1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel Connection Multiplexor 4 * 5 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 6 */ 7 8 #include <linux/bpf.h> 9 #include <linux/errno.h> 10 #include <linux/errqueue.h> 11 #include <linux/file.h> 12 #include <linux/filter.h> 13 #include <linux/in.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/net.h> 17 #include <linux/netdevice.h> 18 #include <linux/poll.h> 19 #include <linux/rculist.h> 20 #include <linux/skbuff.h> 21 #include <linux/socket.h> 22 #include <linux/uaccess.h> 23 #include <linux/workqueue.h> 24 #include <linux/syscalls.h> 25 #include <linux/sched/signal.h> 26 27 #include <net/kcm.h> 28 #include <net/netns/generic.h> 29 #include <net/sock.h> 30 #include <uapi/linux/kcm.h> 31 #include <trace/events/sock.h> 32 33 unsigned int kcm_net_id; 34 35 static struct kmem_cache *kcm_psockp __read_mostly; 36 static struct kmem_cache *kcm_muxp __read_mostly; 37 static struct workqueue_struct *kcm_wq; 38 39 static inline struct kcm_sock *kcm_sk(const struct sock *sk) 40 { 41 return (struct kcm_sock *)sk; 42 } 43 44 static inline struct kcm_tx_msg *kcm_tx_msg(struct sk_buff *skb) 45 { 46 return (struct kcm_tx_msg *)skb->cb; 47 } 48 49 static void report_csk_error(struct sock *csk, int err) 50 { 51 csk->sk_err = EPIPE; 52 sk_error_report(csk); 53 } 54 55 static void kcm_abort_tx_psock(struct kcm_psock *psock, int err, 56 bool wakeup_kcm) 57 { 58 struct sock *csk = psock->sk; 59 struct kcm_mux *mux = psock->mux; 60 61 /* Unrecoverable error in transmit */ 62 63 spin_lock_bh(&mux->lock); 64 65 if (psock->tx_stopped) { 66 spin_unlock_bh(&mux->lock); 67 return; 68 } 69 70 psock->tx_stopped = 1; 71 KCM_STATS_INCR(psock->stats.tx_aborts); 72 73 if (!psock->tx_kcm) { 74 /* Take off psocks_avail list */ 75 list_del(&psock->psock_avail_list); 76 } else if (wakeup_kcm) { 77 /* In this case psock is being aborted while outside of 78 * write_msgs and psock is reserved. Schedule tx_work 79 * to handle the failure there. Need to commit tx_stopped 80 * before queuing work. 81 */ 82 smp_mb(); 83 84 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 85 } 86 87 spin_unlock_bh(&mux->lock); 88 89 /* Report error on lower socket */ 90 report_csk_error(csk, err); 91 } 92 93 /* RX mux lock held. */ 94 static void kcm_update_rx_mux_stats(struct kcm_mux *mux, 95 struct kcm_psock *psock) 96 { 97 STRP_STATS_ADD(mux->stats.rx_bytes, 98 psock->strp.stats.bytes - 99 psock->saved_rx_bytes); 100 mux->stats.rx_msgs += 101 psock->strp.stats.msgs - psock->saved_rx_msgs; 102 psock->saved_rx_msgs = psock->strp.stats.msgs; 103 psock->saved_rx_bytes = psock->strp.stats.bytes; 104 } 105 106 static void kcm_update_tx_mux_stats(struct kcm_mux *mux, 107 struct kcm_psock *psock) 108 { 109 KCM_STATS_ADD(mux->stats.tx_bytes, 110 psock->stats.tx_bytes - psock->saved_tx_bytes); 111 mux->stats.tx_msgs += 112 psock->stats.tx_msgs - psock->saved_tx_msgs; 113 psock->saved_tx_msgs = psock->stats.tx_msgs; 114 psock->saved_tx_bytes = psock->stats.tx_bytes; 115 } 116 117 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); 118 119 /* KCM is ready to receive messages on its queue-- either the KCM is new or 120 * has become unblocked after being blocked on full socket buffer. Queue any 121 * pending ready messages on a psock. RX mux lock held. 122 */ 123 static void kcm_rcv_ready(struct kcm_sock *kcm) 124 { 125 struct kcm_mux *mux = kcm->mux; 126 struct kcm_psock *psock; 127 struct sk_buff *skb; 128 129 if (unlikely(kcm->rx_wait || kcm->rx_psock || kcm->rx_disabled)) 130 return; 131 132 while (unlikely((skb = __skb_dequeue(&mux->rx_hold_queue)))) { 133 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 134 /* Assuming buffer limit has been reached */ 135 skb_queue_head(&mux->rx_hold_queue, skb); 136 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 137 return; 138 } 139 } 140 141 while (!list_empty(&mux->psocks_ready)) { 142 psock = list_first_entry(&mux->psocks_ready, struct kcm_psock, 143 psock_ready_list); 144 145 if (kcm_queue_rcv_skb(&kcm->sk, psock->ready_rx_msg)) { 146 /* Assuming buffer limit has been reached */ 147 WARN_ON(!sk_rmem_alloc_get(&kcm->sk)); 148 return; 149 } 150 151 /* Consumed the ready message on the psock. Schedule rx_work to 152 * get more messages. 153 */ 154 list_del(&psock->psock_ready_list); 155 psock->ready_rx_msg = NULL; 156 /* Commit clearing of ready_rx_msg for queuing work */ 157 smp_mb(); 158 159 strp_unpause(&psock->strp); 160 strp_check_rcv(&psock->strp); 161 } 162 163 /* Buffer limit is okay now, add to ready list */ 164 list_add_tail(&kcm->wait_rx_list, 165 &kcm->mux->kcm_rx_waiters); 166 /* paired with lockless reads in kcm_rfree() */ 167 WRITE_ONCE(kcm->rx_wait, true); 168 } 169 170 static void kcm_rfree(struct sk_buff *skb) 171 { 172 struct sock *sk = skb->sk; 173 struct kcm_sock *kcm = kcm_sk(sk); 174 struct kcm_mux *mux = kcm->mux; 175 unsigned int len = skb->truesize; 176 177 sk_mem_uncharge(sk, len); 178 atomic_sub(len, &sk->sk_rmem_alloc); 179 180 /* For reading rx_wait and rx_psock without holding lock */ 181 smp_mb__after_atomic(); 182 183 if (!READ_ONCE(kcm->rx_wait) && !READ_ONCE(kcm->rx_psock) && 184 sk_rmem_alloc_get(sk) < sk->sk_rcvlowat) { 185 spin_lock_bh(&mux->rx_lock); 186 kcm_rcv_ready(kcm); 187 spin_unlock_bh(&mux->rx_lock); 188 } 189 } 190 191 static int kcm_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 192 { 193 struct sk_buff_head *list = &sk->sk_receive_queue; 194 195 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 196 return -ENOMEM; 197 198 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 199 return -ENOBUFS; 200 201 skb->dev = NULL; 202 203 skb_orphan(skb); 204 skb->sk = sk; 205 skb->destructor = kcm_rfree; 206 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 207 sk_mem_charge(sk, skb->truesize); 208 209 skb_queue_tail(list, skb); 210 211 if (!sock_flag(sk, SOCK_DEAD)) 212 sk->sk_data_ready(sk); 213 214 return 0; 215 } 216 217 /* Requeue received messages for a kcm socket to other kcm sockets. This is 218 * called with a kcm socket is receive disabled. 219 * RX mux lock held. 220 */ 221 static void requeue_rx_msgs(struct kcm_mux *mux, struct sk_buff_head *head) 222 { 223 struct sk_buff *skb; 224 struct kcm_sock *kcm; 225 226 while ((skb = skb_dequeue(head))) { 227 /* Reset destructor to avoid calling kcm_rcv_ready */ 228 skb->destructor = sock_rfree; 229 skb_orphan(skb); 230 try_again: 231 if (list_empty(&mux->kcm_rx_waiters)) { 232 skb_queue_tail(&mux->rx_hold_queue, skb); 233 continue; 234 } 235 236 kcm = list_first_entry(&mux->kcm_rx_waiters, 237 struct kcm_sock, wait_rx_list); 238 239 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 240 /* Should mean socket buffer full */ 241 list_del(&kcm->wait_rx_list); 242 /* paired with lockless reads in kcm_rfree() */ 243 WRITE_ONCE(kcm->rx_wait, false); 244 245 /* Commit rx_wait to read in kcm_free */ 246 smp_wmb(); 247 248 goto try_again; 249 } 250 } 251 } 252 253 /* Lower sock lock held */ 254 static struct kcm_sock *reserve_rx_kcm(struct kcm_psock *psock, 255 struct sk_buff *head) 256 { 257 struct kcm_mux *mux = psock->mux; 258 struct kcm_sock *kcm; 259 260 WARN_ON(psock->ready_rx_msg); 261 262 if (psock->rx_kcm) 263 return psock->rx_kcm; 264 265 spin_lock_bh(&mux->rx_lock); 266 267 if (psock->rx_kcm) { 268 spin_unlock_bh(&mux->rx_lock); 269 return psock->rx_kcm; 270 } 271 272 kcm_update_rx_mux_stats(mux, psock); 273 274 if (list_empty(&mux->kcm_rx_waiters)) { 275 psock->ready_rx_msg = head; 276 strp_pause(&psock->strp); 277 list_add_tail(&psock->psock_ready_list, 278 &mux->psocks_ready); 279 spin_unlock_bh(&mux->rx_lock); 280 return NULL; 281 } 282 283 kcm = list_first_entry(&mux->kcm_rx_waiters, 284 struct kcm_sock, wait_rx_list); 285 list_del(&kcm->wait_rx_list); 286 /* paired with lockless reads in kcm_rfree() */ 287 WRITE_ONCE(kcm->rx_wait, false); 288 289 psock->rx_kcm = kcm; 290 /* paired with lockless reads in kcm_rfree() */ 291 WRITE_ONCE(kcm->rx_psock, psock); 292 293 spin_unlock_bh(&mux->rx_lock); 294 295 return kcm; 296 } 297 298 static void kcm_done(struct kcm_sock *kcm); 299 300 static void kcm_done_work(struct work_struct *w) 301 { 302 kcm_done(container_of(w, struct kcm_sock, done_work)); 303 } 304 305 /* Lower sock held */ 306 static void unreserve_rx_kcm(struct kcm_psock *psock, 307 bool rcv_ready) 308 { 309 struct kcm_sock *kcm = psock->rx_kcm; 310 struct kcm_mux *mux = psock->mux; 311 312 if (!kcm) 313 return; 314 315 spin_lock_bh(&mux->rx_lock); 316 317 psock->rx_kcm = NULL; 318 /* paired with lockless reads in kcm_rfree() */ 319 WRITE_ONCE(kcm->rx_psock, NULL); 320 321 /* Commit kcm->rx_psock before sk_rmem_alloc_get to sync with 322 * kcm_rfree 323 */ 324 smp_mb(); 325 326 if (unlikely(kcm->done)) { 327 spin_unlock_bh(&mux->rx_lock); 328 329 /* Need to run kcm_done in a task since we need to qcquire 330 * callback locks which may already be held here. 331 */ 332 INIT_WORK(&kcm->done_work, kcm_done_work); 333 schedule_work(&kcm->done_work); 334 return; 335 } 336 337 if (unlikely(kcm->rx_disabled)) { 338 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 339 } else if (rcv_ready || unlikely(!sk_rmem_alloc_get(&kcm->sk))) { 340 /* Check for degenerative race with rx_wait that all 341 * data was dequeued (accounted for in kcm_rfree). 342 */ 343 kcm_rcv_ready(kcm); 344 } 345 spin_unlock_bh(&mux->rx_lock); 346 } 347 348 /* Lower sock lock held */ 349 static void psock_data_ready(struct sock *sk) 350 { 351 struct kcm_psock *psock; 352 353 trace_sk_data_ready(sk); 354 355 read_lock_bh(&sk->sk_callback_lock); 356 357 psock = (struct kcm_psock *)sk->sk_user_data; 358 if (likely(psock)) 359 strp_data_ready(&psock->strp); 360 361 read_unlock_bh(&sk->sk_callback_lock); 362 } 363 364 /* Called with lower sock held */ 365 static void kcm_rcv_strparser(struct strparser *strp, struct sk_buff *skb) 366 { 367 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 368 struct kcm_sock *kcm; 369 370 try_queue: 371 kcm = reserve_rx_kcm(psock, skb); 372 if (!kcm) { 373 /* Unable to reserve a KCM, message is held in psock and strp 374 * is paused. 375 */ 376 return; 377 } 378 379 if (kcm_queue_rcv_skb(&kcm->sk, skb)) { 380 /* Should mean socket buffer full */ 381 unreserve_rx_kcm(psock, false); 382 goto try_queue; 383 } 384 } 385 386 static int kcm_parse_func_strparser(struct strparser *strp, struct sk_buff *skb) 387 { 388 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 389 struct bpf_prog *prog = psock->bpf_prog; 390 int res; 391 392 res = bpf_prog_run_pin_on_cpu(prog, skb); 393 return res; 394 } 395 396 static int kcm_read_sock_done(struct strparser *strp, int err) 397 { 398 struct kcm_psock *psock = container_of(strp, struct kcm_psock, strp); 399 400 unreserve_rx_kcm(psock, true); 401 402 return err; 403 } 404 405 static void psock_state_change(struct sock *sk) 406 { 407 /* TCP only does a EPOLLIN for a half close. Do a EPOLLHUP here 408 * since application will normally not poll with EPOLLIN 409 * on the TCP sockets. 410 */ 411 412 report_csk_error(sk, EPIPE); 413 } 414 415 static void psock_write_space(struct sock *sk) 416 { 417 struct kcm_psock *psock; 418 struct kcm_mux *mux; 419 struct kcm_sock *kcm; 420 421 read_lock_bh(&sk->sk_callback_lock); 422 423 psock = (struct kcm_psock *)sk->sk_user_data; 424 if (unlikely(!psock)) 425 goto out; 426 mux = psock->mux; 427 428 spin_lock_bh(&mux->lock); 429 430 /* Check if the socket is reserved so someone is waiting for sending. */ 431 kcm = psock->tx_kcm; 432 if (kcm && !unlikely(kcm->tx_stopped)) 433 queue_work(kcm_wq, &kcm->tx_work); 434 435 spin_unlock_bh(&mux->lock); 436 out: 437 read_unlock_bh(&sk->sk_callback_lock); 438 } 439 440 static void unreserve_psock(struct kcm_sock *kcm); 441 442 /* kcm sock is locked. */ 443 static struct kcm_psock *reserve_psock(struct kcm_sock *kcm) 444 { 445 struct kcm_mux *mux = kcm->mux; 446 struct kcm_psock *psock; 447 448 psock = kcm->tx_psock; 449 450 smp_rmb(); /* Must read tx_psock before tx_wait */ 451 452 if (psock) { 453 WARN_ON(kcm->tx_wait); 454 if (unlikely(psock->tx_stopped)) 455 unreserve_psock(kcm); 456 else 457 return kcm->tx_psock; 458 } 459 460 spin_lock_bh(&mux->lock); 461 462 /* Check again under lock to see if psock was reserved for this 463 * psock via psock_unreserve. 464 */ 465 psock = kcm->tx_psock; 466 if (unlikely(psock)) { 467 WARN_ON(kcm->tx_wait); 468 spin_unlock_bh(&mux->lock); 469 return kcm->tx_psock; 470 } 471 472 if (!list_empty(&mux->psocks_avail)) { 473 psock = list_first_entry(&mux->psocks_avail, 474 struct kcm_psock, 475 psock_avail_list); 476 list_del(&psock->psock_avail_list); 477 if (kcm->tx_wait) { 478 list_del(&kcm->wait_psock_list); 479 kcm->tx_wait = false; 480 } 481 kcm->tx_psock = psock; 482 psock->tx_kcm = kcm; 483 KCM_STATS_INCR(psock->stats.reserved); 484 } else if (!kcm->tx_wait) { 485 list_add_tail(&kcm->wait_psock_list, 486 &mux->kcm_tx_waiters); 487 kcm->tx_wait = true; 488 } 489 490 spin_unlock_bh(&mux->lock); 491 492 return psock; 493 } 494 495 /* mux lock held */ 496 static void psock_now_avail(struct kcm_psock *psock) 497 { 498 struct kcm_mux *mux = psock->mux; 499 struct kcm_sock *kcm; 500 501 if (list_empty(&mux->kcm_tx_waiters)) { 502 list_add_tail(&psock->psock_avail_list, 503 &mux->psocks_avail); 504 } else { 505 kcm = list_first_entry(&mux->kcm_tx_waiters, 506 struct kcm_sock, 507 wait_psock_list); 508 list_del(&kcm->wait_psock_list); 509 kcm->tx_wait = false; 510 psock->tx_kcm = kcm; 511 512 /* Commit before changing tx_psock since that is read in 513 * reserve_psock before queuing work. 514 */ 515 smp_mb(); 516 517 kcm->tx_psock = psock; 518 KCM_STATS_INCR(psock->stats.reserved); 519 queue_work(kcm_wq, &kcm->tx_work); 520 } 521 } 522 523 /* kcm sock is locked. */ 524 static void unreserve_psock(struct kcm_sock *kcm) 525 { 526 struct kcm_psock *psock; 527 struct kcm_mux *mux = kcm->mux; 528 529 spin_lock_bh(&mux->lock); 530 531 psock = kcm->tx_psock; 532 533 if (WARN_ON(!psock)) { 534 spin_unlock_bh(&mux->lock); 535 return; 536 } 537 538 smp_rmb(); /* Read tx_psock before tx_wait */ 539 540 kcm_update_tx_mux_stats(mux, psock); 541 542 WARN_ON(kcm->tx_wait); 543 544 kcm->tx_psock = NULL; 545 psock->tx_kcm = NULL; 546 KCM_STATS_INCR(psock->stats.unreserved); 547 548 if (unlikely(psock->tx_stopped)) { 549 if (psock->done) { 550 /* Deferred free */ 551 list_del(&psock->psock_list); 552 mux->psocks_cnt--; 553 sock_put(psock->sk); 554 fput(psock->sk->sk_socket->file); 555 kmem_cache_free(kcm_psockp, psock); 556 } 557 558 /* Don't put back on available list */ 559 560 spin_unlock_bh(&mux->lock); 561 562 return; 563 } 564 565 psock_now_avail(psock); 566 567 spin_unlock_bh(&mux->lock); 568 } 569 570 static void kcm_report_tx_retry(struct kcm_sock *kcm) 571 { 572 struct kcm_mux *mux = kcm->mux; 573 574 spin_lock_bh(&mux->lock); 575 KCM_STATS_INCR(mux->stats.tx_retries); 576 spin_unlock_bh(&mux->lock); 577 } 578 579 /* Write any messages ready on the kcm socket. Called with kcm sock lock 580 * held. Return bytes actually sent or error. 581 */ 582 static int kcm_write_msgs(struct kcm_sock *kcm) 583 { 584 unsigned int total_sent = 0; 585 struct sock *sk = &kcm->sk; 586 struct kcm_psock *psock; 587 struct sk_buff *head; 588 int ret = 0; 589 590 kcm->tx_wait_more = false; 591 psock = kcm->tx_psock; 592 if (unlikely(psock && psock->tx_stopped)) { 593 /* A reserved psock was aborted asynchronously. Unreserve 594 * it and we'll retry the message. 595 */ 596 unreserve_psock(kcm); 597 kcm_report_tx_retry(kcm); 598 if (skb_queue_empty(&sk->sk_write_queue)) 599 return 0; 600 601 kcm_tx_msg(skb_peek(&sk->sk_write_queue))->started_tx = false; 602 } 603 604 retry: 605 while ((head = skb_peek(&sk->sk_write_queue))) { 606 struct msghdr msg = { 607 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, 608 }; 609 struct kcm_tx_msg *txm = kcm_tx_msg(head); 610 struct sk_buff *skb; 611 unsigned int msize; 612 int i; 613 614 if (!txm->started_tx) { 615 psock = reserve_psock(kcm); 616 if (!psock) 617 goto out; 618 skb = head; 619 txm->frag_offset = 0; 620 txm->sent = 0; 621 txm->started_tx = true; 622 } else { 623 if (WARN_ON(!psock)) { 624 ret = -EINVAL; 625 goto out; 626 } 627 skb = txm->frag_skb; 628 } 629 630 if (WARN_ON(!skb_shinfo(skb)->nr_frags)) { 631 ret = -EINVAL; 632 goto out; 633 } 634 635 msize = 0; 636 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 637 msize += skb_frag_size(&skb_shinfo(skb)->frags[i]); 638 639 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, 640 skb_shinfo(skb)->frags, skb_shinfo(skb)->nr_frags, 641 msize); 642 iov_iter_advance(&msg.msg_iter, txm->frag_offset); 643 644 do { 645 ret = sock_sendmsg(psock->sk->sk_socket, &msg); 646 if (ret <= 0) { 647 if (ret == -EAGAIN) { 648 /* Save state to try again when there's 649 * write space on the socket 650 */ 651 txm->frag_skb = skb; 652 ret = 0; 653 goto out; 654 } 655 656 /* Hard failure in sending message, abort this 657 * psock since it has lost framing 658 * synchronization and retry sending the 659 * message from the beginning. 660 */ 661 kcm_abort_tx_psock(psock, ret ? -ret : EPIPE, 662 true); 663 unreserve_psock(kcm); 664 psock = NULL; 665 666 txm->started_tx = false; 667 kcm_report_tx_retry(kcm); 668 ret = 0; 669 goto retry; 670 } 671 672 txm->sent += ret; 673 txm->frag_offset += ret; 674 KCM_STATS_ADD(psock->stats.tx_bytes, ret); 675 } while (msg.msg_iter.count > 0); 676 677 if (skb == head) { 678 if (skb_has_frag_list(skb)) { 679 txm->frag_skb = skb_shinfo(skb)->frag_list; 680 txm->frag_offset = 0; 681 continue; 682 } 683 } else if (skb->next) { 684 txm->frag_skb = skb->next; 685 txm->frag_offset = 0; 686 continue; 687 } 688 689 /* Successfully sent the whole packet, account for it. */ 690 sk->sk_wmem_queued -= txm->sent; 691 total_sent += txm->sent; 692 skb_dequeue(&sk->sk_write_queue); 693 kfree_skb(head); 694 KCM_STATS_INCR(psock->stats.tx_msgs); 695 } 696 out: 697 if (!head) { 698 /* Done with all queued messages. */ 699 WARN_ON(!skb_queue_empty(&sk->sk_write_queue)); 700 if (psock) 701 unreserve_psock(kcm); 702 } 703 704 /* Check if write space is available */ 705 sk->sk_write_space(sk); 706 707 return total_sent ? : ret; 708 } 709 710 static void kcm_tx_work(struct work_struct *w) 711 { 712 struct kcm_sock *kcm = container_of(w, struct kcm_sock, tx_work); 713 struct sock *sk = &kcm->sk; 714 int err; 715 716 lock_sock(sk); 717 718 /* Primarily for SOCK_DGRAM sockets, also handle asynchronous tx 719 * aborts 720 */ 721 err = kcm_write_msgs(kcm); 722 if (err < 0) { 723 /* Hard failure in write, report error on KCM socket */ 724 pr_warn("KCM: Hard failure on kcm_write_msgs %d\n", err); 725 report_csk_error(&kcm->sk, -err); 726 goto out; 727 } 728 729 /* Primarily for SOCK_SEQPACKET sockets */ 730 if (likely(sk->sk_socket) && 731 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 732 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 733 sk->sk_write_space(sk); 734 } 735 736 out: 737 release_sock(sk); 738 } 739 740 static void kcm_push(struct kcm_sock *kcm) 741 { 742 if (kcm->tx_wait_more) 743 kcm_write_msgs(kcm); 744 } 745 746 static int kcm_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 747 { 748 struct sock *sk = sock->sk; 749 struct kcm_sock *kcm = kcm_sk(sk); 750 struct sk_buff *skb = NULL, *head = NULL; 751 size_t copy, copied = 0; 752 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 753 int eor = (sock->type == SOCK_DGRAM) ? 754 !(msg->msg_flags & MSG_MORE) : !!(msg->msg_flags & MSG_EOR); 755 int err = -EPIPE; 756 757 mutex_lock(&kcm->tx_mutex); 758 lock_sock(sk); 759 760 /* Per tcp_sendmsg this should be in poll */ 761 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 762 763 if (sk->sk_err) 764 goto out_error; 765 766 if (kcm->seq_skb) { 767 /* Previously opened message */ 768 head = kcm->seq_skb; 769 skb = kcm_tx_msg(head)->last_skb; 770 goto start; 771 } 772 773 /* Call the sk_stream functions to manage the sndbuf mem. */ 774 if (!sk_stream_memory_free(sk)) { 775 kcm_push(kcm); 776 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 777 err = sk_stream_wait_memory(sk, &timeo); 778 if (err) 779 goto out_error; 780 } 781 782 if (msg_data_left(msg)) { 783 /* New message, alloc head skb */ 784 head = alloc_skb(0, sk->sk_allocation); 785 while (!head) { 786 kcm_push(kcm); 787 err = sk_stream_wait_memory(sk, &timeo); 788 if (err) 789 goto out_error; 790 791 head = alloc_skb(0, sk->sk_allocation); 792 } 793 794 skb = head; 795 796 /* Set ip_summed to CHECKSUM_UNNECESSARY to avoid calling 797 * csum_and_copy_from_iter from skb_do_copy_data_nocache. 798 */ 799 skb->ip_summed = CHECKSUM_UNNECESSARY; 800 } 801 802 start: 803 while (msg_data_left(msg)) { 804 bool merge = true; 805 int i = skb_shinfo(skb)->nr_frags; 806 struct page_frag *pfrag = sk_page_frag(sk); 807 808 if (!sk_page_frag_refill(sk, pfrag)) 809 goto wait_for_memory; 810 811 if (!skb_can_coalesce(skb, i, pfrag->page, 812 pfrag->offset)) { 813 if (i == MAX_SKB_FRAGS) { 814 struct sk_buff *tskb; 815 816 tskb = alloc_skb(0, sk->sk_allocation); 817 if (!tskb) 818 goto wait_for_memory; 819 820 if (head == skb) 821 skb_shinfo(head)->frag_list = tskb; 822 else 823 skb->next = tskb; 824 825 skb = tskb; 826 skb->ip_summed = CHECKSUM_UNNECESSARY; 827 continue; 828 } 829 merge = false; 830 } 831 832 if (msg->msg_flags & MSG_SPLICE_PAGES) { 833 copy = msg_data_left(msg); 834 if (!sk_wmem_schedule(sk, copy)) 835 goto wait_for_memory; 836 837 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 838 sk->sk_allocation); 839 if (err < 0) { 840 if (err == -EMSGSIZE) 841 goto wait_for_memory; 842 goto out_error; 843 } 844 845 copy = err; 846 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 847 sk_wmem_queued_add(sk, copy); 848 sk_mem_charge(sk, copy); 849 850 if (head != skb) 851 head->truesize += copy; 852 } else { 853 copy = min_t(int, msg_data_left(msg), 854 pfrag->size - pfrag->offset); 855 if (!sk_wmem_schedule(sk, copy)) 856 goto wait_for_memory; 857 858 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 859 pfrag->page, 860 pfrag->offset, 861 copy); 862 if (err) 863 goto out_error; 864 865 /* Update the skb. */ 866 if (merge) { 867 skb_frag_size_add( 868 &skb_shinfo(skb)->frags[i - 1], copy); 869 } else { 870 skb_fill_page_desc(skb, i, pfrag->page, 871 pfrag->offset, copy); 872 get_page(pfrag->page); 873 } 874 875 pfrag->offset += copy; 876 } 877 878 copied += copy; 879 if (head != skb) { 880 head->len += copy; 881 head->data_len += copy; 882 } 883 884 continue; 885 886 wait_for_memory: 887 kcm_push(kcm); 888 err = sk_stream_wait_memory(sk, &timeo); 889 if (err) 890 goto out_error; 891 } 892 893 if (eor) { 894 bool not_busy = skb_queue_empty(&sk->sk_write_queue); 895 896 if (head) { 897 /* Message complete, queue it on send buffer */ 898 __skb_queue_tail(&sk->sk_write_queue, head); 899 kcm->seq_skb = NULL; 900 KCM_STATS_INCR(kcm->stats.tx_msgs); 901 } 902 903 if (msg->msg_flags & MSG_BATCH) { 904 kcm->tx_wait_more = true; 905 } else if (kcm->tx_wait_more || not_busy) { 906 err = kcm_write_msgs(kcm); 907 if (err < 0) { 908 /* We got a hard error in write_msgs but have 909 * already queued this message. Report an error 910 * in the socket, but don't affect return value 911 * from sendmsg 912 */ 913 pr_warn("KCM: Hard failure on kcm_write_msgs\n"); 914 report_csk_error(&kcm->sk, -err); 915 } 916 } 917 } else { 918 /* Message not complete, save state */ 919 partial_message: 920 if (head) { 921 kcm->seq_skb = head; 922 kcm_tx_msg(head)->last_skb = skb; 923 } 924 } 925 926 KCM_STATS_ADD(kcm->stats.tx_bytes, copied); 927 928 release_sock(sk); 929 mutex_unlock(&kcm->tx_mutex); 930 return copied; 931 932 out_error: 933 kcm_push(kcm); 934 935 if (sock->type == SOCK_SEQPACKET) { 936 /* Wrote some bytes before encountering an 937 * error, return partial success. 938 */ 939 if (copied) 940 goto partial_message; 941 if (head != kcm->seq_skb) 942 kfree_skb(head); 943 } else { 944 kfree_skb(head); 945 kcm->seq_skb = NULL; 946 } 947 948 err = sk_stream_error(sk, msg->msg_flags, err); 949 950 /* make sure we wake any epoll edge trigger waiter */ 951 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 952 sk->sk_write_space(sk); 953 954 release_sock(sk); 955 mutex_unlock(&kcm->tx_mutex); 956 return err; 957 } 958 959 static void kcm_splice_eof(struct socket *sock) 960 { 961 struct sock *sk = sock->sk; 962 struct kcm_sock *kcm = kcm_sk(sk); 963 964 if (skb_queue_empty_lockless(&sk->sk_write_queue)) 965 return; 966 967 lock_sock(sk); 968 kcm_write_msgs(kcm); 969 release_sock(sk); 970 } 971 972 static int kcm_recvmsg(struct socket *sock, struct msghdr *msg, 973 size_t len, int flags) 974 { 975 struct sock *sk = sock->sk; 976 struct kcm_sock *kcm = kcm_sk(sk); 977 int err = 0; 978 struct strp_msg *stm; 979 int copied = 0; 980 struct sk_buff *skb; 981 982 skb = skb_recv_datagram(sk, flags, &err); 983 if (!skb) 984 goto out; 985 986 /* Okay, have a message on the receive queue */ 987 988 stm = strp_msg(skb); 989 990 if (len > stm->full_len) 991 len = stm->full_len; 992 993 err = skb_copy_datagram_msg(skb, stm->offset, msg, len); 994 if (err < 0) 995 goto out; 996 997 copied = len; 998 if (likely(!(flags & MSG_PEEK))) { 999 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1000 if (copied < stm->full_len) { 1001 if (sock->type == SOCK_DGRAM) { 1002 /* Truncated message */ 1003 msg->msg_flags |= MSG_TRUNC; 1004 goto msg_finished; 1005 } 1006 stm->offset += copied; 1007 stm->full_len -= copied; 1008 } else { 1009 msg_finished: 1010 /* Finished with message */ 1011 msg->msg_flags |= MSG_EOR; 1012 KCM_STATS_INCR(kcm->stats.rx_msgs); 1013 } 1014 } 1015 1016 out: 1017 skb_free_datagram(sk, skb); 1018 return copied ? : err; 1019 } 1020 1021 static ssize_t kcm_splice_read(struct socket *sock, loff_t *ppos, 1022 struct pipe_inode_info *pipe, size_t len, 1023 unsigned int flags) 1024 { 1025 struct sock *sk = sock->sk; 1026 struct kcm_sock *kcm = kcm_sk(sk); 1027 struct strp_msg *stm; 1028 int err = 0; 1029 ssize_t copied; 1030 struct sk_buff *skb; 1031 1032 /* Only support splice for SOCKSEQPACKET */ 1033 1034 skb = skb_recv_datagram(sk, flags, &err); 1035 if (!skb) 1036 goto err_out; 1037 1038 /* Okay, have a message on the receive queue */ 1039 1040 stm = strp_msg(skb); 1041 1042 if (len > stm->full_len) 1043 len = stm->full_len; 1044 1045 copied = skb_splice_bits(skb, sk, stm->offset, pipe, len, flags); 1046 if (copied < 0) { 1047 err = copied; 1048 goto err_out; 1049 } 1050 1051 KCM_STATS_ADD(kcm->stats.rx_bytes, copied); 1052 1053 stm->offset += copied; 1054 stm->full_len -= copied; 1055 1056 /* We have no way to return MSG_EOR. If all the bytes have been 1057 * read we still leave the message in the receive socket buffer. 1058 * A subsequent recvmsg needs to be done to return MSG_EOR and 1059 * finish reading the message. 1060 */ 1061 1062 skb_free_datagram(sk, skb); 1063 return copied; 1064 1065 err_out: 1066 skb_free_datagram(sk, skb); 1067 return err; 1068 } 1069 1070 /* kcm sock lock held */ 1071 static void kcm_recv_disable(struct kcm_sock *kcm) 1072 { 1073 struct kcm_mux *mux = kcm->mux; 1074 1075 if (kcm->rx_disabled) 1076 return; 1077 1078 spin_lock_bh(&mux->rx_lock); 1079 1080 kcm->rx_disabled = 1; 1081 1082 /* If a psock is reserved we'll do cleanup in unreserve */ 1083 if (!kcm->rx_psock) { 1084 if (kcm->rx_wait) { 1085 list_del(&kcm->wait_rx_list); 1086 /* paired with lockless reads in kcm_rfree() */ 1087 WRITE_ONCE(kcm->rx_wait, false); 1088 } 1089 1090 requeue_rx_msgs(mux, &kcm->sk.sk_receive_queue); 1091 } 1092 1093 spin_unlock_bh(&mux->rx_lock); 1094 } 1095 1096 /* kcm sock lock held */ 1097 static void kcm_recv_enable(struct kcm_sock *kcm) 1098 { 1099 struct kcm_mux *mux = kcm->mux; 1100 1101 if (!kcm->rx_disabled) 1102 return; 1103 1104 spin_lock_bh(&mux->rx_lock); 1105 1106 kcm->rx_disabled = 0; 1107 kcm_rcv_ready(kcm); 1108 1109 spin_unlock_bh(&mux->rx_lock); 1110 } 1111 1112 static int kcm_setsockopt(struct socket *sock, int level, int optname, 1113 sockptr_t optval, unsigned int optlen) 1114 { 1115 struct kcm_sock *kcm = kcm_sk(sock->sk); 1116 int val, valbool; 1117 int err = 0; 1118 1119 if (level != SOL_KCM) 1120 return -ENOPROTOOPT; 1121 1122 if (optlen < sizeof(int)) 1123 return -EINVAL; 1124 1125 if (copy_from_sockptr(&val, optval, sizeof(int))) 1126 return -EFAULT; 1127 1128 valbool = val ? 1 : 0; 1129 1130 switch (optname) { 1131 case KCM_RECV_DISABLE: 1132 lock_sock(&kcm->sk); 1133 if (valbool) 1134 kcm_recv_disable(kcm); 1135 else 1136 kcm_recv_enable(kcm); 1137 release_sock(&kcm->sk); 1138 break; 1139 default: 1140 err = -ENOPROTOOPT; 1141 } 1142 1143 return err; 1144 } 1145 1146 static int kcm_getsockopt(struct socket *sock, int level, int optname, 1147 char __user *optval, int __user *optlen) 1148 { 1149 struct kcm_sock *kcm = kcm_sk(sock->sk); 1150 int val, len; 1151 1152 if (level != SOL_KCM) 1153 return -ENOPROTOOPT; 1154 1155 if (get_user(len, optlen)) 1156 return -EFAULT; 1157 1158 if (len < 0) 1159 return -EINVAL; 1160 1161 len = min_t(unsigned int, len, sizeof(int)); 1162 1163 switch (optname) { 1164 case KCM_RECV_DISABLE: 1165 val = kcm->rx_disabled; 1166 break; 1167 default: 1168 return -ENOPROTOOPT; 1169 } 1170 1171 if (put_user(len, optlen)) 1172 return -EFAULT; 1173 if (copy_to_user(optval, &val, len)) 1174 return -EFAULT; 1175 return 0; 1176 } 1177 1178 static void init_kcm_sock(struct kcm_sock *kcm, struct kcm_mux *mux) 1179 { 1180 struct kcm_sock *tkcm; 1181 struct list_head *head; 1182 int index = 0; 1183 1184 /* For SOCK_SEQPACKET sock type, datagram_poll checks the sk_state, so 1185 * we set sk_state, otherwise epoll_wait always returns right away with 1186 * EPOLLHUP 1187 */ 1188 kcm->sk.sk_state = TCP_ESTABLISHED; 1189 1190 /* Add to mux's kcm sockets list */ 1191 kcm->mux = mux; 1192 spin_lock_bh(&mux->lock); 1193 1194 head = &mux->kcm_socks; 1195 list_for_each_entry(tkcm, &mux->kcm_socks, kcm_sock_list) { 1196 if (tkcm->index != index) 1197 break; 1198 head = &tkcm->kcm_sock_list; 1199 index++; 1200 } 1201 1202 list_add(&kcm->kcm_sock_list, head); 1203 kcm->index = index; 1204 1205 mux->kcm_socks_cnt++; 1206 spin_unlock_bh(&mux->lock); 1207 1208 INIT_WORK(&kcm->tx_work, kcm_tx_work); 1209 mutex_init(&kcm->tx_mutex); 1210 1211 spin_lock_bh(&mux->rx_lock); 1212 kcm_rcv_ready(kcm); 1213 spin_unlock_bh(&mux->rx_lock); 1214 } 1215 1216 static int kcm_attach(struct socket *sock, struct socket *csock, 1217 struct bpf_prog *prog) 1218 { 1219 struct kcm_sock *kcm = kcm_sk(sock->sk); 1220 struct kcm_mux *mux = kcm->mux; 1221 struct sock *csk; 1222 struct kcm_psock *psock = NULL, *tpsock; 1223 struct list_head *head; 1224 int index = 0; 1225 static const struct strp_callbacks cb = { 1226 .rcv_msg = kcm_rcv_strparser, 1227 .parse_msg = kcm_parse_func_strparser, 1228 .read_sock_done = kcm_read_sock_done, 1229 }; 1230 int err = 0; 1231 1232 csk = csock->sk; 1233 if (!csk) 1234 return -EINVAL; 1235 1236 lock_sock(csk); 1237 1238 /* Only allow TCP sockets to be attached for now */ 1239 if ((csk->sk_family != AF_INET && csk->sk_family != AF_INET6) || 1240 csk->sk_protocol != IPPROTO_TCP) { 1241 err = -EOPNOTSUPP; 1242 goto out; 1243 } 1244 1245 /* Don't allow listeners or closed sockets */ 1246 if (csk->sk_state == TCP_LISTEN || csk->sk_state == TCP_CLOSE) { 1247 err = -EOPNOTSUPP; 1248 goto out; 1249 } 1250 1251 psock = kmem_cache_zalloc(kcm_psockp, GFP_KERNEL); 1252 if (!psock) { 1253 err = -ENOMEM; 1254 goto out; 1255 } 1256 1257 psock->mux = mux; 1258 psock->sk = csk; 1259 psock->bpf_prog = prog; 1260 1261 write_lock_bh(&csk->sk_callback_lock); 1262 1263 /* Check if sk_user_data is already by KCM or someone else. 1264 * Must be done under lock to prevent race conditions. 1265 */ 1266 if (csk->sk_user_data) { 1267 write_unlock_bh(&csk->sk_callback_lock); 1268 kmem_cache_free(kcm_psockp, psock); 1269 err = -EALREADY; 1270 goto out; 1271 } 1272 1273 err = strp_init(&psock->strp, csk, &cb); 1274 if (err) { 1275 write_unlock_bh(&csk->sk_callback_lock); 1276 kmem_cache_free(kcm_psockp, psock); 1277 goto out; 1278 } 1279 1280 psock->save_data_ready = csk->sk_data_ready; 1281 psock->save_write_space = csk->sk_write_space; 1282 psock->save_state_change = csk->sk_state_change; 1283 csk->sk_user_data = psock; 1284 csk->sk_data_ready = psock_data_ready; 1285 csk->sk_write_space = psock_write_space; 1286 csk->sk_state_change = psock_state_change; 1287 1288 write_unlock_bh(&csk->sk_callback_lock); 1289 1290 sock_hold(csk); 1291 1292 /* Finished initialization, now add the psock to the MUX. */ 1293 spin_lock_bh(&mux->lock); 1294 head = &mux->psocks; 1295 list_for_each_entry(tpsock, &mux->psocks, psock_list) { 1296 if (tpsock->index != index) 1297 break; 1298 head = &tpsock->psock_list; 1299 index++; 1300 } 1301 1302 list_add(&psock->psock_list, head); 1303 psock->index = index; 1304 1305 KCM_STATS_INCR(mux->stats.psock_attach); 1306 mux->psocks_cnt++; 1307 psock_now_avail(psock); 1308 spin_unlock_bh(&mux->lock); 1309 1310 /* Schedule RX work in case there are already bytes queued */ 1311 strp_check_rcv(&psock->strp); 1312 1313 out: 1314 release_sock(csk); 1315 1316 return err; 1317 } 1318 1319 static int kcm_attach_ioctl(struct socket *sock, struct kcm_attach *info) 1320 { 1321 struct socket *csock; 1322 struct bpf_prog *prog; 1323 int err; 1324 1325 csock = sockfd_lookup(info->fd, &err); 1326 if (!csock) 1327 return -ENOENT; 1328 1329 prog = bpf_prog_get_type(info->bpf_fd, BPF_PROG_TYPE_SOCKET_FILTER); 1330 if (IS_ERR(prog)) { 1331 err = PTR_ERR(prog); 1332 goto out; 1333 } 1334 1335 err = kcm_attach(sock, csock, prog); 1336 if (err) { 1337 bpf_prog_put(prog); 1338 goto out; 1339 } 1340 1341 /* Keep reference on file also */ 1342 1343 return 0; 1344 out: 1345 sockfd_put(csock); 1346 return err; 1347 } 1348 1349 static void kcm_unattach(struct kcm_psock *psock) 1350 { 1351 struct sock *csk = psock->sk; 1352 struct kcm_mux *mux = psock->mux; 1353 1354 lock_sock(csk); 1355 1356 /* Stop getting callbacks from TCP socket. After this there should 1357 * be no way to reserve a kcm for this psock. 1358 */ 1359 write_lock_bh(&csk->sk_callback_lock); 1360 csk->sk_user_data = NULL; 1361 csk->sk_data_ready = psock->save_data_ready; 1362 csk->sk_write_space = psock->save_write_space; 1363 csk->sk_state_change = psock->save_state_change; 1364 strp_stop(&psock->strp); 1365 1366 if (WARN_ON(psock->rx_kcm)) { 1367 write_unlock_bh(&csk->sk_callback_lock); 1368 release_sock(csk); 1369 return; 1370 } 1371 1372 spin_lock_bh(&mux->rx_lock); 1373 1374 /* Stop receiver activities. After this point psock should not be 1375 * able to get onto ready list either through callbacks or work. 1376 */ 1377 if (psock->ready_rx_msg) { 1378 list_del(&psock->psock_ready_list); 1379 kfree_skb(psock->ready_rx_msg); 1380 psock->ready_rx_msg = NULL; 1381 KCM_STATS_INCR(mux->stats.rx_ready_drops); 1382 } 1383 1384 spin_unlock_bh(&mux->rx_lock); 1385 1386 write_unlock_bh(&csk->sk_callback_lock); 1387 1388 /* Call strp_done without sock lock */ 1389 release_sock(csk); 1390 strp_done(&psock->strp); 1391 lock_sock(csk); 1392 1393 bpf_prog_put(psock->bpf_prog); 1394 1395 spin_lock_bh(&mux->lock); 1396 1397 aggregate_psock_stats(&psock->stats, &mux->aggregate_psock_stats); 1398 save_strp_stats(&psock->strp, &mux->aggregate_strp_stats); 1399 1400 KCM_STATS_INCR(mux->stats.psock_unattach); 1401 1402 if (psock->tx_kcm) { 1403 /* psock was reserved. Just mark it finished and we will clean 1404 * up in the kcm paths, we need kcm lock which can not be 1405 * acquired here. 1406 */ 1407 KCM_STATS_INCR(mux->stats.psock_unattach_rsvd); 1408 spin_unlock_bh(&mux->lock); 1409 1410 /* We are unattaching a socket that is reserved. Abort the 1411 * socket since we may be out of sync in sending on it. We need 1412 * to do this without the mux lock. 1413 */ 1414 kcm_abort_tx_psock(psock, EPIPE, false); 1415 1416 spin_lock_bh(&mux->lock); 1417 if (!psock->tx_kcm) { 1418 /* psock now unreserved in window mux was unlocked */ 1419 goto no_reserved; 1420 } 1421 psock->done = 1; 1422 1423 /* Commit done before queuing work to process it */ 1424 smp_mb(); 1425 1426 /* Queue tx work to make sure psock->done is handled */ 1427 queue_work(kcm_wq, &psock->tx_kcm->tx_work); 1428 spin_unlock_bh(&mux->lock); 1429 } else { 1430 no_reserved: 1431 if (!psock->tx_stopped) 1432 list_del(&psock->psock_avail_list); 1433 list_del(&psock->psock_list); 1434 mux->psocks_cnt--; 1435 spin_unlock_bh(&mux->lock); 1436 1437 sock_put(csk); 1438 fput(csk->sk_socket->file); 1439 kmem_cache_free(kcm_psockp, psock); 1440 } 1441 1442 release_sock(csk); 1443 } 1444 1445 static int kcm_unattach_ioctl(struct socket *sock, struct kcm_unattach *info) 1446 { 1447 struct kcm_sock *kcm = kcm_sk(sock->sk); 1448 struct kcm_mux *mux = kcm->mux; 1449 struct kcm_psock *psock; 1450 struct socket *csock; 1451 struct sock *csk; 1452 int err; 1453 1454 csock = sockfd_lookup(info->fd, &err); 1455 if (!csock) 1456 return -ENOENT; 1457 1458 csk = csock->sk; 1459 if (!csk) { 1460 err = -EINVAL; 1461 goto out; 1462 } 1463 1464 err = -ENOENT; 1465 1466 spin_lock_bh(&mux->lock); 1467 1468 list_for_each_entry(psock, &mux->psocks, psock_list) { 1469 if (psock->sk != csk) 1470 continue; 1471 1472 /* Found the matching psock */ 1473 1474 if (psock->unattaching || WARN_ON(psock->done)) { 1475 err = -EALREADY; 1476 break; 1477 } 1478 1479 psock->unattaching = 1; 1480 1481 spin_unlock_bh(&mux->lock); 1482 1483 /* Lower socket lock should already be held */ 1484 kcm_unattach(psock); 1485 1486 err = 0; 1487 goto out; 1488 } 1489 1490 spin_unlock_bh(&mux->lock); 1491 1492 out: 1493 sockfd_put(csock); 1494 return err; 1495 } 1496 1497 static struct proto kcm_proto = { 1498 .name = "KCM", 1499 .owner = THIS_MODULE, 1500 .obj_size = sizeof(struct kcm_sock), 1501 }; 1502 1503 /* Clone a kcm socket. */ 1504 static struct file *kcm_clone(struct socket *osock) 1505 { 1506 struct socket *newsock; 1507 struct sock *newsk; 1508 1509 newsock = sock_alloc(); 1510 if (!newsock) 1511 return ERR_PTR(-ENFILE); 1512 1513 newsock->type = osock->type; 1514 newsock->ops = osock->ops; 1515 1516 __module_get(newsock->ops->owner); 1517 1518 newsk = sk_alloc(sock_net(osock->sk), PF_KCM, GFP_KERNEL, 1519 &kcm_proto, false); 1520 if (!newsk) { 1521 sock_release(newsock); 1522 return ERR_PTR(-ENOMEM); 1523 } 1524 sock_init_data(newsock, newsk); 1525 init_kcm_sock(kcm_sk(newsk), kcm_sk(osock->sk)->mux); 1526 1527 return sock_alloc_file(newsock, 0, osock->sk->sk_prot_creator->name); 1528 } 1529 1530 static int kcm_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1531 { 1532 int err; 1533 1534 switch (cmd) { 1535 case SIOCKCMATTACH: { 1536 struct kcm_attach info; 1537 1538 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1539 return -EFAULT; 1540 1541 err = kcm_attach_ioctl(sock, &info); 1542 1543 break; 1544 } 1545 case SIOCKCMUNATTACH: { 1546 struct kcm_unattach info; 1547 1548 if (copy_from_user(&info, (void __user *)arg, sizeof(info))) 1549 return -EFAULT; 1550 1551 err = kcm_unattach_ioctl(sock, &info); 1552 1553 break; 1554 } 1555 case SIOCKCMCLONE: { 1556 struct kcm_clone info; 1557 struct file *file; 1558 1559 info.fd = get_unused_fd_flags(0); 1560 if (unlikely(info.fd < 0)) 1561 return info.fd; 1562 1563 file = kcm_clone(sock); 1564 if (IS_ERR(file)) { 1565 put_unused_fd(info.fd); 1566 return PTR_ERR(file); 1567 } 1568 if (copy_to_user((void __user *)arg, &info, 1569 sizeof(info))) { 1570 put_unused_fd(info.fd); 1571 fput(file); 1572 return -EFAULT; 1573 } 1574 fd_install(info.fd, file); 1575 err = 0; 1576 break; 1577 } 1578 default: 1579 err = -ENOIOCTLCMD; 1580 break; 1581 } 1582 1583 return err; 1584 } 1585 1586 static void free_mux(struct rcu_head *rcu) 1587 { 1588 struct kcm_mux *mux = container_of(rcu, 1589 struct kcm_mux, rcu); 1590 1591 kmem_cache_free(kcm_muxp, mux); 1592 } 1593 1594 static void release_mux(struct kcm_mux *mux) 1595 { 1596 struct kcm_net *knet = mux->knet; 1597 struct kcm_psock *psock, *tmp_psock; 1598 1599 /* Release psocks */ 1600 list_for_each_entry_safe(psock, tmp_psock, 1601 &mux->psocks, psock_list) { 1602 if (!WARN_ON(psock->unattaching)) 1603 kcm_unattach(psock); 1604 } 1605 1606 if (WARN_ON(mux->psocks_cnt)) 1607 return; 1608 1609 __skb_queue_purge(&mux->rx_hold_queue); 1610 1611 mutex_lock(&knet->mutex); 1612 aggregate_mux_stats(&mux->stats, &knet->aggregate_mux_stats); 1613 aggregate_psock_stats(&mux->aggregate_psock_stats, 1614 &knet->aggregate_psock_stats); 1615 aggregate_strp_stats(&mux->aggregate_strp_stats, 1616 &knet->aggregate_strp_stats); 1617 list_del_rcu(&mux->kcm_mux_list); 1618 knet->count--; 1619 mutex_unlock(&knet->mutex); 1620 1621 call_rcu(&mux->rcu, free_mux); 1622 } 1623 1624 static void kcm_done(struct kcm_sock *kcm) 1625 { 1626 struct kcm_mux *mux = kcm->mux; 1627 struct sock *sk = &kcm->sk; 1628 int socks_cnt; 1629 1630 spin_lock_bh(&mux->rx_lock); 1631 if (kcm->rx_psock) { 1632 /* Cleanup in unreserve_rx_kcm */ 1633 WARN_ON(kcm->done); 1634 kcm->rx_disabled = 1; 1635 kcm->done = 1; 1636 spin_unlock_bh(&mux->rx_lock); 1637 return; 1638 } 1639 1640 if (kcm->rx_wait) { 1641 list_del(&kcm->wait_rx_list); 1642 /* paired with lockless reads in kcm_rfree() */ 1643 WRITE_ONCE(kcm->rx_wait, false); 1644 } 1645 /* Move any pending receive messages to other kcm sockets */ 1646 requeue_rx_msgs(mux, &sk->sk_receive_queue); 1647 1648 spin_unlock_bh(&mux->rx_lock); 1649 1650 if (WARN_ON(sk_rmem_alloc_get(sk))) 1651 return; 1652 1653 /* Detach from MUX */ 1654 spin_lock_bh(&mux->lock); 1655 1656 list_del(&kcm->kcm_sock_list); 1657 mux->kcm_socks_cnt--; 1658 socks_cnt = mux->kcm_socks_cnt; 1659 1660 spin_unlock_bh(&mux->lock); 1661 1662 if (!socks_cnt) { 1663 /* We are done with the mux now. */ 1664 release_mux(mux); 1665 } 1666 1667 WARN_ON(kcm->rx_wait); 1668 1669 sock_put(&kcm->sk); 1670 } 1671 1672 /* Called by kcm_release to close a KCM socket. 1673 * If this is the last KCM socket on the MUX, destroy the MUX. 1674 */ 1675 static int kcm_release(struct socket *sock) 1676 { 1677 struct sock *sk = sock->sk; 1678 struct kcm_sock *kcm; 1679 struct kcm_mux *mux; 1680 struct kcm_psock *psock; 1681 1682 if (!sk) 1683 return 0; 1684 1685 kcm = kcm_sk(sk); 1686 mux = kcm->mux; 1687 1688 lock_sock(sk); 1689 sock_orphan(sk); 1690 kfree_skb(kcm->seq_skb); 1691 1692 /* Purge queue under lock to avoid race condition with tx_work trying 1693 * to act when queue is nonempty. If tx_work runs after this point 1694 * it will just return. 1695 */ 1696 __skb_queue_purge(&sk->sk_write_queue); 1697 1698 /* Set tx_stopped. This is checked when psock is bound to a kcm and we 1699 * get a writespace callback. This prevents further work being queued 1700 * from the callback (unbinding the psock occurs after canceling work. 1701 */ 1702 kcm->tx_stopped = 1; 1703 1704 release_sock(sk); 1705 1706 spin_lock_bh(&mux->lock); 1707 if (kcm->tx_wait) { 1708 /* Take of tx_wait list, after this point there should be no way 1709 * that a psock will be assigned to this kcm. 1710 */ 1711 list_del(&kcm->wait_psock_list); 1712 kcm->tx_wait = false; 1713 } 1714 spin_unlock_bh(&mux->lock); 1715 1716 /* Cancel work. After this point there should be no outside references 1717 * to the kcm socket. 1718 */ 1719 cancel_work_sync(&kcm->tx_work); 1720 1721 lock_sock(sk); 1722 psock = kcm->tx_psock; 1723 if (psock) { 1724 /* A psock was reserved, so we need to kill it since it 1725 * may already have some bytes queued from a message. We 1726 * need to do this after removing kcm from tx_wait list. 1727 */ 1728 kcm_abort_tx_psock(psock, EPIPE, false); 1729 unreserve_psock(kcm); 1730 } 1731 release_sock(sk); 1732 1733 WARN_ON(kcm->tx_wait); 1734 WARN_ON(kcm->tx_psock); 1735 1736 sock->sk = NULL; 1737 1738 kcm_done(kcm); 1739 1740 return 0; 1741 } 1742 1743 static const struct proto_ops kcm_dgram_ops = { 1744 .family = PF_KCM, 1745 .owner = THIS_MODULE, 1746 .release = kcm_release, 1747 .bind = sock_no_bind, 1748 .connect = sock_no_connect, 1749 .socketpair = sock_no_socketpair, 1750 .accept = sock_no_accept, 1751 .getname = sock_no_getname, 1752 .poll = datagram_poll, 1753 .ioctl = kcm_ioctl, 1754 .listen = sock_no_listen, 1755 .shutdown = sock_no_shutdown, 1756 .setsockopt = kcm_setsockopt, 1757 .getsockopt = kcm_getsockopt, 1758 .sendmsg = kcm_sendmsg, 1759 .recvmsg = kcm_recvmsg, 1760 .mmap = sock_no_mmap, 1761 .splice_eof = kcm_splice_eof, 1762 }; 1763 1764 static const struct proto_ops kcm_seqpacket_ops = { 1765 .family = PF_KCM, 1766 .owner = THIS_MODULE, 1767 .release = kcm_release, 1768 .bind = sock_no_bind, 1769 .connect = sock_no_connect, 1770 .socketpair = sock_no_socketpair, 1771 .accept = sock_no_accept, 1772 .getname = sock_no_getname, 1773 .poll = datagram_poll, 1774 .ioctl = kcm_ioctl, 1775 .listen = sock_no_listen, 1776 .shutdown = sock_no_shutdown, 1777 .setsockopt = kcm_setsockopt, 1778 .getsockopt = kcm_getsockopt, 1779 .sendmsg = kcm_sendmsg, 1780 .recvmsg = kcm_recvmsg, 1781 .mmap = sock_no_mmap, 1782 .splice_eof = kcm_splice_eof, 1783 .splice_read = kcm_splice_read, 1784 }; 1785 1786 /* Create proto operation for kcm sockets */ 1787 static int kcm_create(struct net *net, struct socket *sock, 1788 int protocol, int kern) 1789 { 1790 struct kcm_net *knet = net_generic(net, kcm_net_id); 1791 struct sock *sk; 1792 struct kcm_mux *mux; 1793 1794 switch (sock->type) { 1795 case SOCK_DGRAM: 1796 sock->ops = &kcm_dgram_ops; 1797 break; 1798 case SOCK_SEQPACKET: 1799 sock->ops = &kcm_seqpacket_ops; 1800 break; 1801 default: 1802 return -ESOCKTNOSUPPORT; 1803 } 1804 1805 if (protocol != KCMPROTO_CONNECTED) 1806 return -EPROTONOSUPPORT; 1807 1808 sk = sk_alloc(net, PF_KCM, GFP_KERNEL, &kcm_proto, kern); 1809 if (!sk) 1810 return -ENOMEM; 1811 1812 /* Allocate a kcm mux, shared between KCM sockets */ 1813 mux = kmem_cache_zalloc(kcm_muxp, GFP_KERNEL); 1814 if (!mux) { 1815 sk_free(sk); 1816 return -ENOMEM; 1817 } 1818 1819 spin_lock_init(&mux->lock); 1820 spin_lock_init(&mux->rx_lock); 1821 INIT_LIST_HEAD(&mux->kcm_socks); 1822 INIT_LIST_HEAD(&mux->kcm_rx_waiters); 1823 INIT_LIST_HEAD(&mux->kcm_tx_waiters); 1824 1825 INIT_LIST_HEAD(&mux->psocks); 1826 INIT_LIST_HEAD(&mux->psocks_ready); 1827 INIT_LIST_HEAD(&mux->psocks_avail); 1828 1829 mux->knet = knet; 1830 1831 /* Add new MUX to list */ 1832 mutex_lock(&knet->mutex); 1833 list_add_rcu(&mux->kcm_mux_list, &knet->mux_list); 1834 knet->count++; 1835 mutex_unlock(&knet->mutex); 1836 1837 skb_queue_head_init(&mux->rx_hold_queue); 1838 1839 /* Init KCM socket */ 1840 sock_init_data(sock, sk); 1841 init_kcm_sock(kcm_sk(sk), mux); 1842 1843 return 0; 1844 } 1845 1846 static const struct net_proto_family kcm_family_ops = { 1847 .family = PF_KCM, 1848 .create = kcm_create, 1849 .owner = THIS_MODULE, 1850 }; 1851 1852 static __net_init int kcm_init_net(struct net *net) 1853 { 1854 struct kcm_net *knet = net_generic(net, kcm_net_id); 1855 1856 INIT_LIST_HEAD_RCU(&knet->mux_list); 1857 mutex_init(&knet->mutex); 1858 1859 return 0; 1860 } 1861 1862 static __net_exit void kcm_exit_net(struct net *net) 1863 { 1864 struct kcm_net *knet = net_generic(net, kcm_net_id); 1865 1866 /* All KCM sockets should be closed at this point, which should mean 1867 * that all multiplexors and psocks have been destroyed. 1868 */ 1869 WARN_ON(!list_empty(&knet->mux_list)); 1870 1871 mutex_destroy(&knet->mutex); 1872 } 1873 1874 static struct pernet_operations kcm_net_ops = { 1875 .init = kcm_init_net, 1876 .exit = kcm_exit_net, 1877 .id = &kcm_net_id, 1878 .size = sizeof(struct kcm_net), 1879 }; 1880 1881 static int __init kcm_init(void) 1882 { 1883 int err = -ENOMEM; 1884 1885 kcm_muxp = kmem_cache_create("kcm_mux_cache", 1886 sizeof(struct kcm_mux), 0, 1887 SLAB_HWCACHE_ALIGN, NULL); 1888 if (!kcm_muxp) 1889 goto fail; 1890 1891 kcm_psockp = kmem_cache_create("kcm_psock_cache", 1892 sizeof(struct kcm_psock), 0, 1893 SLAB_HWCACHE_ALIGN, NULL); 1894 if (!kcm_psockp) 1895 goto fail; 1896 1897 kcm_wq = create_singlethread_workqueue("kkcmd"); 1898 if (!kcm_wq) 1899 goto fail; 1900 1901 err = proto_register(&kcm_proto, 1); 1902 if (err) 1903 goto fail; 1904 1905 err = register_pernet_device(&kcm_net_ops); 1906 if (err) 1907 goto net_ops_fail; 1908 1909 err = sock_register(&kcm_family_ops); 1910 if (err) 1911 goto sock_register_fail; 1912 1913 err = kcm_proc_init(); 1914 if (err) 1915 goto proc_init_fail; 1916 1917 return 0; 1918 1919 proc_init_fail: 1920 sock_unregister(PF_KCM); 1921 1922 sock_register_fail: 1923 unregister_pernet_device(&kcm_net_ops); 1924 1925 net_ops_fail: 1926 proto_unregister(&kcm_proto); 1927 1928 fail: 1929 kmem_cache_destroy(kcm_muxp); 1930 kmem_cache_destroy(kcm_psockp); 1931 1932 if (kcm_wq) 1933 destroy_workqueue(kcm_wq); 1934 1935 return err; 1936 } 1937 1938 static void __exit kcm_exit(void) 1939 { 1940 kcm_proc_exit(); 1941 sock_unregister(PF_KCM); 1942 unregister_pernet_device(&kcm_net_ops); 1943 proto_unregister(&kcm_proto); 1944 destroy_workqueue(kcm_wq); 1945 1946 kmem_cache_destroy(kcm_muxp); 1947 kmem_cache_destroy(kcm_psockp); 1948 } 1949 1950 module_init(kcm_init); 1951 module_exit(kcm_exit); 1952 1953 MODULE_LICENSE("GPL"); 1954 MODULE_ALIAS_NETPROTO(PF_KCM); 1955