1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel Connection Multiplexor 4 * 5 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/errno.h> 10 #include <linux/errqueue.h> 11 #include <linux/file.h> 12 #include <linux/filter.h> 13 #include <linux/in.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/net.h> 17 #include <linux/netdevice.h> 18 #include <linux/poll.h> 19 #include <linux/rculist.h> 20 #include <linux/skbuff.h> 21 #include <linux/socket.h> 22 #include <linux/uaccess.h> 23 #include <linux/workqueue.h> 24 #include <linux/syscalls.h> 25 #include <linux/sched/signal.h> 26 27 #include <net/kcm.h> 28 #include <net/netns/generic.h> 29 #include <net/sock.h> 30 #include <uapi/linux/kcm.h> 31 #include <trace/events/sock.h> 32 33 unsigned int kcm_net_id; 34 35 static struct kmem_cache *kcm_psockp __read_mostly; 36 static struct kmem_cache *kcm_muxp __read_mostly; 37 static struct workqueue_struct *kcm_wq; 38 39 static inline struct kcm_sock *kcm_sk(const struct sock *sk) 40 { 41 return (struct kcm_sock *)sk; 42 } 43 44 static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb) 45 { 46 return (struct kcm_tx_msg *)skb->cb; 47 } 48 49 static void report_csk_error(struct sock *csk, int err) 50 { 51 csk->sk_err = EPIPE; 52 sk_error_report(csk); 53 } 54 55 static void kcm_abort_tx_psock(struct kcm_psock *psock, int err, 56 bool wakeup_kcm) 57 { 58 struct sock *csk = psock->sk; 59 struct kcm_mux *mux = psock->mux; 60 61 /* Unrecoverable error in transmit */ 62 63 spin_lock_bh(&mux->lock); 64 65 if (psock->tx_stopped) { 66 spin_unlock_bh(&mux->lock); 67 return; 68 } 69 70 psock->tx_stopped = 1; 71 KCM_STATS_INCR(psock->stats.tx_aborts); 72 73 if (!psock->tx_kcm) { 74 /* Take off psocks_avail list */ 75 list_del(&psock->psock_avail_list); 76 } else if (wakeup_kcm) { 77 /* In this case psock is being aborted while outside of 78 * write_msgs and psock is reserved. Schedule tx_work 79 * to handle the failure there. Need to commit tx_stopped 80 * before queuing work. 81 */ 82 smp_mb(); 83 84 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 85 } 86 87 spin_unlock_bh(&mux->lock); 88 89 /* Report error on lower socket */ 90 report_csk_error(csk, err); 91 } 92 93 /* RX mux lock held. */ 94 static void kcm_update_rx_mux_stats(struct kcm_mux *mux, 95 struct kcm_psock *psock) 96 { 97 STRP_STATS_ADD(mux->stats.rx_bytes, 98 psock->strp.stats.bytes - 99 psock->saved_rx_bytes); 100 mux->stats.rx_msgs += 101 psock->strp.stats.msgs - psock->saved_rx_msgs; 102 psock->saved_rx_msgs = psock->strp.stats.msgs; 103 psock->saved_rx_bytes = psock->strp.stats.bytes; 104 } 105 106 static void kcm_update_tx_mux_stats(struct kcm_mux *mux, 107 struct kcm_psock *psock) 108 { 109 KCM_STATS_ADD(mux->stats.tx_bytes, 110 psock->stats.tx_bytes - psock->saved_tx_bytes); 111 mux->stats.tx_msgs += 112 psock->stats.tx_msgs - psock->saved_tx_msgs; 113 psock->saved_tx_msgs = psock->stats.tx_msgs; 114 psock->saved_tx_bytes = psock->stats.tx_bytes; 115 } 116 117 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 118 119 /* KCM is ready to receive messages on its queue-- either the KCM is new or 120 * has become unblocked after being blocked on full socket buffer. Queue any 121 * pending ready messages on a psock. RX mux lock held. 122 */ 123 static void kcm_rcv_ready(struct kcm_sock *kcm) 124 { 125 struct kcm_mux *mux = kcm->mux; 126 struct kcm_psock *psock; 127 struct sk_buff *skb; 128 129 if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled)) 130 return; 131 132 while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) { 133 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 134 /* Assuming buffer limit has been reached */ 135 skb_queue_head(&mux->rx_hold_queue, skb); 136 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 137 return; 138 } 139 } 140 141 while (!list_empty(&mux->psocks_ready)) { 142 psock = list_first_entry(&mux->psocks_ready, struct kcm_psock, 143 psock_ready_list); 144 145 if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) { 146 /* Assuming buffer limit has been reached */ 147 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 148 return; 149 } 150 151 /* Consumed the ready message on the psock. Schedule rx_work to 152 * get more messages. 153 */ 154 list_del(&psock->psock_ready_list); 155 psock->ready_rx_msg = NULL; 156 /* Commit clearing of ready_rx_msg for queuing work */ 157 smp_mb(); 158 159 strp_unpause(&psock->strp); 160 strp_check_rcv(&psock->strp); 161 } 162 163 /* Buffer limit is okay now, add to ready list */ 164 list_add_tail(&kcm->wait_rx_list, 165 &kcm->mux->kcm_rx_waiters); 166 /* paired with lockless reads in kcm_rfree() */ 167 WRITE_ONCE(kcm->rx_wait, true); 168 } 169 170 static void kcm_rfree(struct sk_buff *skb) 171 { 172 struct sock *sk = skb->sk; 173 struct kcm_sock *kcm = kcm_sk(sk); 174 struct kcm_mux *mux = kcm->mux; 175 unsigned int len = skb->truesize; 176 177 sk_mem_uncharge(sk, len); 178 atomic_sub(len, &sk->sk_rmem_alloc); 179 180 /* For reading rx_wait and rx_psock without holding lock */ 181 smp_mb__after_atomic(); 182 183 if (!READ_ONCE(kcm->rx_wait) && !READ_ONCE(kcm->rx_psock) && 184 sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) { 185 spin_lock_bh(&mux->rx_lock); 186 kcm_rcv_ready(kcm); 187 spin_unlock_bh(&mux->rx_lock); 188 } 189 } 190 191 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 192 { 193 struct sk_buff_head *list = &sk->sk_receive_queue; 194 195 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 196 return -ENOMEM; 197 198 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 199 return -ENOBUFS; 200 201 skb->dev = NULL; 202 203 skb_orphan(skb); 204 skb->sk = sk; 205 skb->destructor = kcm_rfree; 206 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 207 sk_mem_charge(sk, skb->truesize); 208 209 skb_queue_tail(list, skb); 210 211 if (!sock_flag(sk, SOCK_DEAD)) 212 sk->sk_data_ready(sk); 213 214 return 0; 215 } 216 217 /* Requeue received messages for a kcm socket to other kcm sockets. This is 218 * called with a kcm socket is receive disabled. 219 * RX mux lock held. 220 */ 221 static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head) 222 { 223 struct sk_buff *skb; 224 struct kcm_sock *kcm; 225 226 while ((skb = skb_dequeue(head))) { 227 /* Reset destructor to avoid calling kcm_rcv_ready */ 228 skb->destructor = sock_rfree; 229 skb_orphan(skb); 230 try_again: 231 if (list_empty(&mux->kcm_rx_waiters)) { 232 skb_queue_tail(&mux->rx_hold_queue, skb); 233 continue; 234 } 235 236 kcm = list_first_entry(&mux->kcm_rx_waiters, 237 struct kcm_sock, wait_rx_list); 238 239 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 240 /* Should mean socket buffer full */ 241 list_del(&kcm->wait_rx_list); 242 /* paired with lockless reads in kcm_rfree() */ 243 WRITE_ONCE(kcm->rx_wait, false); 244 245 /* Commit rx_wait to read in kcm_free */ 246 smp_wmb(); 247 248 goto try_again; 249 } 250 } 251 } 252 253 /* Lower sock lock held */ 254 static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock, 255 struct sk_buff *head) 256 { 257 struct kcm_mux *mux = psock->mux; 258 struct kcm_sock *kcm; 259 260 WARN_ON(psock->ready_rx_msg); 261 262 if (psock->rx_kcm) 263 return psock->rx_kcm; 264 265 spin_lock_bh(&mux->rx_lock); 266 267 if (psock->rx_kcm) { 268 spin_unlock_bh(&mux->rx_lock); 269 return psock->rx_kcm; 270 } 271 272 kcm_update_rx_mux_stats(mux, psock); 273 274 if (list_empty(&mux->kcm_rx_waiters)) { 275 psock->ready_rx_msg = head; 276 strp_pause(&psock->strp); 277 list_add_tail(&psock->psock_ready_list, 278 &mux->psocks_ready); 279 spin_unlock_bh(&mux->rx_lock); 280 return NULL; 281 } 282 283 kcm = list_first_entry(&mux->kcm_rx_waiters, 284 struct kcm_sock, wait_rx_list); 285 list_del(&kcm->wait_rx_list); 286 /* paired with lockless reads in kcm_rfree() */ 287 WRITE_ONCE(kcm->rx_wait, false); 288 289 psock->rx_kcm = kcm; 290 /* paired with lockless reads in kcm_rfree() */ 291 WRITE_ONCE(kcm->rx_psock, psock); 292 293 spin_unlock_bh(&mux->rx_lock); 294 295 return kcm; 296 } 297 298 static void kcm_done(struct kcm_sock *kcm); 299 300 static void kcm_done_work(struct work_struct *w) 301 { 302 kcm_done(container_of(w, struct kcm_sock, done_work)); 303 } 304 305 /* Lower sock held */ 306 static void unreserve_rx_kcm(struct kcm_psock *psock, 307 bool rcv_ready) 308 { 309 struct kcm_sock *kcm = psock->rx_kcm; 310 struct kcm_mux *mux = psock->mux; 311 312 if (!kcm) 313 return; 314 315 spin_lock_bh(&mux->rx_lock); 316 317 psock->rx_kcm = NULL; 318 /* paired with lockless reads in kcm_rfree() */ 319 WRITE_ONCE(kcm->rx_psock, NULL); 320 321 /* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with 322 * kcm_rfree 323 */ 324 smp_mb(); 325 326 if (unlikely(kcm->done)) { 327 spin_unlock_bh(&mux->rx_lock); 328 329 /* Need to run kcm_done in a task since we need to qcquire 330 * callback locks which may already be held here. 331 */ 332 INIT_WORK(&kcm->done_work, kcm_done_work); 333 schedule_work(&kcm->done_work); 334 return; 335 } 336 337 if (unlikely(kcm->rx_disabled)) { 338 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 339 } else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) { 340 /* Check for degenerative race with rx_wait that all 341 * data was dequeued (accounted for in kcm_rfree). 342 */ 343 kcm_rcv_ready(kcm); 344 } 345 spin_unlock_bh(&mux->rx_lock); 346 } 347 348 /* Lower sock lock held */ 349 static void psock_data_ready(struct sock *sk) 350 { 351 struct kcm_psock *psock; 352 353 trace_sk_data_ready(sk); 354 355 read_lock_bh(&sk->sk_callback_lock); 356 357 psock = (struct kcm_psock *)sk->sk_user_data; 358 if (likely(psock)) 359 strp_data_ready(&psock->strp); 360 361 read_unlock_bh(&sk->sk_callback_lock); 362 } 363 364 /* Called with lower sock held */ 365 static void kcm_rcv_strparser(struct strparser *strp, struct sk_buff *skb) 366 { 367 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 368 struct kcm_sock *kcm; 369 370 try_queue: 371 kcm = reserve_rx_kcm(psock, skb); 372 if (!kcm) { 373 /* Unable to reserve a KCM, message is held in psock and strp 374 * is paused. 375 */ 376 return; 377 } 378 379 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 380 /* Should mean socket buffer full */ 381 unreserve_rx_kcm(psock, false); 382 goto try_queue; 383 } 384 } 385 386 static int kcm_parse_func_strparser(struct strparser *strp, struct sk_buff *skb) 387 { 388 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 389 struct bpf_prog *prog = psock->bpf_prog; 390 int res; 391 392 res = bpf_prog_run_pin_on_cpu(prog, skb); 393 return res; 394 } 395 396 static int kcm_read_sock_done(struct strparser *strp, int err) 397 { 398 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 399 400 unreserve_rx_kcm(psock, true); 401 402 return err; 403 } 404 405 static void psock_state_change(struct sock *sk) 406 { 407 /* TCP only does a EPOLLIN for a half close. Do a EPOLLHUP here 408 * since application will normally not poll with EPOLLIN 409 * on the TCP sockets. 410 */ 411 412 report_csk_error(sk, EPIPE); 413 } 414 415 static void psock_write_space(struct sock *sk) 416 { 417 struct kcm_psock *psock; 418 struct kcm_mux *mux; 419 struct kcm_sock *kcm; 420 421 read_lock_bh(&sk->sk_callback_lock); 422 423 psock = (struct kcm_psock *)sk->sk_user_data; 424 if (unlikely(!psock)) 425 goto out; 426 mux = psock->mux; 427 428 spin_lock_bh(&mux->lock); 429 430 /* Check if the socket is reserved so someone is waiting for sending. */ 431 kcm = psock->tx_kcm; 432 if (kcm && !unlikely(kcm->tx_stopped)) 433 queue_work(kcm_wq, &kcm->tx_work); 434 435 spin_unlock_bh(&mux->lock); 436 out: 437 read_unlock_bh(&sk->sk_callback_lock); 438 } 439 440 static void unreserve_psock(struct kcm_sock *kcm); 441 442 /* kcm sock is locked. */ 443 static struct kcm_psock *reserve_psock(struct kcm_sock *kcm) 444 { 445 struct kcm_mux *mux = kcm->mux; 446 struct kcm_psock *psock; 447 448 psock = kcm->tx_psock; 449 450 smp_rmb(); /* Must read tx_psock before tx_wait */ 451 452 if (psock) { 453 WARN_ON(kcm->tx_wait); 454 if (unlikely(psock->tx_stopped)) 455 unreserve_psock(kcm); 456 else 457 return kcm->tx_psock; 458 } 459 460 spin_lock_bh(&mux->lock); 461 462 /* Check again under lock to see if psock was reserved for this 463 * psock via psock_unreserve. 464 */ 465 psock = kcm->tx_psock; 466 if (unlikely(psock)) { 467 WARN_ON(kcm->tx_wait); 468 spin_unlock_bh(&mux->lock); 469 return kcm->tx_psock; 470 } 471 472 if (!list_empty(&mux->psocks_avail)) { 473 psock = list_first_entry(&mux->psocks_avail, 474 struct kcm_psock, 475 psock_avail_list); 476 list_del(&psock->psock_avail_list); 477 if (kcm->tx_wait) { 478 list_del(&kcm->wait_psock_list); 479 kcm->tx_wait = false; 480 } 481 kcm->tx_psock = psock; 482 psock->tx_kcm = kcm; 483 KCM_STATS_INCR(psock->stats.reserved); 484 } else if (!kcm->tx_wait) { 485 list_add_tail(&kcm->wait_psock_list, 486 &mux->kcm_tx_waiters); 487 kcm->tx_wait = true; 488 } 489 490 spin_unlock_bh(&mux->lock); 491 492 return psock; 493 } 494 495 /* mux lock held */ 496 static void psock_now_avail(struct kcm_psock *psock) 497 { 498 struct kcm_mux *mux = psock->mux; 499 struct kcm_sock *kcm; 500 501 if (list_empty(&mux->kcm_tx_waiters)) { 502 list_add_tail(&psock->psock_avail_list, 503 &mux->psocks_avail); 504 } else { 505 kcm = list_first_entry(&mux->kcm_tx_waiters, 506 struct kcm_sock, 507 wait_psock_list); 508 list_del(&kcm->wait_psock_list); 509 kcm->tx_wait = false; 510 psock->tx_kcm = kcm; 511 512 /* Commit before changing tx_psock since that is read in 513 * reserve_psock before queuing work. 514 */ 515 smp_mb(); 516 517 kcm->tx_psock = psock; 518 KCM_STATS_INCR(psock->stats.reserved); 519 queue_work(kcm_wq, &kcm->tx_work); 520 } 521 } 522 523 /* kcm sock is locked. */ 524 static void unreserve_psock(struct kcm_sock *kcm) 525 { 526 struct kcm_psock *psock; 527 struct kcm_mux *mux = kcm->mux; 528 529 spin_lock_bh(&mux->lock); 530 531 psock = kcm->tx_psock; 532 533 if (WARN_ON(!psock)) { 534 spin_unlock_bh(&mux->lock); 535 return; 536 } 537 538 smp_rmb(); /* Read tx_psock before tx_wait */ 539 540 kcm_update_tx_mux_stats(mux, psock); 541 542 WARN_ON(kcm->tx_wait); 543 544 kcm->tx_psock = NULL; 545 psock->tx_kcm = NULL; 546 KCM_STATS_INCR(psock->stats.unreserved); 547 548 if (unlikely(psock->tx_stopped)) { 549 if (psock->done) { 550 /* Deferred free */ 551 list_del(&psock->psock_list); 552 mux->psocks_cnt--; 553 sock_put(psock->sk); 554 fput(psock->sk->sk_socket->file); 555 kmem_cache_free(kcm_psockp, psock); 556 } 557 558 /* Don't put back on available list */ 559 560 spin_unlock_bh(&mux->lock); 561 562 return; 563 } 564 565 psock_now_avail(psock); 566 567 spin_unlock_bh(&mux->lock); 568 } 569 570 static void kcm_report_tx_retry(struct kcm_sock *kcm) 571 { 572 struct kcm_mux *mux = kcm->mux; 573 574 spin_lock_bh(&mux->lock); 575 KCM_STATS_INCR(mux->stats.tx_retries); 576 spin_unlock_bh(&mux->lock); 577 } 578 579 /* Write any messages ready on the kcm socket. Called with kcm sock lock 580 * held. Return bytes actually sent or error. 581 */ 582 static int kcm_write_msgs(struct kcm_sock *kcm) 583 { 584 unsigned int total_sent = 0; 585 struct sock *sk = &kcm->sk; 586 struct kcm_psock *psock; 587 struct sk_buff *head; 588 int ret = 0; 589 590 kcm->tx_wait_more = false; 591 psock = kcm->tx_psock; 592 if (unlikely(psock && psock->tx_stopped)) { 593 /* A reserved psock was aborted asynchronously. Unreserve 594 * it and we'll retry the message. 595 */ 596 unreserve_psock(kcm); 597 kcm_report_tx_retry(kcm); 598 if (skb_queue_empty(&sk->sk_write_queue)) 599 return 0; 600 601 kcm_tx_msg(skb_peek(&sk->sk_write_queue))->started_tx = false; 602 } 603 604 retry: 605 while ((head = skb_peek(&sk->sk_write_queue))) { 606 struct msghdr msg = { 607 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 608 }; 609 struct kcm_tx_msg *txm = kcm_tx_msg(head); 610 struct sk_buff *skb; 611 unsigned int msize; 612 int i; 613 614 if (!txm->started_tx) { 615 psock = reserve_psock(kcm); 616 if (!psock) 617 goto out; 618 skb = head; 619 txm->frag_offset = 0; 620 txm->sent = 0; 621 txm->started_tx = true; 622 } else { 623 if (WARN_ON(!psock)) { 624 ret = -EINVAL; 625 goto out; 626 } 627 skb = txm->frag_skb; 628 } 629 630 if (WARN_ON(!skb_shinfo(skb)->nr_frags)) { 631 ret = -EINVAL; 632 goto out; 633 } 634 635 msize = 0; 636 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 637 msize += skb_shinfo(skb)->frags[i].bv_len; 638 639 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, 640 skb_shinfo(skb)->frags, skb_shinfo(skb)->nr_frags, 641 msize); 642 iov_iter_advance(&msg.msg_iter, txm->frag_offset); 643 644 do { 645 ret = sock_sendmsg(psock->sk->sk_socket, &msg); 646 if (ret <= 0) { 647 if (ret == -EAGAIN) { 648 /* Save state to try again when there's 649 * write space on the socket 650 */ 651 txm->frag_skb = skb; 652 ret = 0; 653 goto out; 654 } 655 656 /* Hard failure in sending message, abort this 657 * psock since it has lost framing 658 * synchronization and retry sending the 659 * message from the beginning. 660 */ 661 kcm_abort_tx_psock(psock, ret ? -ret : EPIPE, 662 true); 663 unreserve_psock(kcm); 664 psock = NULL; 665 666 txm->started_tx = false; 667 kcm_report_tx_retry(kcm); 668 ret = 0; 669 goto retry; 670 } 671 672 txm->sent += ret; 673 txm->frag_offset += ret; 674 KCM_STATS_ADD(psock->stats.tx_bytes, ret); 675 } while (msg.msg_iter.count > 0); 676 677 if (skb == head) { 678 if (skb_has_frag_list(skb)) { 679 txm->frag_skb = skb_shinfo(skb)->frag_list; 680 txm->frag_offset = 0; 681 continue; 682 } 683 } else if (skb->next) { 684 txm->frag_skb = skb->next; 685 txm->frag_offset = 0; 686 continue; 687 } 688 689 /* Successfully sent the whole packet, account for it. */ 690 sk->sk_wmem_queued -= txm->sent; 691 total_sent += txm->sent; 692 skb_dequeue(&sk->sk_write_queue); 693 kfree_skb(head); 694 KCM_STATS_INCR(psock->stats.tx_msgs); 695 } 696 out: 697 if (!head) { 698 /* Done with all queued messages. */ 699 WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); 700 if (psock) 701 unreserve_psock(kcm); 702 } 703 704 /* Check if write space is available */ 705 sk->sk_write_space(sk); 706 707 return total_sent ? : ret; 708 } 709 710 static void kcm_tx_work(struct work_struct *w) 711 { 712 struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work); 713 struct sock *sk = &kcm->sk; 714 int err; 715 716 lock_sock(sk); 717 718 /* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx 719 * aborts 720 */ 721 err = kcm_write_msgs(kcm); 722 if (err < 0) { 723 /* Hard failure in write, report error on KCM socket */ 724 pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err); 725 report_csk_error(&kcm->sk, -err); 726 goto out; 727 } 728 729 /* Primarily for SOCK_SEQPACKET sockets */ 730 if (likely(sk->sk_socket) && 731 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 732 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 733 sk->sk_write_space(sk); 734 } 735 736 out: 737 release_sock(sk); 738 } 739 740 static void kcm_push(struct kcm_sock *kcm) 741 { 742 if (kcm->tx_wait_more) 743 kcm_write_msgs(kcm); 744 } 745 746 static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 747 { 748 struct sock *sk = sock->sk; 749 struct kcm_sock *kcm = kcm_sk(sk); 750 struct sk_buff *skb = NULL, *head = NULL; 751 size_t copy, copied = 0; 752 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 753 int eor = (sock->type == SOCK_DGRAM) ? 754 !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR); 755 int err = -EPIPE; 756 757 lock_sock(sk); 758 759 /* Per tcp_sendmsg this should be in poll */ 760 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 761 762 if (sk->sk_err) 763 goto out_error; 764 765 if (kcm->seq_skb) { 766 /* Previously opened message */ 767 head = kcm->seq_skb; 768 skb = kcm_tx_msg(head)->last_skb; 769 goto start; 770 } 771 772 /* Call the sk_stream functions to manage the sndbuf mem. */ 773 if (!sk_stream_memory_free(sk)) { 774 kcm_push(kcm); 775 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 776 err = sk_stream_wait_memory(sk, &timeo); 777 if (err) 778 goto out_error; 779 } 780 781 if (msg_data_left(msg)) { 782 /* New message, alloc head skb */ 783 head = alloc_skb(0, sk->sk_allocation); 784 while (!head) { 785 kcm_push(kcm); 786 err = sk_stream_wait_memory(sk, &timeo); 787 if (err) 788 goto out_error; 789 790 head = alloc_skb(0, sk->sk_allocation); 791 } 792 793 skb = head; 794 795 /* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling 796 * csum_and_copy_from_iter from skb_do_copy_data_nocache. 797 */ 798 skb->ip_summed = CHECKSUM_UNNECESSARY; 799 } 800 801 start: 802 while (msg_data_left(msg)) { 803 bool merge = true; 804 int i = skb_shinfo(skb)->nr_frags; 805 struct page_frag *pfrag = sk_page_frag(sk); 806 807 if (!sk_page_frag_refill(sk, pfrag)) 808 goto wait_for_memory; 809 810 if (!skb_can_coalesce(skb, i, pfrag->page, 811 pfrag->offset)) { 812 if (i == MAX_SKB_FRAGS) { 813 struct sk_buff *tskb; 814 815 tskb = alloc_skb(0, sk->sk_allocation); 816 if (!tskb) 817 goto wait_for_memory; 818 819 if (head == skb) 820 skb_shinfo(head)->frag_list = tskb; 821 else 822 skb->next = tskb; 823 824 skb = tskb; 825 skb->ip_summed = CHECKSUM_UNNECESSARY; 826 continue; 827 } 828 merge = false; 829 } 830 831 if (msg->msg_flags & MSG_SPLICE_PAGES) { 832 copy = msg_data_left(msg); 833 if (!sk_wmem_schedule(sk, copy)) 834 goto wait_for_memory; 835 836 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 837 sk->sk_allocation); 838 if (err < 0) { 839 if (err == -EMSGSIZE) 840 goto wait_for_memory; 841 goto out_error; 842 } 843 844 copy = err; 845 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 846 sk_wmem_queued_add(sk, copy); 847 sk_mem_charge(sk, copy); 848 849 if (head != skb) 850 head->truesize += copy; 851 } else { 852 copy = min_t(int, msg_data_left(msg), 853 pfrag->size - pfrag->offset); 854 if (!sk_wmem_schedule(sk, copy)) 855 goto wait_for_memory; 856 857 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 858 pfrag->page, 859 pfrag->offset, 860 copy); 861 if (err) 862 goto out_error; 863 864 /* Update the skb. */ 865 if (merge) { 866 skb_frag_size_add( 867 &skb_shinfo(skb)->frags[i - 1], copy); 868 } else { 869 skb_fill_page_desc(skb, i, pfrag->page, 870 pfrag->offset, copy); 871 get_page(pfrag->page); 872 } 873 874 pfrag->offset += copy; 875 } 876 877 copied += copy; 878 if (head != skb) { 879 head->len += copy; 880 head->data_len += copy; 881 } 882 883 continue; 884 885 wait_for_memory: 886 kcm_push(kcm); 887 err = sk_stream_wait_memory(sk, &timeo); 888 if (err) 889 goto out_error; 890 } 891 892 if (eor) { 893 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 894 895 if (head) { 896 /* Message complete, queue it on send buffer */ 897 __skb_queue_tail(&sk->sk_write_queue, head); 898 kcm->seq_skb = NULL; 899 KCM_STATS_INCR(kcm->stats.tx_msgs); 900 } 901 902 if (msg->msg_flags & MSG_BATCH) { 903 kcm->tx_wait_more = true; 904 } else if (kcm->tx_wait_more || not_busy) { 905 err = kcm_write_msgs(kcm); 906 if (err < 0) { 907 /* We got a hard error in write_msgs but have 908 * already queued this message. Report an error 909 * in the socket, but don't affect return value 910 * from sendmsg 911 */ 912 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 913 report_csk_error(&kcm->sk, -err); 914 } 915 } 916 } else { 917 /* Message not complete, save state */ 918 partial_message: 919 if (head) { 920 kcm->seq_skb = head; 921 kcm_tx_msg(head)->last_skb = skb; 922 } 923 } 924 925 KCM_STATS_ADD(kcm->stats.tx_bytes, copied); 926 927 release_sock(sk); 928 return copied; 929 930 out_error: 931 kcm_push(kcm); 932 933 if (copied && sock->type == SOCK_SEQPACKET) { 934 /* Wrote some bytes before encountering an 935 * error, return partial success. 936 */ 937 goto partial_message; 938 } 939 940 if (head != kcm->seq_skb) 941 kfree_skb(head); 942 943 err = sk_stream_error(sk, msg->msg_flags, err); 944 945 /* make sure we wake any epoll edge trigger waiter */ 946 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 947 sk->sk_write_space(sk); 948 949 release_sock(sk); 950 return err; 951 } 952 953 static void kcm_splice_eof(struct socket *sock) 954 { 955 struct sock *sk = sock->sk; 956 struct kcm_sock *kcm = kcm_sk(sk); 957 958 if (skb_queue_empty_lockless(&sk->sk_write_queue)) 959 return; 960 961 lock_sock(sk); 962 kcm_write_msgs(kcm); 963 release_sock(sk); 964 } 965 966 static ssize_t kcm_sendpage(struct socket *sock, struct page *page, 967 int offset, size_t size, int flags) 968 969 { 970 struct bio_vec bvec; 971 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, }; 972 973 if (flags & MSG_SENDPAGE_NOTLAST) 974 msg.msg_flags |= MSG_MORE; 975 976 if (flags & MSG_OOB) 977 return -EOPNOTSUPP; 978 979 bvec_set_page(&bvec, page, size, offset); 980 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 981 return kcm_sendmsg(sock, &msg, size); 982 } 983 984 static int kcm_recvmsg(struct socket *sock, struct msghdr *msg, 985 size_t len, int flags) 986 { 987 struct sock *sk = sock->sk; 988 struct kcm_sock *kcm = kcm_sk(sk); 989 int err = 0; 990 struct strp_msg *stm; 991 int copied = 0; 992 struct sk_buff *skb; 993 994 skb = skb_recv_datagram(sk, flags, &err); 995 if (!skb) 996 goto out; 997 998 /* Okay, have a message on the receive queue */ 999 1000 stm = strp_msg(skb); 1001 1002 if (len > stm->full_len) 1003 len = stm->full_len; 1004 1005 err = skb_copy_datagram_msg(skb, stm->offset, msg, len); 1006 if (err < 0) 1007 goto out; 1008 1009 copied = len; 1010 if (likely(!(flags & MSG_PEEK))) { 1011 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1012 if (copied < stm->full_len) { 1013 if (sock->type == SOCK_DGRAM) { 1014 /* Truncated message */ 1015 msg->msg_flags |= MSG_TRUNC; 1016 goto msg_finished; 1017 } 1018 stm->offset += copied; 1019 stm->full_len -= copied; 1020 } else { 1021 msg_finished: 1022 /* Finished with message */ 1023 msg->msg_flags |= MSG_EOR; 1024 KCM_STATS_INCR(kcm->stats.rx_msgs); 1025 } 1026 } 1027 1028 out: 1029 skb_free_datagram(sk, skb); 1030 return copied ? : err; 1031 } 1032 1033 static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos, 1034 struct pipe_inode_info *pipe, size_t len, 1035 unsigned int flags) 1036 { 1037 struct sock *sk = sock->sk; 1038 struct kcm_sock *kcm = kcm_sk(sk); 1039 struct strp_msg *stm; 1040 int err = 0; 1041 ssize_t copied; 1042 struct sk_buff *skb; 1043 1044 /* Only support splice for SOCKSEQPACKET */ 1045 1046 skb = skb_recv_datagram(sk, flags, &err); 1047 if (!skb) 1048 goto err_out; 1049 1050 /* Okay, have a message on the receive queue */ 1051 1052 stm = strp_msg(skb); 1053 1054 if (len > stm->full_len) 1055 len = stm->full_len; 1056 1057 copied = skb_splice_bits(skb, sk, stm->offset, pipe, len, flags); 1058 if (copied < 0) { 1059 err = copied; 1060 goto err_out; 1061 } 1062 1063 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1064 1065 stm->offset += copied; 1066 stm->full_len -= copied; 1067 1068 /* We have no way to return MSG_EOR. If all the bytes have been 1069 * read we still leave the message in the receive socket buffer. 1070 * A subsequent recvmsg needs to be done to return MSG_EOR and 1071 * finish reading the message. 1072 */ 1073 1074 skb_free_datagram(sk, skb); 1075 return copied; 1076 1077 err_out: 1078 skb_free_datagram(sk, skb); 1079 return err; 1080 } 1081 1082 /* kcm sock lock held */ 1083 static void kcm_recv_disable(struct kcm_sock *kcm) 1084 { 1085 struct kcm_mux *mux = kcm->mux; 1086 1087 if (kcm->rx_disabled) 1088 return; 1089 1090 spin_lock_bh(&mux->rx_lock); 1091 1092 kcm->rx_disabled = 1; 1093 1094 /* If a psock is reserved we'll do cleanup in unreserve */ 1095 if (!kcm->rx_psock) { 1096 if (kcm->rx_wait) { 1097 list_del(&kcm->wait_rx_list); 1098 /* paired with lockless reads in kcm_rfree() */ 1099 WRITE_ONCE(kcm->rx_wait, false); 1100 } 1101 1102 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 1103 } 1104 1105 spin_unlock_bh(&mux->rx_lock); 1106 } 1107 1108 /* kcm sock lock held */ 1109 static void kcm_recv_enable(struct kcm_sock *kcm) 1110 { 1111 struct kcm_mux *mux = kcm->mux; 1112 1113 if (!kcm->rx_disabled) 1114 return; 1115 1116 spin_lock_bh(&mux->rx_lock); 1117 1118 kcm->rx_disabled = 0; 1119 kcm_rcv_ready(kcm); 1120 1121 spin_unlock_bh(&mux->rx_lock); 1122 } 1123 1124 static int kcm_setsockopt(struct socket *sock, int level, int optname, 1125 sockptr_t optval, unsigned int optlen) 1126 { 1127 struct kcm_sock *kcm = kcm_sk(sock->sk); 1128 int val, valbool; 1129 int err = 0; 1130 1131 if (level != SOL_KCM) 1132 return -ENOPROTOOPT; 1133 1134 if (optlen < sizeof(int)) 1135 return -EINVAL; 1136 1137 if (copy_from_sockptr(&val, optval, sizeof(int))) 1138 return -EFAULT; 1139 1140 valbool = val ? 1 : 0; 1141 1142 switch (optname) { 1143 case KCM_RECV_DISABLE: 1144 lock_sock(&kcm->sk); 1145 if (valbool) 1146 kcm_recv_disable(kcm); 1147 else 1148 kcm_recv_enable(kcm); 1149 release_sock(&kcm->sk); 1150 break; 1151 default: 1152 err = -ENOPROTOOPT; 1153 } 1154 1155 return err; 1156 } 1157 1158 static int kcm_getsockopt(struct socket *sock, int level, int optname, 1159 char __user *optval, int __user *optlen) 1160 { 1161 struct kcm_sock *kcm = kcm_sk(sock->sk); 1162 int val, len; 1163 1164 if (level != SOL_KCM) 1165 return -ENOPROTOOPT; 1166 1167 if (get_user(len, optlen)) 1168 return -EFAULT; 1169 1170 len = min_t(unsigned int, len, sizeof(int)); 1171 if (len < 0) 1172 return -EINVAL; 1173 1174 switch (optname) { 1175 case KCM_RECV_DISABLE: 1176 val = kcm->rx_disabled; 1177 break; 1178 default: 1179 return -ENOPROTOOPT; 1180 } 1181 1182 if (put_user(len, optlen)) 1183 return -EFAULT; 1184 if (copy_to_user(optval, &val, len)) 1185 return -EFAULT; 1186 return 0; 1187 } 1188 1189 static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux) 1190 { 1191 struct kcm_sock *tkcm; 1192 struct list_head *head; 1193 int index = 0; 1194 1195 /* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so 1196 * we set sk_state, otherwise epoll_wait always returns right away with 1197 * EPOLLHUP 1198 */ 1199 kcm->sk.sk_state = TCP_ESTABLISHED; 1200 1201 /* Add to mux's kcm sockets list */ 1202 kcm->mux = mux; 1203 spin_lock_bh(&mux->lock); 1204 1205 head = &mux->kcm_socks; 1206 list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) { 1207 if (tkcm->index != index) 1208 break; 1209 head = &tkcm->kcm_sock_list; 1210 index++; 1211 } 1212 1213 list_add(&kcm->kcm_sock_list, head); 1214 kcm->index = index; 1215 1216 mux->kcm_socks_cnt++; 1217 spin_unlock_bh(&mux->lock); 1218 1219 INIT_WORK(&kcm->tx_work, kcm_tx_work); 1220 1221 spin_lock_bh(&mux->rx_lock); 1222 kcm_rcv_ready(kcm); 1223 spin_unlock_bh(&mux->rx_lock); 1224 } 1225 1226 static int kcm_attach(struct socket *sock, struct socket *csock, 1227 struct bpf_prog *prog) 1228 { 1229 struct kcm_sock *kcm = kcm_sk(sock->sk); 1230 struct kcm_mux *mux = kcm->mux; 1231 struct sock *csk; 1232 struct kcm_psock *psock = NULL, *tpsock; 1233 struct list_head *head; 1234 int index = 0; 1235 static const struct strp_callbacks cb = { 1236 .rcv_msg = kcm_rcv_strparser, 1237 .parse_msg = kcm_parse_func_strparser, 1238 .read_sock_done = kcm_read_sock_done, 1239 }; 1240 int err = 0; 1241 1242 csk = csock->sk; 1243 if (!csk) 1244 return -EINVAL; 1245 1246 lock_sock(csk); 1247 1248 /* Only allow TCP sockets to be attached for now */ 1249 if ((csk->sk_family != AF_INET && csk->sk_family != AF_INET6) || 1250 csk->sk_protocol != IPPROTO_TCP) { 1251 err = -EOPNOTSUPP; 1252 goto out; 1253 } 1254 1255 /* Don't allow listeners or closed sockets */ 1256 if (csk->sk_state == TCP_LISTEN || csk->sk_state == TCP_CLOSE) { 1257 err = -EOPNOTSUPP; 1258 goto out; 1259 } 1260 1261 psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL); 1262 if (!psock) { 1263 err = -ENOMEM; 1264 goto out; 1265 } 1266 1267 psock->mux = mux; 1268 psock->sk = csk; 1269 psock->bpf_prog = prog; 1270 1271 write_lock_bh(&csk->sk_callback_lock); 1272 1273 /* Check if sk_user_data is already by KCM or someone else. 1274 * Must be done under lock to prevent race conditions. 1275 */ 1276 if (csk->sk_user_data) { 1277 write_unlock_bh(&csk->sk_callback_lock); 1278 kmem_cache_free(kcm_psockp, psock); 1279 err = -EALREADY; 1280 goto out; 1281 } 1282 1283 err = strp_init(&psock->strp, csk, &cb); 1284 if (err) { 1285 write_unlock_bh(&csk->sk_callback_lock); 1286 kmem_cache_free(kcm_psockp, psock); 1287 goto out; 1288 } 1289 1290 psock->save_data_ready = csk->sk_data_ready; 1291 psock->save_write_space = csk->sk_write_space; 1292 psock->save_state_change = csk->sk_state_change; 1293 csk->sk_user_data = psock; 1294 csk->sk_data_ready = psock_data_ready; 1295 csk->sk_write_space = psock_write_space; 1296 csk->sk_state_change = psock_state_change; 1297 1298 write_unlock_bh(&csk->sk_callback_lock); 1299 1300 sock_hold(csk); 1301 1302 /* Finished initialization, now add the psock to the MUX. */ 1303 spin_lock_bh(&mux->lock); 1304 head = &mux->psocks; 1305 list_for_each_entry(tpsock, &mux->psocks, psock_list) { 1306 if (tpsock->index != index) 1307 break; 1308 head = &tpsock->psock_list; 1309 index++; 1310 } 1311 1312 list_add(&psock->psock_list, head); 1313 psock->index = index; 1314 1315 KCM_STATS_INCR(mux->stats.psock_attach); 1316 mux->psocks_cnt++; 1317 psock_now_avail(psock); 1318 spin_unlock_bh(&mux->lock); 1319 1320 /* Schedule RX work in case there are already bytes queued */ 1321 strp_check_rcv(&psock->strp); 1322 1323 out: 1324 release_sock(csk); 1325 1326 return err; 1327 } 1328 1329 static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info) 1330 { 1331 struct socket *csock; 1332 struct bpf_prog *prog; 1333 int err; 1334 1335 csock = sockfd_lookup(info->fd, &err); 1336 if (!csock) 1337 return -ENOENT; 1338 1339 prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER); 1340 if (IS_ERR(prog)) { 1341 err = PTR_ERR(prog); 1342 goto out; 1343 } 1344 1345 err = kcm_attach(sock, csock, prog); 1346 if (err) { 1347 bpf_prog_put(prog); 1348 goto out; 1349 } 1350 1351 /* Keep reference on file also */ 1352 1353 return 0; 1354 out: 1355 sockfd_put(csock); 1356 return err; 1357 } 1358 1359 static void kcm_unattach(struct kcm_psock *psock) 1360 { 1361 struct sock *csk = psock->sk; 1362 struct kcm_mux *mux = psock->mux; 1363 1364 lock_sock(csk); 1365 1366 /* Stop getting callbacks from TCP socket. After this there should 1367 * be no way to reserve a kcm for this psock. 1368 */ 1369 write_lock_bh(&csk->sk_callback_lock); 1370 csk->sk_user_data = NULL; 1371 csk->sk_data_ready = psock->save_data_ready; 1372 csk->sk_write_space = psock->save_write_space; 1373 csk->sk_state_change = psock->save_state_change; 1374 strp_stop(&psock->strp); 1375 1376 if (WARN_ON(psock->rx_kcm)) { 1377 write_unlock_bh(&csk->sk_callback_lock); 1378 release_sock(csk); 1379 return; 1380 } 1381 1382 spin_lock_bh(&mux->rx_lock); 1383 1384 /* Stop receiver activities. After this point psock should not be 1385 * able to get onto ready list either through callbacks or work. 1386 */ 1387 if (psock->ready_rx_msg) { 1388 list_del(&psock->psock_ready_list); 1389 kfree_skb(psock->ready_rx_msg); 1390 psock->ready_rx_msg = NULL; 1391 KCM_STATS_INCR(mux->stats.rx_ready_drops); 1392 } 1393 1394 spin_unlock_bh(&mux->rx_lock); 1395 1396 write_unlock_bh(&csk->sk_callback_lock); 1397 1398 /* Call strp_done without sock lock */ 1399 release_sock(csk); 1400 strp_done(&psock->strp); 1401 lock_sock(csk); 1402 1403 bpf_prog_put(psock->bpf_prog); 1404 1405 spin_lock_bh(&mux->lock); 1406 1407 aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats); 1408 save_strp_stats(&psock->strp, &mux->aggregate_strp_stats); 1409 1410 KCM_STATS_INCR(mux->stats.psock_unattach); 1411 1412 if (psock->tx_kcm) { 1413 /* psock was reserved. Just mark it finished and we will clean 1414 * up in the kcm paths, we need kcm lock which can not be 1415 * acquired here. 1416 */ 1417 KCM_STATS_INCR(mux->stats.psock_unattach_rsvd); 1418 spin_unlock_bh(&mux->lock); 1419 1420 /* We are unattaching a socket that is reserved. Abort the 1421 * socket since we may be out of sync in sending on it. We need 1422 * to do this without the mux lock. 1423 */ 1424 kcm_abort_tx_psock(psock, EPIPE, false); 1425 1426 spin_lock_bh(&mux->lock); 1427 if (!psock->tx_kcm) { 1428 /* psock now unreserved in window mux was unlocked */ 1429 goto no_reserved; 1430 } 1431 psock->done = 1; 1432 1433 /* Commit done before queuing work to process it */ 1434 smp_mb(); 1435 1436 /* Queue tx work to make sure psock->done is handled */ 1437 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 1438 spin_unlock_bh(&mux->lock); 1439 } else { 1440 no_reserved: 1441 if (!psock->tx_stopped) 1442 list_del(&psock->psock_avail_list); 1443 list_del(&psock->psock_list); 1444 mux->psocks_cnt--; 1445 spin_unlock_bh(&mux->lock); 1446 1447 sock_put(csk); 1448 fput(csk->sk_socket->file); 1449 kmem_cache_free(kcm_psockp, psock); 1450 } 1451 1452 release_sock(csk); 1453 } 1454 1455 static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info) 1456 { 1457 struct kcm_sock *kcm = kcm_sk(sock->sk); 1458 struct kcm_mux *mux = kcm->mux; 1459 struct kcm_psock *psock; 1460 struct socket *csock; 1461 struct sock *csk; 1462 int err; 1463 1464 csock = sockfd_lookup(info->fd, &err); 1465 if (!csock) 1466 return -ENOENT; 1467 1468 csk = csock->sk; 1469 if (!csk) { 1470 err = -EINVAL; 1471 goto out; 1472 } 1473 1474 err = -ENOENT; 1475 1476 spin_lock_bh(&mux->lock); 1477 1478 list_for_each_entry(psock, &mux->psocks, psock_list) { 1479 if (psock->sk != csk) 1480 continue; 1481 1482 /* Found the matching psock */ 1483 1484 if (psock->unattaching || WARN_ON(psock->done)) { 1485 err = -EALREADY; 1486 break; 1487 } 1488 1489 psock->unattaching = 1; 1490 1491 spin_unlock_bh(&mux->lock); 1492 1493 /* Lower socket lock should already be held */ 1494 kcm_unattach(psock); 1495 1496 err = 0; 1497 goto out; 1498 } 1499 1500 spin_unlock_bh(&mux->lock); 1501 1502 out: 1503 sockfd_put(csock); 1504 return err; 1505 } 1506 1507 static struct proto kcm_proto = { 1508 .name = "KCM", 1509 .owner = THIS_MODULE, 1510 .obj_size = sizeof(struct kcm_sock), 1511 }; 1512 1513 /* Clone a kcm socket. */ 1514 static struct file *kcm_clone(struct socket *osock) 1515 { 1516 struct socket *newsock; 1517 struct sock *newsk; 1518 1519 newsock = sock_alloc(); 1520 if (!newsock) 1521 return ERR_PTR(-ENFILE); 1522 1523 newsock->type = osock->type; 1524 newsock->ops = osock->ops; 1525 1526 __module_get(newsock->ops->owner); 1527 1528 newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL, 1529 &kcm_proto, false); 1530 if (!newsk) { 1531 sock_release(newsock); 1532 return ERR_PTR(-ENOMEM); 1533 } 1534 sock_init_data(newsock, newsk); 1535 init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux); 1536 1537 return sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name); 1538 } 1539 1540 static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1541 { 1542 int err; 1543 1544 switch (cmd) { 1545 case SIOCKCMATTACH: { 1546 struct kcm_attach info; 1547 1548 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1549 return -EFAULT; 1550 1551 err = kcm_attach_ioctl(sock, &info); 1552 1553 break; 1554 } 1555 case SIOCKCMUNATTACH: { 1556 struct kcm_unattach info; 1557 1558 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1559 return -EFAULT; 1560 1561 err = kcm_unattach_ioctl(sock, &info); 1562 1563 break; 1564 } 1565 case SIOCKCMCLONE: { 1566 struct kcm_clone info; 1567 struct file *file; 1568 1569 info.fd = get_unused_fd_flags(0); 1570 if (unlikely(info.fd < 0)) 1571 return info.fd; 1572 1573 file = kcm_clone(sock); 1574 if (IS_ERR(file)) { 1575 put_unused_fd(info.fd); 1576 return PTR_ERR(file); 1577 } 1578 if (copy_to_user((void __user *)arg, &info, 1579 sizeof(info))) { 1580 put_unused_fd(info.fd); 1581 fput(file); 1582 return -EFAULT; 1583 } 1584 fd_install(info.fd, file); 1585 err = 0; 1586 break; 1587 } 1588 default: 1589 err = -ENOIOCTLCMD; 1590 break; 1591 } 1592 1593 return err; 1594 } 1595 1596 static void free_mux(struct rcu_head *rcu) 1597 { 1598 struct kcm_mux *mux = container_of(rcu, 1599 struct kcm_mux, rcu); 1600 1601 kmem_cache_free(kcm_muxp, mux); 1602 } 1603 1604 static void release_mux(struct kcm_mux *mux) 1605 { 1606 struct kcm_net *knet = mux->knet; 1607 struct kcm_psock *psock, *tmp_psock; 1608 1609 /* Release psocks */ 1610 list_for_each_entry_safe(psock, tmp_psock, 1611 &mux->psocks, psock_list) { 1612 if (!WARN_ON(psock->unattaching)) 1613 kcm_unattach(psock); 1614 } 1615 1616 if (WARN_ON(mux->psocks_cnt)) 1617 return; 1618 1619 __skb_queue_purge(&mux->rx_hold_queue); 1620 1621 mutex_lock(&knet->mutex); 1622 aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats); 1623 aggregate_psock_stats(&mux->aggregate_psock_stats, 1624 &knet->aggregate_psock_stats); 1625 aggregate_strp_stats(&mux->aggregate_strp_stats, 1626 &knet->aggregate_strp_stats); 1627 list_del_rcu(&mux->kcm_mux_list); 1628 knet->count--; 1629 mutex_unlock(&knet->mutex); 1630 1631 call_rcu(&mux->rcu, free_mux); 1632 } 1633 1634 static void kcm_done(struct kcm_sock *kcm) 1635 { 1636 struct kcm_mux *mux = kcm->mux; 1637 struct sock *sk = &kcm->sk; 1638 int socks_cnt; 1639 1640 spin_lock_bh(&mux->rx_lock); 1641 if (kcm->rx_psock) { 1642 /* Cleanup in unreserve_rx_kcm */ 1643 WARN_ON(kcm->done); 1644 kcm->rx_disabled = 1; 1645 kcm->done = 1; 1646 spin_unlock_bh(&mux->rx_lock); 1647 return; 1648 } 1649 1650 if (kcm->rx_wait) { 1651 list_del(&kcm->wait_rx_list); 1652 /* paired with lockless reads in kcm_rfree() */ 1653 WRITE_ONCE(kcm->rx_wait, false); 1654 } 1655 /* Move any pending receive messages to other kcm sockets */ 1656 requeue_rx_msgs(mux, &sk->sk_receive_queue); 1657 1658 spin_unlock_bh(&mux->rx_lock); 1659 1660 if (WARN_ON(sk_rmem_alloc_get(sk))) 1661 return; 1662 1663 /* Detach from MUX */ 1664 spin_lock_bh(&mux->lock); 1665 1666 list_del(&kcm->kcm_sock_list); 1667 mux->kcm_socks_cnt--; 1668 socks_cnt = mux->kcm_socks_cnt; 1669 1670 spin_unlock_bh(&mux->lock); 1671 1672 if (!socks_cnt) { 1673 /* We are done with the mux now. */ 1674 release_mux(mux); 1675 } 1676 1677 WARN_ON(kcm->rx_wait); 1678 1679 sock_put(&kcm->sk); 1680 } 1681 1682 /* Called by kcm_release to close a KCM socket. 1683 * If this is the last KCM socket on the MUX, destroy the MUX. 1684 */ 1685 static int kcm_release(struct socket *sock) 1686 { 1687 struct sock *sk = sock->sk; 1688 struct kcm_sock *kcm; 1689 struct kcm_mux *mux; 1690 struct kcm_psock *psock; 1691 1692 if (!sk) 1693 return 0; 1694 1695 kcm = kcm_sk(sk); 1696 mux = kcm->mux; 1697 1698 lock_sock(sk); 1699 sock_orphan(sk); 1700 kfree_skb(kcm->seq_skb); 1701 1702 /* Purge queue under lock to avoid race condition with tx_work trying 1703 * to act when queue is nonempty. If tx_work runs after this point 1704 * it will just return. 1705 */ 1706 __skb_queue_purge(&sk->sk_write_queue); 1707 1708 /* Set tx_stopped. This is checked when psock is bound to a kcm and we 1709 * get a writespace callback. This prevents further work being queued 1710 * from the callback (unbinding the psock occurs after canceling work. 1711 */ 1712 kcm->tx_stopped = 1; 1713 1714 release_sock(sk); 1715 1716 spin_lock_bh(&mux->lock); 1717 if (kcm->tx_wait) { 1718 /* Take of tx_wait list, after this point there should be no way 1719 * that a psock will be assigned to this kcm. 1720 */ 1721 list_del(&kcm->wait_psock_list); 1722 kcm->tx_wait = false; 1723 } 1724 spin_unlock_bh(&mux->lock); 1725 1726 /* Cancel work. After this point there should be no outside references 1727 * to the kcm socket. 1728 */ 1729 cancel_work_sync(&kcm->tx_work); 1730 1731 lock_sock(sk); 1732 psock = kcm->tx_psock; 1733 if (psock) { 1734 /* A psock was reserved, so we need to kill it since it 1735 * may already have some bytes queued from a message. We 1736 * need to do this after removing kcm from tx_wait list. 1737 */ 1738 kcm_abort_tx_psock(psock, EPIPE, false); 1739 unreserve_psock(kcm); 1740 } 1741 release_sock(sk); 1742 1743 WARN_ON(kcm->tx_wait); 1744 WARN_ON(kcm->tx_psock); 1745 1746 sock->sk = NULL; 1747 1748 kcm_done(kcm); 1749 1750 return 0; 1751 } 1752 1753 static const struct proto_ops kcm_dgram_ops = { 1754 .family = PF_KCM, 1755 .owner = THIS_MODULE, 1756 .release = kcm_release, 1757 .bind = sock_no_bind, 1758 .connect = sock_no_connect, 1759 .socketpair = sock_no_socketpair, 1760 .accept = sock_no_accept, 1761 .getname = sock_no_getname, 1762 .poll = datagram_poll, 1763 .ioctl = kcm_ioctl, 1764 .listen = sock_no_listen, 1765 .shutdown = sock_no_shutdown, 1766 .setsockopt = kcm_setsockopt, 1767 .getsockopt = kcm_getsockopt, 1768 .sendmsg = kcm_sendmsg, 1769 .recvmsg = kcm_recvmsg, 1770 .mmap = sock_no_mmap, 1771 .splice_eof = kcm_splice_eof, 1772 .sendpage = kcm_sendpage, 1773 }; 1774 1775 static const struct proto_ops kcm_seqpacket_ops = { 1776 .family = PF_KCM, 1777 .owner = THIS_MODULE, 1778 .release = kcm_release, 1779 .bind = sock_no_bind, 1780 .connect = sock_no_connect, 1781 .socketpair = sock_no_socketpair, 1782 .accept = sock_no_accept, 1783 .getname = sock_no_getname, 1784 .poll = datagram_poll, 1785 .ioctl = kcm_ioctl, 1786 .listen = sock_no_listen, 1787 .shutdown = sock_no_shutdown, 1788 .setsockopt = kcm_setsockopt, 1789 .getsockopt = kcm_getsockopt, 1790 .sendmsg = kcm_sendmsg, 1791 .recvmsg = kcm_recvmsg, 1792 .mmap = sock_no_mmap, 1793 .splice_eof = kcm_splice_eof, 1794 .sendpage = kcm_sendpage, 1795 .splice_read = kcm_splice_read, 1796 }; 1797 1798 /* Create proto operation for kcm sockets */ 1799 static int kcm_create(struct net *net, struct socket *sock, 1800 int protocol, int kern) 1801 { 1802 struct kcm_net *knet = net_generic(net, kcm_net_id); 1803 struct sock *sk; 1804 struct kcm_mux *mux; 1805 1806 switch (sock->type) { 1807 case SOCK_DGRAM: 1808 sock->ops = &kcm_dgram_ops; 1809 break; 1810 case SOCK_SEQPACKET: 1811 sock->ops = &kcm_seqpacket_ops; 1812 break; 1813 default: 1814 return -ESOCKTNOSUPPORT; 1815 } 1816 1817 if (protocol != KCMPROTO_CONNECTED) 1818 return -EPROTONOSUPPORT; 1819 1820 sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern); 1821 if (!sk) 1822 return -ENOMEM; 1823 1824 /* Allocate a kcm mux, shared between KCM sockets */ 1825 mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL); 1826 if (!mux) { 1827 sk_free(sk); 1828 return -ENOMEM; 1829 } 1830 1831 spin_lock_init(&mux->lock); 1832 spin_lock_init(&mux->rx_lock); 1833 INIT_LIST_HEAD(&mux->kcm_socks); 1834 INIT_LIST_HEAD(&mux->kcm_rx_waiters); 1835 INIT_LIST_HEAD(&mux->kcm_tx_waiters); 1836 1837 INIT_LIST_HEAD(&mux->psocks); 1838 INIT_LIST_HEAD(&mux->psocks_ready); 1839 INIT_LIST_HEAD(&mux->psocks_avail); 1840 1841 mux->knet = knet; 1842 1843 /* Add new MUX to list */ 1844 mutex_lock(&knet->mutex); 1845 list_add_rcu(&mux->kcm_mux_list, &knet->mux_list); 1846 knet->count++; 1847 mutex_unlock(&knet->mutex); 1848 1849 skb_queue_head_init(&mux->rx_hold_queue); 1850 1851 /* Init KCM socket */ 1852 sock_init_data(sock, sk); 1853 init_kcm_sock(kcm_sk(sk), mux); 1854 1855 return 0; 1856 } 1857 1858 static const struct net_proto_family kcm_family_ops = { 1859 .family = PF_KCM, 1860 .create = kcm_create, 1861 .owner = THIS_MODULE, 1862 }; 1863 1864 static __net_init int kcm_init_net(struct net *net) 1865 { 1866 struct kcm_net *knet = net_generic(net, kcm_net_id); 1867 1868 INIT_LIST_HEAD_RCU(&knet->mux_list); 1869 mutex_init(&knet->mutex); 1870 1871 return 0; 1872 } 1873 1874 static __net_exit void kcm_exit_net(struct net *net) 1875 { 1876 struct kcm_net *knet = net_generic(net, kcm_net_id); 1877 1878 /* All KCM sockets should be closed at this point, which should mean 1879 * that all multiplexors and psocks have been destroyed. 1880 */ 1881 WARN_ON(!list_empty(&knet->mux_list)); 1882 } 1883 1884 static struct pernet_operations kcm_net_ops = { 1885 .init = kcm_init_net, 1886 .exit = kcm_exit_net, 1887 .id = &kcm_net_id, 1888 .size = sizeof(struct kcm_net), 1889 }; 1890 1891 static int __init kcm_init(void) 1892 { 1893 int err = -ENOMEM; 1894 1895 kcm_muxp = kmem_cache_create("kcm_mux_cache", 1896 sizeof(struct kcm_mux), 0, 1897 SLAB_HWCACHE_ALIGN, NULL); 1898 if (!kcm_muxp) 1899 goto fail; 1900 1901 kcm_psockp = kmem_cache_create("kcm_psock_cache", 1902 sizeof(struct kcm_psock), 0, 1903 SLAB_HWCACHE_ALIGN, NULL); 1904 if (!kcm_psockp) 1905 goto fail; 1906 1907 kcm_wq = create_singlethread_workqueue("kkcmd"); 1908 if (!kcm_wq) 1909 goto fail; 1910 1911 err = proto_register(&kcm_proto, 1); 1912 if (err) 1913 goto fail; 1914 1915 err = register_pernet_device(&kcm_net_ops); 1916 if (err) 1917 goto net_ops_fail; 1918 1919 err = sock_register(&kcm_family_ops); 1920 if (err) 1921 goto sock_register_fail; 1922 1923 err = kcm_proc_init(); 1924 if (err) 1925 goto proc_init_fail; 1926 1927 return 0; 1928 1929 proc_init_fail: 1930 sock_unregister(PF_KCM); 1931 1932 sock_register_fail: 1933 unregister_pernet_device(&kcm_net_ops); 1934 1935 net_ops_fail: 1936 proto_unregister(&kcm_proto); 1937 1938 fail: 1939 kmem_cache_destroy(kcm_muxp); 1940 kmem_cache_destroy(kcm_psockp); 1941 1942 if (kcm_wq) 1943 destroy_workqueue(kcm_wq); 1944 1945 return err; 1946 } 1947 1948 static void __exit kcm_exit(void) 1949 { 1950 kcm_proc_exit(); 1951 sock_unregister(PF_KCM); 1952 unregister_pernet_device(&kcm_net_ops); 1953 proto_unregister(&kcm_proto); 1954 destroy_workqueue(kcm_wq); 1955 1956 kmem_cache_destroy(kcm_muxp); 1957 kmem_cache_destroy(kcm_psockp); 1958 } 1959 1960 module_init(kcm_init); 1961 module_exit(kcm_exit); 1962 1963 MODULE_LICENSE("GPL"); 1964 MODULE_ALIAS_NETPROTO(PF_KCM); 1965