1 #include <linux/bpf.h> 2 #include <linux/errno.h> 3 #include <linux/errqueue.h> 4 #include <linux/file.h> 5 #include <linux/in.h> 6 #include <linux/kernel.h> 7 #include <linux/module.h> 8 #include <linux/net.h> 9 #include <linux/netdevice.h> 10 #include <linux/poll.h> 11 #include <linux/rculist.h> 12 #include <linux/skbuff.h> 13 #include <linux/socket.h> 14 #include <linux/uaccess.h> 15 #include <linux/workqueue.h> 16 #include <net/kcm.h> 17 #include <net/netns/generic.h> 18 #include <net/sock.h> 19 #include <net/tcp.h> 20 #include <uapi/linux/kcm.h> 21 22 unsigned int kcm_net_id; 23 24 static struct kmem_cache *kcm_psockp __read_mostly; 25 static struct kmem_cache *kcm_muxp __read_mostly; 26 static struct workqueue_struct *kcm_wq; 27 28 static inline struct kcm_sock *kcm_sk(const struct sock *sk) 29 { 30 return (struct kcm_sock *)sk; 31 } 32 33 static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb) 34 { 35 return (struct kcm_tx_msg *)skb->cb; 36 } 37 38 static inline struct kcm_rx_msg *kcm_rx_msg(struct sk_buff *skb) 39 { 40 return (struct kcm_rx_msg *)((void *)skb->cb + 41 offsetof(struct qdisc_skb_cb, data)); 42 } 43 44 static void report_csk_error(struct sock *csk, int err) 45 { 46 csk->sk_err = EPIPE; 47 csk->sk_error_report(csk); 48 } 49 50 /* Callback lock held */ 51 static void kcm_abort_rx_psock(struct kcm_psock *psock, int err, 52 struct sk_buff *skb) 53 { 54 struct sock *csk = psock->sk; 55 56 /* Unrecoverable error in receive */ 57 58 del_timer(&psock->rx_msg_timer); 59 60 if (psock->rx_stopped) 61 return; 62 63 psock->rx_stopped = 1; 64 KCM_STATS_INCR(psock->stats.rx_aborts); 65 66 /* Report an error on the lower socket */ 67 report_csk_error(csk, err); 68 } 69 70 static void kcm_abort_tx_psock(struct kcm_psock *psock, int err, 71 bool wakeup_kcm) 72 { 73 struct sock *csk = psock->sk; 74 struct kcm_mux *mux = psock->mux; 75 76 /* Unrecoverable error in transmit */ 77 78 spin_lock_bh(&mux->lock); 79 80 if (psock->tx_stopped) { 81 spin_unlock_bh(&mux->lock); 82 return; 83 } 84 85 psock->tx_stopped = 1; 86 KCM_STATS_INCR(psock->stats.tx_aborts); 87 88 if (!psock->tx_kcm) { 89 /* Take off psocks_avail list */ 90 list_del(&psock->psock_avail_list); 91 } else if (wakeup_kcm) { 92 /* In this case psock is being aborted while outside of 93 * write_msgs and psock is reserved. Schedule tx_work 94 * to handle the failure there. Need to commit tx_stopped 95 * before queuing work. 96 */ 97 smp_mb(); 98 99 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 100 } 101 102 spin_unlock_bh(&mux->lock); 103 104 /* Report error on lower socket */ 105 report_csk_error(csk, err); 106 } 107 108 /* RX mux lock held. */ 109 static void kcm_update_rx_mux_stats(struct kcm_mux *mux, 110 struct kcm_psock *psock) 111 { 112 KCM_STATS_ADD(mux->stats.rx_bytes, 113 psock->stats.rx_bytes - psock->saved_rx_bytes); 114 mux->stats.rx_msgs += 115 psock->stats.rx_msgs - psock->saved_rx_msgs; 116 psock->saved_rx_msgs = psock->stats.rx_msgs; 117 psock->saved_rx_bytes = psock->stats.rx_bytes; 118 } 119 120 static void kcm_update_tx_mux_stats(struct kcm_mux *mux, 121 struct kcm_psock *psock) 122 { 123 KCM_STATS_ADD(mux->stats.tx_bytes, 124 psock->stats.tx_bytes - psock->saved_tx_bytes); 125 mux->stats.tx_msgs += 126 psock->stats.tx_msgs - psock->saved_tx_msgs; 127 psock->saved_tx_msgs = psock->stats.tx_msgs; 128 psock->saved_tx_bytes = psock->stats.tx_bytes; 129 } 130 131 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 132 133 /* KCM is ready to receive messages on its queue-- either the KCM is new or 134 * has become unblocked after being blocked on full socket buffer. Queue any 135 * pending ready messages on a psock. RX mux lock held. 136 */ 137 static void kcm_rcv_ready(struct kcm_sock *kcm) 138 { 139 struct kcm_mux *mux = kcm->mux; 140 struct kcm_psock *psock; 141 struct sk_buff *skb; 142 143 if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled)) 144 return; 145 146 while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) { 147 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 148 /* Assuming buffer limit has been reached */ 149 skb_queue_head(&mux->rx_hold_queue, skb); 150 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 151 return; 152 } 153 } 154 155 while (!list_empty(&mux->psocks_ready)) { 156 psock = list_first_entry(&mux->psocks_ready, struct kcm_psock, 157 psock_ready_list); 158 159 if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) { 160 /* Assuming buffer limit has been reached */ 161 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 162 return; 163 } 164 165 /* Consumed the ready message on the psock. Schedule rx_work to 166 * get more messages. 167 */ 168 list_del(&psock->psock_ready_list); 169 psock->ready_rx_msg = NULL; 170 171 /* Commit clearing of ready_rx_msg for queuing work */ 172 smp_mb(); 173 174 queue_work(kcm_wq, &psock->rx_work); 175 } 176 177 /* Buffer limit is okay now, add to ready list */ 178 list_add_tail(&kcm->wait_rx_list, 179 &kcm->mux->kcm_rx_waiters); 180 kcm->rx_wait = true; 181 } 182 183 static void kcm_rfree(struct sk_buff *skb) 184 { 185 struct sock *sk = skb->sk; 186 struct kcm_sock *kcm = kcm_sk(sk); 187 struct kcm_mux *mux = kcm->mux; 188 unsigned int len = skb->truesize; 189 190 sk_mem_uncharge(sk, len); 191 atomic_sub(len, &sk->sk_rmem_alloc); 192 193 /* For reading rx_wait and rx_psock without holding lock */ 194 smp_mb__after_atomic(); 195 196 if (!kcm->rx_wait && !kcm->rx_psock && 197 sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) { 198 spin_lock_bh(&mux->rx_lock); 199 kcm_rcv_ready(kcm); 200 spin_unlock_bh(&mux->rx_lock); 201 } 202 } 203 204 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 205 { 206 struct sk_buff_head *list = &sk->sk_receive_queue; 207 208 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 209 return -ENOMEM; 210 211 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 212 return -ENOBUFS; 213 214 skb->dev = NULL; 215 216 skb_orphan(skb); 217 skb->sk = sk; 218 skb->destructor = kcm_rfree; 219 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 220 sk_mem_charge(sk, skb->truesize); 221 222 skb_queue_tail(list, skb); 223 224 if (!sock_flag(sk, SOCK_DEAD)) 225 sk->sk_data_ready(sk); 226 227 return 0; 228 } 229 230 /* Requeue received messages for a kcm socket to other kcm sockets. This is 231 * called with a kcm socket is receive disabled. 232 * RX mux lock held. 233 */ 234 static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head) 235 { 236 struct sk_buff *skb; 237 struct kcm_sock *kcm; 238 239 while ((skb = __skb_dequeue(head))) { 240 /* Reset destructor to avoid calling kcm_rcv_ready */ 241 skb->destructor = sock_rfree; 242 skb_orphan(skb); 243 try_again: 244 if (list_empty(&mux->kcm_rx_waiters)) { 245 skb_queue_tail(&mux->rx_hold_queue, skb); 246 continue; 247 } 248 249 kcm = list_first_entry(&mux->kcm_rx_waiters, 250 struct kcm_sock, wait_rx_list); 251 252 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 253 /* Should mean socket buffer full */ 254 list_del(&kcm->wait_rx_list); 255 kcm->rx_wait = false; 256 257 /* Commit rx_wait to read in kcm_free */ 258 smp_wmb(); 259 260 goto try_again; 261 } 262 } 263 } 264 265 /* Lower sock lock held */ 266 static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock, 267 struct sk_buff *head) 268 { 269 struct kcm_mux *mux = psock->mux; 270 struct kcm_sock *kcm; 271 272 WARN_ON(psock->ready_rx_msg); 273 274 if (psock->rx_kcm) 275 return psock->rx_kcm; 276 277 spin_lock_bh(&mux->rx_lock); 278 279 if (psock->rx_kcm) { 280 spin_unlock_bh(&mux->rx_lock); 281 return psock->rx_kcm; 282 } 283 284 kcm_update_rx_mux_stats(mux, psock); 285 286 if (list_empty(&mux->kcm_rx_waiters)) { 287 psock->ready_rx_msg = head; 288 list_add_tail(&psock->psock_ready_list, 289 &mux->psocks_ready); 290 spin_unlock_bh(&mux->rx_lock); 291 return NULL; 292 } 293 294 kcm = list_first_entry(&mux->kcm_rx_waiters, 295 struct kcm_sock, wait_rx_list); 296 list_del(&kcm->wait_rx_list); 297 kcm->rx_wait = false; 298 299 psock->rx_kcm = kcm; 300 kcm->rx_psock = psock; 301 302 spin_unlock_bh(&mux->rx_lock); 303 304 return kcm; 305 } 306 307 static void kcm_done(struct kcm_sock *kcm); 308 309 static void kcm_done_work(struct work_struct *w) 310 { 311 kcm_done(container_of(w, struct kcm_sock, done_work)); 312 } 313 314 /* Lower sock held */ 315 static void unreserve_rx_kcm(struct kcm_psock *psock, 316 bool rcv_ready) 317 { 318 struct kcm_sock *kcm = psock->rx_kcm; 319 struct kcm_mux *mux = psock->mux; 320 321 if (!kcm) 322 return; 323 324 spin_lock_bh(&mux->rx_lock); 325 326 psock->rx_kcm = NULL; 327 kcm->rx_psock = NULL; 328 329 /* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with 330 * kcm_rfree 331 */ 332 smp_mb(); 333 334 if (unlikely(kcm->done)) { 335 spin_unlock_bh(&mux->rx_lock); 336 337 /* Need to run kcm_done in a task since we need to qcquire 338 * callback locks which may already be held here. 339 */ 340 INIT_WORK(&kcm->done_work, kcm_done_work); 341 schedule_work(&kcm->done_work); 342 return; 343 } 344 345 if (unlikely(kcm->rx_disabled)) { 346 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 347 } else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) { 348 /* Check for degenerative race with rx_wait that all 349 * data was dequeued (accounted for in kcm_rfree). 350 */ 351 kcm_rcv_ready(kcm); 352 } 353 spin_unlock_bh(&mux->rx_lock); 354 } 355 356 static void kcm_start_rx_timer(struct kcm_psock *psock) 357 { 358 if (psock->sk->sk_rcvtimeo) 359 mod_timer(&psock->rx_msg_timer, psock->sk->sk_rcvtimeo); 360 } 361 362 /* Macro to invoke filter function. */ 363 #define KCM_RUN_FILTER(prog, ctx) \ 364 (*prog->bpf_func)(ctx, prog->insnsi) 365 366 /* Lower socket lock held */ 367 static int kcm_tcp_recv(read_descriptor_t *desc, struct sk_buff *orig_skb, 368 unsigned int orig_offset, size_t orig_len) 369 { 370 struct kcm_psock *psock = (struct kcm_psock *)desc->arg.data; 371 struct kcm_rx_msg *rxm; 372 struct kcm_sock *kcm; 373 struct sk_buff *head, *skb; 374 size_t eaten = 0, cand_len; 375 ssize_t extra; 376 int err; 377 bool cloned_orig = false; 378 379 if (psock->ready_rx_msg) 380 return 0; 381 382 head = psock->rx_skb_head; 383 if (head) { 384 /* Message already in progress */ 385 386 rxm = kcm_rx_msg(head); 387 if (unlikely(rxm->early_eaten)) { 388 /* Already some number of bytes on the receive sock 389 * data saved in rx_skb_head, just indicate they 390 * are consumed. 391 */ 392 eaten = orig_len <= rxm->early_eaten ? 393 orig_len : rxm->early_eaten; 394 rxm->early_eaten -= eaten; 395 396 return eaten; 397 } 398 399 if (unlikely(orig_offset)) { 400 /* Getting data with a non-zero offset when a message is 401 * in progress is not expected. If it does happen, we 402 * need to clone and pull since we can't deal with 403 * offsets in the skbs for a message expect in the head. 404 */ 405 orig_skb = skb_clone(orig_skb, GFP_ATOMIC); 406 if (!orig_skb) { 407 KCM_STATS_INCR(psock->stats.rx_mem_fail); 408 desc->error = -ENOMEM; 409 return 0; 410 } 411 if (!pskb_pull(orig_skb, orig_offset)) { 412 KCM_STATS_INCR(psock->stats.rx_mem_fail); 413 kfree_skb(orig_skb); 414 desc->error = -ENOMEM; 415 return 0; 416 } 417 cloned_orig = true; 418 orig_offset = 0; 419 } 420 421 if (!psock->rx_skb_nextp) { 422 /* We are going to append to the frags_list of head. 423 * Need to unshare the frag_list. 424 */ 425 err = skb_unclone(head, GFP_ATOMIC); 426 if (err) { 427 KCM_STATS_INCR(psock->stats.rx_mem_fail); 428 desc->error = err; 429 return 0; 430 } 431 432 if (unlikely(skb_shinfo(head)->frag_list)) { 433 /* We can't append to an sk_buff that already 434 * has a frag_list. We create a new head, point 435 * the frag_list of that to the old head, and 436 * then are able to use the old head->next for 437 * appending to the message. 438 */ 439 if (WARN_ON(head->next)) { 440 desc->error = -EINVAL; 441 return 0; 442 } 443 444 skb = alloc_skb(0, GFP_ATOMIC); 445 if (!skb) { 446 KCM_STATS_INCR(psock->stats.rx_mem_fail); 447 desc->error = -ENOMEM; 448 return 0; 449 } 450 skb->len = head->len; 451 skb->data_len = head->len; 452 skb->truesize = head->truesize; 453 *kcm_rx_msg(skb) = *kcm_rx_msg(head); 454 psock->rx_skb_nextp = &head->next; 455 skb_shinfo(skb)->frag_list = head; 456 psock->rx_skb_head = skb; 457 head = skb; 458 } else { 459 psock->rx_skb_nextp = 460 &skb_shinfo(head)->frag_list; 461 } 462 } 463 } 464 465 while (eaten < orig_len) { 466 /* Always clone since we will consume something */ 467 skb = skb_clone(orig_skb, GFP_ATOMIC); 468 if (!skb) { 469 KCM_STATS_INCR(psock->stats.rx_mem_fail); 470 desc->error = -ENOMEM; 471 break; 472 } 473 474 cand_len = orig_len - eaten; 475 476 head = psock->rx_skb_head; 477 if (!head) { 478 head = skb; 479 psock->rx_skb_head = head; 480 /* Will set rx_skb_nextp on next packet if needed */ 481 psock->rx_skb_nextp = NULL; 482 rxm = kcm_rx_msg(head); 483 memset(rxm, 0, sizeof(*rxm)); 484 rxm->offset = orig_offset + eaten; 485 } else { 486 /* Unclone since we may be appending to an skb that we 487 * already share a frag_list with. 488 */ 489 err = skb_unclone(skb, GFP_ATOMIC); 490 if (err) { 491 KCM_STATS_INCR(psock->stats.rx_mem_fail); 492 desc->error = err; 493 break; 494 } 495 496 rxm = kcm_rx_msg(head); 497 *psock->rx_skb_nextp = skb; 498 psock->rx_skb_nextp = &skb->next; 499 head->data_len += skb->len; 500 head->len += skb->len; 501 head->truesize += skb->truesize; 502 } 503 504 if (!rxm->full_len) { 505 ssize_t len; 506 507 len = KCM_RUN_FILTER(psock->bpf_prog, head); 508 509 if (!len) { 510 /* Need more header to determine length */ 511 if (!rxm->accum_len) { 512 /* Start RX timer for new message */ 513 kcm_start_rx_timer(psock); 514 } 515 rxm->accum_len += cand_len; 516 eaten += cand_len; 517 KCM_STATS_INCR(psock->stats.rx_need_more_hdr); 518 WARN_ON(eaten != orig_len); 519 break; 520 } else if (len > psock->sk->sk_rcvbuf) { 521 /* Message length exceeds maximum allowed */ 522 KCM_STATS_INCR(psock->stats.rx_msg_too_big); 523 desc->error = -EMSGSIZE; 524 psock->rx_skb_head = NULL; 525 kcm_abort_rx_psock(psock, EMSGSIZE, head); 526 break; 527 } else if (len <= (ssize_t)head->len - 528 skb->len - rxm->offset) { 529 /* Length must be into new skb (and also 530 * greater than zero) 531 */ 532 KCM_STATS_INCR(psock->stats.rx_bad_hdr_len); 533 desc->error = -EPROTO; 534 psock->rx_skb_head = NULL; 535 kcm_abort_rx_psock(psock, EPROTO, head); 536 break; 537 } 538 539 rxm->full_len = len; 540 } 541 542 extra = (ssize_t)(rxm->accum_len + cand_len) - rxm->full_len; 543 544 if (extra < 0) { 545 /* Message not complete yet. */ 546 if (rxm->full_len - rxm->accum_len > 547 tcp_inq(psock->sk)) { 548 /* Don't have the whole messages in the socket 549 * buffer. Set psock->rx_need_bytes to wait for 550 * the rest of the message. Also, set "early 551 * eaten" since we've already buffered the skb 552 * but don't consume yet per tcp_read_sock. 553 */ 554 555 if (!rxm->accum_len) { 556 /* Start RX timer for new message */ 557 kcm_start_rx_timer(psock); 558 } 559 560 psock->rx_need_bytes = rxm->full_len - 561 rxm->accum_len; 562 rxm->accum_len += cand_len; 563 rxm->early_eaten = cand_len; 564 KCM_STATS_ADD(psock->stats.rx_bytes, cand_len); 565 desc->count = 0; /* Stop reading socket */ 566 break; 567 } 568 rxm->accum_len += cand_len; 569 eaten += cand_len; 570 WARN_ON(eaten != orig_len); 571 break; 572 } 573 574 /* Positive extra indicates ore bytes than needed for the 575 * message 576 */ 577 578 WARN_ON(extra > cand_len); 579 580 eaten += (cand_len - extra); 581 582 /* Hurray, we have a new message! */ 583 del_timer(&psock->rx_msg_timer); 584 psock->rx_skb_head = NULL; 585 KCM_STATS_INCR(psock->stats.rx_msgs); 586 587 try_queue: 588 kcm = reserve_rx_kcm(psock, head); 589 if (!kcm) { 590 /* Unable to reserve a KCM, message is held in psock. */ 591 break; 592 } 593 594 if (kcm_queue_rcv_skb(&kcm->sk, head)) { 595 /* Should mean socket buffer full */ 596 unreserve_rx_kcm(psock, false); 597 goto try_queue; 598 } 599 } 600 601 if (cloned_orig) 602 kfree_skb(orig_skb); 603 604 KCM_STATS_ADD(psock->stats.rx_bytes, eaten); 605 606 return eaten; 607 } 608 609 /* Called with lock held on lower socket */ 610 static int psock_tcp_read_sock(struct kcm_psock *psock) 611 { 612 read_descriptor_t desc; 613 614 desc.arg.data = psock; 615 desc.error = 0; 616 desc.count = 1; /* give more than one skb per call */ 617 618 /* sk should be locked here, so okay to do tcp_read_sock */ 619 tcp_read_sock(psock->sk, &desc, kcm_tcp_recv); 620 621 unreserve_rx_kcm(psock, true); 622 623 return desc.error; 624 } 625 626 /* Lower sock lock held */ 627 static void psock_tcp_data_ready(struct sock *sk) 628 { 629 struct kcm_psock *psock; 630 631 read_lock_bh(&sk->sk_callback_lock); 632 633 psock = (struct kcm_psock *)sk->sk_user_data; 634 if (unlikely(!psock || psock->rx_stopped)) 635 goto out; 636 637 if (psock->ready_rx_msg) 638 goto out; 639 640 if (psock->rx_need_bytes) { 641 if (tcp_inq(sk) >= psock->rx_need_bytes) 642 psock->rx_need_bytes = 0; 643 else 644 goto out; 645 } 646 647 if (psock_tcp_read_sock(psock) == -ENOMEM) 648 queue_delayed_work(kcm_wq, &psock->rx_delayed_work, 0); 649 650 out: 651 read_unlock_bh(&sk->sk_callback_lock); 652 } 653 654 static void do_psock_rx_work(struct kcm_psock *psock) 655 { 656 read_descriptor_t rd_desc; 657 struct sock *csk = psock->sk; 658 659 /* We need the read lock to synchronize with psock_tcp_data_ready. We 660 * need the socket lock for calling tcp_read_sock. 661 */ 662 lock_sock(csk); 663 read_lock_bh(&csk->sk_callback_lock); 664 665 if (unlikely(csk->sk_user_data != psock)) 666 goto out; 667 668 if (unlikely(psock->rx_stopped)) 669 goto out; 670 671 if (psock->ready_rx_msg) 672 goto out; 673 674 rd_desc.arg.data = psock; 675 676 if (psock_tcp_read_sock(psock) == -ENOMEM) 677 queue_delayed_work(kcm_wq, &psock->rx_delayed_work, 0); 678 679 out: 680 read_unlock_bh(&csk->sk_callback_lock); 681 release_sock(csk); 682 } 683 684 static void psock_rx_work(struct work_struct *w) 685 { 686 do_psock_rx_work(container_of(w, struct kcm_psock, rx_work)); 687 } 688 689 static void psock_rx_delayed_work(struct work_struct *w) 690 { 691 do_psock_rx_work(container_of(w, struct kcm_psock, 692 rx_delayed_work.work)); 693 } 694 695 static void psock_tcp_state_change(struct sock *sk) 696 { 697 /* TCP only does a POLLIN for a half close. Do a POLLHUP here 698 * since application will normally not poll with POLLIN 699 * on the TCP sockets. 700 */ 701 702 report_csk_error(sk, EPIPE); 703 } 704 705 static void psock_tcp_write_space(struct sock *sk) 706 { 707 struct kcm_psock *psock; 708 struct kcm_mux *mux; 709 struct kcm_sock *kcm; 710 711 read_lock_bh(&sk->sk_callback_lock); 712 713 psock = (struct kcm_psock *)sk->sk_user_data; 714 if (unlikely(!psock)) 715 goto out; 716 717 mux = psock->mux; 718 719 spin_lock_bh(&mux->lock); 720 721 /* Check if the socket is reserved so someone is waiting for sending. */ 722 kcm = psock->tx_kcm; 723 if (kcm) 724 queue_work(kcm_wq, &kcm->tx_work); 725 726 spin_unlock_bh(&mux->lock); 727 out: 728 read_unlock_bh(&sk->sk_callback_lock); 729 } 730 731 static void unreserve_psock(struct kcm_sock *kcm); 732 733 /* kcm sock is locked. */ 734 static struct kcm_psock *reserve_psock(struct kcm_sock *kcm) 735 { 736 struct kcm_mux *mux = kcm->mux; 737 struct kcm_psock *psock; 738 739 psock = kcm->tx_psock; 740 741 smp_rmb(); /* Must read tx_psock before tx_wait */ 742 743 if (psock) { 744 WARN_ON(kcm->tx_wait); 745 if (unlikely(psock->tx_stopped)) 746 unreserve_psock(kcm); 747 else 748 return kcm->tx_psock; 749 } 750 751 spin_lock_bh(&mux->lock); 752 753 /* Check again under lock to see if psock was reserved for this 754 * psock via psock_unreserve. 755 */ 756 psock = kcm->tx_psock; 757 if (unlikely(psock)) { 758 WARN_ON(kcm->tx_wait); 759 spin_unlock_bh(&mux->lock); 760 return kcm->tx_psock; 761 } 762 763 if (!list_empty(&mux->psocks_avail)) { 764 psock = list_first_entry(&mux->psocks_avail, 765 struct kcm_psock, 766 psock_avail_list); 767 list_del(&psock->psock_avail_list); 768 if (kcm->tx_wait) { 769 list_del(&kcm->wait_psock_list); 770 kcm->tx_wait = false; 771 } 772 kcm->tx_psock = psock; 773 psock->tx_kcm = kcm; 774 KCM_STATS_INCR(psock->stats.reserved); 775 } else if (!kcm->tx_wait) { 776 list_add_tail(&kcm->wait_psock_list, 777 &mux->kcm_tx_waiters); 778 kcm->tx_wait = true; 779 } 780 781 spin_unlock_bh(&mux->lock); 782 783 return psock; 784 } 785 786 /* mux lock held */ 787 static void psock_now_avail(struct kcm_psock *psock) 788 { 789 struct kcm_mux *mux = psock->mux; 790 struct kcm_sock *kcm; 791 792 if (list_empty(&mux->kcm_tx_waiters)) { 793 list_add_tail(&psock->psock_avail_list, 794 &mux->psocks_avail); 795 } else { 796 kcm = list_first_entry(&mux->kcm_tx_waiters, 797 struct kcm_sock, 798 wait_psock_list); 799 list_del(&kcm->wait_psock_list); 800 kcm->tx_wait = false; 801 psock->tx_kcm = kcm; 802 803 /* Commit before changing tx_psock since that is read in 804 * reserve_psock before queuing work. 805 */ 806 smp_mb(); 807 808 kcm->tx_psock = psock; 809 KCM_STATS_INCR(psock->stats.reserved); 810 queue_work(kcm_wq, &kcm->tx_work); 811 } 812 } 813 814 /* kcm sock is locked. */ 815 static void unreserve_psock(struct kcm_sock *kcm) 816 { 817 struct kcm_psock *psock; 818 struct kcm_mux *mux = kcm->mux; 819 820 spin_lock_bh(&mux->lock); 821 822 psock = kcm->tx_psock; 823 824 if (WARN_ON(!psock)) { 825 spin_unlock_bh(&mux->lock); 826 return; 827 } 828 829 smp_rmb(); /* Read tx_psock before tx_wait */ 830 831 kcm_update_tx_mux_stats(mux, psock); 832 833 WARN_ON(kcm->tx_wait); 834 835 kcm->tx_psock = NULL; 836 psock->tx_kcm = NULL; 837 KCM_STATS_INCR(psock->stats.unreserved); 838 839 if (unlikely(psock->tx_stopped)) { 840 if (psock->done) { 841 /* Deferred free */ 842 list_del(&psock->psock_list); 843 mux->psocks_cnt--; 844 sock_put(psock->sk); 845 fput(psock->sk->sk_socket->file); 846 kmem_cache_free(kcm_psockp, psock); 847 } 848 849 /* Don't put back on available list */ 850 851 spin_unlock_bh(&mux->lock); 852 853 return; 854 } 855 856 psock_now_avail(psock); 857 858 spin_unlock_bh(&mux->lock); 859 } 860 861 static void kcm_report_tx_retry(struct kcm_sock *kcm) 862 { 863 struct kcm_mux *mux = kcm->mux; 864 865 spin_lock_bh(&mux->lock); 866 KCM_STATS_INCR(mux->stats.tx_retries); 867 spin_unlock_bh(&mux->lock); 868 } 869 870 /* Write any messages ready on the kcm socket. Called with kcm sock lock 871 * held. Return bytes actually sent or error. 872 */ 873 static int kcm_write_msgs(struct kcm_sock *kcm) 874 { 875 struct sock *sk = &kcm->sk; 876 struct kcm_psock *psock; 877 struct sk_buff *skb, *head; 878 struct kcm_tx_msg *txm; 879 unsigned short fragidx, frag_offset; 880 unsigned int sent, total_sent = 0; 881 int ret = 0; 882 883 kcm->tx_wait_more = false; 884 psock = kcm->tx_psock; 885 if (unlikely(psock && psock->tx_stopped)) { 886 /* A reserved psock was aborted asynchronously. Unreserve 887 * it and we'll retry the message. 888 */ 889 unreserve_psock(kcm); 890 kcm_report_tx_retry(kcm); 891 if (skb_queue_empty(&sk->sk_write_queue)) 892 return 0; 893 894 kcm_tx_msg(skb_peek(&sk->sk_write_queue))->sent = 0; 895 896 } else if (skb_queue_empty(&sk->sk_write_queue)) { 897 return 0; 898 } 899 900 head = skb_peek(&sk->sk_write_queue); 901 txm = kcm_tx_msg(head); 902 903 if (txm->sent) { 904 /* Send of first skbuff in queue already in progress */ 905 if (WARN_ON(!psock)) { 906 ret = -EINVAL; 907 goto out; 908 } 909 sent = txm->sent; 910 frag_offset = txm->frag_offset; 911 fragidx = txm->fragidx; 912 skb = txm->frag_skb; 913 914 goto do_frag; 915 } 916 917 try_again: 918 psock = reserve_psock(kcm); 919 if (!psock) 920 goto out; 921 922 do { 923 skb = head; 924 txm = kcm_tx_msg(head); 925 sent = 0; 926 927 do_frag_list: 928 if (WARN_ON(!skb_shinfo(skb)->nr_frags)) { 929 ret = -EINVAL; 930 goto out; 931 } 932 933 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; 934 fragidx++) { 935 skb_frag_t *frag; 936 937 frag_offset = 0; 938 do_frag: 939 frag = &skb_shinfo(skb)->frags[fragidx]; 940 if (WARN_ON(!frag->size)) { 941 ret = -EINVAL; 942 goto out; 943 } 944 945 ret = kernel_sendpage(psock->sk->sk_socket, 946 frag->page.p, 947 frag->page_offset + frag_offset, 948 frag->size - frag_offset, 949 MSG_DONTWAIT); 950 if (ret <= 0) { 951 if (ret == -EAGAIN) { 952 /* Save state to try again when there's 953 * write space on the socket 954 */ 955 txm->sent = sent; 956 txm->frag_offset = frag_offset; 957 txm->fragidx = fragidx; 958 txm->frag_skb = skb; 959 960 ret = 0; 961 goto out; 962 } 963 964 /* Hard failure in sending message, abort this 965 * psock since it has lost framing 966 * synchonization and retry sending the 967 * message from the beginning. 968 */ 969 kcm_abort_tx_psock(psock, ret ? -ret : EPIPE, 970 true); 971 unreserve_psock(kcm); 972 973 txm->sent = 0; 974 kcm_report_tx_retry(kcm); 975 ret = 0; 976 977 goto try_again; 978 } 979 980 sent += ret; 981 frag_offset += ret; 982 KCM_STATS_ADD(psock->stats.tx_bytes, ret); 983 if (frag_offset < frag->size) { 984 /* Not finished with this frag */ 985 goto do_frag; 986 } 987 } 988 989 if (skb == head) { 990 if (skb_has_frag_list(skb)) { 991 skb = skb_shinfo(skb)->frag_list; 992 goto do_frag_list; 993 } 994 } else if (skb->next) { 995 skb = skb->next; 996 goto do_frag_list; 997 } 998 999 /* Successfully sent the whole packet, account for it. */ 1000 skb_dequeue(&sk->sk_write_queue); 1001 kfree_skb(head); 1002 sk->sk_wmem_queued -= sent; 1003 total_sent += sent; 1004 KCM_STATS_INCR(psock->stats.tx_msgs); 1005 } while ((head = skb_peek(&sk->sk_write_queue))); 1006 out: 1007 if (!head) { 1008 /* Done with all queued messages. */ 1009 WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); 1010 unreserve_psock(kcm); 1011 } 1012 1013 /* Check if write space is available */ 1014 sk->sk_write_space(sk); 1015 1016 return total_sent ? : ret; 1017 } 1018 1019 static void kcm_tx_work(struct work_struct *w) 1020 { 1021 struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work); 1022 struct sock *sk = &kcm->sk; 1023 int err; 1024 1025 lock_sock(sk); 1026 1027 /* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx 1028 * aborts 1029 */ 1030 err = kcm_write_msgs(kcm); 1031 if (err < 0) { 1032 /* Hard failure in write, report error on KCM socket */ 1033 pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err); 1034 report_csk_error(&kcm->sk, -err); 1035 goto out; 1036 } 1037 1038 /* Primarily for SOCK_SEQPACKET sockets */ 1039 if (likely(sk->sk_socket) && 1040 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 1041 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1042 sk->sk_write_space(sk); 1043 } 1044 1045 out: 1046 release_sock(sk); 1047 } 1048 1049 static void kcm_push(struct kcm_sock *kcm) 1050 { 1051 if (kcm->tx_wait_more) 1052 kcm_write_msgs(kcm); 1053 } 1054 1055 static ssize_t kcm_sendpage(struct socket *sock, struct page *page, 1056 int offset, size_t size, int flags) 1057 1058 { 1059 struct sock *sk = sock->sk; 1060 struct kcm_sock *kcm = kcm_sk(sk); 1061 struct sk_buff *skb = NULL, *head = NULL; 1062 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1063 bool eor; 1064 int err = 0; 1065 int i; 1066 1067 if (flags & MSG_SENDPAGE_NOTLAST) 1068 flags |= MSG_MORE; 1069 1070 /* No MSG_EOR from splice, only look at MSG_MORE */ 1071 eor = !(flags & MSG_MORE); 1072 1073 lock_sock(sk); 1074 1075 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1076 1077 err = -EPIPE; 1078 if (sk->sk_err) 1079 goto out_error; 1080 1081 if (kcm->seq_skb) { 1082 /* Previously opened message */ 1083 head = kcm->seq_skb; 1084 skb = kcm_tx_msg(head)->last_skb; 1085 i = skb_shinfo(skb)->nr_frags; 1086 1087 if (skb_can_coalesce(skb, i, page, offset)) { 1088 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 1089 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1090 goto coalesced; 1091 } 1092 1093 if (i >= MAX_SKB_FRAGS) { 1094 struct sk_buff *tskb; 1095 1096 tskb = alloc_skb(0, sk->sk_allocation); 1097 while (!tskb) { 1098 kcm_push(kcm); 1099 err = sk_stream_wait_memory(sk, &timeo); 1100 if (err) 1101 goto out_error; 1102 } 1103 1104 if (head == skb) 1105 skb_shinfo(head)->frag_list = tskb; 1106 else 1107 skb->next = tskb; 1108 1109 skb = tskb; 1110 skb->ip_summed = CHECKSUM_UNNECESSARY; 1111 i = 0; 1112 } 1113 } else { 1114 /* Call the sk_stream functions to manage the sndbuf mem. */ 1115 if (!sk_stream_memory_free(sk)) { 1116 kcm_push(kcm); 1117 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1118 err = sk_stream_wait_memory(sk, &timeo); 1119 if (err) 1120 goto out_error; 1121 } 1122 1123 head = alloc_skb(0, sk->sk_allocation); 1124 while (!head) { 1125 kcm_push(kcm); 1126 err = sk_stream_wait_memory(sk, &timeo); 1127 if (err) 1128 goto out_error; 1129 } 1130 1131 skb = head; 1132 i = 0; 1133 } 1134 1135 get_page(page); 1136 skb_fill_page_desc(skb, i, page, offset, size); 1137 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 1138 1139 coalesced: 1140 skb->len += size; 1141 skb->data_len += size; 1142 skb->truesize += size; 1143 sk->sk_wmem_queued += size; 1144 sk_mem_charge(sk, size); 1145 1146 if (head != skb) { 1147 head->len += size; 1148 head->data_len += size; 1149 head->truesize += size; 1150 } 1151 1152 if (eor) { 1153 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 1154 1155 /* Message complete, queue it on send buffer */ 1156 __skb_queue_tail(&sk->sk_write_queue, head); 1157 kcm->seq_skb = NULL; 1158 KCM_STATS_INCR(kcm->stats.tx_msgs); 1159 1160 if (flags & MSG_BATCH) { 1161 kcm->tx_wait_more = true; 1162 } else if (kcm->tx_wait_more || not_busy) { 1163 err = kcm_write_msgs(kcm); 1164 if (err < 0) { 1165 /* We got a hard error in write_msgs but have 1166 * already queued this message. Report an error 1167 * in the socket, but don't affect return value 1168 * from sendmsg 1169 */ 1170 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 1171 report_csk_error(&kcm->sk, -err); 1172 } 1173 } 1174 } else { 1175 /* Message not complete, save state */ 1176 kcm->seq_skb = head; 1177 kcm_tx_msg(head)->last_skb = skb; 1178 } 1179 1180 KCM_STATS_ADD(kcm->stats.tx_bytes, size); 1181 1182 release_sock(sk); 1183 return size; 1184 1185 out_error: 1186 kcm_push(kcm); 1187 1188 err = sk_stream_error(sk, flags, err); 1189 1190 /* make sure we wake any epoll edge trigger waiter */ 1191 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1192 sk->sk_write_space(sk); 1193 1194 release_sock(sk); 1195 return err; 1196 } 1197 1198 static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1199 { 1200 struct sock *sk = sock->sk; 1201 struct kcm_sock *kcm = kcm_sk(sk); 1202 struct sk_buff *skb = NULL, *head = NULL; 1203 size_t copy, copied = 0; 1204 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1205 int eor = (sock->type == SOCK_DGRAM) ? 1206 !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR); 1207 int err = -EPIPE; 1208 1209 lock_sock(sk); 1210 1211 /* Per tcp_sendmsg this should be in poll */ 1212 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1213 1214 if (sk->sk_err) 1215 goto out_error; 1216 1217 if (kcm->seq_skb) { 1218 /* Previously opened message */ 1219 head = kcm->seq_skb; 1220 skb = kcm_tx_msg(head)->last_skb; 1221 goto start; 1222 } 1223 1224 /* Call the sk_stream functions to manage the sndbuf mem. */ 1225 if (!sk_stream_memory_free(sk)) { 1226 kcm_push(kcm); 1227 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1228 err = sk_stream_wait_memory(sk, &timeo); 1229 if (err) 1230 goto out_error; 1231 } 1232 1233 /* New message, alloc head skb */ 1234 head = alloc_skb(0, sk->sk_allocation); 1235 while (!head) { 1236 kcm_push(kcm); 1237 err = sk_stream_wait_memory(sk, &timeo); 1238 if (err) 1239 goto out_error; 1240 1241 head = alloc_skb(0, sk->sk_allocation); 1242 } 1243 1244 skb = head; 1245 1246 /* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling 1247 * csum_and_copy_from_iter from skb_do_copy_data_nocache. 1248 */ 1249 skb->ip_summed = CHECKSUM_UNNECESSARY; 1250 1251 start: 1252 while (msg_data_left(msg)) { 1253 bool merge = true; 1254 int i = skb_shinfo(skb)->nr_frags; 1255 struct page_frag *pfrag = sk_page_frag(sk); 1256 1257 if (!sk_page_frag_refill(sk, pfrag)) 1258 goto wait_for_memory; 1259 1260 if (!skb_can_coalesce(skb, i, pfrag->page, 1261 pfrag->offset)) { 1262 if (i == MAX_SKB_FRAGS) { 1263 struct sk_buff *tskb; 1264 1265 tskb = alloc_skb(0, sk->sk_allocation); 1266 if (!tskb) 1267 goto wait_for_memory; 1268 1269 if (head == skb) 1270 skb_shinfo(head)->frag_list = tskb; 1271 else 1272 skb->next = tskb; 1273 1274 skb = tskb; 1275 skb->ip_summed = CHECKSUM_UNNECESSARY; 1276 continue; 1277 } 1278 merge = false; 1279 } 1280 1281 copy = min_t(int, msg_data_left(msg), 1282 pfrag->size - pfrag->offset); 1283 1284 if (!sk_wmem_schedule(sk, copy)) 1285 goto wait_for_memory; 1286 1287 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1288 pfrag->page, 1289 pfrag->offset, 1290 copy); 1291 if (err) 1292 goto out_error; 1293 1294 /* Update the skb. */ 1295 if (merge) { 1296 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1297 } else { 1298 skb_fill_page_desc(skb, i, pfrag->page, 1299 pfrag->offset, copy); 1300 get_page(pfrag->page); 1301 } 1302 1303 pfrag->offset += copy; 1304 copied += copy; 1305 if (head != skb) { 1306 head->len += copy; 1307 head->data_len += copy; 1308 } 1309 1310 continue; 1311 1312 wait_for_memory: 1313 kcm_push(kcm); 1314 err = sk_stream_wait_memory(sk, &timeo); 1315 if (err) 1316 goto out_error; 1317 } 1318 1319 if (eor) { 1320 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 1321 1322 /* Message complete, queue it on send buffer */ 1323 __skb_queue_tail(&sk->sk_write_queue, head); 1324 kcm->seq_skb = NULL; 1325 KCM_STATS_INCR(kcm->stats.tx_msgs); 1326 1327 if (msg->msg_flags & MSG_BATCH) { 1328 kcm->tx_wait_more = true; 1329 } else if (kcm->tx_wait_more || not_busy) { 1330 err = kcm_write_msgs(kcm); 1331 if (err < 0) { 1332 /* We got a hard error in write_msgs but have 1333 * already queued this message. Report an error 1334 * in the socket, but don't affect return value 1335 * from sendmsg 1336 */ 1337 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 1338 report_csk_error(&kcm->sk, -err); 1339 } 1340 } 1341 } else { 1342 /* Message not complete, save state */ 1343 partial_message: 1344 kcm->seq_skb = head; 1345 kcm_tx_msg(head)->last_skb = skb; 1346 } 1347 1348 KCM_STATS_ADD(kcm->stats.tx_bytes, copied); 1349 1350 release_sock(sk); 1351 return copied; 1352 1353 out_error: 1354 kcm_push(kcm); 1355 1356 if (copied && sock->type == SOCK_SEQPACKET) { 1357 /* Wrote some bytes before encountering an 1358 * error, return partial success. 1359 */ 1360 goto partial_message; 1361 } 1362 1363 if (head != kcm->seq_skb) 1364 kfree_skb(head); 1365 1366 err = sk_stream_error(sk, msg->msg_flags, err); 1367 1368 /* make sure we wake any epoll edge trigger waiter */ 1369 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1370 sk->sk_write_space(sk); 1371 1372 release_sock(sk); 1373 return err; 1374 } 1375 1376 static struct sk_buff *kcm_wait_data(struct sock *sk, int flags, 1377 long timeo, int *err) 1378 { 1379 struct sk_buff *skb; 1380 1381 while (!(skb = skb_peek(&sk->sk_receive_queue))) { 1382 if (sk->sk_err) { 1383 *err = sock_error(sk); 1384 return NULL; 1385 } 1386 1387 if (sock_flag(sk, SOCK_DONE)) 1388 return NULL; 1389 1390 if ((flags & MSG_DONTWAIT) || !timeo) { 1391 *err = -EAGAIN; 1392 return NULL; 1393 } 1394 1395 sk_wait_data(sk, &timeo, NULL); 1396 1397 /* Handle signals */ 1398 if (signal_pending(current)) { 1399 *err = sock_intr_errno(timeo); 1400 return NULL; 1401 } 1402 } 1403 1404 return skb; 1405 } 1406 1407 static int kcm_recvmsg(struct socket *sock, struct msghdr *msg, 1408 size_t len, int flags) 1409 { 1410 struct sock *sk = sock->sk; 1411 struct kcm_sock *kcm = kcm_sk(sk); 1412 int err = 0; 1413 long timeo; 1414 struct kcm_rx_msg *rxm; 1415 int copied = 0; 1416 struct sk_buff *skb; 1417 1418 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1419 1420 lock_sock(sk); 1421 1422 skb = kcm_wait_data(sk, flags, timeo, &err); 1423 if (!skb) 1424 goto out; 1425 1426 /* Okay, have a message on the receive queue */ 1427 1428 rxm = kcm_rx_msg(skb); 1429 1430 if (len > rxm->full_len) 1431 len = rxm->full_len; 1432 1433 err = skb_copy_datagram_msg(skb, rxm->offset, msg, len); 1434 if (err < 0) 1435 goto out; 1436 1437 copied = len; 1438 if (likely(!(flags & MSG_PEEK))) { 1439 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1440 if (copied < rxm->full_len) { 1441 if (sock->type == SOCK_DGRAM) { 1442 /* Truncated message */ 1443 msg->msg_flags |= MSG_TRUNC; 1444 goto msg_finished; 1445 } 1446 rxm->offset += copied; 1447 rxm->full_len -= copied; 1448 } else { 1449 msg_finished: 1450 /* Finished with message */ 1451 msg->msg_flags |= MSG_EOR; 1452 KCM_STATS_INCR(kcm->stats.rx_msgs); 1453 skb_unlink(skb, &sk->sk_receive_queue); 1454 kfree_skb(skb); 1455 } 1456 } 1457 1458 out: 1459 release_sock(sk); 1460 1461 return copied ? : err; 1462 } 1463 1464 static ssize_t kcm_sock_splice(struct sock *sk, 1465 struct pipe_inode_info *pipe, 1466 struct splice_pipe_desc *spd) 1467 { 1468 int ret; 1469 1470 release_sock(sk); 1471 ret = splice_to_pipe(pipe, spd); 1472 lock_sock(sk); 1473 1474 return ret; 1475 } 1476 1477 static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos, 1478 struct pipe_inode_info *pipe, size_t len, 1479 unsigned int flags) 1480 { 1481 struct sock *sk = sock->sk; 1482 struct kcm_sock *kcm = kcm_sk(sk); 1483 long timeo; 1484 struct kcm_rx_msg *rxm; 1485 int err = 0; 1486 ssize_t copied; 1487 struct sk_buff *skb; 1488 1489 /* Only support splice for SOCKSEQPACKET */ 1490 1491 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1492 1493 lock_sock(sk); 1494 1495 skb = kcm_wait_data(sk, flags, timeo, &err); 1496 if (!skb) 1497 goto err_out; 1498 1499 /* Okay, have a message on the receive queue */ 1500 1501 rxm = kcm_rx_msg(skb); 1502 1503 if (len > rxm->full_len) 1504 len = rxm->full_len; 1505 1506 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, len, flags, 1507 kcm_sock_splice); 1508 if (copied < 0) { 1509 err = copied; 1510 goto err_out; 1511 } 1512 1513 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1514 1515 rxm->offset += copied; 1516 rxm->full_len -= copied; 1517 1518 /* We have no way to return MSG_EOR. If all the bytes have been 1519 * read we still leave the message in the receive socket buffer. 1520 * A subsequent recvmsg needs to be done to return MSG_EOR and 1521 * finish reading the message. 1522 */ 1523 1524 release_sock(sk); 1525 1526 return copied; 1527 1528 err_out: 1529 release_sock(sk); 1530 1531 return err; 1532 } 1533 1534 /* kcm sock lock held */ 1535 static void kcm_recv_disable(struct kcm_sock *kcm) 1536 { 1537 struct kcm_mux *mux = kcm->mux; 1538 1539 if (kcm->rx_disabled) 1540 return; 1541 1542 spin_lock_bh(&mux->rx_lock); 1543 1544 kcm->rx_disabled = 1; 1545 1546 /* If a psock is reserved we'll do cleanup in unreserve */ 1547 if (!kcm->rx_psock) { 1548 if (kcm->rx_wait) { 1549 list_del(&kcm->wait_rx_list); 1550 kcm->rx_wait = false; 1551 } 1552 1553 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 1554 } 1555 1556 spin_unlock_bh(&mux->rx_lock); 1557 } 1558 1559 /* kcm sock lock held */ 1560 static void kcm_recv_enable(struct kcm_sock *kcm) 1561 { 1562 struct kcm_mux *mux = kcm->mux; 1563 1564 if (!kcm->rx_disabled) 1565 return; 1566 1567 spin_lock_bh(&mux->rx_lock); 1568 1569 kcm->rx_disabled = 0; 1570 kcm_rcv_ready(kcm); 1571 1572 spin_unlock_bh(&mux->rx_lock); 1573 } 1574 1575 static int kcm_setsockopt(struct socket *sock, int level, int optname, 1576 char __user *optval, unsigned int optlen) 1577 { 1578 struct kcm_sock *kcm = kcm_sk(sock->sk); 1579 int val, valbool; 1580 int err = 0; 1581 1582 if (level != SOL_KCM) 1583 return -ENOPROTOOPT; 1584 1585 if (optlen < sizeof(int)) 1586 return -EINVAL; 1587 1588 if (get_user(val, (int __user *)optval)) 1589 return -EINVAL; 1590 1591 valbool = val ? 1 : 0; 1592 1593 switch (optname) { 1594 case KCM_RECV_DISABLE: 1595 lock_sock(&kcm->sk); 1596 if (valbool) 1597 kcm_recv_disable(kcm); 1598 else 1599 kcm_recv_enable(kcm); 1600 release_sock(&kcm->sk); 1601 break; 1602 default: 1603 err = -ENOPROTOOPT; 1604 } 1605 1606 return err; 1607 } 1608 1609 static int kcm_getsockopt(struct socket *sock, int level, int optname, 1610 char __user *optval, int __user *optlen) 1611 { 1612 struct kcm_sock *kcm = kcm_sk(sock->sk); 1613 int val, len; 1614 1615 if (level != SOL_KCM) 1616 return -ENOPROTOOPT; 1617 1618 if (get_user(len, optlen)) 1619 return -EFAULT; 1620 1621 len = min_t(unsigned int, len, sizeof(int)); 1622 if (len < 0) 1623 return -EINVAL; 1624 1625 switch (optname) { 1626 case KCM_RECV_DISABLE: 1627 val = kcm->rx_disabled; 1628 break; 1629 default: 1630 return -ENOPROTOOPT; 1631 } 1632 1633 if (put_user(len, optlen)) 1634 return -EFAULT; 1635 if (copy_to_user(optval, &val, len)) 1636 return -EFAULT; 1637 return 0; 1638 } 1639 1640 static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux) 1641 { 1642 struct kcm_sock *tkcm; 1643 struct list_head *head; 1644 int index = 0; 1645 1646 /* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so 1647 * we set sk_state, otherwise epoll_wait always returns right away with 1648 * POLLHUP 1649 */ 1650 kcm->sk.sk_state = TCP_ESTABLISHED; 1651 1652 /* Add to mux's kcm sockets list */ 1653 kcm->mux = mux; 1654 spin_lock_bh(&mux->lock); 1655 1656 head = &mux->kcm_socks; 1657 list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) { 1658 if (tkcm->index != index) 1659 break; 1660 head = &tkcm->kcm_sock_list; 1661 index++; 1662 } 1663 1664 list_add(&kcm->kcm_sock_list, head); 1665 kcm->index = index; 1666 1667 mux->kcm_socks_cnt++; 1668 spin_unlock_bh(&mux->lock); 1669 1670 INIT_WORK(&kcm->tx_work, kcm_tx_work); 1671 1672 spin_lock_bh(&mux->rx_lock); 1673 kcm_rcv_ready(kcm); 1674 spin_unlock_bh(&mux->rx_lock); 1675 } 1676 1677 static void kcm_rx_msg_timeout(unsigned long arg) 1678 { 1679 struct kcm_psock *psock = (struct kcm_psock *)arg; 1680 1681 /* Message assembly timed out */ 1682 KCM_STATS_INCR(psock->stats.rx_msg_timeouts); 1683 kcm_abort_rx_psock(psock, ETIMEDOUT, NULL); 1684 } 1685 1686 static int kcm_attach(struct socket *sock, struct socket *csock, 1687 struct bpf_prog *prog) 1688 { 1689 struct kcm_sock *kcm = kcm_sk(sock->sk); 1690 struct kcm_mux *mux = kcm->mux; 1691 struct sock *csk; 1692 struct kcm_psock *psock = NULL, *tpsock; 1693 struct list_head *head; 1694 int index = 0; 1695 1696 if (csock->ops->family != PF_INET && 1697 csock->ops->family != PF_INET6) 1698 return -EINVAL; 1699 1700 csk = csock->sk; 1701 if (!csk) 1702 return -EINVAL; 1703 1704 /* Only support TCP for now */ 1705 if (csk->sk_protocol != IPPROTO_TCP) 1706 return -EINVAL; 1707 1708 psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL); 1709 if (!psock) 1710 return -ENOMEM; 1711 1712 psock->mux = mux; 1713 psock->sk = csk; 1714 psock->bpf_prog = prog; 1715 1716 setup_timer(&psock->rx_msg_timer, kcm_rx_msg_timeout, 1717 (unsigned long)psock); 1718 1719 INIT_WORK(&psock->rx_work, psock_rx_work); 1720 INIT_DELAYED_WORK(&psock->rx_delayed_work, psock_rx_delayed_work); 1721 1722 sock_hold(csk); 1723 1724 write_lock_bh(&csk->sk_callback_lock); 1725 psock->save_data_ready = csk->sk_data_ready; 1726 psock->save_write_space = csk->sk_write_space; 1727 psock->save_state_change = csk->sk_state_change; 1728 csk->sk_user_data = psock; 1729 csk->sk_data_ready = psock_tcp_data_ready; 1730 csk->sk_write_space = psock_tcp_write_space; 1731 csk->sk_state_change = psock_tcp_state_change; 1732 write_unlock_bh(&csk->sk_callback_lock); 1733 1734 /* Finished initialization, now add the psock to the MUX. */ 1735 spin_lock_bh(&mux->lock); 1736 head = &mux->psocks; 1737 list_for_each_entry(tpsock, &mux->psocks, psock_list) { 1738 if (tpsock->index != index) 1739 break; 1740 head = &tpsock->psock_list; 1741 index++; 1742 } 1743 1744 list_add(&psock->psock_list, head); 1745 psock->index = index; 1746 1747 KCM_STATS_INCR(mux->stats.psock_attach); 1748 mux->psocks_cnt++; 1749 psock_now_avail(psock); 1750 spin_unlock_bh(&mux->lock); 1751 1752 /* Schedule RX work in case there are already bytes queued */ 1753 queue_work(kcm_wq, &psock->rx_work); 1754 1755 return 0; 1756 } 1757 1758 static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info) 1759 { 1760 struct socket *csock; 1761 struct bpf_prog *prog; 1762 int err; 1763 1764 csock = sockfd_lookup(info->fd, &err); 1765 if (!csock) 1766 return -ENOENT; 1767 1768 prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER); 1769 if (IS_ERR(prog)) { 1770 err = PTR_ERR(prog); 1771 goto out; 1772 } 1773 1774 err = kcm_attach(sock, csock, prog); 1775 if (err) { 1776 bpf_prog_put(prog); 1777 goto out; 1778 } 1779 1780 /* Keep reference on file also */ 1781 1782 return 0; 1783 out: 1784 fput(csock->file); 1785 return err; 1786 } 1787 1788 static void kcm_unattach(struct kcm_psock *psock) 1789 { 1790 struct sock *csk = psock->sk; 1791 struct kcm_mux *mux = psock->mux; 1792 1793 /* Stop getting callbacks from TCP socket. After this there should 1794 * be no way to reserve a kcm for this psock. 1795 */ 1796 write_lock_bh(&csk->sk_callback_lock); 1797 csk->sk_user_data = NULL; 1798 csk->sk_data_ready = psock->save_data_ready; 1799 csk->sk_write_space = psock->save_write_space; 1800 csk->sk_state_change = psock->save_state_change; 1801 psock->rx_stopped = 1; 1802 1803 if (WARN_ON(psock->rx_kcm)) { 1804 write_unlock_bh(&csk->sk_callback_lock); 1805 return; 1806 } 1807 1808 spin_lock_bh(&mux->rx_lock); 1809 1810 /* Stop receiver activities. After this point psock should not be 1811 * able to get onto ready list either through callbacks or work. 1812 */ 1813 if (psock->ready_rx_msg) { 1814 list_del(&psock->psock_ready_list); 1815 kfree_skb(psock->ready_rx_msg); 1816 psock->ready_rx_msg = NULL; 1817 KCM_STATS_INCR(mux->stats.rx_ready_drops); 1818 } 1819 1820 spin_unlock_bh(&mux->rx_lock); 1821 1822 write_unlock_bh(&csk->sk_callback_lock); 1823 1824 del_timer_sync(&psock->rx_msg_timer); 1825 cancel_work_sync(&psock->rx_work); 1826 cancel_delayed_work_sync(&psock->rx_delayed_work); 1827 1828 bpf_prog_put(psock->bpf_prog); 1829 1830 kfree_skb(psock->rx_skb_head); 1831 psock->rx_skb_head = NULL; 1832 1833 spin_lock_bh(&mux->lock); 1834 1835 aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats); 1836 1837 KCM_STATS_INCR(mux->stats.psock_unattach); 1838 1839 if (psock->tx_kcm) { 1840 /* psock was reserved. Just mark it finished and we will clean 1841 * up in the kcm paths, we need kcm lock which can not be 1842 * acquired here. 1843 */ 1844 KCM_STATS_INCR(mux->stats.psock_unattach_rsvd); 1845 spin_unlock_bh(&mux->lock); 1846 1847 /* We are unattaching a socket that is reserved. Abort the 1848 * socket since we may be out of sync in sending on it. We need 1849 * to do this without the mux lock. 1850 */ 1851 kcm_abort_tx_psock(psock, EPIPE, false); 1852 1853 spin_lock_bh(&mux->lock); 1854 if (!psock->tx_kcm) { 1855 /* psock now unreserved in window mux was unlocked */ 1856 goto no_reserved; 1857 } 1858 psock->done = 1; 1859 1860 /* Commit done before queuing work to process it */ 1861 smp_mb(); 1862 1863 /* Queue tx work to make sure psock->done is handled */ 1864 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 1865 spin_unlock_bh(&mux->lock); 1866 } else { 1867 no_reserved: 1868 if (!psock->tx_stopped) 1869 list_del(&psock->psock_avail_list); 1870 list_del(&psock->psock_list); 1871 mux->psocks_cnt--; 1872 spin_unlock_bh(&mux->lock); 1873 1874 sock_put(csk); 1875 fput(csk->sk_socket->file); 1876 kmem_cache_free(kcm_psockp, psock); 1877 } 1878 } 1879 1880 static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info) 1881 { 1882 struct kcm_sock *kcm = kcm_sk(sock->sk); 1883 struct kcm_mux *mux = kcm->mux; 1884 struct kcm_psock *psock; 1885 struct socket *csock; 1886 struct sock *csk; 1887 int err; 1888 1889 csock = sockfd_lookup(info->fd, &err); 1890 if (!csock) 1891 return -ENOENT; 1892 1893 csk = csock->sk; 1894 if (!csk) { 1895 err = -EINVAL; 1896 goto out; 1897 } 1898 1899 err = -ENOENT; 1900 1901 spin_lock_bh(&mux->lock); 1902 1903 list_for_each_entry(psock, &mux->psocks, psock_list) { 1904 if (psock->sk != csk) 1905 continue; 1906 1907 /* Found the matching psock */ 1908 1909 if (psock->unattaching || WARN_ON(psock->done)) { 1910 err = -EALREADY; 1911 break; 1912 } 1913 1914 psock->unattaching = 1; 1915 1916 spin_unlock_bh(&mux->lock); 1917 1918 kcm_unattach(psock); 1919 1920 err = 0; 1921 goto out; 1922 } 1923 1924 spin_unlock_bh(&mux->lock); 1925 1926 out: 1927 fput(csock->file); 1928 return err; 1929 } 1930 1931 static struct proto kcm_proto = { 1932 .name = "KCM", 1933 .owner = THIS_MODULE, 1934 .obj_size = sizeof(struct kcm_sock), 1935 }; 1936 1937 /* Clone a kcm socket. */ 1938 static int kcm_clone(struct socket *osock, struct kcm_clone *info, 1939 struct socket **newsockp) 1940 { 1941 struct socket *newsock; 1942 struct sock *newsk; 1943 struct file *newfile; 1944 int err, newfd; 1945 1946 err = -ENFILE; 1947 newsock = sock_alloc(); 1948 if (!newsock) 1949 goto out; 1950 1951 newsock->type = osock->type; 1952 newsock->ops = osock->ops; 1953 1954 __module_get(newsock->ops->owner); 1955 1956 newfd = get_unused_fd_flags(0); 1957 if (unlikely(newfd < 0)) { 1958 err = newfd; 1959 goto out_fd_fail; 1960 } 1961 1962 newfile = sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name); 1963 if (unlikely(IS_ERR(newfile))) { 1964 err = PTR_ERR(newfile); 1965 goto out_sock_alloc_fail; 1966 } 1967 1968 newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL, 1969 &kcm_proto, true); 1970 if (!newsk) { 1971 err = -ENOMEM; 1972 goto out_sk_alloc_fail; 1973 } 1974 1975 sock_init_data(newsock, newsk); 1976 init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux); 1977 1978 fd_install(newfd, newfile); 1979 *newsockp = newsock; 1980 info->fd = newfd; 1981 1982 return 0; 1983 1984 out_sk_alloc_fail: 1985 fput(newfile); 1986 out_sock_alloc_fail: 1987 put_unused_fd(newfd); 1988 out_fd_fail: 1989 sock_release(newsock); 1990 out: 1991 return err; 1992 } 1993 1994 static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1995 { 1996 int err; 1997 1998 switch (cmd) { 1999 case SIOCKCMATTACH: { 2000 struct kcm_attach info; 2001 2002 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 2003 err = -EFAULT; 2004 2005 err = kcm_attach_ioctl(sock, &info); 2006 2007 break; 2008 } 2009 case SIOCKCMUNATTACH: { 2010 struct kcm_unattach info; 2011 2012 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 2013 err = -EFAULT; 2014 2015 err = kcm_unattach_ioctl(sock, &info); 2016 2017 break; 2018 } 2019 case SIOCKCMCLONE: { 2020 struct kcm_clone info; 2021 struct socket *newsock = NULL; 2022 2023 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 2024 err = -EFAULT; 2025 2026 err = kcm_clone(sock, &info, &newsock); 2027 2028 if (!err) { 2029 if (copy_to_user((void __user *)arg, &info, 2030 sizeof(info))) { 2031 err = -EFAULT; 2032 sock_release(newsock); 2033 } 2034 } 2035 2036 break; 2037 } 2038 default: 2039 err = -ENOIOCTLCMD; 2040 break; 2041 } 2042 2043 return err; 2044 } 2045 2046 static void free_mux(struct rcu_head *rcu) 2047 { 2048 struct kcm_mux *mux = container_of(rcu, 2049 struct kcm_mux, rcu); 2050 2051 kmem_cache_free(kcm_muxp, mux); 2052 } 2053 2054 static void release_mux(struct kcm_mux *mux) 2055 { 2056 struct kcm_net *knet = mux->knet; 2057 struct kcm_psock *psock, *tmp_psock; 2058 2059 /* Release psocks */ 2060 list_for_each_entry_safe(psock, tmp_psock, 2061 &mux->psocks, psock_list) { 2062 if (!WARN_ON(psock->unattaching)) 2063 kcm_unattach(psock); 2064 } 2065 2066 if (WARN_ON(mux->psocks_cnt)) 2067 return; 2068 2069 __skb_queue_purge(&mux->rx_hold_queue); 2070 2071 mutex_lock(&knet->mutex); 2072 aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats); 2073 aggregate_psock_stats(&mux->aggregate_psock_stats, 2074 &knet->aggregate_psock_stats); 2075 list_del_rcu(&mux->kcm_mux_list); 2076 knet->count--; 2077 mutex_unlock(&knet->mutex); 2078 2079 call_rcu(&mux->rcu, free_mux); 2080 } 2081 2082 static void kcm_done(struct kcm_sock *kcm) 2083 { 2084 struct kcm_mux *mux = kcm->mux; 2085 struct sock *sk = &kcm->sk; 2086 int socks_cnt; 2087 2088 spin_lock_bh(&mux->rx_lock); 2089 if (kcm->rx_psock) { 2090 /* Cleanup in unreserve_rx_kcm */ 2091 WARN_ON(kcm->done); 2092 kcm->rx_disabled = 1; 2093 kcm->done = 1; 2094 spin_unlock_bh(&mux->rx_lock); 2095 return; 2096 } 2097 2098 if (kcm->rx_wait) { 2099 list_del(&kcm->wait_rx_list); 2100 kcm->rx_wait = false; 2101 } 2102 /* Move any pending receive messages to other kcm sockets */ 2103 requeue_rx_msgs(mux, &sk->sk_receive_queue); 2104 2105 spin_unlock_bh(&mux->rx_lock); 2106 2107 if (WARN_ON(sk_rmem_alloc_get(sk))) 2108 return; 2109 2110 /* Detach from MUX */ 2111 spin_lock_bh(&mux->lock); 2112 2113 list_del(&kcm->kcm_sock_list); 2114 mux->kcm_socks_cnt--; 2115 socks_cnt = mux->kcm_socks_cnt; 2116 2117 spin_unlock_bh(&mux->lock); 2118 2119 if (!socks_cnt) { 2120 /* We are done with the mux now. */ 2121 release_mux(mux); 2122 } 2123 2124 WARN_ON(kcm->rx_wait); 2125 2126 sock_put(&kcm->sk); 2127 } 2128 2129 /* Called by kcm_release to close a KCM socket. 2130 * If this is the last KCM socket on the MUX, destroy the MUX. 2131 */ 2132 static int kcm_release(struct socket *sock) 2133 { 2134 struct sock *sk = sock->sk; 2135 struct kcm_sock *kcm; 2136 struct kcm_mux *mux; 2137 struct kcm_psock *psock; 2138 2139 if (!sk) 2140 return 0; 2141 2142 kcm = kcm_sk(sk); 2143 mux = kcm->mux; 2144 2145 sock_orphan(sk); 2146 kfree_skb(kcm->seq_skb); 2147 2148 lock_sock(sk); 2149 /* Purge queue under lock to avoid race condition with tx_work trying 2150 * to act when queue is nonempty. If tx_work runs after this point 2151 * it will just return. 2152 */ 2153 __skb_queue_purge(&sk->sk_write_queue); 2154 release_sock(sk); 2155 2156 spin_lock_bh(&mux->lock); 2157 if (kcm->tx_wait) { 2158 /* Take of tx_wait list, after this point there should be no way 2159 * that a psock will be assigned to this kcm. 2160 */ 2161 list_del(&kcm->wait_psock_list); 2162 kcm->tx_wait = false; 2163 } 2164 spin_unlock_bh(&mux->lock); 2165 2166 /* Cancel work. After this point there should be no outside references 2167 * to the kcm socket. 2168 */ 2169 cancel_work_sync(&kcm->tx_work); 2170 2171 lock_sock(sk); 2172 psock = kcm->tx_psock; 2173 if (psock) { 2174 /* A psock was reserved, so we need to kill it since it 2175 * may already have some bytes queued from a message. We 2176 * need to do this after removing kcm from tx_wait list. 2177 */ 2178 kcm_abort_tx_psock(psock, EPIPE, false); 2179 unreserve_psock(kcm); 2180 } 2181 release_sock(sk); 2182 2183 WARN_ON(kcm->tx_wait); 2184 WARN_ON(kcm->tx_psock); 2185 2186 sock->sk = NULL; 2187 2188 kcm_done(kcm); 2189 2190 return 0; 2191 } 2192 2193 static const struct proto_ops kcm_dgram_ops = { 2194 .family = PF_KCM, 2195 .owner = THIS_MODULE, 2196 .release = kcm_release, 2197 .bind = sock_no_bind, 2198 .connect = sock_no_connect, 2199 .socketpair = sock_no_socketpair, 2200 .accept = sock_no_accept, 2201 .getname = sock_no_getname, 2202 .poll = datagram_poll, 2203 .ioctl = kcm_ioctl, 2204 .listen = sock_no_listen, 2205 .shutdown = sock_no_shutdown, 2206 .setsockopt = kcm_setsockopt, 2207 .getsockopt = kcm_getsockopt, 2208 .sendmsg = kcm_sendmsg, 2209 .recvmsg = kcm_recvmsg, 2210 .mmap = sock_no_mmap, 2211 .sendpage = kcm_sendpage, 2212 }; 2213 2214 static const struct proto_ops kcm_seqpacket_ops = { 2215 .family = PF_KCM, 2216 .owner = THIS_MODULE, 2217 .release = kcm_release, 2218 .bind = sock_no_bind, 2219 .connect = sock_no_connect, 2220 .socketpair = sock_no_socketpair, 2221 .accept = sock_no_accept, 2222 .getname = sock_no_getname, 2223 .poll = datagram_poll, 2224 .ioctl = kcm_ioctl, 2225 .listen = sock_no_listen, 2226 .shutdown = sock_no_shutdown, 2227 .setsockopt = kcm_setsockopt, 2228 .getsockopt = kcm_getsockopt, 2229 .sendmsg = kcm_sendmsg, 2230 .recvmsg = kcm_recvmsg, 2231 .mmap = sock_no_mmap, 2232 .sendpage = kcm_sendpage, 2233 .splice_read = kcm_splice_read, 2234 }; 2235 2236 /* Create proto operation for kcm sockets */ 2237 static int kcm_create(struct net *net, struct socket *sock, 2238 int protocol, int kern) 2239 { 2240 struct kcm_net *knet = net_generic(net, kcm_net_id); 2241 struct sock *sk; 2242 struct kcm_mux *mux; 2243 2244 switch (sock->type) { 2245 case SOCK_DGRAM: 2246 sock->ops = &kcm_dgram_ops; 2247 break; 2248 case SOCK_SEQPACKET: 2249 sock->ops = &kcm_seqpacket_ops; 2250 break; 2251 default: 2252 return -ESOCKTNOSUPPORT; 2253 } 2254 2255 if (protocol != KCMPROTO_CONNECTED) 2256 return -EPROTONOSUPPORT; 2257 2258 sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern); 2259 if (!sk) 2260 return -ENOMEM; 2261 2262 /* Allocate a kcm mux, shared between KCM sockets */ 2263 mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL); 2264 if (!mux) { 2265 sk_free(sk); 2266 return -ENOMEM; 2267 } 2268 2269 spin_lock_init(&mux->lock); 2270 spin_lock_init(&mux->rx_lock); 2271 INIT_LIST_HEAD(&mux->kcm_socks); 2272 INIT_LIST_HEAD(&mux->kcm_rx_waiters); 2273 INIT_LIST_HEAD(&mux->kcm_tx_waiters); 2274 2275 INIT_LIST_HEAD(&mux->psocks); 2276 INIT_LIST_HEAD(&mux->psocks_ready); 2277 INIT_LIST_HEAD(&mux->psocks_avail); 2278 2279 mux->knet = knet; 2280 2281 /* Add new MUX to list */ 2282 mutex_lock(&knet->mutex); 2283 list_add_rcu(&mux->kcm_mux_list, &knet->mux_list); 2284 knet->count++; 2285 mutex_unlock(&knet->mutex); 2286 2287 skb_queue_head_init(&mux->rx_hold_queue); 2288 2289 /* Init KCM socket */ 2290 sock_init_data(sock, sk); 2291 init_kcm_sock(kcm_sk(sk), mux); 2292 2293 return 0; 2294 } 2295 2296 static struct net_proto_family kcm_family_ops = { 2297 .family = PF_KCM, 2298 .create = kcm_create, 2299 .owner = THIS_MODULE, 2300 }; 2301 2302 static __net_init int kcm_init_net(struct net *net) 2303 { 2304 struct kcm_net *knet = net_generic(net, kcm_net_id); 2305 2306 INIT_LIST_HEAD_RCU(&knet->mux_list); 2307 mutex_init(&knet->mutex); 2308 2309 return 0; 2310 } 2311 2312 static __net_exit void kcm_exit_net(struct net *net) 2313 { 2314 struct kcm_net *knet = net_generic(net, kcm_net_id); 2315 2316 /* All KCM sockets should be closed at this point, which should mean 2317 * that all multiplexors and psocks have been destroyed. 2318 */ 2319 WARN_ON(!list_empty(&knet->mux_list)); 2320 } 2321 2322 static struct pernet_operations kcm_net_ops = { 2323 .init = kcm_init_net, 2324 .exit = kcm_exit_net, 2325 .id = &kcm_net_id, 2326 .size = sizeof(struct kcm_net), 2327 }; 2328 2329 static int __init kcm_init(void) 2330 { 2331 int err = -ENOMEM; 2332 2333 kcm_muxp = kmem_cache_create("kcm_mux_cache", 2334 sizeof(struct kcm_mux), 0, 2335 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2336 if (!kcm_muxp) 2337 goto fail; 2338 2339 kcm_psockp = kmem_cache_create("kcm_psock_cache", 2340 sizeof(struct kcm_psock), 0, 2341 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2342 if (!kcm_psockp) 2343 goto fail; 2344 2345 kcm_wq = create_singlethread_workqueue("kkcmd"); 2346 if (!kcm_wq) 2347 goto fail; 2348 2349 err = proto_register(&kcm_proto, 1); 2350 if (err) 2351 goto fail; 2352 2353 err = sock_register(&kcm_family_ops); 2354 if (err) 2355 goto sock_register_fail; 2356 2357 err = register_pernet_device(&kcm_net_ops); 2358 if (err) 2359 goto net_ops_fail; 2360 2361 err = kcm_proc_init(); 2362 if (err) 2363 goto proc_init_fail; 2364 2365 return 0; 2366 2367 proc_init_fail: 2368 unregister_pernet_device(&kcm_net_ops); 2369 2370 net_ops_fail: 2371 sock_unregister(PF_KCM); 2372 2373 sock_register_fail: 2374 proto_unregister(&kcm_proto); 2375 2376 fail: 2377 kmem_cache_destroy(kcm_muxp); 2378 kmem_cache_destroy(kcm_psockp); 2379 2380 if (kcm_wq) 2381 destroy_workqueue(kcm_wq); 2382 2383 return err; 2384 } 2385 2386 static void __exit kcm_exit(void) 2387 { 2388 kcm_proc_exit(); 2389 unregister_pernet_device(&kcm_net_ops); 2390 sock_unregister(PF_KCM); 2391 proto_unregister(&kcm_proto); 2392 destroy_workqueue(kcm_wq); 2393 2394 kmem_cache_destroy(kcm_muxp); 2395 kmem_cache_destroy(kcm_psockp); 2396 } 2397 2398 module_init(kcm_init); 2399 module_exit(kcm_exit); 2400 2401 MODULE_LICENSE("GPL"); 2402 MODULE_ALIAS_NETPROTO(PF_KCM); 2403 2404