xref: /openbmc/linux/net/ipv6/seg6_local.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  SR-IPv6 implementation
4  *
5  *  Authors:
6  *  David Lebrun <david.lebrun@uclouvain.be>
7  *  eBPF support: Mathieu Xhonneux <m.xhonneux@gmail.com>
8  */
9 
10 #include <linux/types.h>
11 #include <linux/skbuff.h>
12 #include <linux/net.h>
13 #include <linux/module.h>
14 #include <net/ip.h>
15 #include <net/lwtunnel.h>
16 #include <net/netevent.h>
17 #include <net/netns/generic.h>
18 #include <net/ip6_fib.h>
19 #include <net/route.h>
20 #include <net/seg6.h>
21 #include <linux/seg6.h>
22 #include <linux/seg6_local.h>
23 #include <net/addrconf.h>
24 #include <net/ip6_route.h>
25 #include <net/dst_cache.h>
26 #include <net/ip_tunnels.h>
27 #ifdef CONFIG_IPV6_SEG6_HMAC
28 #include <net/seg6_hmac.h>
29 #endif
30 #include <net/seg6_local.h>
31 #include <linux/etherdevice.h>
32 #include <linux/bpf.h>
33 
34 #define SEG6_F_ATTR(i)		BIT(i)
35 
36 struct seg6_local_lwt;
37 
38 /* callbacks used for customizing the creation and destruction of a behavior */
39 struct seg6_local_lwtunnel_ops {
40 	int (*build_state)(struct seg6_local_lwt *slwt, const void *cfg,
41 			   struct netlink_ext_ack *extack);
42 	void (*destroy_state)(struct seg6_local_lwt *slwt);
43 };
44 
45 struct seg6_action_desc {
46 	int action;
47 	unsigned long attrs;
48 
49 	/* The optattrs field is used for specifying all the optional
50 	 * attributes supported by a specific behavior.
51 	 * It means that if one of these attributes is not provided in the
52 	 * netlink message during the behavior creation, no errors will be
53 	 * returned to the userspace.
54 	 *
55 	 * Each attribute can be only of two types (mutually exclusive):
56 	 * 1) required or 2) optional.
57 	 * Every user MUST obey to this rule! If you set an attribute as
58 	 * required the same attribute CANNOT be set as optional and vice
59 	 * versa.
60 	 */
61 	unsigned long optattrs;
62 
63 	int (*input)(struct sk_buff *skb, struct seg6_local_lwt *slwt);
64 	int static_headroom;
65 
66 	struct seg6_local_lwtunnel_ops slwt_ops;
67 };
68 
69 struct bpf_lwt_prog {
70 	struct bpf_prog *prog;
71 	char *name;
72 };
73 
74 enum seg6_end_dt_mode {
75 	DT_INVALID_MODE	= -EINVAL,
76 	DT_LEGACY_MODE	= 0,
77 	DT_VRF_MODE	= 1,
78 };
79 
80 struct seg6_end_dt_info {
81 	enum seg6_end_dt_mode mode;
82 
83 	struct net *net;
84 	/* VRF device associated to the routing table used by the SRv6
85 	 * End.DT4/DT6 behavior for routing IPv4/IPv6 packets.
86 	 */
87 	int vrf_ifindex;
88 	int vrf_table;
89 
90 	/* tunneled packet family (IPv4 or IPv6).
91 	 * Protocol and header length are inferred from family.
92 	 */
93 	u16 family;
94 };
95 
96 struct pcpu_seg6_local_counters {
97 	u64_stats_t packets;
98 	u64_stats_t bytes;
99 	u64_stats_t errors;
100 
101 	struct u64_stats_sync syncp;
102 };
103 
104 /* This struct groups all the SRv6 Behavior counters supported so far.
105  *
106  * put_nla_counters() makes use of this data structure to collect all counter
107  * values after the per-CPU counter evaluation has been performed.
108  * Finally, each counter value (in seg6_local_counters) is stored in the
109  * corresponding netlink attribute and sent to user space.
110  *
111  * NB: we don't want to expose this structure to user space!
112  */
113 struct seg6_local_counters {
114 	__u64 packets;
115 	__u64 bytes;
116 	__u64 errors;
117 };
118 
119 #define seg6_local_alloc_pcpu_counters(__gfp)				\
120 	__netdev_alloc_pcpu_stats(struct pcpu_seg6_local_counters,	\
121 				  ((__gfp) | __GFP_ZERO))
122 
123 #define SEG6_F_LOCAL_COUNTERS	SEG6_F_ATTR(SEG6_LOCAL_COUNTERS)
124 
125 struct seg6_local_lwt {
126 	int action;
127 	struct ipv6_sr_hdr *srh;
128 	int table;
129 	struct in_addr nh4;
130 	struct in6_addr nh6;
131 	int iif;
132 	int oif;
133 	struct bpf_lwt_prog bpf;
134 #ifdef CONFIG_NET_L3_MASTER_DEV
135 	struct seg6_end_dt_info dt_info;
136 #endif
137 	struct pcpu_seg6_local_counters __percpu *pcpu_counters;
138 
139 	int headroom;
140 	struct seg6_action_desc *desc;
141 	/* unlike the required attrs, we have to track the optional attributes
142 	 * that have been effectively parsed.
143 	 */
144 	unsigned long parsed_optattrs;
145 };
146 
147 static struct seg6_local_lwt *seg6_local_lwtunnel(struct lwtunnel_state *lwt)
148 {
149 	return (struct seg6_local_lwt *)lwt->data;
150 }
151 
152 static struct ipv6_sr_hdr *get_srh(struct sk_buff *skb, int flags)
153 {
154 	struct ipv6_sr_hdr *srh;
155 	int len, srhoff = 0;
156 
157 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, &flags) < 0)
158 		return NULL;
159 
160 	if (!pskb_may_pull(skb, srhoff + sizeof(*srh)))
161 		return NULL;
162 
163 	srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
164 
165 	len = (srh->hdrlen + 1) << 3;
166 
167 	if (!pskb_may_pull(skb, srhoff + len))
168 		return NULL;
169 
170 	/* note that pskb_may_pull may change pointers in header;
171 	 * for this reason it is necessary to reload them when needed.
172 	 */
173 	srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
174 
175 	if (!seg6_validate_srh(srh, len, true))
176 		return NULL;
177 
178 	return srh;
179 }
180 
181 static struct ipv6_sr_hdr *get_and_validate_srh(struct sk_buff *skb)
182 {
183 	struct ipv6_sr_hdr *srh;
184 
185 	srh = get_srh(skb, IP6_FH_F_SKIP_RH);
186 	if (!srh)
187 		return NULL;
188 
189 #ifdef CONFIG_IPV6_SEG6_HMAC
190 	if (!seg6_hmac_validate_skb(skb))
191 		return NULL;
192 #endif
193 
194 	return srh;
195 }
196 
197 static bool decap_and_validate(struct sk_buff *skb, int proto)
198 {
199 	struct ipv6_sr_hdr *srh;
200 	unsigned int off = 0;
201 
202 	srh = get_srh(skb, 0);
203 	if (srh && srh->segments_left > 0)
204 		return false;
205 
206 #ifdef CONFIG_IPV6_SEG6_HMAC
207 	if (srh && !seg6_hmac_validate_skb(skb))
208 		return false;
209 #endif
210 
211 	if (ipv6_find_hdr(skb, &off, proto, NULL, NULL) < 0)
212 		return false;
213 
214 	if (!pskb_pull(skb, off))
215 		return false;
216 
217 	skb_postpull_rcsum(skb, skb_network_header(skb), off);
218 
219 	skb_reset_network_header(skb);
220 	skb_reset_transport_header(skb);
221 	if (iptunnel_pull_offloads(skb))
222 		return false;
223 
224 	return true;
225 }
226 
227 static void advance_nextseg(struct ipv6_sr_hdr *srh, struct in6_addr *daddr)
228 {
229 	struct in6_addr *addr;
230 
231 	srh->segments_left--;
232 	addr = srh->segments + srh->segments_left;
233 	*daddr = *addr;
234 }
235 
236 static int
237 seg6_lookup_any_nexthop(struct sk_buff *skb, struct in6_addr *nhaddr,
238 			u32 tbl_id, bool local_delivery)
239 {
240 	struct net *net = dev_net(skb->dev);
241 	struct ipv6hdr *hdr = ipv6_hdr(skb);
242 	int flags = RT6_LOOKUP_F_HAS_SADDR;
243 	struct dst_entry *dst = NULL;
244 	struct rt6_info *rt;
245 	struct flowi6 fl6;
246 	int dev_flags = 0;
247 
248 	fl6.flowi6_iif = skb->dev->ifindex;
249 	fl6.daddr = nhaddr ? *nhaddr : hdr->daddr;
250 	fl6.saddr = hdr->saddr;
251 	fl6.flowlabel = ip6_flowinfo(hdr);
252 	fl6.flowi6_mark = skb->mark;
253 	fl6.flowi6_proto = hdr->nexthdr;
254 
255 	if (nhaddr)
256 		fl6.flowi6_flags = FLOWI_FLAG_KNOWN_NH;
257 
258 	if (!tbl_id) {
259 		dst = ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags);
260 	} else {
261 		struct fib6_table *table;
262 
263 		table = fib6_get_table(net, tbl_id);
264 		if (!table)
265 			goto out;
266 
267 		rt = ip6_pol_route(net, table, 0, &fl6, skb, flags);
268 		dst = &rt->dst;
269 	}
270 
271 	/* we want to discard traffic destined for local packet processing,
272 	 * if @local_delivery is set to false.
273 	 */
274 	if (!local_delivery)
275 		dev_flags |= IFF_LOOPBACK;
276 
277 	if (dst && (dst->dev->flags & dev_flags) && !dst->error) {
278 		dst_release(dst);
279 		dst = NULL;
280 	}
281 
282 out:
283 	if (!dst) {
284 		rt = net->ipv6.ip6_blk_hole_entry;
285 		dst = &rt->dst;
286 		dst_hold(dst);
287 	}
288 
289 	skb_dst_drop(skb);
290 	skb_dst_set(skb, dst);
291 	return dst->error;
292 }
293 
294 int seg6_lookup_nexthop(struct sk_buff *skb,
295 			struct in6_addr *nhaddr, u32 tbl_id)
296 {
297 	return seg6_lookup_any_nexthop(skb, nhaddr, tbl_id, false);
298 }
299 
300 /* regular endpoint function */
301 static int input_action_end(struct sk_buff *skb, struct seg6_local_lwt *slwt)
302 {
303 	struct ipv6_sr_hdr *srh;
304 
305 	srh = get_and_validate_srh(skb);
306 	if (!srh)
307 		goto drop;
308 
309 	advance_nextseg(srh, &ipv6_hdr(skb)->daddr);
310 
311 	seg6_lookup_nexthop(skb, NULL, 0);
312 
313 	return dst_input(skb);
314 
315 drop:
316 	kfree_skb(skb);
317 	return -EINVAL;
318 }
319 
320 /* regular endpoint, and forward to specified nexthop */
321 static int input_action_end_x(struct sk_buff *skb, struct seg6_local_lwt *slwt)
322 {
323 	struct ipv6_sr_hdr *srh;
324 
325 	srh = get_and_validate_srh(skb);
326 	if (!srh)
327 		goto drop;
328 
329 	advance_nextseg(srh, &ipv6_hdr(skb)->daddr);
330 
331 	seg6_lookup_nexthop(skb, &slwt->nh6, 0);
332 
333 	return dst_input(skb);
334 
335 drop:
336 	kfree_skb(skb);
337 	return -EINVAL;
338 }
339 
340 static int input_action_end_t(struct sk_buff *skb, struct seg6_local_lwt *slwt)
341 {
342 	struct ipv6_sr_hdr *srh;
343 
344 	srh = get_and_validate_srh(skb);
345 	if (!srh)
346 		goto drop;
347 
348 	advance_nextseg(srh, &ipv6_hdr(skb)->daddr);
349 
350 	seg6_lookup_nexthop(skb, NULL, slwt->table);
351 
352 	return dst_input(skb);
353 
354 drop:
355 	kfree_skb(skb);
356 	return -EINVAL;
357 }
358 
359 /* decapsulate and forward inner L2 frame on specified interface */
360 static int input_action_end_dx2(struct sk_buff *skb,
361 				struct seg6_local_lwt *slwt)
362 {
363 	struct net *net = dev_net(skb->dev);
364 	struct net_device *odev;
365 	struct ethhdr *eth;
366 
367 	if (!decap_and_validate(skb, IPPROTO_ETHERNET))
368 		goto drop;
369 
370 	if (!pskb_may_pull(skb, ETH_HLEN))
371 		goto drop;
372 
373 	skb_reset_mac_header(skb);
374 	eth = (struct ethhdr *)skb->data;
375 
376 	/* To determine the frame's protocol, we assume it is 802.3. This avoids
377 	 * a call to eth_type_trans(), which is not really relevant for our
378 	 * use case.
379 	 */
380 	if (!eth_proto_is_802_3(eth->h_proto))
381 		goto drop;
382 
383 	odev = dev_get_by_index_rcu(net, slwt->oif);
384 	if (!odev)
385 		goto drop;
386 
387 	/* As we accept Ethernet frames, make sure the egress device is of
388 	 * the correct type.
389 	 */
390 	if (odev->type != ARPHRD_ETHER)
391 		goto drop;
392 
393 	if (!(odev->flags & IFF_UP) || !netif_carrier_ok(odev))
394 		goto drop;
395 
396 	skb_orphan(skb);
397 
398 	if (skb_warn_if_lro(skb))
399 		goto drop;
400 
401 	skb_forward_csum(skb);
402 
403 	if (skb->len - ETH_HLEN > odev->mtu)
404 		goto drop;
405 
406 	skb->dev = odev;
407 	skb->protocol = eth->h_proto;
408 
409 	return dev_queue_xmit(skb);
410 
411 drop:
412 	kfree_skb(skb);
413 	return -EINVAL;
414 }
415 
416 /* decapsulate and forward to specified nexthop */
417 static int input_action_end_dx6(struct sk_buff *skb,
418 				struct seg6_local_lwt *slwt)
419 {
420 	struct in6_addr *nhaddr = NULL;
421 
422 	/* this function accepts IPv6 encapsulated packets, with either
423 	 * an SRH with SL=0, or no SRH.
424 	 */
425 
426 	if (!decap_and_validate(skb, IPPROTO_IPV6))
427 		goto drop;
428 
429 	if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
430 		goto drop;
431 
432 	/* The inner packet is not associated to any local interface,
433 	 * so we do not call netif_rx().
434 	 *
435 	 * If slwt->nh6 is set to ::, then lookup the nexthop for the
436 	 * inner packet's DA. Otherwise, use the specified nexthop.
437 	 */
438 
439 	if (!ipv6_addr_any(&slwt->nh6))
440 		nhaddr = &slwt->nh6;
441 
442 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
443 
444 	seg6_lookup_nexthop(skb, nhaddr, 0);
445 
446 	return dst_input(skb);
447 drop:
448 	kfree_skb(skb);
449 	return -EINVAL;
450 }
451 
452 static int input_action_end_dx4(struct sk_buff *skb,
453 				struct seg6_local_lwt *slwt)
454 {
455 	struct iphdr *iph;
456 	__be32 nhaddr;
457 	int err;
458 
459 	if (!decap_and_validate(skb, IPPROTO_IPIP))
460 		goto drop;
461 
462 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
463 		goto drop;
464 
465 	skb->protocol = htons(ETH_P_IP);
466 
467 	iph = ip_hdr(skb);
468 
469 	nhaddr = slwt->nh4.s_addr ?: iph->daddr;
470 
471 	skb_dst_drop(skb);
472 
473 	skb_set_transport_header(skb, sizeof(struct iphdr));
474 
475 	err = ip_route_input(skb, nhaddr, iph->saddr, 0, skb->dev);
476 	if (err)
477 		goto drop;
478 
479 	return dst_input(skb);
480 
481 drop:
482 	kfree_skb(skb);
483 	return -EINVAL;
484 }
485 
486 #ifdef CONFIG_NET_L3_MASTER_DEV
487 static struct net *fib6_config_get_net(const struct fib6_config *fib6_cfg)
488 {
489 	const struct nl_info *nli = &fib6_cfg->fc_nlinfo;
490 
491 	return nli->nl_net;
492 }
493 
494 static int __seg6_end_dt_vrf_build(struct seg6_local_lwt *slwt, const void *cfg,
495 				   u16 family, struct netlink_ext_ack *extack)
496 {
497 	struct seg6_end_dt_info *info = &slwt->dt_info;
498 	int vrf_ifindex;
499 	struct net *net;
500 
501 	net = fib6_config_get_net(cfg);
502 
503 	/* note that vrf_table was already set by parse_nla_vrftable() */
504 	vrf_ifindex = l3mdev_ifindex_lookup_by_table_id(L3MDEV_TYPE_VRF, net,
505 							info->vrf_table);
506 	if (vrf_ifindex < 0) {
507 		if (vrf_ifindex == -EPERM) {
508 			NL_SET_ERR_MSG(extack,
509 				       "Strict mode for VRF is disabled");
510 		} else if (vrf_ifindex == -ENODEV) {
511 			NL_SET_ERR_MSG(extack,
512 				       "Table has no associated VRF device");
513 		} else {
514 			pr_debug("seg6local: SRv6 End.DT* creation error=%d\n",
515 				 vrf_ifindex);
516 		}
517 
518 		return vrf_ifindex;
519 	}
520 
521 	info->net = net;
522 	info->vrf_ifindex = vrf_ifindex;
523 
524 	info->family = family;
525 	info->mode = DT_VRF_MODE;
526 
527 	return 0;
528 }
529 
530 /* The SRv6 End.DT4/DT6 behavior extracts the inner (IPv4/IPv6) packet and
531  * routes the IPv4/IPv6 packet by looking at the configured routing table.
532  *
533  * In the SRv6 End.DT4/DT6 use case, we can receive traffic (IPv6+Segment
534  * Routing Header packets) from several interfaces and the outer IPv6
535  * destination address (DA) is used for retrieving the specific instance of the
536  * End.DT4/DT6 behavior that should process the packets.
537  *
538  * However, the inner IPv4/IPv6 packet is not really bound to any receiving
539  * interface and thus the End.DT4/DT6 sets the VRF (associated with the
540  * corresponding routing table) as the *receiving* interface.
541  * In other words, the End.DT4/DT6 processes a packet as if it has been received
542  * directly by the VRF (and not by one of its slave devices, if any).
543  * In this way, the VRF interface is used for routing the IPv4/IPv6 packet in
544  * according to the routing table configured by the End.DT4/DT6 instance.
545  *
546  * This design allows you to get some interesting features like:
547  *  1) the statistics on rx packets;
548  *  2) the possibility to install a packet sniffer on the receiving interface
549  *     (the VRF one) for looking at the incoming packets;
550  *  3) the possibility to leverage the netfilter prerouting hook for the inner
551  *     IPv4 packet.
552  *
553  * This function returns:
554  *  - the sk_buff* when the VRF rcv handler has processed the packet correctly;
555  *  - NULL when the skb is consumed by the VRF rcv handler;
556  *  - a pointer which encodes a negative error number in case of error.
557  *    Note that in this case, the function takes care of freeing the skb.
558  */
559 static struct sk_buff *end_dt_vrf_rcv(struct sk_buff *skb, u16 family,
560 				      struct net_device *dev)
561 {
562 	/* based on l3mdev_ip_rcv; we are only interested in the master */
563 	if (unlikely(!netif_is_l3_master(dev) && !netif_has_l3_rx_handler(dev)))
564 		goto drop;
565 
566 	if (unlikely(!dev->l3mdev_ops->l3mdev_l3_rcv))
567 		goto drop;
568 
569 	/* the decap packet IPv4/IPv6 does not come with any mac header info.
570 	 * We must unset the mac header to allow the VRF device to rebuild it,
571 	 * just in case there is a sniffer attached on the device.
572 	 */
573 	skb_unset_mac_header(skb);
574 
575 	skb = dev->l3mdev_ops->l3mdev_l3_rcv(dev, skb, family);
576 	if (!skb)
577 		/* the skb buffer was consumed by the handler */
578 		return NULL;
579 
580 	/* when a packet is received by a VRF or by one of its slaves, the
581 	 * master device reference is set into the skb.
582 	 */
583 	if (unlikely(skb->dev != dev || skb->skb_iif != dev->ifindex))
584 		goto drop;
585 
586 	return skb;
587 
588 drop:
589 	kfree_skb(skb);
590 	return ERR_PTR(-EINVAL);
591 }
592 
593 static struct net_device *end_dt_get_vrf_rcu(struct sk_buff *skb,
594 					     struct seg6_end_dt_info *info)
595 {
596 	int vrf_ifindex = info->vrf_ifindex;
597 	struct net *net = info->net;
598 
599 	if (unlikely(vrf_ifindex < 0))
600 		goto error;
601 
602 	if (unlikely(!net_eq(dev_net(skb->dev), net)))
603 		goto error;
604 
605 	return dev_get_by_index_rcu(net, vrf_ifindex);
606 
607 error:
608 	return NULL;
609 }
610 
611 static struct sk_buff *end_dt_vrf_core(struct sk_buff *skb,
612 				       struct seg6_local_lwt *slwt, u16 family)
613 {
614 	struct seg6_end_dt_info *info = &slwt->dt_info;
615 	struct net_device *vrf;
616 	__be16 protocol;
617 	int hdrlen;
618 
619 	vrf = end_dt_get_vrf_rcu(skb, info);
620 	if (unlikely(!vrf))
621 		goto drop;
622 
623 	switch (family) {
624 	case AF_INET:
625 		protocol = htons(ETH_P_IP);
626 		hdrlen = sizeof(struct iphdr);
627 		break;
628 	case AF_INET6:
629 		protocol = htons(ETH_P_IPV6);
630 		hdrlen = sizeof(struct ipv6hdr);
631 		break;
632 	case AF_UNSPEC:
633 		fallthrough;
634 	default:
635 		goto drop;
636 	}
637 
638 	if (unlikely(info->family != AF_UNSPEC && info->family != family)) {
639 		pr_warn_once("seg6local: SRv6 End.DT* family mismatch");
640 		goto drop;
641 	}
642 
643 	skb->protocol = protocol;
644 
645 	skb_dst_drop(skb);
646 
647 	skb_set_transport_header(skb, hdrlen);
648 
649 	return end_dt_vrf_rcv(skb, family, vrf);
650 
651 drop:
652 	kfree_skb(skb);
653 	return ERR_PTR(-EINVAL);
654 }
655 
656 static int input_action_end_dt4(struct sk_buff *skb,
657 				struct seg6_local_lwt *slwt)
658 {
659 	struct iphdr *iph;
660 	int err;
661 
662 	if (!decap_and_validate(skb, IPPROTO_IPIP))
663 		goto drop;
664 
665 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
666 		goto drop;
667 
668 	skb = end_dt_vrf_core(skb, slwt, AF_INET);
669 	if (!skb)
670 		/* packet has been processed and consumed by the VRF */
671 		return 0;
672 
673 	if (IS_ERR(skb))
674 		return PTR_ERR(skb);
675 
676 	iph = ip_hdr(skb);
677 
678 	err = ip_route_input(skb, iph->daddr, iph->saddr, 0, skb->dev);
679 	if (unlikely(err))
680 		goto drop;
681 
682 	return dst_input(skb);
683 
684 drop:
685 	kfree_skb(skb);
686 	return -EINVAL;
687 }
688 
689 static int seg6_end_dt4_build(struct seg6_local_lwt *slwt, const void *cfg,
690 			      struct netlink_ext_ack *extack)
691 {
692 	return __seg6_end_dt_vrf_build(slwt, cfg, AF_INET, extack);
693 }
694 
695 static enum
696 seg6_end_dt_mode seg6_end_dt6_parse_mode(struct seg6_local_lwt *slwt)
697 {
698 	unsigned long parsed_optattrs = slwt->parsed_optattrs;
699 	bool legacy, vrfmode;
700 
701 	legacy	= !!(parsed_optattrs & SEG6_F_ATTR(SEG6_LOCAL_TABLE));
702 	vrfmode	= !!(parsed_optattrs & SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE));
703 
704 	if (!(legacy ^ vrfmode))
705 		/* both are absent or present: invalid DT6 mode */
706 		return DT_INVALID_MODE;
707 
708 	return legacy ? DT_LEGACY_MODE : DT_VRF_MODE;
709 }
710 
711 static enum seg6_end_dt_mode seg6_end_dt6_get_mode(struct seg6_local_lwt *slwt)
712 {
713 	struct seg6_end_dt_info *info = &slwt->dt_info;
714 
715 	return info->mode;
716 }
717 
718 static int seg6_end_dt6_build(struct seg6_local_lwt *slwt, const void *cfg,
719 			      struct netlink_ext_ack *extack)
720 {
721 	enum seg6_end_dt_mode mode = seg6_end_dt6_parse_mode(slwt);
722 	struct seg6_end_dt_info *info = &slwt->dt_info;
723 
724 	switch (mode) {
725 	case DT_LEGACY_MODE:
726 		info->mode = DT_LEGACY_MODE;
727 		return 0;
728 	case DT_VRF_MODE:
729 		return __seg6_end_dt_vrf_build(slwt, cfg, AF_INET6, extack);
730 	default:
731 		NL_SET_ERR_MSG(extack, "table or vrftable must be specified");
732 		return -EINVAL;
733 	}
734 }
735 #endif
736 
737 static int input_action_end_dt6(struct sk_buff *skb,
738 				struct seg6_local_lwt *slwt)
739 {
740 	if (!decap_and_validate(skb, IPPROTO_IPV6))
741 		goto drop;
742 
743 	if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
744 		goto drop;
745 
746 #ifdef CONFIG_NET_L3_MASTER_DEV
747 	if (seg6_end_dt6_get_mode(slwt) == DT_LEGACY_MODE)
748 		goto legacy_mode;
749 
750 	/* DT6_VRF_MODE */
751 	skb = end_dt_vrf_core(skb, slwt, AF_INET6);
752 	if (!skb)
753 		/* packet has been processed and consumed by the VRF */
754 		return 0;
755 
756 	if (IS_ERR(skb))
757 		return PTR_ERR(skb);
758 
759 	/* note: this time we do not need to specify the table because the VRF
760 	 * takes care of selecting the correct table.
761 	 */
762 	seg6_lookup_any_nexthop(skb, NULL, 0, true);
763 
764 	return dst_input(skb);
765 
766 legacy_mode:
767 #endif
768 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
769 
770 	seg6_lookup_any_nexthop(skb, NULL, slwt->table, true);
771 
772 	return dst_input(skb);
773 
774 drop:
775 	kfree_skb(skb);
776 	return -EINVAL;
777 }
778 
779 #ifdef CONFIG_NET_L3_MASTER_DEV
780 static int seg6_end_dt46_build(struct seg6_local_lwt *slwt, const void *cfg,
781 			       struct netlink_ext_ack *extack)
782 {
783 	return __seg6_end_dt_vrf_build(slwt, cfg, AF_UNSPEC, extack);
784 }
785 
786 static int input_action_end_dt46(struct sk_buff *skb,
787 				 struct seg6_local_lwt *slwt)
788 {
789 	unsigned int off = 0;
790 	int nexthdr;
791 
792 	nexthdr = ipv6_find_hdr(skb, &off, -1, NULL, NULL);
793 	if (unlikely(nexthdr < 0))
794 		goto drop;
795 
796 	switch (nexthdr) {
797 	case IPPROTO_IPIP:
798 		return input_action_end_dt4(skb, slwt);
799 	case IPPROTO_IPV6:
800 		return input_action_end_dt6(skb, slwt);
801 	}
802 
803 drop:
804 	kfree_skb(skb);
805 	return -EINVAL;
806 }
807 #endif
808 
809 /* push an SRH on top of the current one */
810 static int input_action_end_b6(struct sk_buff *skb, struct seg6_local_lwt *slwt)
811 {
812 	struct ipv6_sr_hdr *srh;
813 	int err = -EINVAL;
814 
815 	srh = get_and_validate_srh(skb);
816 	if (!srh)
817 		goto drop;
818 
819 	err = seg6_do_srh_inline(skb, slwt->srh);
820 	if (err)
821 		goto drop;
822 
823 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
824 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
825 
826 	seg6_lookup_nexthop(skb, NULL, 0);
827 
828 	return dst_input(skb);
829 
830 drop:
831 	kfree_skb(skb);
832 	return err;
833 }
834 
835 /* encapsulate within an outer IPv6 header and a specified SRH */
836 static int input_action_end_b6_encap(struct sk_buff *skb,
837 				     struct seg6_local_lwt *slwt)
838 {
839 	struct ipv6_sr_hdr *srh;
840 	int err = -EINVAL;
841 
842 	srh = get_and_validate_srh(skb);
843 	if (!srh)
844 		goto drop;
845 
846 	advance_nextseg(srh, &ipv6_hdr(skb)->daddr);
847 
848 	skb_reset_inner_headers(skb);
849 	skb->encapsulation = 1;
850 
851 	err = seg6_do_srh_encap(skb, slwt->srh, IPPROTO_IPV6);
852 	if (err)
853 		goto drop;
854 
855 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
856 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
857 
858 	seg6_lookup_nexthop(skb, NULL, 0);
859 
860 	return dst_input(skb);
861 
862 drop:
863 	kfree_skb(skb);
864 	return err;
865 }
866 
867 DEFINE_PER_CPU(struct seg6_bpf_srh_state, seg6_bpf_srh_states);
868 
869 bool seg6_bpf_has_valid_srh(struct sk_buff *skb)
870 {
871 	struct seg6_bpf_srh_state *srh_state =
872 		this_cpu_ptr(&seg6_bpf_srh_states);
873 	struct ipv6_sr_hdr *srh = srh_state->srh;
874 
875 	if (unlikely(srh == NULL))
876 		return false;
877 
878 	if (unlikely(!srh_state->valid)) {
879 		if ((srh_state->hdrlen & 7) != 0)
880 			return false;
881 
882 		srh->hdrlen = (u8)(srh_state->hdrlen >> 3);
883 		if (!seg6_validate_srh(srh, (srh->hdrlen + 1) << 3, true))
884 			return false;
885 
886 		srh_state->valid = true;
887 	}
888 
889 	return true;
890 }
891 
892 static int input_action_end_bpf(struct sk_buff *skb,
893 				struct seg6_local_lwt *slwt)
894 {
895 	struct seg6_bpf_srh_state *srh_state =
896 		this_cpu_ptr(&seg6_bpf_srh_states);
897 	struct ipv6_sr_hdr *srh;
898 	int ret;
899 
900 	srh = get_and_validate_srh(skb);
901 	if (!srh) {
902 		kfree_skb(skb);
903 		return -EINVAL;
904 	}
905 	advance_nextseg(srh, &ipv6_hdr(skb)->daddr);
906 
907 	/* preempt_disable is needed to protect the per-CPU buffer srh_state,
908 	 * which is also accessed by the bpf_lwt_seg6_* helpers
909 	 */
910 	preempt_disable();
911 	srh_state->srh = srh;
912 	srh_state->hdrlen = srh->hdrlen << 3;
913 	srh_state->valid = true;
914 
915 	rcu_read_lock();
916 	bpf_compute_data_pointers(skb);
917 	ret = bpf_prog_run_save_cb(slwt->bpf.prog, skb);
918 	rcu_read_unlock();
919 
920 	switch (ret) {
921 	case BPF_OK:
922 	case BPF_REDIRECT:
923 		break;
924 	case BPF_DROP:
925 		goto drop;
926 	default:
927 		pr_warn_once("bpf-seg6local: Illegal return value %u\n", ret);
928 		goto drop;
929 	}
930 
931 	if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
932 		goto drop;
933 
934 	preempt_enable();
935 	if (ret != BPF_REDIRECT)
936 		seg6_lookup_nexthop(skb, NULL, 0);
937 
938 	return dst_input(skb);
939 
940 drop:
941 	preempt_enable();
942 	kfree_skb(skb);
943 	return -EINVAL;
944 }
945 
946 static struct seg6_action_desc seg6_action_table[] = {
947 	{
948 		.action		= SEG6_LOCAL_ACTION_END,
949 		.attrs		= 0,
950 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
951 		.input		= input_action_end,
952 	},
953 	{
954 		.action		= SEG6_LOCAL_ACTION_END_X,
955 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_NH6),
956 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
957 		.input		= input_action_end_x,
958 	},
959 	{
960 		.action		= SEG6_LOCAL_ACTION_END_T,
961 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_TABLE),
962 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
963 		.input		= input_action_end_t,
964 	},
965 	{
966 		.action		= SEG6_LOCAL_ACTION_END_DX2,
967 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_OIF),
968 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
969 		.input		= input_action_end_dx2,
970 	},
971 	{
972 		.action		= SEG6_LOCAL_ACTION_END_DX6,
973 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_NH6),
974 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
975 		.input		= input_action_end_dx6,
976 	},
977 	{
978 		.action		= SEG6_LOCAL_ACTION_END_DX4,
979 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_NH4),
980 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
981 		.input		= input_action_end_dx4,
982 	},
983 	{
984 		.action		= SEG6_LOCAL_ACTION_END_DT4,
985 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE),
986 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
987 #ifdef CONFIG_NET_L3_MASTER_DEV
988 		.input		= input_action_end_dt4,
989 		.slwt_ops	= {
990 					.build_state = seg6_end_dt4_build,
991 				  },
992 #endif
993 	},
994 	{
995 		.action		= SEG6_LOCAL_ACTION_END_DT6,
996 #ifdef CONFIG_NET_L3_MASTER_DEV
997 		.attrs		= 0,
998 		.optattrs	= SEG6_F_LOCAL_COUNTERS		|
999 				  SEG6_F_ATTR(SEG6_LOCAL_TABLE) |
1000 				  SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE),
1001 		.slwt_ops	= {
1002 					.build_state = seg6_end_dt6_build,
1003 				  },
1004 #else
1005 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_TABLE),
1006 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
1007 #endif
1008 		.input		= input_action_end_dt6,
1009 	},
1010 	{
1011 		.action		= SEG6_LOCAL_ACTION_END_DT46,
1012 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE),
1013 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
1014 #ifdef CONFIG_NET_L3_MASTER_DEV
1015 		.input		= input_action_end_dt46,
1016 		.slwt_ops	= {
1017 					.build_state = seg6_end_dt46_build,
1018 				  },
1019 #endif
1020 	},
1021 	{
1022 		.action		= SEG6_LOCAL_ACTION_END_B6,
1023 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_SRH),
1024 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
1025 		.input		= input_action_end_b6,
1026 	},
1027 	{
1028 		.action		= SEG6_LOCAL_ACTION_END_B6_ENCAP,
1029 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_SRH),
1030 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
1031 		.input		= input_action_end_b6_encap,
1032 		.static_headroom	= sizeof(struct ipv6hdr),
1033 	},
1034 	{
1035 		.action		= SEG6_LOCAL_ACTION_END_BPF,
1036 		.attrs		= SEG6_F_ATTR(SEG6_LOCAL_BPF),
1037 		.optattrs	= SEG6_F_LOCAL_COUNTERS,
1038 		.input		= input_action_end_bpf,
1039 	},
1040 
1041 };
1042 
1043 static struct seg6_action_desc *__get_action_desc(int action)
1044 {
1045 	struct seg6_action_desc *desc;
1046 	int i, count;
1047 
1048 	count = ARRAY_SIZE(seg6_action_table);
1049 	for (i = 0; i < count; i++) {
1050 		desc = &seg6_action_table[i];
1051 		if (desc->action == action)
1052 			return desc;
1053 	}
1054 
1055 	return NULL;
1056 }
1057 
1058 static bool seg6_lwtunnel_counters_enabled(struct seg6_local_lwt *slwt)
1059 {
1060 	return slwt->parsed_optattrs & SEG6_F_LOCAL_COUNTERS;
1061 }
1062 
1063 static void seg6_local_update_counters(struct seg6_local_lwt *slwt,
1064 				       unsigned int len, int err)
1065 {
1066 	struct pcpu_seg6_local_counters *pcounters;
1067 
1068 	pcounters = this_cpu_ptr(slwt->pcpu_counters);
1069 	u64_stats_update_begin(&pcounters->syncp);
1070 
1071 	if (likely(!err)) {
1072 		u64_stats_inc(&pcounters->packets);
1073 		u64_stats_add(&pcounters->bytes, len);
1074 	} else {
1075 		u64_stats_inc(&pcounters->errors);
1076 	}
1077 
1078 	u64_stats_update_end(&pcounters->syncp);
1079 }
1080 
1081 static int seg6_local_input(struct sk_buff *skb)
1082 {
1083 	struct dst_entry *orig_dst = skb_dst(skb);
1084 	struct seg6_action_desc *desc;
1085 	struct seg6_local_lwt *slwt;
1086 	unsigned int len = skb->len;
1087 	int rc;
1088 
1089 	if (skb->protocol != htons(ETH_P_IPV6)) {
1090 		kfree_skb(skb);
1091 		return -EINVAL;
1092 	}
1093 
1094 	slwt = seg6_local_lwtunnel(orig_dst->lwtstate);
1095 	desc = slwt->desc;
1096 
1097 	rc = desc->input(skb, slwt);
1098 
1099 	if (!seg6_lwtunnel_counters_enabled(slwt))
1100 		return rc;
1101 
1102 	seg6_local_update_counters(slwt, len, rc);
1103 
1104 	return rc;
1105 }
1106 
1107 static const struct nla_policy seg6_local_policy[SEG6_LOCAL_MAX + 1] = {
1108 	[SEG6_LOCAL_ACTION]	= { .type = NLA_U32 },
1109 	[SEG6_LOCAL_SRH]	= { .type = NLA_BINARY },
1110 	[SEG6_LOCAL_TABLE]	= { .type = NLA_U32 },
1111 	[SEG6_LOCAL_VRFTABLE]	= { .type = NLA_U32 },
1112 	[SEG6_LOCAL_NH4]	= { .type = NLA_BINARY,
1113 				    .len = sizeof(struct in_addr) },
1114 	[SEG6_LOCAL_NH6]	= { .type = NLA_BINARY,
1115 				    .len = sizeof(struct in6_addr) },
1116 	[SEG6_LOCAL_IIF]	= { .type = NLA_U32 },
1117 	[SEG6_LOCAL_OIF]	= { .type = NLA_U32 },
1118 	[SEG6_LOCAL_BPF]	= { .type = NLA_NESTED },
1119 	[SEG6_LOCAL_COUNTERS]	= { .type = NLA_NESTED },
1120 };
1121 
1122 static int parse_nla_srh(struct nlattr **attrs, struct seg6_local_lwt *slwt)
1123 {
1124 	struct ipv6_sr_hdr *srh;
1125 	int len;
1126 
1127 	srh = nla_data(attrs[SEG6_LOCAL_SRH]);
1128 	len = nla_len(attrs[SEG6_LOCAL_SRH]);
1129 
1130 	/* SRH must contain at least one segment */
1131 	if (len < sizeof(*srh) + sizeof(struct in6_addr))
1132 		return -EINVAL;
1133 
1134 	if (!seg6_validate_srh(srh, len, false))
1135 		return -EINVAL;
1136 
1137 	slwt->srh = kmemdup(srh, len, GFP_KERNEL);
1138 	if (!slwt->srh)
1139 		return -ENOMEM;
1140 
1141 	slwt->headroom += len;
1142 
1143 	return 0;
1144 }
1145 
1146 static int put_nla_srh(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1147 {
1148 	struct ipv6_sr_hdr *srh;
1149 	struct nlattr *nla;
1150 	int len;
1151 
1152 	srh = slwt->srh;
1153 	len = (srh->hdrlen + 1) << 3;
1154 
1155 	nla = nla_reserve(skb, SEG6_LOCAL_SRH, len);
1156 	if (!nla)
1157 		return -EMSGSIZE;
1158 
1159 	memcpy(nla_data(nla), srh, len);
1160 
1161 	return 0;
1162 }
1163 
1164 static int cmp_nla_srh(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1165 {
1166 	int len = (a->srh->hdrlen + 1) << 3;
1167 
1168 	if (len != ((b->srh->hdrlen + 1) << 3))
1169 		return 1;
1170 
1171 	return memcmp(a->srh, b->srh, len);
1172 }
1173 
1174 static void destroy_attr_srh(struct seg6_local_lwt *slwt)
1175 {
1176 	kfree(slwt->srh);
1177 }
1178 
1179 static int parse_nla_table(struct nlattr **attrs, struct seg6_local_lwt *slwt)
1180 {
1181 	slwt->table = nla_get_u32(attrs[SEG6_LOCAL_TABLE]);
1182 
1183 	return 0;
1184 }
1185 
1186 static int put_nla_table(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1187 {
1188 	if (nla_put_u32(skb, SEG6_LOCAL_TABLE, slwt->table))
1189 		return -EMSGSIZE;
1190 
1191 	return 0;
1192 }
1193 
1194 static int cmp_nla_table(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1195 {
1196 	if (a->table != b->table)
1197 		return 1;
1198 
1199 	return 0;
1200 }
1201 
1202 static struct
1203 seg6_end_dt_info *seg6_possible_end_dt_info(struct seg6_local_lwt *slwt)
1204 {
1205 #ifdef CONFIG_NET_L3_MASTER_DEV
1206 	return &slwt->dt_info;
1207 #else
1208 	return ERR_PTR(-EOPNOTSUPP);
1209 #endif
1210 }
1211 
1212 static int parse_nla_vrftable(struct nlattr **attrs,
1213 			      struct seg6_local_lwt *slwt)
1214 {
1215 	struct seg6_end_dt_info *info = seg6_possible_end_dt_info(slwt);
1216 
1217 	if (IS_ERR(info))
1218 		return PTR_ERR(info);
1219 
1220 	info->vrf_table = nla_get_u32(attrs[SEG6_LOCAL_VRFTABLE]);
1221 
1222 	return 0;
1223 }
1224 
1225 static int put_nla_vrftable(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1226 {
1227 	struct seg6_end_dt_info *info = seg6_possible_end_dt_info(slwt);
1228 
1229 	if (IS_ERR(info))
1230 		return PTR_ERR(info);
1231 
1232 	if (nla_put_u32(skb, SEG6_LOCAL_VRFTABLE, info->vrf_table))
1233 		return -EMSGSIZE;
1234 
1235 	return 0;
1236 }
1237 
1238 static int cmp_nla_vrftable(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1239 {
1240 	struct seg6_end_dt_info *info_a = seg6_possible_end_dt_info(a);
1241 	struct seg6_end_dt_info *info_b = seg6_possible_end_dt_info(b);
1242 
1243 	if (info_a->vrf_table != info_b->vrf_table)
1244 		return 1;
1245 
1246 	return 0;
1247 }
1248 
1249 static int parse_nla_nh4(struct nlattr **attrs, struct seg6_local_lwt *slwt)
1250 {
1251 	memcpy(&slwt->nh4, nla_data(attrs[SEG6_LOCAL_NH4]),
1252 	       sizeof(struct in_addr));
1253 
1254 	return 0;
1255 }
1256 
1257 static int put_nla_nh4(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1258 {
1259 	struct nlattr *nla;
1260 
1261 	nla = nla_reserve(skb, SEG6_LOCAL_NH4, sizeof(struct in_addr));
1262 	if (!nla)
1263 		return -EMSGSIZE;
1264 
1265 	memcpy(nla_data(nla), &slwt->nh4, sizeof(struct in_addr));
1266 
1267 	return 0;
1268 }
1269 
1270 static int cmp_nla_nh4(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1271 {
1272 	return memcmp(&a->nh4, &b->nh4, sizeof(struct in_addr));
1273 }
1274 
1275 static int parse_nla_nh6(struct nlattr **attrs, struct seg6_local_lwt *slwt)
1276 {
1277 	memcpy(&slwt->nh6, nla_data(attrs[SEG6_LOCAL_NH6]),
1278 	       sizeof(struct in6_addr));
1279 
1280 	return 0;
1281 }
1282 
1283 static int put_nla_nh6(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1284 {
1285 	struct nlattr *nla;
1286 
1287 	nla = nla_reserve(skb, SEG6_LOCAL_NH6, sizeof(struct in6_addr));
1288 	if (!nla)
1289 		return -EMSGSIZE;
1290 
1291 	memcpy(nla_data(nla), &slwt->nh6, sizeof(struct in6_addr));
1292 
1293 	return 0;
1294 }
1295 
1296 static int cmp_nla_nh6(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1297 {
1298 	return memcmp(&a->nh6, &b->nh6, sizeof(struct in6_addr));
1299 }
1300 
1301 static int parse_nla_iif(struct nlattr **attrs, struct seg6_local_lwt *slwt)
1302 {
1303 	slwt->iif = nla_get_u32(attrs[SEG6_LOCAL_IIF]);
1304 
1305 	return 0;
1306 }
1307 
1308 static int put_nla_iif(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1309 {
1310 	if (nla_put_u32(skb, SEG6_LOCAL_IIF, slwt->iif))
1311 		return -EMSGSIZE;
1312 
1313 	return 0;
1314 }
1315 
1316 static int cmp_nla_iif(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1317 {
1318 	if (a->iif != b->iif)
1319 		return 1;
1320 
1321 	return 0;
1322 }
1323 
1324 static int parse_nla_oif(struct nlattr **attrs, struct seg6_local_lwt *slwt)
1325 {
1326 	slwt->oif = nla_get_u32(attrs[SEG6_LOCAL_OIF]);
1327 
1328 	return 0;
1329 }
1330 
1331 static int put_nla_oif(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1332 {
1333 	if (nla_put_u32(skb, SEG6_LOCAL_OIF, slwt->oif))
1334 		return -EMSGSIZE;
1335 
1336 	return 0;
1337 }
1338 
1339 static int cmp_nla_oif(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1340 {
1341 	if (a->oif != b->oif)
1342 		return 1;
1343 
1344 	return 0;
1345 }
1346 
1347 #define MAX_PROG_NAME 256
1348 static const struct nla_policy bpf_prog_policy[SEG6_LOCAL_BPF_PROG_MAX + 1] = {
1349 	[SEG6_LOCAL_BPF_PROG]	   = { .type = NLA_U32, },
1350 	[SEG6_LOCAL_BPF_PROG_NAME] = { .type = NLA_NUL_STRING,
1351 				       .len = MAX_PROG_NAME },
1352 };
1353 
1354 static int parse_nla_bpf(struct nlattr **attrs, struct seg6_local_lwt *slwt)
1355 {
1356 	struct nlattr *tb[SEG6_LOCAL_BPF_PROG_MAX + 1];
1357 	struct bpf_prog *p;
1358 	int ret;
1359 	u32 fd;
1360 
1361 	ret = nla_parse_nested_deprecated(tb, SEG6_LOCAL_BPF_PROG_MAX,
1362 					  attrs[SEG6_LOCAL_BPF],
1363 					  bpf_prog_policy, NULL);
1364 	if (ret < 0)
1365 		return ret;
1366 
1367 	if (!tb[SEG6_LOCAL_BPF_PROG] || !tb[SEG6_LOCAL_BPF_PROG_NAME])
1368 		return -EINVAL;
1369 
1370 	slwt->bpf.name = nla_memdup(tb[SEG6_LOCAL_BPF_PROG_NAME], GFP_KERNEL);
1371 	if (!slwt->bpf.name)
1372 		return -ENOMEM;
1373 
1374 	fd = nla_get_u32(tb[SEG6_LOCAL_BPF_PROG]);
1375 	p = bpf_prog_get_type(fd, BPF_PROG_TYPE_LWT_SEG6LOCAL);
1376 	if (IS_ERR(p)) {
1377 		kfree(slwt->bpf.name);
1378 		return PTR_ERR(p);
1379 	}
1380 
1381 	slwt->bpf.prog = p;
1382 	return 0;
1383 }
1384 
1385 static int put_nla_bpf(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1386 {
1387 	struct nlattr *nest;
1388 
1389 	if (!slwt->bpf.prog)
1390 		return 0;
1391 
1392 	nest = nla_nest_start_noflag(skb, SEG6_LOCAL_BPF);
1393 	if (!nest)
1394 		return -EMSGSIZE;
1395 
1396 	if (nla_put_u32(skb, SEG6_LOCAL_BPF_PROG, slwt->bpf.prog->aux->id))
1397 		return -EMSGSIZE;
1398 
1399 	if (slwt->bpf.name &&
1400 	    nla_put_string(skb, SEG6_LOCAL_BPF_PROG_NAME, slwt->bpf.name))
1401 		return -EMSGSIZE;
1402 
1403 	return nla_nest_end(skb, nest);
1404 }
1405 
1406 static int cmp_nla_bpf(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1407 {
1408 	if (!a->bpf.name && !b->bpf.name)
1409 		return 0;
1410 
1411 	if (!a->bpf.name || !b->bpf.name)
1412 		return 1;
1413 
1414 	return strcmp(a->bpf.name, b->bpf.name);
1415 }
1416 
1417 static void destroy_attr_bpf(struct seg6_local_lwt *slwt)
1418 {
1419 	kfree(slwt->bpf.name);
1420 	if (slwt->bpf.prog)
1421 		bpf_prog_put(slwt->bpf.prog);
1422 }
1423 
1424 static const struct
1425 nla_policy seg6_local_counters_policy[SEG6_LOCAL_CNT_MAX + 1] = {
1426 	[SEG6_LOCAL_CNT_PACKETS]	= { .type = NLA_U64 },
1427 	[SEG6_LOCAL_CNT_BYTES]		= { .type = NLA_U64 },
1428 	[SEG6_LOCAL_CNT_ERRORS]		= { .type = NLA_U64 },
1429 };
1430 
1431 static int parse_nla_counters(struct nlattr **attrs,
1432 			      struct seg6_local_lwt *slwt)
1433 {
1434 	struct pcpu_seg6_local_counters __percpu *pcounters;
1435 	struct nlattr *tb[SEG6_LOCAL_CNT_MAX + 1];
1436 	int ret;
1437 
1438 	ret = nla_parse_nested_deprecated(tb, SEG6_LOCAL_CNT_MAX,
1439 					  attrs[SEG6_LOCAL_COUNTERS],
1440 					  seg6_local_counters_policy, NULL);
1441 	if (ret < 0)
1442 		return ret;
1443 
1444 	/* basic support for SRv6 Behavior counters requires at least:
1445 	 * packets, bytes and errors.
1446 	 */
1447 	if (!tb[SEG6_LOCAL_CNT_PACKETS] || !tb[SEG6_LOCAL_CNT_BYTES] ||
1448 	    !tb[SEG6_LOCAL_CNT_ERRORS])
1449 		return -EINVAL;
1450 
1451 	/* counters are always zero initialized */
1452 	pcounters = seg6_local_alloc_pcpu_counters(GFP_KERNEL);
1453 	if (!pcounters)
1454 		return -ENOMEM;
1455 
1456 	slwt->pcpu_counters = pcounters;
1457 
1458 	return 0;
1459 }
1460 
1461 static int seg6_local_fill_nla_counters(struct sk_buff *skb,
1462 					struct seg6_local_counters *counters)
1463 {
1464 	if (nla_put_u64_64bit(skb, SEG6_LOCAL_CNT_PACKETS, counters->packets,
1465 			      SEG6_LOCAL_CNT_PAD))
1466 		return -EMSGSIZE;
1467 
1468 	if (nla_put_u64_64bit(skb, SEG6_LOCAL_CNT_BYTES, counters->bytes,
1469 			      SEG6_LOCAL_CNT_PAD))
1470 		return -EMSGSIZE;
1471 
1472 	if (nla_put_u64_64bit(skb, SEG6_LOCAL_CNT_ERRORS, counters->errors,
1473 			      SEG6_LOCAL_CNT_PAD))
1474 		return -EMSGSIZE;
1475 
1476 	return 0;
1477 }
1478 
1479 static int put_nla_counters(struct sk_buff *skb, struct seg6_local_lwt *slwt)
1480 {
1481 	struct seg6_local_counters counters = { 0, 0, 0 };
1482 	struct nlattr *nest;
1483 	int rc, i;
1484 
1485 	nest = nla_nest_start(skb, SEG6_LOCAL_COUNTERS);
1486 	if (!nest)
1487 		return -EMSGSIZE;
1488 
1489 	for_each_possible_cpu(i) {
1490 		struct pcpu_seg6_local_counters *pcounters;
1491 		u64 packets, bytes, errors;
1492 		unsigned int start;
1493 
1494 		pcounters = per_cpu_ptr(slwt->pcpu_counters, i);
1495 		do {
1496 			start = u64_stats_fetch_begin_irq(&pcounters->syncp);
1497 
1498 			packets = u64_stats_read(&pcounters->packets);
1499 			bytes = u64_stats_read(&pcounters->bytes);
1500 			errors = u64_stats_read(&pcounters->errors);
1501 
1502 		} while (u64_stats_fetch_retry_irq(&pcounters->syncp, start));
1503 
1504 		counters.packets += packets;
1505 		counters.bytes += bytes;
1506 		counters.errors += errors;
1507 	}
1508 
1509 	rc = seg6_local_fill_nla_counters(skb, &counters);
1510 	if (rc < 0) {
1511 		nla_nest_cancel(skb, nest);
1512 		return rc;
1513 	}
1514 
1515 	return nla_nest_end(skb, nest);
1516 }
1517 
1518 static int cmp_nla_counters(struct seg6_local_lwt *a, struct seg6_local_lwt *b)
1519 {
1520 	/* a and b are equal if both have pcpu_counters set or not */
1521 	return (!!((unsigned long)a->pcpu_counters)) ^
1522 		(!!((unsigned long)b->pcpu_counters));
1523 }
1524 
1525 static void destroy_attr_counters(struct seg6_local_lwt *slwt)
1526 {
1527 	free_percpu(slwt->pcpu_counters);
1528 }
1529 
1530 struct seg6_action_param {
1531 	int (*parse)(struct nlattr **attrs, struct seg6_local_lwt *slwt);
1532 	int (*put)(struct sk_buff *skb, struct seg6_local_lwt *slwt);
1533 	int (*cmp)(struct seg6_local_lwt *a, struct seg6_local_lwt *b);
1534 
1535 	/* optional destroy() callback useful for releasing resources which
1536 	 * have been previously acquired in the corresponding parse()
1537 	 * function.
1538 	 */
1539 	void (*destroy)(struct seg6_local_lwt *slwt);
1540 };
1541 
1542 static struct seg6_action_param seg6_action_params[SEG6_LOCAL_MAX + 1] = {
1543 	[SEG6_LOCAL_SRH]	= { .parse = parse_nla_srh,
1544 				    .put = put_nla_srh,
1545 				    .cmp = cmp_nla_srh,
1546 				    .destroy = destroy_attr_srh },
1547 
1548 	[SEG6_LOCAL_TABLE]	= { .parse = parse_nla_table,
1549 				    .put = put_nla_table,
1550 				    .cmp = cmp_nla_table },
1551 
1552 	[SEG6_LOCAL_NH4]	= { .parse = parse_nla_nh4,
1553 				    .put = put_nla_nh4,
1554 				    .cmp = cmp_nla_nh4 },
1555 
1556 	[SEG6_LOCAL_NH6]	= { .parse = parse_nla_nh6,
1557 				    .put = put_nla_nh6,
1558 				    .cmp = cmp_nla_nh6 },
1559 
1560 	[SEG6_LOCAL_IIF]	= { .parse = parse_nla_iif,
1561 				    .put = put_nla_iif,
1562 				    .cmp = cmp_nla_iif },
1563 
1564 	[SEG6_LOCAL_OIF]	= { .parse = parse_nla_oif,
1565 				    .put = put_nla_oif,
1566 				    .cmp = cmp_nla_oif },
1567 
1568 	[SEG6_LOCAL_BPF]	= { .parse = parse_nla_bpf,
1569 				    .put = put_nla_bpf,
1570 				    .cmp = cmp_nla_bpf,
1571 				    .destroy = destroy_attr_bpf },
1572 
1573 	[SEG6_LOCAL_VRFTABLE]	= { .parse = parse_nla_vrftable,
1574 				    .put = put_nla_vrftable,
1575 				    .cmp = cmp_nla_vrftable },
1576 
1577 	[SEG6_LOCAL_COUNTERS]	= { .parse = parse_nla_counters,
1578 				    .put = put_nla_counters,
1579 				    .cmp = cmp_nla_counters,
1580 				    .destroy = destroy_attr_counters },
1581 };
1582 
1583 /* call the destroy() callback (if available) for each set attribute in
1584  * @parsed_attrs, starting from the first attribute up to the @max_parsed
1585  * (excluded) attribute.
1586  */
1587 static void __destroy_attrs(unsigned long parsed_attrs, int max_parsed,
1588 			    struct seg6_local_lwt *slwt)
1589 {
1590 	struct seg6_action_param *param;
1591 	int i;
1592 
1593 	/* Every required seg6local attribute is identified by an ID which is
1594 	 * encoded as a flag (i.e: 1 << ID) in the 'attrs' bitmask;
1595 	 *
1596 	 * We scan the 'parsed_attrs' bitmask, starting from the first attribute
1597 	 * up to the @max_parsed (excluded) attribute.
1598 	 * For each set attribute, we retrieve the corresponding destroy()
1599 	 * callback. If the callback is not available, then we skip to the next
1600 	 * attribute; otherwise, we call the destroy() callback.
1601 	 */
1602 	for (i = 0; i < max_parsed; ++i) {
1603 		if (!(parsed_attrs & SEG6_F_ATTR(i)))
1604 			continue;
1605 
1606 		param = &seg6_action_params[i];
1607 
1608 		if (param->destroy)
1609 			param->destroy(slwt);
1610 	}
1611 }
1612 
1613 /* release all the resources that may have been acquired during parsing
1614  * operations.
1615  */
1616 static void destroy_attrs(struct seg6_local_lwt *slwt)
1617 {
1618 	unsigned long attrs = slwt->desc->attrs | slwt->parsed_optattrs;
1619 
1620 	__destroy_attrs(attrs, SEG6_LOCAL_MAX + 1, slwt);
1621 }
1622 
1623 static int parse_nla_optional_attrs(struct nlattr **attrs,
1624 				    struct seg6_local_lwt *slwt)
1625 {
1626 	struct seg6_action_desc *desc = slwt->desc;
1627 	unsigned long parsed_optattrs = 0;
1628 	struct seg6_action_param *param;
1629 	int err, i;
1630 
1631 	for (i = 0; i < SEG6_LOCAL_MAX + 1; ++i) {
1632 		if (!(desc->optattrs & SEG6_F_ATTR(i)) || !attrs[i])
1633 			continue;
1634 
1635 		/* once here, the i-th attribute is provided by the
1636 		 * userspace AND it is identified optional as well.
1637 		 */
1638 		param = &seg6_action_params[i];
1639 
1640 		err = param->parse(attrs, slwt);
1641 		if (err < 0)
1642 			goto parse_optattrs_err;
1643 
1644 		/* current attribute has been correctly parsed */
1645 		parsed_optattrs |= SEG6_F_ATTR(i);
1646 	}
1647 
1648 	/* store in the tunnel state all the optional attributed successfully
1649 	 * parsed.
1650 	 */
1651 	slwt->parsed_optattrs = parsed_optattrs;
1652 
1653 	return 0;
1654 
1655 parse_optattrs_err:
1656 	__destroy_attrs(parsed_optattrs, i, slwt);
1657 
1658 	return err;
1659 }
1660 
1661 /* call the custom constructor of the behavior during its initialization phase
1662  * and after that all its attributes have been parsed successfully.
1663  */
1664 static int
1665 seg6_local_lwtunnel_build_state(struct seg6_local_lwt *slwt, const void *cfg,
1666 				struct netlink_ext_ack *extack)
1667 {
1668 	struct seg6_action_desc *desc = slwt->desc;
1669 	struct seg6_local_lwtunnel_ops *ops;
1670 
1671 	ops = &desc->slwt_ops;
1672 	if (!ops->build_state)
1673 		return 0;
1674 
1675 	return ops->build_state(slwt, cfg, extack);
1676 }
1677 
1678 /* call the custom destructor of the behavior which is invoked before the
1679  * tunnel is going to be destroyed.
1680  */
1681 static void seg6_local_lwtunnel_destroy_state(struct seg6_local_lwt *slwt)
1682 {
1683 	struct seg6_action_desc *desc = slwt->desc;
1684 	struct seg6_local_lwtunnel_ops *ops;
1685 
1686 	ops = &desc->slwt_ops;
1687 	if (!ops->destroy_state)
1688 		return;
1689 
1690 	ops->destroy_state(slwt);
1691 }
1692 
1693 static int parse_nla_action(struct nlattr **attrs, struct seg6_local_lwt *slwt)
1694 {
1695 	struct seg6_action_param *param;
1696 	struct seg6_action_desc *desc;
1697 	unsigned long invalid_attrs;
1698 	int i, err;
1699 
1700 	desc = __get_action_desc(slwt->action);
1701 	if (!desc)
1702 		return -EINVAL;
1703 
1704 	if (!desc->input)
1705 		return -EOPNOTSUPP;
1706 
1707 	slwt->desc = desc;
1708 	slwt->headroom += desc->static_headroom;
1709 
1710 	/* Forcing the desc->optattrs *set* and the desc->attrs *set* to be
1711 	 * disjoined, this allow us to release acquired resources by optional
1712 	 * attributes and by required attributes independently from each other
1713 	 * without any interference.
1714 	 * In other terms, we are sure that we do not release some the acquired
1715 	 * resources twice.
1716 	 *
1717 	 * Note that if an attribute is configured both as required and as
1718 	 * optional, it means that the user has messed something up in the
1719 	 * seg6_action_table. Therefore, this check is required for SRv6
1720 	 * behaviors to work properly.
1721 	 */
1722 	invalid_attrs = desc->attrs & desc->optattrs;
1723 	if (invalid_attrs) {
1724 		WARN_ONCE(1,
1725 			  "An attribute cannot be both required AND optional");
1726 		return -EINVAL;
1727 	}
1728 
1729 	/* parse the required attributes */
1730 	for (i = 0; i < SEG6_LOCAL_MAX + 1; i++) {
1731 		if (desc->attrs & SEG6_F_ATTR(i)) {
1732 			if (!attrs[i])
1733 				return -EINVAL;
1734 
1735 			param = &seg6_action_params[i];
1736 
1737 			err = param->parse(attrs, slwt);
1738 			if (err < 0)
1739 				goto parse_attrs_err;
1740 		}
1741 	}
1742 
1743 	/* parse the optional attributes, if any */
1744 	err = parse_nla_optional_attrs(attrs, slwt);
1745 	if (err < 0)
1746 		goto parse_attrs_err;
1747 
1748 	return 0;
1749 
1750 parse_attrs_err:
1751 	/* release any resource that may have been acquired during the i-1
1752 	 * parse() operations.
1753 	 */
1754 	__destroy_attrs(desc->attrs, i, slwt);
1755 
1756 	return err;
1757 }
1758 
1759 static int seg6_local_build_state(struct net *net, struct nlattr *nla,
1760 				  unsigned int family, const void *cfg,
1761 				  struct lwtunnel_state **ts,
1762 				  struct netlink_ext_ack *extack)
1763 {
1764 	struct nlattr *tb[SEG6_LOCAL_MAX + 1];
1765 	struct lwtunnel_state *newts;
1766 	struct seg6_local_lwt *slwt;
1767 	int err;
1768 
1769 	if (family != AF_INET6)
1770 		return -EINVAL;
1771 
1772 	err = nla_parse_nested_deprecated(tb, SEG6_LOCAL_MAX, nla,
1773 					  seg6_local_policy, extack);
1774 
1775 	if (err < 0)
1776 		return err;
1777 
1778 	if (!tb[SEG6_LOCAL_ACTION])
1779 		return -EINVAL;
1780 
1781 	newts = lwtunnel_state_alloc(sizeof(*slwt));
1782 	if (!newts)
1783 		return -ENOMEM;
1784 
1785 	slwt = seg6_local_lwtunnel(newts);
1786 	slwt->action = nla_get_u32(tb[SEG6_LOCAL_ACTION]);
1787 
1788 	err = parse_nla_action(tb, slwt);
1789 	if (err < 0)
1790 		goto out_free;
1791 
1792 	err = seg6_local_lwtunnel_build_state(slwt, cfg, extack);
1793 	if (err < 0)
1794 		goto out_destroy_attrs;
1795 
1796 	newts->type = LWTUNNEL_ENCAP_SEG6_LOCAL;
1797 	newts->flags = LWTUNNEL_STATE_INPUT_REDIRECT;
1798 	newts->headroom = slwt->headroom;
1799 
1800 	*ts = newts;
1801 
1802 	return 0;
1803 
1804 out_destroy_attrs:
1805 	destroy_attrs(slwt);
1806 out_free:
1807 	kfree(newts);
1808 	return err;
1809 }
1810 
1811 static void seg6_local_destroy_state(struct lwtunnel_state *lwt)
1812 {
1813 	struct seg6_local_lwt *slwt = seg6_local_lwtunnel(lwt);
1814 
1815 	seg6_local_lwtunnel_destroy_state(slwt);
1816 
1817 	destroy_attrs(slwt);
1818 
1819 	return;
1820 }
1821 
1822 static int seg6_local_fill_encap(struct sk_buff *skb,
1823 				 struct lwtunnel_state *lwt)
1824 {
1825 	struct seg6_local_lwt *slwt = seg6_local_lwtunnel(lwt);
1826 	struct seg6_action_param *param;
1827 	unsigned long attrs;
1828 	int i, err;
1829 
1830 	if (nla_put_u32(skb, SEG6_LOCAL_ACTION, slwt->action))
1831 		return -EMSGSIZE;
1832 
1833 	attrs = slwt->desc->attrs | slwt->parsed_optattrs;
1834 
1835 	for (i = 0; i < SEG6_LOCAL_MAX + 1; i++) {
1836 		if (attrs & SEG6_F_ATTR(i)) {
1837 			param = &seg6_action_params[i];
1838 			err = param->put(skb, slwt);
1839 			if (err < 0)
1840 				return err;
1841 		}
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 static int seg6_local_get_encap_size(struct lwtunnel_state *lwt)
1848 {
1849 	struct seg6_local_lwt *slwt = seg6_local_lwtunnel(lwt);
1850 	unsigned long attrs;
1851 	int nlsize;
1852 
1853 	nlsize = nla_total_size(4); /* action */
1854 
1855 	attrs = slwt->desc->attrs | slwt->parsed_optattrs;
1856 
1857 	if (attrs & SEG6_F_ATTR(SEG6_LOCAL_SRH))
1858 		nlsize += nla_total_size((slwt->srh->hdrlen + 1) << 3);
1859 
1860 	if (attrs & SEG6_F_ATTR(SEG6_LOCAL_TABLE))
1861 		nlsize += nla_total_size(4);
1862 
1863 	if (attrs & SEG6_F_ATTR(SEG6_LOCAL_NH4))
1864 		nlsize += nla_total_size(4);
1865 
1866 	if (attrs & SEG6_F_ATTR(SEG6_LOCAL_NH6))
1867 		nlsize += nla_total_size(16);
1868 
1869 	if (attrs & SEG6_F_ATTR(SEG6_LOCAL_IIF))
1870 		nlsize += nla_total_size(4);
1871 
1872 	if (attrs & SEG6_F_ATTR(SEG6_LOCAL_OIF))
1873 		nlsize += nla_total_size(4);
1874 
1875 	if (attrs & SEG6_F_ATTR(SEG6_LOCAL_BPF))
1876 		nlsize += nla_total_size(sizeof(struct nlattr)) +
1877 		       nla_total_size(MAX_PROG_NAME) +
1878 		       nla_total_size(4);
1879 
1880 	if (attrs & SEG6_F_ATTR(SEG6_LOCAL_VRFTABLE))
1881 		nlsize += nla_total_size(4);
1882 
1883 	if (attrs & SEG6_F_LOCAL_COUNTERS)
1884 		nlsize += nla_total_size(0) + /* nest SEG6_LOCAL_COUNTERS */
1885 			  /* SEG6_LOCAL_CNT_PACKETS */
1886 			  nla_total_size_64bit(sizeof(__u64)) +
1887 			  /* SEG6_LOCAL_CNT_BYTES */
1888 			  nla_total_size_64bit(sizeof(__u64)) +
1889 			  /* SEG6_LOCAL_CNT_ERRORS */
1890 			  nla_total_size_64bit(sizeof(__u64));
1891 
1892 	return nlsize;
1893 }
1894 
1895 static int seg6_local_cmp_encap(struct lwtunnel_state *a,
1896 				struct lwtunnel_state *b)
1897 {
1898 	struct seg6_local_lwt *slwt_a, *slwt_b;
1899 	struct seg6_action_param *param;
1900 	unsigned long attrs_a, attrs_b;
1901 	int i;
1902 
1903 	slwt_a = seg6_local_lwtunnel(a);
1904 	slwt_b = seg6_local_lwtunnel(b);
1905 
1906 	if (slwt_a->action != slwt_b->action)
1907 		return 1;
1908 
1909 	attrs_a = slwt_a->desc->attrs | slwt_a->parsed_optattrs;
1910 	attrs_b = slwt_b->desc->attrs | slwt_b->parsed_optattrs;
1911 
1912 	if (attrs_a != attrs_b)
1913 		return 1;
1914 
1915 	for (i = 0; i < SEG6_LOCAL_MAX + 1; i++) {
1916 		if (attrs_a & SEG6_F_ATTR(i)) {
1917 			param = &seg6_action_params[i];
1918 			if (param->cmp(slwt_a, slwt_b))
1919 				return 1;
1920 		}
1921 	}
1922 
1923 	return 0;
1924 }
1925 
1926 static const struct lwtunnel_encap_ops seg6_local_ops = {
1927 	.build_state	= seg6_local_build_state,
1928 	.destroy_state	= seg6_local_destroy_state,
1929 	.input		= seg6_local_input,
1930 	.fill_encap	= seg6_local_fill_encap,
1931 	.get_encap_size	= seg6_local_get_encap_size,
1932 	.cmp_encap	= seg6_local_cmp_encap,
1933 	.owner		= THIS_MODULE,
1934 };
1935 
1936 int __init seg6_local_init(void)
1937 {
1938 	/* If the max total number of defined attributes is reached, then your
1939 	 * kernel build stops here.
1940 	 *
1941 	 * This check is required to avoid arithmetic overflows when processing
1942 	 * behavior attributes and the maximum number of defined attributes
1943 	 * exceeds the allowed value.
1944 	 */
1945 	BUILD_BUG_ON(SEG6_LOCAL_MAX + 1 > BITS_PER_TYPE(unsigned long));
1946 
1947 	return lwtunnel_encap_add_ops(&seg6_local_ops,
1948 				      LWTUNNEL_ENCAP_SEG6_LOCAL);
1949 }
1950 
1951 void seg6_local_exit(void)
1952 {
1953 	lwtunnel_encap_del_ops(&seg6_local_ops, LWTUNNEL_ENCAP_SEG6_LOCAL);
1954 }
1955