1 /* 2 * IUCV base infrastructure. 3 * 4 * Copyright 2001, 2006 IBM Deutschland Entwicklung GmbH, IBM Corporation 5 * Author(s): 6 * Original source: 7 * Alan Altmark (Alan_Altmark@us.ibm.com) Sept. 2000 8 * Xenia Tkatschow (xenia@us.ibm.com) 9 * 2Gb awareness and general cleanup: 10 * Fritz Elfert (elfert@de.ibm.com, felfert@millenux.com) 11 * Rewritten for af_iucv: 12 * Martin Schwidefsky <schwidefsky@de.ibm.com> 13 * 14 * Documentation used: 15 * The original source 16 * CP Programming Service, IBM document # SC24-5760 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2, or (at your option) 21 * any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 * 28 * You should have received a copy of the GNU General Public License 29 * along with this program; if not, write to the Free Software 30 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 31 */ 32 33 #define KMSG_COMPONENT "iucv" 34 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 35 36 #include <linux/module.h> 37 #include <linux/moduleparam.h> 38 #include <linux/spinlock.h> 39 #include <linux/kernel.h> 40 #include <linux/slab.h> 41 #include <linux/init.h> 42 #include <linux/interrupt.h> 43 #include <linux/list.h> 44 #include <linux/errno.h> 45 #include <linux/err.h> 46 #include <linux/device.h> 47 #include <linux/cpu.h> 48 #include <net/iucv/iucv.h> 49 #include <asm/atomic.h> 50 #include <asm/ebcdic.h> 51 #include <asm/io.h> 52 #include <asm/s390_ext.h> 53 #include <asm/smp.h> 54 55 /* 56 * FLAGS: 57 * All flags are defined in the field IPFLAGS1 of each function 58 * and can be found in CP Programming Services. 59 * IPSRCCLS - Indicates you have specified a source class. 60 * IPTRGCLS - Indicates you have specified a target class. 61 * IPFGPID - Indicates you have specified a pathid. 62 * IPFGMID - Indicates you have specified a message ID. 63 * IPNORPY - Indicates a one-way message. No reply expected. 64 * IPALL - Indicates that all paths are affected. 65 */ 66 #define IUCV_IPSRCCLS 0x01 67 #define IUCV_IPTRGCLS 0x01 68 #define IUCV_IPFGPID 0x02 69 #define IUCV_IPFGMID 0x04 70 #define IUCV_IPNORPY 0x10 71 #define IUCV_IPALL 0x80 72 73 static int iucv_bus_match(struct device *dev, struct device_driver *drv) 74 { 75 return 0; 76 } 77 78 struct bus_type iucv_bus = { 79 .name = "iucv", 80 .match = iucv_bus_match, 81 }; 82 EXPORT_SYMBOL(iucv_bus); 83 84 struct device *iucv_root; 85 EXPORT_SYMBOL(iucv_root); 86 87 static int iucv_available; 88 89 /* General IUCV interrupt structure */ 90 struct iucv_irq_data { 91 u16 ippathid; 92 u8 ipflags1; 93 u8 iptype; 94 u32 res2[8]; 95 }; 96 97 struct iucv_irq_list { 98 struct list_head list; 99 struct iucv_irq_data data; 100 }; 101 102 static struct iucv_irq_data *iucv_irq_data[NR_CPUS]; 103 static cpumask_t iucv_buffer_cpumask = CPU_MASK_NONE; 104 static cpumask_t iucv_irq_cpumask = CPU_MASK_NONE; 105 106 /* 107 * Queue of interrupt buffers lock for delivery via the tasklet 108 * (fast but can't call smp_call_function). 109 */ 110 static LIST_HEAD(iucv_task_queue); 111 112 /* 113 * The tasklet for fast delivery of iucv interrupts. 114 */ 115 static void iucv_tasklet_fn(unsigned long); 116 static DECLARE_TASKLET(iucv_tasklet, iucv_tasklet_fn,0); 117 118 /* 119 * Queue of interrupt buffers for delivery via a work queue 120 * (slower but can call smp_call_function). 121 */ 122 static LIST_HEAD(iucv_work_queue); 123 124 /* 125 * The work element to deliver path pending interrupts. 126 */ 127 static void iucv_work_fn(struct work_struct *work); 128 static DECLARE_WORK(iucv_work, iucv_work_fn); 129 130 /* 131 * Spinlock protecting task and work queue. 132 */ 133 static DEFINE_SPINLOCK(iucv_queue_lock); 134 135 enum iucv_command_codes { 136 IUCV_QUERY = 0, 137 IUCV_RETRIEVE_BUFFER = 2, 138 IUCV_SEND = 4, 139 IUCV_RECEIVE = 5, 140 IUCV_REPLY = 6, 141 IUCV_REJECT = 8, 142 IUCV_PURGE = 9, 143 IUCV_ACCEPT = 10, 144 IUCV_CONNECT = 11, 145 IUCV_DECLARE_BUFFER = 12, 146 IUCV_QUIESCE = 13, 147 IUCV_RESUME = 14, 148 IUCV_SEVER = 15, 149 IUCV_SETMASK = 16, 150 }; 151 152 /* 153 * Error messages that are used with the iucv_sever function. They get 154 * converted to EBCDIC. 155 */ 156 static char iucv_error_no_listener[16] = "NO LISTENER"; 157 static char iucv_error_no_memory[16] = "NO MEMORY"; 158 static char iucv_error_pathid[16] = "INVALID PATHID"; 159 160 /* 161 * iucv_handler_list: List of registered handlers. 162 */ 163 static LIST_HEAD(iucv_handler_list); 164 165 /* 166 * iucv_path_table: an array of iucv_path structures. 167 */ 168 static struct iucv_path **iucv_path_table; 169 static unsigned long iucv_max_pathid; 170 171 /* 172 * iucv_lock: spinlock protecting iucv_handler_list and iucv_pathid_table 173 */ 174 static DEFINE_SPINLOCK(iucv_table_lock); 175 176 /* 177 * iucv_active_cpu: contains the number of the cpu executing the tasklet 178 * or the work handler. Needed for iucv_path_sever called from tasklet. 179 */ 180 static int iucv_active_cpu = -1; 181 182 /* 183 * Mutex and wait queue for iucv_register/iucv_unregister. 184 */ 185 static DEFINE_MUTEX(iucv_register_mutex); 186 187 /* 188 * Counter for number of non-smp capable handlers. 189 */ 190 static int iucv_nonsmp_handler; 191 192 /* 193 * IUCV control data structure. Used by iucv_path_accept, iucv_path_connect, 194 * iucv_path_quiesce and iucv_path_sever. 195 */ 196 struct iucv_cmd_control { 197 u16 ippathid; 198 u8 ipflags1; 199 u8 iprcode; 200 u16 ipmsglim; 201 u16 res1; 202 u8 ipvmid[8]; 203 u8 ipuser[16]; 204 u8 iptarget[8]; 205 } __attribute__ ((packed,aligned(8))); 206 207 /* 208 * Data in parameter list iucv structure. Used by iucv_message_send, 209 * iucv_message_send2way and iucv_message_reply. 210 */ 211 struct iucv_cmd_dpl { 212 u16 ippathid; 213 u8 ipflags1; 214 u8 iprcode; 215 u32 ipmsgid; 216 u32 iptrgcls; 217 u8 iprmmsg[8]; 218 u32 ipsrccls; 219 u32 ipmsgtag; 220 u32 ipbfadr2; 221 u32 ipbfln2f; 222 u32 res; 223 } __attribute__ ((packed,aligned(8))); 224 225 /* 226 * Data in buffer iucv structure. Used by iucv_message_receive, 227 * iucv_message_reject, iucv_message_send, iucv_message_send2way 228 * and iucv_declare_cpu. 229 */ 230 struct iucv_cmd_db { 231 u16 ippathid; 232 u8 ipflags1; 233 u8 iprcode; 234 u32 ipmsgid; 235 u32 iptrgcls; 236 u32 ipbfadr1; 237 u32 ipbfln1f; 238 u32 ipsrccls; 239 u32 ipmsgtag; 240 u32 ipbfadr2; 241 u32 ipbfln2f; 242 u32 res; 243 } __attribute__ ((packed,aligned(8))); 244 245 /* 246 * Purge message iucv structure. Used by iucv_message_purge. 247 */ 248 struct iucv_cmd_purge { 249 u16 ippathid; 250 u8 ipflags1; 251 u8 iprcode; 252 u32 ipmsgid; 253 u8 ipaudit[3]; 254 u8 res1[5]; 255 u32 res2; 256 u32 ipsrccls; 257 u32 ipmsgtag; 258 u32 res3[3]; 259 } __attribute__ ((packed,aligned(8))); 260 261 /* 262 * Set mask iucv structure. Used by iucv_enable_cpu. 263 */ 264 struct iucv_cmd_set_mask { 265 u8 ipmask; 266 u8 res1[2]; 267 u8 iprcode; 268 u32 res2[9]; 269 } __attribute__ ((packed,aligned(8))); 270 271 union iucv_param { 272 struct iucv_cmd_control ctrl; 273 struct iucv_cmd_dpl dpl; 274 struct iucv_cmd_db db; 275 struct iucv_cmd_purge purge; 276 struct iucv_cmd_set_mask set_mask; 277 }; 278 279 /* 280 * Anchor for per-cpu IUCV command parameter block. 281 */ 282 static union iucv_param *iucv_param[NR_CPUS]; 283 284 /** 285 * iucv_call_b2f0 286 * @code: identifier of IUCV call to CP. 287 * @parm: pointer to a struct iucv_parm block 288 * 289 * Calls CP to execute IUCV commands. 290 * 291 * Returns the result of the CP IUCV call. 292 */ 293 static inline int iucv_call_b2f0(int command, union iucv_param *parm) 294 { 295 register unsigned long reg0 asm ("0"); 296 register unsigned long reg1 asm ("1"); 297 int ccode; 298 299 reg0 = command; 300 reg1 = virt_to_phys(parm); 301 asm volatile( 302 " .long 0xb2f01000\n" 303 " ipm %0\n" 304 " srl %0,28\n" 305 : "=d" (ccode), "=m" (*parm), "+d" (reg0), "+a" (reg1) 306 : "m" (*parm) : "cc"); 307 return (ccode == 1) ? parm->ctrl.iprcode : ccode; 308 } 309 310 /** 311 * iucv_query_maxconn 312 * 313 * Determines the maximum number of connections that may be established. 314 * 315 * Returns the maximum number of connections or -EPERM is IUCV is not 316 * available. 317 */ 318 static int iucv_query_maxconn(void) 319 { 320 register unsigned long reg0 asm ("0"); 321 register unsigned long reg1 asm ("1"); 322 void *param; 323 int ccode; 324 325 param = kzalloc(sizeof(union iucv_param), GFP_KERNEL|GFP_DMA); 326 if (!param) 327 return -ENOMEM; 328 reg0 = IUCV_QUERY; 329 reg1 = (unsigned long) param; 330 asm volatile ( 331 " .long 0xb2f01000\n" 332 " ipm %0\n" 333 " srl %0,28\n" 334 : "=d" (ccode), "+d" (reg0), "+d" (reg1) : : "cc"); 335 if (ccode == 0) 336 iucv_max_pathid = reg0; 337 kfree(param); 338 return ccode ? -EPERM : 0; 339 } 340 341 /** 342 * iucv_allow_cpu 343 * @data: unused 344 * 345 * Allow iucv interrupts on this cpu. 346 */ 347 static void iucv_allow_cpu(void *data) 348 { 349 int cpu = smp_processor_id(); 350 union iucv_param *parm; 351 352 /* 353 * Enable all iucv interrupts. 354 * ipmask contains bits for the different interrupts 355 * 0x80 - Flag to allow nonpriority message pending interrupts 356 * 0x40 - Flag to allow priority message pending interrupts 357 * 0x20 - Flag to allow nonpriority message completion interrupts 358 * 0x10 - Flag to allow priority message completion interrupts 359 * 0x08 - Flag to allow IUCV control interrupts 360 */ 361 parm = iucv_param[cpu]; 362 memset(parm, 0, sizeof(union iucv_param)); 363 parm->set_mask.ipmask = 0xf8; 364 iucv_call_b2f0(IUCV_SETMASK, parm); 365 366 /* Set indication that iucv interrupts are allowed for this cpu. */ 367 cpu_set(cpu, iucv_irq_cpumask); 368 } 369 370 /** 371 * iucv_block_cpu 372 * @data: unused 373 * 374 * Block iucv interrupts on this cpu. 375 */ 376 static void iucv_block_cpu(void *data) 377 { 378 int cpu = smp_processor_id(); 379 union iucv_param *parm; 380 381 /* Disable all iucv interrupts. */ 382 parm = iucv_param[cpu]; 383 memset(parm, 0, sizeof(union iucv_param)); 384 iucv_call_b2f0(IUCV_SETMASK, parm); 385 386 /* Clear indication that iucv interrupts are allowed for this cpu. */ 387 cpu_clear(cpu, iucv_irq_cpumask); 388 } 389 390 /** 391 * iucv_declare_cpu 392 * @data: unused 393 * 394 * Declare a interrupt buffer on this cpu. 395 */ 396 static void iucv_declare_cpu(void *data) 397 { 398 int cpu = smp_processor_id(); 399 union iucv_param *parm; 400 int rc; 401 402 if (cpu_isset(cpu, iucv_buffer_cpumask)) 403 return; 404 405 /* Declare interrupt buffer. */ 406 parm = iucv_param[cpu]; 407 memset(parm, 0, sizeof(union iucv_param)); 408 parm->db.ipbfadr1 = virt_to_phys(iucv_irq_data[cpu]); 409 rc = iucv_call_b2f0(IUCV_DECLARE_BUFFER, parm); 410 if (rc) { 411 char *err = "Unknown"; 412 switch (rc) { 413 case 0x03: 414 err = "Directory error"; 415 break; 416 case 0x0a: 417 err = "Invalid length"; 418 break; 419 case 0x13: 420 err = "Buffer already exists"; 421 break; 422 case 0x3e: 423 err = "Buffer overlap"; 424 break; 425 case 0x5c: 426 err = "Paging or storage error"; 427 break; 428 } 429 pr_warning("Defining an interrupt buffer on CPU %i" 430 " failed with 0x%02x (%s)\n", cpu, rc, err); 431 return; 432 } 433 434 /* Set indication that an iucv buffer exists for this cpu. */ 435 cpu_set(cpu, iucv_buffer_cpumask); 436 437 if (iucv_nonsmp_handler == 0 || cpus_empty(iucv_irq_cpumask)) 438 /* Enable iucv interrupts on this cpu. */ 439 iucv_allow_cpu(NULL); 440 else 441 /* Disable iucv interrupts on this cpu. */ 442 iucv_block_cpu(NULL); 443 } 444 445 /** 446 * iucv_retrieve_cpu 447 * @data: unused 448 * 449 * Retrieve interrupt buffer on this cpu. 450 */ 451 static void iucv_retrieve_cpu(void *data) 452 { 453 int cpu = smp_processor_id(); 454 union iucv_param *parm; 455 456 if (!cpu_isset(cpu, iucv_buffer_cpumask)) 457 return; 458 459 /* Block iucv interrupts. */ 460 iucv_block_cpu(NULL); 461 462 /* Retrieve interrupt buffer. */ 463 parm = iucv_param[cpu]; 464 iucv_call_b2f0(IUCV_RETRIEVE_BUFFER, parm); 465 466 /* Clear indication that an iucv buffer exists for this cpu. */ 467 cpu_clear(cpu, iucv_buffer_cpumask); 468 } 469 470 /** 471 * iucv_setmask_smp 472 * 473 * Allow iucv interrupts on all cpus. 474 */ 475 static void iucv_setmask_mp(void) 476 { 477 int cpu; 478 479 get_online_cpus(); 480 for_each_online_cpu(cpu) 481 /* Enable all cpus with a declared buffer. */ 482 if (cpu_isset(cpu, iucv_buffer_cpumask) && 483 !cpu_isset(cpu, iucv_irq_cpumask)) 484 smp_call_function_single(cpu, iucv_allow_cpu, 485 NULL, 1); 486 put_online_cpus(); 487 } 488 489 /** 490 * iucv_setmask_up 491 * 492 * Allow iucv interrupts on a single cpu. 493 */ 494 static void iucv_setmask_up(void) 495 { 496 cpumask_t cpumask; 497 int cpu; 498 499 /* Disable all cpu but the first in cpu_irq_cpumask. */ 500 cpumask = iucv_irq_cpumask; 501 cpu_clear(first_cpu(iucv_irq_cpumask), cpumask); 502 for_each_cpu_mask_nr(cpu, cpumask) 503 smp_call_function_single(cpu, iucv_block_cpu, NULL, 1); 504 } 505 506 /** 507 * iucv_enable 508 * 509 * This function makes iucv ready for use. It allocates the pathid 510 * table, declares an iucv interrupt buffer and enables the iucv 511 * interrupts. Called when the first user has registered an iucv 512 * handler. 513 */ 514 static int iucv_enable(void) 515 { 516 size_t alloc_size; 517 int cpu, rc; 518 519 get_online_cpus(); 520 rc = -ENOMEM; 521 alloc_size = iucv_max_pathid * sizeof(struct iucv_path); 522 iucv_path_table = kzalloc(alloc_size, GFP_KERNEL); 523 if (!iucv_path_table) 524 goto out; 525 /* Declare per cpu buffers. */ 526 rc = -EIO; 527 for_each_online_cpu(cpu) 528 smp_call_function_single(cpu, iucv_declare_cpu, NULL, 1); 529 if (cpus_empty(iucv_buffer_cpumask)) 530 /* No cpu could declare an iucv buffer. */ 531 goto out; 532 put_online_cpus(); 533 return 0; 534 out: 535 kfree(iucv_path_table); 536 iucv_path_table = NULL; 537 put_online_cpus(); 538 return rc; 539 } 540 541 /** 542 * iucv_disable 543 * 544 * This function shuts down iucv. It disables iucv interrupts, retrieves 545 * the iucv interrupt buffer and frees the pathid table. Called after the 546 * last user unregister its iucv handler. 547 */ 548 static void iucv_disable(void) 549 { 550 get_online_cpus(); 551 on_each_cpu(iucv_retrieve_cpu, NULL, 1); 552 kfree(iucv_path_table); 553 iucv_path_table = NULL; 554 put_online_cpus(); 555 } 556 557 static int __cpuinit iucv_cpu_notify(struct notifier_block *self, 558 unsigned long action, void *hcpu) 559 { 560 cpumask_t cpumask; 561 long cpu = (long) hcpu; 562 563 switch (action) { 564 case CPU_UP_PREPARE: 565 case CPU_UP_PREPARE_FROZEN: 566 iucv_irq_data[cpu] = kmalloc_node(sizeof(struct iucv_irq_data), 567 GFP_KERNEL|GFP_DMA, cpu_to_node(cpu)); 568 if (!iucv_irq_data[cpu]) 569 return NOTIFY_BAD; 570 iucv_param[cpu] = kmalloc_node(sizeof(union iucv_param), 571 GFP_KERNEL|GFP_DMA, cpu_to_node(cpu)); 572 if (!iucv_param[cpu]) { 573 kfree(iucv_irq_data[cpu]); 574 iucv_irq_data[cpu] = NULL; 575 return NOTIFY_BAD; 576 } 577 break; 578 case CPU_UP_CANCELED: 579 case CPU_UP_CANCELED_FROZEN: 580 case CPU_DEAD: 581 case CPU_DEAD_FROZEN: 582 kfree(iucv_param[cpu]); 583 iucv_param[cpu] = NULL; 584 kfree(iucv_irq_data[cpu]); 585 iucv_irq_data[cpu] = NULL; 586 break; 587 case CPU_ONLINE: 588 case CPU_ONLINE_FROZEN: 589 case CPU_DOWN_FAILED: 590 case CPU_DOWN_FAILED_FROZEN: 591 if (!iucv_path_table) 592 break; 593 smp_call_function_single(cpu, iucv_declare_cpu, NULL, 1); 594 break; 595 case CPU_DOWN_PREPARE: 596 case CPU_DOWN_PREPARE_FROZEN: 597 if (!iucv_path_table) 598 break; 599 cpumask = iucv_buffer_cpumask; 600 cpu_clear(cpu, cpumask); 601 if (cpus_empty(cpumask)) 602 /* Can't offline last IUCV enabled cpu. */ 603 return NOTIFY_BAD; 604 smp_call_function_single(cpu, iucv_retrieve_cpu, NULL, 1); 605 if (cpus_empty(iucv_irq_cpumask)) 606 smp_call_function_single(first_cpu(iucv_buffer_cpumask), 607 iucv_allow_cpu, NULL, 1); 608 break; 609 } 610 return NOTIFY_OK; 611 } 612 613 static struct notifier_block __refdata iucv_cpu_notifier = { 614 .notifier_call = iucv_cpu_notify, 615 }; 616 617 /** 618 * iucv_sever_pathid 619 * @pathid: path identification number. 620 * @userdata: 16-bytes of user data. 621 * 622 * Sever an iucv path to free up the pathid. Used internally. 623 */ 624 static int iucv_sever_pathid(u16 pathid, u8 userdata[16]) 625 { 626 union iucv_param *parm; 627 628 parm = iucv_param[smp_processor_id()]; 629 memset(parm, 0, sizeof(union iucv_param)); 630 if (userdata) 631 memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); 632 parm->ctrl.ippathid = pathid; 633 return iucv_call_b2f0(IUCV_SEVER, parm); 634 } 635 636 /** 637 * __iucv_cleanup_queue 638 * @dummy: unused dummy argument 639 * 640 * Nop function called via smp_call_function to force work items from 641 * pending external iucv interrupts to the work queue. 642 */ 643 static void __iucv_cleanup_queue(void *dummy) 644 { 645 } 646 647 /** 648 * iucv_cleanup_queue 649 * 650 * Function called after a path has been severed to find all remaining 651 * work items for the now stale pathid. The caller needs to hold the 652 * iucv_table_lock. 653 */ 654 static void iucv_cleanup_queue(void) 655 { 656 struct iucv_irq_list *p, *n; 657 658 /* 659 * When a path is severed, the pathid can be reused immediatly 660 * on a iucv connect or a connection pending interrupt. Remove 661 * all entries from the task queue that refer to a stale pathid 662 * (iucv_path_table[ix] == NULL). Only then do the iucv connect 663 * or deliver the connection pending interrupt. To get all the 664 * pending interrupts force them to the work queue by calling 665 * an empty function on all cpus. 666 */ 667 smp_call_function(__iucv_cleanup_queue, NULL, 1); 668 spin_lock_irq(&iucv_queue_lock); 669 list_for_each_entry_safe(p, n, &iucv_task_queue, list) { 670 /* Remove stale work items from the task queue. */ 671 if (iucv_path_table[p->data.ippathid] == NULL) { 672 list_del(&p->list); 673 kfree(p); 674 } 675 } 676 spin_unlock_irq(&iucv_queue_lock); 677 } 678 679 /** 680 * iucv_register: 681 * @handler: address of iucv handler structure 682 * @smp: != 0 indicates that the handler can deal with out of order messages 683 * 684 * Registers a driver with IUCV. 685 * 686 * Returns 0 on success, -ENOMEM if the memory allocation for the pathid 687 * table failed, or -EIO if IUCV_DECLARE_BUFFER failed on all cpus. 688 */ 689 int iucv_register(struct iucv_handler *handler, int smp) 690 { 691 int rc; 692 693 if (!iucv_available) 694 return -ENOSYS; 695 mutex_lock(&iucv_register_mutex); 696 if (!smp) 697 iucv_nonsmp_handler++; 698 if (list_empty(&iucv_handler_list)) { 699 rc = iucv_enable(); 700 if (rc) 701 goto out_mutex; 702 } else if (!smp && iucv_nonsmp_handler == 1) 703 iucv_setmask_up(); 704 INIT_LIST_HEAD(&handler->paths); 705 706 spin_lock_bh(&iucv_table_lock); 707 list_add_tail(&handler->list, &iucv_handler_list); 708 spin_unlock_bh(&iucv_table_lock); 709 rc = 0; 710 out_mutex: 711 mutex_unlock(&iucv_register_mutex); 712 return rc; 713 } 714 EXPORT_SYMBOL(iucv_register); 715 716 /** 717 * iucv_unregister 718 * @handler: address of iucv handler structure 719 * @smp: != 0 indicates that the handler can deal with out of order messages 720 * 721 * Unregister driver from IUCV. 722 */ 723 void iucv_unregister(struct iucv_handler *handler, int smp) 724 { 725 struct iucv_path *p, *n; 726 727 mutex_lock(&iucv_register_mutex); 728 spin_lock_bh(&iucv_table_lock); 729 /* Remove handler from the iucv_handler_list. */ 730 list_del_init(&handler->list); 731 /* Sever all pathids still refering to the handler. */ 732 list_for_each_entry_safe(p, n, &handler->paths, list) { 733 iucv_sever_pathid(p->pathid, NULL); 734 iucv_path_table[p->pathid] = NULL; 735 list_del(&p->list); 736 iucv_path_free(p); 737 } 738 spin_unlock_bh(&iucv_table_lock); 739 if (!smp) 740 iucv_nonsmp_handler--; 741 if (list_empty(&iucv_handler_list)) 742 iucv_disable(); 743 else if (!smp && iucv_nonsmp_handler == 0) 744 iucv_setmask_mp(); 745 mutex_unlock(&iucv_register_mutex); 746 } 747 EXPORT_SYMBOL(iucv_unregister); 748 749 /** 750 * iucv_path_accept 751 * @path: address of iucv path structure 752 * @handler: address of iucv handler structure 753 * @userdata: 16 bytes of data reflected to the communication partner 754 * @private: private data passed to interrupt handlers for this path 755 * 756 * This function is issued after the user received a connection pending 757 * external interrupt and now wishes to complete the IUCV communication path. 758 * 759 * Returns the result of the CP IUCV call. 760 */ 761 int iucv_path_accept(struct iucv_path *path, struct iucv_handler *handler, 762 u8 userdata[16], void *private) 763 { 764 union iucv_param *parm; 765 int rc; 766 767 local_bh_disable(); 768 /* Prepare parameter block. */ 769 parm = iucv_param[smp_processor_id()]; 770 memset(parm, 0, sizeof(union iucv_param)); 771 parm->ctrl.ippathid = path->pathid; 772 parm->ctrl.ipmsglim = path->msglim; 773 if (userdata) 774 memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); 775 parm->ctrl.ipflags1 = path->flags; 776 777 rc = iucv_call_b2f0(IUCV_ACCEPT, parm); 778 if (!rc) { 779 path->private = private; 780 path->msglim = parm->ctrl.ipmsglim; 781 path->flags = parm->ctrl.ipflags1; 782 } 783 local_bh_enable(); 784 return rc; 785 } 786 EXPORT_SYMBOL(iucv_path_accept); 787 788 /** 789 * iucv_path_connect 790 * @path: address of iucv path structure 791 * @handler: address of iucv handler structure 792 * @userid: 8-byte user identification 793 * @system: 8-byte target system identification 794 * @userdata: 16 bytes of data reflected to the communication partner 795 * @private: private data passed to interrupt handlers for this path 796 * 797 * This function establishes an IUCV path. Although the connect may complete 798 * successfully, you are not able to use the path until you receive an IUCV 799 * Connection Complete external interrupt. 800 * 801 * Returns the result of the CP IUCV call. 802 */ 803 int iucv_path_connect(struct iucv_path *path, struct iucv_handler *handler, 804 u8 userid[8], u8 system[8], u8 userdata[16], 805 void *private) 806 { 807 union iucv_param *parm; 808 int rc; 809 810 spin_lock_bh(&iucv_table_lock); 811 iucv_cleanup_queue(); 812 parm = iucv_param[smp_processor_id()]; 813 memset(parm, 0, sizeof(union iucv_param)); 814 parm->ctrl.ipmsglim = path->msglim; 815 parm->ctrl.ipflags1 = path->flags; 816 if (userid) { 817 memcpy(parm->ctrl.ipvmid, userid, sizeof(parm->ctrl.ipvmid)); 818 ASCEBC(parm->ctrl.ipvmid, sizeof(parm->ctrl.ipvmid)); 819 EBC_TOUPPER(parm->ctrl.ipvmid, sizeof(parm->ctrl.ipvmid)); 820 } 821 if (system) { 822 memcpy(parm->ctrl.iptarget, system, 823 sizeof(parm->ctrl.iptarget)); 824 ASCEBC(parm->ctrl.iptarget, sizeof(parm->ctrl.iptarget)); 825 EBC_TOUPPER(parm->ctrl.iptarget, sizeof(parm->ctrl.iptarget)); 826 } 827 if (userdata) 828 memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); 829 830 rc = iucv_call_b2f0(IUCV_CONNECT, parm); 831 if (!rc) { 832 if (parm->ctrl.ippathid < iucv_max_pathid) { 833 path->pathid = parm->ctrl.ippathid; 834 path->msglim = parm->ctrl.ipmsglim; 835 path->flags = parm->ctrl.ipflags1; 836 path->handler = handler; 837 path->private = private; 838 list_add_tail(&path->list, &handler->paths); 839 iucv_path_table[path->pathid] = path; 840 } else { 841 iucv_sever_pathid(parm->ctrl.ippathid, 842 iucv_error_pathid); 843 rc = -EIO; 844 } 845 } 846 spin_unlock_bh(&iucv_table_lock); 847 return rc; 848 } 849 EXPORT_SYMBOL(iucv_path_connect); 850 851 /** 852 * iucv_path_quiesce: 853 * @path: address of iucv path structure 854 * @userdata: 16 bytes of data reflected to the communication partner 855 * 856 * This function temporarily suspends incoming messages on an IUCV path. 857 * You can later reactivate the path by invoking the iucv_resume function. 858 * 859 * Returns the result from the CP IUCV call. 860 */ 861 int iucv_path_quiesce(struct iucv_path *path, u8 userdata[16]) 862 { 863 union iucv_param *parm; 864 int rc; 865 866 local_bh_disable(); 867 parm = iucv_param[smp_processor_id()]; 868 memset(parm, 0, sizeof(union iucv_param)); 869 if (userdata) 870 memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); 871 parm->ctrl.ippathid = path->pathid; 872 rc = iucv_call_b2f0(IUCV_QUIESCE, parm); 873 local_bh_enable(); 874 return rc; 875 } 876 EXPORT_SYMBOL(iucv_path_quiesce); 877 878 /** 879 * iucv_path_resume: 880 * @path: address of iucv path structure 881 * @userdata: 16 bytes of data reflected to the communication partner 882 * 883 * This function resumes incoming messages on an IUCV path that has 884 * been stopped with iucv_path_quiesce. 885 * 886 * Returns the result from the CP IUCV call. 887 */ 888 int iucv_path_resume(struct iucv_path *path, u8 userdata[16]) 889 { 890 union iucv_param *parm; 891 int rc; 892 893 local_bh_disable(); 894 parm = iucv_param[smp_processor_id()]; 895 memset(parm, 0, sizeof(union iucv_param)); 896 if (userdata) 897 memcpy(parm->ctrl.ipuser, userdata, sizeof(parm->ctrl.ipuser)); 898 parm->ctrl.ippathid = path->pathid; 899 rc = iucv_call_b2f0(IUCV_RESUME, parm); 900 local_bh_enable(); 901 return rc; 902 } 903 904 /** 905 * iucv_path_sever 906 * @path: address of iucv path structure 907 * @userdata: 16 bytes of data reflected to the communication partner 908 * 909 * This function terminates an IUCV path. 910 * 911 * Returns the result from the CP IUCV call. 912 */ 913 int iucv_path_sever(struct iucv_path *path, u8 userdata[16]) 914 { 915 int rc; 916 917 preempt_disable(); 918 if (iucv_active_cpu != smp_processor_id()) 919 spin_lock_bh(&iucv_table_lock); 920 rc = iucv_sever_pathid(path->pathid, userdata); 921 if (!rc) { 922 iucv_path_table[path->pathid] = NULL; 923 list_del_init(&path->list); 924 } 925 if (iucv_active_cpu != smp_processor_id()) 926 spin_unlock_bh(&iucv_table_lock); 927 preempt_enable(); 928 return rc; 929 } 930 EXPORT_SYMBOL(iucv_path_sever); 931 932 /** 933 * iucv_message_purge 934 * @path: address of iucv path structure 935 * @msg: address of iucv msg structure 936 * @srccls: source class of message 937 * 938 * Cancels a message you have sent. 939 * 940 * Returns the result from the CP IUCV call. 941 */ 942 int iucv_message_purge(struct iucv_path *path, struct iucv_message *msg, 943 u32 srccls) 944 { 945 union iucv_param *parm; 946 int rc; 947 948 local_bh_disable(); 949 parm = iucv_param[smp_processor_id()]; 950 memset(parm, 0, sizeof(union iucv_param)); 951 parm->purge.ippathid = path->pathid; 952 parm->purge.ipmsgid = msg->id; 953 parm->purge.ipsrccls = srccls; 954 parm->purge.ipflags1 = IUCV_IPSRCCLS | IUCV_IPFGMID | IUCV_IPFGPID; 955 rc = iucv_call_b2f0(IUCV_PURGE, parm); 956 if (!rc) { 957 msg->audit = (*(u32 *) &parm->purge.ipaudit) >> 8; 958 msg->tag = parm->purge.ipmsgtag; 959 } 960 local_bh_enable(); 961 return rc; 962 } 963 EXPORT_SYMBOL(iucv_message_purge); 964 965 /** 966 * iucv_message_receive_iprmdata 967 * @path: address of iucv path structure 968 * @msg: address of iucv msg structure 969 * @flags: how the message is received (IUCV_IPBUFLST) 970 * @buffer: address of data buffer or address of struct iucv_array 971 * @size: length of data buffer 972 * @residual: 973 * 974 * Internal function used by iucv_message_receive and __iucv_message_receive 975 * to receive RMDATA data stored in struct iucv_message. 976 */ 977 static int iucv_message_receive_iprmdata(struct iucv_path *path, 978 struct iucv_message *msg, 979 u8 flags, void *buffer, 980 size_t size, size_t *residual) 981 { 982 struct iucv_array *array; 983 u8 *rmmsg; 984 size_t copy; 985 986 /* 987 * Message is 8 bytes long and has been stored to the 988 * message descriptor itself. 989 */ 990 if (residual) 991 *residual = abs(size - 8); 992 rmmsg = msg->rmmsg; 993 if (flags & IUCV_IPBUFLST) { 994 /* Copy to struct iucv_array. */ 995 size = (size < 8) ? size : 8; 996 for (array = buffer; size > 0; array++) { 997 copy = min_t(size_t, size, array->length); 998 memcpy((u8 *)(addr_t) array->address, 999 rmmsg, copy); 1000 rmmsg += copy; 1001 size -= copy; 1002 } 1003 } else { 1004 /* Copy to direct buffer. */ 1005 memcpy(buffer, rmmsg, min_t(size_t, size, 8)); 1006 } 1007 return 0; 1008 } 1009 1010 /** 1011 * __iucv_message_receive 1012 * @path: address of iucv path structure 1013 * @msg: address of iucv msg structure 1014 * @flags: how the message is received (IUCV_IPBUFLST) 1015 * @buffer: address of data buffer or address of struct iucv_array 1016 * @size: length of data buffer 1017 * @residual: 1018 * 1019 * This function receives messages that are being sent to you over 1020 * established paths. This function will deal with RMDATA messages 1021 * embedded in struct iucv_message as well. 1022 * 1023 * Locking: no locking 1024 * 1025 * Returns the result from the CP IUCV call. 1026 */ 1027 int __iucv_message_receive(struct iucv_path *path, struct iucv_message *msg, 1028 u8 flags, void *buffer, size_t size, size_t *residual) 1029 { 1030 union iucv_param *parm; 1031 int rc; 1032 1033 if (msg->flags & IUCV_IPRMDATA) 1034 return iucv_message_receive_iprmdata(path, msg, flags, 1035 buffer, size, residual); 1036 parm = iucv_param[smp_processor_id()]; 1037 memset(parm, 0, sizeof(union iucv_param)); 1038 parm->db.ipbfadr1 = (u32)(addr_t) buffer; 1039 parm->db.ipbfln1f = (u32) size; 1040 parm->db.ipmsgid = msg->id; 1041 parm->db.ippathid = path->pathid; 1042 parm->db.iptrgcls = msg->class; 1043 parm->db.ipflags1 = (flags | IUCV_IPFGPID | 1044 IUCV_IPFGMID | IUCV_IPTRGCLS); 1045 rc = iucv_call_b2f0(IUCV_RECEIVE, parm); 1046 if (!rc || rc == 5) { 1047 msg->flags = parm->db.ipflags1; 1048 if (residual) 1049 *residual = parm->db.ipbfln1f; 1050 } 1051 return rc; 1052 } 1053 EXPORT_SYMBOL(__iucv_message_receive); 1054 1055 /** 1056 * iucv_message_receive 1057 * @path: address of iucv path structure 1058 * @msg: address of iucv msg structure 1059 * @flags: how the message is received (IUCV_IPBUFLST) 1060 * @buffer: address of data buffer or address of struct iucv_array 1061 * @size: length of data buffer 1062 * @residual: 1063 * 1064 * This function receives messages that are being sent to you over 1065 * established paths. This function will deal with RMDATA messages 1066 * embedded in struct iucv_message as well. 1067 * 1068 * Locking: local_bh_enable/local_bh_disable 1069 * 1070 * Returns the result from the CP IUCV call. 1071 */ 1072 int iucv_message_receive(struct iucv_path *path, struct iucv_message *msg, 1073 u8 flags, void *buffer, size_t size, size_t *residual) 1074 { 1075 int rc; 1076 1077 if (msg->flags & IUCV_IPRMDATA) 1078 return iucv_message_receive_iprmdata(path, msg, flags, 1079 buffer, size, residual); 1080 local_bh_disable(); 1081 rc = __iucv_message_receive(path, msg, flags, buffer, size, residual); 1082 local_bh_enable(); 1083 return rc; 1084 } 1085 EXPORT_SYMBOL(iucv_message_receive); 1086 1087 /** 1088 * iucv_message_reject 1089 * @path: address of iucv path structure 1090 * @msg: address of iucv msg structure 1091 * 1092 * The reject function refuses a specified message. Between the time you 1093 * are notified of a message and the time that you complete the message, 1094 * the message may be rejected. 1095 * 1096 * Returns the result from the CP IUCV call. 1097 */ 1098 int iucv_message_reject(struct iucv_path *path, struct iucv_message *msg) 1099 { 1100 union iucv_param *parm; 1101 int rc; 1102 1103 local_bh_disable(); 1104 parm = iucv_param[smp_processor_id()]; 1105 memset(parm, 0, sizeof(union iucv_param)); 1106 parm->db.ippathid = path->pathid; 1107 parm->db.ipmsgid = msg->id; 1108 parm->db.iptrgcls = msg->class; 1109 parm->db.ipflags1 = (IUCV_IPTRGCLS | IUCV_IPFGMID | IUCV_IPFGPID); 1110 rc = iucv_call_b2f0(IUCV_REJECT, parm); 1111 local_bh_enable(); 1112 return rc; 1113 } 1114 EXPORT_SYMBOL(iucv_message_reject); 1115 1116 /** 1117 * iucv_message_reply 1118 * @path: address of iucv path structure 1119 * @msg: address of iucv msg structure 1120 * @flags: how the reply is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST) 1121 * @reply: address of reply data buffer or address of struct iucv_array 1122 * @size: length of reply data buffer 1123 * 1124 * This function responds to the two-way messages that you receive. You 1125 * must identify completely the message to which you wish to reply. ie, 1126 * pathid, msgid, and trgcls. Prmmsg signifies the data is moved into 1127 * the parameter list. 1128 * 1129 * Returns the result from the CP IUCV call. 1130 */ 1131 int iucv_message_reply(struct iucv_path *path, struct iucv_message *msg, 1132 u8 flags, void *reply, size_t size) 1133 { 1134 union iucv_param *parm; 1135 int rc; 1136 1137 local_bh_disable(); 1138 parm = iucv_param[smp_processor_id()]; 1139 memset(parm, 0, sizeof(union iucv_param)); 1140 if (flags & IUCV_IPRMDATA) { 1141 parm->dpl.ippathid = path->pathid; 1142 parm->dpl.ipflags1 = flags; 1143 parm->dpl.ipmsgid = msg->id; 1144 parm->dpl.iptrgcls = msg->class; 1145 memcpy(parm->dpl.iprmmsg, reply, min_t(size_t, size, 8)); 1146 } else { 1147 parm->db.ipbfadr1 = (u32)(addr_t) reply; 1148 parm->db.ipbfln1f = (u32) size; 1149 parm->db.ippathid = path->pathid; 1150 parm->db.ipflags1 = flags; 1151 parm->db.ipmsgid = msg->id; 1152 parm->db.iptrgcls = msg->class; 1153 } 1154 rc = iucv_call_b2f0(IUCV_REPLY, parm); 1155 local_bh_enable(); 1156 return rc; 1157 } 1158 EXPORT_SYMBOL(iucv_message_reply); 1159 1160 /** 1161 * __iucv_message_send 1162 * @path: address of iucv path structure 1163 * @msg: address of iucv msg structure 1164 * @flags: how the message is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST) 1165 * @srccls: source class of message 1166 * @buffer: address of send buffer or address of struct iucv_array 1167 * @size: length of send buffer 1168 * 1169 * This function transmits data to another application. Data to be 1170 * transmitted is in a buffer and this is a one-way message and the 1171 * receiver will not reply to the message. 1172 * 1173 * Locking: no locking 1174 * 1175 * Returns the result from the CP IUCV call. 1176 */ 1177 int __iucv_message_send(struct iucv_path *path, struct iucv_message *msg, 1178 u8 flags, u32 srccls, void *buffer, size_t size) 1179 { 1180 union iucv_param *parm; 1181 int rc; 1182 1183 parm = iucv_param[smp_processor_id()]; 1184 memset(parm, 0, sizeof(union iucv_param)); 1185 if (flags & IUCV_IPRMDATA) { 1186 /* Message of 8 bytes can be placed into the parameter list. */ 1187 parm->dpl.ippathid = path->pathid; 1188 parm->dpl.ipflags1 = flags | IUCV_IPNORPY; 1189 parm->dpl.iptrgcls = msg->class; 1190 parm->dpl.ipsrccls = srccls; 1191 parm->dpl.ipmsgtag = msg->tag; 1192 memcpy(parm->dpl.iprmmsg, buffer, 8); 1193 } else { 1194 parm->db.ipbfadr1 = (u32)(addr_t) buffer; 1195 parm->db.ipbfln1f = (u32) size; 1196 parm->db.ippathid = path->pathid; 1197 parm->db.ipflags1 = flags | IUCV_IPNORPY; 1198 parm->db.iptrgcls = msg->class; 1199 parm->db.ipsrccls = srccls; 1200 parm->db.ipmsgtag = msg->tag; 1201 } 1202 rc = iucv_call_b2f0(IUCV_SEND, parm); 1203 if (!rc) 1204 msg->id = parm->db.ipmsgid; 1205 return rc; 1206 } 1207 EXPORT_SYMBOL(__iucv_message_send); 1208 1209 /** 1210 * iucv_message_send 1211 * @path: address of iucv path structure 1212 * @msg: address of iucv msg structure 1213 * @flags: how the message is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST) 1214 * @srccls: source class of message 1215 * @buffer: address of send buffer or address of struct iucv_array 1216 * @size: length of send buffer 1217 * 1218 * This function transmits data to another application. Data to be 1219 * transmitted is in a buffer and this is a one-way message and the 1220 * receiver will not reply to the message. 1221 * 1222 * Locking: local_bh_enable/local_bh_disable 1223 * 1224 * Returns the result from the CP IUCV call. 1225 */ 1226 int iucv_message_send(struct iucv_path *path, struct iucv_message *msg, 1227 u8 flags, u32 srccls, void *buffer, size_t size) 1228 { 1229 int rc; 1230 1231 local_bh_disable(); 1232 rc = __iucv_message_send(path, msg, flags, srccls, buffer, size); 1233 local_bh_enable(); 1234 return rc; 1235 } 1236 EXPORT_SYMBOL(iucv_message_send); 1237 1238 /** 1239 * iucv_message_send2way 1240 * @path: address of iucv path structure 1241 * @msg: address of iucv msg structure 1242 * @flags: how the message is sent and the reply is received 1243 * (IUCV_IPRMDATA, IUCV_IPBUFLST, IUCV_IPPRTY, IUCV_ANSLST) 1244 * @srccls: source class of message 1245 * @buffer: address of send buffer or address of struct iucv_array 1246 * @size: length of send buffer 1247 * @ansbuf: address of answer buffer or address of struct iucv_array 1248 * @asize: size of reply buffer 1249 * 1250 * This function transmits data to another application. Data to be 1251 * transmitted is in a buffer. The receiver of the send is expected to 1252 * reply to the message and a buffer is provided into which IUCV moves 1253 * the reply to this message. 1254 * 1255 * Returns the result from the CP IUCV call. 1256 */ 1257 int iucv_message_send2way(struct iucv_path *path, struct iucv_message *msg, 1258 u8 flags, u32 srccls, void *buffer, size_t size, 1259 void *answer, size_t asize, size_t *residual) 1260 { 1261 union iucv_param *parm; 1262 int rc; 1263 1264 local_bh_disable(); 1265 parm = iucv_param[smp_processor_id()]; 1266 memset(parm, 0, sizeof(union iucv_param)); 1267 if (flags & IUCV_IPRMDATA) { 1268 parm->dpl.ippathid = path->pathid; 1269 parm->dpl.ipflags1 = path->flags; /* priority message */ 1270 parm->dpl.iptrgcls = msg->class; 1271 parm->dpl.ipsrccls = srccls; 1272 parm->dpl.ipmsgtag = msg->tag; 1273 parm->dpl.ipbfadr2 = (u32)(addr_t) answer; 1274 parm->dpl.ipbfln2f = (u32) asize; 1275 memcpy(parm->dpl.iprmmsg, buffer, 8); 1276 } else { 1277 parm->db.ippathid = path->pathid; 1278 parm->db.ipflags1 = path->flags; /* priority message */ 1279 parm->db.iptrgcls = msg->class; 1280 parm->db.ipsrccls = srccls; 1281 parm->db.ipmsgtag = msg->tag; 1282 parm->db.ipbfadr1 = (u32)(addr_t) buffer; 1283 parm->db.ipbfln1f = (u32) size; 1284 parm->db.ipbfadr2 = (u32)(addr_t) answer; 1285 parm->db.ipbfln2f = (u32) asize; 1286 } 1287 rc = iucv_call_b2f0(IUCV_SEND, parm); 1288 if (!rc) 1289 msg->id = parm->db.ipmsgid; 1290 local_bh_enable(); 1291 return rc; 1292 } 1293 EXPORT_SYMBOL(iucv_message_send2way); 1294 1295 /** 1296 * iucv_path_pending 1297 * @data: Pointer to external interrupt buffer 1298 * 1299 * Process connection pending work item. Called from tasklet while holding 1300 * iucv_table_lock. 1301 */ 1302 struct iucv_path_pending { 1303 u16 ippathid; 1304 u8 ipflags1; 1305 u8 iptype; 1306 u16 ipmsglim; 1307 u16 res1; 1308 u8 ipvmid[8]; 1309 u8 ipuser[16]; 1310 u32 res3; 1311 u8 ippollfg; 1312 u8 res4[3]; 1313 } __attribute__ ((packed)); 1314 1315 static void iucv_path_pending(struct iucv_irq_data *data) 1316 { 1317 struct iucv_path_pending *ipp = (void *) data; 1318 struct iucv_handler *handler; 1319 struct iucv_path *path; 1320 char *error; 1321 1322 BUG_ON(iucv_path_table[ipp->ippathid]); 1323 /* New pathid, handler found. Create a new path struct. */ 1324 error = iucv_error_no_memory; 1325 path = iucv_path_alloc(ipp->ipmsglim, ipp->ipflags1, GFP_ATOMIC); 1326 if (!path) 1327 goto out_sever; 1328 path->pathid = ipp->ippathid; 1329 iucv_path_table[path->pathid] = path; 1330 EBCASC(ipp->ipvmid, 8); 1331 1332 /* Call registered handler until one is found that wants the path. */ 1333 list_for_each_entry(handler, &iucv_handler_list, list) { 1334 if (!handler->path_pending) 1335 continue; 1336 /* 1337 * Add path to handler to allow a call to iucv_path_sever 1338 * inside the path_pending function. If the handler returns 1339 * an error remove the path from the handler again. 1340 */ 1341 list_add(&path->list, &handler->paths); 1342 path->handler = handler; 1343 if (!handler->path_pending(path, ipp->ipvmid, ipp->ipuser)) 1344 return; 1345 list_del(&path->list); 1346 path->handler = NULL; 1347 } 1348 /* No handler wanted the path. */ 1349 iucv_path_table[path->pathid] = NULL; 1350 iucv_path_free(path); 1351 error = iucv_error_no_listener; 1352 out_sever: 1353 iucv_sever_pathid(ipp->ippathid, error); 1354 } 1355 1356 /** 1357 * iucv_path_complete 1358 * @data: Pointer to external interrupt buffer 1359 * 1360 * Process connection complete work item. Called from tasklet while holding 1361 * iucv_table_lock. 1362 */ 1363 struct iucv_path_complete { 1364 u16 ippathid; 1365 u8 ipflags1; 1366 u8 iptype; 1367 u16 ipmsglim; 1368 u16 res1; 1369 u8 res2[8]; 1370 u8 ipuser[16]; 1371 u32 res3; 1372 u8 ippollfg; 1373 u8 res4[3]; 1374 } __attribute__ ((packed)); 1375 1376 static void iucv_path_complete(struct iucv_irq_data *data) 1377 { 1378 struct iucv_path_complete *ipc = (void *) data; 1379 struct iucv_path *path = iucv_path_table[ipc->ippathid]; 1380 1381 if (path && path->handler && path->handler->path_complete) 1382 path->handler->path_complete(path, ipc->ipuser); 1383 } 1384 1385 /** 1386 * iucv_path_severed 1387 * @data: Pointer to external interrupt buffer 1388 * 1389 * Process connection severed work item. Called from tasklet while holding 1390 * iucv_table_lock. 1391 */ 1392 struct iucv_path_severed { 1393 u16 ippathid; 1394 u8 res1; 1395 u8 iptype; 1396 u32 res2; 1397 u8 res3[8]; 1398 u8 ipuser[16]; 1399 u32 res4; 1400 u8 ippollfg; 1401 u8 res5[3]; 1402 } __attribute__ ((packed)); 1403 1404 static void iucv_path_severed(struct iucv_irq_data *data) 1405 { 1406 struct iucv_path_severed *ips = (void *) data; 1407 struct iucv_path *path = iucv_path_table[ips->ippathid]; 1408 1409 if (!path || !path->handler) /* Already severed */ 1410 return; 1411 if (path->handler->path_severed) 1412 path->handler->path_severed(path, ips->ipuser); 1413 else { 1414 iucv_sever_pathid(path->pathid, NULL); 1415 iucv_path_table[path->pathid] = NULL; 1416 list_del_init(&path->list); 1417 iucv_path_free(path); 1418 } 1419 } 1420 1421 /** 1422 * iucv_path_quiesced 1423 * @data: Pointer to external interrupt buffer 1424 * 1425 * Process connection quiesced work item. Called from tasklet while holding 1426 * iucv_table_lock. 1427 */ 1428 struct iucv_path_quiesced { 1429 u16 ippathid; 1430 u8 res1; 1431 u8 iptype; 1432 u32 res2; 1433 u8 res3[8]; 1434 u8 ipuser[16]; 1435 u32 res4; 1436 u8 ippollfg; 1437 u8 res5[3]; 1438 } __attribute__ ((packed)); 1439 1440 static void iucv_path_quiesced(struct iucv_irq_data *data) 1441 { 1442 struct iucv_path_quiesced *ipq = (void *) data; 1443 struct iucv_path *path = iucv_path_table[ipq->ippathid]; 1444 1445 if (path && path->handler && path->handler->path_quiesced) 1446 path->handler->path_quiesced(path, ipq->ipuser); 1447 } 1448 1449 /** 1450 * iucv_path_resumed 1451 * @data: Pointer to external interrupt buffer 1452 * 1453 * Process connection resumed work item. Called from tasklet while holding 1454 * iucv_table_lock. 1455 */ 1456 struct iucv_path_resumed { 1457 u16 ippathid; 1458 u8 res1; 1459 u8 iptype; 1460 u32 res2; 1461 u8 res3[8]; 1462 u8 ipuser[16]; 1463 u32 res4; 1464 u8 ippollfg; 1465 u8 res5[3]; 1466 } __attribute__ ((packed)); 1467 1468 static void iucv_path_resumed(struct iucv_irq_data *data) 1469 { 1470 struct iucv_path_resumed *ipr = (void *) data; 1471 struct iucv_path *path = iucv_path_table[ipr->ippathid]; 1472 1473 if (path && path->handler && path->handler->path_resumed) 1474 path->handler->path_resumed(path, ipr->ipuser); 1475 } 1476 1477 /** 1478 * iucv_message_complete 1479 * @data: Pointer to external interrupt buffer 1480 * 1481 * Process message complete work item. Called from tasklet while holding 1482 * iucv_table_lock. 1483 */ 1484 struct iucv_message_complete { 1485 u16 ippathid; 1486 u8 ipflags1; 1487 u8 iptype; 1488 u32 ipmsgid; 1489 u32 ipaudit; 1490 u8 iprmmsg[8]; 1491 u32 ipsrccls; 1492 u32 ipmsgtag; 1493 u32 res; 1494 u32 ipbfln2f; 1495 u8 ippollfg; 1496 u8 res2[3]; 1497 } __attribute__ ((packed)); 1498 1499 static void iucv_message_complete(struct iucv_irq_data *data) 1500 { 1501 struct iucv_message_complete *imc = (void *) data; 1502 struct iucv_path *path = iucv_path_table[imc->ippathid]; 1503 struct iucv_message msg; 1504 1505 if (path && path->handler && path->handler->message_complete) { 1506 msg.flags = imc->ipflags1; 1507 msg.id = imc->ipmsgid; 1508 msg.audit = imc->ipaudit; 1509 memcpy(msg.rmmsg, imc->iprmmsg, 8); 1510 msg.class = imc->ipsrccls; 1511 msg.tag = imc->ipmsgtag; 1512 msg.length = imc->ipbfln2f; 1513 path->handler->message_complete(path, &msg); 1514 } 1515 } 1516 1517 /** 1518 * iucv_message_pending 1519 * @data: Pointer to external interrupt buffer 1520 * 1521 * Process message pending work item. Called from tasklet while holding 1522 * iucv_table_lock. 1523 */ 1524 struct iucv_message_pending { 1525 u16 ippathid; 1526 u8 ipflags1; 1527 u8 iptype; 1528 u32 ipmsgid; 1529 u32 iptrgcls; 1530 union { 1531 u32 iprmmsg1_u32; 1532 u8 iprmmsg1[4]; 1533 } ln1msg1; 1534 union { 1535 u32 ipbfln1f; 1536 u8 iprmmsg2[4]; 1537 } ln1msg2; 1538 u32 res1[3]; 1539 u32 ipbfln2f; 1540 u8 ippollfg; 1541 u8 res2[3]; 1542 } __attribute__ ((packed)); 1543 1544 static void iucv_message_pending(struct iucv_irq_data *data) 1545 { 1546 struct iucv_message_pending *imp = (void *) data; 1547 struct iucv_path *path = iucv_path_table[imp->ippathid]; 1548 struct iucv_message msg; 1549 1550 if (path && path->handler && path->handler->message_pending) { 1551 msg.flags = imp->ipflags1; 1552 msg.id = imp->ipmsgid; 1553 msg.class = imp->iptrgcls; 1554 if (imp->ipflags1 & IUCV_IPRMDATA) { 1555 memcpy(msg.rmmsg, imp->ln1msg1.iprmmsg1, 8); 1556 msg.length = 8; 1557 } else 1558 msg.length = imp->ln1msg2.ipbfln1f; 1559 msg.reply_size = imp->ipbfln2f; 1560 path->handler->message_pending(path, &msg); 1561 } 1562 } 1563 1564 /** 1565 * iucv_tasklet_fn: 1566 * 1567 * This tasklet loops over the queue of irq buffers created by 1568 * iucv_external_interrupt, calls the appropriate action handler 1569 * and then frees the buffer. 1570 */ 1571 static void iucv_tasklet_fn(unsigned long ignored) 1572 { 1573 typedef void iucv_irq_fn(struct iucv_irq_data *); 1574 static iucv_irq_fn *irq_fn[] = { 1575 [0x02] = iucv_path_complete, 1576 [0x03] = iucv_path_severed, 1577 [0x04] = iucv_path_quiesced, 1578 [0x05] = iucv_path_resumed, 1579 [0x06] = iucv_message_complete, 1580 [0x07] = iucv_message_complete, 1581 [0x08] = iucv_message_pending, 1582 [0x09] = iucv_message_pending, 1583 }; 1584 LIST_HEAD(task_queue); 1585 struct iucv_irq_list *p, *n; 1586 1587 /* Serialize tasklet, iucv_path_sever and iucv_path_connect. */ 1588 if (!spin_trylock(&iucv_table_lock)) { 1589 tasklet_schedule(&iucv_tasklet); 1590 return; 1591 } 1592 iucv_active_cpu = smp_processor_id(); 1593 1594 spin_lock_irq(&iucv_queue_lock); 1595 list_splice_init(&iucv_task_queue, &task_queue); 1596 spin_unlock_irq(&iucv_queue_lock); 1597 1598 list_for_each_entry_safe(p, n, &task_queue, list) { 1599 list_del_init(&p->list); 1600 irq_fn[p->data.iptype](&p->data); 1601 kfree(p); 1602 } 1603 1604 iucv_active_cpu = -1; 1605 spin_unlock(&iucv_table_lock); 1606 } 1607 1608 /** 1609 * iucv_work_fn: 1610 * 1611 * This work function loops over the queue of path pending irq blocks 1612 * created by iucv_external_interrupt, calls the appropriate action 1613 * handler and then frees the buffer. 1614 */ 1615 static void iucv_work_fn(struct work_struct *work) 1616 { 1617 typedef void iucv_irq_fn(struct iucv_irq_data *); 1618 LIST_HEAD(work_queue); 1619 struct iucv_irq_list *p, *n; 1620 1621 /* Serialize tasklet, iucv_path_sever and iucv_path_connect. */ 1622 spin_lock_bh(&iucv_table_lock); 1623 iucv_active_cpu = smp_processor_id(); 1624 1625 spin_lock_irq(&iucv_queue_lock); 1626 list_splice_init(&iucv_work_queue, &work_queue); 1627 spin_unlock_irq(&iucv_queue_lock); 1628 1629 iucv_cleanup_queue(); 1630 list_for_each_entry_safe(p, n, &work_queue, list) { 1631 list_del_init(&p->list); 1632 iucv_path_pending(&p->data); 1633 kfree(p); 1634 } 1635 1636 iucv_active_cpu = -1; 1637 spin_unlock_bh(&iucv_table_lock); 1638 } 1639 1640 /** 1641 * iucv_external_interrupt 1642 * @code: irq code 1643 * 1644 * Handles external interrupts coming in from CP. 1645 * Places the interrupt buffer on a queue and schedules iucv_tasklet_fn(). 1646 */ 1647 static void iucv_external_interrupt(u16 code) 1648 { 1649 struct iucv_irq_data *p; 1650 struct iucv_irq_list *work; 1651 1652 p = iucv_irq_data[smp_processor_id()]; 1653 if (p->ippathid >= iucv_max_pathid) { 1654 WARN_ON(p->ippathid >= iucv_max_pathid); 1655 iucv_sever_pathid(p->ippathid, iucv_error_no_listener); 1656 return; 1657 } 1658 BUG_ON(p->iptype < 0x01 || p->iptype > 0x09); 1659 work = kmalloc(sizeof(struct iucv_irq_list), GFP_ATOMIC); 1660 if (!work) { 1661 pr_warning("iucv_external_interrupt: out of memory\n"); 1662 return; 1663 } 1664 memcpy(&work->data, p, sizeof(work->data)); 1665 spin_lock(&iucv_queue_lock); 1666 if (p->iptype == 0x01) { 1667 /* Path pending interrupt. */ 1668 list_add_tail(&work->list, &iucv_work_queue); 1669 schedule_work(&iucv_work); 1670 } else { 1671 /* The other interrupts. */ 1672 list_add_tail(&work->list, &iucv_task_queue); 1673 tasklet_schedule(&iucv_tasklet); 1674 } 1675 spin_unlock(&iucv_queue_lock); 1676 } 1677 1678 /** 1679 * iucv_init 1680 * 1681 * Allocates and initializes various data structures. 1682 */ 1683 static int __init iucv_init(void) 1684 { 1685 int rc; 1686 int cpu; 1687 1688 if (!MACHINE_IS_VM) { 1689 rc = -EPROTONOSUPPORT; 1690 goto out; 1691 } 1692 rc = iucv_query_maxconn(); 1693 if (rc) 1694 goto out; 1695 rc = register_external_interrupt(0x4000, iucv_external_interrupt); 1696 if (rc) 1697 goto out; 1698 iucv_root = root_device_register("iucv"); 1699 if (IS_ERR(iucv_root)) { 1700 rc = PTR_ERR(iucv_root); 1701 goto out_int; 1702 } 1703 1704 for_each_online_cpu(cpu) { 1705 /* Note: GFP_DMA used to get memory below 2G */ 1706 iucv_irq_data[cpu] = kmalloc_node(sizeof(struct iucv_irq_data), 1707 GFP_KERNEL|GFP_DMA, cpu_to_node(cpu)); 1708 if (!iucv_irq_data[cpu]) { 1709 rc = -ENOMEM; 1710 goto out_free; 1711 } 1712 1713 /* Allocate parameter blocks. */ 1714 iucv_param[cpu] = kmalloc_node(sizeof(union iucv_param), 1715 GFP_KERNEL|GFP_DMA, cpu_to_node(cpu)); 1716 if (!iucv_param[cpu]) { 1717 rc = -ENOMEM; 1718 goto out_free; 1719 } 1720 } 1721 rc = register_hotcpu_notifier(&iucv_cpu_notifier); 1722 if (rc) 1723 goto out_free; 1724 ASCEBC(iucv_error_no_listener, 16); 1725 ASCEBC(iucv_error_no_memory, 16); 1726 ASCEBC(iucv_error_pathid, 16); 1727 iucv_available = 1; 1728 rc = bus_register(&iucv_bus); 1729 if (rc) 1730 goto out_cpu; 1731 return 0; 1732 1733 out_cpu: 1734 unregister_hotcpu_notifier(&iucv_cpu_notifier); 1735 out_free: 1736 for_each_possible_cpu(cpu) { 1737 kfree(iucv_param[cpu]); 1738 iucv_param[cpu] = NULL; 1739 kfree(iucv_irq_data[cpu]); 1740 iucv_irq_data[cpu] = NULL; 1741 } 1742 root_device_unregister(iucv_root); 1743 out_int: 1744 unregister_external_interrupt(0x4000, iucv_external_interrupt); 1745 out: 1746 return rc; 1747 } 1748 1749 /** 1750 * iucv_exit 1751 * 1752 * Frees everything allocated from iucv_init. 1753 */ 1754 static void __exit iucv_exit(void) 1755 { 1756 struct iucv_irq_list *p, *n; 1757 int cpu; 1758 1759 spin_lock_irq(&iucv_queue_lock); 1760 list_for_each_entry_safe(p, n, &iucv_task_queue, list) 1761 kfree(p); 1762 list_for_each_entry_safe(p, n, &iucv_work_queue, list) 1763 kfree(p); 1764 spin_unlock_irq(&iucv_queue_lock); 1765 unregister_hotcpu_notifier(&iucv_cpu_notifier); 1766 for_each_possible_cpu(cpu) { 1767 kfree(iucv_param[cpu]); 1768 iucv_param[cpu] = NULL; 1769 kfree(iucv_irq_data[cpu]); 1770 iucv_irq_data[cpu] = NULL; 1771 } 1772 root_device_unregister(iucv_root); 1773 bus_unregister(&iucv_bus); 1774 unregister_external_interrupt(0x4000, iucv_external_interrupt); 1775 } 1776 1777 subsys_initcall(iucv_init); 1778 module_exit(iucv_exit); 1779 1780 MODULE_AUTHOR("(C) 2001 IBM Corp. by Fritz Elfert (felfert@millenux.com)"); 1781 MODULE_DESCRIPTION("Linux for S/390 IUCV lowlevel driver"); 1782 MODULE_LICENSE("GPL"); 1783