1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel Connection Multiplexor 4 * 5 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/errno.h> 10 #include <linux/errqueue.h> 11 #include <linux/file.h> 12 #include <linux/in.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/net.h> 16 #include <linux/netdevice.h> 17 #include <linux/poll.h> 18 #include <linux/rculist.h> 19 #include <linux/skbuff.h> 20 #include <linux/socket.h> 21 #include <linux/uaccess.h> 22 #include <linux/workqueue.h> 23 #include <linux/syscalls.h> 24 #include <linux/sched/signal.h> 25 26 #include <net/kcm.h> 27 #include <net/netns/generic.h> 28 #include <net/sock.h> 29 #include <uapi/linux/kcm.h> 30 31 unsigned int kcm_net_id; 32 33 static struct kmem_cache *kcm_psockp __read_mostly; 34 static struct kmem_cache *kcm_muxp __read_mostly; 35 static struct workqueue_struct *kcm_wq; 36 37 static inline struct kcm_sock *kcm_sk(const struct sock *sk) 38 { 39 return (struct kcm_sock *)sk; 40 } 41 42 static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb) 43 { 44 return (struct kcm_tx_msg *)skb->cb; 45 } 46 47 static void report_csk_error(struct sock *csk, int err) 48 { 49 csk->sk_err = EPIPE; 50 csk->sk_error_report(csk); 51 } 52 53 static void kcm_abort_tx_psock(struct kcm_psock *psock, int err, 54 bool wakeup_kcm) 55 { 56 struct sock *csk = psock->sk; 57 struct kcm_mux *mux = psock->mux; 58 59 /* Unrecoverable error in transmit */ 60 61 spin_lock_bh(&mux->lock); 62 63 if (psock->tx_stopped) { 64 spin_unlock_bh(&mux->lock); 65 return; 66 } 67 68 psock->tx_stopped = 1; 69 KCM_STATS_INCR(psock->stats.tx_aborts); 70 71 if (!psock->tx_kcm) { 72 /* Take off psocks_avail list */ 73 list_del(&psock->psock_avail_list); 74 } else if (wakeup_kcm) { 75 /* In this case psock is being aborted while outside of 76 * write_msgs and psock is reserved. Schedule tx_work 77 * to handle the failure there. Need to commit tx_stopped 78 * before queuing work. 79 */ 80 smp_mb(); 81 82 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 83 } 84 85 spin_unlock_bh(&mux->lock); 86 87 /* Report error on lower socket */ 88 report_csk_error(csk, err); 89 } 90 91 /* RX mux lock held. */ 92 static void kcm_update_rx_mux_stats(struct kcm_mux *mux, 93 struct kcm_psock *psock) 94 { 95 STRP_STATS_ADD(mux->stats.rx_bytes, 96 psock->strp.stats.bytes - 97 psock->saved_rx_bytes); 98 mux->stats.rx_msgs += 99 psock->strp.stats.msgs - psock->saved_rx_msgs; 100 psock->saved_rx_msgs = psock->strp.stats.msgs; 101 psock->saved_rx_bytes = psock->strp.stats.bytes; 102 } 103 104 static void kcm_update_tx_mux_stats(struct kcm_mux *mux, 105 struct kcm_psock *psock) 106 { 107 KCM_STATS_ADD(mux->stats.tx_bytes, 108 psock->stats.tx_bytes - psock->saved_tx_bytes); 109 mux->stats.tx_msgs += 110 psock->stats.tx_msgs - psock->saved_tx_msgs; 111 psock->saved_tx_msgs = psock->stats.tx_msgs; 112 psock->saved_tx_bytes = psock->stats.tx_bytes; 113 } 114 115 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 116 117 /* KCM is ready to receive messages on its queue-- either the KCM is new or 118 * has become unblocked after being blocked on full socket buffer. Queue any 119 * pending ready messages on a psock. RX mux lock held. 120 */ 121 static void kcm_rcv_ready(struct kcm_sock *kcm) 122 { 123 struct kcm_mux *mux = kcm->mux; 124 struct kcm_psock *psock; 125 struct sk_buff *skb; 126 127 if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled)) 128 return; 129 130 while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) { 131 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 132 /* Assuming buffer limit has been reached */ 133 skb_queue_head(&mux->rx_hold_queue, skb); 134 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 135 return; 136 } 137 } 138 139 while (!list_empty(&mux->psocks_ready)) { 140 psock = list_first_entry(&mux->psocks_ready, struct kcm_psock, 141 psock_ready_list); 142 143 if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) { 144 /* Assuming buffer limit has been reached */ 145 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 146 return; 147 } 148 149 /* Consumed the ready message on the psock. Schedule rx_work to 150 * get more messages. 151 */ 152 list_del(&psock->psock_ready_list); 153 psock->ready_rx_msg = NULL; 154 /* Commit clearing of ready_rx_msg for queuing work */ 155 smp_mb(); 156 157 strp_unpause(&psock->strp); 158 strp_check_rcv(&psock->strp); 159 } 160 161 /* Buffer limit is okay now, add to ready list */ 162 list_add_tail(&kcm->wait_rx_list, 163 &kcm->mux->kcm_rx_waiters); 164 kcm->rx_wait = true; 165 } 166 167 static void kcm_rfree(struct sk_buff *skb) 168 { 169 struct sock *sk = skb->sk; 170 struct kcm_sock *kcm = kcm_sk(sk); 171 struct kcm_mux *mux = kcm->mux; 172 unsigned int len = skb->truesize; 173 174 sk_mem_uncharge(sk, len); 175 atomic_sub(len, &sk->sk_rmem_alloc); 176 177 /* For reading rx_wait and rx_psock without holding lock */ 178 smp_mb__after_atomic(); 179 180 if (!kcm->rx_wait && !kcm->rx_psock && 181 sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) { 182 spin_lock_bh(&mux->rx_lock); 183 kcm_rcv_ready(kcm); 184 spin_unlock_bh(&mux->rx_lock); 185 } 186 } 187 188 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 189 { 190 struct sk_buff_head *list = &sk->sk_receive_queue; 191 192 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 193 return -ENOMEM; 194 195 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 196 return -ENOBUFS; 197 198 skb->dev = NULL; 199 200 skb_orphan(skb); 201 skb->sk = sk; 202 skb->destructor = kcm_rfree; 203 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 204 sk_mem_charge(sk, skb->truesize); 205 206 skb_queue_tail(list, skb); 207 208 if (!sock_flag(sk, SOCK_DEAD)) 209 sk->sk_data_ready(sk); 210 211 return 0; 212 } 213 214 /* Requeue received messages for a kcm socket to other kcm sockets. This is 215 * called with a kcm socket is receive disabled. 216 * RX mux lock held. 217 */ 218 static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head) 219 { 220 struct sk_buff *skb; 221 struct kcm_sock *kcm; 222 223 while ((skb = __skb_dequeue(head))) { 224 /* Reset destructor to avoid calling kcm_rcv_ready */ 225 skb->destructor = sock_rfree; 226 skb_orphan(skb); 227 try_again: 228 if (list_empty(&mux->kcm_rx_waiters)) { 229 skb_queue_tail(&mux->rx_hold_queue, skb); 230 continue; 231 } 232 233 kcm = list_first_entry(&mux->kcm_rx_waiters, 234 struct kcm_sock, wait_rx_list); 235 236 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 237 /* Should mean socket buffer full */ 238 list_del(&kcm->wait_rx_list); 239 kcm->rx_wait = false; 240 241 /* Commit rx_wait to read in kcm_free */ 242 smp_wmb(); 243 244 goto try_again; 245 } 246 } 247 } 248 249 /* Lower sock lock held */ 250 static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock, 251 struct sk_buff *head) 252 { 253 struct kcm_mux *mux = psock->mux; 254 struct kcm_sock *kcm; 255 256 WARN_ON(psock->ready_rx_msg); 257 258 if (psock->rx_kcm) 259 return psock->rx_kcm; 260 261 spin_lock_bh(&mux->rx_lock); 262 263 if (psock->rx_kcm) { 264 spin_unlock_bh(&mux->rx_lock); 265 return psock->rx_kcm; 266 } 267 268 kcm_update_rx_mux_stats(mux, psock); 269 270 if (list_empty(&mux->kcm_rx_waiters)) { 271 psock->ready_rx_msg = head; 272 strp_pause(&psock->strp); 273 list_add_tail(&psock->psock_ready_list, 274 &mux->psocks_ready); 275 spin_unlock_bh(&mux->rx_lock); 276 return NULL; 277 } 278 279 kcm = list_first_entry(&mux->kcm_rx_waiters, 280 struct kcm_sock, wait_rx_list); 281 list_del(&kcm->wait_rx_list); 282 kcm->rx_wait = false; 283 284 psock->rx_kcm = kcm; 285 kcm->rx_psock = psock; 286 287 spin_unlock_bh(&mux->rx_lock); 288 289 return kcm; 290 } 291 292 static void kcm_done(struct kcm_sock *kcm); 293 294 static void kcm_done_work(struct work_struct *w) 295 { 296 kcm_done(container_of(w, struct kcm_sock, done_work)); 297 } 298 299 /* Lower sock held */ 300 static void unreserve_rx_kcm(struct kcm_psock *psock, 301 bool rcv_ready) 302 { 303 struct kcm_sock *kcm = psock->rx_kcm; 304 struct kcm_mux *mux = psock->mux; 305 306 if (!kcm) 307 return; 308 309 spin_lock_bh(&mux->rx_lock); 310 311 psock->rx_kcm = NULL; 312 kcm->rx_psock = NULL; 313 314 /* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with 315 * kcm_rfree 316 */ 317 smp_mb(); 318 319 if (unlikely(kcm->done)) { 320 spin_unlock_bh(&mux->rx_lock); 321 322 /* Need to run kcm_done in a task since we need to qcquire 323 * callback locks which may already be held here. 324 */ 325 INIT_WORK(&kcm->done_work, kcm_done_work); 326 schedule_work(&kcm->done_work); 327 return; 328 } 329 330 if (unlikely(kcm->rx_disabled)) { 331 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 332 } else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) { 333 /* Check for degenerative race with rx_wait that all 334 * data was dequeued (accounted for in kcm_rfree). 335 */ 336 kcm_rcv_ready(kcm); 337 } 338 spin_unlock_bh(&mux->rx_lock); 339 } 340 341 /* Lower sock lock held */ 342 static void psock_data_ready(struct sock *sk) 343 { 344 struct kcm_psock *psock; 345 346 read_lock_bh(&sk->sk_callback_lock); 347 348 psock = (struct kcm_psock *)sk->sk_user_data; 349 if (likely(psock)) 350 strp_data_ready(&psock->strp); 351 352 read_unlock_bh(&sk->sk_callback_lock); 353 } 354 355 /* Called with lower sock held */ 356 static void kcm_rcv_strparser(struct strparser *strp, struct sk_buff *skb) 357 { 358 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 359 struct kcm_sock *kcm; 360 361 try_queue: 362 kcm = reserve_rx_kcm(psock, skb); 363 if (!kcm) { 364 /* Unable to reserve a KCM, message is held in psock and strp 365 * is paused. 366 */ 367 return; 368 } 369 370 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 371 /* Should mean socket buffer full */ 372 unreserve_rx_kcm(psock, false); 373 goto try_queue; 374 } 375 } 376 377 static int kcm_parse_func_strparser(struct strparser *strp, struct sk_buff *skb) 378 { 379 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 380 struct bpf_prog *prog = psock->bpf_prog; 381 int res; 382 383 res = bpf_prog_run_pin_on_cpu(prog, skb); 384 return res; 385 } 386 387 static int kcm_read_sock_done(struct strparser *strp, int err) 388 { 389 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 390 391 unreserve_rx_kcm(psock, true); 392 393 return err; 394 } 395 396 static void psock_state_change(struct sock *sk) 397 { 398 /* TCP only does a EPOLLIN for a half close. Do a EPOLLHUP here 399 * since application will normally not poll with EPOLLIN 400 * on the TCP sockets. 401 */ 402 403 report_csk_error(sk, EPIPE); 404 } 405 406 static void psock_write_space(struct sock *sk) 407 { 408 struct kcm_psock *psock; 409 struct kcm_mux *mux; 410 struct kcm_sock *kcm; 411 412 read_lock_bh(&sk->sk_callback_lock); 413 414 psock = (struct kcm_psock *)sk->sk_user_data; 415 if (unlikely(!psock)) 416 goto out; 417 mux = psock->mux; 418 419 spin_lock_bh(&mux->lock); 420 421 /* Check if the socket is reserved so someone is waiting for sending. */ 422 kcm = psock->tx_kcm; 423 if (kcm && !unlikely(kcm->tx_stopped)) 424 queue_work(kcm_wq, &kcm->tx_work); 425 426 spin_unlock_bh(&mux->lock); 427 out: 428 read_unlock_bh(&sk->sk_callback_lock); 429 } 430 431 static void unreserve_psock(struct kcm_sock *kcm); 432 433 /* kcm sock is locked. */ 434 static struct kcm_psock *reserve_psock(struct kcm_sock *kcm) 435 { 436 struct kcm_mux *mux = kcm->mux; 437 struct kcm_psock *psock; 438 439 psock = kcm->tx_psock; 440 441 smp_rmb(); /* Must read tx_psock before tx_wait */ 442 443 if (psock) { 444 WARN_ON(kcm->tx_wait); 445 if (unlikely(psock->tx_stopped)) 446 unreserve_psock(kcm); 447 else 448 return kcm->tx_psock; 449 } 450 451 spin_lock_bh(&mux->lock); 452 453 /* Check again under lock to see if psock was reserved for this 454 * psock via psock_unreserve. 455 */ 456 psock = kcm->tx_psock; 457 if (unlikely(psock)) { 458 WARN_ON(kcm->tx_wait); 459 spin_unlock_bh(&mux->lock); 460 return kcm->tx_psock; 461 } 462 463 if (!list_empty(&mux->psocks_avail)) { 464 psock = list_first_entry(&mux->psocks_avail, 465 struct kcm_psock, 466 psock_avail_list); 467 list_del(&psock->psock_avail_list); 468 if (kcm->tx_wait) { 469 list_del(&kcm->wait_psock_list); 470 kcm->tx_wait = false; 471 } 472 kcm->tx_psock = psock; 473 psock->tx_kcm = kcm; 474 KCM_STATS_INCR(psock->stats.reserved); 475 } else if (!kcm->tx_wait) { 476 list_add_tail(&kcm->wait_psock_list, 477 &mux->kcm_tx_waiters); 478 kcm->tx_wait = true; 479 } 480 481 spin_unlock_bh(&mux->lock); 482 483 return psock; 484 } 485 486 /* mux lock held */ 487 static void psock_now_avail(struct kcm_psock *psock) 488 { 489 struct kcm_mux *mux = psock->mux; 490 struct kcm_sock *kcm; 491 492 if (list_empty(&mux->kcm_tx_waiters)) { 493 list_add_tail(&psock->psock_avail_list, 494 &mux->psocks_avail); 495 } else { 496 kcm = list_first_entry(&mux->kcm_tx_waiters, 497 struct kcm_sock, 498 wait_psock_list); 499 list_del(&kcm->wait_psock_list); 500 kcm->tx_wait = false; 501 psock->tx_kcm = kcm; 502 503 /* Commit before changing tx_psock since that is read in 504 * reserve_psock before queuing work. 505 */ 506 smp_mb(); 507 508 kcm->tx_psock = psock; 509 KCM_STATS_INCR(psock->stats.reserved); 510 queue_work(kcm_wq, &kcm->tx_work); 511 } 512 } 513 514 /* kcm sock is locked. */ 515 static void unreserve_psock(struct kcm_sock *kcm) 516 { 517 struct kcm_psock *psock; 518 struct kcm_mux *mux = kcm->mux; 519 520 spin_lock_bh(&mux->lock); 521 522 psock = kcm->tx_psock; 523 524 if (WARN_ON(!psock)) { 525 spin_unlock_bh(&mux->lock); 526 return; 527 } 528 529 smp_rmb(); /* Read tx_psock before tx_wait */ 530 531 kcm_update_tx_mux_stats(mux, psock); 532 533 WARN_ON(kcm->tx_wait); 534 535 kcm->tx_psock = NULL; 536 psock->tx_kcm = NULL; 537 KCM_STATS_INCR(psock->stats.unreserved); 538 539 if (unlikely(psock->tx_stopped)) { 540 if (psock->done) { 541 /* Deferred free */ 542 list_del(&psock->psock_list); 543 mux->psocks_cnt--; 544 sock_put(psock->sk); 545 fput(psock->sk->sk_socket->file); 546 kmem_cache_free(kcm_psockp, psock); 547 } 548 549 /* Don't put back on available list */ 550 551 spin_unlock_bh(&mux->lock); 552 553 return; 554 } 555 556 psock_now_avail(psock); 557 558 spin_unlock_bh(&mux->lock); 559 } 560 561 static void kcm_report_tx_retry(struct kcm_sock *kcm) 562 { 563 struct kcm_mux *mux = kcm->mux; 564 565 spin_lock_bh(&mux->lock); 566 KCM_STATS_INCR(mux->stats.tx_retries); 567 spin_unlock_bh(&mux->lock); 568 } 569 570 /* Write any messages ready on the kcm socket. Called with kcm sock lock 571 * held. Return bytes actually sent or error. 572 */ 573 static int kcm_write_msgs(struct kcm_sock *kcm) 574 { 575 struct sock *sk = &kcm->sk; 576 struct kcm_psock *psock; 577 struct sk_buff *skb, *head; 578 struct kcm_tx_msg *txm; 579 unsigned short fragidx, frag_offset; 580 unsigned int sent, total_sent = 0; 581 int ret = 0; 582 583 kcm->tx_wait_more = false; 584 psock = kcm->tx_psock; 585 if (unlikely(psock && psock->tx_stopped)) { 586 /* A reserved psock was aborted asynchronously. Unreserve 587 * it and we'll retry the message. 588 */ 589 unreserve_psock(kcm); 590 kcm_report_tx_retry(kcm); 591 if (skb_queue_empty(&sk->sk_write_queue)) 592 return 0; 593 594 kcm_tx_msg(skb_peek(&sk->sk_write_queue))->sent = 0; 595 596 } else if (skb_queue_empty(&sk->sk_write_queue)) { 597 return 0; 598 } 599 600 head = skb_peek(&sk->sk_write_queue); 601 txm = kcm_tx_msg(head); 602 603 if (txm->sent) { 604 /* Send of first skbuff in queue already in progress */ 605 if (WARN_ON(!psock)) { 606 ret = -EINVAL; 607 goto out; 608 } 609 sent = txm->sent; 610 frag_offset = txm->frag_offset; 611 fragidx = txm->fragidx; 612 skb = txm->frag_skb; 613 614 goto do_frag; 615 } 616 617 try_again: 618 psock = reserve_psock(kcm); 619 if (!psock) 620 goto out; 621 622 do { 623 skb = head; 624 txm = kcm_tx_msg(head); 625 sent = 0; 626 627 do_frag_list: 628 if (WARN_ON(!skb_shinfo(skb)->nr_frags)) { 629 ret = -EINVAL; 630 goto out; 631 } 632 633 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; 634 fragidx++) { 635 skb_frag_t *frag; 636 637 frag_offset = 0; 638 do_frag: 639 frag = &skb_shinfo(skb)->frags[fragidx]; 640 if (WARN_ON(!skb_frag_size(frag))) { 641 ret = -EINVAL; 642 goto out; 643 } 644 645 ret = kernel_sendpage(psock->sk->sk_socket, 646 skb_frag_page(frag), 647 skb_frag_off(frag) + frag_offset, 648 skb_frag_size(frag) - frag_offset, 649 MSG_DONTWAIT); 650 if (ret <= 0) { 651 if (ret == -EAGAIN) { 652 /* Save state to try again when there's 653 * write space on the socket 654 */ 655 txm->sent = sent; 656 txm->frag_offset = frag_offset; 657 txm->fragidx = fragidx; 658 txm->frag_skb = skb; 659 660 ret = 0; 661 goto out; 662 } 663 664 /* Hard failure in sending message, abort this 665 * psock since it has lost framing 666 * synchronization and retry sending the 667 * message from the beginning. 668 */ 669 kcm_abort_tx_psock(psock, ret ? -ret : EPIPE, 670 true); 671 unreserve_psock(kcm); 672 673 txm->sent = 0; 674 kcm_report_tx_retry(kcm); 675 ret = 0; 676 677 goto try_again; 678 } 679 680 sent += ret; 681 frag_offset += ret; 682 KCM_STATS_ADD(psock->stats.tx_bytes, ret); 683 if (frag_offset < skb_frag_size(frag)) { 684 /* Not finished with this frag */ 685 goto do_frag; 686 } 687 } 688 689 if (skb == head) { 690 if (skb_has_frag_list(skb)) { 691 skb = skb_shinfo(skb)->frag_list; 692 goto do_frag_list; 693 } 694 } else if (skb->next) { 695 skb = skb->next; 696 goto do_frag_list; 697 } 698 699 /* Successfully sent the whole packet, account for it. */ 700 skb_dequeue(&sk->sk_write_queue); 701 kfree_skb(head); 702 sk->sk_wmem_queued -= sent; 703 total_sent += sent; 704 KCM_STATS_INCR(psock->stats.tx_msgs); 705 } while ((head = skb_peek(&sk->sk_write_queue))); 706 out: 707 if (!head) { 708 /* Done with all queued messages. */ 709 WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); 710 unreserve_psock(kcm); 711 } 712 713 /* Check if write space is available */ 714 sk->sk_write_space(sk); 715 716 return total_sent ? : ret; 717 } 718 719 static void kcm_tx_work(struct work_struct *w) 720 { 721 struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work); 722 struct sock *sk = &kcm->sk; 723 int err; 724 725 lock_sock(sk); 726 727 /* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx 728 * aborts 729 */ 730 err = kcm_write_msgs(kcm); 731 if (err < 0) { 732 /* Hard failure in write, report error on KCM socket */ 733 pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err); 734 report_csk_error(&kcm->sk, -err); 735 goto out; 736 } 737 738 /* Primarily for SOCK_SEQPACKET sockets */ 739 if (likely(sk->sk_socket) && 740 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 741 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 742 sk->sk_write_space(sk); 743 } 744 745 out: 746 release_sock(sk); 747 } 748 749 static void kcm_push(struct kcm_sock *kcm) 750 { 751 if (kcm->tx_wait_more) 752 kcm_write_msgs(kcm); 753 } 754 755 static ssize_t kcm_sendpage(struct socket *sock, struct page *page, 756 int offset, size_t size, int flags) 757 758 { 759 struct sock *sk = sock->sk; 760 struct kcm_sock *kcm = kcm_sk(sk); 761 struct sk_buff *skb = NULL, *head = NULL; 762 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 763 bool eor; 764 int err = 0; 765 int i; 766 767 if (flags & MSG_SENDPAGE_NOTLAST) 768 flags |= MSG_MORE; 769 770 /* No MSG_EOR from splice, only look at MSG_MORE */ 771 eor = !(flags & MSG_MORE); 772 773 lock_sock(sk); 774 775 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 776 777 err = -EPIPE; 778 if (sk->sk_err) 779 goto out_error; 780 781 if (kcm->seq_skb) { 782 /* Previously opened message */ 783 head = kcm->seq_skb; 784 skb = kcm_tx_msg(head)->last_skb; 785 i = skb_shinfo(skb)->nr_frags; 786 787 if (skb_can_coalesce(skb, i, page, offset)) { 788 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 789 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 790 goto coalesced; 791 } 792 793 if (i >= MAX_SKB_FRAGS) { 794 struct sk_buff *tskb; 795 796 tskb = alloc_skb(0, sk->sk_allocation); 797 while (!tskb) { 798 kcm_push(kcm); 799 err = sk_stream_wait_memory(sk, &timeo); 800 if (err) 801 goto out_error; 802 } 803 804 if (head == skb) 805 skb_shinfo(head)->frag_list = tskb; 806 else 807 skb->next = tskb; 808 809 skb = tskb; 810 skb->ip_summed = CHECKSUM_UNNECESSARY; 811 i = 0; 812 } 813 } else { 814 /* Call the sk_stream functions to manage the sndbuf mem. */ 815 if (!sk_stream_memory_free(sk)) { 816 kcm_push(kcm); 817 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 818 err = sk_stream_wait_memory(sk, &timeo); 819 if (err) 820 goto out_error; 821 } 822 823 head = alloc_skb(0, sk->sk_allocation); 824 while (!head) { 825 kcm_push(kcm); 826 err = sk_stream_wait_memory(sk, &timeo); 827 if (err) 828 goto out_error; 829 } 830 831 skb = head; 832 i = 0; 833 } 834 835 get_page(page); 836 skb_fill_page_desc(skb, i, page, offset, size); 837 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 838 839 coalesced: 840 skb->len += size; 841 skb->data_len += size; 842 skb->truesize += size; 843 sk->sk_wmem_queued += size; 844 sk_mem_charge(sk, size); 845 846 if (head != skb) { 847 head->len += size; 848 head->data_len += size; 849 head->truesize += size; 850 } 851 852 if (eor) { 853 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 854 855 /* Message complete, queue it on send buffer */ 856 __skb_queue_tail(&sk->sk_write_queue, head); 857 kcm->seq_skb = NULL; 858 KCM_STATS_INCR(kcm->stats.tx_msgs); 859 860 if (flags & MSG_BATCH) { 861 kcm->tx_wait_more = true; 862 } else if (kcm->tx_wait_more || not_busy) { 863 err = kcm_write_msgs(kcm); 864 if (err < 0) { 865 /* We got a hard error in write_msgs but have 866 * already queued this message. Report an error 867 * in the socket, but don't affect return value 868 * from sendmsg 869 */ 870 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 871 report_csk_error(&kcm->sk, -err); 872 } 873 } 874 } else { 875 /* Message not complete, save state */ 876 kcm->seq_skb = head; 877 kcm_tx_msg(head)->last_skb = skb; 878 } 879 880 KCM_STATS_ADD(kcm->stats.tx_bytes, size); 881 882 release_sock(sk); 883 return size; 884 885 out_error: 886 kcm_push(kcm); 887 888 err = sk_stream_error(sk, flags, err); 889 890 /* make sure we wake any epoll edge trigger waiter */ 891 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 892 sk->sk_write_space(sk); 893 894 release_sock(sk); 895 return err; 896 } 897 898 static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 899 { 900 struct sock *sk = sock->sk; 901 struct kcm_sock *kcm = kcm_sk(sk); 902 struct sk_buff *skb = NULL, *head = NULL; 903 size_t copy, copied = 0; 904 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 905 int eor = (sock->type == SOCK_DGRAM) ? 906 !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR); 907 int err = -EPIPE; 908 909 lock_sock(sk); 910 911 /* Per tcp_sendmsg this should be in poll */ 912 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 913 914 if (sk->sk_err) 915 goto out_error; 916 917 if (kcm->seq_skb) { 918 /* Previously opened message */ 919 head = kcm->seq_skb; 920 skb = kcm_tx_msg(head)->last_skb; 921 goto start; 922 } 923 924 /* Call the sk_stream functions to manage the sndbuf mem. */ 925 if (!sk_stream_memory_free(sk)) { 926 kcm_push(kcm); 927 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 928 err = sk_stream_wait_memory(sk, &timeo); 929 if (err) 930 goto out_error; 931 } 932 933 if (msg_data_left(msg)) { 934 /* New message, alloc head skb */ 935 head = alloc_skb(0, sk->sk_allocation); 936 while (!head) { 937 kcm_push(kcm); 938 err = sk_stream_wait_memory(sk, &timeo); 939 if (err) 940 goto out_error; 941 942 head = alloc_skb(0, sk->sk_allocation); 943 } 944 945 skb = head; 946 947 /* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling 948 * csum_and_copy_from_iter from skb_do_copy_data_nocache. 949 */ 950 skb->ip_summed = CHECKSUM_UNNECESSARY; 951 } 952 953 start: 954 while (msg_data_left(msg)) { 955 bool merge = true; 956 int i = skb_shinfo(skb)->nr_frags; 957 struct page_frag *pfrag = sk_page_frag(sk); 958 959 if (!sk_page_frag_refill(sk, pfrag)) 960 goto wait_for_memory; 961 962 if (!skb_can_coalesce(skb, i, pfrag->page, 963 pfrag->offset)) { 964 if (i == MAX_SKB_FRAGS) { 965 struct sk_buff *tskb; 966 967 tskb = alloc_skb(0, sk->sk_allocation); 968 if (!tskb) 969 goto wait_for_memory; 970 971 if (head == skb) 972 skb_shinfo(head)->frag_list = tskb; 973 else 974 skb->next = tskb; 975 976 skb = tskb; 977 skb->ip_summed = CHECKSUM_UNNECESSARY; 978 continue; 979 } 980 merge = false; 981 } 982 983 copy = min_t(int, msg_data_left(msg), 984 pfrag->size - pfrag->offset); 985 986 if (!sk_wmem_schedule(sk, copy)) 987 goto wait_for_memory; 988 989 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 990 pfrag->page, 991 pfrag->offset, 992 copy); 993 if (err) 994 goto out_error; 995 996 /* Update the skb. */ 997 if (merge) { 998 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 999 } else { 1000 skb_fill_page_desc(skb, i, pfrag->page, 1001 pfrag->offset, copy); 1002 get_page(pfrag->page); 1003 } 1004 1005 pfrag->offset += copy; 1006 copied += copy; 1007 if (head != skb) { 1008 head->len += copy; 1009 head->data_len += copy; 1010 } 1011 1012 continue; 1013 1014 wait_for_memory: 1015 kcm_push(kcm); 1016 err = sk_stream_wait_memory(sk, &timeo); 1017 if (err) 1018 goto out_error; 1019 } 1020 1021 if (eor) { 1022 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 1023 1024 if (head) { 1025 /* Message complete, queue it on send buffer */ 1026 __skb_queue_tail(&sk->sk_write_queue, head); 1027 kcm->seq_skb = NULL; 1028 KCM_STATS_INCR(kcm->stats.tx_msgs); 1029 } 1030 1031 if (msg->msg_flags & MSG_BATCH) { 1032 kcm->tx_wait_more = true; 1033 } else if (kcm->tx_wait_more || not_busy) { 1034 err = kcm_write_msgs(kcm); 1035 if (err < 0) { 1036 /* We got a hard error in write_msgs but have 1037 * already queued this message. Report an error 1038 * in the socket, but don't affect return value 1039 * from sendmsg 1040 */ 1041 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 1042 report_csk_error(&kcm->sk, -err); 1043 } 1044 } 1045 } else { 1046 /* Message not complete, save state */ 1047 partial_message: 1048 if (head) { 1049 kcm->seq_skb = head; 1050 kcm_tx_msg(head)->last_skb = skb; 1051 } 1052 } 1053 1054 KCM_STATS_ADD(kcm->stats.tx_bytes, copied); 1055 1056 release_sock(sk); 1057 return copied; 1058 1059 out_error: 1060 kcm_push(kcm); 1061 1062 if (copied && sock->type == SOCK_SEQPACKET) { 1063 /* Wrote some bytes before encountering an 1064 * error, return partial success. 1065 */ 1066 goto partial_message; 1067 } 1068 1069 if (skb_has_frag_list(head)) { 1070 kfree_skb_list(skb_shinfo(head)->frag_list); 1071 skb_shinfo(head)->frag_list = NULL; 1072 } 1073 1074 if (head != kcm->seq_skb) 1075 kfree_skb(head); 1076 1077 err = sk_stream_error(sk, msg->msg_flags, err); 1078 1079 /* make sure we wake any epoll edge trigger waiter */ 1080 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1081 sk->sk_write_space(sk); 1082 1083 release_sock(sk); 1084 return err; 1085 } 1086 1087 static struct sk_buff *kcm_wait_data(struct sock *sk, int flags, 1088 long timeo, int *err) 1089 { 1090 struct sk_buff *skb; 1091 1092 while (!(skb = skb_peek(&sk->sk_receive_queue))) { 1093 if (sk->sk_err) { 1094 *err = sock_error(sk); 1095 return NULL; 1096 } 1097 1098 if (sock_flag(sk, SOCK_DONE)) 1099 return NULL; 1100 1101 if ((flags & MSG_DONTWAIT) || !timeo) { 1102 *err = -EAGAIN; 1103 return NULL; 1104 } 1105 1106 sk_wait_data(sk, &timeo, NULL); 1107 1108 /* Handle signals */ 1109 if (signal_pending(current)) { 1110 *err = sock_intr_errno(timeo); 1111 return NULL; 1112 } 1113 } 1114 1115 return skb; 1116 } 1117 1118 static int kcm_recvmsg(struct socket *sock, struct msghdr *msg, 1119 size_t len, int flags) 1120 { 1121 struct sock *sk = sock->sk; 1122 struct kcm_sock *kcm = kcm_sk(sk); 1123 int err = 0; 1124 long timeo; 1125 struct strp_msg *stm; 1126 int copied = 0; 1127 struct sk_buff *skb; 1128 1129 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1130 1131 lock_sock(sk); 1132 1133 skb = kcm_wait_data(sk, flags, timeo, &err); 1134 if (!skb) 1135 goto out; 1136 1137 /* Okay, have a message on the receive queue */ 1138 1139 stm = strp_msg(skb); 1140 1141 if (len > stm->full_len) 1142 len = stm->full_len; 1143 1144 err = skb_copy_datagram_msg(skb, stm->offset, msg, len); 1145 if (err < 0) 1146 goto out; 1147 1148 copied = len; 1149 if (likely(!(flags & MSG_PEEK))) { 1150 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1151 if (copied < stm->full_len) { 1152 if (sock->type == SOCK_DGRAM) { 1153 /* Truncated message */ 1154 msg->msg_flags |= MSG_TRUNC; 1155 goto msg_finished; 1156 } 1157 stm->offset += copied; 1158 stm->full_len -= copied; 1159 } else { 1160 msg_finished: 1161 /* Finished with message */ 1162 msg->msg_flags |= MSG_EOR; 1163 KCM_STATS_INCR(kcm->stats.rx_msgs); 1164 skb_unlink(skb, &sk->sk_receive_queue); 1165 kfree_skb(skb); 1166 } 1167 } 1168 1169 out: 1170 release_sock(sk); 1171 1172 return copied ? : err; 1173 } 1174 1175 static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos, 1176 struct pipe_inode_info *pipe, size_t len, 1177 unsigned int flags) 1178 { 1179 struct sock *sk = sock->sk; 1180 struct kcm_sock *kcm = kcm_sk(sk); 1181 long timeo; 1182 struct strp_msg *stm; 1183 int err = 0; 1184 ssize_t copied; 1185 struct sk_buff *skb; 1186 1187 /* Only support splice for SOCKSEQPACKET */ 1188 1189 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1190 1191 lock_sock(sk); 1192 1193 skb = kcm_wait_data(sk, flags, timeo, &err); 1194 if (!skb) 1195 goto err_out; 1196 1197 /* Okay, have a message on the receive queue */ 1198 1199 stm = strp_msg(skb); 1200 1201 if (len > stm->full_len) 1202 len = stm->full_len; 1203 1204 copied = skb_splice_bits(skb, sk, stm->offset, pipe, len, flags); 1205 if (copied < 0) { 1206 err = copied; 1207 goto err_out; 1208 } 1209 1210 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1211 1212 stm->offset += copied; 1213 stm->full_len -= copied; 1214 1215 /* We have no way to return MSG_EOR. If all the bytes have been 1216 * read we still leave the message in the receive socket buffer. 1217 * A subsequent recvmsg needs to be done to return MSG_EOR and 1218 * finish reading the message. 1219 */ 1220 1221 release_sock(sk); 1222 1223 return copied; 1224 1225 err_out: 1226 release_sock(sk); 1227 1228 return err; 1229 } 1230 1231 /* kcm sock lock held */ 1232 static void kcm_recv_disable(struct kcm_sock *kcm) 1233 { 1234 struct kcm_mux *mux = kcm->mux; 1235 1236 if (kcm->rx_disabled) 1237 return; 1238 1239 spin_lock_bh(&mux->rx_lock); 1240 1241 kcm->rx_disabled = 1; 1242 1243 /* If a psock is reserved we'll do cleanup in unreserve */ 1244 if (!kcm->rx_psock) { 1245 if (kcm->rx_wait) { 1246 list_del(&kcm->wait_rx_list); 1247 kcm->rx_wait = false; 1248 } 1249 1250 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 1251 } 1252 1253 spin_unlock_bh(&mux->rx_lock); 1254 } 1255 1256 /* kcm sock lock held */ 1257 static void kcm_recv_enable(struct kcm_sock *kcm) 1258 { 1259 struct kcm_mux *mux = kcm->mux; 1260 1261 if (!kcm->rx_disabled) 1262 return; 1263 1264 spin_lock_bh(&mux->rx_lock); 1265 1266 kcm->rx_disabled = 0; 1267 kcm_rcv_ready(kcm); 1268 1269 spin_unlock_bh(&mux->rx_lock); 1270 } 1271 1272 static int kcm_setsockopt(struct socket *sock, int level, int optname, 1273 sockptr_t optval, unsigned int optlen) 1274 { 1275 struct kcm_sock *kcm = kcm_sk(sock->sk); 1276 int val, valbool; 1277 int err = 0; 1278 1279 if (level != SOL_KCM) 1280 return -ENOPROTOOPT; 1281 1282 if (optlen < sizeof(int)) 1283 return -EINVAL; 1284 1285 if (copy_from_sockptr(&val, optval, sizeof(int))) 1286 return -EFAULT; 1287 1288 valbool = val ? 1 : 0; 1289 1290 switch (optname) { 1291 case KCM_RECV_DISABLE: 1292 lock_sock(&kcm->sk); 1293 if (valbool) 1294 kcm_recv_disable(kcm); 1295 else 1296 kcm_recv_enable(kcm); 1297 release_sock(&kcm->sk); 1298 break; 1299 default: 1300 err = -ENOPROTOOPT; 1301 } 1302 1303 return err; 1304 } 1305 1306 static int kcm_getsockopt(struct socket *sock, int level, int optname, 1307 char __user *optval, int __user *optlen) 1308 { 1309 struct kcm_sock *kcm = kcm_sk(sock->sk); 1310 int val, len; 1311 1312 if (level != SOL_KCM) 1313 return -ENOPROTOOPT; 1314 1315 if (get_user(len, optlen)) 1316 return -EFAULT; 1317 1318 len = min_t(unsigned int, len, sizeof(int)); 1319 if (len < 0) 1320 return -EINVAL; 1321 1322 switch (optname) { 1323 case KCM_RECV_DISABLE: 1324 val = kcm->rx_disabled; 1325 break; 1326 default: 1327 return -ENOPROTOOPT; 1328 } 1329 1330 if (put_user(len, optlen)) 1331 return -EFAULT; 1332 if (copy_to_user(optval, &val, len)) 1333 return -EFAULT; 1334 return 0; 1335 } 1336 1337 static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux) 1338 { 1339 struct kcm_sock *tkcm; 1340 struct list_head *head; 1341 int index = 0; 1342 1343 /* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so 1344 * we set sk_state, otherwise epoll_wait always returns right away with 1345 * EPOLLHUP 1346 */ 1347 kcm->sk.sk_state = TCP_ESTABLISHED; 1348 1349 /* Add to mux's kcm sockets list */ 1350 kcm->mux = mux; 1351 spin_lock_bh(&mux->lock); 1352 1353 head = &mux->kcm_socks; 1354 list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) { 1355 if (tkcm->index != index) 1356 break; 1357 head = &tkcm->kcm_sock_list; 1358 index++; 1359 } 1360 1361 list_add(&kcm->kcm_sock_list, head); 1362 kcm->index = index; 1363 1364 mux->kcm_socks_cnt++; 1365 spin_unlock_bh(&mux->lock); 1366 1367 INIT_WORK(&kcm->tx_work, kcm_tx_work); 1368 1369 spin_lock_bh(&mux->rx_lock); 1370 kcm_rcv_ready(kcm); 1371 spin_unlock_bh(&mux->rx_lock); 1372 } 1373 1374 static int kcm_attach(struct socket *sock, struct socket *csock, 1375 struct bpf_prog *prog) 1376 { 1377 struct kcm_sock *kcm = kcm_sk(sock->sk); 1378 struct kcm_mux *mux = kcm->mux; 1379 struct sock *csk; 1380 struct kcm_psock *psock = NULL, *tpsock; 1381 struct list_head *head; 1382 int index = 0; 1383 static const struct strp_callbacks cb = { 1384 .rcv_msg = kcm_rcv_strparser, 1385 .parse_msg = kcm_parse_func_strparser, 1386 .read_sock_done = kcm_read_sock_done, 1387 }; 1388 int err = 0; 1389 1390 csk = csock->sk; 1391 if (!csk) 1392 return -EINVAL; 1393 1394 lock_sock(csk); 1395 1396 /* Only allow TCP sockets to be attached for now */ 1397 if ((csk->sk_family != AF_INET && csk->sk_family != AF_INET6) || 1398 csk->sk_protocol != IPPROTO_TCP) { 1399 err = -EOPNOTSUPP; 1400 goto out; 1401 } 1402 1403 /* Don't allow listeners or closed sockets */ 1404 if (csk->sk_state == TCP_LISTEN || csk->sk_state == TCP_CLOSE) { 1405 err = -EOPNOTSUPP; 1406 goto out; 1407 } 1408 1409 psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL); 1410 if (!psock) { 1411 err = -ENOMEM; 1412 goto out; 1413 } 1414 1415 psock->mux = mux; 1416 psock->sk = csk; 1417 psock->bpf_prog = prog; 1418 1419 err = strp_init(&psock->strp, csk, &cb); 1420 if (err) { 1421 kmem_cache_free(kcm_psockp, psock); 1422 goto out; 1423 } 1424 1425 write_lock_bh(&csk->sk_callback_lock); 1426 1427 /* Check if sk_user_data is already by KCM or someone else. 1428 * Must be done under lock to prevent race conditions. 1429 */ 1430 if (csk->sk_user_data) { 1431 write_unlock_bh(&csk->sk_callback_lock); 1432 strp_stop(&psock->strp); 1433 strp_done(&psock->strp); 1434 kmem_cache_free(kcm_psockp, psock); 1435 err = -EALREADY; 1436 goto out; 1437 } 1438 1439 psock->save_data_ready = csk->sk_data_ready; 1440 psock->save_write_space = csk->sk_write_space; 1441 psock->save_state_change = csk->sk_state_change; 1442 csk->sk_user_data = psock; 1443 csk->sk_data_ready = psock_data_ready; 1444 csk->sk_write_space = psock_write_space; 1445 csk->sk_state_change = psock_state_change; 1446 1447 write_unlock_bh(&csk->sk_callback_lock); 1448 1449 sock_hold(csk); 1450 1451 /* Finished initialization, now add the psock to the MUX. */ 1452 spin_lock_bh(&mux->lock); 1453 head = &mux->psocks; 1454 list_for_each_entry(tpsock, &mux->psocks, psock_list) { 1455 if (tpsock->index != index) 1456 break; 1457 head = &tpsock->psock_list; 1458 index++; 1459 } 1460 1461 list_add(&psock->psock_list, head); 1462 psock->index = index; 1463 1464 KCM_STATS_INCR(mux->stats.psock_attach); 1465 mux->psocks_cnt++; 1466 psock_now_avail(psock); 1467 spin_unlock_bh(&mux->lock); 1468 1469 /* Schedule RX work in case there are already bytes queued */ 1470 strp_check_rcv(&psock->strp); 1471 1472 out: 1473 release_sock(csk); 1474 1475 return err; 1476 } 1477 1478 static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info) 1479 { 1480 struct socket *csock; 1481 struct bpf_prog *prog; 1482 int err; 1483 1484 csock = sockfd_lookup(info->fd, &err); 1485 if (!csock) 1486 return -ENOENT; 1487 1488 prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER); 1489 if (IS_ERR(prog)) { 1490 err = PTR_ERR(prog); 1491 goto out; 1492 } 1493 1494 err = kcm_attach(sock, csock, prog); 1495 if (err) { 1496 bpf_prog_put(prog); 1497 goto out; 1498 } 1499 1500 /* Keep reference on file also */ 1501 1502 return 0; 1503 out: 1504 sockfd_put(csock); 1505 return err; 1506 } 1507 1508 static void kcm_unattach(struct kcm_psock *psock) 1509 { 1510 struct sock *csk = psock->sk; 1511 struct kcm_mux *mux = psock->mux; 1512 1513 lock_sock(csk); 1514 1515 /* Stop getting callbacks from TCP socket. After this there should 1516 * be no way to reserve a kcm for this psock. 1517 */ 1518 write_lock_bh(&csk->sk_callback_lock); 1519 csk->sk_user_data = NULL; 1520 csk->sk_data_ready = psock->save_data_ready; 1521 csk->sk_write_space = psock->save_write_space; 1522 csk->sk_state_change = psock->save_state_change; 1523 strp_stop(&psock->strp); 1524 1525 if (WARN_ON(psock->rx_kcm)) { 1526 write_unlock_bh(&csk->sk_callback_lock); 1527 release_sock(csk); 1528 return; 1529 } 1530 1531 spin_lock_bh(&mux->rx_lock); 1532 1533 /* Stop receiver activities. After this point psock should not be 1534 * able to get onto ready list either through callbacks or work. 1535 */ 1536 if (psock->ready_rx_msg) { 1537 list_del(&psock->psock_ready_list); 1538 kfree_skb(psock->ready_rx_msg); 1539 psock->ready_rx_msg = NULL; 1540 KCM_STATS_INCR(mux->stats.rx_ready_drops); 1541 } 1542 1543 spin_unlock_bh(&mux->rx_lock); 1544 1545 write_unlock_bh(&csk->sk_callback_lock); 1546 1547 /* Call strp_done without sock lock */ 1548 release_sock(csk); 1549 strp_done(&psock->strp); 1550 lock_sock(csk); 1551 1552 bpf_prog_put(psock->bpf_prog); 1553 1554 spin_lock_bh(&mux->lock); 1555 1556 aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats); 1557 save_strp_stats(&psock->strp, &mux->aggregate_strp_stats); 1558 1559 KCM_STATS_INCR(mux->stats.psock_unattach); 1560 1561 if (psock->tx_kcm) { 1562 /* psock was reserved. Just mark it finished and we will clean 1563 * up in the kcm paths, we need kcm lock which can not be 1564 * acquired here. 1565 */ 1566 KCM_STATS_INCR(mux->stats.psock_unattach_rsvd); 1567 spin_unlock_bh(&mux->lock); 1568 1569 /* We are unattaching a socket that is reserved. Abort the 1570 * socket since we may be out of sync in sending on it. We need 1571 * to do this without the mux lock. 1572 */ 1573 kcm_abort_tx_psock(psock, EPIPE, false); 1574 1575 spin_lock_bh(&mux->lock); 1576 if (!psock->tx_kcm) { 1577 /* psock now unreserved in window mux was unlocked */ 1578 goto no_reserved; 1579 } 1580 psock->done = 1; 1581 1582 /* Commit done before queuing work to process it */ 1583 smp_mb(); 1584 1585 /* Queue tx work to make sure psock->done is handled */ 1586 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 1587 spin_unlock_bh(&mux->lock); 1588 } else { 1589 no_reserved: 1590 if (!psock->tx_stopped) 1591 list_del(&psock->psock_avail_list); 1592 list_del(&psock->psock_list); 1593 mux->psocks_cnt--; 1594 spin_unlock_bh(&mux->lock); 1595 1596 sock_put(csk); 1597 fput(csk->sk_socket->file); 1598 kmem_cache_free(kcm_psockp, psock); 1599 } 1600 1601 release_sock(csk); 1602 } 1603 1604 static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info) 1605 { 1606 struct kcm_sock *kcm = kcm_sk(sock->sk); 1607 struct kcm_mux *mux = kcm->mux; 1608 struct kcm_psock *psock; 1609 struct socket *csock; 1610 struct sock *csk; 1611 int err; 1612 1613 csock = sockfd_lookup(info->fd, &err); 1614 if (!csock) 1615 return -ENOENT; 1616 1617 csk = csock->sk; 1618 if (!csk) { 1619 err = -EINVAL; 1620 goto out; 1621 } 1622 1623 err = -ENOENT; 1624 1625 spin_lock_bh(&mux->lock); 1626 1627 list_for_each_entry(psock, &mux->psocks, psock_list) { 1628 if (psock->sk != csk) 1629 continue; 1630 1631 /* Found the matching psock */ 1632 1633 if (psock->unattaching || WARN_ON(psock->done)) { 1634 err = -EALREADY; 1635 break; 1636 } 1637 1638 psock->unattaching = 1; 1639 1640 spin_unlock_bh(&mux->lock); 1641 1642 /* Lower socket lock should already be held */ 1643 kcm_unattach(psock); 1644 1645 err = 0; 1646 goto out; 1647 } 1648 1649 spin_unlock_bh(&mux->lock); 1650 1651 out: 1652 sockfd_put(csock); 1653 return err; 1654 } 1655 1656 static struct proto kcm_proto = { 1657 .name = "KCM", 1658 .owner = THIS_MODULE, 1659 .obj_size = sizeof(struct kcm_sock), 1660 }; 1661 1662 /* Clone a kcm socket. */ 1663 static struct file *kcm_clone(struct socket *osock) 1664 { 1665 struct socket *newsock; 1666 struct sock *newsk; 1667 1668 newsock = sock_alloc(); 1669 if (!newsock) 1670 return ERR_PTR(-ENFILE); 1671 1672 newsock->type = osock->type; 1673 newsock->ops = osock->ops; 1674 1675 __module_get(newsock->ops->owner); 1676 1677 newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL, 1678 &kcm_proto, false); 1679 if (!newsk) { 1680 sock_release(newsock); 1681 return ERR_PTR(-ENOMEM); 1682 } 1683 sock_init_data(newsock, newsk); 1684 init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux); 1685 1686 return sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name); 1687 } 1688 1689 static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1690 { 1691 int err; 1692 1693 switch (cmd) { 1694 case SIOCKCMATTACH: { 1695 struct kcm_attach info; 1696 1697 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1698 return -EFAULT; 1699 1700 err = kcm_attach_ioctl(sock, &info); 1701 1702 break; 1703 } 1704 case SIOCKCMUNATTACH: { 1705 struct kcm_unattach info; 1706 1707 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1708 return -EFAULT; 1709 1710 err = kcm_unattach_ioctl(sock, &info); 1711 1712 break; 1713 } 1714 case SIOCKCMCLONE: { 1715 struct kcm_clone info; 1716 struct file *file; 1717 1718 info.fd = get_unused_fd_flags(0); 1719 if (unlikely(info.fd < 0)) 1720 return info.fd; 1721 1722 file = kcm_clone(sock); 1723 if (IS_ERR(file)) { 1724 put_unused_fd(info.fd); 1725 return PTR_ERR(file); 1726 } 1727 if (copy_to_user((void __user *)arg, &info, 1728 sizeof(info))) { 1729 put_unused_fd(info.fd); 1730 fput(file); 1731 return -EFAULT; 1732 } 1733 fd_install(info.fd, file); 1734 err = 0; 1735 break; 1736 } 1737 default: 1738 err = -ENOIOCTLCMD; 1739 break; 1740 } 1741 1742 return err; 1743 } 1744 1745 static void free_mux(struct rcu_head *rcu) 1746 { 1747 struct kcm_mux *mux = container_of(rcu, 1748 struct kcm_mux, rcu); 1749 1750 kmem_cache_free(kcm_muxp, mux); 1751 } 1752 1753 static void release_mux(struct kcm_mux *mux) 1754 { 1755 struct kcm_net *knet = mux->knet; 1756 struct kcm_psock *psock, *tmp_psock; 1757 1758 /* Release psocks */ 1759 list_for_each_entry_safe(psock, tmp_psock, 1760 &mux->psocks, psock_list) { 1761 if (!WARN_ON(psock->unattaching)) 1762 kcm_unattach(psock); 1763 } 1764 1765 if (WARN_ON(mux->psocks_cnt)) 1766 return; 1767 1768 __skb_queue_purge(&mux->rx_hold_queue); 1769 1770 mutex_lock(&knet->mutex); 1771 aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats); 1772 aggregate_psock_stats(&mux->aggregate_psock_stats, 1773 &knet->aggregate_psock_stats); 1774 aggregate_strp_stats(&mux->aggregate_strp_stats, 1775 &knet->aggregate_strp_stats); 1776 list_del_rcu(&mux->kcm_mux_list); 1777 knet->count--; 1778 mutex_unlock(&knet->mutex); 1779 1780 call_rcu(&mux->rcu, free_mux); 1781 } 1782 1783 static void kcm_done(struct kcm_sock *kcm) 1784 { 1785 struct kcm_mux *mux = kcm->mux; 1786 struct sock *sk = &kcm->sk; 1787 int socks_cnt; 1788 1789 spin_lock_bh(&mux->rx_lock); 1790 if (kcm->rx_psock) { 1791 /* Cleanup in unreserve_rx_kcm */ 1792 WARN_ON(kcm->done); 1793 kcm->rx_disabled = 1; 1794 kcm->done = 1; 1795 spin_unlock_bh(&mux->rx_lock); 1796 return; 1797 } 1798 1799 if (kcm->rx_wait) { 1800 list_del(&kcm->wait_rx_list); 1801 kcm->rx_wait = false; 1802 } 1803 /* Move any pending receive messages to other kcm sockets */ 1804 requeue_rx_msgs(mux, &sk->sk_receive_queue); 1805 1806 spin_unlock_bh(&mux->rx_lock); 1807 1808 if (WARN_ON(sk_rmem_alloc_get(sk))) 1809 return; 1810 1811 /* Detach from MUX */ 1812 spin_lock_bh(&mux->lock); 1813 1814 list_del(&kcm->kcm_sock_list); 1815 mux->kcm_socks_cnt--; 1816 socks_cnt = mux->kcm_socks_cnt; 1817 1818 spin_unlock_bh(&mux->lock); 1819 1820 if (!socks_cnt) { 1821 /* We are done with the mux now. */ 1822 release_mux(mux); 1823 } 1824 1825 WARN_ON(kcm->rx_wait); 1826 1827 sock_put(&kcm->sk); 1828 } 1829 1830 /* Called by kcm_release to close a KCM socket. 1831 * If this is the last KCM socket on the MUX, destroy the MUX. 1832 */ 1833 static int kcm_release(struct socket *sock) 1834 { 1835 struct sock *sk = sock->sk; 1836 struct kcm_sock *kcm; 1837 struct kcm_mux *mux; 1838 struct kcm_psock *psock; 1839 1840 if (!sk) 1841 return 0; 1842 1843 kcm = kcm_sk(sk); 1844 mux = kcm->mux; 1845 1846 sock_orphan(sk); 1847 kfree_skb(kcm->seq_skb); 1848 1849 lock_sock(sk); 1850 /* Purge queue under lock to avoid race condition with tx_work trying 1851 * to act when queue is nonempty. If tx_work runs after this point 1852 * it will just return. 1853 */ 1854 __skb_queue_purge(&sk->sk_write_queue); 1855 1856 /* Set tx_stopped. This is checked when psock is bound to a kcm and we 1857 * get a writespace callback. This prevents further work being queued 1858 * from the callback (unbinding the psock occurs after canceling work. 1859 */ 1860 kcm->tx_stopped = 1; 1861 1862 release_sock(sk); 1863 1864 spin_lock_bh(&mux->lock); 1865 if (kcm->tx_wait) { 1866 /* Take of tx_wait list, after this point there should be no way 1867 * that a psock will be assigned to this kcm. 1868 */ 1869 list_del(&kcm->wait_psock_list); 1870 kcm->tx_wait = false; 1871 } 1872 spin_unlock_bh(&mux->lock); 1873 1874 /* Cancel work. After this point there should be no outside references 1875 * to the kcm socket. 1876 */ 1877 cancel_work_sync(&kcm->tx_work); 1878 1879 lock_sock(sk); 1880 psock = kcm->tx_psock; 1881 if (psock) { 1882 /* A psock was reserved, so we need to kill it since it 1883 * may already have some bytes queued from a message. We 1884 * need to do this after removing kcm from tx_wait list. 1885 */ 1886 kcm_abort_tx_psock(psock, EPIPE, false); 1887 unreserve_psock(kcm); 1888 } 1889 release_sock(sk); 1890 1891 WARN_ON(kcm->tx_wait); 1892 WARN_ON(kcm->tx_psock); 1893 1894 sock->sk = NULL; 1895 1896 kcm_done(kcm); 1897 1898 return 0; 1899 } 1900 1901 static const struct proto_ops kcm_dgram_ops = { 1902 .family = PF_KCM, 1903 .owner = THIS_MODULE, 1904 .release = kcm_release, 1905 .bind = sock_no_bind, 1906 .connect = sock_no_connect, 1907 .socketpair = sock_no_socketpair, 1908 .accept = sock_no_accept, 1909 .getname = sock_no_getname, 1910 .poll = datagram_poll, 1911 .ioctl = kcm_ioctl, 1912 .listen = sock_no_listen, 1913 .shutdown = sock_no_shutdown, 1914 .setsockopt = kcm_setsockopt, 1915 .getsockopt = kcm_getsockopt, 1916 .sendmsg = kcm_sendmsg, 1917 .recvmsg = kcm_recvmsg, 1918 .mmap = sock_no_mmap, 1919 .sendpage = kcm_sendpage, 1920 }; 1921 1922 static const struct proto_ops kcm_seqpacket_ops = { 1923 .family = PF_KCM, 1924 .owner = THIS_MODULE, 1925 .release = kcm_release, 1926 .bind = sock_no_bind, 1927 .connect = sock_no_connect, 1928 .socketpair = sock_no_socketpair, 1929 .accept = sock_no_accept, 1930 .getname = sock_no_getname, 1931 .poll = datagram_poll, 1932 .ioctl = kcm_ioctl, 1933 .listen = sock_no_listen, 1934 .shutdown = sock_no_shutdown, 1935 .setsockopt = kcm_setsockopt, 1936 .getsockopt = kcm_getsockopt, 1937 .sendmsg = kcm_sendmsg, 1938 .recvmsg = kcm_recvmsg, 1939 .mmap = sock_no_mmap, 1940 .sendpage = kcm_sendpage, 1941 .splice_read = kcm_splice_read, 1942 }; 1943 1944 /* Create proto operation for kcm sockets */ 1945 static int kcm_create(struct net *net, struct socket *sock, 1946 int protocol, int kern) 1947 { 1948 struct kcm_net *knet = net_generic(net, kcm_net_id); 1949 struct sock *sk; 1950 struct kcm_mux *mux; 1951 1952 switch (sock->type) { 1953 case SOCK_DGRAM: 1954 sock->ops = &kcm_dgram_ops; 1955 break; 1956 case SOCK_SEQPACKET: 1957 sock->ops = &kcm_seqpacket_ops; 1958 break; 1959 default: 1960 return -ESOCKTNOSUPPORT; 1961 } 1962 1963 if (protocol != KCMPROTO_CONNECTED) 1964 return -EPROTONOSUPPORT; 1965 1966 sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern); 1967 if (!sk) 1968 return -ENOMEM; 1969 1970 /* Allocate a kcm mux, shared between KCM sockets */ 1971 mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL); 1972 if (!mux) { 1973 sk_free(sk); 1974 return -ENOMEM; 1975 } 1976 1977 spin_lock_init(&mux->lock); 1978 spin_lock_init(&mux->rx_lock); 1979 INIT_LIST_HEAD(&mux->kcm_socks); 1980 INIT_LIST_HEAD(&mux->kcm_rx_waiters); 1981 INIT_LIST_HEAD(&mux->kcm_tx_waiters); 1982 1983 INIT_LIST_HEAD(&mux->psocks); 1984 INIT_LIST_HEAD(&mux->psocks_ready); 1985 INIT_LIST_HEAD(&mux->psocks_avail); 1986 1987 mux->knet = knet; 1988 1989 /* Add new MUX to list */ 1990 mutex_lock(&knet->mutex); 1991 list_add_rcu(&mux->kcm_mux_list, &knet->mux_list); 1992 knet->count++; 1993 mutex_unlock(&knet->mutex); 1994 1995 skb_queue_head_init(&mux->rx_hold_queue); 1996 1997 /* Init KCM socket */ 1998 sock_init_data(sock, sk); 1999 init_kcm_sock(kcm_sk(sk), mux); 2000 2001 return 0; 2002 } 2003 2004 static const struct net_proto_family kcm_family_ops = { 2005 .family = PF_KCM, 2006 .create = kcm_create, 2007 .owner = THIS_MODULE, 2008 }; 2009 2010 static __net_init int kcm_init_net(struct net *net) 2011 { 2012 struct kcm_net *knet = net_generic(net, kcm_net_id); 2013 2014 INIT_LIST_HEAD_RCU(&knet->mux_list); 2015 mutex_init(&knet->mutex); 2016 2017 return 0; 2018 } 2019 2020 static __net_exit void kcm_exit_net(struct net *net) 2021 { 2022 struct kcm_net *knet = net_generic(net, kcm_net_id); 2023 2024 /* All KCM sockets should be closed at this point, which should mean 2025 * that all multiplexors and psocks have been destroyed. 2026 */ 2027 WARN_ON(!list_empty(&knet->mux_list)); 2028 } 2029 2030 static struct pernet_operations kcm_net_ops = { 2031 .init = kcm_init_net, 2032 .exit = kcm_exit_net, 2033 .id = &kcm_net_id, 2034 .size = sizeof(struct kcm_net), 2035 }; 2036 2037 static int __init kcm_init(void) 2038 { 2039 int err = -ENOMEM; 2040 2041 kcm_muxp = kmem_cache_create("kcm_mux_cache", 2042 sizeof(struct kcm_mux), 0, 2043 SLAB_HWCACHE_ALIGN, NULL); 2044 if (!kcm_muxp) 2045 goto fail; 2046 2047 kcm_psockp = kmem_cache_create("kcm_psock_cache", 2048 sizeof(struct kcm_psock), 0, 2049 SLAB_HWCACHE_ALIGN, NULL); 2050 if (!kcm_psockp) 2051 goto fail; 2052 2053 kcm_wq = create_singlethread_workqueue("kkcmd"); 2054 if (!kcm_wq) 2055 goto fail; 2056 2057 err = proto_register(&kcm_proto, 1); 2058 if (err) 2059 goto fail; 2060 2061 err = register_pernet_device(&kcm_net_ops); 2062 if (err) 2063 goto net_ops_fail; 2064 2065 err = sock_register(&kcm_family_ops); 2066 if (err) 2067 goto sock_register_fail; 2068 2069 err = kcm_proc_init(); 2070 if (err) 2071 goto proc_init_fail; 2072 2073 return 0; 2074 2075 proc_init_fail: 2076 sock_unregister(PF_KCM); 2077 2078 sock_register_fail: 2079 unregister_pernet_device(&kcm_net_ops); 2080 2081 net_ops_fail: 2082 proto_unregister(&kcm_proto); 2083 2084 fail: 2085 kmem_cache_destroy(kcm_muxp); 2086 kmem_cache_destroy(kcm_psockp); 2087 2088 if (kcm_wq) 2089 destroy_workqueue(kcm_wq); 2090 2091 return err; 2092 } 2093 2094 static void __exit kcm_exit(void) 2095 { 2096 kcm_proc_exit(); 2097 sock_unregister(PF_KCM); 2098 unregister_pernet_device(&kcm_net_ops); 2099 proto_unregister(&kcm_proto); 2100 destroy_workqueue(kcm_wq); 2101 2102 kmem_cache_destroy(kcm_muxp); 2103 kmem_cache_destroy(kcm_psockp); 2104 } 2105 2106 module_init(kcm_init); 2107 module_exit(kcm_exit); 2108 2109 MODULE_LICENSE("GPL"); 2110 MODULE_ALIAS_NETPROTO(PF_KCM); 2111