1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel Connection Multiplexor 4 * 5 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/errno.h> 10 #include <linux/errqueue.h> 11 #include <linux/file.h> 12 #include <linux/filter.h> 13 #include <linux/in.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/net.h> 17 #include <linux/netdevice.h> 18 #include <linux/poll.h> 19 #include <linux/rculist.h> 20 #include <linux/skbuff.h> 21 #include <linux/socket.h> 22 #include <linux/uaccess.h> 23 #include <linux/workqueue.h> 24 #include <linux/syscalls.h> 25 #include <linux/sched/signal.h> 26 27 #include <net/kcm.h> 28 #include <net/netns/generic.h> 29 #include <net/sock.h> 30 #include <uapi/linux/kcm.h> 31 32 unsigned int kcm_net_id; 33 34 static struct kmem_cache *kcm_psockp __read_mostly; 35 static struct kmem_cache *kcm_muxp __read_mostly; 36 static struct workqueue_struct *kcm_wq; 37 38 static inline struct kcm_sock *kcm_sk(const struct sock *sk) 39 { 40 return (struct kcm_sock *)sk; 41 } 42 43 static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb) 44 { 45 return (struct kcm_tx_msg *)skb->cb; 46 } 47 48 static void report_csk_error(struct sock *csk, int err) 49 { 50 csk->sk_err = EPIPE; 51 sk_error_report(csk); 52 } 53 54 static void kcm_abort_tx_psock(struct kcm_psock *psock, int err, 55 bool wakeup_kcm) 56 { 57 struct sock *csk = psock->sk; 58 struct kcm_mux *mux = psock->mux; 59 60 /* Unrecoverable error in transmit */ 61 62 spin_lock_bh(&mux->lock); 63 64 if (psock->tx_stopped) { 65 spin_unlock_bh(&mux->lock); 66 return; 67 } 68 69 psock->tx_stopped = 1; 70 KCM_STATS_INCR(psock->stats.tx_aborts); 71 72 if (!psock->tx_kcm) { 73 /* Take off psocks_avail list */ 74 list_del(&psock->psock_avail_list); 75 } else if (wakeup_kcm) { 76 /* In this case psock is being aborted while outside of 77 * write_msgs and psock is reserved. Schedule tx_work 78 * to handle the failure there. Need to commit tx_stopped 79 * before queuing work. 80 */ 81 smp_mb(); 82 83 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 84 } 85 86 spin_unlock_bh(&mux->lock); 87 88 /* Report error on lower socket */ 89 report_csk_error(csk, err); 90 } 91 92 /* RX mux lock held. */ 93 static void kcm_update_rx_mux_stats(struct kcm_mux *mux, 94 struct kcm_psock *psock) 95 { 96 STRP_STATS_ADD(mux->stats.rx_bytes, 97 psock->strp.stats.bytes - 98 psock->saved_rx_bytes); 99 mux->stats.rx_msgs += 100 psock->strp.stats.msgs - psock->saved_rx_msgs; 101 psock->saved_rx_msgs = psock->strp.stats.msgs; 102 psock->saved_rx_bytes = psock->strp.stats.bytes; 103 } 104 105 static void kcm_update_tx_mux_stats(struct kcm_mux *mux, 106 struct kcm_psock *psock) 107 { 108 KCM_STATS_ADD(mux->stats.tx_bytes, 109 psock->stats.tx_bytes - psock->saved_tx_bytes); 110 mux->stats.tx_msgs += 111 psock->stats.tx_msgs - psock->saved_tx_msgs; 112 psock->saved_tx_msgs = psock->stats.tx_msgs; 113 psock->saved_tx_bytes = psock->stats.tx_bytes; 114 } 115 116 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 117 118 /* KCM is ready to receive messages on its queue-- either the KCM is new or 119 * has become unblocked after being blocked on full socket buffer. Queue any 120 * pending ready messages on a psock. RX mux lock held. 121 */ 122 static void kcm_rcv_ready(struct kcm_sock *kcm) 123 { 124 struct kcm_mux *mux = kcm->mux; 125 struct kcm_psock *psock; 126 struct sk_buff *skb; 127 128 if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled)) 129 return; 130 131 while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) { 132 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 133 /* Assuming buffer limit has been reached */ 134 skb_queue_head(&mux->rx_hold_queue, skb); 135 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 136 return; 137 } 138 } 139 140 while (!list_empty(&mux->psocks_ready)) { 141 psock = list_first_entry(&mux->psocks_ready, struct kcm_psock, 142 psock_ready_list); 143 144 if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) { 145 /* Assuming buffer limit has been reached */ 146 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 147 return; 148 } 149 150 /* Consumed the ready message on the psock. Schedule rx_work to 151 * get more messages. 152 */ 153 list_del(&psock->psock_ready_list); 154 psock->ready_rx_msg = NULL; 155 /* Commit clearing of ready_rx_msg for queuing work */ 156 smp_mb(); 157 158 strp_unpause(&psock->strp); 159 strp_check_rcv(&psock->strp); 160 } 161 162 /* Buffer limit is okay now, add to ready list */ 163 list_add_tail(&kcm->wait_rx_list, 164 &kcm->mux->kcm_rx_waiters); 165 kcm->rx_wait = true; 166 } 167 168 static void kcm_rfree(struct sk_buff *skb) 169 { 170 struct sock *sk = skb->sk; 171 struct kcm_sock *kcm = kcm_sk(sk); 172 struct kcm_mux *mux = kcm->mux; 173 unsigned int len = skb->truesize; 174 175 sk_mem_uncharge(sk, len); 176 atomic_sub(len, &sk->sk_rmem_alloc); 177 178 /* For reading rx_wait and rx_psock without holding lock */ 179 smp_mb__after_atomic(); 180 181 if (!kcm->rx_wait && !kcm->rx_psock && 182 sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) { 183 spin_lock_bh(&mux->rx_lock); 184 kcm_rcv_ready(kcm); 185 spin_unlock_bh(&mux->rx_lock); 186 } 187 } 188 189 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 190 { 191 struct sk_buff_head *list = &sk->sk_receive_queue; 192 193 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 194 return -ENOMEM; 195 196 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 197 return -ENOBUFS; 198 199 skb->dev = NULL; 200 201 skb_orphan(skb); 202 skb->sk = sk; 203 skb->destructor = kcm_rfree; 204 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 205 sk_mem_charge(sk, skb->truesize); 206 207 skb_queue_tail(list, skb); 208 209 if (!sock_flag(sk, SOCK_DEAD)) 210 sk->sk_data_ready(sk); 211 212 return 0; 213 } 214 215 /* Requeue received messages for a kcm socket to other kcm sockets. This is 216 * called with a kcm socket is receive disabled. 217 * RX mux lock held. 218 */ 219 static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head) 220 { 221 struct sk_buff *skb; 222 struct kcm_sock *kcm; 223 224 while ((skb = __skb_dequeue(head))) { 225 /* Reset destructor to avoid calling kcm_rcv_ready */ 226 skb->destructor = sock_rfree; 227 skb_orphan(skb); 228 try_again: 229 if (list_empty(&mux->kcm_rx_waiters)) { 230 skb_queue_tail(&mux->rx_hold_queue, skb); 231 continue; 232 } 233 234 kcm = list_first_entry(&mux->kcm_rx_waiters, 235 struct kcm_sock, wait_rx_list); 236 237 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 238 /* Should mean socket buffer full */ 239 list_del(&kcm->wait_rx_list); 240 kcm->rx_wait = false; 241 242 /* Commit rx_wait to read in kcm_free */ 243 smp_wmb(); 244 245 goto try_again; 246 } 247 } 248 } 249 250 /* Lower sock lock held */ 251 static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock, 252 struct sk_buff *head) 253 { 254 struct kcm_mux *mux = psock->mux; 255 struct kcm_sock *kcm; 256 257 WARN_ON(psock->ready_rx_msg); 258 259 if (psock->rx_kcm) 260 return psock->rx_kcm; 261 262 spin_lock_bh(&mux->rx_lock); 263 264 if (psock->rx_kcm) { 265 spin_unlock_bh(&mux->rx_lock); 266 return psock->rx_kcm; 267 } 268 269 kcm_update_rx_mux_stats(mux, psock); 270 271 if (list_empty(&mux->kcm_rx_waiters)) { 272 psock->ready_rx_msg = head; 273 strp_pause(&psock->strp); 274 list_add_tail(&psock->psock_ready_list, 275 &mux->psocks_ready); 276 spin_unlock_bh(&mux->rx_lock); 277 return NULL; 278 } 279 280 kcm = list_first_entry(&mux->kcm_rx_waiters, 281 struct kcm_sock, wait_rx_list); 282 list_del(&kcm->wait_rx_list); 283 kcm->rx_wait = false; 284 285 psock->rx_kcm = kcm; 286 kcm->rx_psock = psock; 287 288 spin_unlock_bh(&mux->rx_lock); 289 290 return kcm; 291 } 292 293 static void kcm_done(struct kcm_sock *kcm); 294 295 static void kcm_done_work(struct work_struct *w) 296 { 297 kcm_done(container_of(w, struct kcm_sock, done_work)); 298 } 299 300 /* Lower sock held */ 301 static void unreserve_rx_kcm(struct kcm_psock *psock, 302 bool rcv_ready) 303 { 304 struct kcm_sock *kcm = psock->rx_kcm; 305 struct kcm_mux *mux = psock->mux; 306 307 if (!kcm) 308 return; 309 310 spin_lock_bh(&mux->rx_lock); 311 312 psock->rx_kcm = NULL; 313 kcm->rx_psock = NULL; 314 315 /* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with 316 * kcm_rfree 317 */ 318 smp_mb(); 319 320 if (unlikely(kcm->done)) { 321 spin_unlock_bh(&mux->rx_lock); 322 323 /* Need to run kcm_done in a task since we need to qcquire 324 * callback locks which may already be held here. 325 */ 326 INIT_WORK(&kcm->done_work, kcm_done_work); 327 schedule_work(&kcm->done_work); 328 return; 329 } 330 331 if (unlikely(kcm->rx_disabled)) { 332 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 333 } else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) { 334 /* Check for degenerative race with rx_wait that all 335 * data was dequeued (accounted for in kcm_rfree). 336 */ 337 kcm_rcv_ready(kcm); 338 } 339 spin_unlock_bh(&mux->rx_lock); 340 } 341 342 /* Lower sock lock held */ 343 static void psock_data_ready(struct sock *sk) 344 { 345 struct kcm_psock *psock; 346 347 read_lock_bh(&sk->sk_callback_lock); 348 349 psock = (struct kcm_psock *)sk->sk_user_data; 350 if (likely(psock)) 351 strp_data_ready(&psock->strp); 352 353 read_unlock_bh(&sk->sk_callback_lock); 354 } 355 356 /* Called with lower sock held */ 357 static void kcm_rcv_strparser(struct strparser *strp, struct sk_buff *skb) 358 { 359 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 360 struct kcm_sock *kcm; 361 362 try_queue: 363 kcm = reserve_rx_kcm(psock, skb); 364 if (!kcm) { 365 /* Unable to reserve a KCM, message is held in psock and strp 366 * is paused. 367 */ 368 return; 369 } 370 371 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 372 /* Should mean socket buffer full */ 373 unreserve_rx_kcm(psock, false); 374 goto try_queue; 375 } 376 } 377 378 static int kcm_parse_func_strparser(struct strparser *strp, struct sk_buff *skb) 379 { 380 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 381 struct bpf_prog *prog = psock->bpf_prog; 382 int res; 383 384 res = bpf_prog_run_pin_on_cpu(prog, skb); 385 return res; 386 } 387 388 static int kcm_read_sock_done(struct strparser *strp, int err) 389 { 390 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 391 392 unreserve_rx_kcm(psock, true); 393 394 return err; 395 } 396 397 static void psock_state_change(struct sock *sk) 398 { 399 /* TCP only does a EPOLLIN for a half close. Do a EPOLLHUP here 400 * since application will normally not poll with EPOLLIN 401 * on the TCP sockets. 402 */ 403 404 report_csk_error(sk, EPIPE); 405 } 406 407 static void psock_write_space(struct sock *sk) 408 { 409 struct kcm_psock *psock; 410 struct kcm_mux *mux; 411 struct kcm_sock *kcm; 412 413 read_lock_bh(&sk->sk_callback_lock); 414 415 psock = (struct kcm_psock *)sk->sk_user_data; 416 if (unlikely(!psock)) 417 goto out; 418 mux = psock->mux; 419 420 spin_lock_bh(&mux->lock); 421 422 /* Check if the socket is reserved so someone is waiting for sending. */ 423 kcm = psock->tx_kcm; 424 if (kcm && !unlikely(kcm->tx_stopped)) 425 queue_work(kcm_wq, &kcm->tx_work); 426 427 spin_unlock_bh(&mux->lock); 428 out: 429 read_unlock_bh(&sk->sk_callback_lock); 430 } 431 432 static void unreserve_psock(struct kcm_sock *kcm); 433 434 /* kcm sock is locked. */ 435 static struct kcm_psock *reserve_psock(struct kcm_sock *kcm) 436 { 437 struct kcm_mux *mux = kcm->mux; 438 struct kcm_psock *psock; 439 440 psock = kcm->tx_psock; 441 442 smp_rmb(); /* Must read tx_psock before tx_wait */ 443 444 if (psock) { 445 WARN_ON(kcm->tx_wait); 446 if (unlikely(psock->tx_stopped)) 447 unreserve_psock(kcm); 448 else 449 return kcm->tx_psock; 450 } 451 452 spin_lock_bh(&mux->lock); 453 454 /* Check again under lock to see if psock was reserved for this 455 * psock via psock_unreserve. 456 */ 457 psock = kcm->tx_psock; 458 if (unlikely(psock)) { 459 WARN_ON(kcm->tx_wait); 460 spin_unlock_bh(&mux->lock); 461 return kcm->tx_psock; 462 } 463 464 if (!list_empty(&mux->psocks_avail)) { 465 psock = list_first_entry(&mux->psocks_avail, 466 struct kcm_psock, 467 psock_avail_list); 468 list_del(&psock->psock_avail_list); 469 if (kcm->tx_wait) { 470 list_del(&kcm->wait_psock_list); 471 kcm->tx_wait = false; 472 } 473 kcm->tx_psock = psock; 474 psock->tx_kcm = kcm; 475 KCM_STATS_INCR(psock->stats.reserved); 476 } else if (!kcm->tx_wait) { 477 list_add_tail(&kcm->wait_psock_list, 478 &mux->kcm_tx_waiters); 479 kcm->tx_wait = true; 480 } 481 482 spin_unlock_bh(&mux->lock); 483 484 return psock; 485 } 486 487 /* mux lock held */ 488 static void psock_now_avail(struct kcm_psock *psock) 489 { 490 struct kcm_mux *mux = psock->mux; 491 struct kcm_sock *kcm; 492 493 if (list_empty(&mux->kcm_tx_waiters)) { 494 list_add_tail(&psock->psock_avail_list, 495 &mux->psocks_avail); 496 } else { 497 kcm = list_first_entry(&mux->kcm_tx_waiters, 498 struct kcm_sock, 499 wait_psock_list); 500 list_del(&kcm->wait_psock_list); 501 kcm->tx_wait = false; 502 psock->tx_kcm = kcm; 503 504 /* Commit before changing tx_psock since that is read in 505 * reserve_psock before queuing work. 506 */ 507 smp_mb(); 508 509 kcm->tx_psock = psock; 510 KCM_STATS_INCR(psock->stats.reserved); 511 queue_work(kcm_wq, &kcm->tx_work); 512 } 513 } 514 515 /* kcm sock is locked. */ 516 static void unreserve_psock(struct kcm_sock *kcm) 517 { 518 struct kcm_psock *psock; 519 struct kcm_mux *mux = kcm->mux; 520 521 spin_lock_bh(&mux->lock); 522 523 psock = kcm->tx_psock; 524 525 if (WARN_ON(!psock)) { 526 spin_unlock_bh(&mux->lock); 527 return; 528 } 529 530 smp_rmb(); /* Read tx_psock before tx_wait */ 531 532 kcm_update_tx_mux_stats(mux, psock); 533 534 WARN_ON(kcm->tx_wait); 535 536 kcm->tx_psock = NULL; 537 psock->tx_kcm = NULL; 538 KCM_STATS_INCR(psock->stats.unreserved); 539 540 if (unlikely(psock->tx_stopped)) { 541 if (psock->done) { 542 /* Deferred free */ 543 list_del(&psock->psock_list); 544 mux->psocks_cnt--; 545 sock_put(psock->sk); 546 fput(psock->sk->sk_socket->file); 547 kmem_cache_free(kcm_psockp, psock); 548 } 549 550 /* Don't put back on available list */ 551 552 spin_unlock_bh(&mux->lock); 553 554 return; 555 } 556 557 psock_now_avail(psock); 558 559 spin_unlock_bh(&mux->lock); 560 } 561 562 static void kcm_report_tx_retry(struct kcm_sock *kcm) 563 { 564 struct kcm_mux *mux = kcm->mux; 565 566 spin_lock_bh(&mux->lock); 567 KCM_STATS_INCR(mux->stats.tx_retries); 568 spin_unlock_bh(&mux->lock); 569 } 570 571 /* Write any messages ready on the kcm socket. Called with kcm sock lock 572 * held. Return bytes actually sent or error. 573 */ 574 static int kcm_write_msgs(struct kcm_sock *kcm) 575 { 576 struct sock *sk = &kcm->sk; 577 struct kcm_psock *psock; 578 struct sk_buff *skb, *head; 579 struct kcm_tx_msg *txm; 580 unsigned short fragidx, frag_offset; 581 unsigned int sent, total_sent = 0; 582 int ret = 0; 583 584 kcm->tx_wait_more = false; 585 psock = kcm->tx_psock; 586 if (unlikely(psock && psock->tx_stopped)) { 587 /* A reserved psock was aborted asynchronously. Unreserve 588 * it and we'll retry the message. 589 */ 590 unreserve_psock(kcm); 591 kcm_report_tx_retry(kcm); 592 if (skb_queue_empty(&sk->sk_write_queue)) 593 return 0; 594 595 kcm_tx_msg(skb_peek(&sk->sk_write_queue))->sent = 0; 596 597 } else if (skb_queue_empty(&sk->sk_write_queue)) { 598 return 0; 599 } 600 601 head = skb_peek(&sk->sk_write_queue); 602 txm = kcm_tx_msg(head); 603 604 if (txm->sent) { 605 /* Send of first skbuff in queue already in progress */ 606 if (WARN_ON(!psock)) { 607 ret = -EINVAL; 608 goto out; 609 } 610 sent = txm->sent; 611 frag_offset = txm->frag_offset; 612 fragidx = txm->fragidx; 613 skb = txm->frag_skb; 614 615 goto do_frag; 616 } 617 618 try_again: 619 psock = reserve_psock(kcm); 620 if (!psock) 621 goto out; 622 623 do { 624 skb = head; 625 txm = kcm_tx_msg(head); 626 sent = 0; 627 628 do_frag_list: 629 if (WARN_ON(!skb_shinfo(skb)->nr_frags)) { 630 ret = -EINVAL; 631 goto out; 632 } 633 634 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; 635 fragidx++) { 636 skb_frag_t *frag; 637 638 frag_offset = 0; 639 do_frag: 640 frag = &skb_shinfo(skb)->frags[fragidx]; 641 if (WARN_ON(!skb_frag_size(frag))) { 642 ret = -EINVAL; 643 goto out; 644 } 645 646 ret = kernel_sendpage(psock->sk->sk_socket, 647 skb_frag_page(frag), 648 skb_frag_off(frag) + frag_offset, 649 skb_frag_size(frag) - frag_offset, 650 MSG_DONTWAIT); 651 if (ret <= 0) { 652 if (ret == -EAGAIN) { 653 /* Save state to try again when there's 654 * write space on the socket 655 */ 656 txm->sent = sent; 657 txm->frag_offset = frag_offset; 658 txm->fragidx = fragidx; 659 txm->frag_skb = skb; 660 661 ret = 0; 662 goto out; 663 } 664 665 /* Hard failure in sending message, abort this 666 * psock since it has lost framing 667 * synchronization and retry sending the 668 * message from the beginning. 669 */ 670 kcm_abort_tx_psock(psock, ret ? -ret : EPIPE, 671 true); 672 unreserve_psock(kcm); 673 674 txm->sent = 0; 675 kcm_report_tx_retry(kcm); 676 ret = 0; 677 678 goto try_again; 679 } 680 681 sent += ret; 682 frag_offset += ret; 683 KCM_STATS_ADD(psock->stats.tx_bytes, ret); 684 if (frag_offset < skb_frag_size(frag)) { 685 /* Not finished with this frag */ 686 goto do_frag; 687 } 688 } 689 690 if (skb == head) { 691 if (skb_has_frag_list(skb)) { 692 skb = skb_shinfo(skb)->frag_list; 693 goto do_frag_list; 694 } 695 } else if (skb->next) { 696 skb = skb->next; 697 goto do_frag_list; 698 } 699 700 /* Successfully sent the whole packet, account for it. */ 701 skb_dequeue(&sk->sk_write_queue); 702 kfree_skb(head); 703 sk->sk_wmem_queued -= sent; 704 total_sent += sent; 705 KCM_STATS_INCR(psock->stats.tx_msgs); 706 } while ((head = skb_peek(&sk->sk_write_queue))); 707 out: 708 if (!head) { 709 /* Done with all queued messages. */ 710 WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); 711 unreserve_psock(kcm); 712 } 713 714 /* Check if write space is available */ 715 sk->sk_write_space(sk); 716 717 return total_sent ? : ret; 718 } 719 720 static void kcm_tx_work(struct work_struct *w) 721 { 722 struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work); 723 struct sock *sk = &kcm->sk; 724 int err; 725 726 lock_sock(sk); 727 728 /* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx 729 * aborts 730 */ 731 err = kcm_write_msgs(kcm); 732 if (err < 0) { 733 /* Hard failure in write, report error on KCM socket */ 734 pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err); 735 report_csk_error(&kcm->sk, -err); 736 goto out; 737 } 738 739 /* Primarily for SOCK_SEQPACKET sockets */ 740 if (likely(sk->sk_socket) && 741 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 742 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 743 sk->sk_write_space(sk); 744 } 745 746 out: 747 release_sock(sk); 748 } 749 750 static void kcm_push(struct kcm_sock *kcm) 751 { 752 if (kcm->tx_wait_more) 753 kcm_write_msgs(kcm); 754 } 755 756 static ssize_t kcm_sendpage(struct socket *sock, struct page *page, 757 int offset, size_t size, int flags) 758 759 { 760 struct sock *sk = sock->sk; 761 struct kcm_sock *kcm = kcm_sk(sk); 762 struct sk_buff *skb = NULL, *head = NULL; 763 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 764 bool eor; 765 int err = 0; 766 int i; 767 768 if (flags & MSG_SENDPAGE_NOTLAST) 769 flags |= MSG_MORE; 770 771 /* No MSG_EOR from splice, only look at MSG_MORE */ 772 eor = !(flags & MSG_MORE); 773 774 lock_sock(sk); 775 776 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 777 778 err = -EPIPE; 779 if (sk->sk_err) 780 goto out_error; 781 782 if (kcm->seq_skb) { 783 /* Previously opened message */ 784 head = kcm->seq_skb; 785 skb = kcm_tx_msg(head)->last_skb; 786 i = skb_shinfo(skb)->nr_frags; 787 788 if (skb_can_coalesce(skb, i, page, offset)) { 789 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 790 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 791 goto coalesced; 792 } 793 794 if (i >= MAX_SKB_FRAGS) { 795 struct sk_buff *tskb; 796 797 tskb = alloc_skb(0, sk->sk_allocation); 798 while (!tskb) { 799 kcm_push(kcm); 800 err = sk_stream_wait_memory(sk, &timeo); 801 if (err) 802 goto out_error; 803 } 804 805 if (head == skb) 806 skb_shinfo(head)->frag_list = tskb; 807 else 808 skb->next = tskb; 809 810 skb = tskb; 811 skb->ip_summed = CHECKSUM_UNNECESSARY; 812 i = 0; 813 } 814 } else { 815 /* Call the sk_stream functions to manage the sndbuf mem. */ 816 if (!sk_stream_memory_free(sk)) { 817 kcm_push(kcm); 818 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 819 err = sk_stream_wait_memory(sk, &timeo); 820 if (err) 821 goto out_error; 822 } 823 824 head = alloc_skb(0, sk->sk_allocation); 825 while (!head) { 826 kcm_push(kcm); 827 err = sk_stream_wait_memory(sk, &timeo); 828 if (err) 829 goto out_error; 830 } 831 832 skb = head; 833 i = 0; 834 } 835 836 get_page(page); 837 skb_fill_page_desc(skb, i, page, offset, size); 838 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 839 840 coalesced: 841 skb->len += size; 842 skb->data_len += size; 843 skb->truesize += size; 844 sk->sk_wmem_queued += size; 845 sk_mem_charge(sk, size); 846 847 if (head != skb) { 848 head->len += size; 849 head->data_len += size; 850 head->truesize += size; 851 } 852 853 if (eor) { 854 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 855 856 /* Message complete, queue it on send buffer */ 857 __skb_queue_tail(&sk->sk_write_queue, head); 858 kcm->seq_skb = NULL; 859 KCM_STATS_INCR(kcm->stats.tx_msgs); 860 861 if (flags & MSG_BATCH) { 862 kcm->tx_wait_more = true; 863 } else if (kcm->tx_wait_more || not_busy) { 864 err = kcm_write_msgs(kcm); 865 if (err < 0) { 866 /* We got a hard error in write_msgs but have 867 * already queued this message. Report an error 868 * in the socket, but don't affect return value 869 * from sendmsg 870 */ 871 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 872 report_csk_error(&kcm->sk, -err); 873 } 874 } 875 } else { 876 /* Message not complete, save state */ 877 kcm->seq_skb = head; 878 kcm_tx_msg(head)->last_skb = skb; 879 } 880 881 KCM_STATS_ADD(kcm->stats.tx_bytes, size); 882 883 release_sock(sk); 884 return size; 885 886 out_error: 887 kcm_push(kcm); 888 889 err = sk_stream_error(sk, flags, err); 890 891 /* make sure we wake any epoll edge trigger waiter */ 892 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 893 sk->sk_write_space(sk); 894 895 release_sock(sk); 896 return err; 897 } 898 899 static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 900 { 901 struct sock *sk = sock->sk; 902 struct kcm_sock *kcm = kcm_sk(sk); 903 struct sk_buff *skb = NULL, *head = NULL; 904 size_t copy, copied = 0; 905 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 906 int eor = (sock->type == SOCK_DGRAM) ? 907 !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR); 908 int err = -EPIPE; 909 910 lock_sock(sk); 911 912 /* Per tcp_sendmsg this should be in poll */ 913 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 914 915 if (sk->sk_err) 916 goto out_error; 917 918 if (kcm->seq_skb) { 919 /* Previously opened message */ 920 head = kcm->seq_skb; 921 skb = kcm_tx_msg(head)->last_skb; 922 goto start; 923 } 924 925 /* Call the sk_stream functions to manage the sndbuf mem. */ 926 if (!sk_stream_memory_free(sk)) { 927 kcm_push(kcm); 928 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 929 err = sk_stream_wait_memory(sk, &timeo); 930 if (err) 931 goto out_error; 932 } 933 934 if (msg_data_left(msg)) { 935 /* New message, alloc head skb */ 936 head = alloc_skb(0, sk->sk_allocation); 937 while (!head) { 938 kcm_push(kcm); 939 err = sk_stream_wait_memory(sk, &timeo); 940 if (err) 941 goto out_error; 942 943 head = alloc_skb(0, sk->sk_allocation); 944 } 945 946 skb = head; 947 948 /* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling 949 * csum_and_copy_from_iter from skb_do_copy_data_nocache. 950 */ 951 skb->ip_summed = CHECKSUM_UNNECESSARY; 952 } 953 954 start: 955 while (msg_data_left(msg)) { 956 bool merge = true; 957 int i = skb_shinfo(skb)->nr_frags; 958 struct page_frag *pfrag = sk_page_frag(sk); 959 960 if (!sk_page_frag_refill(sk, pfrag)) 961 goto wait_for_memory; 962 963 if (!skb_can_coalesce(skb, i, pfrag->page, 964 pfrag->offset)) { 965 if (i == MAX_SKB_FRAGS) { 966 struct sk_buff *tskb; 967 968 tskb = alloc_skb(0, sk->sk_allocation); 969 if (!tskb) 970 goto wait_for_memory; 971 972 if (head == skb) 973 skb_shinfo(head)->frag_list = tskb; 974 else 975 skb->next = tskb; 976 977 skb = tskb; 978 skb->ip_summed = CHECKSUM_UNNECESSARY; 979 continue; 980 } 981 merge = false; 982 } 983 984 copy = min_t(int, msg_data_left(msg), 985 pfrag->size - pfrag->offset); 986 987 if (!sk_wmem_schedule(sk, copy)) 988 goto wait_for_memory; 989 990 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 991 pfrag->page, 992 pfrag->offset, 993 copy); 994 if (err) 995 goto out_error; 996 997 /* Update the skb. */ 998 if (merge) { 999 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1000 } else { 1001 skb_fill_page_desc(skb, i, pfrag->page, 1002 pfrag->offset, copy); 1003 get_page(pfrag->page); 1004 } 1005 1006 pfrag->offset += copy; 1007 copied += copy; 1008 if (head != skb) { 1009 head->len += copy; 1010 head->data_len += copy; 1011 } 1012 1013 continue; 1014 1015 wait_for_memory: 1016 kcm_push(kcm); 1017 err = sk_stream_wait_memory(sk, &timeo); 1018 if (err) 1019 goto out_error; 1020 } 1021 1022 if (eor) { 1023 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 1024 1025 if (head) { 1026 /* Message complete, queue it on send buffer */ 1027 __skb_queue_tail(&sk->sk_write_queue, head); 1028 kcm->seq_skb = NULL; 1029 KCM_STATS_INCR(kcm->stats.tx_msgs); 1030 } 1031 1032 if (msg->msg_flags & MSG_BATCH) { 1033 kcm->tx_wait_more = true; 1034 } else if (kcm->tx_wait_more || not_busy) { 1035 err = kcm_write_msgs(kcm); 1036 if (err < 0) { 1037 /* We got a hard error in write_msgs but have 1038 * already queued this message. Report an error 1039 * in the socket, but don't affect return value 1040 * from sendmsg 1041 */ 1042 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 1043 report_csk_error(&kcm->sk, -err); 1044 } 1045 } 1046 } else { 1047 /* Message not complete, save state */ 1048 partial_message: 1049 if (head) { 1050 kcm->seq_skb = head; 1051 kcm_tx_msg(head)->last_skb = skb; 1052 } 1053 } 1054 1055 KCM_STATS_ADD(kcm->stats.tx_bytes, copied); 1056 1057 release_sock(sk); 1058 return copied; 1059 1060 out_error: 1061 kcm_push(kcm); 1062 1063 if (copied && sock->type == SOCK_SEQPACKET) { 1064 /* Wrote some bytes before encountering an 1065 * error, return partial success. 1066 */ 1067 goto partial_message; 1068 } 1069 1070 if (head != kcm->seq_skb) 1071 kfree_skb(head); 1072 1073 err = sk_stream_error(sk, msg->msg_flags, err); 1074 1075 /* make sure we wake any epoll edge trigger waiter */ 1076 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1077 sk->sk_write_space(sk); 1078 1079 release_sock(sk); 1080 return err; 1081 } 1082 1083 static struct sk_buff *kcm_wait_data(struct sock *sk, int flags, 1084 long timeo, int *err) 1085 { 1086 struct sk_buff *skb; 1087 1088 while (!(skb = skb_peek(&sk->sk_receive_queue))) { 1089 if (sk->sk_err) { 1090 *err = sock_error(sk); 1091 return NULL; 1092 } 1093 1094 if (sock_flag(sk, SOCK_DONE)) 1095 return NULL; 1096 1097 if ((flags & MSG_DONTWAIT) || !timeo) { 1098 *err = -EAGAIN; 1099 return NULL; 1100 } 1101 1102 sk_wait_data(sk, &timeo, NULL); 1103 1104 /* Handle signals */ 1105 if (signal_pending(current)) { 1106 *err = sock_intr_errno(timeo); 1107 return NULL; 1108 } 1109 } 1110 1111 return skb; 1112 } 1113 1114 static int kcm_recvmsg(struct socket *sock, struct msghdr *msg, 1115 size_t len, int flags) 1116 { 1117 struct sock *sk = sock->sk; 1118 struct kcm_sock *kcm = kcm_sk(sk); 1119 int err = 0; 1120 long timeo; 1121 struct strp_msg *stm; 1122 int copied = 0; 1123 struct sk_buff *skb; 1124 1125 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1126 1127 lock_sock(sk); 1128 1129 skb = kcm_wait_data(sk, flags, timeo, &err); 1130 if (!skb) 1131 goto out; 1132 1133 /* Okay, have a message on the receive queue */ 1134 1135 stm = strp_msg(skb); 1136 1137 if (len > stm->full_len) 1138 len = stm->full_len; 1139 1140 err = skb_copy_datagram_msg(skb, stm->offset, msg, len); 1141 if (err < 0) 1142 goto out; 1143 1144 copied = len; 1145 if (likely(!(flags & MSG_PEEK))) { 1146 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1147 if (copied < stm->full_len) { 1148 if (sock->type == SOCK_DGRAM) { 1149 /* Truncated message */ 1150 msg->msg_flags |= MSG_TRUNC; 1151 goto msg_finished; 1152 } 1153 stm->offset += copied; 1154 stm->full_len -= copied; 1155 } else { 1156 msg_finished: 1157 /* Finished with message */ 1158 msg->msg_flags |= MSG_EOR; 1159 KCM_STATS_INCR(kcm->stats.rx_msgs); 1160 skb_unlink(skb, &sk->sk_receive_queue); 1161 kfree_skb(skb); 1162 } 1163 } 1164 1165 out: 1166 release_sock(sk); 1167 1168 return copied ? : err; 1169 } 1170 1171 static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos, 1172 struct pipe_inode_info *pipe, size_t len, 1173 unsigned int flags) 1174 { 1175 struct sock *sk = sock->sk; 1176 struct kcm_sock *kcm = kcm_sk(sk); 1177 long timeo; 1178 struct strp_msg *stm; 1179 int err = 0; 1180 ssize_t copied; 1181 struct sk_buff *skb; 1182 1183 /* Only support splice for SOCKSEQPACKET */ 1184 1185 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 1186 1187 lock_sock(sk); 1188 1189 skb = kcm_wait_data(sk, flags, timeo, &err); 1190 if (!skb) 1191 goto err_out; 1192 1193 /* Okay, have a message on the receive queue */ 1194 1195 stm = strp_msg(skb); 1196 1197 if (len > stm->full_len) 1198 len = stm->full_len; 1199 1200 copied = skb_splice_bits(skb, sk, stm->offset, pipe, len, flags); 1201 if (copied < 0) { 1202 err = copied; 1203 goto err_out; 1204 } 1205 1206 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1207 1208 stm->offset += copied; 1209 stm->full_len -= copied; 1210 1211 /* We have no way to return MSG_EOR. If all the bytes have been 1212 * read we still leave the message in the receive socket buffer. 1213 * A subsequent recvmsg needs to be done to return MSG_EOR and 1214 * finish reading the message. 1215 */ 1216 1217 release_sock(sk); 1218 1219 return copied; 1220 1221 err_out: 1222 release_sock(sk); 1223 1224 return err; 1225 } 1226 1227 /* kcm sock lock held */ 1228 static void kcm_recv_disable(struct kcm_sock *kcm) 1229 { 1230 struct kcm_mux *mux = kcm->mux; 1231 1232 if (kcm->rx_disabled) 1233 return; 1234 1235 spin_lock_bh(&mux->rx_lock); 1236 1237 kcm->rx_disabled = 1; 1238 1239 /* If a psock is reserved we'll do cleanup in unreserve */ 1240 if (!kcm->rx_psock) { 1241 if (kcm->rx_wait) { 1242 list_del(&kcm->wait_rx_list); 1243 kcm->rx_wait = false; 1244 } 1245 1246 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 1247 } 1248 1249 spin_unlock_bh(&mux->rx_lock); 1250 } 1251 1252 /* kcm sock lock held */ 1253 static void kcm_recv_enable(struct kcm_sock *kcm) 1254 { 1255 struct kcm_mux *mux = kcm->mux; 1256 1257 if (!kcm->rx_disabled) 1258 return; 1259 1260 spin_lock_bh(&mux->rx_lock); 1261 1262 kcm->rx_disabled = 0; 1263 kcm_rcv_ready(kcm); 1264 1265 spin_unlock_bh(&mux->rx_lock); 1266 } 1267 1268 static int kcm_setsockopt(struct socket *sock, int level, int optname, 1269 sockptr_t optval, unsigned int optlen) 1270 { 1271 struct kcm_sock *kcm = kcm_sk(sock->sk); 1272 int val, valbool; 1273 int err = 0; 1274 1275 if (level != SOL_KCM) 1276 return -ENOPROTOOPT; 1277 1278 if (optlen < sizeof(int)) 1279 return -EINVAL; 1280 1281 if (copy_from_sockptr(&val, optval, sizeof(int))) 1282 return -EFAULT; 1283 1284 valbool = val ? 1 : 0; 1285 1286 switch (optname) { 1287 case KCM_RECV_DISABLE: 1288 lock_sock(&kcm->sk); 1289 if (valbool) 1290 kcm_recv_disable(kcm); 1291 else 1292 kcm_recv_enable(kcm); 1293 release_sock(&kcm->sk); 1294 break; 1295 default: 1296 err = -ENOPROTOOPT; 1297 } 1298 1299 return err; 1300 } 1301 1302 static int kcm_getsockopt(struct socket *sock, int level, int optname, 1303 char __user *optval, int __user *optlen) 1304 { 1305 struct kcm_sock *kcm = kcm_sk(sock->sk); 1306 int val, len; 1307 1308 if (level != SOL_KCM) 1309 return -ENOPROTOOPT; 1310 1311 if (get_user(len, optlen)) 1312 return -EFAULT; 1313 1314 len = min_t(unsigned int, len, sizeof(int)); 1315 if (len < 0) 1316 return -EINVAL; 1317 1318 switch (optname) { 1319 case KCM_RECV_DISABLE: 1320 val = kcm->rx_disabled; 1321 break; 1322 default: 1323 return -ENOPROTOOPT; 1324 } 1325 1326 if (put_user(len, optlen)) 1327 return -EFAULT; 1328 if (copy_to_user(optval, &val, len)) 1329 return -EFAULT; 1330 return 0; 1331 } 1332 1333 static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux) 1334 { 1335 struct kcm_sock *tkcm; 1336 struct list_head *head; 1337 int index = 0; 1338 1339 /* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so 1340 * we set sk_state, otherwise epoll_wait always returns right away with 1341 * EPOLLHUP 1342 */ 1343 kcm->sk.sk_state = TCP_ESTABLISHED; 1344 1345 /* Add to mux's kcm sockets list */ 1346 kcm->mux = mux; 1347 spin_lock_bh(&mux->lock); 1348 1349 head = &mux->kcm_socks; 1350 list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) { 1351 if (tkcm->index != index) 1352 break; 1353 head = &tkcm->kcm_sock_list; 1354 index++; 1355 } 1356 1357 list_add(&kcm->kcm_sock_list, head); 1358 kcm->index = index; 1359 1360 mux->kcm_socks_cnt++; 1361 spin_unlock_bh(&mux->lock); 1362 1363 INIT_WORK(&kcm->tx_work, kcm_tx_work); 1364 1365 spin_lock_bh(&mux->rx_lock); 1366 kcm_rcv_ready(kcm); 1367 spin_unlock_bh(&mux->rx_lock); 1368 } 1369 1370 static int kcm_attach(struct socket *sock, struct socket *csock, 1371 struct bpf_prog *prog) 1372 { 1373 struct kcm_sock *kcm = kcm_sk(sock->sk); 1374 struct kcm_mux *mux = kcm->mux; 1375 struct sock *csk; 1376 struct kcm_psock *psock = NULL, *tpsock; 1377 struct list_head *head; 1378 int index = 0; 1379 static const struct strp_callbacks cb = { 1380 .rcv_msg = kcm_rcv_strparser, 1381 .parse_msg = kcm_parse_func_strparser, 1382 .read_sock_done = kcm_read_sock_done, 1383 }; 1384 int err = 0; 1385 1386 csk = csock->sk; 1387 if (!csk) 1388 return -EINVAL; 1389 1390 lock_sock(csk); 1391 1392 /* Only allow TCP sockets to be attached for now */ 1393 if ((csk->sk_family != AF_INET && csk->sk_family != AF_INET6) || 1394 csk->sk_protocol != IPPROTO_TCP) { 1395 err = -EOPNOTSUPP; 1396 goto out; 1397 } 1398 1399 /* Don't allow listeners or closed sockets */ 1400 if (csk->sk_state == TCP_LISTEN || csk->sk_state == TCP_CLOSE) { 1401 err = -EOPNOTSUPP; 1402 goto out; 1403 } 1404 1405 psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL); 1406 if (!psock) { 1407 err = -ENOMEM; 1408 goto out; 1409 } 1410 1411 psock->mux = mux; 1412 psock->sk = csk; 1413 psock->bpf_prog = prog; 1414 1415 write_lock_bh(&csk->sk_callback_lock); 1416 1417 /* Check if sk_user_data is already by KCM or someone else. 1418 * Must be done under lock to prevent race conditions. 1419 */ 1420 if (csk->sk_user_data) { 1421 write_unlock_bh(&csk->sk_callback_lock); 1422 kmem_cache_free(kcm_psockp, psock); 1423 err = -EALREADY; 1424 goto out; 1425 } 1426 1427 err = strp_init(&psock->strp, csk, &cb); 1428 if (err) { 1429 write_unlock_bh(&csk->sk_callback_lock); 1430 kmem_cache_free(kcm_psockp, psock); 1431 goto out; 1432 } 1433 1434 psock->save_data_ready = csk->sk_data_ready; 1435 psock->save_write_space = csk->sk_write_space; 1436 psock->save_state_change = csk->sk_state_change; 1437 csk->sk_user_data = psock; 1438 csk->sk_data_ready = psock_data_ready; 1439 csk->sk_write_space = psock_write_space; 1440 csk->sk_state_change = psock_state_change; 1441 1442 write_unlock_bh(&csk->sk_callback_lock); 1443 1444 sock_hold(csk); 1445 1446 /* Finished initialization, now add the psock to the MUX. */ 1447 spin_lock_bh(&mux->lock); 1448 head = &mux->psocks; 1449 list_for_each_entry(tpsock, &mux->psocks, psock_list) { 1450 if (tpsock->index != index) 1451 break; 1452 head = &tpsock->psock_list; 1453 index++; 1454 } 1455 1456 list_add(&psock->psock_list, head); 1457 psock->index = index; 1458 1459 KCM_STATS_INCR(mux->stats.psock_attach); 1460 mux->psocks_cnt++; 1461 psock_now_avail(psock); 1462 spin_unlock_bh(&mux->lock); 1463 1464 /* Schedule RX work in case there are already bytes queued */ 1465 strp_check_rcv(&psock->strp); 1466 1467 out: 1468 release_sock(csk); 1469 1470 return err; 1471 } 1472 1473 static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info) 1474 { 1475 struct socket *csock; 1476 struct bpf_prog *prog; 1477 int err; 1478 1479 csock = sockfd_lookup(info->fd, &err); 1480 if (!csock) 1481 return -ENOENT; 1482 1483 prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER); 1484 if (IS_ERR(prog)) { 1485 err = PTR_ERR(prog); 1486 goto out; 1487 } 1488 1489 err = kcm_attach(sock, csock, prog); 1490 if (err) { 1491 bpf_prog_put(prog); 1492 goto out; 1493 } 1494 1495 /* Keep reference on file also */ 1496 1497 return 0; 1498 out: 1499 sockfd_put(csock); 1500 return err; 1501 } 1502 1503 static void kcm_unattach(struct kcm_psock *psock) 1504 { 1505 struct sock *csk = psock->sk; 1506 struct kcm_mux *mux = psock->mux; 1507 1508 lock_sock(csk); 1509 1510 /* Stop getting callbacks from TCP socket. After this there should 1511 * be no way to reserve a kcm for this psock. 1512 */ 1513 write_lock_bh(&csk->sk_callback_lock); 1514 csk->sk_user_data = NULL; 1515 csk->sk_data_ready = psock->save_data_ready; 1516 csk->sk_write_space = psock->save_write_space; 1517 csk->sk_state_change = psock->save_state_change; 1518 strp_stop(&psock->strp); 1519 1520 if (WARN_ON(psock->rx_kcm)) { 1521 write_unlock_bh(&csk->sk_callback_lock); 1522 release_sock(csk); 1523 return; 1524 } 1525 1526 spin_lock_bh(&mux->rx_lock); 1527 1528 /* Stop receiver activities. After this point psock should not be 1529 * able to get onto ready list either through callbacks or work. 1530 */ 1531 if (psock->ready_rx_msg) { 1532 list_del(&psock->psock_ready_list); 1533 kfree_skb(psock->ready_rx_msg); 1534 psock->ready_rx_msg = NULL; 1535 KCM_STATS_INCR(mux->stats.rx_ready_drops); 1536 } 1537 1538 spin_unlock_bh(&mux->rx_lock); 1539 1540 write_unlock_bh(&csk->sk_callback_lock); 1541 1542 /* Call strp_done without sock lock */ 1543 release_sock(csk); 1544 strp_done(&psock->strp); 1545 lock_sock(csk); 1546 1547 bpf_prog_put(psock->bpf_prog); 1548 1549 spin_lock_bh(&mux->lock); 1550 1551 aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats); 1552 save_strp_stats(&psock->strp, &mux->aggregate_strp_stats); 1553 1554 KCM_STATS_INCR(mux->stats.psock_unattach); 1555 1556 if (psock->tx_kcm) { 1557 /* psock was reserved. Just mark it finished and we will clean 1558 * up in the kcm paths, we need kcm lock which can not be 1559 * acquired here. 1560 */ 1561 KCM_STATS_INCR(mux->stats.psock_unattach_rsvd); 1562 spin_unlock_bh(&mux->lock); 1563 1564 /* We are unattaching a socket that is reserved. Abort the 1565 * socket since we may be out of sync in sending on it. We need 1566 * to do this without the mux lock. 1567 */ 1568 kcm_abort_tx_psock(psock, EPIPE, false); 1569 1570 spin_lock_bh(&mux->lock); 1571 if (!psock->tx_kcm) { 1572 /* psock now unreserved in window mux was unlocked */ 1573 goto no_reserved; 1574 } 1575 psock->done = 1; 1576 1577 /* Commit done before queuing work to process it */ 1578 smp_mb(); 1579 1580 /* Queue tx work to make sure psock->done is handled */ 1581 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 1582 spin_unlock_bh(&mux->lock); 1583 } else { 1584 no_reserved: 1585 if (!psock->tx_stopped) 1586 list_del(&psock->psock_avail_list); 1587 list_del(&psock->psock_list); 1588 mux->psocks_cnt--; 1589 spin_unlock_bh(&mux->lock); 1590 1591 sock_put(csk); 1592 fput(csk->sk_socket->file); 1593 kmem_cache_free(kcm_psockp, psock); 1594 } 1595 1596 release_sock(csk); 1597 } 1598 1599 static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info) 1600 { 1601 struct kcm_sock *kcm = kcm_sk(sock->sk); 1602 struct kcm_mux *mux = kcm->mux; 1603 struct kcm_psock *psock; 1604 struct socket *csock; 1605 struct sock *csk; 1606 int err; 1607 1608 csock = sockfd_lookup(info->fd, &err); 1609 if (!csock) 1610 return -ENOENT; 1611 1612 csk = csock->sk; 1613 if (!csk) { 1614 err = -EINVAL; 1615 goto out; 1616 } 1617 1618 err = -ENOENT; 1619 1620 spin_lock_bh(&mux->lock); 1621 1622 list_for_each_entry(psock, &mux->psocks, psock_list) { 1623 if (psock->sk != csk) 1624 continue; 1625 1626 /* Found the matching psock */ 1627 1628 if (psock->unattaching || WARN_ON(psock->done)) { 1629 err = -EALREADY; 1630 break; 1631 } 1632 1633 psock->unattaching = 1; 1634 1635 spin_unlock_bh(&mux->lock); 1636 1637 /* Lower socket lock should already be held */ 1638 kcm_unattach(psock); 1639 1640 err = 0; 1641 goto out; 1642 } 1643 1644 spin_unlock_bh(&mux->lock); 1645 1646 out: 1647 sockfd_put(csock); 1648 return err; 1649 } 1650 1651 static struct proto kcm_proto = { 1652 .name = "KCM", 1653 .owner = THIS_MODULE, 1654 .obj_size = sizeof(struct kcm_sock), 1655 }; 1656 1657 /* Clone a kcm socket. */ 1658 static struct file *kcm_clone(struct socket *osock) 1659 { 1660 struct socket *newsock; 1661 struct sock *newsk; 1662 1663 newsock = sock_alloc(); 1664 if (!newsock) 1665 return ERR_PTR(-ENFILE); 1666 1667 newsock->type = osock->type; 1668 newsock->ops = osock->ops; 1669 1670 __module_get(newsock->ops->owner); 1671 1672 newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL, 1673 &kcm_proto, false); 1674 if (!newsk) { 1675 sock_release(newsock); 1676 return ERR_PTR(-ENOMEM); 1677 } 1678 sock_init_data(newsock, newsk); 1679 init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux); 1680 1681 return sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name); 1682 } 1683 1684 static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1685 { 1686 int err; 1687 1688 switch (cmd) { 1689 case SIOCKCMATTACH: { 1690 struct kcm_attach info; 1691 1692 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1693 return -EFAULT; 1694 1695 err = kcm_attach_ioctl(sock, &info); 1696 1697 break; 1698 } 1699 case SIOCKCMUNATTACH: { 1700 struct kcm_unattach info; 1701 1702 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1703 return -EFAULT; 1704 1705 err = kcm_unattach_ioctl(sock, &info); 1706 1707 break; 1708 } 1709 case SIOCKCMCLONE: { 1710 struct kcm_clone info; 1711 struct file *file; 1712 1713 info.fd = get_unused_fd_flags(0); 1714 if (unlikely(info.fd < 0)) 1715 return info.fd; 1716 1717 file = kcm_clone(sock); 1718 if (IS_ERR(file)) { 1719 put_unused_fd(info.fd); 1720 return PTR_ERR(file); 1721 } 1722 if (copy_to_user((void __user *)arg, &info, 1723 sizeof(info))) { 1724 put_unused_fd(info.fd); 1725 fput(file); 1726 return -EFAULT; 1727 } 1728 fd_install(info.fd, file); 1729 err = 0; 1730 break; 1731 } 1732 default: 1733 err = -ENOIOCTLCMD; 1734 break; 1735 } 1736 1737 return err; 1738 } 1739 1740 static void free_mux(struct rcu_head *rcu) 1741 { 1742 struct kcm_mux *mux = container_of(rcu, 1743 struct kcm_mux, rcu); 1744 1745 kmem_cache_free(kcm_muxp, mux); 1746 } 1747 1748 static void release_mux(struct kcm_mux *mux) 1749 { 1750 struct kcm_net *knet = mux->knet; 1751 struct kcm_psock *psock, *tmp_psock; 1752 1753 /* Release psocks */ 1754 list_for_each_entry_safe(psock, tmp_psock, 1755 &mux->psocks, psock_list) { 1756 if (!WARN_ON(psock->unattaching)) 1757 kcm_unattach(psock); 1758 } 1759 1760 if (WARN_ON(mux->psocks_cnt)) 1761 return; 1762 1763 __skb_queue_purge(&mux->rx_hold_queue); 1764 1765 mutex_lock(&knet->mutex); 1766 aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats); 1767 aggregate_psock_stats(&mux->aggregate_psock_stats, 1768 &knet->aggregate_psock_stats); 1769 aggregate_strp_stats(&mux->aggregate_strp_stats, 1770 &knet->aggregate_strp_stats); 1771 list_del_rcu(&mux->kcm_mux_list); 1772 knet->count--; 1773 mutex_unlock(&knet->mutex); 1774 1775 call_rcu(&mux->rcu, free_mux); 1776 } 1777 1778 static void kcm_done(struct kcm_sock *kcm) 1779 { 1780 struct kcm_mux *mux = kcm->mux; 1781 struct sock *sk = &kcm->sk; 1782 int socks_cnt; 1783 1784 spin_lock_bh(&mux->rx_lock); 1785 if (kcm->rx_psock) { 1786 /* Cleanup in unreserve_rx_kcm */ 1787 WARN_ON(kcm->done); 1788 kcm->rx_disabled = 1; 1789 kcm->done = 1; 1790 spin_unlock_bh(&mux->rx_lock); 1791 return; 1792 } 1793 1794 if (kcm->rx_wait) { 1795 list_del(&kcm->wait_rx_list); 1796 kcm->rx_wait = false; 1797 } 1798 /* Move any pending receive messages to other kcm sockets */ 1799 requeue_rx_msgs(mux, &sk->sk_receive_queue); 1800 1801 spin_unlock_bh(&mux->rx_lock); 1802 1803 if (WARN_ON(sk_rmem_alloc_get(sk))) 1804 return; 1805 1806 /* Detach from MUX */ 1807 spin_lock_bh(&mux->lock); 1808 1809 list_del(&kcm->kcm_sock_list); 1810 mux->kcm_socks_cnt--; 1811 socks_cnt = mux->kcm_socks_cnt; 1812 1813 spin_unlock_bh(&mux->lock); 1814 1815 if (!socks_cnt) { 1816 /* We are done with the mux now. */ 1817 release_mux(mux); 1818 } 1819 1820 WARN_ON(kcm->rx_wait); 1821 1822 sock_put(&kcm->sk); 1823 } 1824 1825 /* Called by kcm_release to close a KCM socket. 1826 * If this is the last KCM socket on the MUX, destroy the MUX. 1827 */ 1828 static int kcm_release(struct socket *sock) 1829 { 1830 struct sock *sk = sock->sk; 1831 struct kcm_sock *kcm; 1832 struct kcm_mux *mux; 1833 struct kcm_psock *psock; 1834 1835 if (!sk) 1836 return 0; 1837 1838 kcm = kcm_sk(sk); 1839 mux = kcm->mux; 1840 1841 lock_sock(sk); 1842 sock_orphan(sk); 1843 kfree_skb(kcm->seq_skb); 1844 1845 /* Purge queue under lock to avoid race condition with tx_work trying 1846 * to act when queue is nonempty. If tx_work runs after this point 1847 * it will just return. 1848 */ 1849 __skb_queue_purge(&sk->sk_write_queue); 1850 1851 /* Set tx_stopped. This is checked when psock is bound to a kcm and we 1852 * get a writespace callback. This prevents further work being queued 1853 * from the callback (unbinding the psock occurs after canceling work. 1854 */ 1855 kcm->tx_stopped = 1; 1856 1857 release_sock(sk); 1858 1859 spin_lock_bh(&mux->lock); 1860 if (kcm->tx_wait) { 1861 /* Take of tx_wait list, after this point there should be no way 1862 * that a psock will be assigned to this kcm. 1863 */ 1864 list_del(&kcm->wait_psock_list); 1865 kcm->tx_wait = false; 1866 } 1867 spin_unlock_bh(&mux->lock); 1868 1869 /* Cancel work. After this point there should be no outside references 1870 * to the kcm socket. 1871 */ 1872 cancel_work_sync(&kcm->tx_work); 1873 1874 lock_sock(sk); 1875 psock = kcm->tx_psock; 1876 if (psock) { 1877 /* A psock was reserved, so we need to kill it since it 1878 * may already have some bytes queued from a message. We 1879 * need to do this after removing kcm from tx_wait list. 1880 */ 1881 kcm_abort_tx_psock(psock, EPIPE, false); 1882 unreserve_psock(kcm); 1883 } 1884 release_sock(sk); 1885 1886 WARN_ON(kcm->tx_wait); 1887 WARN_ON(kcm->tx_psock); 1888 1889 sock->sk = NULL; 1890 1891 kcm_done(kcm); 1892 1893 return 0; 1894 } 1895 1896 static const struct proto_ops kcm_dgram_ops = { 1897 .family = PF_KCM, 1898 .owner = THIS_MODULE, 1899 .release = kcm_release, 1900 .bind = sock_no_bind, 1901 .connect = sock_no_connect, 1902 .socketpair = sock_no_socketpair, 1903 .accept = sock_no_accept, 1904 .getname = sock_no_getname, 1905 .poll = datagram_poll, 1906 .ioctl = kcm_ioctl, 1907 .listen = sock_no_listen, 1908 .shutdown = sock_no_shutdown, 1909 .setsockopt = kcm_setsockopt, 1910 .getsockopt = kcm_getsockopt, 1911 .sendmsg = kcm_sendmsg, 1912 .recvmsg = kcm_recvmsg, 1913 .mmap = sock_no_mmap, 1914 .sendpage = kcm_sendpage, 1915 }; 1916 1917 static const struct proto_ops kcm_seqpacket_ops = { 1918 .family = PF_KCM, 1919 .owner = THIS_MODULE, 1920 .release = kcm_release, 1921 .bind = sock_no_bind, 1922 .connect = sock_no_connect, 1923 .socketpair = sock_no_socketpair, 1924 .accept = sock_no_accept, 1925 .getname = sock_no_getname, 1926 .poll = datagram_poll, 1927 .ioctl = kcm_ioctl, 1928 .listen = sock_no_listen, 1929 .shutdown = sock_no_shutdown, 1930 .setsockopt = kcm_setsockopt, 1931 .getsockopt = kcm_getsockopt, 1932 .sendmsg = kcm_sendmsg, 1933 .recvmsg = kcm_recvmsg, 1934 .mmap = sock_no_mmap, 1935 .sendpage = kcm_sendpage, 1936 .splice_read = kcm_splice_read, 1937 }; 1938 1939 /* Create proto operation for kcm sockets */ 1940 static int kcm_create(struct net *net, struct socket *sock, 1941 int protocol, int kern) 1942 { 1943 struct kcm_net *knet = net_generic(net, kcm_net_id); 1944 struct sock *sk; 1945 struct kcm_mux *mux; 1946 1947 switch (sock->type) { 1948 case SOCK_DGRAM: 1949 sock->ops = &kcm_dgram_ops; 1950 break; 1951 case SOCK_SEQPACKET: 1952 sock->ops = &kcm_seqpacket_ops; 1953 break; 1954 default: 1955 return -ESOCKTNOSUPPORT; 1956 } 1957 1958 if (protocol != KCMPROTO_CONNECTED) 1959 return -EPROTONOSUPPORT; 1960 1961 sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern); 1962 if (!sk) 1963 return -ENOMEM; 1964 1965 /* Allocate a kcm mux, shared between KCM sockets */ 1966 mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL); 1967 if (!mux) { 1968 sk_free(sk); 1969 return -ENOMEM; 1970 } 1971 1972 spin_lock_init(&mux->lock); 1973 spin_lock_init(&mux->rx_lock); 1974 INIT_LIST_HEAD(&mux->kcm_socks); 1975 INIT_LIST_HEAD(&mux->kcm_rx_waiters); 1976 INIT_LIST_HEAD(&mux->kcm_tx_waiters); 1977 1978 INIT_LIST_HEAD(&mux->psocks); 1979 INIT_LIST_HEAD(&mux->psocks_ready); 1980 INIT_LIST_HEAD(&mux->psocks_avail); 1981 1982 mux->knet = knet; 1983 1984 /* Add new MUX to list */ 1985 mutex_lock(&knet->mutex); 1986 list_add_rcu(&mux->kcm_mux_list, &knet->mux_list); 1987 knet->count++; 1988 mutex_unlock(&knet->mutex); 1989 1990 skb_queue_head_init(&mux->rx_hold_queue); 1991 1992 /* Init KCM socket */ 1993 sock_init_data(sock, sk); 1994 init_kcm_sock(kcm_sk(sk), mux); 1995 1996 return 0; 1997 } 1998 1999 static const struct net_proto_family kcm_family_ops = { 2000 .family = PF_KCM, 2001 .create = kcm_create, 2002 .owner = THIS_MODULE, 2003 }; 2004 2005 static __net_init int kcm_init_net(struct net *net) 2006 { 2007 struct kcm_net *knet = net_generic(net, kcm_net_id); 2008 2009 INIT_LIST_HEAD_RCU(&knet->mux_list); 2010 mutex_init(&knet->mutex); 2011 2012 return 0; 2013 } 2014 2015 static __net_exit void kcm_exit_net(struct net *net) 2016 { 2017 struct kcm_net *knet = net_generic(net, kcm_net_id); 2018 2019 /* All KCM sockets should be closed at this point, which should mean 2020 * that all multiplexors and psocks have been destroyed. 2021 */ 2022 WARN_ON(!list_empty(&knet->mux_list)); 2023 } 2024 2025 static struct pernet_operations kcm_net_ops = { 2026 .init = kcm_init_net, 2027 .exit = kcm_exit_net, 2028 .id = &kcm_net_id, 2029 .size = sizeof(struct kcm_net), 2030 }; 2031 2032 static int __init kcm_init(void) 2033 { 2034 int err = -ENOMEM; 2035 2036 kcm_muxp = kmem_cache_create("kcm_mux_cache", 2037 sizeof(struct kcm_mux), 0, 2038 SLAB_HWCACHE_ALIGN, NULL); 2039 if (!kcm_muxp) 2040 goto fail; 2041 2042 kcm_psockp = kmem_cache_create("kcm_psock_cache", 2043 sizeof(struct kcm_psock), 0, 2044 SLAB_HWCACHE_ALIGN, NULL); 2045 if (!kcm_psockp) 2046 goto fail; 2047 2048 kcm_wq = create_singlethread_workqueue("kkcmd"); 2049 if (!kcm_wq) 2050 goto fail; 2051 2052 err = proto_register(&kcm_proto, 1); 2053 if (err) 2054 goto fail; 2055 2056 err = register_pernet_device(&kcm_net_ops); 2057 if (err) 2058 goto net_ops_fail; 2059 2060 err = sock_register(&kcm_family_ops); 2061 if (err) 2062 goto sock_register_fail; 2063 2064 err = kcm_proc_init(); 2065 if (err) 2066 goto proc_init_fail; 2067 2068 return 0; 2069 2070 proc_init_fail: 2071 sock_unregister(PF_KCM); 2072 2073 sock_register_fail: 2074 unregister_pernet_device(&kcm_net_ops); 2075 2076 net_ops_fail: 2077 proto_unregister(&kcm_proto); 2078 2079 fail: 2080 kmem_cache_destroy(kcm_muxp); 2081 kmem_cache_destroy(kcm_psockp); 2082 2083 if (kcm_wq) 2084 destroy_workqueue(kcm_wq); 2085 2086 return err; 2087 } 2088 2089 static void __exit kcm_exit(void) 2090 { 2091 kcm_proc_exit(); 2092 sock_unregister(PF_KCM); 2093 unregister_pernet_device(&kcm_net_ops); 2094 proto_unregister(&kcm_proto); 2095 destroy_workqueue(kcm_wq); 2096 2097 kmem_cache_destroy(kcm_muxp); 2098 kmem_cache_destroy(kcm_psockp); 2099 } 2100 2101 module_init(kcm_init); 2102 module_exit(kcm_exit); 2103 2104 MODULE_LICENSE("GPL"); 2105 MODULE_ALIAS_NETPROTO(PF_KCM); 2106