1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel Connection Multiplexor 4 * 5 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/errno.h> 10 #include <linux/errqueue.h> 11 #include <linux/file.h> 12 #include <linux/filter.h> 13 #include <linux/in.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/net.h> 17 #include <linux/netdevice.h> 18 #include <linux/poll.h> 19 #include <linux/rculist.h> 20 #include <linux/skbuff.h> 21 #include <linux/socket.h> 22 #include <linux/uaccess.h> 23 #include <linux/workqueue.h> 24 #include <linux/syscalls.h> 25 #include <linux/sched/signal.h> 26 27 #include <net/kcm.h> 28 #include <net/netns/generic.h> 29 #include <net/sock.h> 30 #include <uapi/linux/kcm.h> 31 #include <trace/events/sock.h> 32 33 unsigned int kcm_net_id; 34 35 static struct kmem_cache *kcm_psockp __read_mostly; 36 static struct kmem_cache *kcm_muxp __read_mostly; 37 static struct workqueue_struct *kcm_wq; 38 39 static inline struct kcm_sock *kcm_sk(const struct sock *sk) 40 { 41 return (struct kcm_sock *)sk; 42 } 43 44 static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb) 45 { 46 return (struct kcm_tx_msg *)skb->cb; 47 } 48 49 static void report_csk_error(struct sock *csk, int err) 50 { 51 csk->sk_err = EPIPE; 52 sk_error_report(csk); 53 } 54 55 static void kcm_abort_tx_psock(struct kcm_psock *psock, int err, 56 bool wakeup_kcm) 57 { 58 struct sock *csk = psock->sk; 59 struct kcm_mux *mux = psock->mux; 60 61 /* Unrecoverable error in transmit */ 62 63 spin_lock_bh(&mux->lock); 64 65 if (psock->tx_stopped) { 66 spin_unlock_bh(&mux->lock); 67 return; 68 } 69 70 psock->tx_stopped = 1; 71 KCM_STATS_INCR(psock->stats.tx_aborts); 72 73 if (!psock->tx_kcm) { 74 /* Take off psocks_avail list */ 75 list_del(&psock->psock_avail_list); 76 } else if (wakeup_kcm) { 77 /* In this case psock is being aborted while outside of 78 * write_msgs and psock is reserved. Schedule tx_work 79 * to handle the failure there. Need to commit tx_stopped 80 * before queuing work. 81 */ 82 smp_mb(); 83 84 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 85 } 86 87 spin_unlock_bh(&mux->lock); 88 89 /* Report error on lower socket */ 90 report_csk_error(csk, err); 91 } 92 93 /* RX mux lock held. */ 94 static void kcm_update_rx_mux_stats(struct kcm_mux *mux, 95 struct kcm_psock *psock) 96 { 97 STRP_STATS_ADD(mux->stats.rx_bytes, 98 psock->strp.stats.bytes - 99 psock->saved_rx_bytes); 100 mux->stats.rx_msgs += 101 psock->strp.stats.msgs - psock->saved_rx_msgs; 102 psock->saved_rx_msgs = psock->strp.stats.msgs; 103 psock->saved_rx_bytes = psock->strp.stats.bytes; 104 } 105 106 static void kcm_update_tx_mux_stats(struct kcm_mux *mux, 107 struct kcm_psock *psock) 108 { 109 KCM_STATS_ADD(mux->stats.tx_bytes, 110 psock->stats.tx_bytes - psock->saved_tx_bytes); 111 mux->stats.tx_msgs += 112 psock->stats.tx_msgs - psock->saved_tx_msgs; 113 psock->saved_tx_msgs = psock->stats.tx_msgs; 114 psock->saved_tx_bytes = psock->stats.tx_bytes; 115 } 116 117 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 118 119 /* KCM is ready to receive messages on its queue-- either the KCM is new or 120 * has become unblocked after being blocked on full socket buffer. Queue any 121 * pending ready messages on a psock. RX mux lock held. 122 */ 123 static void kcm_rcv_ready(struct kcm_sock *kcm) 124 { 125 struct kcm_mux *mux = kcm->mux; 126 struct kcm_psock *psock; 127 struct sk_buff *skb; 128 129 if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled)) 130 return; 131 132 while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) { 133 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 134 /* Assuming buffer limit has been reached */ 135 skb_queue_head(&mux->rx_hold_queue, skb); 136 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 137 return; 138 } 139 } 140 141 while (!list_empty(&mux->psocks_ready)) { 142 psock = list_first_entry(&mux->psocks_ready, struct kcm_psock, 143 psock_ready_list); 144 145 if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) { 146 /* Assuming buffer limit has been reached */ 147 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 148 return; 149 } 150 151 /* Consumed the ready message on the psock. Schedule rx_work to 152 * get more messages. 153 */ 154 list_del(&psock->psock_ready_list); 155 psock->ready_rx_msg = NULL; 156 /* Commit clearing of ready_rx_msg for queuing work */ 157 smp_mb(); 158 159 strp_unpause(&psock->strp); 160 strp_check_rcv(&psock->strp); 161 } 162 163 /* Buffer limit is okay now, add to ready list */ 164 list_add_tail(&kcm->wait_rx_list, 165 &kcm->mux->kcm_rx_waiters); 166 /* paired with lockless reads in kcm_rfree() */ 167 WRITE_ONCE(kcm->rx_wait, true); 168 } 169 170 static void kcm_rfree(struct sk_buff *skb) 171 { 172 struct sock *sk = skb->sk; 173 struct kcm_sock *kcm = kcm_sk(sk); 174 struct kcm_mux *mux = kcm->mux; 175 unsigned int len = skb->truesize; 176 177 sk_mem_uncharge(sk, len); 178 atomic_sub(len, &sk->sk_rmem_alloc); 179 180 /* For reading rx_wait and rx_psock without holding lock */ 181 smp_mb__after_atomic(); 182 183 if (!READ_ONCE(kcm->rx_wait) && !READ_ONCE(kcm->rx_psock) && 184 sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) { 185 spin_lock_bh(&mux->rx_lock); 186 kcm_rcv_ready(kcm); 187 spin_unlock_bh(&mux->rx_lock); 188 } 189 } 190 191 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 192 { 193 struct sk_buff_head *list = &sk->sk_receive_queue; 194 195 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 196 return -ENOMEM; 197 198 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 199 return -ENOBUFS; 200 201 skb->dev = NULL; 202 203 skb_orphan(skb); 204 skb->sk = sk; 205 skb->destructor = kcm_rfree; 206 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 207 sk_mem_charge(sk, skb->truesize); 208 209 skb_queue_tail(list, skb); 210 211 if (!sock_flag(sk, SOCK_DEAD)) 212 sk->sk_data_ready(sk); 213 214 return 0; 215 } 216 217 /* Requeue received messages for a kcm socket to other kcm sockets. This is 218 * called with a kcm socket is receive disabled. 219 * RX mux lock held. 220 */ 221 static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head) 222 { 223 struct sk_buff *skb; 224 struct kcm_sock *kcm; 225 226 while ((skb = skb_dequeue(head))) { 227 /* Reset destructor to avoid calling kcm_rcv_ready */ 228 skb->destructor = sock_rfree; 229 skb_orphan(skb); 230 try_again: 231 if (list_empty(&mux->kcm_rx_waiters)) { 232 skb_queue_tail(&mux->rx_hold_queue, skb); 233 continue; 234 } 235 236 kcm = list_first_entry(&mux->kcm_rx_waiters, 237 struct kcm_sock, wait_rx_list); 238 239 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 240 /* Should mean socket buffer full */ 241 list_del(&kcm->wait_rx_list); 242 /* paired with lockless reads in kcm_rfree() */ 243 WRITE_ONCE(kcm->rx_wait, false); 244 245 /* Commit rx_wait to read in kcm_free */ 246 smp_wmb(); 247 248 goto try_again; 249 } 250 } 251 } 252 253 /* Lower sock lock held */ 254 static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock, 255 struct sk_buff *head) 256 { 257 struct kcm_mux *mux = psock->mux; 258 struct kcm_sock *kcm; 259 260 WARN_ON(psock->ready_rx_msg); 261 262 if (psock->rx_kcm) 263 return psock->rx_kcm; 264 265 spin_lock_bh(&mux->rx_lock); 266 267 if (psock->rx_kcm) { 268 spin_unlock_bh(&mux->rx_lock); 269 return psock->rx_kcm; 270 } 271 272 kcm_update_rx_mux_stats(mux, psock); 273 274 if (list_empty(&mux->kcm_rx_waiters)) { 275 psock->ready_rx_msg = head; 276 strp_pause(&psock->strp); 277 list_add_tail(&psock->psock_ready_list, 278 &mux->psocks_ready); 279 spin_unlock_bh(&mux->rx_lock); 280 return NULL; 281 } 282 283 kcm = list_first_entry(&mux->kcm_rx_waiters, 284 struct kcm_sock, wait_rx_list); 285 list_del(&kcm->wait_rx_list); 286 /* paired with lockless reads in kcm_rfree() */ 287 WRITE_ONCE(kcm->rx_wait, false); 288 289 psock->rx_kcm = kcm; 290 /* paired with lockless reads in kcm_rfree() */ 291 WRITE_ONCE(kcm->rx_psock, psock); 292 293 spin_unlock_bh(&mux->rx_lock); 294 295 return kcm; 296 } 297 298 static void kcm_done(struct kcm_sock *kcm); 299 300 static void kcm_done_work(struct work_struct *w) 301 { 302 kcm_done(container_of(w, struct kcm_sock, done_work)); 303 } 304 305 /* Lower sock held */ 306 static void unreserve_rx_kcm(struct kcm_psock *psock, 307 bool rcv_ready) 308 { 309 struct kcm_sock *kcm = psock->rx_kcm; 310 struct kcm_mux *mux = psock->mux; 311 312 if (!kcm) 313 return; 314 315 spin_lock_bh(&mux->rx_lock); 316 317 psock->rx_kcm = NULL; 318 /* paired with lockless reads in kcm_rfree() */ 319 WRITE_ONCE(kcm->rx_psock, NULL); 320 321 /* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with 322 * kcm_rfree 323 */ 324 smp_mb(); 325 326 if (unlikely(kcm->done)) { 327 spin_unlock_bh(&mux->rx_lock); 328 329 /* Need to run kcm_done in a task since we need to qcquire 330 * callback locks which may already be held here. 331 */ 332 INIT_WORK(&kcm->done_work, kcm_done_work); 333 schedule_work(&kcm->done_work); 334 return; 335 } 336 337 if (unlikely(kcm->rx_disabled)) { 338 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 339 } else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) { 340 /* Check for degenerative race with rx_wait that all 341 * data was dequeued (accounted for in kcm_rfree). 342 */ 343 kcm_rcv_ready(kcm); 344 } 345 spin_unlock_bh(&mux->rx_lock); 346 } 347 348 /* Lower sock lock held */ 349 static void psock_data_ready(struct sock *sk) 350 { 351 struct kcm_psock *psock; 352 353 trace_sk_data_ready(sk); 354 355 read_lock_bh(&sk->sk_callback_lock); 356 357 psock = (struct kcm_psock *)sk->sk_user_data; 358 if (likely(psock)) 359 strp_data_ready(&psock->strp); 360 361 read_unlock_bh(&sk->sk_callback_lock); 362 } 363 364 /* Called with lower sock held */ 365 static void kcm_rcv_strparser(struct strparser *strp, struct sk_buff *skb) 366 { 367 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 368 struct kcm_sock *kcm; 369 370 try_queue: 371 kcm = reserve_rx_kcm(psock, skb); 372 if (!kcm) { 373 /* Unable to reserve a KCM, message is held in psock and strp 374 * is paused. 375 */ 376 return; 377 } 378 379 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 380 /* Should mean socket buffer full */ 381 unreserve_rx_kcm(psock, false); 382 goto try_queue; 383 } 384 } 385 386 static int kcm_parse_func_strparser(struct strparser *strp, struct sk_buff *skb) 387 { 388 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 389 struct bpf_prog *prog = psock->bpf_prog; 390 int res; 391 392 res = bpf_prog_run_pin_on_cpu(prog, skb); 393 return res; 394 } 395 396 static int kcm_read_sock_done(struct strparser *strp, int err) 397 { 398 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 399 400 unreserve_rx_kcm(psock, true); 401 402 return err; 403 } 404 405 static void psock_state_change(struct sock *sk) 406 { 407 /* TCP only does a EPOLLIN for a half close. Do a EPOLLHUP here 408 * since application will normally not poll with EPOLLIN 409 * on the TCP sockets. 410 */ 411 412 report_csk_error(sk, EPIPE); 413 } 414 415 static void psock_write_space(struct sock *sk) 416 { 417 struct kcm_psock *psock; 418 struct kcm_mux *mux; 419 struct kcm_sock *kcm; 420 421 read_lock_bh(&sk->sk_callback_lock); 422 423 psock = (struct kcm_psock *)sk->sk_user_data; 424 if (unlikely(!psock)) 425 goto out; 426 mux = psock->mux; 427 428 spin_lock_bh(&mux->lock); 429 430 /* Check if the socket is reserved so someone is waiting for sending. */ 431 kcm = psock->tx_kcm; 432 if (kcm && !unlikely(kcm->tx_stopped)) 433 queue_work(kcm_wq, &kcm->tx_work); 434 435 spin_unlock_bh(&mux->lock); 436 out: 437 read_unlock_bh(&sk->sk_callback_lock); 438 } 439 440 static void unreserve_psock(struct kcm_sock *kcm); 441 442 /* kcm sock is locked. */ 443 static struct kcm_psock *reserve_psock(struct kcm_sock *kcm) 444 { 445 struct kcm_mux *mux = kcm->mux; 446 struct kcm_psock *psock; 447 448 psock = kcm->tx_psock; 449 450 smp_rmb(); /* Must read tx_psock before tx_wait */ 451 452 if (psock) { 453 WARN_ON(kcm->tx_wait); 454 if (unlikely(psock->tx_stopped)) 455 unreserve_psock(kcm); 456 else 457 return kcm->tx_psock; 458 } 459 460 spin_lock_bh(&mux->lock); 461 462 /* Check again under lock to see if psock was reserved for this 463 * psock via psock_unreserve. 464 */ 465 psock = kcm->tx_psock; 466 if (unlikely(psock)) { 467 WARN_ON(kcm->tx_wait); 468 spin_unlock_bh(&mux->lock); 469 return kcm->tx_psock; 470 } 471 472 if (!list_empty(&mux->psocks_avail)) { 473 psock = list_first_entry(&mux->psocks_avail, 474 struct kcm_psock, 475 psock_avail_list); 476 list_del(&psock->psock_avail_list); 477 if (kcm->tx_wait) { 478 list_del(&kcm->wait_psock_list); 479 kcm->tx_wait = false; 480 } 481 kcm->tx_psock = psock; 482 psock->tx_kcm = kcm; 483 KCM_STATS_INCR(psock->stats.reserved); 484 } else if (!kcm->tx_wait) { 485 list_add_tail(&kcm->wait_psock_list, 486 &mux->kcm_tx_waiters); 487 kcm->tx_wait = true; 488 } 489 490 spin_unlock_bh(&mux->lock); 491 492 return psock; 493 } 494 495 /* mux lock held */ 496 static void psock_now_avail(struct kcm_psock *psock) 497 { 498 struct kcm_mux *mux = psock->mux; 499 struct kcm_sock *kcm; 500 501 if (list_empty(&mux->kcm_tx_waiters)) { 502 list_add_tail(&psock->psock_avail_list, 503 &mux->psocks_avail); 504 } else { 505 kcm = list_first_entry(&mux->kcm_tx_waiters, 506 struct kcm_sock, 507 wait_psock_list); 508 list_del(&kcm->wait_psock_list); 509 kcm->tx_wait = false; 510 psock->tx_kcm = kcm; 511 512 /* Commit before changing tx_psock since that is read in 513 * reserve_psock before queuing work. 514 */ 515 smp_mb(); 516 517 kcm->tx_psock = psock; 518 KCM_STATS_INCR(psock->stats.reserved); 519 queue_work(kcm_wq, &kcm->tx_work); 520 } 521 } 522 523 /* kcm sock is locked. */ 524 static void unreserve_psock(struct kcm_sock *kcm) 525 { 526 struct kcm_psock *psock; 527 struct kcm_mux *mux = kcm->mux; 528 529 spin_lock_bh(&mux->lock); 530 531 psock = kcm->tx_psock; 532 533 if (WARN_ON(!psock)) { 534 spin_unlock_bh(&mux->lock); 535 return; 536 } 537 538 smp_rmb(); /* Read tx_psock before tx_wait */ 539 540 kcm_update_tx_mux_stats(mux, psock); 541 542 WARN_ON(kcm->tx_wait); 543 544 kcm->tx_psock = NULL; 545 psock->tx_kcm = NULL; 546 KCM_STATS_INCR(psock->stats.unreserved); 547 548 if (unlikely(psock->tx_stopped)) { 549 if (psock->done) { 550 /* Deferred free */ 551 list_del(&psock->psock_list); 552 mux->psocks_cnt--; 553 sock_put(psock->sk); 554 fput(psock->sk->sk_socket->file); 555 kmem_cache_free(kcm_psockp, psock); 556 } 557 558 /* Don't put back on available list */ 559 560 spin_unlock_bh(&mux->lock); 561 562 return; 563 } 564 565 psock_now_avail(psock); 566 567 spin_unlock_bh(&mux->lock); 568 } 569 570 static void kcm_report_tx_retry(struct kcm_sock *kcm) 571 { 572 struct kcm_mux *mux = kcm->mux; 573 574 spin_lock_bh(&mux->lock); 575 KCM_STATS_INCR(mux->stats.tx_retries); 576 spin_unlock_bh(&mux->lock); 577 } 578 579 /* Write any messages ready on the kcm socket. Called with kcm sock lock 580 * held. Return bytes actually sent or error. 581 */ 582 static int kcm_write_msgs(struct kcm_sock *kcm) 583 { 584 unsigned int total_sent = 0; 585 struct sock *sk = &kcm->sk; 586 struct kcm_psock *psock; 587 struct sk_buff *head; 588 int ret = 0; 589 590 kcm->tx_wait_more = false; 591 psock = kcm->tx_psock; 592 if (unlikely(psock && psock->tx_stopped)) { 593 /* A reserved psock was aborted asynchronously. Unreserve 594 * it and we'll retry the message. 595 */ 596 unreserve_psock(kcm); 597 kcm_report_tx_retry(kcm); 598 if (skb_queue_empty(&sk->sk_write_queue)) 599 return 0; 600 601 kcm_tx_msg(skb_peek(&sk->sk_write_queue))->started_tx = false; 602 } 603 604 retry: 605 while ((head = skb_peek(&sk->sk_write_queue))) { 606 struct msghdr msg = { 607 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 608 }; 609 struct kcm_tx_msg *txm = kcm_tx_msg(head); 610 struct sk_buff *skb; 611 unsigned int msize; 612 int i; 613 614 if (!txm->started_tx) { 615 psock = reserve_psock(kcm); 616 if (!psock) 617 goto out; 618 skb = head; 619 txm->frag_offset = 0; 620 txm->sent = 0; 621 txm->started_tx = true; 622 } else { 623 if (WARN_ON(!psock)) { 624 ret = -EINVAL; 625 goto out; 626 } 627 skb = txm->frag_skb; 628 } 629 630 if (WARN_ON(!skb_shinfo(skb)->nr_frags)) { 631 ret = -EINVAL; 632 goto out; 633 } 634 635 msize = 0; 636 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 637 msize += skb_shinfo(skb)->frags[i].bv_len; 638 639 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, 640 skb_shinfo(skb)->frags, skb_shinfo(skb)->nr_frags, 641 msize); 642 iov_iter_advance(&msg.msg_iter, txm->frag_offset); 643 644 do { 645 ret = sock_sendmsg(psock->sk->sk_socket, &msg); 646 if (ret <= 0) { 647 if (ret == -EAGAIN) { 648 /* Save state to try again when there's 649 * write space on the socket 650 */ 651 txm->frag_skb = skb; 652 ret = 0; 653 goto out; 654 } 655 656 /* Hard failure in sending message, abort this 657 * psock since it has lost framing 658 * synchronization and retry sending the 659 * message from the beginning. 660 */ 661 kcm_abort_tx_psock(psock, ret ? -ret : EPIPE, 662 true); 663 unreserve_psock(kcm); 664 665 txm->started_tx = false; 666 kcm_report_tx_retry(kcm); 667 ret = 0; 668 goto retry; 669 } 670 671 txm->sent += ret; 672 txm->frag_offset += ret; 673 KCM_STATS_ADD(psock->stats.tx_bytes, ret); 674 } while (msg.msg_iter.count > 0); 675 676 if (skb == head) { 677 if (skb_has_frag_list(skb)) { 678 txm->frag_skb = skb_shinfo(skb)->frag_list; 679 txm->frag_offset = 0; 680 continue; 681 } 682 } else if (skb->next) { 683 txm->frag_skb = skb->next; 684 txm->frag_offset = 0; 685 continue; 686 } 687 688 /* Successfully sent the whole packet, account for it. */ 689 sk->sk_wmem_queued -= txm->sent; 690 total_sent += txm->sent; 691 skb_dequeue(&sk->sk_write_queue); 692 kfree_skb(head); 693 KCM_STATS_INCR(psock->stats.tx_msgs); 694 } 695 out: 696 if (!head) { 697 /* Done with all queued messages. */ 698 WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); 699 unreserve_psock(kcm); 700 } 701 702 /* Check if write space is available */ 703 sk->sk_write_space(sk); 704 705 return total_sent ? : ret; 706 } 707 708 static void kcm_tx_work(struct work_struct *w) 709 { 710 struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work); 711 struct sock *sk = &kcm->sk; 712 int err; 713 714 lock_sock(sk); 715 716 /* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx 717 * aborts 718 */ 719 err = kcm_write_msgs(kcm); 720 if (err < 0) { 721 /* Hard failure in write, report error on KCM socket */ 722 pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err); 723 report_csk_error(&kcm->sk, -err); 724 goto out; 725 } 726 727 /* Primarily for SOCK_SEQPACKET sockets */ 728 if (likely(sk->sk_socket) && 729 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 730 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 731 sk->sk_write_space(sk); 732 } 733 734 out: 735 release_sock(sk); 736 } 737 738 static void kcm_push(struct kcm_sock *kcm) 739 { 740 if (kcm->tx_wait_more) 741 kcm_write_msgs(kcm); 742 } 743 744 static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 745 { 746 struct sock *sk = sock->sk; 747 struct kcm_sock *kcm = kcm_sk(sk); 748 struct sk_buff *skb = NULL, *head = NULL; 749 size_t copy, copied = 0; 750 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 751 int eor = (sock->type == SOCK_DGRAM) ? 752 !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR); 753 int err = -EPIPE; 754 755 lock_sock(sk); 756 757 /* Per tcp_sendmsg this should be in poll */ 758 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 759 760 if (sk->sk_err) 761 goto out_error; 762 763 if (kcm->seq_skb) { 764 /* Previously opened message */ 765 head = kcm->seq_skb; 766 skb = kcm_tx_msg(head)->last_skb; 767 goto start; 768 } 769 770 /* Call the sk_stream functions to manage the sndbuf mem. */ 771 if (!sk_stream_memory_free(sk)) { 772 kcm_push(kcm); 773 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 774 err = sk_stream_wait_memory(sk, &timeo); 775 if (err) 776 goto out_error; 777 } 778 779 if (msg_data_left(msg)) { 780 /* New message, alloc head skb */ 781 head = alloc_skb(0, sk->sk_allocation); 782 while (!head) { 783 kcm_push(kcm); 784 err = sk_stream_wait_memory(sk, &timeo); 785 if (err) 786 goto out_error; 787 788 head = alloc_skb(0, sk->sk_allocation); 789 } 790 791 skb = head; 792 793 /* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling 794 * csum_and_copy_from_iter from skb_do_copy_data_nocache. 795 */ 796 skb->ip_summed = CHECKSUM_UNNECESSARY; 797 } 798 799 start: 800 while (msg_data_left(msg)) { 801 bool merge = true; 802 int i = skb_shinfo(skb)->nr_frags; 803 struct page_frag *pfrag = sk_page_frag(sk); 804 805 if (!sk_page_frag_refill(sk, pfrag)) 806 goto wait_for_memory; 807 808 if (!skb_can_coalesce(skb, i, pfrag->page, 809 pfrag->offset)) { 810 if (i == MAX_SKB_FRAGS) { 811 struct sk_buff *tskb; 812 813 tskb = alloc_skb(0, sk->sk_allocation); 814 if (!tskb) 815 goto wait_for_memory; 816 817 if (head == skb) 818 skb_shinfo(head)->frag_list = tskb; 819 else 820 skb->next = tskb; 821 822 skb = tskb; 823 skb->ip_summed = CHECKSUM_UNNECESSARY; 824 continue; 825 } 826 merge = false; 827 } 828 829 if (msg->msg_flags & MSG_SPLICE_PAGES) { 830 copy = msg_data_left(msg); 831 if (!sk_wmem_schedule(sk, copy)) 832 goto wait_for_memory; 833 834 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 835 sk->sk_allocation); 836 if (err < 0) { 837 if (err == -EMSGSIZE) 838 goto wait_for_memory; 839 goto out_error; 840 } 841 842 copy = err; 843 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 844 sk_wmem_queued_add(sk, copy); 845 sk_mem_charge(sk, copy); 846 847 if (head != skb) 848 head->truesize += copy; 849 } else { 850 copy = min_t(int, msg_data_left(msg), 851 pfrag->size - pfrag->offset); 852 if (!sk_wmem_schedule(sk, copy)) 853 goto wait_for_memory; 854 855 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 856 pfrag->page, 857 pfrag->offset, 858 copy); 859 if (err) 860 goto out_error; 861 862 /* Update the skb. */ 863 if (merge) { 864 skb_frag_size_add( 865 &skb_shinfo(skb)->frags[i - 1], copy); 866 } else { 867 skb_fill_page_desc(skb, i, pfrag->page, 868 pfrag->offset, copy); 869 get_page(pfrag->page); 870 } 871 872 pfrag->offset += copy; 873 } 874 875 copied += copy; 876 if (head != skb) { 877 head->len += copy; 878 head->data_len += copy; 879 } 880 881 continue; 882 883 wait_for_memory: 884 kcm_push(kcm); 885 err = sk_stream_wait_memory(sk, &timeo); 886 if (err) 887 goto out_error; 888 } 889 890 if (eor) { 891 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 892 893 if (head) { 894 /* Message complete, queue it on send buffer */ 895 __skb_queue_tail(&sk->sk_write_queue, head); 896 kcm->seq_skb = NULL; 897 KCM_STATS_INCR(kcm->stats.tx_msgs); 898 } 899 900 if (msg->msg_flags & MSG_BATCH) { 901 kcm->tx_wait_more = true; 902 } else if (kcm->tx_wait_more || not_busy) { 903 err = kcm_write_msgs(kcm); 904 if (err < 0) { 905 /* We got a hard error in write_msgs but have 906 * already queued this message. Report an error 907 * in the socket, but don't affect return value 908 * from sendmsg 909 */ 910 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 911 report_csk_error(&kcm->sk, -err); 912 } 913 } 914 } else { 915 /* Message not complete, save state */ 916 partial_message: 917 if (head) { 918 kcm->seq_skb = head; 919 kcm_tx_msg(head)->last_skb = skb; 920 } 921 } 922 923 KCM_STATS_ADD(kcm->stats.tx_bytes, copied); 924 925 release_sock(sk); 926 return copied; 927 928 out_error: 929 kcm_push(kcm); 930 931 if (copied && sock->type == SOCK_SEQPACKET) { 932 /* Wrote some bytes before encountering an 933 * error, return partial success. 934 */ 935 goto partial_message; 936 } 937 938 if (head != kcm->seq_skb) 939 kfree_skb(head); 940 941 err = sk_stream_error(sk, msg->msg_flags, err); 942 943 /* make sure we wake any epoll edge trigger waiter */ 944 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 945 sk->sk_write_space(sk); 946 947 release_sock(sk); 948 return err; 949 } 950 951 static void kcm_splice_eof(struct socket *sock) 952 { 953 struct sock *sk = sock->sk; 954 struct kcm_sock *kcm = kcm_sk(sk); 955 956 if (skb_queue_empty_lockless(&sk->sk_write_queue)) 957 return; 958 959 lock_sock(sk); 960 kcm_write_msgs(kcm); 961 release_sock(sk); 962 } 963 964 static ssize_t kcm_sendpage(struct socket *sock, struct page *page, 965 int offset, size_t size, int flags) 966 967 { 968 struct bio_vec bvec; 969 struct msghdr msg = { .msg_flags = flags | MSG_SPLICE_PAGES, }; 970 971 if (flags & MSG_SENDPAGE_NOTLAST) 972 msg.msg_flags |= MSG_MORE; 973 974 if (flags & MSG_OOB) 975 return -EOPNOTSUPP; 976 977 bvec_set_page(&bvec, page, size, offset); 978 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size); 979 return kcm_sendmsg(sock, &msg, size); 980 } 981 982 static int kcm_recvmsg(struct socket *sock, struct msghdr *msg, 983 size_t len, int flags) 984 { 985 struct sock *sk = sock->sk; 986 struct kcm_sock *kcm = kcm_sk(sk); 987 int err = 0; 988 struct strp_msg *stm; 989 int copied = 0; 990 struct sk_buff *skb; 991 992 skb = skb_recv_datagram(sk, flags, &err); 993 if (!skb) 994 goto out; 995 996 /* Okay, have a message on the receive queue */ 997 998 stm = strp_msg(skb); 999 1000 if (len > stm->full_len) 1001 len = stm->full_len; 1002 1003 err = skb_copy_datagram_msg(skb, stm->offset, msg, len); 1004 if (err < 0) 1005 goto out; 1006 1007 copied = len; 1008 if (likely(!(flags & MSG_PEEK))) { 1009 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1010 if (copied < stm->full_len) { 1011 if (sock->type == SOCK_DGRAM) { 1012 /* Truncated message */ 1013 msg->msg_flags |= MSG_TRUNC; 1014 goto msg_finished; 1015 } 1016 stm->offset += copied; 1017 stm->full_len -= copied; 1018 } else { 1019 msg_finished: 1020 /* Finished with message */ 1021 msg->msg_flags |= MSG_EOR; 1022 KCM_STATS_INCR(kcm->stats.rx_msgs); 1023 } 1024 } 1025 1026 out: 1027 skb_free_datagram(sk, skb); 1028 return copied ? : err; 1029 } 1030 1031 static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos, 1032 struct pipe_inode_info *pipe, size_t len, 1033 unsigned int flags) 1034 { 1035 struct sock *sk = sock->sk; 1036 struct kcm_sock *kcm = kcm_sk(sk); 1037 struct strp_msg *stm; 1038 int err = 0; 1039 ssize_t copied; 1040 struct sk_buff *skb; 1041 1042 /* Only support splice for SOCKSEQPACKET */ 1043 1044 skb = skb_recv_datagram(sk, flags, &err); 1045 if (!skb) 1046 goto err_out; 1047 1048 /* Okay, have a message on the receive queue */ 1049 1050 stm = strp_msg(skb); 1051 1052 if (len > stm->full_len) 1053 len = stm->full_len; 1054 1055 copied = skb_splice_bits(skb, sk, stm->offset, pipe, len, flags); 1056 if (copied < 0) { 1057 err = copied; 1058 goto err_out; 1059 } 1060 1061 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1062 1063 stm->offset += copied; 1064 stm->full_len -= copied; 1065 1066 /* We have no way to return MSG_EOR. If all the bytes have been 1067 * read we still leave the message in the receive socket buffer. 1068 * A subsequent recvmsg needs to be done to return MSG_EOR and 1069 * finish reading the message. 1070 */ 1071 1072 skb_free_datagram(sk, skb); 1073 return copied; 1074 1075 err_out: 1076 skb_free_datagram(sk, skb); 1077 return err; 1078 } 1079 1080 /* kcm sock lock held */ 1081 static void kcm_recv_disable(struct kcm_sock *kcm) 1082 { 1083 struct kcm_mux *mux = kcm->mux; 1084 1085 if (kcm->rx_disabled) 1086 return; 1087 1088 spin_lock_bh(&mux->rx_lock); 1089 1090 kcm->rx_disabled = 1; 1091 1092 /* If a psock is reserved we'll do cleanup in unreserve */ 1093 if (!kcm->rx_psock) { 1094 if (kcm->rx_wait) { 1095 list_del(&kcm->wait_rx_list); 1096 /* paired with lockless reads in kcm_rfree() */ 1097 WRITE_ONCE(kcm->rx_wait, false); 1098 } 1099 1100 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 1101 } 1102 1103 spin_unlock_bh(&mux->rx_lock); 1104 } 1105 1106 /* kcm sock lock held */ 1107 static void kcm_recv_enable(struct kcm_sock *kcm) 1108 { 1109 struct kcm_mux *mux = kcm->mux; 1110 1111 if (!kcm->rx_disabled) 1112 return; 1113 1114 spin_lock_bh(&mux->rx_lock); 1115 1116 kcm->rx_disabled = 0; 1117 kcm_rcv_ready(kcm); 1118 1119 spin_unlock_bh(&mux->rx_lock); 1120 } 1121 1122 static int kcm_setsockopt(struct socket *sock, int level, int optname, 1123 sockptr_t optval, unsigned int optlen) 1124 { 1125 struct kcm_sock *kcm = kcm_sk(sock->sk); 1126 int val, valbool; 1127 int err = 0; 1128 1129 if (level != SOL_KCM) 1130 return -ENOPROTOOPT; 1131 1132 if (optlen < sizeof(int)) 1133 return -EINVAL; 1134 1135 if (copy_from_sockptr(&val, optval, sizeof(int))) 1136 return -EFAULT; 1137 1138 valbool = val ? 1 : 0; 1139 1140 switch (optname) { 1141 case KCM_RECV_DISABLE: 1142 lock_sock(&kcm->sk); 1143 if (valbool) 1144 kcm_recv_disable(kcm); 1145 else 1146 kcm_recv_enable(kcm); 1147 release_sock(&kcm->sk); 1148 break; 1149 default: 1150 err = -ENOPROTOOPT; 1151 } 1152 1153 return err; 1154 } 1155 1156 static int kcm_getsockopt(struct socket *sock, int level, int optname, 1157 char __user *optval, int __user *optlen) 1158 { 1159 struct kcm_sock *kcm = kcm_sk(sock->sk); 1160 int val, len; 1161 1162 if (level != SOL_KCM) 1163 return -ENOPROTOOPT; 1164 1165 if (get_user(len, optlen)) 1166 return -EFAULT; 1167 1168 len = min_t(unsigned int, len, sizeof(int)); 1169 if (len < 0) 1170 return -EINVAL; 1171 1172 switch (optname) { 1173 case KCM_RECV_DISABLE: 1174 val = kcm->rx_disabled; 1175 break; 1176 default: 1177 return -ENOPROTOOPT; 1178 } 1179 1180 if (put_user(len, optlen)) 1181 return -EFAULT; 1182 if (copy_to_user(optval, &val, len)) 1183 return -EFAULT; 1184 return 0; 1185 } 1186 1187 static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux) 1188 { 1189 struct kcm_sock *tkcm; 1190 struct list_head *head; 1191 int index = 0; 1192 1193 /* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so 1194 * we set sk_state, otherwise epoll_wait always returns right away with 1195 * EPOLLHUP 1196 */ 1197 kcm->sk.sk_state = TCP_ESTABLISHED; 1198 1199 /* Add to mux's kcm sockets list */ 1200 kcm->mux = mux; 1201 spin_lock_bh(&mux->lock); 1202 1203 head = &mux->kcm_socks; 1204 list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) { 1205 if (tkcm->index != index) 1206 break; 1207 head = &tkcm->kcm_sock_list; 1208 index++; 1209 } 1210 1211 list_add(&kcm->kcm_sock_list, head); 1212 kcm->index = index; 1213 1214 mux->kcm_socks_cnt++; 1215 spin_unlock_bh(&mux->lock); 1216 1217 INIT_WORK(&kcm->tx_work, kcm_tx_work); 1218 1219 spin_lock_bh(&mux->rx_lock); 1220 kcm_rcv_ready(kcm); 1221 spin_unlock_bh(&mux->rx_lock); 1222 } 1223 1224 static int kcm_attach(struct socket *sock, struct socket *csock, 1225 struct bpf_prog *prog) 1226 { 1227 struct kcm_sock *kcm = kcm_sk(sock->sk); 1228 struct kcm_mux *mux = kcm->mux; 1229 struct sock *csk; 1230 struct kcm_psock *psock = NULL, *tpsock; 1231 struct list_head *head; 1232 int index = 0; 1233 static const struct strp_callbacks cb = { 1234 .rcv_msg = kcm_rcv_strparser, 1235 .parse_msg = kcm_parse_func_strparser, 1236 .read_sock_done = kcm_read_sock_done, 1237 }; 1238 int err = 0; 1239 1240 csk = csock->sk; 1241 if (!csk) 1242 return -EINVAL; 1243 1244 lock_sock(csk); 1245 1246 /* Only allow TCP sockets to be attached for now */ 1247 if ((csk->sk_family != AF_INET && csk->sk_family != AF_INET6) || 1248 csk->sk_protocol != IPPROTO_TCP) { 1249 err = -EOPNOTSUPP; 1250 goto out; 1251 } 1252 1253 /* Don't allow listeners or closed sockets */ 1254 if (csk->sk_state == TCP_LISTEN || csk->sk_state == TCP_CLOSE) { 1255 err = -EOPNOTSUPP; 1256 goto out; 1257 } 1258 1259 psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL); 1260 if (!psock) { 1261 err = -ENOMEM; 1262 goto out; 1263 } 1264 1265 psock->mux = mux; 1266 psock->sk = csk; 1267 psock->bpf_prog = prog; 1268 1269 write_lock_bh(&csk->sk_callback_lock); 1270 1271 /* Check if sk_user_data is already by KCM or someone else. 1272 * Must be done under lock to prevent race conditions. 1273 */ 1274 if (csk->sk_user_data) { 1275 write_unlock_bh(&csk->sk_callback_lock); 1276 kmem_cache_free(kcm_psockp, psock); 1277 err = -EALREADY; 1278 goto out; 1279 } 1280 1281 err = strp_init(&psock->strp, csk, &cb); 1282 if (err) { 1283 write_unlock_bh(&csk->sk_callback_lock); 1284 kmem_cache_free(kcm_psockp, psock); 1285 goto out; 1286 } 1287 1288 psock->save_data_ready = csk->sk_data_ready; 1289 psock->save_write_space = csk->sk_write_space; 1290 psock->save_state_change = csk->sk_state_change; 1291 csk->sk_user_data = psock; 1292 csk->sk_data_ready = psock_data_ready; 1293 csk->sk_write_space = psock_write_space; 1294 csk->sk_state_change = psock_state_change; 1295 1296 write_unlock_bh(&csk->sk_callback_lock); 1297 1298 sock_hold(csk); 1299 1300 /* Finished initialization, now add the psock to the MUX. */ 1301 spin_lock_bh(&mux->lock); 1302 head = &mux->psocks; 1303 list_for_each_entry(tpsock, &mux->psocks, psock_list) { 1304 if (tpsock->index != index) 1305 break; 1306 head = &tpsock->psock_list; 1307 index++; 1308 } 1309 1310 list_add(&psock->psock_list, head); 1311 psock->index = index; 1312 1313 KCM_STATS_INCR(mux->stats.psock_attach); 1314 mux->psocks_cnt++; 1315 psock_now_avail(psock); 1316 spin_unlock_bh(&mux->lock); 1317 1318 /* Schedule RX work in case there are already bytes queued */ 1319 strp_check_rcv(&psock->strp); 1320 1321 out: 1322 release_sock(csk); 1323 1324 return err; 1325 } 1326 1327 static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info) 1328 { 1329 struct socket *csock; 1330 struct bpf_prog *prog; 1331 int err; 1332 1333 csock = sockfd_lookup(info->fd, &err); 1334 if (!csock) 1335 return -ENOENT; 1336 1337 prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER); 1338 if (IS_ERR(prog)) { 1339 err = PTR_ERR(prog); 1340 goto out; 1341 } 1342 1343 err = kcm_attach(sock, csock, prog); 1344 if (err) { 1345 bpf_prog_put(prog); 1346 goto out; 1347 } 1348 1349 /* Keep reference on file also */ 1350 1351 return 0; 1352 out: 1353 sockfd_put(csock); 1354 return err; 1355 } 1356 1357 static void kcm_unattach(struct kcm_psock *psock) 1358 { 1359 struct sock *csk = psock->sk; 1360 struct kcm_mux *mux = psock->mux; 1361 1362 lock_sock(csk); 1363 1364 /* Stop getting callbacks from TCP socket. After this there should 1365 * be no way to reserve a kcm for this psock. 1366 */ 1367 write_lock_bh(&csk->sk_callback_lock); 1368 csk->sk_user_data = NULL; 1369 csk->sk_data_ready = psock->save_data_ready; 1370 csk->sk_write_space = psock->save_write_space; 1371 csk->sk_state_change = psock->save_state_change; 1372 strp_stop(&psock->strp); 1373 1374 if (WARN_ON(psock->rx_kcm)) { 1375 write_unlock_bh(&csk->sk_callback_lock); 1376 release_sock(csk); 1377 return; 1378 } 1379 1380 spin_lock_bh(&mux->rx_lock); 1381 1382 /* Stop receiver activities. After this point psock should not be 1383 * able to get onto ready list either through callbacks or work. 1384 */ 1385 if (psock->ready_rx_msg) { 1386 list_del(&psock->psock_ready_list); 1387 kfree_skb(psock->ready_rx_msg); 1388 psock->ready_rx_msg = NULL; 1389 KCM_STATS_INCR(mux->stats.rx_ready_drops); 1390 } 1391 1392 spin_unlock_bh(&mux->rx_lock); 1393 1394 write_unlock_bh(&csk->sk_callback_lock); 1395 1396 /* Call strp_done without sock lock */ 1397 release_sock(csk); 1398 strp_done(&psock->strp); 1399 lock_sock(csk); 1400 1401 bpf_prog_put(psock->bpf_prog); 1402 1403 spin_lock_bh(&mux->lock); 1404 1405 aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats); 1406 save_strp_stats(&psock->strp, &mux->aggregate_strp_stats); 1407 1408 KCM_STATS_INCR(mux->stats.psock_unattach); 1409 1410 if (psock->tx_kcm) { 1411 /* psock was reserved. Just mark it finished and we will clean 1412 * up in the kcm paths, we need kcm lock which can not be 1413 * acquired here. 1414 */ 1415 KCM_STATS_INCR(mux->stats.psock_unattach_rsvd); 1416 spin_unlock_bh(&mux->lock); 1417 1418 /* We are unattaching a socket that is reserved. Abort the 1419 * socket since we may be out of sync in sending on it. We need 1420 * to do this without the mux lock. 1421 */ 1422 kcm_abort_tx_psock(psock, EPIPE, false); 1423 1424 spin_lock_bh(&mux->lock); 1425 if (!psock->tx_kcm) { 1426 /* psock now unreserved in window mux was unlocked */ 1427 goto no_reserved; 1428 } 1429 psock->done = 1; 1430 1431 /* Commit done before queuing work to process it */ 1432 smp_mb(); 1433 1434 /* Queue tx work to make sure psock->done is handled */ 1435 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 1436 spin_unlock_bh(&mux->lock); 1437 } else { 1438 no_reserved: 1439 if (!psock->tx_stopped) 1440 list_del(&psock->psock_avail_list); 1441 list_del(&psock->psock_list); 1442 mux->psocks_cnt--; 1443 spin_unlock_bh(&mux->lock); 1444 1445 sock_put(csk); 1446 fput(csk->sk_socket->file); 1447 kmem_cache_free(kcm_psockp, psock); 1448 } 1449 1450 release_sock(csk); 1451 } 1452 1453 static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info) 1454 { 1455 struct kcm_sock *kcm = kcm_sk(sock->sk); 1456 struct kcm_mux *mux = kcm->mux; 1457 struct kcm_psock *psock; 1458 struct socket *csock; 1459 struct sock *csk; 1460 int err; 1461 1462 csock = sockfd_lookup(info->fd, &err); 1463 if (!csock) 1464 return -ENOENT; 1465 1466 csk = csock->sk; 1467 if (!csk) { 1468 err = -EINVAL; 1469 goto out; 1470 } 1471 1472 err = -ENOENT; 1473 1474 spin_lock_bh(&mux->lock); 1475 1476 list_for_each_entry(psock, &mux->psocks, psock_list) { 1477 if (psock->sk != csk) 1478 continue; 1479 1480 /* Found the matching psock */ 1481 1482 if (psock->unattaching || WARN_ON(psock->done)) { 1483 err = -EALREADY; 1484 break; 1485 } 1486 1487 psock->unattaching = 1; 1488 1489 spin_unlock_bh(&mux->lock); 1490 1491 /* Lower socket lock should already be held */ 1492 kcm_unattach(psock); 1493 1494 err = 0; 1495 goto out; 1496 } 1497 1498 spin_unlock_bh(&mux->lock); 1499 1500 out: 1501 sockfd_put(csock); 1502 return err; 1503 } 1504 1505 static struct proto kcm_proto = { 1506 .name = "KCM", 1507 .owner = THIS_MODULE, 1508 .obj_size = sizeof(struct kcm_sock), 1509 }; 1510 1511 /* Clone a kcm socket. */ 1512 static struct file *kcm_clone(struct socket *osock) 1513 { 1514 struct socket *newsock; 1515 struct sock *newsk; 1516 1517 newsock = sock_alloc(); 1518 if (!newsock) 1519 return ERR_PTR(-ENFILE); 1520 1521 newsock->type = osock->type; 1522 newsock->ops = osock->ops; 1523 1524 __module_get(newsock->ops->owner); 1525 1526 newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL, 1527 &kcm_proto, false); 1528 if (!newsk) { 1529 sock_release(newsock); 1530 return ERR_PTR(-ENOMEM); 1531 } 1532 sock_init_data(newsock, newsk); 1533 init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux); 1534 1535 return sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name); 1536 } 1537 1538 static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1539 { 1540 int err; 1541 1542 switch (cmd) { 1543 case SIOCKCMATTACH: { 1544 struct kcm_attach info; 1545 1546 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1547 return -EFAULT; 1548 1549 err = kcm_attach_ioctl(sock, &info); 1550 1551 break; 1552 } 1553 case SIOCKCMUNATTACH: { 1554 struct kcm_unattach info; 1555 1556 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1557 return -EFAULT; 1558 1559 err = kcm_unattach_ioctl(sock, &info); 1560 1561 break; 1562 } 1563 case SIOCKCMCLONE: { 1564 struct kcm_clone info; 1565 struct file *file; 1566 1567 info.fd = get_unused_fd_flags(0); 1568 if (unlikely(info.fd < 0)) 1569 return info.fd; 1570 1571 file = kcm_clone(sock); 1572 if (IS_ERR(file)) { 1573 put_unused_fd(info.fd); 1574 return PTR_ERR(file); 1575 } 1576 if (copy_to_user((void __user *)arg, &info, 1577 sizeof(info))) { 1578 put_unused_fd(info.fd); 1579 fput(file); 1580 return -EFAULT; 1581 } 1582 fd_install(info.fd, file); 1583 err = 0; 1584 break; 1585 } 1586 default: 1587 err = -ENOIOCTLCMD; 1588 break; 1589 } 1590 1591 return err; 1592 } 1593 1594 static void free_mux(struct rcu_head *rcu) 1595 { 1596 struct kcm_mux *mux = container_of(rcu, 1597 struct kcm_mux, rcu); 1598 1599 kmem_cache_free(kcm_muxp, mux); 1600 } 1601 1602 static void release_mux(struct kcm_mux *mux) 1603 { 1604 struct kcm_net *knet = mux->knet; 1605 struct kcm_psock *psock, *tmp_psock; 1606 1607 /* Release psocks */ 1608 list_for_each_entry_safe(psock, tmp_psock, 1609 &mux->psocks, psock_list) { 1610 if (!WARN_ON(psock->unattaching)) 1611 kcm_unattach(psock); 1612 } 1613 1614 if (WARN_ON(mux->psocks_cnt)) 1615 return; 1616 1617 __skb_queue_purge(&mux->rx_hold_queue); 1618 1619 mutex_lock(&knet->mutex); 1620 aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats); 1621 aggregate_psock_stats(&mux->aggregate_psock_stats, 1622 &knet->aggregate_psock_stats); 1623 aggregate_strp_stats(&mux->aggregate_strp_stats, 1624 &knet->aggregate_strp_stats); 1625 list_del_rcu(&mux->kcm_mux_list); 1626 knet->count--; 1627 mutex_unlock(&knet->mutex); 1628 1629 call_rcu(&mux->rcu, free_mux); 1630 } 1631 1632 static void kcm_done(struct kcm_sock *kcm) 1633 { 1634 struct kcm_mux *mux = kcm->mux; 1635 struct sock *sk = &kcm->sk; 1636 int socks_cnt; 1637 1638 spin_lock_bh(&mux->rx_lock); 1639 if (kcm->rx_psock) { 1640 /* Cleanup in unreserve_rx_kcm */ 1641 WARN_ON(kcm->done); 1642 kcm->rx_disabled = 1; 1643 kcm->done = 1; 1644 spin_unlock_bh(&mux->rx_lock); 1645 return; 1646 } 1647 1648 if (kcm->rx_wait) { 1649 list_del(&kcm->wait_rx_list); 1650 /* paired with lockless reads in kcm_rfree() */ 1651 WRITE_ONCE(kcm->rx_wait, false); 1652 } 1653 /* Move any pending receive messages to other kcm sockets */ 1654 requeue_rx_msgs(mux, &sk->sk_receive_queue); 1655 1656 spin_unlock_bh(&mux->rx_lock); 1657 1658 if (WARN_ON(sk_rmem_alloc_get(sk))) 1659 return; 1660 1661 /* Detach from MUX */ 1662 spin_lock_bh(&mux->lock); 1663 1664 list_del(&kcm->kcm_sock_list); 1665 mux->kcm_socks_cnt--; 1666 socks_cnt = mux->kcm_socks_cnt; 1667 1668 spin_unlock_bh(&mux->lock); 1669 1670 if (!socks_cnt) { 1671 /* We are done with the mux now. */ 1672 release_mux(mux); 1673 } 1674 1675 WARN_ON(kcm->rx_wait); 1676 1677 sock_put(&kcm->sk); 1678 } 1679 1680 /* Called by kcm_release to close a KCM socket. 1681 * If this is the last KCM socket on the MUX, destroy the MUX. 1682 */ 1683 static int kcm_release(struct socket *sock) 1684 { 1685 struct sock *sk = sock->sk; 1686 struct kcm_sock *kcm; 1687 struct kcm_mux *mux; 1688 struct kcm_psock *psock; 1689 1690 if (!sk) 1691 return 0; 1692 1693 kcm = kcm_sk(sk); 1694 mux = kcm->mux; 1695 1696 lock_sock(sk); 1697 sock_orphan(sk); 1698 kfree_skb(kcm->seq_skb); 1699 1700 /* Purge queue under lock to avoid race condition with tx_work trying 1701 * to act when queue is nonempty. If tx_work runs after this point 1702 * it will just return. 1703 */ 1704 __skb_queue_purge(&sk->sk_write_queue); 1705 1706 /* Set tx_stopped. This is checked when psock is bound to a kcm and we 1707 * get a writespace callback. This prevents further work being queued 1708 * from the callback (unbinding the psock occurs after canceling work. 1709 */ 1710 kcm->tx_stopped = 1; 1711 1712 release_sock(sk); 1713 1714 spin_lock_bh(&mux->lock); 1715 if (kcm->tx_wait) { 1716 /* Take of tx_wait list, after this point there should be no way 1717 * that a psock will be assigned to this kcm. 1718 */ 1719 list_del(&kcm->wait_psock_list); 1720 kcm->tx_wait = false; 1721 } 1722 spin_unlock_bh(&mux->lock); 1723 1724 /* Cancel work. After this point there should be no outside references 1725 * to the kcm socket. 1726 */ 1727 cancel_work_sync(&kcm->tx_work); 1728 1729 lock_sock(sk); 1730 psock = kcm->tx_psock; 1731 if (psock) { 1732 /* A psock was reserved, so we need to kill it since it 1733 * may already have some bytes queued from a message. We 1734 * need to do this after removing kcm from tx_wait list. 1735 */ 1736 kcm_abort_tx_psock(psock, EPIPE, false); 1737 unreserve_psock(kcm); 1738 } 1739 release_sock(sk); 1740 1741 WARN_ON(kcm->tx_wait); 1742 WARN_ON(kcm->tx_psock); 1743 1744 sock->sk = NULL; 1745 1746 kcm_done(kcm); 1747 1748 return 0; 1749 } 1750 1751 static const struct proto_ops kcm_dgram_ops = { 1752 .family = PF_KCM, 1753 .owner = THIS_MODULE, 1754 .release = kcm_release, 1755 .bind = sock_no_bind, 1756 .connect = sock_no_connect, 1757 .socketpair = sock_no_socketpair, 1758 .accept = sock_no_accept, 1759 .getname = sock_no_getname, 1760 .poll = datagram_poll, 1761 .ioctl = kcm_ioctl, 1762 .listen = sock_no_listen, 1763 .shutdown = sock_no_shutdown, 1764 .setsockopt = kcm_setsockopt, 1765 .getsockopt = kcm_getsockopt, 1766 .sendmsg = kcm_sendmsg, 1767 .recvmsg = kcm_recvmsg, 1768 .mmap = sock_no_mmap, 1769 .splice_eof = kcm_splice_eof, 1770 .sendpage = kcm_sendpage, 1771 }; 1772 1773 static const struct proto_ops kcm_seqpacket_ops = { 1774 .family = PF_KCM, 1775 .owner = THIS_MODULE, 1776 .release = kcm_release, 1777 .bind = sock_no_bind, 1778 .connect = sock_no_connect, 1779 .socketpair = sock_no_socketpair, 1780 .accept = sock_no_accept, 1781 .getname = sock_no_getname, 1782 .poll = datagram_poll, 1783 .ioctl = kcm_ioctl, 1784 .listen = sock_no_listen, 1785 .shutdown = sock_no_shutdown, 1786 .setsockopt = kcm_setsockopt, 1787 .getsockopt = kcm_getsockopt, 1788 .sendmsg = kcm_sendmsg, 1789 .recvmsg = kcm_recvmsg, 1790 .mmap = sock_no_mmap, 1791 .splice_eof = kcm_splice_eof, 1792 .sendpage = kcm_sendpage, 1793 .splice_read = kcm_splice_read, 1794 }; 1795 1796 /* Create proto operation for kcm sockets */ 1797 static int kcm_create(struct net *net, struct socket *sock, 1798 int protocol, int kern) 1799 { 1800 struct kcm_net *knet = net_generic(net, kcm_net_id); 1801 struct sock *sk; 1802 struct kcm_mux *mux; 1803 1804 switch (sock->type) { 1805 case SOCK_DGRAM: 1806 sock->ops = &kcm_dgram_ops; 1807 break; 1808 case SOCK_SEQPACKET: 1809 sock->ops = &kcm_seqpacket_ops; 1810 break; 1811 default: 1812 return -ESOCKTNOSUPPORT; 1813 } 1814 1815 if (protocol != KCMPROTO_CONNECTED) 1816 return -EPROTONOSUPPORT; 1817 1818 sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern); 1819 if (!sk) 1820 return -ENOMEM; 1821 1822 /* Allocate a kcm mux, shared between KCM sockets */ 1823 mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL); 1824 if (!mux) { 1825 sk_free(sk); 1826 return -ENOMEM; 1827 } 1828 1829 spin_lock_init(&mux->lock); 1830 spin_lock_init(&mux->rx_lock); 1831 INIT_LIST_HEAD(&mux->kcm_socks); 1832 INIT_LIST_HEAD(&mux->kcm_rx_waiters); 1833 INIT_LIST_HEAD(&mux->kcm_tx_waiters); 1834 1835 INIT_LIST_HEAD(&mux->psocks); 1836 INIT_LIST_HEAD(&mux->psocks_ready); 1837 INIT_LIST_HEAD(&mux->psocks_avail); 1838 1839 mux->knet = knet; 1840 1841 /* Add new MUX to list */ 1842 mutex_lock(&knet->mutex); 1843 list_add_rcu(&mux->kcm_mux_list, &knet->mux_list); 1844 knet->count++; 1845 mutex_unlock(&knet->mutex); 1846 1847 skb_queue_head_init(&mux->rx_hold_queue); 1848 1849 /* Init KCM socket */ 1850 sock_init_data(sock, sk); 1851 init_kcm_sock(kcm_sk(sk), mux); 1852 1853 return 0; 1854 } 1855 1856 static const struct net_proto_family kcm_family_ops = { 1857 .family = PF_KCM, 1858 .create = kcm_create, 1859 .owner = THIS_MODULE, 1860 }; 1861 1862 static __net_init int kcm_init_net(struct net *net) 1863 { 1864 struct kcm_net *knet = net_generic(net, kcm_net_id); 1865 1866 INIT_LIST_HEAD_RCU(&knet->mux_list); 1867 mutex_init(&knet->mutex); 1868 1869 return 0; 1870 } 1871 1872 static __net_exit void kcm_exit_net(struct net *net) 1873 { 1874 struct kcm_net *knet = net_generic(net, kcm_net_id); 1875 1876 /* All KCM sockets should be closed at this point, which should mean 1877 * that all multiplexors and psocks have been destroyed. 1878 */ 1879 WARN_ON(!list_empty(&knet->mux_list)); 1880 } 1881 1882 static struct pernet_operations kcm_net_ops = { 1883 .init = kcm_init_net, 1884 .exit = kcm_exit_net, 1885 .id = &kcm_net_id, 1886 .size = sizeof(struct kcm_net), 1887 }; 1888 1889 static int __init kcm_init(void) 1890 { 1891 int err = -ENOMEM; 1892 1893 kcm_muxp = kmem_cache_create("kcm_mux_cache", 1894 sizeof(struct kcm_mux), 0, 1895 SLAB_HWCACHE_ALIGN, NULL); 1896 if (!kcm_muxp) 1897 goto fail; 1898 1899 kcm_psockp = kmem_cache_create("kcm_psock_cache", 1900 sizeof(struct kcm_psock), 0, 1901 SLAB_HWCACHE_ALIGN, NULL); 1902 if (!kcm_psockp) 1903 goto fail; 1904 1905 kcm_wq = create_singlethread_workqueue("kkcmd"); 1906 if (!kcm_wq) 1907 goto fail; 1908 1909 err = proto_register(&kcm_proto, 1); 1910 if (err) 1911 goto fail; 1912 1913 err = register_pernet_device(&kcm_net_ops); 1914 if (err) 1915 goto net_ops_fail; 1916 1917 err = sock_register(&kcm_family_ops); 1918 if (err) 1919 goto sock_register_fail; 1920 1921 err = kcm_proc_init(); 1922 if (err) 1923 goto proc_init_fail; 1924 1925 return 0; 1926 1927 proc_init_fail: 1928 sock_unregister(PF_KCM); 1929 1930 sock_register_fail: 1931 unregister_pernet_device(&kcm_net_ops); 1932 1933 net_ops_fail: 1934 proto_unregister(&kcm_proto); 1935 1936 fail: 1937 kmem_cache_destroy(kcm_muxp); 1938 kmem_cache_destroy(kcm_psockp); 1939 1940 if (kcm_wq) 1941 destroy_workqueue(kcm_wq); 1942 1943 return err; 1944 } 1945 1946 static void __exit kcm_exit(void) 1947 { 1948 kcm_proc_exit(); 1949 sock_unregister(PF_KCM); 1950 unregister_pernet_device(&kcm_net_ops); 1951 proto_unregister(&kcm_proto); 1952 destroy_workqueue(kcm_wq); 1953 1954 kmem_cache_destroy(kcm_muxp); 1955 kmem_cache_destroy(kcm_psockp); 1956 } 1957 1958 module_init(kcm_init); 1959 module_exit(kcm_exit); 1960 1961 MODULE_LICENSE("GPL"); 1962 MODULE_ALIAS_NETPROTO(PF_KCM); 1963