
2329 	xfrm_audit_policy_add(xp, err ? 0 : 1,
2330 			      audit_get_loginuid(current),
2331 			      audit_get_sessionid(current), 0);
2332 
2333 	if (err)
2334 		goto out;
2335 
2336 	if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
2337 		c.event = XFRM_MSG_UPDPOLICY;
2338 	else
2339 		c.event = XFRM_MSG_NEWPOLICY;
2340 
2341 	c.seq = hdr->sadb_msg_seq;
2342 	c.pid = hdr->sadb_msg_pid;
2343 
2344 	km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2345 	xfrm_pol_put(xp);
2346 	return 0;
2347 
2348 out:
2349 	xp->dead = 1;
2350 	xfrm_policy_destroy(xp);
2351 	return err;
2352 }
2353 
2354 static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2355 {
2356 	int err;
2357 	struct sadb_address *sa;
2358 	struct sadb_x_policy *pol;
2359 	struct xfrm_policy *xp;
2360 	struct xfrm_selector sel;
2361 	struct km_event c;
2362 	struct sadb_x_sec_ctx *sec_ctx;
2363 	struct xfrm_sec_ctx *pol_ctx = NULL;
2364 
2365 	if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2366 				     ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
2367 	    !ext_hdrs[SADB_X_EXT_POLICY-1])
2368 		return -EINVAL;
2369 
2370 	pol = ext_hdrs[SADB_X_EXT_POLICY-1];
2371 	if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
2372 		return -EINVAL;
2373 
2374 	memset(&sel, 0, sizeof(sel));
2375 
2376 	sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2377 	sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
2378 	sel.prefixlen_s = sa->sadb_address_prefixlen;
2379 	sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2380 	sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
2381 	if (sel.sport)
2382 		sel.sport_mask = htons(0xffff);
2383 
2384 	sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
2385 	pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
2386 	sel.prefixlen_d = sa->sadb_address_prefixlen;
2387 	sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2388 	sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
2389 	if (sel.dport)
2390 		sel.dport_mask = htons(0xffff);
2391 
2392 	sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
2393 	if (sec_ctx != NULL) {
2394 		struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
2395 
2396 		if (!uctx)
2397 			return -ENOMEM;
2398 
2399 		err = security_xfrm_policy_alloc(&pol_ctx, uctx);
2400 		kfree(uctx);
2401 		if (err)
2402 			return err;
2403 	}
2404 
2405 	xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
2406 				   pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
2407 				   1, &err);
2408 	security_xfrm_policy_free(pol_ctx);
2409 	if (xp == NULL)
2410 		return -ENOENT;
2411 
2412 	xfrm_audit_policy_delete(xp, err ? 0 : 1,
2413 				 audit_get_loginuid(current),
2414 				 audit_get_sessionid(current), 0);
2415 
2416 	if (err)
2417 		goto out;
2418 
2419 	c.seq = hdr->sadb_msg_seq;
2420 	c.pid = hdr->sadb_msg_pid;
2421 	c.event = XFRM_MSG_DELPOLICY;
2422 	km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2423 
2424 out:
2425 	xfrm_pol_put(xp);
2426 	return err;
2427 }
2428 
2429 static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
2430 {
2431 	int err;
2432 	struct sk_buff *out_skb;
2433 	struct sadb_msg *out_hdr;
2434 	err = 0;
2435 
2436 	out_skb = pfkey_xfrm_policy2msg_prep(xp);
2437 	if (IS_ERR(out_skb)) {
2438 		err =  PTR_ERR(out_skb);
2439 		goto out;
2440 	}
2441 	err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
2442 	if (err < 0)
2443 		goto out;
2444 
2445 	out_hdr = (struct sadb_msg *) out_skb->data;
2446 	out_hdr->sadb_msg_version = hdr->sadb_msg_version;
2447 	out_hdr->sadb_msg_type = hdr->sadb_msg_type;
2448 	out_hdr->sadb_msg_satype = 0;
2449 	out_hdr->sadb_msg_errno = 0;
2450 	out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
2451 	out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
2452 	pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
2453 	err = 0;
2454 
2455 out:
2456 	return err;
2457 }
2458 
2459 #ifdef CONFIG_NET_KEY_MIGRATE
2460 static int pfkey_sockaddr_pair_size(sa_family_t family)
2461 {
2462 	switch (family) {
2463 	case AF_INET:
2464 		return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
2465 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2466 	case AF_INET6:
2467 		return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
2468 #endif
2469 	default:
2470 		return 0;
2471 	}
2472 	/* NOTREACHED */
2473 }
2474 
2475 static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
2476 			       xfrm_address_t *saddr, xfrm_address_t *daddr,
2477 			       u16 *family)
2478 {
2479 	struct sockaddr *sa = (struct sockaddr *)(rq + 1);
2480 	if (rq->sadb_x_ipsecrequest_len <
2481 	    pfkey_sockaddr_pair_size(sa->sa_family))
2482 		return -EINVAL;
2483 
2484 	switch (sa->sa_family) {
2485 	case AF_INET:
2486 		{
2487 			struct sockaddr_in *sin;
2488 			sin = (struct sockaddr_in *)sa;
2489 			if ((sin+1)->sin_family != AF_INET)
2490 				return -EINVAL;
2491 			memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
2492 			sin++;
2493 			memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
2494 			*family = AF_INET;
2495 			break;
2496 		}
2497 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2498 	case AF_INET6:
2499 		{
2500 			struct sockaddr_in6 *sin6;
2501 			sin6 = (struct sockaddr_in6 *)sa;
2502 			if ((sin6+1)->sin6_family != AF_INET6)
2503 				return -EINVAL;
2504 			memcpy(&saddr->a6, &sin6->sin6_addr,
2505 			       sizeof(saddr->a6));
2506 			sin6++;
2507 			memcpy(&daddr->a6, &sin6->sin6_addr,
2508 			       sizeof(daddr->a6));
2509 			*family = AF_INET6;
2510 			break;
2511 		}
2512 #endif
2513 	default:
2514 		return -EINVAL;
2515 	}
2516 
2517 	return 0;
2518 }
2519 
2520 static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
2521 				    struct xfrm_migrate *m)
2522 {
2523 	int err;
2524 	struct sadb_x_ipsecrequest *rq2;
2525 	int mode;
2526 
2527 	if (len <= sizeof(struct sadb_x_ipsecrequest) ||
2528 	    len < rq1->sadb_x_ipsecrequest_len)
2529 		return -EINVAL;
2530 
2531 	/* old endoints */
2532 	err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
2533 				  &m->old_family);
2534 	if (err)
2535 		return err;
2536 
2537 	rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
2538 	len -= rq1->sadb_x_ipsecrequest_len;
2539 
2540 	if (len <= sizeof(struct sadb_x_ipsecrequest) ||
2541 	    len < rq2->sadb_x_ipsecrequest_len)
2542 		return -EINVAL;
2543 
2544 	/* new endpoints */
2545 	err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
2546 				  &m->new_family);
2547 	if (err)
2548 		return err;
2549 
2550 	if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
2551 	    rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
2552 	    rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
2553 		return -EINVAL;
2554 
2555 	m->proto = rq1->sadb_x_ipsecrequest_proto;
2556 	if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
2557 		return -EINVAL;
2558 	m->mode = mode;
2559 	m->reqid = rq1->sadb_x_ipsecrequest_reqid;
2560 
2561 	return ((int)(rq1->sadb_x_ipsecrequest_len +
2562 		      rq2->sadb_x_ipsecrequest_len));
2563 }
2564 
2565 static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
2566 			 struct sadb_msg *hdr, void **ext_hdrs)
2567 {
2568 	int i, len, ret, err = -EINVAL;
2569 	u8 dir;
2570 	struct sadb_address *sa;
2571 	struct sadb_x_policy *pol;
2572 	struct sadb_x_ipsecrequest *rq;
2573 	struct xfrm_selector sel;
2574 	struct xfrm_migrate m[XFRM_MAX_DEPTH];
2575 
2576 	if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
2577 	    ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
2578 	    !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
2579 		err = -EINVAL;
2580 		goto out;
2581 	}
2582 
2583 	pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
2584 	if (!pol) {
2585 		err = -EINVAL;
2586 		goto out;
2587 	}
2588 
2589 	if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
2590 		err = -EINVAL;
2591 		goto out;
2592 	}
2593 
2594 	dir = pol->sadb_x_policy_dir - 1;
2595 	memset(&sel, 0, sizeof(sel));
2596 
2597 	/* set source address info of selector */
2598 	sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
2599 	sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
2600 	sel.prefixlen_s = sa->sadb_address_prefixlen;
2601 	sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2602 	sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
2603 	if (sel.sport)
2604 		sel.sport_mask = htons(0xffff);
2605 
2606 	/* set destination address info of selector */
2607 	sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
2608 	pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
2609 	sel.prefixlen_d = sa->sadb_address_prefixlen;
2610 	sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2611 	sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
2612 	if (sel.dport)
2613 		sel.dport_mask = htons(0xffff);
2614 
2615 	rq = (struct sadb_x_ipsecrequest *)(pol + 1);
2616 
2617 	/* extract ipsecrequests */
2618 	i = 0;
2619 	len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
2620 
2621 	while (len > 0 && i < XFRM_MAX_DEPTH) {
2622 		ret = ipsecrequests_to_migrate(rq, len, &m[i]);
2623 		if (ret < 0) {
2624 			err = ret;
2625 			goto out;
2626 		} else {
2627 			rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
2628 			len -= ret;
2629 			i++;
2630 		}
2631 	}
2632 
2633 	if (!i || len > 0) {
2634 		err = -EINVAL;
2635 		goto out;
2636 	}
2637 
2638 	return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
2639 
2640  out:
2641 	return err;
2642 }
2643 #else
2644 static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
2645 			 struct sadb_msg *hdr, void **ext_hdrs)
2646 {
2647 	return -ENOPROTOOPT;
2648 }
2649 #endif
2650 
2651 
2652 static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2653 {
2654 	unsigned int dir;
2655 	int err = 0, delete;
2656 	struct sadb_x_policy *pol;
2657 	struct xfrm_policy *xp;
2658 	struct km_event c;
2659 
2660 	if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
2661 		return -EINVAL;
2662 
2663 	dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
2664 	if (dir >= XFRM_POLICY_MAX)
2665 		return -EINVAL;
2666 
2667 	delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
2668 	xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
2669 			      delete, &err);
2670 	if (xp == NULL)
2671 		return -ENOENT;
2672 
2673 	if (delete) {
2674 		xfrm_audit_policy_delete(xp, err ? 0 : 1,
2675 				audit_get_loginuid(current),
2676 				audit_get_sessionid(current), 0);
2677 
2678 		if (err)
2679 			goto out;
2680 		c.seq = hdr->sadb_msg_seq;
2681 		c.pid = hdr->sadb_msg_pid;
2682 		c.data.byid = 1;
2683 		c.event = XFRM_MSG_DELPOLICY;
2684 		km_policy_notify(xp, dir, &c);
2685 	} else {
2686 		err = key_pol_get_resp(sk, xp, hdr, dir);
2687 	}
2688 
2689 out:
2690 	xfrm_pol_put(xp);
2691 	return err;
2692 }
2693 
2694 static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
2695 {
2696 	struct pfkey_sock *pfk = ptr;
2697 	struct sk_buff *out_skb;
2698 	struct sadb_msg *out_hdr;
2699 	int err;
2700 
2701 	if (!pfkey_can_dump(&pfk->sk))
2702 		return -ENOBUFS;
2703 
2704 	out_skb = pfkey_xfrm_policy2msg_prep(xp);
2705 	if (IS_ERR(out_skb))
2706 		return PTR_ERR(out_skb);
2707 
2708 	err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
2709 	if (err < 0)
2710 		return err;
2711 
2712 	out_hdr = (struct sadb_msg *) out_skb->data;
2713 	out_hdr->sadb_msg_version = pfk->dump.msg_version;
2714 	out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
2715 	out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
2716 	out_hdr->sadb_msg_errno = 0;
2717 	out_hdr->sadb_msg_seq = count;
2718 	out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
2719 	pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
2720 	return 0;
2721 }
2722 
2723 static int pfkey_dump_sp(struct pfkey_sock *pfk)
2724 {
2725 	return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
2726 }
2727 
2728 static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
2729 {
2730 	xfrm_policy_walk_done(&pfk->dump.u.policy);
2731 }
2732 
2733 static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2734 {
2735 	struct pfkey_sock *pfk = pfkey_sk(sk);
2736 
2737 	if (pfk->dump.dump != NULL)
2738 		return -EBUSY;
2739 
2740 	pfk->dump.msg_version = hdr->sadb_msg_version;
2741 	pfk->dump.msg_pid = hdr->sadb_msg_pid;
2742 	pfk->dump.dump = pfkey_dump_sp;
2743 	pfk->dump.done = pfkey_dump_sp_done;
2744 	xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
2745 
2746 	return pfkey_do_dump(pfk);
2747 }
2748 
2749 static int key_notify_policy_flush(struct km_event *c)
2750 {
2751 	struct sk_buff *skb_out;
2752 	struct sadb_msg *hdr;
2753 
2754 	skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
2755 	if (!skb_out)
2756 		return -ENOBUFS;
2757 	hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
2758 	hdr->sadb_msg_type = SADB_X_SPDFLUSH;
2759 	hdr->sadb_msg_seq = c->seq;
2760 	hdr->sadb_msg_pid = c->pid;
2761 	hdr->sadb_msg_version = PF_KEY_V2;
2762 	hdr->sadb_msg_errno = (uint8_t) 0;
2763 	hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
2764 	pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
2765 	return 0;
2766 
2767 }
2768 
2769 static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2770 {
2771 	struct km_event c;
2772 	struct xfrm_audit audit_info;
2773 	int err;
2774 
2775 	audit_info.loginuid = audit_get_loginuid(current);
2776 	audit_info.sessionid = audit_get_sessionid(current);
2777 	audit_info.secid = 0;
2778 	err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
2779 	if (err)
2780 		return err;
2781 	c.data.type = XFRM_POLICY_TYPE_MAIN;
2782 	c.event = XFRM_MSG_FLUSHPOLICY;
2783 	c.pid = hdr->sadb_msg_pid;
2784 	c.seq = hdr->sadb_msg_seq;
2785 	km_policy_notify(NULL, 0, &c);
2786 
2787 	return 0;
2788 }
2789 
2790 typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
2791 			     struct sadb_msg *hdr, void **ext_hdrs);
2792 static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
2793 	[SADB_RESERVED]		= pfkey_reserved,
2794 	[SADB_GETSPI]		= pfkey_getspi,
2795 	[SADB_UPDATE]		= pfkey_add,
2796 	[SADB_ADD]		= pfkey_add,
2797 	[SADB_DELETE]		= pfkey_delete,
2798 	[SADB_GET]		= pfkey_get,
2799 	[SADB_ACQUIRE]		= pfkey_acquire,
2800 	[SADB_REGISTER]		= pfkey_register,
2801 	[SADB_EXPIRE]		= NULL,
2802 	[SADB_FLUSH]		= pfkey_flush,
2803 	[SADB_DUMP]		= pfkey_dump,
2804 	[SADB_X_PROMISC]	= pfkey_promisc,
2805 	[SADB_X_PCHANGE]	= NULL,
2806 	[SADB_X_SPDUPDATE]	= pfkey_spdadd,
2807 	[SADB_X_SPDADD]		= pfkey_spdadd,
2808 	[SADB_X_SPDDELETE]	= pfkey_spddelete,
2809 	[SADB_X_SPDGET]		= pfkey_spdget,
2810 	[SADB_X_SPDACQUIRE]	= NULL,
2811 	[SADB_X_SPDDUMP]	= pfkey_spddump,
2812 	[SADB_X_SPDFLUSH]	= pfkey_spdflush,
2813 	[SADB_X_SPDSETIDX]	= pfkey_spdadd,
2814 	[SADB_X_SPDDELETE2]	= pfkey_spdget,
2815 	[SADB_X_MIGRATE]	= pfkey_migrate,
2816 };
2817 
2818 static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
2819 {
2820 	void *ext_hdrs[SADB_EXT_MAX];
2821 	int err;
2822 
2823 	pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
2824 			BROADCAST_PROMISC_ONLY, NULL);
2825 
2826 	memset(ext_hdrs, 0, sizeof(ext_hdrs));
2827 	err = parse_exthdrs(skb, hdr, ext_hdrs);
2828 	if (!err) {
2829 		err = -EOPNOTSUPP;
2830 		if (pfkey_funcs[hdr->sadb_msg_type])
2831 			err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
2832 	}
2833 	return err;
2834 }
2835 
2836 static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
2837 {
2838 	struct sadb_msg *hdr = NULL;
2839 
2840 	if (skb->len < sizeof(*hdr)) {
2841 		*errp = -EMSGSIZE;
2842 	} else {
2843 		hdr = (struct sadb_msg *) skb->data;
2844 		if (hdr->sadb_msg_version != PF_KEY_V2 ||
2845 		    hdr->sadb_msg_reserved != 0 ||
2846 		    (hdr->sadb_msg_type <= SADB_RESERVED ||
2847 		     hdr->sadb_msg_type > SADB_MAX)) {
2848 			hdr = NULL;
2849 			*errp = -EINVAL;
2850 		} else if (hdr->sadb_msg_len != (skb->len /
2851 						 sizeof(uint64_t)) ||
2852 			   hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
2853 						sizeof(uint64_t))) {
2854 			hdr = NULL;
2855 			*errp = -EMSGSIZE;
2856 		} else {
2857 			*errp = 0;
2858 		}
2859 	}
2860 	return hdr;
2861 }
2862 
2863 static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
2864 {
2865 	unsigned int id = d->desc.sadb_alg_id;
2866 
2867 	if (id >= sizeof(t->aalgos) * 8)
2868 		return 0;
2869 
2870 	return (t->aalgos >> id) & 1;
2871 }
2872 
2873 static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
2874 {
2875 	unsigned int id = d->desc.sadb_alg_id;
2876 
2877 	if (id >= sizeof(t->ealgos) * 8)
2878 		return 0;
2879 
2880 	return (t->ealgos >> id) & 1;
2881 }
2882 
2883 static int count_ah_combs(struct xfrm_tmpl *t)
2884 {
2885 	int i, sz = 0;
2886 
2887 	for (i = 0; ; i++) {
2888 		struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
2889 		if (!aalg)
2890 			break;
2891 		if (aalg_tmpl_set(t, aalg) && aalg->available)
2892 			sz += sizeof(struct sadb_comb);
2893 	}
2894 	return sz + sizeof(struct sadb_prop);
2895 }
2896 
2897 static int count_esp_combs(struct xfrm_tmpl *t)
2898 {
2899 	int i, k, sz = 0;
2900 
2901 	for (i = 0; ; i++) {
2902 		struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
2903 		if (!ealg)
2904 			break;
2905 
2906 		if (!(ealg_tmpl_set(t, ealg) && ealg->available))
2907 			continue;
2908 
2909 		for (k = 1; ; k++) {
2910 			struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
2911 			if (!aalg)
2912 				break;
2913 
2914 			if (aalg_tmpl_set(t, aalg) && aalg->available)
2915 				sz += sizeof(struct sadb_comb);
2916 		}
2917 	}
2918 	return sz + sizeof(struct sadb_prop);
2919 }
2920 
2921 static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
2922 {
2923 	struct sadb_prop *p;
2924 	int i;
2925 
2926 	p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
2927 	p->sadb_prop_len = sizeof(struct sadb_prop)/8;
2928 	p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
2929 	p->sadb_prop_replay = 32;
2930 	memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
2931 
2932 	for (i = 0; ; i++) {
2933 		struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
2934 		if (!aalg)
2935 			break;
2936 
2937 		if (aalg_tmpl_set(t, aalg) && aalg->available) {
2938 			struct sadb_comb *c;
2939 			c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
2940 			memset(c, 0, sizeof(*c));
2941 			p->sadb_prop_len += sizeof(struct sadb_comb)/8;
2942 			c->sadb_comb_auth = aalg->desc.sadb_alg_id;
2943 			c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
2944 			c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
2945 			c->sadb_comb_hard_addtime = 24*60*60;
2946 			c->sadb_comb_soft_addtime = 20*60*60;
2947 			c->sadb_comb_hard_usetime = 8*60*60;
2948 			c->sadb_comb_soft_usetime = 7*60*60;
2949 		}
2950 	}
2951 }
2952 
2953 static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
2954 {
2955 	struct sadb_prop *p;
2956 	int i, k;
2957 
2958 	p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
2959 	p->sadb_prop_len = sizeof(struct sadb_prop)/8;
2960 	p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
2961 	p->sadb_prop_replay = 32;
2962 	memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
2963 
2964 	for (i=0; ; i++) {
2965 		struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
2966 		if (!ealg)
2967 			break;
2968 
2969 		if (!(ealg_tmpl_set(t, ealg) && ealg->available))
2970 			continue;
2971 
2972 		for (k = 1; ; k++) {
2973 			struct sadb_comb *c;
2974 			struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
2975 			if (!aalg)
2976 				break;
2977 			if (!(aalg_tmpl_set(t, aalg) && aalg->available))
2978 				continue;
2979 			c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
2980 			memset(c, 0, sizeof(*c));
2981 			p->sadb_prop_len += sizeof(struct sadb_comb)/8;
2982 			c->sadb_comb_auth = aalg->desc.sadb_alg_id;
2983 			c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
2984 			c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
2985 			c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
2986 			c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
2987 			c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
2988 			c->sadb_comb_hard_addtime = 24*60*60;
2989 			c->sadb_comb_soft_addtime = 20*60*60;
2990 			c->sadb_comb_hard_usetime = 8*60*60;
2991 			c->sadb_comb_soft_usetime = 7*60*60;
2992 		}
2993 	}
2994 }
2995 
2996 static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
2997 {
2998 	return 0;
2999 }
3000 
3001 static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
3002 {
3003 	struct sk_buff *out_skb;
3004 	struct sadb_msg *out_hdr;
3005 	int hard;
3006 	int hsc;
3007 
3008 	hard = c->data.hard;
3009 	if (hard)
3010 		hsc = 2;
3011 	else
3012 		hsc = 1;
3013 
3014 	out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
3015 	if (IS_ERR(out_skb))
3016 		return PTR_ERR(out_skb);
3017 
3018 	out_hdr = (struct sadb_msg *) out_skb->data;
3019 	out_hdr->sadb_msg_version = PF_KEY_V2;
3020 	out_hdr->sadb_msg_type = SADB_EXPIRE;
3021 	out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
3022 	out_hdr->sadb_msg_errno = 0;
3023 	out_hdr->sadb_msg_reserved = 0;
3024 	out_hdr->sadb_msg_seq = 0;
3025 	out_hdr->sadb_msg_pid = 0;
3026 
3027 	pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
3028 	return 0;
3029 }
3030 
3031 static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
3032 {
3033 	switch (c->event) {
3034 	case XFRM_MSG_EXPIRE:
3035 		return key_notify_sa_expire(x, c);
3036 	case XFRM_MSG_DELSA:
3037 	case XFRM_MSG_NEWSA:
3038 	case XFRM_MSG_UPDSA:
3039 		return key_notify_sa(x, c);
3040 	case XFRM_MSG_FLUSHSA:
3041 		return key_notify_sa_flush(c);
3042 	case XFRM_MSG_NEWAE: /* not yet supported */
3043 		break;
3044 	default:
3045 		printk("pfkey: Unknown SA event %d\n", c->event);
3046 		break;
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
3053 {
3054 	if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
3055 		return 0;
3056 
3057 	switch (c->event) {
3058 	case XFRM_MSG_POLEXPIRE:
3059 		return key_notify_policy_expire(xp, c);
3060 	case XFRM_MSG_DELPOLICY:
3061 	case XFRM_MSG_NEWPOLICY:
3062 	case XFRM_MSG_UPDPOLICY:
3063 		return key_notify_policy(xp, dir, c);
3064 	case XFRM_MSG_FLUSHPOLICY:
3065 		if (c->data.type != XFRM_POLICY_TYPE_MAIN)
3066 			break;
3067 		return key_notify_policy_flush(c);
3068 	default:
3069 		printk("pfkey: Unknown policy event %d\n", c->event);
3070 		break;
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 static u32 get_acqseq(void)
3077 {
3078 	u32 res;
3079 	static u32 acqseq;
3080 	static DEFINE_SPINLOCK(acqseq_lock);
3081 
3082 	spin_lock_bh(&acqseq_lock);
3083 	res = (++acqseq ? : ++acqseq);
3084 	spin_unlock_bh(&acqseq_lock);
3085 	return res;
3086 }
3087 
3088 static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
3089 {
3090 	struct sk_buff *skb;
3091 	struct sadb_msg *hdr;
3092 	struct sadb_address *addr;
3093 	struct sadb_x_policy *pol;
3094 	struct sockaddr_in *sin;
3095 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3096 	struct sockaddr_in6 *sin6;
3097 #endif
3098 	int sockaddr_size;
3099 	int size;
3100 	struct sadb_x_sec_ctx *sec_ctx;
3101 	struct xfrm_sec_ctx *xfrm_ctx;
3102 	int ctx_size = 0;
3103 
3104 	sockaddr_size = pfkey_sockaddr_size(x->props.family);
3105 	if (!sockaddr_size)
3106 		return -EINVAL;
3107 
3108 	size = sizeof(struct sadb_msg) +
3109 		(sizeof(struct sadb_address) * 2) +
3110 		(sockaddr_size * 2) +
3111 		sizeof(struct sadb_x_policy);
3112 
3113 	if (x->id.proto == IPPROTO_AH)
3114 		size += count_ah_combs(t);
3115 	else if (x->id.proto == IPPROTO_ESP)
3116 		size += count_esp_combs(t);
3117 
3118 	if ((xfrm_ctx = x->security)) {
3119 		ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
3120 		size +=  sizeof(struct sadb_x_sec_ctx) + ctx_size;
3121 	}
3122 
3123 	skb =  alloc_skb(size + 16, GFP_ATOMIC);
3124 	if (skb == NULL)
3125 		return -ENOMEM;
3126 
3127 	hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
3128 	hdr->sadb_msg_version = PF_KEY_V2;
3129 	hdr->sadb_msg_type = SADB_ACQUIRE;
3130 	hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
3131 	hdr->sadb_msg_len = size / sizeof(uint64_t);
3132 	hdr->sadb_msg_errno = 0;
3133 	hdr->sadb_msg_reserved = 0;
3134 	hdr->sadb_msg_seq = x->km.seq = get_acqseq();
3135 	hdr->sadb_msg_pid = 0;
3136 
3137 	/* src address */
3138 	addr = (struct sadb_address*) skb_put(skb,
3139 					      sizeof(struct sadb_address)+sockaddr_size);
3140 	addr->sadb_address_len =
3141 		(sizeof(struct sadb_address)+sockaddr_size)/
3142 			sizeof(uint64_t);
3143 	addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
3144 	addr->sadb_address_proto = 0;
3145 	addr->sadb_address_reserved = 0;
3146 	if (x->props.family == AF_INET) {
3147 		addr->sadb_address_prefixlen = 32;
3148 
3149 		sin = (struct sockaddr_in *) (addr + 1);
3150 		sin->sin_family = AF_INET;
3151 		sin->sin_addr.s_addr = x->props.saddr.a4;
3152 		sin->sin_port = 0;
3153 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3154 	}
3155 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3156 	else if (x->props.family == AF_INET6) {
3157 		addr->sadb_address_prefixlen = 128;
3158 
3159 		sin6 = (struct sockaddr_in6 *) (addr + 1);
3160 		sin6->sin6_family = AF_INET6;
3161 		sin6->sin6_port = 0;
3162 		sin6->sin6_flowinfo = 0;
3163 		memcpy(&sin6->sin6_addr,
3164 		       x->props.saddr.a6, sizeof(struct in6_addr));
3165 		sin6->sin6_scope_id = 0;
3166 	}
3167 #endif
3168 	else
3169 		BUG();
3170 
3171 	/* dst address */
3172 	addr = (struct sadb_address*) skb_put(skb,
3173 					      sizeof(struct sadb_address)+sockaddr_size);
3174 	addr->sadb_address_len =
3175 		(sizeof(struct sadb_address)+sockaddr_size)/
3176 			sizeof(uint64_t);
3177 	addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
3178 	addr->sadb_address_proto = 0;
3179 	addr->sadb_address_reserved = 0;
3180 	if (x->props.family == AF_INET) {
3181 		addr->sadb_address_prefixlen = 32;
3182 
3183 		sin = (struct sockaddr_in *) (addr + 1);
3184 		sin->sin_family = AF_INET;
3185 		sin->sin_addr.s_addr = x->id.daddr.a4;
3186 		sin->sin_port = 0;
3187 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3188 	}
3189 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3190 	else if (x->props.family == AF_INET6) {
3191 		addr->sadb_address_prefixlen = 128;
3192 
3193 		sin6 = (struct sockaddr_in6 *) (addr + 1);
3194 		sin6->sin6_family = AF_INET6;
3195 		sin6->sin6_port = 0;
3196 		sin6->sin6_flowinfo = 0;
3197 		memcpy(&sin6->sin6_addr,
3198 		       x->id.daddr.a6, sizeof(struct in6_addr));
3199 		sin6->sin6_scope_id = 0;
3200 	}
3201 #endif
3202 	else
3203 		BUG();
3204 
3205 	pol = (struct sadb_x_policy *)  skb_put(skb, sizeof(struct sadb_x_policy));
3206 	pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
3207 	pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3208 	pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
3209 	pol->sadb_x_policy_dir = dir+1;
3210 	pol->sadb_x_policy_id = xp->index;
3211 
3212 	/* Set sadb_comb's. */
3213 	if (x->id.proto == IPPROTO_AH)
3214 		dump_ah_combs(skb, t);
3215 	else if (x->id.proto == IPPROTO_ESP)
3216 		dump_esp_combs(skb, t);
3217 
3218 	/* security context */
3219 	if (xfrm_ctx) {
3220 		sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
3221 				sizeof(struct sadb_x_sec_ctx) + ctx_size);
3222 		sec_ctx->sadb_x_sec_len =
3223 		  (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
3224 		sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
3225 		sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
3226 		sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
3227 		sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
3228 		memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
3229 		       xfrm_ctx->ctx_len);
3230 	}
3231 
3232 	return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
3233 }
3234 
3235 static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
3236 						u8 *data, int len, int *dir)
3237 {
3238 	struct xfrm_policy *xp;
3239 	struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
3240 	struct sadb_x_sec_ctx *sec_ctx;
3241 
3242 	switch (sk->sk_family) {
3243 	case AF_INET:
3244 		if (opt != IP_IPSEC_POLICY) {
3245 			*dir = -EOPNOTSUPP;
3246 			return NULL;
3247 		}
3248 		break;
3249 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3250 	case AF_INET6:
3251 		if (opt != IPV6_IPSEC_POLICY) {
3252 			*dir = -EOPNOTSUPP;
3253 			return NULL;
3254 		}
3255 		break;
3256 #endif
3257 	default:
3258 		*dir = -EINVAL;
3259 		return NULL;
3260 	}
3261 
3262 	*dir = -EINVAL;
3263 
3264 	if (len < sizeof(struct sadb_x_policy) ||
3265 	    pol->sadb_x_policy_len*8 > len ||
3266 	    pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
3267 	    (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
3268 		return NULL;
3269 
3270 	xp = xfrm_policy_alloc(GFP_ATOMIC);
3271 	if (xp == NULL) {
3272 		*dir = -ENOBUFS;
3273 		return NULL;
3274 	}
3275 
3276 	xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
3277 		      XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
3278 
3279 	xp->lft.soft_byte_limit = XFRM_INF;
3280 	xp->lft.hard_byte_limit = XFRM_INF;
3281 	xp->lft.soft_packet_limit = XFRM_INF;
3282 	xp->lft.hard_packet_limit = XFRM_INF;
3283 	xp->family = sk->sk_family;
3284 
3285 	xp->xfrm_nr = 0;
3286 	if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
3287 	    (*dir = parse_ipsecrequests(xp, pol)) < 0)
3288 		goto out;
3289 
3290 	/* security context too */
3291 	if (len >= (pol->sadb_x_policy_len*8 +
3292 	    sizeof(struct sadb_x_sec_ctx))) {
3293 		char *p = (char *)pol;
3294 		struct xfrm_user_sec_ctx *uctx;
3295 
3296 		p += pol->sadb_x_policy_len*8;
3297 		sec_ctx = (struct sadb_x_sec_ctx *)p;
3298 		if (len < pol->sadb_x_policy_len*8 +
3299 		    sec_ctx->sadb_x_sec_len) {
3300 			*dir = -EINVAL;
3301 			goto out;
3302 		}
3303 		if ((*dir = verify_sec_ctx_len(p)))
3304 			goto out;
3305 		uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
3306 		*dir = security_xfrm_policy_alloc(&xp->security, uctx);
3307 		kfree(uctx);
3308 
3309 		if (*dir)
3310 			goto out;
3311 	}
3312 
3313 	*dir = pol->sadb_x_policy_dir-1;
3314 	return xp;
3315 
3316 out:
3317 	xfrm_policy_destroy(xp);
3318 	return NULL;
3319 }
3320 
3321 static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
3322 {
3323 	struct sk_buff *skb;
3324 	struct sadb_msg *hdr;
3325 	struct sadb_sa *sa;
3326 	struct sadb_address *addr;
3327 	struct sadb_x_nat_t_port *n_port;
3328 	struct sockaddr_in *sin;
3329 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3330 	struct sockaddr_in6 *sin6;
3331 #endif
3332 	int sockaddr_size;
3333 	int size;
3334 	__u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
3335 	struct xfrm_encap_tmpl *natt = NULL;
3336 
3337 	sockaddr_size = pfkey_sockaddr_size(x->props.family);
3338 	if (!sockaddr_size)
3339 		return -EINVAL;
3340 
3341 	if (!satype)
3342 		return -EINVAL;
3343 
3344 	if (!x->encap)
3345 		return -EINVAL;
3346 
3347 	natt = x->encap;
3348 
3349 	/* Build an SADB_X_NAT_T_NEW_MAPPING message:
3350 	 *
3351 	 * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
3352 	 * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
3353 	 */
3354 
3355 	size = sizeof(struct sadb_msg) +
3356 		sizeof(struct sadb_sa) +
3357 		(sizeof(struct sadb_address) * 2) +
3358 		(sockaddr_size * 2) +
3359 		(sizeof(struct sadb_x_nat_t_port) * 2);
3360 
3361 	skb =  alloc_skb(size + 16, GFP_ATOMIC);
3362 	if (skb == NULL)
3363 		return -ENOMEM;
3364 
3365 	hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
3366 	hdr->sadb_msg_version = PF_KEY_V2;
3367 	hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
3368 	hdr->sadb_msg_satype = satype;
3369 	hdr->sadb_msg_len = size / sizeof(uint64_t);
3370 	hdr->sadb_msg_errno = 0;
3371 	hdr->sadb_msg_reserved = 0;
3372 	hdr->sadb_msg_seq = x->km.seq = get_acqseq();
3373 	hdr->sadb_msg_pid = 0;
3374 
3375 	/* SA */
3376 	sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
3377 	sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
3378 	sa->sadb_sa_exttype = SADB_EXT_SA;
3379 	sa->sadb_sa_spi = x->id.spi;
3380 	sa->sadb_sa_replay = 0;
3381 	sa->sadb_sa_state = 0;
3382 	sa->sadb_sa_auth = 0;
3383 	sa->sadb_sa_encrypt = 0;
3384 	sa->sadb_sa_flags = 0;
3385 
3386 	/* ADDRESS_SRC (old addr) */
3387 	addr = (struct sadb_address*)
3388 		skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
3389 	addr->sadb_address_len =
3390 		(sizeof(struct sadb_address)+sockaddr_size)/
3391 			sizeof(uint64_t);
3392 	addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
3393 	addr->sadb_address_proto = 0;
3394 	addr->sadb_address_reserved = 0;
3395 	if (x->props.family == AF_INET) {
3396 		addr->sadb_address_prefixlen = 32;
3397 
3398 		sin = (struct sockaddr_in *) (addr + 1);
3399 		sin->sin_family = AF_INET;
3400 		sin->sin_addr.s_addr = x->props.saddr.a4;
3401 		sin->sin_port = 0;
3402 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3403 	}
3404 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3405 	else if (x->props.family == AF_INET6) {
3406 		addr->sadb_address_prefixlen = 128;
3407 
3408 		sin6 = (struct sockaddr_in6 *) (addr + 1);
3409 		sin6->sin6_family = AF_INET6;
3410 		sin6->sin6_port = 0;
3411 		sin6->sin6_flowinfo = 0;
3412 		memcpy(&sin6->sin6_addr,
3413 		       x->props.saddr.a6, sizeof(struct in6_addr));
3414 		sin6->sin6_scope_id = 0;
3415 	}
3416 #endif
3417 	else
3418 		BUG();
3419 
3420 	/* NAT_T_SPORT (old port) */
3421 	n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
3422 	n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
3423 	n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
3424 	n_port->sadb_x_nat_t_port_port = natt->encap_sport;
3425 	n_port->sadb_x_nat_t_port_reserved = 0;
3426 
3427 	/* ADDRESS_DST (new addr) */
3428 	addr = (struct sadb_address*)
3429 		skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
3430 	addr->sadb_address_len =
3431 		(sizeof(struct sadb_address)+sockaddr_size)/
3432 			sizeof(uint64_t);
3433 	addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
3434 	addr->sadb_address_proto = 0;
3435 	addr->sadb_address_reserved = 0;
3436 	if (x->props.family == AF_INET) {
3437 		addr->sadb_address_prefixlen = 32;
3438 
3439 		sin = (struct sockaddr_in *) (addr + 1);
3440 		sin->sin_family = AF_INET;
3441 		sin->sin_addr.s_addr = ipaddr->a4;
3442 		sin->sin_port = 0;
3443 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3444 	}
3445 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3446 	else if (x->props.family == AF_INET6) {
3447 		addr->sadb_address_prefixlen = 128;
3448 
3449 		sin6 = (struct sockaddr_in6 *) (addr + 1);
3450 		sin6->sin6_family = AF_INET6;
3451 		sin6->sin6_port = 0;
3452 		sin6->sin6_flowinfo = 0;
3453 		memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
3454 		sin6->sin6_scope_id = 0;
3455 	}
3456 #endif
3457 	else
3458 		BUG();
3459 
3460 	/* NAT_T_DPORT (new port) */
3461 	n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
3462 	n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
3463 	n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
3464 	n_port->sadb_x_nat_t_port_port = sport;
3465 	n_port->sadb_x_nat_t_port_reserved = 0;
3466 
3467 	return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
3468 }
3469 
3470 #ifdef CONFIG_NET_KEY_MIGRATE
3471 static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
3472 			    struct xfrm_selector *sel)
3473 {
3474 	struct sadb_address *addr;
3475 	struct sockaddr_in *sin;
3476 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3477 	struct sockaddr_in6 *sin6;
3478 #endif
3479 	addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
3480 	addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
3481 	addr->sadb_address_exttype = type;
3482 	addr->sadb_address_proto = sel->proto;
3483 	addr->sadb_address_reserved = 0;
3484 
3485 	switch (type) {
3486 	case SADB_EXT_ADDRESS_SRC:
3487 		if (sel->family == AF_INET) {
3488 			addr->sadb_address_prefixlen = sel->prefixlen_s;
3489 			sin = (struct sockaddr_in *)(addr + 1);
3490 			sin->sin_family = AF_INET;
3491 			memcpy(&sin->sin_addr.s_addr, &sel->saddr,
3492 			       sizeof(sin->sin_addr.s_addr));
3493 			sin->sin_port = 0;
3494 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3495 		}
3496 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3497 		else if (sel->family == AF_INET6) {
3498 			addr->sadb_address_prefixlen = sel->prefixlen_s;
3499 			sin6 = (struct sockaddr_in6 *)(addr + 1);
3500 			sin6->sin6_family = AF_INET6;
3501 			sin6->sin6_port = 0;
3502 			sin6->sin6_flowinfo = 0;
3503 			sin6->sin6_scope_id = 0;
3504 			memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
3505 			       sizeof(sin6->sin6_addr.s6_addr));
3506 		}
3507 #endif
3508 		break;
3509 	case SADB_EXT_ADDRESS_DST:
3510 		if (sel->family == AF_INET) {
3511 			addr->sadb_address_prefixlen = sel->prefixlen_d;
3512 			sin = (struct sockaddr_in *)(addr + 1);
3513 			sin->sin_family = AF_INET;
3514 			memcpy(&sin->sin_addr.s_addr, &sel->daddr,
3515 			       sizeof(sin->sin_addr.s_addr));
3516 			sin->sin_port = 0;
3517 			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3518 		}
3519 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3520 		else if (sel->family == AF_INET6) {
3521 			addr->sadb_address_prefixlen = sel->prefixlen_d;
3522 			sin6 = (struct sockaddr_in6 *)(addr + 1);
3523 			sin6->sin6_family = AF_INET6;
3524 			sin6->sin6_port = 0;
3525 			sin6->sin6_flowinfo = 0;
3526 			sin6->sin6_scope_id = 0;
3527 			memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
3528 			       sizeof(sin6->sin6_addr.s6_addr));
3529 		}
3530 #endif
3531 		break;
3532 	default:
3533 		return -EINVAL;
3534 	}
3535 
3536 	return 0;
3537 }
3538 
3539 static int set_ipsecrequest(struct sk_buff *skb,
3540 			    uint8_t proto, uint8_t mode, int level,
3541 			    uint32_t reqid, uint8_t family,
3542 			    xfrm_address_t *src, xfrm_address_t *dst)
3543 {
3544 	struct sadb_x_ipsecrequest *rq;
3545 	struct sockaddr_in *sin;
3546 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3547 	struct sockaddr_in6 *sin6;
3548 #endif
3549 	int size_req;
3550 
3551 	size_req = sizeof(struct sadb_x_ipsecrequest) +
3552 		   pfkey_sockaddr_pair_size(family);
3553 
3554 	rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
3555 	memset(rq, 0, size_req);
3556 	rq->sadb_x_ipsecrequest_len = size_req;
3557 	rq->sadb_x_ipsecrequest_proto = proto;
3558 	rq->sadb_x_ipsecrequest_mode = mode;
3559 	rq->sadb_x_ipsecrequest_level = level;
3560 	rq->sadb_x_ipsecrequest_reqid = reqid;
3561 
3562 	switch (family) {
3563 	case AF_INET:
3564 		sin = (struct sockaddr_in *)(rq + 1);
3565 		sin->sin_family = AF_INET;
3566 		memcpy(&sin->sin_addr.s_addr, src,
3567 		       sizeof(sin->sin_addr.s_addr));
3568 		sin++;
3569 		sin->sin_family = AF_INET;
3570 		memcpy(&sin->sin_addr.s_addr, dst,
3571 		       sizeof(sin->sin_addr.s_addr));
3572 		break;
3573 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3574 	case AF_INET6:
3575 		sin6 = (struct sockaddr_in6 *)(rq + 1);
3576 		sin6->sin6_family = AF_INET6;
3577 		sin6->sin6_port = 0;
3578 		sin6->sin6_flowinfo = 0;
3579 		sin6->sin6_scope_id = 0;
3580 		memcpy(&sin6->sin6_addr.s6_addr, src,
3581 		       sizeof(sin6->sin6_addr.s6_addr));
3582 		sin6++;
3583 		sin6->sin6_family = AF_INET6;
3584 		sin6->sin6_port = 0;
3585 		sin6->sin6_flowinfo = 0;
3586 		sin6->sin6_scope_id = 0;
3587 		memcpy(&sin6->sin6_addr.s6_addr, dst,
3588 		       sizeof(sin6->sin6_addr.s6_addr));
3589 		break;
3590 #endif
3591 	default:
3592 		return -EINVAL;
3593 	}
3594 
3595 	return 0;
3596 }
3597 #endif
3598 
3599 #ifdef CONFIG_NET_KEY_MIGRATE
3600 static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
3601 			      struct xfrm_migrate *m, int num_bundles)
3602 {
3603 	int i;
3604 	int sasize_sel;
3605 	int size = 0;
3606 	int size_pol = 0;
3607 	struct sk_buff *skb;
3608 	struct sadb_msg *hdr;
3609 	struct sadb_x_policy *pol;
3610 	struct xfrm_migrate *mp;
3611 
3612 	if (type != XFRM_POLICY_TYPE_MAIN)
3613 		return 0;
3614 
3615 	if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
3616 		return -EINVAL;
3617 
3618 	/* selector */
3619 	sasize_sel = pfkey_sockaddr_size(sel->family);
3620 	if (!sasize_sel)
3621 		return -EINVAL;
3622 	size += (sizeof(struct sadb_address) + sasize_sel) * 2;
3623 
3624 	/* policy info */
3625 	size_pol += sizeof(struct sadb_x_policy);
3626 
3627 	/* ipsecrequests */
3628 	for (i = 0, mp = m; i < num_bundles; i++, mp++) {
3629 		/* old locator pair */
3630 		size_pol += sizeof(struct sadb_x_ipsecrequest) +
3631 			    pfkey_sockaddr_pair_size(mp->old_family);
3632 		/* new locator pair */
3633 		size_pol += sizeof(struct sadb_x_ipsecrequest) +
3634 			    pfkey_sockaddr_pair_size(mp->new_family);
3635 	}
3636 
3637 	size += sizeof(struct sadb_msg) + size_pol;
3638 
3639 	/* alloc buffer */
3640 	skb = alloc_skb(size, GFP_ATOMIC);
3641 	if (skb == NULL)
3642 		return -ENOMEM;
3643 
3644 	hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
3645 	hdr->sadb_msg_version = PF_KEY_V2;
3646 	hdr->sadb_msg_type = SADB_X_MIGRATE;
3647 	hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
3648 	hdr->sadb_msg_len = size / 8;
3649 	hdr->sadb_msg_errno = 0;
3650 	hdr->sadb_msg_reserved = 0;
3651 	hdr->sadb_msg_seq = 0;
3652 	hdr->sadb_msg_pid = 0;
3653 
3654 	/* selector src */
3655 	set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
3656 
3657 	/* selector dst */
3658 	set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
3659 
3660 	/* policy information */
3661 	pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
3662 	pol->sadb_x_policy_len = size_pol / 8;
3663 	pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3664 	pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
3665 	pol->sadb_x_policy_dir = dir + 1;
3666 	pol->sadb_x_policy_id = 0;
3667 	pol->sadb_x_policy_priority = 0;
3668 
3669 	for (i = 0, mp = m; i < num_bundles; i++, mp++) {
3670 		/* old ipsecrequest */
3671 		int mode = pfkey_mode_from_xfrm(mp->mode);
3672 		if (mode < 0)
3673 			goto err;
3674 		if (set_ipsecrequest(skb, mp->proto, mode,
3675 				     (mp->reqid ?  IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
3676 				     mp->reqid, mp->old_family,
3677 				     &mp->old_saddr, &mp->old_daddr) < 0)
3678 			goto err;
3679 
3680 		/* new ipsecrequest */
3681 		if (set_ipsecrequest(skb, mp->proto, mode,
3682 				     (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
3683 				     mp->reqid, mp->new_family,
3684 				     &mp->new_saddr, &mp->new_daddr) < 0)
3685 			goto err;
3686 	}
3687 
3688 	/* broadcast migrate message to sockets */
3689 	pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
3690 
3691 	return 0;
3692 
3693 err:
3694 	kfree_skb(skb);
3695 	return -EINVAL;
3696 }
3697 #else
3698 static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
3699 			      struct xfrm_migrate *m, int num_bundles)
3700 {
3701 	return -ENOPROTOOPT;
3702 }
3703 #endif
3704 
3705 static int pfkey_sendmsg(struct kiocb *kiocb,
3706 			 struct socket *sock, struct msghdr *msg, size_t len)
3707 {
3708 	struct sock *sk = sock->sk;
3709 	struct sk_buff *skb = NULL;
3710 	struct sadb_msg *hdr = NULL;
3711 	int err;
3712 
3713 	err = -EOPNOTSUPP;
3714 	if (msg->msg_flags & MSG_OOB)
3715 		goto out;
3716 
3717 	err = -EMSGSIZE;
3718 	if ((unsigned)len > sk->sk_sndbuf - 32)
3719 		goto out;
3720 
3721 	err = -ENOBUFS;
3722 	skb = alloc_skb(len, GFP_KERNEL);
3723 	if (skb == NULL)
3724 		goto out;
3725 
3726 	err = -EFAULT;
3727 	if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
3728 		goto out;
3729 
3730 	hdr = pfkey_get_base_msg(skb, &err);
3731 	if (!hdr)
3732 		goto out;
3733 
3734 	mutex_lock(&xfrm_cfg_mutex);
3735 	err = pfkey_process(sk, skb, hdr);
3736 	mutex_unlock(&xfrm_cfg_mutex);
3737 
3738 out:
3739 	if (err && hdr && pfkey_error(hdr, err, sk) == 0)
3740 		err = 0;
3741 	if (skb)
3742 		kfree_skb(skb);
3743 
3744 	return err ? : len;
3745 }
3746 
3747 static int pfkey_recvmsg(struct kiocb *kiocb,
3748 			 struct socket *sock, struct msghdr *msg, size_t len,
3749 			 int flags)
3750 {
3751 	struct sock *sk = sock->sk;
3752 	struct pfkey_sock *pfk = pfkey_sk(sk);
3753 	struct sk_buff *skb;
3754 	int copied, err;
3755 
3756 	err = -EINVAL;
3757 	if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
3758 		goto out;
3759 
3760 	msg->msg_namelen = 0;
3761 	skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3762 	if (skb == NULL)
3763 		goto out;
3764 
3765 	copied = skb->len;
3766 	if (copied > len) {
3767 		msg->msg_flags |= MSG_TRUNC;
3768 		copied = len;
3769 	}
3770 
3771 	skb_reset_transport_header(skb);
3772 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
3773 	if (err)
3774 		goto out_free;
3775 
3776 	sock_recv_timestamp(msg, sk, skb);
3777 
3778 	err = (flags & MSG_TRUNC) ? skb->len : copied;
3779 
3780 	if (pfk->dump.dump != NULL &&
3781 	    3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3782 		pfkey_do_dump(pfk);
3783 
3784 out_free:
3785 	skb_free_datagram(sk, skb);
3786 out:
3787 	return err;
3788 }
3789 
3790 static const struct proto_ops pfkey_ops = {
3791 	.family		=	PF_KEY,
3792 	.owner		=	THIS_MODULE,
3793 	/* Operations that make no sense on pfkey sockets. */
3794 	.bind		=	sock_no_bind,
3795 	.connect	=	sock_no_connect,
3796 	.socketpair	=	sock_no_socketpair,
3797 	.accept		=	sock_no_accept,
3798 	.getname	=	sock_no_getname,
3799 	.ioctl		=	sock_no_ioctl,
3800 	.listen		=	sock_no_listen,
3801 	.shutdown	=	sock_no_shutdown,
3802 	.setsockopt	=	sock_no_setsockopt,
3803 	.getsockopt	=	sock_no_getsockopt,
3804 	.mmap		=	sock_no_mmap,
3805 	.sendpage	=	sock_no_sendpage,
3806 
3807 	/* Now the operations that really occur. */
3808 	.release	=	pfkey_release,
3809 	.poll		=	datagram_poll,
3810 	.sendmsg	=	pfkey_sendmsg,
3811 	.recvmsg	=	pfkey_recvmsg,
3812 };
3813 
3814 static struct net_proto_family pfkey_family_ops = {
3815 	.family	=	PF_KEY,
3816 	.create	=	pfkey_create,
3817 	.owner	=	THIS_MODULE,
3818 };
3819 
3820 #ifdef CONFIG_PROC_FS
3821 static int pfkey_seq_show(struct seq_file *f, void *v)
3822 {
3823 	struct sock *s;
3824 
3825 	s = (struct sock *)v;
3826 	if (v == SEQ_START_TOKEN)
3827 		seq_printf(f ,"sk       RefCnt Rmem   Wmem   User   Inode\n");
3828 	else
3829 		seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
3830 			       s,
3831 			       atomic_read(&s->sk_refcnt),
3832 			       atomic_read(&s->sk_rmem_alloc),
3833 			       atomic_read(&s->sk_wmem_alloc),
3834 			       sock_i_uid(s),
3835 			       sock_i_ino(s)
3836 			       );
3837 	return 0;
3838 }
3839 
3840 static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
3841 {
3842 	struct sock *s;
3843 	struct hlist_node *node;
3844 	loff_t pos = *ppos;
3845 
3846 	read_lock(&pfkey_table_lock);
3847 	if (pos == 0)
3848 		return SEQ_START_TOKEN;
3849 
3850 	sk_for_each(s, node, &pfkey_table)
3851 		if (pos-- == 1)
3852 			return s;
3853 
3854 	return NULL;
3855 }
3856 
3857 static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
3858 {
3859 	++*ppos;
3860 	return (v == SEQ_START_TOKEN) ?
3861 		sk_head(&pfkey_table) :
3862 			sk_next((struct sock *)v);
3863 }
3864 
3865 static void pfkey_seq_stop(struct seq_file *f, void *v)
3866 {
3867 	read_unlock(&pfkey_table_lock);
3868 }
3869 
3870 static struct seq_operations pfkey_seq_ops = {
3871 	.start	= pfkey_seq_start,
3872 	.next	= pfkey_seq_next,
3873 	.stop	= pfkey_seq_stop,
3874 	.show	= pfkey_seq_show,
3875 };
3876 
3877 static int pfkey_seq_open(struct inode *inode, struct file *file)
3878 {
3879 	return seq_open(file, &pfkey_seq_ops);
3880 }
3881 
3882 static struct file_operations pfkey_proc_ops = {
3883 	.open	 = pfkey_seq_open,
3884 	.read	 = seq_read,
3885 	.llseek	 = seq_lseek,
3886 	.release = seq_release,
3887 };
3888 
3889 static int pfkey_init_proc(void)
3890 {
3891 	struct proc_dir_entry *e;
3892 
3893 	e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
3894 	if (e == NULL)
3895 		return -ENOMEM;
3896 
3897 	return 0;
3898 }
3899 
3900 static void pfkey_exit_proc(void)
3901 {
3902 	proc_net_remove(&init_net, "pfkey");
3903 }
3904 #else
3905 static inline int pfkey_init_proc(void)
3906 {
3907 	return 0;
3908 }
3909 
3910 static inline void pfkey_exit_proc(void)
3911 {
3912 }
3913 #endif
3914 
3915 static struct xfrm_mgr pfkeyv2_mgr =
3916 {
3917 	.id		= "pfkeyv2",
3918 	.notify		= pfkey_send_notify,
3919 	.acquire	= pfkey_send_acquire,
3920 	.compile_policy	= pfkey_compile_policy,
3921 	.new_mapping	= pfkey_send_new_mapping,
3922 	.notify_policy	= pfkey_send_policy_notify,
3923 	.migrate	= pfkey_send_migrate,
3924 };
3925 
3926 static void __exit ipsec_pfkey_exit(void)
3927 {
3928 	xfrm_unregister_km(&pfkeyv2_mgr);
3929 	pfkey_exit_proc();
3930 	sock_unregister(PF_KEY);
3931 	proto_unregister(&key_proto);
3932 }
3933 
3934 static int __init ipsec_pfkey_init(void)
3935 {
3936 	int err = proto_register(&key_proto, 0);
3937 
3938 	if (err != 0)
3939 		goto out;
3940 
3941 	err = sock_register(&pfkey_family_ops);
3942 	if (err != 0)
3943 		goto out_unregister_key_proto;
3944 	err = pfkey_init_proc();
3945 	if (err != 0)
3946 		goto out_sock_unregister;
3947 	err = xfrm_register_km(&pfkeyv2_mgr);
3948 	if (err != 0)
3949 		goto out_remove_proc_entry;
3950 out:
3951 	return err;
3952 out_remove_proc_entry:
3953 	pfkey_exit_proc();
3954 out_sock_unregister:
3955 	sock_unregister(PF_KEY);
3956 out_unregister_key_proto:
3957 	proto_unregister(&key_proto);
3958 	goto out;
3959 }
3960 
3961 module_init(ipsec_pfkey_init);
3962 module_exit(ipsec_pfkey_exit);
3963 MODULE_LICENSE("GPL");
3964 MODULE_ALIAS_NETPROTO(PF_KEY);
3965