1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel Connection Multiplexor 4 * 5 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/errno.h> 10 #include <linux/errqueue.h> 11 #include <linux/file.h> 12 #include <linux/filter.h> 13 #include <linux/in.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/net.h> 17 #include <linux/netdevice.h> 18 #include <linux/poll.h> 19 #include <linux/rculist.h> 20 #include <linux/skbuff.h> 21 #include <linux/socket.h> 22 #include <linux/uaccess.h> 23 #include <linux/workqueue.h> 24 #include <linux/syscalls.h> 25 #include <linux/sched/signal.h> 26 27 #include <net/kcm.h> 28 #include <net/netns/generic.h> 29 #include <net/sock.h> 30 #include <uapi/linux/kcm.h> 31 #include <trace/events/sock.h> 32 33 unsigned int kcm_net_id; 34 35 static struct kmem_cache *kcm_psockp __read_mostly; 36 static struct kmem_cache *kcm_muxp __read_mostly; 37 static struct workqueue_struct *kcm_wq; 38 39 static inline struct kcm_sock *kcm_sk(const struct sock *sk) 40 { 41 return (struct kcm_sock *)sk; 42 } 43 44 static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb) 45 { 46 return (struct kcm_tx_msg *)skb->cb; 47 } 48 49 static void report_csk_error(struct sock *csk, int err) 50 { 51 csk->sk_err = EPIPE; 52 sk_error_report(csk); 53 } 54 55 static void kcm_abort_tx_psock(struct kcm_psock *psock, int err, 56 bool wakeup_kcm) 57 { 58 struct sock *csk = psock->sk; 59 struct kcm_mux *mux = psock->mux; 60 61 /* Unrecoverable error in transmit */ 62 63 spin_lock_bh(&mux->lock); 64 65 if (psock->tx_stopped) { 66 spin_unlock_bh(&mux->lock); 67 return; 68 } 69 70 psock->tx_stopped = 1; 71 KCM_STATS_INCR(psock->stats.tx_aborts); 72 73 if (!psock->tx_kcm) { 74 /* Take off psocks_avail list */ 75 list_del(&psock->psock_avail_list); 76 } else if (wakeup_kcm) { 77 /* In this case psock is being aborted while outside of 78 * write_msgs and psock is reserved. Schedule tx_work 79 * to handle the failure there. Need to commit tx_stopped 80 * before queuing work. 81 */ 82 smp_mb(); 83 84 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 85 } 86 87 spin_unlock_bh(&mux->lock); 88 89 /* Report error on lower socket */ 90 report_csk_error(csk, err); 91 } 92 93 /* RX mux lock held. */ 94 static void kcm_update_rx_mux_stats(struct kcm_mux *mux, 95 struct kcm_psock *psock) 96 { 97 STRP_STATS_ADD(mux->stats.rx_bytes, 98 psock->strp.stats.bytes - 99 psock->saved_rx_bytes); 100 mux->stats.rx_msgs += 101 psock->strp.stats.msgs - psock->saved_rx_msgs; 102 psock->saved_rx_msgs = psock->strp.stats.msgs; 103 psock->saved_rx_bytes = psock->strp.stats.bytes; 104 } 105 106 static void kcm_update_tx_mux_stats(struct kcm_mux *mux, 107 struct kcm_psock *psock) 108 { 109 KCM_STATS_ADD(mux->stats.tx_bytes, 110 psock->stats.tx_bytes - psock->saved_tx_bytes); 111 mux->stats.tx_msgs += 112 psock->stats.tx_msgs - psock->saved_tx_msgs; 113 psock->saved_tx_msgs = psock->stats.tx_msgs; 114 psock->saved_tx_bytes = psock->stats.tx_bytes; 115 } 116 117 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 118 119 /* KCM is ready to receive messages on its queue-- either the KCM is new or 120 * has become unblocked after being blocked on full socket buffer. Queue any 121 * pending ready messages on a psock. RX mux lock held. 122 */ 123 static void kcm_rcv_ready(struct kcm_sock *kcm) 124 { 125 struct kcm_mux *mux = kcm->mux; 126 struct kcm_psock *psock; 127 struct sk_buff *skb; 128 129 if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled)) 130 return; 131 132 while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) { 133 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 134 /* Assuming buffer limit has been reached */ 135 skb_queue_head(&mux->rx_hold_queue, skb); 136 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 137 return; 138 } 139 } 140 141 while (!list_empty(&mux->psocks_ready)) { 142 psock = list_first_entry(&mux->psocks_ready, struct kcm_psock, 143 psock_ready_list); 144 145 if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) { 146 /* Assuming buffer limit has been reached */ 147 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 148 return; 149 } 150 151 /* Consumed the ready message on the psock. Schedule rx_work to 152 * get more messages. 153 */ 154 list_del(&psock->psock_ready_list); 155 psock->ready_rx_msg = NULL; 156 /* Commit clearing of ready_rx_msg for queuing work */ 157 smp_mb(); 158 159 strp_unpause(&psock->strp); 160 strp_check_rcv(&psock->strp); 161 } 162 163 /* Buffer limit is okay now, add to ready list */ 164 list_add_tail(&kcm->wait_rx_list, 165 &kcm->mux->kcm_rx_waiters); 166 /* paired with lockless reads in kcm_rfree() */ 167 WRITE_ONCE(kcm->rx_wait, true); 168 } 169 170 static void kcm_rfree(struct sk_buff *skb) 171 { 172 struct sock *sk = skb->sk; 173 struct kcm_sock *kcm = kcm_sk(sk); 174 struct kcm_mux *mux = kcm->mux; 175 unsigned int len = skb->truesize; 176 177 sk_mem_uncharge(sk, len); 178 atomic_sub(len, &sk->sk_rmem_alloc); 179 180 /* For reading rx_wait and rx_psock without holding lock */ 181 smp_mb__after_atomic(); 182 183 if (!READ_ONCE(kcm->rx_wait) && !READ_ONCE(kcm->rx_psock) && 184 sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) { 185 spin_lock_bh(&mux->rx_lock); 186 kcm_rcv_ready(kcm); 187 spin_unlock_bh(&mux->rx_lock); 188 } 189 } 190 191 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 192 { 193 struct sk_buff_head *list = &sk->sk_receive_queue; 194 195 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 196 return -ENOMEM; 197 198 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 199 return -ENOBUFS; 200 201 skb->dev = NULL; 202 203 skb_orphan(skb); 204 skb->sk = sk; 205 skb->destructor = kcm_rfree; 206 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 207 sk_mem_charge(sk, skb->truesize); 208 209 skb_queue_tail(list, skb); 210 211 if (!sock_flag(sk, SOCK_DEAD)) 212 sk->sk_data_ready(sk); 213 214 return 0; 215 } 216 217 /* Requeue received messages for a kcm socket to other kcm sockets. This is 218 * called with a kcm socket is receive disabled. 219 * RX mux lock held. 220 */ 221 static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head) 222 { 223 struct sk_buff *skb; 224 struct kcm_sock *kcm; 225 226 while ((skb = skb_dequeue(head))) { 227 /* Reset destructor to avoid calling kcm_rcv_ready */ 228 skb->destructor = sock_rfree; 229 skb_orphan(skb); 230 try_again: 231 if (list_empty(&mux->kcm_rx_waiters)) { 232 skb_queue_tail(&mux->rx_hold_queue, skb); 233 continue; 234 } 235 236 kcm = list_first_entry(&mux->kcm_rx_waiters, 237 struct kcm_sock, wait_rx_list); 238 239 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 240 /* Should mean socket buffer full */ 241 list_del(&kcm->wait_rx_list); 242 /* paired with lockless reads in kcm_rfree() */ 243 WRITE_ONCE(kcm->rx_wait, false); 244 245 /* Commit rx_wait to read in kcm_free */ 246 smp_wmb(); 247 248 goto try_again; 249 } 250 } 251 } 252 253 /* Lower sock lock held */ 254 static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock, 255 struct sk_buff *head) 256 { 257 struct kcm_mux *mux = psock->mux; 258 struct kcm_sock *kcm; 259 260 WARN_ON(psock->ready_rx_msg); 261 262 if (psock->rx_kcm) 263 return psock->rx_kcm; 264 265 spin_lock_bh(&mux->rx_lock); 266 267 if (psock->rx_kcm) { 268 spin_unlock_bh(&mux->rx_lock); 269 return psock->rx_kcm; 270 } 271 272 kcm_update_rx_mux_stats(mux, psock); 273 274 if (list_empty(&mux->kcm_rx_waiters)) { 275 psock->ready_rx_msg = head; 276 strp_pause(&psock->strp); 277 list_add_tail(&psock->psock_ready_list, 278 &mux->psocks_ready); 279 spin_unlock_bh(&mux->rx_lock); 280 return NULL; 281 } 282 283 kcm = list_first_entry(&mux->kcm_rx_waiters, 284 struct kcm_sock, wait_rx_list); 285 list_del(&kcm->wait_rx_list); 286 /* paired with lockless reads in kcm_rfree() */ 287 WRITE_ONCE(kcm->rx_wait, false); 288 289 psock->rx_kcm = kcm; 290 /* paired with lockless reads in kcm_rfree() */ 291 WRITE_ONCE(kcm->rx_psock, psock); 292 293 spin_unlock_bh(&mux->rx_lock); 294 295 return kcm; 296 } 297 298 static void kcm_done(struct kcm_sock *kcm); 299 300 static void kcm_done_work(struct work_struct *w) 301 { 302 kcm_done(container_of(w, struct kcm_sock, done_work)); 303 } 304 305 /* Lower sock held */ 306 static void unreserve_rx_kcm(struct kcm_psock *psock, 307 bool rcv_ready) 308 { 309 struct kcm_sock *kcm = psock->rx_kcm; 310 struct kcm_mux *mux = psock->mux; 311 312 if (!kcm) 313 return; 314 315 spin_lock_bh(&mux->rx_lock); 316 317 psock->rx_kcm = NULL; 318 /* paired with lockless reads in kcm_rfree() */ 319 WRITE_ONCE(kcm->rx_psock, NULL); 320 321 /* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with 322 * kcm_rfree 323 */ 324 smp_mb(); 325 326 if (unlikely(kcm->done)) { 327 spin_unlock_bh(&mux->rx_lock); 328 329 /* Need to run kcm_done in a task since we need to qcquire 330 * callback locks which may already be held here. 331 */ 332 INIT_WORK(&kcm->done_work, kcm_done_work); 333 schedule_work(&kcm->done_work); 334 return; 335 } 336 337 if (unlikely(kcm->rx_disabled)) { 338 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 339 } else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) { 340 /* Check for degenerative race with rx_wait that all 341 * data was dequeued (accounted for in kcm_rfree). 342 */ 343 kcm_rcv_ready(kcm); 344 } 345 spin_unlock_bh(&mux->rx_lock); 346 } 347 348 /* Lower sock lock held */ 349 static void psock_data_ready(struct sock *sk) 350 { 351 struct kcm_psock *psock; 352 353 trace_sk_data_ready(sk); 354 355 read_lock_bh(&sk->sk_callback_lock); 356 357 psock = (struct kcm_psock *)sk->sk_user_data; 358 if (likely(psock)) 359 strp_data_ready(&psock->strp); 360 361 read_unlock_bh(&sk->sk_callback_lock); 362 } 363 364 /* Called with lower sock held */ 365 static void kcm_rcv_strparser(struct strparser *strp, struct sk_buff *skb) 366 { 367 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 368 struct kcm_sock *kcm; 369 370 try_queue: 371 kcm = reserve_rx_kcm(psock, skb); 372 if (!kcm) { 373 /* Unable to reserve a KCM, message is held in psock and strp 374 * is paused. 375 */ 376 return; 377 } 378 379 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 380 /* Should mean socket buffer full */ 381 unreserve_rx_kcm(psock, false); 382 goto try_queue; 383 } 384 } 385 386 static int kcm_parse_func_strparser(struct strparser *strp, struct sk_buff *skb) 387 { 388 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 389 struct bpf_prog *prog = psock->bpf_prog; 390 int res; 391 392 res = bpf_prog_run_pin_on_cpu(prog, skb); 393 return res; 394 } 395 396 static int kcm_read_sock_done(struct strparser *strp, int err) 397 { 398 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 399 400 unreserve_rx_kcm(psock, true); 401 402 return err; 403 } 404 405 static void psock_state_change(struct sock *sk) 406 { 407 /* TCP only does a EPOLLIN for a half close. Do a EPOLLHUP here 408 * since application will normally not poll with EPOLLIN 409 * on the TCP sockets. 410 */ 411 412 report_csk_error(sk, EPIPE); 413 } 414 415 static void psock_write_space(struct sock *sk) 416 { 417 struct kcm_psock *psock; 418 struct kcm_mux *mux; 419 struct kcm_sock *kcm; 420 421 read_lock_bh(&sk->sk_callback_lock); 422 423 psock = (struct kcm_psock *)sk->sk_user_data; 424 if (unlikely(!psock)) 425 goto out; 426 mux = psock->mux; 427 428 spin_lock_bh(&mux->lock); 429 430 /* Check if the socket is reserved so someone is waiting for sending. */ 431 kcm = psock->tx_kcm; 432 if (kcm && !unlikely(kcm->tx_stopped)) 433 queue_work(kcm_wq, &kcm->tx_work); 434 435 spin_unlock_bh(&mux->lock); 436 out: 437 read_unlock_bh(&sk->sk_callback_lock); 438 } 439 440 static void unreserve_psock(struct kcm_sock *kcm); 441 442 /* kcm sock is locked. */ 443 static struct kcm_psock *reserve_psock(struct kcm_sock *kcm) 444 { 445 struct kcm_mux *mux = kcm->mux; 446 struct kcm_psock *psock; 447 448 psock = kcm->tx_psock; 449 450 smp_rmb(); /* Must read tx_psock before tx_wait */ 451 452 if (psock) { 453 WARN_ON(kcm->tx_wait); 454 if (unlikely(psock->tx_stopped)) 455 unreserve_psock(kcm); 456 else 457 return kcm->tx_psock; 458 } 459 460 spin_lock_bh(&mux->lock); 461 462 /* Check again under lock to see if psock was reserved for this 463 * psock via psock_unreserve. 464 */ 465 psock = kcm->tx_psock; 466 if (unlikely(psock)) { 467 WARN_ON(kcm->tx_wait); 468 spin_unlock_bh(&mux->lock); 469 return kcm->tx_psock; 470 } 471 472 if (!list_empty(&mux->psocks_avail)) { 473 psock = list_first_entry(&mux->psocks_avail, 474 struct kcm_psock, 475 psock_avail_list); 476 list_del(&psock->psock_avail_list); 477 if (kcm->tx_wait) { 478 list_del(&kcm->wait_psock_list); 479 kcm->tx_wait = false; 480 } 481 kcm->tx_psock = psock; 482 psock->tx_kcm = kcm; 483 KCM_STATS_INCR(psock->stats.reserved); 484 } else if (!kcm->tx_wait) { 485 list_add_tail(&kcm->wait_psock_list, 486 &mux->kcm_tx_waiters); 487 kcm->tx_wait = true; 488 } 489 490 spin_unlock_bh(&mux->lock); 491 492 return psock; 493 } 494 495 /* mux lock held */ 496 static void psock_now_avail(struct kcm_psock *psock) 497 { 498 struct kcm_mux *mux = psock->mux; 499 struct kcm_sock *kcm; 500 501 if (list_empty(&mux->kcm_tx_waiters)) { 502 list_add_tail(&psock->psock_avail_list, 503 &mux->psocks_avail); 504 } else { 505 kcm = list_first_entry(&mux->kcm_tx_waiters, 506 struct kcm_sock, 507 wait_psock_list); 508 list_del(&kcm->wait_psock_list); 509 kcm->tx_wait = false; 510 psock->tx_kcm = kcm; 511 512 /* Commit before changing tx_psock since that is read in 513 * reserve_psock before queuing work. 514 */ 515 smp_mb(); 516 517 kcm->tx_psock = psock; 518 KCM_STATS_INCR(psock->stats.reserved); 519 queue_work(kcm_wq, &kcm->tx_work); 520 } 521 } 522 523 /* kcm sock is locked. */ 524 static void unreserve_psock(struct kcm_sock *kcm) 525 { 526 struct kcm_psock *psock; 527 struct kcm_mux *mux = kcm->mux; 528 529 spin_lock_bh(&mux->lock); 530 531 psock = kcm->tx_psock; 532 533 if (WARN_ON(!psock)) { 534 spin_unlock_bh(&mux->lock); 535 return; 536 } 537 538 smp_rmb(); /* Read tx_psock before tx_wait */ 539 540 kcm_update_tx_mux_stats(mux, psock); 541 542 WARN_ON(kcm->tx_wait); 543 544 kcm->tx_psock = NULL; 545 psock->tx_kcm = NULL; 546 KCM_STATS_INCR(psock->stats.unreserved); 547 548 if (unlikely(psock->tx_stopped)) { 549 if (psock->done) { 550 /* Deferred free */ 551 list_del(&psock->psock_list); 552 mux->psocks_cnt--; 553 sock_put(psock->sk); 554 fput(psock->sk->sk_socket->file); 555 kmem_cache_free(kcm_psockp, psock); 556 } 557 558 /* Don't put back on available list */ 559 560 spin_unlock_bh(&mux->lock); 561 562 return; 563 } 564 565 psock_now_avail(psock); 566 567 spin_unlock_bh(&mux->lock); 568 } 569 570 static void kcm_report_tx_retry(struct kcm_sock *kcm) 571 { 572 struct kcm_mux *mux = kcm->mux; 573 574 spin_lock_bh(&mux->lock); 575 KCM_STATS_INCR(mux->stats.tx_retries); 576 spin_unlock_bh(&mux->lock); 577 } 578 579 /* Write any messages ready on the kcm socket. Called with kcm sock lock 580 * held. Return bytes actually sent or error. 581 */ 582 static int kcm_write_msgs(struct kcm_sock *kcm) 583 { 584 unsigned int total_sent = 0; 585 struct sock *sk = &kcm->sk; 586 struct kcm_psock *psock; 587 struct sk_buff *head; 588 int ret = 0; 589 590 kcm->tx_wait_more = false; 591 psock = kcm->tx_psock; 592 if (unlikely(psock && psock->tx_stopped)) { 593 /* A reserved psock was aborted asynchronously. Unreserve 594 * it and we'll retry the message. 595 */ 596 unreserve_psock(kcm); 597 kcm_report_tx_retry(kcm); 598 if (skb_queue_empty(&sk->sk_write_queue)) 599 return 0; 600 601 kcm_tx_msg(skb_peek(&sk->sk_write_queue))->started_tx = false; 602 } 603 604 retry: 605 while ((head = skb_peek(&sk->sk_write_queue))) { 606 struct msghdr msg = { 607 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 608 }; 609 struct kcm_tx_msg *txm = kcm_tx_msg(head); 610 struct sk_buff *skb; 611 unsigned int msize; 612 int i; 613 614 if (!txm->started_tx) { 615 psock = reserve_psock(kcm); 616 if (!psock) 617 goto out; 618 skb = head; 619 txm->frag_offset = 0; 620 txm->sent = 0; 621 txm->started_tx = true; 622 } else { 623 if (WARN_ON(!psock)) { 624 ret = -EINVAL; 625 goto out; 626 } 627 skb = txm->frag_skb; 628 } 629 630 if (WARN_ON(!skb_shinfo(skb)->nr_frags)) { 631 ret = -EINVAL; 632 goto out; 633 } 634 635 msize = 0; 636 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 637 msize += skb_frag_size(&skb_shinfo(skb)->frags[i]); 638 639 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, 640 skb_shinfo(skb)->frags, skb_shinfo(skb)->nr_frags, 641 msize); 642 iov_iter_advance(&msg.msg_iter, txm->frag_offset); 643 644 do { 645 ret = sock_sendmsg(psock->sk->sk_socket, &msg); 646 if (ret <= 0) { 647 if (ret == -EAGAIN) { 648 /* Save state to try again when there's 649 * write space on the socket 650 */ 651 txm->frag_skb = skb; 652 ret = 0; 653 goto out; 654 } 655 656 /* Hard failure in sending message, abort this 657 * psock since it has lost framing 658 * synchronization and retry sending the 659 * message from the beginning. 660 */ 661 kcm_abort_tx_psock(psock, ret ? -ret : EPIPE, 662 true); 663 unreserve_psock(kcm); 664 psock = NULL; 665 666 txm->started_tx = false; 667 kcm_report_tx_retry(kcm); 668 ret = 0; 669 goto retry; 670 } 671 672 txm->sent += ret; 673 txm->frag_offset += ret; 674 KCM_STATS_ADD(psock->stats.tx_bytes, ret); 675 } while (msg.msg_iter.count > 0); 676 677 if (skb == head) { 678 if (skb_has_frag_list(skb)) { 679 txm->frag_skb = skb_shinfo(skb)->frag_list; 680 txm->frag_offset = 0; 681 continue; 682 } 683 } else if (skb->next) { 684 txm->frag_skb = skb->next; 685 txm->frag_offset = 0; 686 continue; 687 } 688 689 /* Successfully sent the whole packet, account for it. */ 690 sk->sk_wmem_queued -= txm->sent; 691 total_sent += txm->sent; 692 skb_dequeue(&sk->sk_write_queue); 693 kfree_skb(head); 694 KCM_STATS_INCR(psock->stats.tx_msgs); 695 } 696 out: 697 if (!head) { 698 /* Done with all queued messages. */ 699 WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); 700 if (psock) 701 unreserve_psock(kcm); 702 } 703 704 /* Check if write space is available */ 705 sk->sk_write_space(sk); 706 707 return total_sent ? : ret; 708 } 709 710 static void kcm_tx_work(struct work_struct *w) 711 { 712 struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work); 713 struct sock *sk = &kcm->sk; 714 int err; 715 716 lock_sock(sk); 717 718 /* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx 719 * aborts 720 */ 721 err = kcm_write_msgs(kcm); 722 if (err < 0) { 723 /* Hard failure in write, report error on KCM socket */ 724 pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err); 725 report_csk_error(&kcm->sk, -err); 726 goto out; 727 } 728 729 /* Primarily for SOCK_SEQPACKET sockets */ 730 if (likely(sk->sk_socket) && 731 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 732 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 733 sk->sk_write_space(sk); 734 } 735 736 out: 737 release_sock(sk); 738 } 739 740 static void kcm_push(struct kcm_sock *kcm) 741 { 742 if (kcm->tx_wait_more) 743 kcm_write_msgs(kcm); 744 } 745 746 static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 747 { 748 struct sock *sk = sock->sk; 749 struct kcm_sock *kcm = kcm_sk(sk); 750 struct sk_buff *skb = NULL, *head = NULL; 751 size_t copy, copied = 0; 752 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 753 int eor = (sock->type == SOCK_DGRAM) ? 754 !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR); 755 int err = -EPIPE; 756 757 lock_sock(sk); 758 759 /* Per tcp_sendmsg this should be in poll */ 760 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 761 762 if (sk->sk_err) 763 goto out_error; 764 765 if (kcm->seq_skb) { 766 /* Previously opened message */ 767 head = kcm->seq_skb; 768 skb = kcm_tx_msg(head)->last_skb; 769 goto start; 770 } 771 772 /* Call the sk_stream functions to manage the sndbuf mem. */ 773 if (!sk_stream_memory_free(sk)) { 774 kcm_push(kcm); 775 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 776 err = sk_stream_wait_memory(sk, &timeo); 777 if (err) 778 goto out_error; 779 } 780 781 if (msg_data_left(msg)) { 782 /* New message, alloc head skb */ 783 head = alloc_skb(0, sk->sk_allocation); 784 while (!head) { 785 kcm_push(kcm); 786 err = sk_stream_wait_memory(sk, &timeo); 787 if (err) 788 goto out_error; 789 790 head = alloc_skb(0, sk->sk_allocation); 791 } 792 793 skb = head; 794 795 /* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling 796 * csum_and_copy_from_iter from skb_do_copy_data_nocache. 797 */ 798 skb->ip_summed = CHECKSUM_UNNECESSARY; 799 } 800 801 start: 802 while (msg_data_left(msg)) { 803 bool merge = true; 804 int i = skb_shinfo(skb)->nr_frags; 805 struct page_frag *pfrag = sk_page_frag(sk); 806 807 if (!sk_page_frag_refill(sk, pfrag)) 808 goto wait_for_memory; 809 810 if (!skb_can_coalesce(skb, i, pfrag->page, 811 pfrag->offset)) { 812 if (i == MAX_SKB_FRAGS) { 813 struct sk_buff *tskb; 814 815 tskb = alloc_skb(0, sk->sk_allocation); 816 if (!tskb) 817 goto wait_for_memory; 818 819 if (head == skb) 820 skb_shinfo(head)->frag_list = tskb; 821 else 822 skb->next = tskb; 823 824 skb = tskb; 825 skb->ip_summed = CHECKSUM_UNNECESSARY; 826 continue; 827 } 828 merge = false; 829 } 830 831 if (msg->msg_flags & MSG_SPLICE_PAGES) { 832 copy = msg_data_left(msg); 833 if (!sk_wmem_schedule(sk, copy)) 834 goto wait_for_memory; 835 836 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 837 sk->sk_allocation); 838 if (err < 0) { 839 if (err == -EMSGSIZE) 840 goto wait_for_memory; 841 goto out_error; 842 } 843 844 copy = err; 845 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 846 sk_wmem_queued_add(sk, copy); 847 sk_mem_charge(sk, copy); 848 849 if (head != skb) 850 head->truesize += copy; 851 } else { 852 copy = min_t(int, msg_data_left(msg), 853 pfrag->size - pfrag->offset); 854 if (!sk_wmem_schedule(sk, copy)) 855 goto wait_for_memory; 856 857 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 858 pfrag->page, 859 pfrag->offset, 860 copy); 861 if (err) 862 goto out_error; 863 864 /* Update the skb. */ 865 if (merge) { 866 skb_frag_size_add( 867 &skb_shinfo(skb)->frags[i - 1], copy); 868 } else { 869 skb_fill_page_desc(skb, i, pfrag->page, 870 pfrag->offset, copy); 871 get_page(pfrag->page); 872 } 873 874 pfrag->offset += copy; 875 } 876 877 copied += copy; 878 if (head != skb) { 879 head->len += copy; 880 head->data_len += copy; 881 } 882 883 continue; 884 885 wait_for_memory: 886 kcm_push(kcm); 887 err = sk_stream_wait_memory(sk, &timeo); 888 if (err) 889 goto out_error; 890 } 891 892 if (eor) { 893 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 894 895 if (head) { 896 /* Message complete, queue it on send buffer */ 897 __skb_queue_tail(&sk->sk_write_queue, head); 898 kcm->seq_skb = NULL; 899 KCM_STATS_INCR(kcm->stats.tx_msgs); 900 } 901 902 if (msg->msg_flags & MSG_BATCH) { 903 kcm->tx_wait_more = true; 904 } else if (kcm->tx_wait_more || not_busy) { 905 err = kcm_write_msgs(kcm); 906 if (err < 0) { 907 /* We got a hard error in write_msgs but have 908 * already queued this message. Report an error 909 * in the socket, but don't affect return value 910 * from sendmsg 911 */ 912 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 913 report_csk_error(&kcm->sk, -err); 914 } 915 } 916 } else { 917 /* Message not complete, save state */ 918 partial_message: 919 if (head) { 920 kcm->seq_skb = head; 921 kcm_tx_msg(head)->last_skb = skb; 922 } 923 } 924 925 KCM_STATS_ADD(kcm->stats.tx_bytes, copied); 926 927 release_sock(sk); 928 return copied; 929 930 out_error: 931 kcm_push(kcm); 932 933 if (sock->type == SOCK_SEQPACKET) { 934 /* Wrote some bytes before encountering an 935 * error, return partial success. 936 */ 937 if (copied) 938 goto partial_message; 939 if (head != kcm->seq_skb) 940 kfree_skb(head); 941 } else { 942 kfree_skb(head); 943 kcm->seq_skb = NULL; 944 } 945 946 err = sk_stream_error(sk, msg->msg_flags, err); 947 948 /* make sure we wake any epoll edge trigger waiter */ 949 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 950 sk->sk_write_space(sk); 951 952 release_sock(sk); 953 return err; 954 } 955 956 static void kcm_splice_eof(struct socket *sock) 957 { 958 struct sock *sk = sock->sk; 959 struct kcm_sock *kcm = kcm_sk(sk); 960 961 if (skb_queue_empty_lockless(&sk->sk_write_queue)) 962 return; 963 964 lock_sock(sk); 965 kcm_write_msgs(kcm); 966 release_sock(sk); 967 } 968 969 static int kcm_recvmsg(struct socket *sock, struct msghdr *msg, 970 size_t len, int flags) 971 { 972 struct sock *sk = sock->sk; 973 struct kcm_sock *kcm = kcm_sk(sk); 974 int err = 0; 975 struct strp_msg *stm; 976 int copied = 0; 977 struct sk_buff *skb; 978 979 skb = skb_recv_datagram(sk, flags, &err); 980 if (!skb) 981 goto out; 982 983 /* Okay, have a message on the receive queue */ 984 985 stm = strp_msg(skb); 986 987 if (len > stm->full_len) 988 len = stm->full_len; 989 990 err = skb_copy_datagram_msg(skb, stm->offset, msg, len); 991 if (err < 0) 992 goto out; 993 994 copied = len; 995 if (likely(!(flags & MSG_PEEK))) { 996 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 997 if (copied < stm->full_len) { 998 if (sock->type == SOCK_DGRAM) { 999 /* Truncated message */ 1000 msg->msg_flags |= MSG_TRUNC; 1001 goto msg_finished; 1002 } 1003 stm->offset += copied; 1004 stm->full_len -= copied; 1005 } else { 1006 msg_finished: 1007 /* Finished with message */ 1008 msg->msg_flags |= MSG_EOR; 1009 KCM_STATS_INCR(kcm->stats.rx_msgs); 1010 } 1011 } 1012 1013 out: 1014 skb_free_datagram(sk, skb); 1015 return copied ? : err; 1016 } 1017 1018 static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos, 1019 struct pipe_inode_info *pipe, size_t len, 1020 unsigned int flags) 1021 { 1022 struct sock *sk = sock->sk; 1023 struct kcm_sock *kcm = kcm_sk(sk); 1024 struct strp_msg *stm; 1025 int err = 0; 1026 ssize_t copied; 1027 struct sk_buff *skb; 1028 1029 /* Only support splice for SOCKSEQPACKET */ 1030 1031 skb = skb_recv_datagram(sk, flags, &err); 1032 if (!skb) 1033 goto err_out; 1034 1035 /* Okay, have a message on the receive queue */ 1036 1037 stm = strp_msg(skb); 1038 1039 if (len > stm->full_len) 1040 len = stm->full_len; 1041 1042 copied = skb_splice_bits(skb, sk, stm->offset, pipe, len, flags); 1043 if (copied < 0) { 1044 err = copied; 1045 goto err_out; 1046 } 1047 1048 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1049 1050 stm->offset += copied; 1051 stm->full_len -= copied; 1052 1053 /* We have no way to return MSG_EOR. If all the bytes have been 1054 * read we still leave the message in the receive socket buffer. 1055 * A subsequent recvmsg needs to be done to return MSG_EOR and 1056 * finish reading the message. 1057 */ 1058 1059 skb_free_datagram(sk, skb); 1060 return copied; 1061 1062 err_out: 1063 skb_free_datagram(sk, skb); 1064 return err; 1065 } 1066 1067 /* kcm sock lock held */ 1068 static void kcm_recv_disable(struct kcm_sock *kcm) 1069 { 1070 struct kcm_mux *mux = kcm->mux; 1071 1072 if (kcm->rx_disabled) 1073 return; 1074 1075 spin_lock_bh(&mux->rx_lock); 1076 1077 kcm->rx_disabled = 1; 1078 1079 /* If a psock is reserved we'll do cleanup in unreserve */ 1080 if (!kcm->rx_psock) { 1081 if (kcm->rx_wait) { 1082 list_del(&kcm->wait_rx_list); 1083 /* paired with lockless reads in kcm_rfree() */ 1084 WRITE_ONCE(kcm->rx_wait, false); 1085 } 1086 1087 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 1088 } 1089 1090 spin_unlock_bh(&mux->rx_lock); 1091 } 1092 1093 /* kcm sock lock held */ 1094 static void kcm_recv_enable(struct kcm_sock *kcm) 1095 { 1096 struct kcm_mux *mux = kcm->mux; 1097 1098 if (!kcm->rx_disabled) 1099 return; 1100 1101 spin_lock_bh(&mux->rx_lock); 1102 1103 kcm->rx_disabled = 0; 1104 kcm_rcv_ready(kcm); 1105 1106 spin_unlock_bh(&mux->rx_lock); 1107 } 1108 1109 static int kcm_setsockopt(struct socket *sock, int level, int optname, 1110 sockptr_t optval, unsigned int optlen) 1111 { 1112 struct kcm_sock *kcm = kcm_sk(sock->sk); 1113 int val, valbool; 1114 int err = 0; 1115 1116 if (level != SOL_KCM) 1117 return -ENOPROTOOPT; 1118 1119 if (optlen < sizeof(int)) 1120 return -EINVAL; 1121 1122 if (copy_from_sockptr(&val, optval, sizeof(int))) 1123 return -EFAULT; 1124 1125 valbool = val ? 1 : 0; 1126 1127 switch (optname) { 1128 case KCM_RECV_DISABLE: 1129 lock_sock(&kcm->sk); 1130 if (valbool) 1131 kcm_recv_disable(kcm); 1132 else 1133 kcm_recv_enable(kcm); 1134 release_sock(&kcm->sk); 1135 break; 1136 default: 1137 err = -ENOPROTOOPT; 1138 } 1139 1140 return err; 1141 } 1142 1143 static int kcm_getsockopt(struct socket *sock, int level, int optname, 1144 char __user *optval, int __user *optlen) 1145 { 1146 struct kcm_sock *kcm = kcm_sk(sock->sk); 1147 int val, len; 1148 1149 if (level != SOL_KCM) 1150 return -ENOPROTOOPT; 1151 1152 if (get_user(len, optlen)) 1153 return -EFAULT; 1154 1155 len = min_t(unsigned int, len, sizeof(int)); 1156 if (len < 0) 1157 return -EINVAL; 1158 1159 switch (optname) { 1160 case KCM_RECV_DISABLE: 1161 val = kcm->rx_disabled; 1162 break; 1163 default: 1164 return -ENOPROTOOPT; 1165 } 1166 1167 if (put_user(len, optlen)) 1168 return -EFAULT; 1169 if (copy_to_user(optval, &val, len)) 1170 return -EFAULT; 1171 return 0; 1172 } 1173 1174 static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux) 1175 { 1176 struct kcm_sock *tkcm; 1177 struct list_head *head; 1178 int index = 0; 1179 1180 /* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so 1181 * we set sk_state, otherwise epoll_wait always returns right away with 1182 * EPOLLHUP 1183 */ 1184 kcm->sk.sk_state = TCP_ESTABLISHED; 1185 1186 /* Add to mux's kcm sockets list */ 1187 kcm->mux = mux; 1188 spin_lock_bh(&mux->lock); 1189 1190 head = &mux->kcm_socks; 1191 list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) { 1192 if (tkcm->index != index) 1193 break; 1194 head = &tkcm->kcm_sock_list; 1195 index++; 1196 } 1197 1198 list_add(&kcm->kcm_sock_list, head); 1199 kcm->index = index; 1200 1201 mux->kcm_socks_cnt++; 1202 spin_unlock_bh(&mux->lock); 1203 1204 INIT_WORK(&kcm->tx_work, kcm_tx_work); 1205 1206 spin_lock_bh(&mux->rx_lock); 1207 kcm_rcv_ready(kcm); 1208 spin_unlock_bh(&mux->rx_lock); 1209 } 1210 1211 static int kcm_attach(struct socket *sock, struct socket *csock, 1212 struct bpf_prog *prog) 1213 { 1214 struct kcm_sock *kcm = kcm_sk(sock->sk); 1215 struct kcm_mux *mux = kcm->mux; 1216 struct sock *csk; 1217 struct kcm_psock *psock = NULL, *tpsock; 1218 struct list_head *head; 1219 int index = 0; 1220 static const struct strp_callbacks cb = { 1221 .rcv_msg = kcm_rcv_strparser, 1222 .parse_msg = kcm_parse_func_strparser, 1223 .read_sock_done = kcm_read_sock_done, 1224 }; 1225 int err = 0; 1226 1227 csk = csock->sk; 1228 if (!csk) 1229 return -EINVAL; 1230 1231 lock_sock(csk); 1232 1233 /* Only allow TCP sockets to be attached for now */ 1234 if ((csk->sk_family != AF_INET && csk->sk_family != AF_INET6) || 1235 csk->sk_protocol != IPPROTO_TCP) { 1236 err = -EOPNOTSUPP; 1237 goto out; 1238 } 1239 1240 /* Don't allow listeners or closed sockets */ 1241 if (csk->sk_state == TCP_LISTEN || csk->sk_state == TCP_CLOSE) { 1242 err = -EOPNOTSUPP; 1243 goto out; 1244 } 1245 1246 psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL); 1247 if (!psock) { 1248 err = -ENOMEM; 1249 goto out; 1250 } 1251 1252 psock->mux = mux; 1253 psock->sk = csk; 1254 psock->bpf_prog = prog; 1255 1256 write_lock_bh(&csk->sk_callback_lock); 1257 1258 /* Check if sk_user_data is already by KCM or someone else. 1259 * Must be done under lock to prevent race conditions. 1260 */ 1261 if (csk->sk_user_data) { 1262 write_unlock_bh(&csk->sk_callback_lock); 1263 kmem_cache_free(kcm_psockp, psock); 1264 err = -EALREADY; 1265 goto out; 1266 } 1267 1268 err = strp_init(&psock->strp, csk, &cb); 1269 if (err) { 1270 write_unlock_bh(&csk->sk_callback_lock); 1271 kmem_cache_free(kcm_psockp, psock); 1272 goto out; 1273 } 1274 1275 psock->save_data_ready = csk->sk_data_ready; 1276 psock->save_write_space = csk->sk_write_space; 1277 psock->save_state_change = csk->sk_state_change; 1278 csk->sk_user_data = psock; 1279 csk->sk_data_ready = psock_data_ready; 1280 csk->sk_write_space = psock_write_space; 1281 csk->sk_state_change = psock_state_change; 1282 1283 write_unlock_bh(&csk->sk_callback_lock); 1284 1285 sock_hold(csk); 1286 1287 /* Finished initialization, now add the psock to the MUX. */ 1288 spin_lock_bh(&mux->lock); 1289 head = &mux->psocks; 1290 list_for_each_entry(tpsock, &mux->psocks, psock_list) { 1291 if (tpsock->index != index) 1292 break; 1293 head = &tpsock->psock_list; 1294 index++; 1295 } 1296 1297 list_add(&psock->psock_list, head); 1298 psock->index = index; 1299 1300 KCM_STATS_INCR(mux->stats.psock_attach); 1301 mux->psocks_cnt++; 1302 psock_now_avail(psock); 1303 spin_unlock_bh(&mux->lock); 1304 1305 /* Schedule RX work in case there are already bytes queued */ 1306 strp_check_rcv(&psock->strp); 1307 1308 out: 1309 release_sock(csk); 1310 1311 return err; 1312 } 1313 1314 static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info) 1315 { 1316 struct socket *csock; 1317 struct bpf_prog *prog; 1318 int err; 1319 1320 csock = sockfd_lookup(info->fd, &err); 1321 if (!csock) 1322 return -ENOENT; 1323 1324 prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER); 1325 if (IS_ERR(prog)) { 1326 err = PTR_ERR(prog); 1327 goto out; 1328 } 1329 1330 err = kcm_attach(sock, csock, prog); 1331 if (err) { 1332 bpf_prog_put(prog); 1333 goto out; 1334 } 1335 1336 /* Keep reference on file also */ 1337 1338 return 0; 1339 out: 1340 sockfd_put(csock); 1341 return err; 1342 } 1343 1344 static void kcm_unattach(struct kcm_psock *psock) 1345 { 1346 struct sock *csk = psock->sk; 1347 struct kcm_mux *mux = psock->mux; 1348 1349 lock_sock(csk); 1350 1351 /* Stop getting callbacks from TCP socket. After this there should 1352 * be no way to reserve a kcm for this psock. 1353 */ 1354 write_lock_bh(&csk->sk_callback_lock); 1355 csk->sk_user_data = NULL; 1356 csk->sk_data_ready = psock->save_data_ready; 1357 csk->sk_write_space = psock->save_write_space; 1358 csk->sk_state_change = psock->save_state_change; 1359 strp_stop(&psock->strp); 1360 1361 if (WARN_ON(psock->rx_kcm)) { 1362 write_unlock_bh(&csk->sk_callback_lock); 1363 release_sock(csk); 1364 return; 1365 } 1366 1367 spin_lock_bh(&mux->rx_lock); 1368 1369 /* Stop receiver activities. After this point psock should not be 1370 * able to get onto ready list either through callbacks or work. 1371 */ 1372 if (psock->ready_rx_msg) { 1373 list_del(&psock->psock_ready_list); 1374 kfree_skb(psock->ready_rx_msg); 1375 psock->ready_rx_msg = NULL; 1376 KCM_STATS_INCR(mux->stats.rx_ready_drops); 1377 } 1378 1379 spin_unlock_bh(&mux->rx_lock); 1380 1381 write_unlock_bh(&csk->sk_callback_lock); 1382 1383 /* Call strp_done without sock lock */ 1384 release_sock(csk); 1385 strp_done(&psock->strp); 1386 lock_sock(csk); 1387 1388 bpf_prog_put(psock->bpf_prog); 1389 1390 spin_lock_bh(&mux->lock); 1391 1392 aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats); 1393 save_strp_stats(&psock->strp, &mux->aggregate_strp_stats); 1394 1395 KCM_STATS_INCR(mux->stats.psock_unattach); 1396 1397 if (psock->tx_kcm) { 1398 /* psock was reserved. Just mark it finished and we will clean 1399 * up in the kcm paths, we need kcm lock which can not be 1400 * acquired here. 1401 */ 1402 KCM_STATS_INCR(mux->stats.psock_unattach_rsvd); 1403 spin_unlock_bh(&mux->lock); 1404 1405 /* We are unattaching a socket that is reserved. Abort the 1406 * socket since we may be out of sync in sending on it. We need 1407 * to do this without the mux lock. 1408 */ 1409 kcm_abort_tx_psock(psock, EPIPE, false); 1410 1411 spin_lock_bh(&mux->lock); 1412 if (!psock->tx_kcm) { 1413 /* psock now unreserved in window mux was unlocked */ 1414 goto no_reserved; 1415 } 1416 psock->done = 1; 1417 1418 /* Commit done before queuing work to process it */ 1419 smp_mb(); 1420 1421 /* Queue tx work to make sure psock->done is handled */ 1422 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 1423 spin_unlock_bh(&mux->lock); 1424 } else { 1425 no_reserved: 1426 if (!psock->tx_stopped) 1427 list_del(&psock->psock_avail_list); 1428 list_del(&psock->psock_list); 1429 mux->psocks_cnt--; 1430 spin_unlock_bh(&mux->lock); 1431 1432 sock_put(csk); 1433 fput(csk->sk_socket->file); 1434 kmem_cache_free(kcm_psockp, psock); 1435 } 1436 1437 release_sock(csk); 1438 } 1439 1440 static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info) 1441 { 1442 struct kcm_sock *kcm = kcm_sk(sock->sk); 1443 struct kcm_mux *mux = kcm->mux; 1444 struct kcm_psock *psock; 1445 struct socket *csock; 1446 struct sock *csk; 1447 int err; 1448 1449 csock = sockfd_lookup(info->fd, &err); 1450 if (!csock) 1451 return -ENOENT; 1452 1453 csk = csock->sk; 1454 if (!csk) { 1455 err = -EINVAL; 1456 goto out; 1457 } 1458 1459 err = -ENOENT; 1460 1461 spin_lock_bh(&mux->lock); 1462 1463 list_for_each_entry(psock, &mux->psocks, psock_list) { 1464 if (psock->sk != csk) 1465 continue; 1466 1467 /* Found the matching psock */ 1468 1469 if (psock->unattaching || WARN_ON(psock->done)) { 1470 err = -EALREADY; 1471 break; 1472 } 1473 1474 psock->unattaching = 1; 1475 1476 spin_unlock_bh(&mux->lock); 1477 1478 /* Lower socket lock should already be held */ 1479 kcm_unattach(psock); 1480 1481 err = 0; 1482 goto out; 1483 } 1484 1485 spin_unlock_bh(&mux->lock); 1486 1487 out: 1488 sockfd_put(csock); 1489 return err; 1490 } 1491 1492 static struct proto kcm_proto = { 1493 .name = "KCM", 1494 .owner = THIS_MODULE, 1495 .obj_size = sizeof(struct kcm_sock), 1496 }; 1497 1498 /* Clone a kcm socket. */ 1499 static struct file *kcm_clone(struct socket *osock) 1500 { 1501 struct socket *newsock; 1502 struct sock *newsk; 1503 1504 newsock = sock_alloc(); 1505 if (!newsock) 1506 return ERR_PTR(-ENFILE); 1507 1508 newsock->type = osock->type; 1509 newsock->ops = osock->ops; 1510 1511 __module_get(newsock->ops->owner); 1512 1513 newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL, 1514 &kcm_proto, false); 1515 if (!newsk) { 1516 sock_release(newsock); 1517 return ERR_PTR(-ENOMEM); 1518 } 1519 sock_init_data(newsock, newsk); 1520 init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux); 1521 1522 return sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name); 1523 } 1524 1525 static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1526 { 1527 int err; 1528 1529 switch (cmd) { 1530 case SIOCKCMATTACH: { 1531 struct kcm_attach info; 1532 1533 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1534 return -EFAULT; 1535 1536 err = kcm_attach_ioctl(sock, &info); 1537 1538 break; 1539 } 1540 case SIOCKCMUNATTACH: { 1541 struct kcm_unattach info; 1542 1543 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1544 return -EFAULT; 1545 1546 err = kcm_unattach_ioctl(sock, &info); 1547 1548 break; 1549 } 1550 case SIOCKCMCLONE: { 1551 struct kcm_clone info; 1552 struct file *file; 1553 1554 info.fd = get_unused_fd_flags(0); 1555 if (unlikely(info.fd < 0)) 1556 return info.fd; 1557 1558 file = kcm_clone(sock); 1559 if (IS_ERR(file)) { 1560 put_unused_fd(info.fd); 1561 return PTR_ERR(file); 1562 } 1563 if (copy_to_user((void __user *)arg, &info, 1564 sizeof(info))) { 1565 put_unused_fd(info.fd); 1566 fput(file); 1567 return -EFAULT; 1568 } 1569 fd_install(info.fd, file); 1570 err = 0; 1571 break; 1572 } 1573 default: 1574 err = -ENOIOCTLCMD; 1575 break; 1576 } 1577 1578 return err; 1579 } 1580 1581 static void free_mux(struct rcu_head *rcu) 1582 { 1583 struct kcm_mux *mux = container_of(rcu, 1584 struct kcm_mux, rcu); 1585 1586 kmem_cache_free(kcm_muxp, mux); 1587 } 1588 1589 static void release_mux(struct kcm_mux *mux) 1590 { 1591 struct kcm_net *knet = mux->knet; 1592 struct kcm_psock *psock, *tmp_psock; 1593 1594 /* Release psocks */ 1595 list_for_each_entry_safe(psock, tmp_psock, 1596 &mux->psocks, psock_list) { 1597 if (!WARN_ON(psock->unattaching)) 1598 kcm_unattach(psock); 1599 } 1600 1601 if (WARN_ON(mux->psocks_cnt)) 1602 return; 1603 1604 __skb_queue_purge(&mux->rx_hold_queue); 1605 1606 mutex_lock(&knet->mutex); 1607 aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats); 1608 aggregate_psock_stats(&mux->aggregate_psock_stats, 1609 &knet->aggregate_psock_stats); 1610 aggregate_strp_stats(&mux->aggregate_strp_stats, 1611 &knet->aggregate_strp_stats); 1612 list_del_rcu(&mux->kcm_mux_list); 1613 knet->count--; 1614 mutex_unlock(&knet->mutex); 1615 1616 call_rcu(&mux->rcu, free_mux); 1617 } 1618 1619 static void kcm_done(struct kcm_sock *kcm) 1620 { 1621 struct kcm_mux *mux = kcm->mux; 1622 struct sock *sk = &kcm->sk; 1623 int socks_cnt; 1624 1625 spin_lock_bh(&mux->rx_lock); 1626 if (kcm->rx_psock) { 1627 /* Cleanup in unreserve_rx_kcm */ 1628 WARN_ON(kcm->done); 1629 kcm->rx_disabled = 1; 1630 kcm->done = 1; 1631 spin_unlock_bh(&mux->rx_lock); 1632 return; 1633 } 1634 1635 if (kcm->rx_wait) { 1636 list_del(&kcm->wait_rx_list); 1637 /* paired with lockless reads in kcm_rfree() */ 1638 WRITE_ONCE(kcm->rx_wait, false); 1639 } 1640 /* Move any pending receive messages to other kcm sockets */ 1641 requeue_rx_msgs(mux, &sk->sk_receive_queue); 1642 1643 spin_unlock_bh(&mux->rx_lock); 1644 1645 if (WARN_ON(sk_rmem_alloc_get(sk))) 1646 return; 1647 1648 /* Detach from MUX */ 1649 spin_lock_bh(&mux->lock); 1650 1651 list_del(&kcm->kcm_sock_list); 1652 mux->kcm_socks_cnt--; 1653 socks_cnt = mux->kcm_socks_cnt; 1654 1655 spin_unlock_bh(&mux->lock); 1656 1657 if (!socks_cnt) { 1658 /* We are done with the mux now. */ 1659 release_mux(mux); 1660 } 1661 1662 WARN_ON(kcm->rx_wait); 1663 1664 sock_put(&kcm->sk); 1665 } 1666 1667 /* Called by kcm_release to close a KCM socket. 1668 * If this is the last KCM socket on the MUX, destroy the MUX. 1669 */ 1670 static int kcm_release(struct socket *sock) 1671 { 1672 struct sock *sk = sock->sk; 1673 struct kcm_sock *kcm; 1674 struct kcm_mux *mux; 1675 struct kcm_psock *psock; 1676 1677 if (!sk) 1678 return 0; 1679 1680 kcm = kcm_sk(sk); 1681 mux = kcm->mux; 1682 1683 lock_sock(sk); 1684 sock_orphan(sk); 1685 kfree_skb(kcm->seq_skb); 1686 1687 /* Purge queue under lock to avoid race condition with tx_work trying 1688 * to act when queue is nonempty. If tx_work runs after this point 1689 * it will just return. 1690 */ 1691 __skb_queue_purge(&sk->sk_write_queue); 1692 1693 /* Set tx_stopped. This is checked when psock is bound to a kcm and we 1694 * get a writespace callback. This prevents further work being queued 1695 * from the callback (unbinding the psock occurs after canceling work. 1696 */ 1697 kcm->tx_stopped = 1; 1698 1699 release_sock(sk); 1700 1701 spin_lock_bh(&mux->lock); 1702 if (kcm->tx_wait) { 1703 /* Take of tx_wait list, after this point there should be no way 1704 * that a psock will be assigned to this kcm. 1705 */ 1706 list_del(&kcm->wait_psock_list); 1707 kcm->tx_wait = false; 1708 } 1709 spin_unlock_bh(&mux->lock); 1710 1711 /* Cancel work. After this point there should be no outside references 1712 * to the kcm socket. 1713 */ 1714 cancel_work_sync(&kcm->tx_work); 1715 1716 lock_sock(sk); 1717 psock = kcm->tx_psock; 1718 if (psock) { 1719 /* A psock was reserved, so we need to kill it since it 1720 * may already have some bytes queued from a message. We 1721 * need to do this after removing kcm from tx_wait list. 1722 */ 1723 kcm_abort_tx_psock(psock, EPIPE, false); 1724 unreserve_psock(kcm); 1725 } 1726 release_sock(sk); 1727 1728 WARN_ON(kcm->tx_wait); 1729 WARN_ON(kcm->tx_psock); 1730 1731 sock->sk = NULL; 1732 1733 kcm_done(kcm); 1734 1735 return 0; 1736 } 1737 1738 static const struct proto_ops kcm_dgram_ops = { 1739 .family = PF_KCM, 1740 .owner = THIS_MODULE, 1741 .release = kcm_release, 1742 .bind = sock_no_bind, 1743 .connect = sock_no_connect, 1744 .socketpair = sock_no_socketpair, 1745 .accept = sock_no_accept, 1746 .getname = sock_no_getname, 1747 .poll = datagram_poll, 1748 .ioctl = kcm_ioctl, 1749 .listen = sock_no_listen, 1750 .shutdown = sock_no_shutdown, 1751 .setsockopt = kcm_setsockopt, 1752 .getsockopt = kcm_getsockopt, 1753 .sendmsg = kcm_sendmsg, 1754 .recvmsg = kcm_recvmsg, 1755 .mmap = sock_no_mmap, 1756 .splice_eof = kcm_splice_eof, 1757 }; 1758 1759 static const struct proto_ops kcm_seqpacket_ops = { 1760 .family = PF_KCM, 1761 .owner = THIS_MODULE, 1762 .release = kcm_release, 1763 .bind = sock_no_bind, 1764 .connect = sock_no_connect, 1765 .socketpair = sock_no_socketpair, 1766 .accept = sock_no_accept, 1767 .getname = sock_no_getname, 1768 .poll = datagram_poll, 1769 .ioctl = kcm_ioctl, 1770 .listen = sock_no_listen, 1771 .shutdown = sock_no_shutdown, 1772 .setsockopt = kcm_setsockopt, 1773 .getsockopt = kcm_getsockopt, 1774 .sendmsg = kcm_sendmsg, 1775 .recvmsg = kcm_recvmsg, 1776 .mmap = sock_no_mmap, 1777 .splice_eof = kcm_splice_eof, 1778 .splice_read = kcm_splice_read, 1779 }; 1780 1781 /* Create proto operation for kcm sockets */ 1782 static int kcm_create(struct net *net, struct socket *sock, 1783 int protocol, int kern) 1784 { 1785 struct kcm_net *knet = net_generic(net, kcm_net_id); 1786 struct sock *sk; 1787 struct kcm_mux *mux; 1788 1789 switch (sock->type) { 1790 case SOCK_DGRAM: 1791 sock->ops = &kcm_dgram_ops; 1792 break; 1793 case SOCK_SEQPACKET: 1794 sock->ops = &kcm_seqpacket_ops; 1795 break; 1796 default: 1797 return -ESOCKTNOSUPPORT; 1798 } 1799 1800 if (protocol != KCMPROTO_CONNECTED) 1801 return -EPROTONOSUPPORT; 1802 1803 sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern); 1804 if (!sk) 1805 return -ENOMEM; 1806 1807 /* Allocate a kcm mux, shared between KCM sockets */ 1808 mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL); 1809 if (!mux) { 1810 sk_free(sk); 1811 return -ENOMEM; 1812 } 1813 1814 spin_lock_init(&mux->lock); 1815 spin_lock_init(&mux->rx_lock); 1816 INIT_LIST_HEAD(&mux->kcm_socks); 1817 INIT_LIST_HEAD(&mux->kcm_rx_waiters); 1818 INIT_LIST_HEAD(&mux->kcm_tx_waiters); 1819 1820 INIT_LIST_HEAD(&mux->psocks); 1821 INIT_LIST_HEAD(&mux->psocks_ready); 1822 INIT_LIST_HEAD(&mux->psocks_avail); 1823 1824 mux->knet = knet; 1825 1826 /* Add new MUX to list */ 1827 mutex_lock(&knet->mutex); 1828 list_add_rcu(&mux->kcm_mux_list, &knet->mux_list); 1829 knet->count++; 1830 mutex_unlock(&knet->mutex); 1831 1832 skb_queue_head_init(&mux->rx_hold_queue); 1833 1834 /* Init KCM socket */ 1835 sock_init_data(sock, sk); 1836 init_kcm_sock(kcm_sk(sk), mux); 1837 1838 return 0; 1839 } 1840 1841 static const struct net_proto_family kcm_family_ops = { 1842 .family = PF_KCM, 1843 .create = kcm_create, 1844 .owner = THIS_MODULE, 1845 }; 1846 1847 static __net_init int kcm_init_net(struct net *net) 1848 { 1849 struct kcm_net *knet = net_generic(net, kcm_net_id); 1850 1851 INIT_LIST_HEAD_RCU(&knet->mux_list); 1852 mutex_init(&knet->mutex); 1853 1854 return 0; 1855 } 1856 1857 static __net_exit void kcm_exit_net(struct net *net) 1858 { 1859 struct kcm_net *knet = net_generic(net, kcm_net_id); 1860 1861 /* All KCM sockets should be closed at this point, which should mean 1862 * that all multiplexors and psocks have been destroyed. 1863 */ 1864 WARN_ON(!list_empty(&knet->mux_list)); 1865 1866 mutex_destroy(&knet->mutex); 1867 } 1868 1869 static struct pernet_operations kcm_net_ops = { 1870 .init = kcm_init_net, 1871 .exit = kcm_exit_net, 1872 .id = &kcm_net_id, 1873 .size = sizeof(struct kcm_net), 1874 }; 1875 1876 static int __init kcm_init(void) 1877 { 1878 int err = -ENOMEM; 1879 1880 kcm_muxp = kmem_cache_create("kcm_mux_cache", 1881 sizeof(struct kcm_mux), 0, 1882 SLAB_HWCACHE_ALIGN, NULL); 1883 if (!kcm_muxp) 1884 goto fail; 1885 1886 kcm_psockp = kmem_cache_create("kcm_psock_cache", 1887 sizeof(struct kcm_psock), 0, 1888 SLAB_HWCACHE_ALIGN, NULL); 1889 if (!kcm_psockp) 1890 goto fail; 1891 1892 kcm_wq = create_singlethread_workqueue("kkcmd"); 1893 if (!kcm_wq) 1894 goto fail; 1895 1896 err = proto_register(&kcm_proto, 1); 1897 if (err) 1898 goto fail; 1899 1900 err = register_pernet_device(&kcm_net_ops); 1901 if (err) 1902 goto net_ops_fail; 1903 1904 err = sock_register(&kcm_family_ops); 1905 if (err) 1906 goto sock_register_fail; 1907 1908 err = kcm_proc_init(); 1909 if (err) 1910 goto proc_init_fail; 1911 1912 return 0; 1913 1914 proc_init_fail: 1915 sock_unregister(PF_KCM); 1916 1917 sock_register_fail: 1918 unregister_pernet_device(&kcm_net_ops); 1919 1920 net_ops_fail: 1921 proto_unregister(&kcm_proto); 1922 1923 fail: 1924 kmem_cache_destroy(kcm_muxp); 1925 kmem_cache_destroy(kcm_psockp); 1926 1927 if (kcm_wq) 1928 destroy_workqueue(kcm_wq); 1929 1930 return err; 1931 } 1932 1933 static void __exit kcm_exit(void) 1934 { 1935 kcm_proc_exit(); 1936 sock_unregister(PF_KCM); 1937 unregister_pernet_device(&kcm_net_ops); 1938 proto_unregister(&kcm_proto); 1939 destroy_workqueue(kcm_wq); 1940 1941 kmem_cache_destroy(kcm_muxp); 1942 kmem_cache_destroy(kcm_psockp); 1943 } 1944 1945 module_init(kcm_init); 1946 module_exit(kcm_exit); 1947 1948 MODULE_LICENSE("GPL"); 1949 MODULE_ALIAS_NETPROTO(PF_KCM); 1950