1 /* 2 * Linux INET6 implementation 3 * FIB front-end. 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* Changes: 15 * 16 * YOSHIFUJI Hideaki @USAGI 17 * reworked default router selection. 18 * - respect outgoing interface 19 * - select from (probably) reachable routers (i.e. 20 * routers in REACHABLE, STALE, DELAY or PROBE states). 21 * - always select the same router if it is (probably) 22 * reachable. otherwise, round-robin the list. 23 * Ville Nuorvala 24 * Fixed routing subtrees. 25 */ 26 27 #define pr_fmt(fmt) "IPv6: " fmt 28 29 #include <linux/capability.h> 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/types.h> 33 #include <linux/times.h> 34 #include <linux/socket.h> 35 #include <linux/sockios.h> 36 #include <linux/net.h> 37 #include <linux/route.h> 38 #include <linux/netdevice.h> 39 #include <linux/in6.h> 40 #include <linux/mroute6.h> 41 #include <linux/init.h> 42 #include <linux/if_arp.h> 43 #include <linux/proc_fs.h> 44 #include <linux/seq_file.h> 45 #include <linux/nsproxy.h> 46 #include <linux/slab.h> 47 #include <linux/jhash.h> 48 #include <net/net_namespace.h> 49 #include <net/snmp.h> 50 #include <net/ipv6.h> 51 #include <net/ip6_fib.h> 52 #include <net/ip6_route.h> 53 #include <net/ndisc.h> 54 #include <net/addrconf.h> 55 #include <net/tcp.h> 56 #include <linux/rtnetlink.h> 57 #include <net/dst.h> 58 #include <net/dst_metadata.h> 59 #include <net/xfrm.h> 60 #include <net/netevent.h> 61 #include <net/netlink.h> 62 #include <net/nexthop.h> 63 #include <net/lwtunnel.h> 64 #include <net/ip_tunnels.h> 65 #include <net/l3mdev.h> 66 #include <net/ip.h> 67 #include <linux/uaccess.h> 68 69 #ifdef CONFIG_SYSCTL 70 #include <linux/sysctl.h> 71 #endif 72 73 static int ip6_rt_type_to_error(u8 fib6_type); 74 75 #define CREATE_TRACE_POINTS 76 #include <trace/events/fib6.h> 77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 78 #undef CREATE_TRACE_POINTS 79 80 enum rt6_nud_state { 81 RT6_NUD_FAIL_HARD = -3, 82 RT6_NUD_FAIL_PROBE = -2, 83 RT6_NUD_FAIL_DO_RR = -1, 84 RT6_NUD_SUCCEED = 1 85 }; 86 87 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 88 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 89 static unsigned int ip6_mtu(const struct dst_entry *dst); 90 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 91 static void ip6_dst_destroy(struct dst_entry *); 92 static void ip6_dst_ifdown(struct dst_entry *, 93 struct net_device *dev, int how); 94 static int ip6_dst_gc(struct dst_ops *ops); 95 96 static int ip6_pkt_discard(struct sk_buff *skb); 97 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 98 static int ip6_pkt_prohibit(struct sk_buff *skb); 99 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 100 static void ip6_link_failure(struct sk_buff *skb); 101 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 102 struct sk_buff *skb, u32 mtu); 103 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 104 struct sk_buff *skb); 105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict); 106 static size_t rt6_nlmsg_size(struct fib6_info *rt); 107 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 108 struct fib6_info *rt, struct dst_entry *dst, 109 struct in6_addr *dest, struct in6_addr *src, 110 int iif, int type, u32 portid, u32 seq, 111 unsigned int flags); 112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt, 113 struct in6_addr *daddr, 114 struct in6_addr *saddr); 115 116 #ifdef CONFIG_IPV6_ROUTE_INFO 117 static struct fib6_info *rt6_add_route_info(struct net *net, 118 const struct in6_addr *prefix, int prefixlen, 119 const struct in6_addr *gwaddr, 120 struct net_device *dev, 121 unsigned int pref); 122 static struct fib6_info *rt6_get_route_info(struct net *net, 123 const struct in6_addr *prefix, int prefixlen, 124 const struct in6_addr *gwaddr, 125 struct net_device *dev); 126 #endif 127 128 struct uncached_list { 129 spinlock_t lock; 130 struct list_head head; 131 }; 132 133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 134 135 void rt6_uncached_list_add(struct rt6_info *rt) 136 { 137 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 138 139 rt->rt6i_uncached_list = ul; 140 141 spin_lock_bh(&ul->lock); 142 list_add_tail(&rt->rt6i_uncached, &ul->head); 143 spin_unlock_bh(&ul->lock); 144 } 145 146 void rt6_uncached_list_del(struct rt6_info *rt) 147 { 148 if (!list_empty(&rt->rt6i_uncached)) { 149 struct uncached_list *ul = rt->rt6i_uncached_list; 150 struct net *net = dev_net(rt->dst.dev); 151 152 spin_lock_bh(&ul->lock); 153 list_del(&rt->rt6i_uncached); 154 atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache); 155 spin_unlock_bh(&ul->lock); 156 } 157 } 158 159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev) 160 { 161 struct net_device *loopback_dev = net->loopback_dev; 162 int cpu; 163 164 if (dev == loopback_dev) 165 return; 166 167 for_each_possible_cpu(cpu) { 168 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 169 struct rt6_info *rt; 170 171 spin_lock_bh(&ul->lock); 172 list_for_each_entry(rt, &ul->head, rt6i_uncached) { 173 struct inet6_dev *rt_idev = rt->rt6i_idev; 174 struct net_device *rt_dev = rt->dst.dev; 175 176 if (rt_idev->dev == dev) { 177 rt->rt6i_idev = in6_dev_get(loopback_dev); 178 in6_dev_put(rt_idev); 179 } 180 181 if (rt_dev == dev) { 182 rt->dst.dev = loopback_dev; 183 dev_hold(rt->dst.dev); 184 dev_put(rt_dev); 185 } 186 } 187 spin_unlock_bh(&ul->lock); 188 } 189 } 190 191 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 192 struct sk_buff *skb, 193 const void *daddr) 194 { 195 if (!ipv6_addr_any(p)) 196 return (const void *) p; 197 else if (skb) 198 return &ipv6_hdr(skb)->daddr; 199 return daddr; 200 } 201 202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 203 struct net_device *dev, 204 struct sk_buff *skb, 205 const void *daddr) 206 { 207 struct neighbour *n; 208 209 daddr = choose_neigh_daddr(gw, skb, daddr); 210 n = __ipv6_neigh_lookup(dev, daddr); 211 if (n) 212 return n; 213 return neigh_create(&nd_tbl, daddr, dev); 214 } 215 216 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 217 struct sk_buff *skb, 218 const void *daddr) 219 { 220 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); 221 222 return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr); 223 } 224 225 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 226 { 227 struct net_device *dev = dst->dev; 228 struct rt6_info *rt = (struct rt6_info *)dst; 229 230 daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr); 231 if (!daddr) 232 return; 233 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 234 return; 235 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 236 return; 237 __ipv6_confirm_neigh(dev, daddr); 238 } 239 240 static struct dst_ops ip6_dst_ops_template = { 241 .family = AF_INET6, 242 .gc = ip6_dst_gc, 243 .gc_thresh = 1024, 244 .check = ip6_dst_check, 245 .default_advmss = ip6_default_advmss, 246 .mtu = ip6_mtu, 247 .cow_metrics = dst_cow_metrics_generic, 248 .destroy = ip6_dst_destroy, 249 .ifdown = ip6_dst_ifdown, 250 .negative_advice = ip6_negative_advice, 251 .link_failure = ip6_link_failure, 252 .update_pmtu = ip6_rt_update_pmtu, 253 .redirect = rt6_do_redirect, 254 .local_out = __ip6_local_out, 255 .neigh_lookup = ip6_dst_neigh_lookup, 256 .confirm_neigh = ip6_confirm_neigh, 257 }; 258 259 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst) 260 { 261 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU); 262 263 return mtu ? : dst->dev->mtu; 264 } 265 266 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk, 267 struct sk_buff *skb, u32 mtu) 268 { 269 } 270 271 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk, 272 struct sk_buff *skb) 273 { 274 } 275 276 static struct dst_ops ip6_dst_blackhole_ops = { 277 .family = AF_INET6, 278 .destroy = ip6_dst_destroy, 279 .check = ip6_dst_check, 280 .mtu = ip6_blackhole_mtu, 281 .default_advmss = ip6_default_advmss, 282 .update_pmtu = ip6_rt_blackhole_update_pmtu, 283 .redirect = ip6_rt_blackhole_redirect, 284 .cow_metrics = dst_cow_metrics_generic, 285 .neigh_lookup = ip6_dst_neigh_lookup, 286 }; 287 288 static const u32 ip6_template_metrics[RTAX_MAX] = { 289 [RTAX_HOPLIMIT - 1] = 0, 290 }; 291 292 static const struct fib6_info fib6_null_entry_template = { 293 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 294 .fib6_protocol = RTPROT_KERNEL, 295 .fib6_metric = ~(u32)0, 296 .fib6_ref = ATOMIC_INIT(1), 297 .fib6_type = RTN_UNREACHABLE, 298 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 299 }; 300 301 static const struct rt6_info ip6_null_entry_template = { 302 .dst = { 303 .__refcnt = ATOMIC_INIT(1), 304 .__use = 1, 305 .obsolete = DST_OBSOLETE_FORCE_CHK, 306 .error = -ENETUNREACH, 307 .input = ip6_pkt_discard, 308 .output = ip6_pkt_discard_out, 309 }, 310 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 311 }; 312 313 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 314 315 static const struct rt6_info ip6_prohibit_entry_template = { 316 .dst = { 317 .__refcnt = ATOMIC_INIT(1), 318 .__use = 1, 319 .obsolete = DST_OBSOLETE_FORCE_CHK, 320 .error = -EACCES, 321 .input = ip6_pkt_prohibit, 322 .output = ip6_pkt_prohibit_out, 323 }, 324 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 325 }; 326 327 static const struct rt6_info ip6_blk_hole_entry_template = { 328 .dst = { 329 .__refcnt = ATOMIC_INIT(1), 330 .__use = 1, 331 .obsolete = DST_OBSOLETE_FORCE_CHK, 332 .error = -EINVAL, 333 .input = dst_discard, 334 .output = dst_discard_out, 335 }, 336 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 337 }; 338 339 #endif 340 341 static void rt6_info_init(struct rt6_info *rt) 342 { 343 struct dst_entry *dst = &rt->dst; 344 345 memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst)); 346 INIT_LIST_HEAD(&rt->rt6i_uncached); 347 } 348 349 /* allocate dst with ip6_dst_ops */ 350 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 351 int flags) 352 { 353 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 354 1, DST_OBSOLETE_FORCE_CHK, flags); 355 356 if (rt) { 357 rt6_info_init(rt); 358 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 359 } 360 361 return rt; 362 } 363 EXPORT_SYMBOL(ip6_dst_alloc); 364 365 static void ip6_dst_destroy(struct dst_entry *dst) 366 { 367 struct rt6_info *rt = (struct rt6_info *)dst; 368 struct fib6_info *from; 369 struct inet6_dev *idev; 370 371 ip_dst_metrics_put(dst); 372 rt6_uncached_list_del(rt); 373 374 idev = rt->rt6i_idev; 375 if (idev) { 376 rt->rt6i_idev = NULL; 377 in6_dev_put(idev); 378 } 379 380 rcu_read_lock(); 381 from = rcu_dereference(rt->from); 382 rcu_assign_pointer(rt->from, NULL); 383 fib6_info_release(from); 384 rcu_read_unlock(); 385 } 386 387 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 388 int how) 389 { 390 struct rt6_info *rt = (struct rt6_info *)dst; 391 struct inet6_dev *idev = rt->rt6i_idev; 392 struct net_device *loopback_dev = 393 dev_net(dev)->loopback_dev; 394 395 if (idev && idev->dev != loopback_dev) { 396 struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev); 397 if (loopback_idev) { 398 rt->rt6i_idev = loopback_idev; 399 in6_dev_put(idev); 400 } 401 } 402 } 403 404 static bool __rt6_check_expired(const struct rt6_info *rt) 405 { 406 if (rt->rt6i_flags & RTF_EXPIRES) 407 return time_after(jiffies, rt->dst.expires); 408 else 409 return false; 410 } 411 412 static bool rt6_check_expired(const struct rt6_info *rt) 413 { 414 struct fib6_info *from; 415 416 from = rcu_dereference(rt->from); 417 418 if (rt->rt6i_flags & RTF_EXPIRES) { 419 if (time_after(jiffies, rt->dst.expires)) 420 return true; 421 } else if (from) { 422 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || 423 fib6_check_expired(from); 424 } 425 return false; 426 } 427 428 struct fib6_info *fib6_multipath_select(const struct net *net, 429 struct fib6_info *match, 430 struct flowi6 *fl6, int oif, 431 const struct sk_buff *skb, 432 int strict) 433 { 434 struct fib6_info *sibling, *next_sibling; 435 436 /* We might have already computed the hash for ICMPv6 errors. In such 437 * case it will always be non-zero. Otherwise now is the time to do it. 438 */ 439 if (!fl6->mp_hash) 440 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 441 442 if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound)) 443 return match; 444 445 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, 446 fib6_siblings) { 447 int nh_upper_bound; 448 449 nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound); 450 if (fl6->mp_hash > nh_upper_bound) 451 continue; 452 if (rt6_score_route(sibling, oif, strict) < 0) 453 break; 454 match = sibling; 455 break; 456 } 457 458 return match; 459 } 460 461 /* 462 * Route lookup. rcu_read_lock() should be held. 463 */ 464 465 static inline struct fib6_info *rt6_device_match(struct net *net, 466 struct fib6_info *rt, 467 const struct in6_addr *saddr, 468 int oif, 469 int flags) 470 { 471 struct fib6_info *sprt; 472 473 if (!oif && ipv6_addr_any(saddr) && 474 !(rt->fib6_nh.nh_flags & RTNH_F_DEAD)) 475 return rt; 476 477 for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) { 478 const struct net_device *dev = sprt->fib6_nh.nh_dev; 479 480 if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD) 481 continue; 482 483 if (oif) { 484 if (dev->ifindex == oif) 485 return sprt; 486 } else { 487 if (ipv6_chk_addr(net, saddr, dev, 488 flags & RT6_LOOKUP_F_IFACE)) 489 return sprt; 490 } 491 } 492 493 if (oif && flags & RT6_LOOKUP_F_IFACE) 494 return net->ipv6.fib6_null_entry; 495 496 return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt; 497 } 498 499 #ifdef CONFIG_IPV6_ROUTER_PREF 500 struct __rt6_probe_work { 501 struct work_struct work; 502 struct in6_addr target; 503 struct net_device *dev; 504 }; 505 506 static void rt6_probe_deferred(struct work_struct *w) 507 { 508 struct in6_addr mcaddr; 509 struct __rt6_probe_work *work = 510 container_of(w, struct __rt6_probe_work, work); 511 512 addrconf_addr_solict_mult(&work->target, &mcaddr); 513 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 514 dev_put(work->dev); 515 kfree(work); 516 } 517 518 static void rt6_probe(struct fib6_info *rt) 519 { 520 struct __rt6_probe_work *work = NULL; 521 const struct in6_addr *nh_gw; 522 struct neighbour *neigh; 523 struct net_device *dev; 524 struct inet6_dev *idev; 525 526 /* 527 * Okay, this does not seem to be appropriate 528 * for now, however, we need to check if it 529 * is really so; aka Router Reachability Probing. 530 * 531 * Router Reachability Probe MUST be rate-limited 532 * to no more than one per minute. 533 */ 534 if (!rt || !(rt->fib6_flags & RTF_GATEWAY)) 535 return; 536 537 nh_gw = &rt->fib6_nh.nh_gw; 538 dev = rt->fib6_nh.nh_dev; 539 rcu_read_lock_bh(); 540 idev = __in6_dev_get(dev); 541 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 542 if (neigh) { 543 if (neigh->nud_state & NUD_VALID) 544 goto out; 545 546 write_lock(&neigh->lock); 547 if (!(neigh->nud_state & NUD_VALID) && 548 time_after(jiffies, 549 neigh->updated + idev->cnf.rtr_probe_interval)) { 550 work = kmalloc(sizeof(*work), GFP_ATOMIC); 551 if (work) 552 __neigh_set_probe_once(neigh); 553 } 554 write_unlock(&neigh->lock); 555 } else if (time_after(jiffies, rt->last_probe + 556 idev->cnf.rtr_probe_interval)) { 557 work = kmalloc(sizeof(*work), GFP_ATOMIC); 558 } 559 560 if (work) { 561 rt->last_probe = jiffies; 562 INIT_WORK(&work->work, rt6_probe_deferred); 563 work->target = *nh_gw; 564 dev_hold(dev); 565 work->dev = dev; 566 schedule_work(&work->work); 567 } 568 569 out: 570 rcu_read_unlock_bh(); 571 } 572 #else 573 static inline void rt6_probe(struct fib6_info *rt) 574 { 575 } 576 #endif 577 578 /* 579 * Default Router Selection (RFC 2461 6.3.6) 580 */ 581 static inline int rt6_check_dev(struct fib6_info *rt, int oif) 582 { 583 const struct net_device *dev = rt->fib6_nh.nh_dev; 584 585 if (!oif || dev->ifindex == oif) 586 return 2; 587 return 0; 588 } 589 590 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt) 591 { 592 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 593 struct neighbour *neigh; 594 595 if (rt->fib6_flags & RTF_NONEXTHOP || 596 !(rt->fib6_flags & RTF_GATEWAY)) 597 return RT6_NUD_SUCCEED; 598 599 rcu_read_lock_bh(); 600 neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev, 601 &rt->fib6_nh.nh_gw); 602 if (neigh) { 603 read_lock(&neigh->lock); 604 if (neigh->nud_state & NUD_VALID) 605 ret = RT6_NUD_SUCCEED; 606 #ifdef CONFIG_IPV6_ROUTER_PREF 607 else if (!(neigh->nud_state & NUD_FAILED)) 608 ret = RT6_NUD_SUCCEED; 609 else 610 ret = RT6_NUD_FAIL_PROBE; 611 #endif 612 read_unlock(&neigh->lock); 613 } else { 614 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 615 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 616 } 617 rcu_read_unlock_bh(); 618 619 return ret; 620 } 621 622 static int rt6_score_route(struct fib6_info *rt, int oif, int strict) 623 { 624 int m; 625 626 m = rt6_check_dev(rt, oif); 627 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 628 return RT6_NUD_FAIL_HARD; 629 #ifdef CONFIG_IPV6_ROUTER_PREF 630 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2; 631 #endif 632 if (strict & RT6_LOOKUP_F_REACHABLE) { 633 int n = rt6_check_neigh(rt); 634 if (n < 0) 635 return n; 636 } 637 return m; 638 } 639 640 /* called with rc_read_lock held */ 641 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i) 642 { 643 const struct net_device *dev = fib6_info_nh_dev(f6i); 644 bool rc = false; 645 646 if (dev) { 647 const struct inet6_dev *idev = __in6_dev_get(dev); 648 649 rc = !!idev->cnf.ignore_routes_with_linkdown; 650 } 651 652 return rc; 653 } 654 655 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict, 656 int *mpri, struct fib6_info *match, 657 bool *do_rr) 658 { 659 int m; 660 bool match_do_rr = false; 661 662 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 663 goto out; 664 665 if (fib6_ignore_linkdown(rt) && 666 rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN && 667 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 668 goto out; 669 670 if (fib6_check_expired(rt)) 671 goto out; 672 673 m = rt6_score_route(rt, oif, strict); 674 if (m == RT6_NUD_FAIL_DO_RR) { 675 match_do_rr = true; 676 m = 0; /* lowest valid score */ 677 } else if (m == RT6_NUD_FAIL_HARD) { 678 goto out; 679 } 680 681 if (strict & RT6_LOOKUP_F_REACHABLE) 682 rt6_probe(rt); 683 684 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 685 if (m > *mpri) { 686 *do_rr = match_do_rr; 687 *mpri = m; 688 match = rt; 689 } 690 out: 691 return match; 692 } 693 694 static struct fib6_info *find_rr_leaf(struct fib6_node *fn, 695 struct fib6_info *leaf, 696 struct fib6_info *rr_head, 697 u32 metric, int oif, int strict, 698 bool *do_rr) 699 { 700 struct fib6_info *rt, *match, *cont; 701 int mpri = -1; 702 703 match = NULL; 704 cont = NULL; 705 for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) { 706 if (rt->fib6_metric != metric) { 707 cont = rt; 708 break; 709 } 710 711 match = find_match(rt, oif, strict, &mpri, match, do_rr); 712 } 713 714 for (rt = leaf; rt && rt != rr_head; 715 rt = rcu_dereference(rt->fib6_next)) { 716 if (rt->fib6_metric != metric) { 717 cont = rt; 718 break; 719 } 720 721 match = find_match(rt, oif, strict, &mpri, match, do_rr); 722 } 723 724 if (match || !cont) 725 return match; 726 727 for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next)) 728 match = find_match(rt, oif, strict, &mpri, match, do_rr); 729 730 return match; 731 } 732 733 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn, 734 int oif, int strict) 735 { 736 struct fib6_info *leaf = rcu_dereference(fn->leaf); 737 struct fib6_info *match, *rt0; 738 bool do_rr = false; 739 int key_plen; 740 741 if (!leaf || leaf == net->ipv6.fib6_null_entry) 742 return net->ipv6.fib6_null_entry; 743 744 rt0 = rcu_dereference(fn->rr_ptr); 745 if (!rt0) 746 rt0 = leaf; 747 748 /* Double check to make sure fn is not an intermediate node 749 * and fn->leaf does not points to its child's leaf 750 * (This might happen if all routes under fn are deleted from 751 * the tree and fib6_repair_tree() is called on the node.) 752 */ 753 key_plen = rt0->fib6_dst.plen; 754 #ifdef CONFIG_IPV6_SUBTREES 755 if (rt0->fib6_src.plen) 756 key_plen = rt0->fib6_src.plen; 757 #endif 758 if (fn->fn_bit != key_plen) 759 return net->ipv6.fib6_null_entry; 760 761 match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict, 762 &do_rr); 763 764 if (do_rr) { 765 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 766 767 /* no entries matched; do round-robin */ 768 if (!next || next->fib6_metric != rt0->fib6_metric) 769 next = leaf; 770 771 if (next != rt0) { 772 spin_lock_bh(&leaf->fib6_table->tb6_lock); 773 /* make sure next is not being deleted from the tree */ 774 if (next->fib6_node) 775 rcu_assign_pointer(fn->rr_ptr, next); 776 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 777 } 778 } 779 780 return match ? match : net->ipv6.fib6_null_entry; 781 } 782 783 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt) 784 { 785 return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY)); 786 } 787 788 #ifdef CONFIG_IPV6_ROUTE_INFO 789 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 790 const struct in6_addr *gwaddr) 791 { 792 struct net *net = dev_net(dev); 793 struct route_info *rinfo = (struct route_info *) opt; 794 struct in6_addr prefix_buf, *prefix; 795 unsigned int pref; 796 unsigned long lifetime; 797 struct fib6_info *rt; 798 799 if (len < sizeof(struct route_info)) { 800 return -EINVAL; 801 } 802 803 /* Sanity check for prefix_len and length */ 804 if (rinfo->length > 3) { 805 return -EINVAL; 806 } else if (rinfo->prefix_len > 128) { 807 return -EINVAL; 808 } else if (rinfo->prefix_len > 64) { 809 if (rinfo->length < 2) { 810 return -EINVAL; 811 } 812 } else if (rinfo->prefix_len > 0) { 813 if (rinfo->length < 1) { 814 return -EINVAL; 815 } 816 } 817 818 pref = rinfo->route_pref; 819 if (pref == ICMPV6_ROUTER_PREF_INVALID) 820 return -EINVAL; 821 822 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 823 824 if (rinfo->length == 3) 825 prefix = (struct in6_addr *)rinfo->prefix; 826 else { 827 /* this function is safe */ 828 ipv6_addr_prefix(&prefix_buf, 829 (struct in6_addr *)rinfo->prefix, 830 rinfo->prefix_len); 831 prefix = &prefix_buf; 832 } 833 834 if (rinfo->prefix_len == 0) 835 rt = rt6_get_dflt_router(net, gwaddr, dev); 836 else 837 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 838 gwaddr, dev); 839 840 if (rt && !lifetime) { 841 ip6_del_rt(net, rt); 842 rt = NULL; 843 } 844 845 if (!rt && lifetime) 846 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 847 dev, pref); 848 else if (rt) 849 rt->fib6_flags = RTF_ROUTEINFO | 850 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 851 852 if (rt) { 853 if (!addrconf_finite_timeout(lifetime)) 854 fib6_clean_expires(rt); 855 else 856 fib6_set_expires(rt, jiffies + HZ * lifetime); 857 858 fib6_info_release(rt); 859 } 860 return 0; 861 } 862 #endif 863 864 /* 865 * Misc support functions 866 */ 867 868 /* called with rcu_lock held */ 869 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt) 870 { 871 struct net_device *dev = rt->fib6_nh.nh_dev; 872 873 if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 874 /* for copies of local routes, dst->dev needs to be the 875 * device if it is a master device, the master device if 876 * device is enslaved, and the loopback as the default 877 */ 878 if (netif_is_l3_slave(dev) && 879 !rt6_need_strict(&rt->fib6_dst.addr)) 880 dev = l3mdev_master_dev_rcu(dev); 881 else if (!netif_is_l3_master(dev)) 882 dev = dev_net(dev)->loopback_dev; 883 /* last case is netif_is_l3_master(dev) is true in which 884 * case we want dev returned to be dev 885 */ 886 } 887 888 return dev; 889 } 890 891 static const int fib6_prop[RTN_MAX + 1] = { 892 [RTN_UNSPEC] = 0, 893 [RTN_UNICAST] = 0, 894 [RTN_LOCAL] = 0, 895 [RTN_BROADCAST] = 0, 896 [RTN_ANYCAST] = 0, 897 [RTN_MULTICAST] = 0, 898 [RTN_BLACKHOLE] = -EINVAL, 899 [RTN_UNREACHABLE] = -EHOSTUNREACH, 900 [RTN_PROHIBIT] = -EACCES, 901 [RTN_THROW] = -EAGAIN, 902 [RTN_NAT] = -EINVAL, 903 [RTN_XRESOLVE] = -EINVAL, 904 }; 905 906 static int ip6_rt_type_to_error(u8 fib6_type) 907 { 908 return fib6_prop[fib6_type]; 909 } 910 911 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 912 { 913 unsigned short flags = 0; 914 915 if (rt->dst_nocount) 916 flags |= DST_NOCOUNT; 917 if (rt->dst_nopolicy) 918 flags |= DST_NOPOLICY; 919 if (rt->dst_host) 920 flags |= DST_HOST; 921 922 return flags; 923 } 924 925 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort) 926 { 927 rt->dst.error = ip6_rt_type_to_error(ort->fib6_type); 928 929 switch (ort->fib6_type) { 930 case RTN_BLACKHOLE: 931 rt->dst.output = dst_discard_out; 932 rt->dst.input = dst_discard; 933 break; 934 case RTN_PROHIBIT: 935 rt->dst.output = ip6_pkt_prohibit_out; 936 rt->dst.input = ip6_pkt_prohibit; 937 break; 938 case RTN_THROW: 939 case RTN_UNREACHABLE: 940 default: 941 rt->dst.output = ip6_pkt_discard_out; 942 rt->dst.input = ip6_pkt_discard; 943 break; 944 } 945 } 946 947 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort) 948 { 949 if (ort->fib6_flags & RTF_REJECT) { 950 ip6_rt_init_dst_reject(rt, ort); 951 return; 952 } 953 954 rt->dst.error = 0; 955 rt->dst.output = ip6_output; 956 957 if (ort->fib6_type == RTN_LOCAL || ort->fib6_type == RTN_ANYCAST) { 958 rt->dst.input = ip6_input; 959 } else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 960 rt->dst.input = ip6_mc_input; 961 } else { 962 rt->dst.input = ip6_forward; 963 } 964 965 if (ort->fib6_nh.nh_lwtstate) { 966 rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate); 967 lwtunnel_set_redirect(&rt->dst); 968 } 969 970 rt->dst.lastuse = jiffies; 971 } 972 973 /* Caller must already hold reference to @from */ 974 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 975 { 976 rt->rt6i_flags &= ~RTF_EXPIRES; 977 rcu_assign_pointer(rt->from, from); 978 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 979 } 980 981 /* Caller must already hold reference to @ort */ 982 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort) 983 { 984 struct net_device *dev = fib6_info_nh_dev(ort); 985 986 ip6_rt_init_dst(rt, ort); 987 988 rt->rt6i_dst = ort->fib6_dst; 989 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 990 rt->rt6i_gateway = ort->fib6_nh.nh_gw; 991 rt->rt6i_flags = ort->fib6_flags; 992 rt6_set_from(rt, ort); 993 #ifdef CONFIG_IPV6_SUBTREES 994 rt->rt6i_src = ort->fib6_src; 995 #endif 996 } 997 998 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 999 struct in6_addr *saddr) 1000 { 1001 struct fib6_node *pn, *sn; 1002 while (1) { 1003 if (fn->fn_flags & RTN_TL_ROOT) 1004 return NULL; 1005 pn = rcu_dereference(fn->parent); 1006 sn = FIB6_SUBTREE(pn); 1007 if (sn && sn != fn) 1008 fn = fib6_node_lookup(sn, NULL, saddr); 1009 else 1010 fn = pn; 1011 if (fn->fn_flags & RTN_RTINFO) 1012 return fn; 1013 } 1014 } 1015 1016 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt, 1017 bool null_fallback) 1018 { 1019 struct rt6_info *rt = *prt; 1020 1021 if (dst_hold_safe(&rt->dst)) 1022 return true; 1023 if (null_fallback) { 1024 rt = net->ipv6.ip6_null_entry; 1025 dst_hold(&rt->dst); 1026 } else { 1027 rt = NULL; 1028 } 1029 *prt = rt; 1030 return false; 1031 } 1032 1033 /* called with rcu_lock held */ 1034 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt) 1035 { 1036 unsigned short flags = fib6_info_dst_flags(rt); 1037 struct net_device *dev = rt->fib6_nh.nh_dev; 1038 struct rt6_info *nrt; 1039 1040 if (!fib6_info_hold_safe(rt)) 1041 return NULL; 1042 1043 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1044 if (nrt) 1045 ip6_rt_copy_init(nrt, rt); 1046 else 1047 fib6_info_release(rt); 1048 1049 return nrt; 1050 } 1051 1052 static struct rt6_info *ip6_pol_route_lookup(struct net *net, 1053 struct fib6_table *table, 1054 struct flowi6 *fl6, 1055 const struct sk_buff *skb, 1056 int flags) 1057 { 1058 struct fib6_info *f6i; 1059 struct fib6_node *fn; 1060 struct rt6_info *rt; 1061 1062 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1063 flags &= ~RT6_LOOKUP_F_IFACE; 1064 1065 rcu_read_lock(); 1066 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1067 restart: 1068 f6i = rcu_dereference(fn->leaf); 1069 if (!f6i) { 1070 f6i = net->ipv6.fib6_null_entry; 1071 } else { 1072 f6i = rt6_device_match(net, f6i, &fl6->saddr, 1073 fl6->flowi6_oif, flags); 1074 if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0) 1075 f6i = fib6_multipath_select(net, f6i, fl6, 1076 fl6->flowi6_oif, skb, 1077 flags); 1078 } 1079 if (f6i == net->ipv6.fib6_null_entry) { 1080 fn = fib6_backtrack(fn, &fl6->saddr); 1081 if (fn) 1082 goto restart; 1083 } 1084 1085 trace_fib6_table_lookup(net, f6i, table, fl6); 1086 1087 /* Search through exception table */ 1088 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr); 1089 if (rt) { 1090 if (ip6_hold_safe(net, &rt, true)) 1091 dst_use_noref(&rt->dst, jiffies); 1092 } else if (f6i == net->ipv6.fib6_null_entry) { 1093 rt = net->ipv6.ip6_null_entry; 1094 dst_hold(&rt->dst); 1095 } else { 1096 rt = ip6_create_rt_rcu(f6i); 1097 if (!rt) { 1098 rt = net->ipv6.ip6_null_entry; 1099 dst_hold(&rt->dst); 1100 } 1101 } 1102 1103 rcu_read_unlock(); 1104 1105 return rt; 1106 } 1107 1108 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1109 const struct sk_buff *skb, int flags) 1110 { 1111 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1112 } 1113 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1114 1115 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1116 const struct in6_addr *saddr, int oif, 1117 const struct sk_buff *skb, int strict) 1118 { 1119 struct flowi6 fl6 = { 1120 .flowi6_oif = oif, 1121 .daddr = *daddr, 1122 }; 1123 struct dst_entry *dst; 1124 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1125 1126 if (saddr) { 1127 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1128 flags |= RT6_LOOKUP_F_HAS_SADDR; 1129 } 1130 1131 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1132 if (dst->error == 0) 1133 return (struct rt6_info *) dst; 1134 1135 dst_release(dst); 1136 1137 return NULL; 1138 } 1139 EXPORT_SYMBOL(rt6_lookup); 1140 1141 /* ip6_ins_rt is called with FREE table->tb6_lock. 1142 * It takes new route entry, the addition fails by any reason the 1143 * route is released. 1144 * Caller must hold dst before calling it. 1145 */ 1146 1147 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1148 struct netlink_ext_ack *extack) 1149 { 1150 int err; 1151 struct fib6_table *table; 1152 1153 table = rt->fib6_table; 1154 spin_lock_bh(&table->tb6_lock); 1155 err = fib6_add(&table->tb6_root, rt, info, extack); 1156 spin_unlock_bh(&table->tb6_lock); 1157 1158 return err; 1159 } 1160 1161 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1162 { 1163 struct nl_info info = { .nl_net = net, }; 1164 1165 return __ip6_ins_rt(rt, &info, NULL); 1166 } 1167 1168 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort, 1169 const struct in6_addr *daddr, 1170 const struct in6_addr *saddr) 1171 { 1172 struct net_device *dev; 1173 struct rt6_info *rt; 1174 1175 /* 1176 * Clone the route. 1177 */ 1178 1179 if (!fib6_info_hold_safe(ort)) 1180 return NULL; 1181 1182 dev = ip6_rt_get_dev_rcu(ort); 1183 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1184 if (!rt) { 1185 fib6_info_release(ort); 1186 return NULL; 1187 } 1188 1189 ip6_rt_copy_init(rt, ort); 1190 rt->rt6i_flags |= RTF_CACHE; 1191 rt->dst.flags |= DST_HOST; 1192 rt->rt6i_dst.addr = *daddr; 1193 rt->rt6i_dst.plen = 128; 1194 1195 if (!rt6_is_gw_or_nonexthop(ort)) { 1196 if (ort->fib6_dst.plen != 128 && 1197 ipv6_addr_equal(&ort->fib6_dst.addr, daddr)) 1198 rt->rt6i_flags |= RTF_ANYCAST; 1199 #ifdef CONFIG_IPV6_SUBTREES 1200 if (rt->rt6i_src.plen && saddr) { 1201 rt->rt6i_src.addr = *saddr; 1202 rt->rt6i_src.plen = 128; 1203 } 1204 #endif 1205 } 1206 1207 return rt; 1208 } 1209 1210 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt) 1211 { 1212 unsigned short flags = fib6_info_dst_flags(rt); 1213 struct net_device *dev; 1214 struct rt6_info *pcpu_rt; 1215 1216 if (!fib6_info_hold_safe(rt)) 1217 return NULL; 1218 1219 rcu_read_lock(); 1220 dev = ip6_rt_get_dev_rcu(rt); 1221 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags); 1222 rcu_read_unlock(); 1223 if (!pcpu_rt) { 1224 fib6_info_release(rt); 1225 return NULL; 1226 } 1227 ip6_rt_copy_init(pcpu_rt, rt); 1228 pcpu_rt->rt6i_flags |= RTF_PCPU; 1229 return pcpu_rt; 1230 } 1231 1232 /* It should be called with rcu_read_lock() acquired */ 1233 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt) 1234 { 1235 struct rt6_info *pcpu_rt, **p; 1236 1237 p = this_cpu_ptr(rt->rt6i_pcpu); 1238 pcpu_rt = *p; 1239 1240 if (pcpu_rt) 1241 ip6_hold_safe(NULL, &pcpu_rt, false); 1242 1243 return pcpu_rt; 1244 } 1245 1246 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1247 struct fib6_info *rt) 1248 { 1249 struct rt6_info *pcpu_rt, *prev, **p; 1250 1251 pcpu_rt = ip6_rt_pcpu_alloc(rt); 1252 if (!pcpu_rt) { 1253 dst_hold(&net->ipv6.ip6_null_entry->dst); 1254 return net->ipv6.ip6_null_entry; 1255 } 1256 1257 dst_hold(&pcpu_rt->dst); 1258 p = this_cpu_ptr(rt->rt6i_pcpu); 1259 prev = cmpxchg(p, NULL, pcpu_rt); 1260 BUG_ON(prev); 1261 1262 return pcpu_rt; 1263 } 1264 1265 /* exception hash table implementation 1266 */ 1267 static DEFINE_SPINLOCK(rt6_exception_lock); 1268 1269 /* Remove rt6_ex from hash table and free the memory 1270 * Caller must hold rt6_exception_lock 1271 */ 1272 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1273 struct rt6_exception *rt6_ex) 1274 { 1275 struct net *net; 1276 1277 if (!bucket || !rt6_ex) 1278 return; 1279 1280 net = dev_net(rt6_ex->rt6i->dst.dev); 1281 hlist_del_rcu(&rt6_ex->hlist); 1282 dst_release(&rt6_ex->rt6i->dst); 1283 kfree_rcu(rt6_ex, rcu); 1284 WARN_ON_ONCE(!bucket->depth); 1285 bucket->depth--; 1286 net->ipv6.rt6_stats->fib_rt_cache--; 1287 } 1288 1289 /* Remove oldest rt6_ex in bucket and free the memory 1290 * Caller must hold rt6_exception_lock 1291 */ 1292 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1293 { 1294 struct rt6_exception *rt6_ex, *oldest = NULL; 1295 1296 if (!bucket) 1297 return; 1298 1299 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1300 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1301 oldest = rt6_ex; 1302 } 1303 rt6_remove_exception(bucket, oldest); 1304 } 1305 1306 static u32 rt6_exception_hash(const struct in6_addr *dst, 1307 const struct in6_addr *src) 1308 { 1309 static u32 seed __read_mostly; 1310 u32 val; 1311 1312 net_get_random_once(&seed, sizeof(seed)); 1313 val = jhash(dst, sizeof(*dst), seed); 1314 1315 #ifdef CONFIG_IPV6_SUBTREES 1316 if (src) 1317 val = jhash(src, sizeof(*src), val); 1318 #endif 1319 return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1320 } 1321 1322 /* Helper function to find the cached rt in the hash table 1323 * and update bucket pointer to point to the bucket for this 1324 * (daddr, saddr) pair 1325 * Caller must hold rt6_exception_lock 1326 */ 1327 static struct rt6_exception * 1328 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1329 const struct in6_addr *daddr, 1330 const struct in6_addr *saddr) 1331 { 1332 struct rt6_exception *rt6_ex; 1333 u32 hval; 1334 1335 if (!(*bucket) || !daddr) 1336 return NULL; 1337 1338 hval = rt6_exception_hash(daddr, saddr); 1339 *bucket += hval; 1340 1341 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1342 struct rt6_info *rt6 = rt6_ex->rt6i; 1343 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1344 1345 #ifdef CONFIG_IPV6_SUBTREES 1346 if (matched && saddr) 1347 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1348 #endif 1349 if (matched) 1350 return rt6_ex; 1351 } 1352 return NULL; 1353 } 1354 1355 /* Helper function to find the cached rt in the hash table 1356 * and update bucket pointer to point to the bucket for this 1357 * (daddr, saddr) pair 1358 * Caller must hold rcu_read_lock() 1359 */ 1360 static struct rt6_exception * 1361 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1362 const struct in6_addr *daddr, 1363 const struct in6_addr *saddr) 1364 { 1365 struct rt6_exception *rt6_ex; 1366 u32 hval; 1367 1368 WARN_ON_ONCE(!rcu_read_lock_held()); 1369 1370 if (!(*bucket) || !daddr) 1371 return NULL; 1372 1373 hval = rt6_exception_hash(daddr, saddr); 1374 *bucket += hval; 1375 1376 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1377 struct rt6_info *rt6 = rt6_ex->rt6i; 1378 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1379 1380 #ifdef CONFIG_IPV6_SUBTREES 1381 if (matched && saddr) 1382 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1383 #endif 1384 if (matched) 1385 return rt6_ex; 1386 } 1387 return NULL; 1388 } 1389 1390 static unsigned int fib6_mtu(const struct fib6_info *rt) 1391 { 1392 unsigned int mtu; 1393 1394 if (rt->fib6_pmtu) { 1395 mtu = rt->fib6_pmtu; 1396 } else { 1397 struct net_device *dev = fib6_info_nh_dev(rt); 1398 struct inet6_dev *idev; 1399 1400 rcu_read_lock(); 1401 idev = __in6_dev_get(dev); 1402 mtu = idev->cnf.mtu6; 1403 rcu_read_unlock(); 1404 } 1405 1406 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1407 1408 return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu); 1409 } 1410 1411 static int rt6_insert_exception(struct rt6_info *nrt, 1412 struct fib6_info *ort) 1413 { 1414 struct net *net = dev_net(nrt->dst.dev); 1415 struct rt6_exception_bucket *bucket; 1416 struct in6_addr *src_key = NULL; 1417 struct rt6_exception *rt6_ex; 1418 int err = 0; 1419 1420 spin_lock_bh(&rt6_exception_lock); 1421 1422 if (ort->exception_bucket_flushed) { 1423 err = -EINVAL; 1424 goto out; 1425 } 1426 1427 bucket = rcu_dereference_protected(ort->rt6i_exception_bucket, 1428 lockdep_is_held(&rt6_exception_lock)); 1429 if (!bucket) { 1430 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1431 GFP_ATOMIC); 1432 if (!bucket) { 1433 err = -ENOMEM; 1434 goto out; 1435 } 1436 rcu_assign_pointer(ort->rt6i_exception_bucket, bucket); 1437 } 1438 1439 #ifdef CONFIG_IPV6_SUBTREES 1440 /* rt6i_src.plen != 0 indicates ort is in subtree 1441 * and exception table is indexed by a hash of 1442 * both rt6i_dst and rt6i_src. 1443 * Otherwise, the exception table is indexed by 1444 * a hash of only rt6i_dst. 1445 */ 1446 if (ort->fib6_src.plen) 1447 src_key = &nrt->rt6i_src.addr; 1448 #endif 1449 /* rt6_mtu_change() might lower mtu on ort. 1450 * Only insert this exception route if its mtu 1451 * is less than ort's mtu value. 1452 */ 1453 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) { 1454 err = -EINVAL; 1455 goto out; 1456 } 1457 1458 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1459 src_key); 1460 if (rt6_ex) 1461 rt6_remove_exception(bucket, rt6_ex); 1462 1463 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1464 if (!rt6_ex) { 1465 err = -ENOMEM; 1466 goto out; 1467 } 1468 rt6_ex->rt6i = nrt; 1469 rt6_ex->stamp = jiffies; 1470 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1471 bucket->depth++; 1472 net->ipv6.rt6_stats->fib_rt_cache++; 1473 1474 if (bucket->depth > FIB6_MAX_DEPTH) 1475 rt6_exception_remove_oldest(bucket); 1476 1477 out: 1478 spin_unlock_bh(&rt6_exception_lock); 1479 1480 /* Update fn->fn_sernum to invalidate all cached dst */ 1481 if (!err) { 1482 spin_lock_bh(&ort->fib6_table->tb6_lock); 1483 fib6_update_sernum(net, ort); 1484 spin_unlock_bh(&ort->fib6_table->tb6_lock); 1485 fib6_force_start_gc(net); 1486 } 1487 1488 return err; 1489 } 1490 1491 void rt6_flush_exceptions(struct fib6_info *rt) 1492 { 1493 struct rt6_exception_bucket *bucket; 1494 struct rt6_exception *rt6_ex; 1495 struct hlist_node *tmp; 1496 int i; 1497 1498 spin_lock_bh(&rt6_exception_lock); 1499 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1500 rt->exception_bucket_flushed = 1; 1501 1502 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1503 lockdep_is_held(&rt6_exception_lock)); 1504 if (!bucket) 1505 goto out; 1506 1507 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1508 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) 1509 rt6_remove_exception(bucket, rt6_ex); 1510 WARN_ON_ONCE(bucket->depth); 1511 bucket++; 1512 } 1513 1514 out: 1515 spin_unlock_bh(&rt6_exception_lock); 1516 } 1517 1518 /* Find cached rt in the hash table inside passed in rt 1519 * Caller has to hold rcu_read_lock() 1520 */ 1521 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt, 1522 struct in6_addr *daddr, 1523 struct in6_addr *saddr) 1524 { 1525 struct rt6_exception_bucket *bucket; 1526 struct in6_addr *src_key = NULL; 1527 struct rt6_exception *rt6_ex; 1528 struct rt6_info *res = NULL; 1529 1530 bucket = rcu_dereference(rt->rt6i_exception_bucket); 1531 1532 #ifdef CONFIG_IPV6_SUBTREES 1533 /* rt6i_src.plen != 0 indicates rt is in subtree 1534 * and exception table is indexed by a hash of 1535 * both rt6i_dst and rt6i_src. 1536 * Otherwise, the exception table is indexed by 1537 * a hash of only rt6i_dst. 1538 */ 1539 if (rt->fib6_src.plen) 1540 src_key = saddr; 1541 #endif 1542 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1543 1544 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1545 res = rt6_ex->rt6i; 1546 1547 return res; 1548 } 1549 1550 /* Remove the passed in cached rt from the hash table that contains it */ 1551 static int rt6_remove_exception_rt(struct rt6_info *rt) 1552 { 1553 struct rt6_exception_bucket *bucket; 1554 struct in6_addr *src_key = NULL; 1555 struct rt6_exception *rt6_ex; 1556 struct fib6_info *from; 1557 int err; 1558 1559 from = rcu_dereference(rt->from); 1560 if (!from || 1561 !(rt->rt6i_flags & RTF_CACHE)) 1562 return -EINVAL; 1563 1564 if (!rcu_access_pointer(from->rt6i_exception_bucket)) 1565 return -ENOENT; 1566 1567 spin_lock_bh(&rt6_exception_lock); 1568 bucket = rcu_dereference_protected(from->rt6i_exception_bucket, 1569 lockdep_is_held(&rt6_exception_lock)); 1570 #ifdef CONFIG_IPV6_SUBTREES 1571 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1572 * and exception table is indexed by a hash of 1573 * both rt6i_dst and rt6i_src. 1574 * Otherwise, the exception table is indexed by 1575 * a hash of only rt6i_dst. 1576 */ 1577 if (from->fib6_src.plen) 1578 src_key = &rt->rt6i_src.addr; 1579 #endif 1580 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1581 &rt->rt6i_dst.addr, 1582 src_key); 1583 if (rt6_ex) { 1584 rt6_remove_exception(bucket, rt6_ex); 1585 err = 0; 1586 } else { 1587 err = -ENOENT; 1588 } 1589 1590 spin_unlock_bh(&rt6_exception_lock); 1591 return err; 1592 } 1593 1594 /* Find rt6_ex which contains the passed in rt cache and 1595 * refresh its stamp 1596 */ 1597 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 1598 { 1599 struct rt6_exception_bucket *bucket; 1600 struct fib6_info *from = rt->from; 1601 struct in6_addr *src_key = NULL; 1602 struct rt6_exception *rt6_ex; 1603 1604 if (!from || 1605 !(rt->rt6i_flags & RTF_CACHE)) 1606 return; 1607 1608 rcu_read_lock(); 1609 bucket = rcu_dereference(from->rt6i_exception_bucket); 1610 1611 #ifdef CONFIG_IPV6_SUBTREES 1612 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1613 * and exception table is indexed by a hash of 1614 * both rt6i_dst and rt6i_src. 1615 * Otherwise, the exception table is indexed by 1616 * a hash of only rt6i_dst. 1617 */ 1618 if (from->fib6_src.plen) 1619 src_key = &rt->rt6i_src.addr; 1620 #endif 1621 rt6_ex = __rt6_find_exception_rcu(&bucket, 1622 &rt->rt6i_dst.addr, 1623 src_key); 1624 if (rt6_ex) 1625 rt6_ex->stamp = jiffies; 1626 1627 rcu_read_unlock(); 1628 } 1629 1630 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 1631 struct rt6_info *rt, int mtu) 1632 { 1633 /* If the new MTU is lower than the route PMTU, this new MTU will be the 1634 * lowest MTU in the path: always allow updating the route PMTU to 1635 * reflect PMTU decreases. 1636 * 1637 * If the new MTU is higher, and the route PMTU is equal to the local 1638 * MTU, this means the old MTU is the lowest in the path, so allow 1639 * updating it: if other nodes now have lower MTUs, PMTU discovery will 1640 * handle this. 1641 */ 1642 1643 if (dst_mtu(&rt->dst) >= mtu) 1644 return true; 1645 1646 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 1647 return true; 1648 1649 return false; 1650 } 1651 1652 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 1653 struct fib6_info *rt, int mtu) 1654 { 1655 struct rt6_exception_bucket *bucket; 1656 struct rt6_exception *rt6_ex; 1657 int i; 1658 1659 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1660 lockdep_is_held(&rt6_exception_lock)); 1661 1662 if (!bucket) 1663 return; 1664 1665 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1666 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1667 struct rt6_info *entry = rt6_ex->rt6i; 1668 1669 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 1670 * route), the metrics of its rt->from have already 1671 * been updated. 1672 */ 1673 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 1674 rt6_mtu_change_route_allowed(idev, entry, mtu)) 1675 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 1676 } 1677 bucket++; 1678 } 1679 } 1680 1681 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 1682 1683 static void rt6_exceptions_clean_tohost(struct fib6_info *rt, 1684 struct in6_addr *gateway) 1685 { 1686 struct rt6_exception_bucket *bucket; 1687 struct rt6_exception *rt6_ex; 1688 struct hlist_node *tmp; 1689 int i; 1690 1691 if (!rcu_access_pointer(rt->rt6i_exception_bucket)) 1692 return; 1693 1694 spin_lock_bh(&rt6_exception_lock); 1695 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1696 lockdep_is_held(&rt6_exception_lock)); 1697 1698 if (bucket) { 1699 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1700 hlist_for_each_entry_safe(rt6_ex, tmp, 1701 &bucket->chain, hlist) { 1702 struct rt6_info *entry = rt6_ex->rt6i; 1703 1704 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 1705 RTF_CACHE_GATEWAY && 1706 ipv6_addr_equal(gateway, 1707 &entry->rt6i_gateway)) { 1708 rt6_remove_exception(bucket, rt6_ex); 1709 } 1710 } 1711 bucket++; 1712 } 1713 } 1714 1715 spin_unlock_bh(&rt6_exception_lock); 1716 } 1717 1718 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 1719 struct rt6_exception *rt6_ex, 1720 struct fib6_gc_args *gc_args, 1721 unsigned long now) 1722 { 1723 struct rt6_info *rt = rt6_ex->rt6i; 1724 1725 /* we are pruning and obsoleting aged-out and non gateway exceptions 1726 * even if others have still references to them, so that on next 1727 * dst_check() such references can be dropped. 1728 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 1729 * expired, independently from their aging, as per RFC 8201 section 4 1730 */ 1731 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 1732 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 1733 RT6_TRACE("aging clone %p\n", rt); 1734 rt6_remove_exception(bucket, rt6_ex); 1735 return; 1736 } 1737 } else if (time_after(jiffies, rt->dst.expires)) { 1738 RT6_TRACE("purging expired route %p\n", rt); 1739 rt6_remove_exception(bucket, rt6_ex); 1740 return; 1741 } 1742 1743 if (rt->rt6i_flags & RTF_GATEWAY) { 1744 struct neighbour *neigh; 1745 __u8 neigh_flags = 0; 1746 1747 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 1748 if (neigh) 1749 neigh_flags = neigh->flags; 1750 1751 if (!(neigh_flags & NTF_ROUTER)) { 1752 RT6_TRACE("purging route %p via non-router but gateway\n", 1753 rt); 1754 rt6_remove_exception(bucket, rt6_ex); 1755 return; 1756 } 1757 } 1758 1759 gc_args->more++; 1760 } 1761 1762 void rt6_age_exceptions(struct fib6_info *rt, 1763 struct fib6_gc_args *gc_args, 1764 unsigned long now) 1765 { 1766 struct rt6_exception_bucket *bucket; 1767 struct rt6_exception *rt6_ex; 1768 struct hlist_node *tmp; 1769 int i; 1770 1771 if (!rcu_access_pointer(rt->rt6i_exception_bucket)) 1772 return; 1773 1774 rcu_read_lock_bh(); 1775 spin_lock(&rt6_exception_lock); 1776 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1777 lockdep_is_held(&rt6_exception_lock)); 1778 1779 if (bucket) { 1780 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1781 hlist_for_each_entry_safe(rt6_ex, tmp, 1782 &bucket->chain, hlist) { 1783 rt6_age_examine_exception(bucket, rt6_ex, 1784 gc_args, now); 1785 } 1786 bucket++; 1787 } 1788 } 1789 spin_unlock(&rt6_exception_lock); 1790 rcu_read_unlock_bh(); 1791 } 1792 1793 /* must be called with rcu lock held */ 1794 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table, 1795 int oif, struct flowi6 *fl6, int strict) 1796 { 1797 struct fib6_node *fn, *saved_fn; 1798 struct fib6_info *f6i; 1799 1800 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1801 saved_fn = fn; 1802 1803 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1804 oif = 0; 1805 1806 redo_rt6_select: 1807 f6i = rt6_select(net, fn, oif, strict); 1808 if (f6i == net->ipv6.fib6_null_entry) { 1809 fn = fib6_backtrack(fn, &fl6->saddr); 1810 if (fn) 1811 goto redo_rt6_select; 1812 else if (strict & RT6_LOOKUP_F_REACHABLE) { 1813 /* also consider unreachable route */ 1814 strict &= ~RT6_LOOKUP_F_REACHABLE; 1815 fn = saved_fn; 1816 goto redo_rt6_select; 1817 } 1818 } 1819 1820 trace_fib6_table_lookup(net, f6i, table, fl6); 1821 1822 return f6i; 1823 } 1824 1825 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 1826 int oif, struct flowi6 *fl6, 1827 const struct sk_buff *skb, int flags) 1828 { 1829 struct fib6_info *f6i; 1830 struct rt6_info *rt; 1831 int strict = 0; 1832 1833 strict |= flags & RT6_LOOKUP_F_IFACE; 1834 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 1835 if (net->ipv6.devconf_all->forwarding == 0) 1836 strict |= RT6_LOOKUP_F_REACHABLE; 1837 1838 rcu_read_lock(); 1839 1840 f6i = fib6_table_lookup(net, table, oif, fl6, strict); 1841 if (f6i->fib6_nsiblings) 1842 f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict); 1843 1844 if (f6i == net->ipv6.fib6_null_entry) { 1845 rt = net->ipv6.ip6_null_entry; 1846 rcu_read_unlock(); 1847 dst_hold(&rt->dst); 1848 return rt; 1849 } 1850 1851 /*Search through exception table */ 1852 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr); 1853 if (rt) { 1854 if (ip6_hold_safe(net, &rt, true)) 1855 dst_use_noref(&rt->dst, jiffies); 1856 1857 rcu_read_unlock(); 1858 return rt; 1859 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 1860 !(f6i->fib6_flags & RTF_GATEWAY))) { 1861 /* Create a RTF_CACHE clone which will not be 1862 * owned by the fib6 tree. It is for the special case where 1863 * the daddr in the skb during the neighbor look-up is different 1864 * from the fl6->daddr used to look-up route here. 1865 */ 1866 struct rt6_info *uncached_rt; 1867 1868 uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL); 1869 1870 rcu_read_unlock(); 1871 1872 if (uncached_rt) { 1873 /* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc() 1874 * No need for another dst_hold() 1875 */ 1876 rt6_uncached_list_add(uncached_rt); 1877 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 1878 } else { 1879 uncached_rt = net->ipv6.ip6_null_entry; 1880 dst_hold(&uncached_rt->dst); 1881 } 1882 1883 return uncached_rt; 1884 } else { 1885 /* Get a percpu copy */ 1886 1887 struct rt6_info *pcpu_rt; 1888 1889 local_bh_disable(); 1890 pcpu_rt = rt6_get_pcpu_route(f6i); 1891 1892 if (!pcpu_rt) 1893 pcpu_rt = rt6_make_pcpu_route(net, f6i); 1894 1895 local_bh_enable(); 1896 rcu_read_unlock(); 1897 1898 return pcpu_rt; 1899 } 1900 } 1901 EXPORT_SYMBOL_GPL(ip6_pol_route); 1902 1903 static struct rt6_info *ip6_pol_route_input(struct net *net, 1904 struct fib6_table *table, 1905 struct flowi6 *fl6, 1906 const struct sk_buff *skb, 1907 int flags) 1908 { 1909 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 1910 } 1911 1912 struct dst_entry *ip6_route_input_lookup(struct net *net, 1913 struct net_device *dev, 1914 struct flowi6 *fl6, 1915 const struct sk_buff *skb, 1916 int flags) 1917 { 1918 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 1919 flags |= RT6_LOOKUP_F_IFACE; 1920 1921 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 1922 } 1923 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 1924 1925 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 1926 struct flow_keys *keys, 1927 struct flow_keys *flkeys) 1928 { 1929 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 1930 const struct ipv6hdr *key_iph = outer_iph; 1931 struct flow_keys *_flkeys = flkeys; 1932 const struct ipv6hdr *inner_iph; 1933 const struct icmp6hdr *icmph; 1934 struct ipv6hdr _inner_iph; 1935 struct icmp6hdr _icmph; 1936 1937 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 1938 goto out; 1939 1940 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 1941 sizeof(_icmph), &_icmph); 1942 if (!icmph) 1943 goto out; 1944 1945 if (icmph->icmp6_type != ICMPV6_DEST_UNREACH && 1946 icmph->icmp6_type != ICMPV6_PKT_TOOBIG && 1947 icmph->icmp6_type != ICMPV6_TIME_EXCEED && 1948 icmph->icmp6_type != ICMPV6_PARAMPROB) 1949 goto out; 1950 1951 inner_iph = skb_header_pointer(skb, 1952 skb_transport_offset(skb) + sizeof(*icmph), 1953 sizeof(_inner_iph), &_inner_iph); 1954 if (!inner_iph) 1955 goto out; 1956 1957 key_iph = inner_iph; 1958 _flkeys = NULL; 1959 out: 1960 if (_flkeys) { 1961 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 1962 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 1963 keys->tags.flow_label = _flkeys->tags.flow_label; 1964 keys->basic.ip_proto = _flkeys->basic.ip_proto; 1965 } else { 1966 keys->addrs.v6addrs.src = key_iph->saddr; 1967 keys->addrs.v6addrs.dst = key_iph->daddr; 1968 keys->tags.flow_label = ip6_flowlabel(key_iph); 1969 keys->basic.ip_proto = key_iph->nexthdr; 1970 } 1971 } 1972 1973 /* if skb is set it will be used and fl6 can be NULL */ 1974 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 1975 const struct sk_buff *skb, struct flow_keys *flkeys) 1976 { 1977 struct flow_keys hash_keys; 1978 u32 mhash; 1979 1980 switch (ip6_multipath_hash_policy(net)) { 1981 case 0: 1982 memset(&hash_keys, 0, sizeof(hash_keys)); 1983 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1984 if (skb) { 1985 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 1986 } else { 1987 hash_keys.addrs.v6addrs.src = fl6->saddr; 1988 hash_keys.addrs.v6addrs.dst = fl6->daddr; 1989 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 1990 hash_keys.basic.ip_proto = fl6->flowi6_proto; 1991 } 1992 break; 1993 case 1: 1994 if (skb) { 1995 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 1996 struct flow_keys keys; 1997 1998 /* short-circuit if we already have L4 hash present */ 1999 if (skb->l4_hash) 2000 return skb_get_hash_raw(skb) >> 1; 2001 2002 memset(&hash_keys, 0, sizeof(hash_keys)); 2003 2004 if (!flkeys) { 2005 skb_flow_dissect_flow_keys(skb, &keys, flag); 2006 flkeys = &keys; 2007 } 2008 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2009 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2010 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2011 hash_keys.ports.src = flkeys->ports.src; 2012 hash_keys.ports.dst = flkeys->ports.dst; 2013 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2014 } else { 2015 memset(&hash_keys, 0, sizeof(hash_keys)); 2016 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2017 hash_keys.addrs.v6addrs.src = fl6->saddr; 2018 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2019 hash_keys.ports.src = fl6->fl6_sport; 2020 hash_keys.ports.dst = fl6->fl6_dport; 2021 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2022 } 2023 break; 2024 } 2025 mhash = flow_hash_from_keys(&hash_keys); 2026 2027 return mhash >> 1; 2028 } 2029 2030 void ip6_route_input(struct sk_buff *skb) 2031 { 2032 const struct ipv6hdr *iph = ipv6_hdr(skb); 2033 struct net *net = dev_net(skb->dev); 2034 int flags = RT6_LOOKUP_F_HAS_SADDR; 2035 struct ip_tunnel_info *tun_info; 2036 struct flowi6 fl6 = { 2037 .flowi6_iif = skb->dev->ifindex, 2038 .daddr = iph->daddr, 2039 .saddr = iph->saddr, 2040 .flowlabel = ip6_flowinfo(iph), 2041 .flowi6_mark = skb->mark, 2042 .flowi6_proto = iph->nexthdr, 2043 }; 2044 struct flow_keys *flkeys = NULL, _flkeys; 2045 2046 tun_info = skb_tunnel_info(skb); 2047 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2048 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2049 2050 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2051 flkeys = &_flkeys; 2052 2053 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2054 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2055 skb_dst_drop(skb); 2056 skb_dst_set(skb, 2057 ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags)); 2058 } 2059 2060 static struct rt6_info *ip6_pol_route_output(struct net *net, 2061 struct fib6_table *table, 2062 struct flowi6 *fl6, 2063 const struct sk_buff *skb, 2064 int flags) 2065 { 2066 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2067 } 2068 2069 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk, 2070 struct flowi6 *fl6, int flags) 2071 { 2072 bool any_src; 2073 2074 if (ipv6_addr_type(&fl6->daddr) & 2075 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2076 struct dst_entry *dst; 2077 2078 dst = l3mdev_link_scope_lookup(net, fl6); 2079 if (dst) 2080 return dst; 2081 } 2082 2083 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2084 2085 any_src = ipv6_addr_any(&fl6->saddr); 2086 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2087 (fl6->flowi6_oif && any_src)) 2088 flags |= RT6_LOOKUP_F_IFACE; 2089 2090 if (!any_src) 2091 flags |= RT6_LOOKUP_F_HAS_SADDR; 2092 else if (sk) 2093 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 2094 2095 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2096 } 2097 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2098 2099 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2100 { 2101 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 2102 struct net_device *loopback_dev = net->loopback_dev; 2103 struct dst_entry *new = NULL; 2104 2105 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, 2106 DST_OBSOLETE_DEAD, 0); 2107 if (rt) { 2108 rt6_info_init(rt); 2109 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2110 2111 new = &rt->dst; 2112 new->__use = 1; 2113 new->input = dst_discard; 2114 new->output = dst_discard_out; 2115 2116 dst_copy_metrics(new, &ort->dst); 2117 2118 rt->rt6i_idev = in6_dev_get(loopback_dev); 2119 rt->rt6i_gateway = ort->rt6i_gateway; 2120 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2121 2122 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2123 #ifdef CONFIG_IPV6_SUBTREES 2124 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2125 #endif 2126 } 2127 2128 dst_release(dst_orig); 2129 return new ? new : ERR_PTR(-ENOMEM); 2130 } 2131 2132 /* 2133 * Destination cache support functions 2134 */ 2135 2136 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2137 { 2138 u32 rt_cookie = 0; 2139 2140 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2141 return false; 2142 2143 if (fib6_check_expired(f6i)) 2144 return false; 2145 2146 return true; 2147 } 2148 2149 static struct dst_entry *rt6_check(struct rt6_info *rt, 2150 struct fib6_info *from, 2151 u32 cookie) 2152 { 2153 u32 rt_cookie = 0; 2154 2155 if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) || 2156 rt_cookie != cookie) 2157 return NULL; 2158 2159 if (rt6_check_expired(rt)) 2160 return NULL; 2161 2162 return &rt->dst; 2163 } 2164 2165 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2166 struct fib6_info *from, 2167 u32 cookie) 2168 { 2169 if (!__rt6_check_expired(rt) && 2170 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && 2171 fib6_check(from, cookie)) 2172 return &rt->dst; 2173 else 2174 return NULL; 2175 } 2176 2177 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie) 2178 { 2179 struct dst_entry *dst_ret; 2180 struct fib6_info *from; 2181 struct rt6_info *rt; 2182 2183 rt = container_of(dst, struct rt6_info, dst); 2184 2185 rcu_read_lock(); 2186 2187 /* All IPV6 dsts are created with ->obsolete set to the value 2188 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2189 * into this function always. 2190 */ 2191 2192 from = rcu_dereference(rt->from); 2193 2194 if (from && (rt->rt6i_flags & RTF_PCPU || 2195 unlikely(!list_empty(&rt->rt6i_uncached)))) 2196 dst_ret = rt6_dst_from_check(rt, from, cookie); 2197 else 2198 dst_ret = rt6_check(rt, from, cookie); 2199 2200 rcu_read_unlock(); 2201 2202 return dst_ret; 2203 } 2204 2205 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 2206 { 2207 struct rt6_info *rt = (struct rt6_info *) dst; 2208 2209 if (rt) { 2210 if (rt->rt6i_flags & RTF_CACHE) { 2211 rcu_read_lock(); 2212 if (rt6_check_expired(rt)) { 2213 rt6_remove_exception_rt(rt); 2214 dst = NULL; 2215 } 2216 rcu_read_unlock(); 2217 } else { 2218 dst_release(dst); 2219 dst = NULL; 2220 } 2221 } 2222 return dst; 2223 } 2224 2225 static void ip6_link_failure(struct sk_buff *skb) 2226 { 2227 struct rt6_info *rt; 2228 2229 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2230 2231 rt = (struct rt6_info *) skb_dst(skb); 2232 if (rt) { 2233 rcu_read_lock(); 2234 if (rt->rt6i_flags & RTF_CACHE) { 2235 rt6_remove_exception_rt(rt); 2236 } else { 2237 struct fib6_info *from; 2238 struct fib6_node *fn; 2239 2240 from = rcu_dereference(rt->from); 2241 if (from) { 2242 fn = rcu_dereference(from->fib6_node); 2243 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2244 fn->fn_sernum = -1; 2245 } 2246 } 2247 rcu_read_unlock(); 2248 } 2249 } 2250 2251 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2252 { 2253 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2254 struct fib6_info *from; 2255 2256 rcu_read_lock(); 2257 from = rcu_dereference(rt0->from); 2258 if (from) 2259 rt0->dst.expires = from->expires; 2260 rcu_read_unlock(); 2261 } 2262 2263 dst_set_expires(&rt0->dst, timeout); 2264 rt0->rt6i_flags |= RTF_EXPIRES; 2265 } 2266 2267 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2268 { 2269 struct net *net = dev_net(rt->dst.dev); 2270 2271 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2272 rt->rt6i_flags |= RTF_MODIFIED; 2273 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2274 } 2275 2276 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2277 { 2278 bool from_set; 2279 2280 rcu_read_lock(); 2281 from_set = !!rcu_dereference(rt->from); 2282 rcu_read_unlock(); 2283 2284 return !(rt->rt6i_flags & RTF_CACHE) && 2285 (rt->rt6i_flags & RTF_PCPU || from_set); 2286 } 2287 2288 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2289 const struct ipv6hdr *iph, u32 mtu) 2290 { 2291 const struct in6_addr *daddr, *saddr; 2292 struct rt6_info *rt6 = (struct rt6_info *)dst; 2293 2294 if (dst_metric_locked(dst, RTAX_MTU)) 2295 return; 2296 2297 if (iph) { 2298 daddr = &iph->daddr; 2299 saddr = &iph->saddr; 2300 } else if (sk) { 2301 daddr = &sk->sk_v6_daddr; 2302 saddr = &inet6_sk(sk)->saddr; 2303 } else { 2304 daddr = NULL; 2305 saddr = NULL; 2306 } 2307 dst_confirm_neigh(dst, daddr); 2308 mtu = max_t(u32, mtu, IPV6_MIN_MTU); 2309 if (mtu >= dst_mtu(dst)) 2310 return; 2311 2312 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2313 rt6_do_update_pmtu(rt6, mtu); 2314 /* update rt6_ex->stamp for cache */ 2315 if (rt6->rt6i_flags & RTF_CACHE) 2316 rt6_update_exception_stamp_rt(rt6); 2317 } else if (daddr) { 2318 struct fib6_info *from; 2319 struct rt6_info *nrt6; 2320 2321 rcu_read_lock(); 2322 from = rcu_dereference(rt6->from); 2323 nrt6 = ip6_rt_cache_alloc(from, daddr, saddr); 2324 if (nrt6) { 2325 rt6_do_update_pmtu(nrt6, mtu); 2326 if (rt6_insert_exception(nrt6, from)) 2327 dst_release_immediate(&nrt6->dst); 2328 } 2329 rcu_read_unlock(); 2330 } 2331 } 2332 2333 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2334 struct sk_buff *skb, u32 mtu) 2335 { 2336 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu); 2337 } 2338 2339 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2340 int oif, u32 mark, kuid_t uid) 2341 { 2342 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2343 struct dst_entry *dst; 2344 struct flowi6 fl6 = { 2345 .flowi6_oif = oif, 2346 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 2347 .daddr = iph->daddr, 2348 .saddr = iph->saddr, 2349 .flowlabel = ip6_flowinfo(iph), 2350 .flowi6_uid = uid, 2351 }; 2352 2353 dst = ip6_route_output(net, NULL, &fl6); 2354 if (!dst->error) 2355 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu)); 2356 dst_release(dst); 2357 } 2358 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 2359 2360 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 2361 { 2362 int oif = sk->sk_bound_dev_if; 2363 struct dst_entry *dst; 2364 2365 if (!oif && skb->dev) 2366 oif = l3mdev_master_ifindex(skb->dev); 2367 2368 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid); 2369 2370 dst = __sk_dst_get(sk); 2371 if (!dst || !dst->obsolete || 2372 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 2373 return; 2374 2375 bh_lock_sock(sk); 2376 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 2377 ip6_datagram_dst_update(sk, false); 2378 bh_unlock_sock(sk); 2379 } 2380 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 2381 2382 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 2383 const struct flowi6 *fl6) 2384 { 2385 #ifdef CONFIG_IPV6_SUBTREES 2386 struct ipv6_pinfo *np = inet6_sk(sk); 2387 #endif 2388 2389 ip6_dst_store(sk, dst, 2390 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 2391 &sk->sk_v6_daddr : NULL, 2392 #ifdef CONFIG_IPV6_SUBTREES 2393 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 2394 &np->saddr : 2395 #endif 2396 NULL); 2397 } 2398 2399 /* Handle redirects */ 2400 struct ip6rd_flowi { 2401 struct flowi6 fl6; 2402 struct in6_addr gateway; 2403 }; 2404 2405 static struct rt6_info *__ip6_route_redirect(struct net *net, 2406 struct fib6_table *table, 2407 struct flowi6 *fl6, 2408 const struct sk_buff *skb, 2409 int flags) 2410 { 2411 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 2412 struct rt6_info *ret = NULL, *rt_cache; 2413 struct fib6_info *rt; 2414 struct fib6_node *fn; 2415 2416 /* Get the "current" route for this destination and 2417 * check if the redirect has come from appropriate router. 2418 * 2419 * RFC 4861 specifies that redirects should only be 2420 * accepted if they come from the nexthop to the target. 2421 * Due to the way the routes are chosen, this notion 2422 * is a bit fuzzy and one might need to check all possible 2423 * routes. 2424 */ 2425 2426 rcu_read_lock(); 2427 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2428 restart: 2429 for_each_fib6_node_rt_rcu(fn) { 2430 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 2431 continue; 2432 if (fib6_check_expired(rt)) 2433 continue; 2434 if (rt->fib6_flags & RTF_REJECT) 2435 break; 2436 if (!(rt->fib6_flags & RTF_GATEWAY)) 2437 continue; 2438 if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex) 2439 continue; 2440 /* rt_cache's gateway might be different from its 'parent' 2441 * in the case of an ip redirect. 2442 * So we keep searching in the exception table if the gateway 2443 * is different. 2444 */ 2445 if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) { 2446 rt_cache = rt6_find_cached_rt(rt, 2447 &fl6->daddr, 2448 &fl6->saddr); 2449 if (rt_cache && 2450 ipv6_addr_equal(&rdfl->gateway, 2451 &rt_cache->rt6i_gateway)) { 2452 ret = rt_cache; 2453 break; 2454 } 2455 continue; 2456 } 2457 break; 2458 } 2459 2460 if (!rt) 2461 rt = net->ipv6.fib6_null_entry; 2462 else if (rt->fib6_flags & RTF_REJECT) { 2463 ret = net->ipv6.ip6_null_entry; 2464 goto out; 2465 } 2466 2467 if (rt == net->ipv6.fib6_null_entry) { 2468 fn = fib6_backtrack(fn, &fl6->saddr); 2469 if (fn) 2470 goto restart; 2471 } 2472 2473 out: 2474 if (ret) 2475 ip6_hold_safe(net, &ret, true); 2476 else 2477 ret = ip6_create_rt_rcu(rt); 2478 2479 rcu_read_unlock(); 2480 2481 trace_fib6_table_lookup(net, rt, table, fl6); 2482 return ret; 2483 }; 2484 2485 static struct dst_entry *ip6_route_redirect(struct net *net, 2486 const struct flowi6 *fl6, 2487 const struct sk_buff *skb, 2488 const struct in6_addr *gateway) 2489 { 2490 int flags = RT6_LOOKUP_F_HAS_SADDR; 2491 struct ip6rd_flowi rdfl; 2492 2493 rdfl.fl6 = *fl6; 2494 rdfl.gateway = *gateway; 2495 2496 return fib6_rule_lookup(net, &rdfl.fl6, skb, 2497 flags, __ip6_route_redirect); 2498 } 2499 2500 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 2501 kuid_t uid) 2502 { 2503 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2504 struct dst_entry *dst; 2505 struct flowi6 fl6 = { 2506 .flowi6_iif = LOOPBACK_IFINDEX, 2507 .flowi6_oif = oif, 2508 .flowi6_mark = mark, 2509 .daddr = iph->daddr, 2510 .saddr = iph->saddr, 2511 .flowlabel = ip6_flowinfo(iph), 2512 .flowi6_uid = uid, 2513 }; 2514 2515 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 2516 rt6_do_redirect(dst, NULL, skb); 2517 dst_release(dst); 2518 } 2519 EXPORT_SYMBOL_GPL(ip6_redirect); 2520 2521 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 2522 { 2523 const struct ipv6hdr *iph = ipv6_hdr(skb); 2524 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 2525 struct dst_entry *dst; 2526 struct flowi6 fl6 = { 2527 .flowi6_iif = LOOPBACK_IFINDEX, 2528 .flowi6_oif = oif, 2529 .daddr = msg->dest, 2530 .saddr = iph->daddr, 2531 .flowi6_uid = sock_net_uid(net, NULL), 2532 }; 2533 2534 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 2535 rt6_do_redirect(dst, NULL, skb); 2536 dst_release(dst); 2537 } 2538 2539 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 2540 { 2541 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark, 2542 sk->sk_uid); 2543 } 2544 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 2545 2546 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 2547 { 2548 struct net_device *dev = dst->dev; 2549 unsigned int mtu = dst_mtu(dst); 2550 struct net *net = dev_net(dev); 2551 2552 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 2553 2554 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 2555 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 2556 2557 /* 2558 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 2559 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 2560 * IPV6_MAXPLEN is also valid and means: "any MSS, 2561 * rely only on pmtu discovery" 2562 */ 2563 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 2564 mtu = IPV6_MAXPLEN; 2565 return mtu; 2566 } 2567 2568 static unsigned int ip6_mtu(const struct dst_entry *dst) 2569 { 2570 struct inet6_dev *idev; 2571 unsigned int mtu; 2572 2573 mtu = dst_metric_raw(dst, RTAX_MTU); 2574 if (mtu) 2575 goto out; 2576 2577 mtu = IPV6_MIN_MTU; 2578 2579 rcu_read_lock(); 2580 idev = __in6_dev_get(dst->dev); 2581 if (idev) 2582 mtu = idev->cnf.mtu6; 2583 rcu_read_unlock(); 2584 2585 out: 2586 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 2587 2588 return mtu - lwtunnel_headroom(dst->lwtstate, mtu); 2589 } 2590 2591 /* MTU selection: 2592 * 1. mtu on route is locked - use it 2593 * 2. mtu from nexthop exception 2594 * 3. mtu from egress device 2595 * 2596 * based on ip6_dst_mtu_forward and exception logic of 2597 * rt6_find_cached_rt; called with rcu_read_lock 2598 */ 2599 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr, 2600 struct in6_addr *saddr) 2601 { 2602 struct rt6_exception_bucket *bucket; 2603 struct rt6_exception *rt6_ex; 2604 struct in6_addr *src_key; 2605 struct inet6_dev *idev; 2606 u32 mtu = 0; 2607 2608 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 2609 mtu = f6i->fib6_pmtu; 2610 if (mtu) 2611 goto out; 2612 } 2613 2614 src_key = NULL; 2615 #ifdef CONFIG_IPV6_SUBTREES 2616 if (f6i->fib6_src.plen) 2617 src_key = saddr; 2618 #endif 2619 2620 bucket = rcu_dereference(f6i->rt6i_exception_bucket); 2621 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 2622 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 2623 mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU); 2624 2625 if (likely(!mtu)) { 2626 struct net_device *dev = fib6_info_nh_dev(f6i); 2627 2628 mtu = IPV6_MIN_MTU; 2629 idev = __in6_dev_get(dev); 2630 if (idev && idev->cnf.mtu6 > mtu) 2631 mtu = idev->cnf.mtu6; 2632 } 2633 2634 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 2635 out: 2636 return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu); 2637 } 2638 2639 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 2640 struct flowi6 *fl6) 2641 { 2642 struct dst_entry *dst; 2643 struct rt6_info *rt; 2644 struct inet6_dev *idev = in6_dev_get(dev); 2645 struct net *net = dev_net(dev); 2646 2647 if (unlikely(!idev)) 2648 return ERR_PTR(-ENODEV); 2649 2650 rt = ip6_dst_alloc(net, dev, 0); 2651 if (unlikely(!rt)) { 2652 in6_dev_put(idev); 2653 dst = ERR_PTR(-ENOMEM); 2654 goto out; 2655 } 2656 2657 rt->dst.flags |= DST_HOST; 2658 rt->dst.input = ip6_input; 2659 rt->dst.output = ip6_output; 2660 rt->rt6i_gateway = fl6->daddr; 2661 rt->rt6i_dst.addr = fl6->daddr; 2662 rt->rt6i_dst.plen = 128; 2663 rt->rt6i_idev = idev; 2664 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 2665 2666 /* Add this dst into uncached_list so that rt6_disable_ip() can 2667 * do proper release of the net_device 2668 */ 2669 rt6_uncached_list_add(rt); 2670 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 2671 2672 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 2673 2674 out: 2675 return dst; 2676 } 2677 2678 static int ip6_dst_gc(struct dst_ops *ops) 2679 { 2680 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 2681 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 2682 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size; 2683 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 2684 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 2685 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 2686 int entries; 2687 2688 entries = dst_entries_get_fast(ops); 2689 if (time_after(rt_last_gc + rt_min_interval, jiffies) && 2690 entries <= rt_max_size) 2691 goto out; 2692 2693 net->ipv6.ip6_rt_gc_expire++; 2694 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true); 2695 entries = dst_entries_get_slow(ops); 2696 if (entries < ops->gc_thresh) 2697 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1; 2698 out: 2699 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity; 2700 return entries > rt_max_size; 2701 } 2702 2703 static struct rt6_info *ip6_nh_lookup_table(struct net *net, 2704 struct fib6_config *cfg, 2705 const struct in6_addr *gw_addr, 2706 u32 tbid, int flags) 2707 { 2708 struct flowi6 fl6 = { 2709 .flowi6_oif = cfg->fc_ifindex, 2710 .daddr = *gw_addr, 2711 .saddr = cfg->fc_prefsrc, 2712 }; 2713 struct fib6_table *table; 2714 struct rt6_info *rt; 2715 2716 table = fib6_get_table(net, tbid); 2717 if (!table) 2718 return NULL; 2719 2720 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 2721 flags |= RT6_LOOKUP_F_HAS_SADDR; 2722 2723 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 2724 rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags); 2725 2726 /* if table lookup failed, fall back to full lookup */ 2727 if (rt == net->ipv6.ip6_null_entry) { 2728 ip6_rt_put(rt); 2729 rt = NULL; 2730 } 2731 2732 return rt; 2733 } 2734 2735 static int ip6_route_check_nh_onlink(struct net *net, 2736 struct fib6_config *cfg, 2737 const struct net_device *dev, 2738 struct netlink_ext_ack *extack) 2739 { 2740 u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN; 2741 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2742 u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT; 2743 struct rt6_info *grt; 2744 int err; 2745 2746 err = 0; 2747 grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0); 2748 if (grt) { 2749 if (!grt->dst.error && 2750 /* ignore match if it is the default route */ 2751 grt->from && !ipv6_addr_any(&grt->from->fib6_dst.addr) && 2752 (grt->rt6i_flags & flags || dev != grt->dst.dev)) { 2753 NL_SET_ERR_MSG(extack, 2754 "Nexthop has invalid gateway or device mismatch"); 2755 err = -EINVAL; 2756 } 2757 2758 ip6_rt_put(grt); 2759 } 2760 2761 return err; 2762 } 2763 2764 static int ip6_route_check_nh(struct net *net, 2765 struct fib6_config *cfg, 2766 struct net_device **_dev, 2767 struct inet6_dev **idev) 2768 { 2769 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2770 struct net_device *dev = _dev ? *_dev : NULL; 2771 struct rt6_info *grt = NULL; 2772 int err = -EHOSTUNREACH; 2773 2774 if (cfg->fc_table) { 2775 int flags = RT6_LOOKUP_F_IFACE; 2776 2777 grt = ip6_nh_lookup_table(net, cfg, gw_addr, 2778 cfg->fc_table, flags); 2779 if (grt) { 2780 if (grt->rt6i_flags & RTF_GATEWAY || 2781 (dev && dev != grt->dst.dev)) { 2782 ip6_rt_put(grt); 2783 grt = NULL; 2784 } 2785 } 2786 } 2787 2788 if (!grt) 2789 grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1); 2790 2791 if (!grt) 2792 goto out; 2793 2794 if (dev) { 2795 if (dev != grt->dst.dev) { 2796 ip6_rt_put(grt); 2797 goto out; 2798 } 2799 } else { 2800 *_dev = dev = grt->dst.dev; 2801 *idev = grt->rt6i_idev; 2802 dev_hold(dev); 2803 in6_dev_hold(grt->rt6i_idev); 2804 } 2805 2806 if (!(grt->rt6i_flags & RTF_GATEWAY)) 2807 err = 0; 2808 2809 ip6_rt_put(grt); 2810 2811 out: 2812 return err; 2813 } 2814 2815 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 2816 struct net_device **_dev, struct inet6_dev **idev, 2817 struct netlink_ext_ack *extack) 2818 { 2819 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2820 int gwa_type = ipv6_addr_type(gw_addr); 2821 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 2822 const struct net_device *dev = *_dev; 2823 bool need_addr_check = !dev; 2824 int err = -EINVAL; 2825 2826 /* if gw_addr is local we will fail to detect this in case 2827 * address is still TENTATIVE (DAD in progress). rt6_lookup() 2828 * will return already-added prefix route via interface that 2829 * prefix route was assigned to, which might be non-loopback. 2830 */ 2831 if (dev && 2832 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 2833 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 2834 goto out; 2835 } 2836 2837 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 2838 /* IPv6 strictly inhibits using not link-local 2839 * addresses as nexthop address. 2840 * Otherwise, router will not able to send redirects. 2841 * It is very good, but in some (rare!) circumstances 2842 * (SIT, PtP, NBMA NOARP links) it is handy to allow 2843 * some exceptions. --ANK 2844 * We allow IPv4-mapped nexthops to support RFC4798-type 2845 * addressing 2846 */ 2847 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 2848 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 2849 goto out; 2850 } 2851 2852 if (cfg->fc_flags & RTNH_F_ONLINK) 2853 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 2854 else 2855 err = ip6_route_check_nh(net, cfg, _dev, idev); 2856 2857 if (err) 2858 goto out; 2859 } 2860 2861 /* reload in case device was changed */ 2862 dev = *_dev; 2863 2864 err = -EINVAL; 2865 if (!dev) { 2866 NL_SET_ERR_MSG(extack, "Egress device not specified"); 2867 goto out; 2868 } else if (dev->flags & IFF_LOOPBACK) { 2869 NL_SET_ERR_MSG(extack, 2870 "Egress device can not be loopback device for this route"); 2871 goto out; 2872 } 2873 2874 /* if we did not check gw_addr above, do so now that the 2875 * egress device has been resolved. 2876 */ 2877 if (need_addr_check && 2878 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 2879 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 2880 goto out; 2881 } 2882 2883 err = 0; 2884 out: 2885 return err; 2886 } 2887 2888 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 2889 gfp_t gfp_flags, 2890 struct netlink_ext_ack *extack) 2891 { 2892 struct net *net = cfg->fc_nlinfo.nl_net; 2893 struct fib6_info *rt = NULL; 2894 struct net_device *dev = NULL; 2895 struct inet6_dev *idev = NULL; 2896 struct fib6_table *table; 2897 int addr_type; 2898 int err = -EINVAL; 2899 2900 /* RTF_PCPU is an internal flag; can not be set by userspace */ 2901 if (cfg->fc_flags & RTF_PCPU) { 2902 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 2903 goto out; 2904 } 2905 2906 /* RTF_CACHE is an internal flag; can not be set by userspace */ 2907 if (cfg->fc_flags & RTF_CACHE) { 2908 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 2909 goto out; 2910 } 2911 2912 if (cfg->fc_type > RTN_MAX) { 2913 NL_SET_ERR_MSG(extack, "Invalid route type"); 2914 goto out; 2915 } 2916 2917 if (cfg->fc_dst_len > 128) { 2918 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 2919 goto out; 2920 } 2921 if (cfg->fc_src_len > 128) { 2922 NL_SET_ERR_MSG(extack, "Invalid source address length"); 2923 goto out; 2924 } 2925 #ifndef CONFIG_IPV6_SUBTREES 2926 if (cfg->fc_src_len) { 2927 NL_SET_ERR_MSG(extack, 2928 "Specifying source address requires IPV6_SUBTREES to be enabled"); 2929 goto out; 2930 } 2931 #endif 2932 if (cfg->fc_ifindex) { 2933 err = -ENODEV; 2934 dev = dev_get_by_index(net, cfg->fc_ifindex); 2935 if (!dev) 2936 goto out; 2937 idev = in6_dev_get(dev); 2938 if (!idev) 2939 goto out; 2940 } 2941 2942 if (cfg->fc_metric == 0) 2943 cfg->fc_metric = IP6_RT_PRIO_USER; 2944 2945 if (cfg->fc_flags & RTNH_F_ONLINK) { 2946 if (!dev) { 2947 NL_SET_ERR_MSG(extack, 2948 "Nexthop device required for onlink"); 2949 err = -ENODEV; 2950 goto out; 2951 } 2952 2953 if (!(dev->flags & IFF_UP)) { 2954 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 2955 err = -ENETDOWN; 2956 goto out; 2957 } 2958 } 2959 2960 err = -ENOBUFS; 2961 if (cfg->fc_nlinfo.nlh && 2962 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 2963 table = fib6_get_table(net, cfg->fc_table); 2964 if (!table) { 2965 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 2966 table = fib6_new_table(net, cfg->fc_table); 2967 } 2968 } else { 2969 table = fib6_new_table(net, cfg->fc_table); 2970 } 2971 2972 if (!table) 2973 goto out; 2974 2975 err = -ENOMEM; 2976 rt = fib6_info_alloc(gfp_flags); 2977 if (!rt) 2978 goto out; 2979 2980 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len); 2981 if (IS_ERR(rt->fib6_metrics)) { 2982 err = PTR_ERR(rt->fib6_metrics); 2983 /* Do not leave garbage there. */ 2984 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; 2985 goto out; 2986 } 2987 2988 if (cfg->fc_flags & RTF_ADDRCONF) 2989 rt->dst_nocount = true; 2990 2991 if (cfg->fc_flags & RTF_EXPIRES) 2992 fib6_set_expires(rt, jiffies + 2993 clock_t_to_jiffies(cfg->fc_expires)); 2994 else 2995 fib6_clean_expires(rt); 2996 2997 if (cfg->fc_protocol == RTPROT_UNSPEC) 2998 cfg->fc_protocol = RTPROT_BOOT; 2999 rt->fib6_protocol = cfg->fc_protocol; 3000 3001 addr_type = ipv6_addr_type(&cfg->fc_dst); 3002 3003 if (cfg->fc_encap) { 3004 struct lwtunnel_state *lwtstate; 3005 3006 err = lwtunnel_build_state(cfg->fc_encap_type, 3007 cfg->fc_encap, AF_INET6, cfg, 3008 &lwtstate, extack); 3009 if (err) 3010 goto out; 3011 rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate); 3012 } 3013 3014 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3015 rt->fib6_dst.plen = cfg->fc_dst_len; 3016 if (rt->fib6_dst.plen == 128) 3017 rt->dst_host = true; 3018 3019 #ifdef CONFIG_IPV6_SUBTREES 3020 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3021 rt->fib6_src.plen = cfg->fc_src_len; 3022 #endif 3023 3024 rt->fib6_metric = cfg->fc_metric; 3025 rt->fib6_nh.nh_weight = 1; 3026 3027 rt->fib6_type = cfg->fc_type; 3028 3029 /* We cannot add true routes via loopback here, 3030 they would result in kernel looping; promote them to reject routes 3031 */ 3032 if ((cfg->fc_flags & RTF_REJECT) || 3033 (dev && (dev->flags & IFF_LOOPBACK) && 3034 !(addr_type & IPV6_ADDR_LOOPBACK) && 3035 !(cfg->fc_flags & RTF_LOCAL))) { 3036 /* hold loopback dev/idev if we haven't done so. */ 3037 if (dev != net->loopback_dev) { 3038 if (dev) { 3039 dev_put(dev); 3040 in6_dev_put(idev); 3041 } 3042 dev = net->loopback_dev; 3043 dev_hold(dev); 3044 idev = in6_dev_get(dev); 3045 if (!idev) { 3046 err = -ENODEV; 3047 goto out; 3048 } 3049 } 3050 rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP; 3051 goto install_route; 3052 } 3053 3054 if (cfg->fc_flags & RTF_GATEWAY) { 3055 err = ip6_validate_gw(net, cfg, &dev, &idev, extack); 3056 if (err) 3057 goto out; 3058 3059 rt->fib6_nh.nh_gw = cfg->fc_gateway; 3060 } 3061 3062 err = -ENODEV; 3063 if (!dev) 3064 goto out; 3065 3066 if (idev->cnf.disable_ipv6) { 3067 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3068 err = -EACCES; 3069 goto out; 3070 } 3071 3072 if (!(dev->flags & IFF_UP)) { 3073 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3074 err = -ENETDOWN; 3075 goto out; 3076 } 3077 3078 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3079 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3080 NL_SET_ERR_MSG(extack, "Invalid source address"); 3081 err = -EINVAL; 3082 goto out; 3083 } 3084 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3085 rt->fib6_prefsrc.plen = 128; 3086 } else 3087 rt->fib6_prefsrc.plen = 0; 3088 3089 rt->fib6_flags = cfg->fc_flags; 3090 3091 install_route: 3092 if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3093 !netif_carrier_ok(dev)) 3094 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN; 3095 rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK); 3096 rt->fib6_nh.nh_dev = dev; 3097 rt->fib6_table = table; 3098 3099 if (idev) 3100 in6_dev_put(idev); 3101 3102 return rt; 3103 out: 3104 if (dev) 3105 dev_put(dev); 3106 if (idev) 3107 in6_dev_put(idev); 3108 3109 fib6_info_release(rt); 3110 return ERR_PTR(err); 3111 } 3112 3113 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3114 struct netlink_ext_ack *extack) 3115 { 3116 struct fib6_info *rt; 3117 int err; 3118 3119 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3120 if (IS_ERR(rt)) 3121 return PTR_ERR(rt); 3122 3123 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3124 fib6_info_release(rt); 3125 3126 return err; 3127 } 3128 3129 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3130 { 3131 struct net *net = info->nl_net; 3132 struct fib6_table *table; 3133 int err; 3134 3135 if (rt == net->ipv6.fib6_null_entry) { 3136 err = -ENOENT; 3137 goto out; 3138 } 3139 3140 table = rt->fib6_table; 3141 spin_lock_bh(&table->tb6_lock); 3142 err = fib6_del(rt, info); 3143 spin_unlock_bh(&table->tb6_lock); 3144 3145 out: 3146 fib6_info_release(rt); 3147 return err; 3148 } 3149 3150 int ip6_del_rt(struct net *net, struct fib6_info *rt) 3151 { 3152 struct nl_info info = { .nl_net = net }; 3153 3154 return __ip6_del_rt(rt, &info); 3155 } 3156 3157 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3158 { 3159 struct nl_info *info = &cfg->fc_nlinfo; 3160 struct net *net = info->nl_net; 3161 struct sk_buff *skb = NULL; 3162 struct fib6_table *table; 3163 int err = -ENOENT; 3164 3165 if (rt == net->ipv6.fib6_null_entry) 3166 goto out_put; 3167 table = rt->fib6_table; 3168 spin_lock_bh(&table->tb6_lock); 3169 3170 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3171 struct fib6_info *sibling, *next_sibling; 3172 3173 /* prefer to send a single notification with all hops */ 3174 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 3175 if (skb) { 3176 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 3177 3178 if (rt6_fill_node(net, skb, rt, NULL, 3179 NULL, NULL, 0, RTM_DELROUTE, 3180 info->portid, seq, 0) < 0) { 3181 kfree_skb(skb); 3182 skb = NULL; 3183 } else 3184 info->skip_notify = 1; 3185 } 3186 3187 list_for_each_entry_safe(sibling, next_sibling, 3188 &rt->fib6_siblings, 3189 fib6_siblings) { 3190 err = fib6_del(sibling, info); 3191 if (err) 3192 goto out_unlock; 3193 } 3194 } 3195 3196 err = fib6_del(rt, info); 3197 out_unlock: 3198 spin_unlock_bh(&table->tb6_lock); 3199 out_put: 3200 fib6_info_release(rt); 3201 3202 if (skb) { 3203 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 3204 info->nlh, gfp_any()); 3205 } 3206 return err; 3207 } 3208 3209 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 3210 { 3211 int rc = -ESRCH; 3212 3213 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 3214 goto out; 3215 3216 if (cfg->fc_flags & RTF_GATEWAY && 3217 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 3218 goto out; 3219 3220 rc = rt6_remove_exception_rt(rt); 3221 out: 3222 return rc; 3223 } 3224 3225 static int ip6_route_del(struct fib6_config *cfg, 3226 struct netlink_ext_ack *extack) 3227 { 3228 struct rt6_info *rt_cache; 3229 struct fib6_table *table; 3230 struct fib6_info *rt; 3231 struct fib6_node *fn; 3232 int err = -ESRCH; 3233 3234 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 3235 if (!table) { 3236 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 3237 return err; 3238 } 3239 3240 rcu_read_lock(); 3241 3242 fn = fib6_locate(&table->tb6_root, 3243 &cfg->fc_dst, cfg->fc_dst_len, 3244 &cfg->fc_src, cfg->fc_src_len, 3245 !(cfg->fc_flags & RTF_CACHE)); 3246 3247 if (fn) { 3248 for_each_fib6_node_rt_rcu(fn) { 3249 if (cfg->fc_flags & RTF_CACHE) { 3250 int rc; 3251 3252 rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst, 3253 &cfg->fc_src); 3254 if (rt_cache) { 3255 rc = ip6_del_cached_rt(rt_cache, cfg); 3256 if (rc != -ESRCH) { 3257 rcu_read_unlock(); 3258 return rc; 3259 } 3260 } 3261 continue; 3262 } 3263 if (cfg->fc_ifindex && 3264 (!rt->fib6_nh.nh_dev || 3265 rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex)) 3266 continue; 3267 if (cfg->fc_flags & RTF_GATEWAY && 3268 !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw)) 3269 continue; 3270 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 3271 continue; 3272 if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol) 3273 continue; 3274 if (!fib6_info_hold_safe(rt)) 3275 continue; 3276 rcu_read_unlock(); 3277 3278 /* if gateway was specified only delete the one hop */ 3279 if (cfg->fc_flags & RTF_GATEWAY) 3280 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3281 3282 return __ip6_del_rt_siblings(rt, cfg); 3283 } 3284 } 3285 rcu_read_unlock(); 3286 3287 return err; 3288 } 3289 3290 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 3291 { 3292 struct netevent_redirect netevent; 3293 struct rt6_info *rt, *nrt = NULL; 3294 struct ndisc_options ndopts; 3295 struct inet6_dev *in6_dev; 3296 struct neighbour *neigh; 3297 struct fib6_info *from; 3298 struct rd_msg *msg; 3299 int optlen, on_link; 3300 u8 *lladdr; 3301 3302 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 3303 optlen -= sizeof(*msg); 3304 3305 if (optlen < 0) { 3306 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 3307 return; 3308 } 3309 3310 msg = (struct rd_msg *)icmp6_hdr(skb); 3311 3312 if (ipv6_addr_is_multicast(&msg->dest)) { 3313 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 3314 return; 3315 } 3316 3317 on_link = 0; 3318 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 3319 on_link = 1; 3320 } else if (ipv6_addr_type(&msg->target) != 3321 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 3322 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 3323 return; 3324 } 3325 3326 in6_dev = __in6_dev_get(skb->dev); 3327 if (!in6_dev) 3328 return; 3329 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) 3330 return; 3331 3332 /* RFC2461 8.1: 3333 * The IP source address of the Redirect MUST be the same as the current 3334 * first-hop router for the specified ICMP Destination Address. 3335 */ 3336 3337 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 3338 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 3339 return; 3340 } 3341 3342 lladdr = NULL; 3343 if (ndopts.nd_opts_tgt_lladdr) { 3344 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 3345 skb->dev); 3346 if (!lladdr) { 3347 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 3348 return; 3349 } 3350 } 3351 3352 rt = (struct rt6_info *) dst; 3353 if (rt->rt6i_flags & RTF_REJECT) { 3354 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 3355 return; 3356 } 3357 3358 /* Redirect received -> path was valid. 3359 * Look, redirects are sent only in response to data packets, 3360 * so that this nexthop apparently is reachable. --ANK 3361 */ 3362 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 3363 3364 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 3365 if (!neigh) 3366 return; 3367 3368 /* 3369 * We have finally decided to accept it. 3370 */ 3371 3372 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 3373 NEIGH_UPDATE_F_WEAK_OVERRIDE| 3374 NEIGH_UPDATE_F_OVERRIDE| 3375 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 3376 NEIGH_UPDATE_F_ISROUTER)), 3377 NDISC_REDIRECT, &ndopts); 3378 3379 rcu_read_lock(); 3380 from = rcu_dereference(rt->from); 3381 /* This fib6_info_hold() is safe here because we hold reference to rt 3382 * and rt already holds reference to fib6_info. 3383 */ 3384 fib6_info_hold(from); 3385 rcu_read_unlock(); 3386 3387 nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL); 3388 if (!nrt) 3389 goto out; 3390 3391 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 3392 if (on_link) 3393 nrt->rt6i_flags &= ~RTF_GATEWAY; 3394 3395 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 3396 3397 /* No need to remove rt from the exception table if rt is 3398 * a cached route because rt6_insert_exception() will 3399 * takes care of it 3400 */ 3401 if (rt6_insert_exception(nrt, from)) { 3402 dst_release_immediate(&nrt->dst); 3403 goto out; 3404 } 3405 3406 netevent.old = &rt->dst; 3407 netevent.new = &nrt->dst; 3408 netevent.daddr = &msg->dest; 3409 netevent.neigh = neigh; 3410 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 3411 3412 out: 3413 fib6_info_release(from); 3414 neigh_release(neigh); 3415 } 3416 3417 #ifdef CONFIG_IPV6_ROUTE_INFO 3418 static struct fib6_info *rt6_get_route_info(struct net *net, 3419 const struct in6_addr *prefix, int prefixlen, 3420 const struct in6_addr *gwaddr, 3421 struct net_device *dev) 3422 { 3423 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 3424 int ifindex = dev->ifindex; 3425 struct fib6_node *fn; 3426 struct fib6_info *rt = NULL; 3427 struct fib6_table *table; 3428 3429 table = fib6_get_table(net, tb_id); 3430 if (!table) 3431 return NULL; 3432 3433 rcu_read_lock(); 3434 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 3435 if (!fn) 3436 goto out; 3437 3438 for_each_fib6_node_rt_rcu(fn) { 3439 if (rt->fib6_nh.nh_dev->ifindex != ifindex) 3440 continue; 3441 if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY)) 3442 continue; 3443 if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr)) 3444 continue; 3445 if (!fib6_info_hold_safe(rt)) 3446 continue; 3447 break; 3448 } 3449 out: 3450 rcu_read_unlock(); 3451 return rt; 3452 } 3453 3454 static struct fib6_info *rt6_add_route_info(struct net *net, 3455 const struct in6_addr *prefix, int prefixlen, 3456 const struct in6_addr *gwaddr, 3457 struct net_device *dev, 3458 unsigned int pref) 3459 { 3460 struct fib6_config cfg = { 3461 .fc_metric = IP6_RT_PRIO_USER, 3462 .fc_ifindex = dev->ifindex, 3463 .fc_dst_len = prefixlen, 3464 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 3465 RTF_UP | RTF_PREF(pref), 3466 .fc_protocol = RTPROT_RA, 3467 .fc_type = RTN_UNICAST, 3468 .fc_nlinfo.portid = 0, 3469 .fc_nlinfo.nlh = NULL, 3470 .fc_nlinfo.nl_net = net, 3471 }; 3472 3473 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO, 3474 cfg.fc_dst = *prefix; 3475 cfg.fc_gateway = *gwaddr; 3476 3477 /* We should treat it as a default route if prefix length is 0. */ 3478 if (!prefixlen) 3479 cfg.fc_flags |= RTF_DEFAULT; 3480 3481 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 3482 3483 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 3484 } 3485 #endif 3486 3487 struct fib6_info *rt6_get_dflt_router(struct net *net, 3488 const struct in6_addr *addr, 3489 struct net_device *dev) 3490 { 3491 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 3492 struct fib6_info *rt; 3493 struct fib6_table *table; 3494 3495 table = fib6_get_table(net, tb_id); 3496 if (!table) 3497 return NULL; 3498 3499 rcu_read_lock(); 3500 for_each_fib6_node_rt_rcu(&table->tb6_root) { 3501 if (dev == rt->fib6_nh.nh_dev && 3502 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 3503 ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr)) 3504 break; 3505 } 3506 if (rt && !fib6_info_hold_safe(rt)) 3507 rt = NULL; 3508 rcu_read_unlock(); 3509 return rt; 3510 } 3511 3512 struct fib6_info *rt6_add_dflt_router(struct net *net, 3513 const struct in6_addr *gwaddr, 3514 struct net_device *dev, 3515 unsigned int pref) 3516 { 3517 struct fib6_config cfg = { 3518 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 3519 .fc_metric = IP6_RT_PRIO_USER, 3520 .fc_ifindex = dev->ifindex, 3521 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 3522 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 3523 .fc_protocol = RTPROT_RA, 3524 .fc_type = RTN_UNICAST, 3525 .fc_nlinfo.portid = 0, 3526 .fc_nlinfo.nlh = NULL, 3527 .fc_nlinfo.nl_net = net, 3528 }; 3529 3530 cfg.fc_gateway = *gwaddr; 3531 3532 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 3533 struct fib6_table *table; 3534 3535 table = fib6_get_table(dev_net(dev), cfg.fc_table); 3536 if (table) 3537 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 3538 } 3539 3540 return rt6_get_dflt_router(net, gwaddr, dev); 3541 } 3542 3543 static void __rt6_purge_dflt_routers(struct net *net, 3544 struct fib6_table *table) 3545 { 3546 struct fib6_info *rt; 3547 3548 restart: 3549 rcu_read_lock(); 3550 for_each_fib6_node_rt_rcu(&table->tb6_root) { 3551 struct net_device *dev = fib6_info_nh_dev(rt); 3552 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 3553 3554 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 3555 (!idev || idev->cnf.accept_ra != 2) && 3556 fib6_info_hold_safe(rt)) { 3557 rcu_read_unlock(); 3558 ip6_del_rt(net, rt); 3559 goto restart; 3560 } 3561 } 3562 rcu_read_unlock(); 3563 3564 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 3565 } 3566 3567 void rt6_purge_dflt_routers(struct net *net) 3568 { 3569 struct fib6_table *table; 3570 struct hlist_head *head; 3571 unsigned int h; 3572 3573 rcu_read_lock(); 3574 3575 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 3576 head = &net->ipv6.fib_table_hash[h]; 3577 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 3578 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 3579 __rt6_purge_dflt_routers(net, table); 3580 } 3581 } 3582 3583 rcu_read_unlock(); 3584 } 3585 3586 static void rtmsg_to_fib6_config(struct net *net, 3587 struct in6_rtmsg *rtmsg, 3588 struct fib6_config *cfg) 3589 { 3590 *cfg = (struct fib6_config){ 3591 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 3592 : RT6_TABLE_MAIN, 3593 .fc_ifindex = rtmsg->rtmsg_ifindex, 3594 .fc_metric = rtmsg->rtmsg_metric, 3595 .fc_expires = rtmsg->rtmsg_info, 3596 .fc_dst_len = rtmsg->rtmsg_dst_len, 3597 .fc_src_len = rtmsg->rtmsg_src_len, 3598 .fc_flags = rtmsg->rtmsg_flags, 3599 .fc_type = rtmsg->rtmsg_type, 3600 3601 .fc_nlinfo.nl_net = net, 3602 3603 .fc_dst = rtmsg->rtmsg_dst, 3604 .fc_src = rtmsg->rtmsg_src, 3605 .fc_gateway = rtmsg->rtmsg_gateway, 3606 }; 3607 } 3608 3609 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3610 { 3611 struct fib6_config cfg; 3612 struct in6_rtmsg rtmsg; 3613 int err; 3614 3615 switch (cmd) { 3616 case SIOCADDRT: /* Add a route */ 3617 case SIOCDELRT: /* Delete a route */ 3618 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 3619 return -EPERM; 3620 err = copy_from_user(&rtmsg, arg, 3621 sizeof(struct in6_rtmsg)); 3622 if (err) 3623 return -EFAULT; 3624 3625 rtmsg_to_fib6_config(net, &rtmsg, &cfg); 3626 3627 rtnl_lock(); 3628 switch (cmd) { 3629 case SIOCADDRT: 3630 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 3631 break; 3632 case SIOCDELRT: 3633 err = ip6_route_del(&cfg, NULL); 3634 break; 3635 default: 3636 err = -EINVAL; 3637 } 3638 rtnl_unlock(); 3639 3640 return err; 3641 } 3642 3643 return -EINVAL; 3644 } 3645 3646 /* 3647 * Drop the packet on the floor 3648 */ 3649 3650 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 3651 { 3652 int type; 3653 struct dst_entry *dst = skb_dst(skb); 3654 switch (ipstats_mib_noroutes) { 3655 case IPSTATS_MIB_INNOROUTES: 3656 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 3657 if (type == IPV6_ADDR_ANY) { 3658 IP6_INC_STATS(dev_net(dst->dev), 3659 __in6_dev_get_safely(skb->dev), 3660 IPSTATS_MIB_INADDRERRORS); 3661 break; 3662 } 3663 /* FALLTHROUGH */ 3664 case IPSTATS_MIB_OUTNOROUTES: 3665 IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), 3666 ipstats_mib_noroutes); 3667 break; 3668 } 3669 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 3670 kfree_skb(skb); 3671 return 0; 3672 } 3673 3674 static int ip6_pkt_discard(struct sk_buff *skb) 3675 { 3676 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 3677 } 3678 3679 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 3680 { 3681 skb->dev = skb_dst(skb)->dev; 3682 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 3683 } 3684 3685 static int ip6_pkt_prohibit(struct sk_buff *skb) 3686 { 3687 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 3688 } 3689 3690 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 3691 { 3692 skb->dev = skb_dst(skb)->dev; 3693 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 3694 } 3695 3696 /* 3697 * Allocate a dst for local (unicast / anycast) address. 3698 */ 3699 3700 struct fib6_info *addrconf_f6i_alloc(struct net *net, 3701 struct inet6_dev *idev, 3702 const struct in6_addr *addr, 3703 bool anycast, gfp_t gfp_flags) 3704 { 3705 u32 tb_id; 3706 struct net_device *dev = idev->dev; 3707 struct fib6_info *f6i; 3708 3709 f6i = fib6_info_alloc(gfp_flags); 3710 if (!f6i) 3711 return ERR_PTR(-ENOMEM); 3712 3713 f6i->fib6_metrics = ip_fib_metrics_init(net, NULL, 0); 3714 f6i->dst_nocount = true; 3715 f6i->dst_host = true; 3716 f6i->fib6_protocol = RTPROT_KERNEL; 3717 f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP; 3718 if (anycast) { 3719 f6i->fib6_type = RTN_ANYCAST; 3720 f6i->fib6_flags |= RTF_ANYCAST; 3721 } else { 3722 f6i->fib6_type = RTN_LOCAL; 3723 f6i->fib6_flags |= RTF_LOCAL; 3724 } 3725 3726 f6i->fib6_nh.nh_gw = *addr; 3727 dev_hold(dev); 3728 f6i->fib6_nh.nh_dev = dev; 3729 f6i->fib6_dst.addr = *addr; 3730 f6i->fib6_dst.plen = 128; 3731 tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL; 3732 f6i->fib6_table = fib6_get_table(net, tb_id); 3733 3734 return f6i; 3735 } 3736 3737 /* remove deleted ip from prefsrc entries */ 3738 struct arg_dev_net_ip { 3739 struct net_device *dev; 3740 struct net *net; 3741 struct in6_addr *addr; 3742 }; 3743 3744 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 3745 { 3746 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 3747 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 3748 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 3749 3750 if (((void *)rt->fib6_nh.nh_dev == dev || !dev) && 3751 rt != net->ipv6.fib6_null_entry && 3752 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) { 3753 spin_lock_bh(&rt6_exception_lock); 3754 /* remove prefsrc entry */ 3755 rt->fib6_prefsrc.plen = 0; 3756 spin_unlock_bh(&rt6_exception_lock); 3757 } 3758 return 0; 3759 } 3760 3761 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 3762 { 3763 struct net *net = dev_net(ifp->idev->dev); 3764 struct arg_dev_net_ip adni = { 3765 .dev = ifp->idev->dev, 3766 .net = net, 3767 .addr = &ifp->addr, 3768 }; 3769 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 3770 } 3771 3772 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY) 3773 3774 /* Remove routers and update dst entries when gateway turn into host. */ 3775 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 3776 { 3777 struct in6_addr *gateway = (struct in6_addr *)arg; 3778 3779 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 3780 ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) { 3781 return -1; 3782 } 3783 3784 /* Further clean up cached routes in exception table. 3785 * This is needed because cached route may have a different 3786 * gateway than its 'parent' in the case of an ip redirect. 3787 */ 3788 rt6_exceptions_clean_tohost(rt, gateway); 3789 3790 return 0; 3791 } 3792 3793 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 3794 { 3795 fib6_clean_all(net, fib6_clean_tohost, gateway); 3796 } 3797 3798 struct arg_netdev_event { 3799 const struct net_device *dev; 3800 union { 3801 unsigned int nh_flags; 3802 unsigned long event; 3803 }; 3804 }; 3805 3806 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 3807 { 3808 struct fib6_info *iter; 3809 struct fib6_node *fn; 3810 3811 fn = rcu_dereference_protected(rt->fib6_node, 3812 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3813 iter = rcu_dereference_protected(fn->leaf, 3814 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3815 while (iter) { 3816 if (iter->fib6_metric == rt->fib6_metric && 3817 rt6_qualify_for_ecmp(iter)) 3818 return iter; 3819 iter = rcu_dereference_protected(iter->fib6_next, 3820 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3821 } 3822 3823 return NULL; 3824 } 3825 3826 static bool rt6_is_dead(const struct fib6_info *rt) 3827 { 3828 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD || 3829 (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN && 3830 fib6_ignore_linkdown(rt))) 3831 return true; 3832 3833 return false; 3834 } 3835 3836 static int rt6_multipath_total_weight(const struct fib6_info *rt) 3837 { 3838 struct fib6_info *iter; 3839 int total = 0; 3840 3841 if (!rt6_is_dead(rt)) 3842 total += rt->fib6_nh.nh_weight; 3843 3844 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 3845 if (!rt6_is_dead(iter)) 3846 total += iter->fib6_nh.nh_weight; 3847 } 3848 3849 return total; 3850 } 3851 3852 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 3853 { 3854 int upper_bound = -1; 3855 3856 if (!rt6_is_dead(rt)) { 3857 *weight += rt->fib6_nh.nh_weight; 3858 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 3859 total) - 1; 3860 } 3861 atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound); 3862 } 3863 3864 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 3865 { 3866 struct fib6_info *iter; 3867 int weight = 0; 3868 3869 rt6_upper_bound_set(rt, &weight, total); 3870 3871 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3872 rt6_upper_bound_set(iter, &weight, total); 3873 } 3874 3875 void rt6_multipath_rebalance(struct fib6_info *rt) 3876 { 3877 struct fib6_info *first; 3878 int total; 3879 3880 /* In case the entire multipath route was marked for flushing, 3881 * then there is no need to rebalance upon the removal of every 3882 * sibling route. 3883 */ 3884 if (!rt->fib6_nsiblings || rt->should_flush) 3885 return; 3886 3887 /* During lookup routes are evaluated in order, so we need to 3888 * make sure upper bounds are assigned from the first sibling 3889 * onwards. 3890 */ 3891 first = rt6_multipath_first_sibling(rt); 3892 if (WARN_ON_ONCE(!first)) 3893 return; 3894 3895 total = rt6_multipath_total_weight(first); 3896 rt6_multipath_upper_bound_set(first, total); 3897 } 3898 3899 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 3900 { 3901 const struct arg_netdev_event *arg = p_arg; 3902 struct net *net = dev_net(arg->dev); 3903 3904 if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) { 3905 rt->fib6_nh.nh_flags &= ~arg->nh_flags; 3906 fib6_update_sernum_upto_root(net, rt); 3907 rt6_multipath_rebalance(rt); 3908 } 3909 3910 return 0; 3911 } 3912 3913 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags) 3914 { 3915 struct arg_netdev_event arg = { 3916 .dev = dev, 3917 { 3918 .nh_flags = nh_flags, 3919 }, 3920 }; 3921 3922 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 3923 arg.nh_flags |= RTNH_F_LINKDOWN; 3924 3925 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 3926 } 3927 3928 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 3929 const struct net_device *dev) 3930 { 3931 struct fib6_info *iter; 3932 3933 if (rt->fib6_nh.nh_dev == dev) 3934 return true; 3935 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3936 if (iter->fib6_nh.nh_dev == dev) 3937 return true; 3938 3939 return false; 3940 } 3941 3942 static void rt6_multipath_flush(struct fib6_info *rt) 3943 { 3944 struct fib6_info *iter; 3945 3946 rt->should_flush = 1; 3947 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3948 iter->should_flush = 1; 3949 } 3950 3951 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 3952 const struct net_device *down_dev) 3953 { 3954 struct fib6_info *iter; 3955 unsigned int dead = 0; 3956 3957 if (rt->fib6_nh.nh_dev == down_dev || 3958 rt->fib6_nh.nh_flags & RTNH_F_DEAD) 3959 dead++; 3960 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3961 if (iter->fib6_nh.nh_dev == down_dev || 3962 iter->fib6_nh.nh_flags & RTNH_F_DEAD) 3963 dead++; 3964 3965 return dead; 3966 } 3967 3968 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 3969 const struct net_device *dev, 3970 unsigned int nh_flags) 3971 { 3972 struct fib6_info *iter; 3973 3974 if (rt->fib6_nh.nh_dev == dev) 3975 rt->fib6_nh.nh_flags |= nh_flags; 3976 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3977 if (iter->fib6_nh.nh_dev == dev) 3978 iter->fib6_nh.nh_flags |= nh_flags; 3979 } 3980 3981 /* called with write lock held for table with rt */ 3982 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 3983 { 3984 const struct arg_netdev_event *arg = p_arg; 3985 const struct net_device *dev = arg->dev; 3986 struct net *net = dev_net(dev); 3987 3988 if (rt == net->ipv6.fib6_null_entry) 3989 return 0; 3990 3991 switch (arg->event) { 3992 case NETDEV_UNREGISTER: 3993 return rt->fib6_nh.nh_dev == dev ? -1 : 0; 3994 case NETDEV_DOWN: 3995 if (rt->should_flush) 3996 return -1; 3997 if (!rt->fib6_nsiblings) 3998 return rt->fib6_nh.nh_dev == dev ? -1 : 0; 3999 if (rt6_multipath_uses_dev(rt, dev)) { 4000 unsigned int count; 4001 4002 count = rt6_multipath_dead_count(rt, dev); 4003 if (rt->fib6_nsiblings + 1 == count) { 4004 rt6_multipath_flush(rt); 4005 return -1; 4006 } 4007 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4008 RTNH_F_LINKDOWN); 4009 fib6_update_sernum(net, rt); 4010 rt6_multipath_rebalance(rt); 4011 } 4012 return -2; 4013 case NETDEV_CHANGE: 4014 if (rt->fib6_nh.nh_dev != dev || 4015 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4016 break; 4017 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN; 4018 rt6_multipath_rebalance(rt); 4019 break; 4020 } 4021 4022 return 0; 4023 } 4024 4025 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4026 { 4027 struct arg_netdev_event arg = { 4028 .dev = dev, 4029 { 4030 .event = event, 4031 }, 4032 }; 4033 struct net *net = dev_net(dev); 4034 4035 if (net->ipv6.sysctl.skip_notify_on_dev_down) 4036 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 4037 else 4038 fib6_clean_all(net, fib6_ifdown, &arg); 4039 } 4040 4041 void rt6_disable_ip(struct net_device *dev, unsigned long event) 4042 { 4043 rt6_sync_down_dev(dev, event); 4044 rt6_uncached_list_flush_dev(dev_net(dev), dev); 4045 neigh_ifdown(&nd_tbl, dev); 4046 } 4047 4048 struct rt6_mtu_change_arg { 4049 struct net_device *dev; 4050 unsigned int mtu; 4051 }; 4052 4053 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg) 4054 { 4055 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 4056 struct inet6_dev *idev; 4057 4058 /* In IPv6 pmtu discovery is not optional, 4059 so that RTAX_MTU lock cannot disable it. 4060 We still use this lock to block changes 4061 caused by addrconf/ndisc. 4062 */ 4063 4064 idev = __in6_dev_get(arg->dev); 4065 if (!idev) 4066 return 0; 4067 4068 /* For administrative MTU increase, there is no way to discover 4069 IPv6 PMTU increase, so PMTU increase should be updated here. 4070 Since RFC 1981 doesn't include administrative MTU increase 4071 update PMTU increase is a MUST. (i.e. jumbo frame) 4072 */ 4073 if (rt->fib6_nh.nh_dev == arg->dev && 4074 !fib6_metric_locked(rt, RTAX_MTU)) { 4075 u32 mtu = rt->fib6_pmtu; 4076 4077 if (mtu >= arg->mtu || 4078 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 4079 fib6_metric_set(rt, RTAX_MTU, arg->mtu); 4080 4081 spin_lock_bh(&rt6_exception_lock); 4082 rt6_exceptions_update_pmtu(idev, rt, arg->mtu); 4083 spin_unlock_bh(&rt6_exception_lock); 4084 } 4085 return 0; 4086 } 4087 4088 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 4089 { 4090 struct rt6_mtu_change_arg arg = { 4091 .dev = dev, 4092 .mtu = mtu, 4093 }; 4094 4095 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 4096 } 4097 4098 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 4099 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 4100 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 4101 [RTA_OIF] = { .type = NLA_U32 }, 4102 [RTA_IIF] = { .type = NLA_U32 }, 4103 [RTA_PRIORITY] = { .type = NLA_U32 }, 4104 [RTA_METRICS] = { .type = NLA_NESTED }, 4105 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 4106 [RTA_PREF] = { .type = NLA_U8 }, 4107 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 4108 [RTA_ENCAP] = { .type = NLA_NESTED }, 4109 [RTA_EXPIRES] = { .type = NLA_U32 }, 4110 [RTA_UID] = { .type = NLA_U32 }, 4111 [RTA_MARK] = { .type = NLA_U32 }, 4112 [RTA_TABLE] = { .type = NLA_U32 }, 4113 [RTA_IP_PROTO] = { .type = NLA_U8 }, 4114 [RTA_SPORT] = { .type = NLA_U16 }, 4115 [RTA_DPORT] = { .type = NLA_U16 }, 4116 }; 4117 4118 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 4119 struct fib6_config *cfg, 4120 struct netlink_ext_ack *extack) 4121 { 4122 struct rtmsg *rtm; 4123 struct nlattr *tb[RTA_MAX+1]; 4124 unsigned int pref; 4125 int err; 4126 4127 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, 4128 extack); 4129 if (err < 0) 4130 goto errout; 4131 4132 err = -EINVAL; 4133 rtm = nlmsg_data(nlh); 4134 4135 *cfg = (struct fib6_config){ 4136 .fc_table = rtm->rtm_table, 4137 .fc_dst_len = rtm->rtm_dst_len, 4138 .fc_src_len = rtm->rtm_src_len, 4139 .fc_flags = RTF_UP, 4140 .fc_protocol = rtm->rtm_protocol, 4141 .fc_type = rtm->rtm_type, 4142 4143 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 4144 .fc_nlinfo.nlh = nlh, 4145 .fc_nlinfo.nl_net = sock_net(skb->sk), 4146 }; 4147 4148 if (rtm->rtm_type == RTN_UNREACHABLE || 4149 rtm->rtm_type == RTN_BLACKHOLE || 4150 rtm->rtm_type == RTN_PROHIBIT || 4151 rtm->rtm_type == RTN_THROW) 4152 cfg->fc_flags |= RTF_REJECT; 4153 4154 if (rtm->rtm_type == RTN_LOCAL) 4155 cfg->fc_flags |= RTF_LOCAL; 4156 4157 if (rtm->rtm_flags & RTM_F_CLONED) 4158 cfg->fc_flags |= RTF_CACHE; 4159 4160 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 4161 4162 if (tb[RTA_GATEWAY]) { 4163 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 4164 cfg->fc_flags |= RTF_GATEWAY; 4165 } 4166 4167 if (tb[RTA_DST]) { 4168 int plen = (rtm->rtm_dst_len + 7) >> 3; 4169 4170 if (nla_len(tb[RTA_DST]) < plen) 4171 goto errout; 4172 4173 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 4174 } 4175 4176 if (tb[RTA_SRC]) { 4177 int plen = (rtm->rtm_src_len + 7) >> 3; 4178 4179 if (nla_len(tb[RTA_SRC]) < plen) 4180 goto errout; 4181 4182 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 4183 } 4184 4185 if (tb[RTA_PREFSRC]) 4186 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 4187 4188 if (tb[RTA_OIF]) 4189 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 4190 4191 if (tb[RTA_PRIORITY]) 4192 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 4193 4194 if (tb[RTA_METRICS]) { 4195 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 4196 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 4197 } 4198 4199 if (tb[RTA_TABLE]) 4200 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 4201 4202 if (tb[RTA_MULTIPATH]) { 4203 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 4204 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 4205 4206 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, 4207 cfg->fc_mp_len, extack); 4208 if (err < 0) 4209 goto errout; 4210 } 4211 4212 if (tb[RTA_PREF]) { 4213 pref = nla_get_u8(tb[RTA_PREF]); 4214 if (pref != ICMPV6_ROUTER_PREF_LOW && 4215 pref != ICMPV6_ROUTER_PREF_HIGH) 4216 pref = ICMPV6_ROUTER_PREF_MEDIUM; 4217 cfg->fc_flags |= RTF_PREF(pref); 4218 } 4219 4220 if (tb[RTA_ENCAP]) 4221 cfg->fc_encap = tb[RTA_ENCAP]; 4222 4223 if (tb[RTA_ENCAP_TYPE]) { 4224 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 4225 4226 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 4227 if (err < 0) 4228 goto errout; 4229 } 4230 4231 if (tb[RTA_EXPIRES]) { 4232 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 4233 4234 if (addrconf_finite_timeout(timeout)) { 4235 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 4236 cfg->fc_flags |= RTF_EXPIRES; 4237 } 4238 } 4239 4240 err = 0; 4241 errout: 4242 return err; 4243 } 4244 4245 struct rt6_nh { 4246 struct fib6_info *fib6_info; 4247 struct fib6_config r_cfg; 4248 struct list_head next; 4249 }; 4250 4251 static void ip6_print_replace_route_err(struct list_head *rt6_nh_list) 4252 { 4253 struct rt6_nh *nh; 4254 4255 list_for_each_entry(nh, rt6_nh_list, next) { 4256 pr_warn("IPV6: multipath route replace failed (check consistency of installed routes): %pI6c nexthop %pI6c ifi %d\n", 4257 &nh->r_cfg.fc_dst, &nh->r_cfg.fc_gateway, 4258 nh->r_cfg.fc_ifindex); 4259 } 4260 } 4261 4262 static int ip6_route_info_append(struct net *net, 4263 struct list_head *rt6_nh_list, 4264 struct fib6_info *rt, 4265 struct fib6_config *r_cfg) 4266 { 4267 struct rt6_nh *nh; 4268 int err = -EEXIST; 4269 4270 list_for_each_entry(nh, rt6_nh_list, next) { 4271 /* check if fib6_info already exists */ 4272 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 4273 return err; 4274 } 4275 4276 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 4277 if (!nh) 4278 return -ENOMEM; 4279 nh->fib6_info = rt; 4280 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 4281 list_add_tail(&nh->next, rt6_nh_list); 4282 4283 return 0; 4284 } 4285 4286 static void ip6_route_mpath_notify(struct fib6_info *rt, 4287 struct fib6_info *rt_last, 4288 struct nl_info *info, 4289 __u16 nlflags) 4290 { 4291 /* if this is an APPEND route, then rt points to the first route 4292 * inserted and rt_last points to last route inserted. Userspace 4293 * wants a consistent dump of the route which starts at the first 4294 * nexthop. Since sibling routes are always added at the end of 4295 * the list, find the first sibling of the last route appended 4296 */ 4297 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { 4298 rt = list_first_entry(&rt_last->fib6_siblings, 4299 struct fib6_info, 4300 fib6_siblings); 4301 } 4302 4303 if (rt) 4304 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 4305 } 4306 4307 static int ip6_route_multipath_add(struct fib6_config *cfg, 4308 struct netlink_ext_ack *extack) 4309 { 4310 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 4311 struct nl_info *info = &cfg->fc_nlinfo; 4312 struct fib6_config r_cfg; 4313 struct rtnexthop *rtnh; 4314 struct fib6_info *rt; 4315 struct rt6_nh *err_nh; 4316 struct rt6_nh *nh, *nh_safe; 4317 __u16 nlflags; 4318 int remaining; 4319 int attrlen; 4320 int err = 1; 4321 int nhn = 0; 4322 int replace = (cfg->fc_nlinfo.nlh && 4323 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 4324 LIST_HEAD(rt6_nh_list); 4325 4326 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 4327 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 4328 nlflags |= NLM_F_APPEND; 4329 4330 remaining = cfg->fc_mp_len; 4331 rtnh = (struct rtnexthop *)cfg->fc_mp; 4332 4333 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 4334 * fib6_info structs per nexthop 4335 */ 4336 while (rtnh_ok(rtnh, remaining)) { 4337 memcpy(&r_cfg, cfg, sizeof(*cfg)); 4338 if (rtnh->rtnh_ifindex) 4339 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 4340 4341 attrlen = rtnh_attrlen(rtnh); 4342 if (attrlen > 0) { 4343 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 4344 4345 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 4346 if (nla) { 4347 r_cfg.fc_gateway = nla_get_in6_addr(nla); 4348 r_cfg.fc_flags |= RTF_GATEWAY; 4349 } 4350 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 4351 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 4352 if (nla) 4353 r_cfg.fc_encap_type = nla_get_u16(nla); 4354 } 4355 4356 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 4357 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 4358 if (IS_ERR(rt)) { 4359 err = PTR_ERR(rt); 4360 rt = NULL; 4361 goto cleanup; 4362 } 4363 if (!rt6_qualify_for_ecmp(rt)) { 4364 err = -EINVAL; 4365 NL_SET_ERR_MSG(extack, 4366 "Device only routes can not be added for IPv6 using the multipath API."); 4367 fib6_info_release(rt); 4368 goto cleanup; 4369 } 4370 4371 rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1; 4372 4373 err = ip6_route_info_append(info->nl_net, &rt6_nh_list, 4374 rt, &r_cfg); 4375 if (err) { 4376 fib6_info_release(rt); 4377 goto cleanup; 4378 } 4379 4380 rtnh = rtnh_next(rtnh, &remaining); 4381 } 4382 4383 /* for add and replace send one notification with all nexthops. 4384 * Skip the notification in fib6_add_rt2node and send one with 4385 * the full route when done 4386 */ 4387 info->skip_notify = 1; 4388 4389 err_nh = NULL; 4390 list_for_each_entry(nh, &rt6_nh_list, next) { 4391 err = __ip6_ins_rt(nh->fib6_info, info, extack); 4392 fib6_info_release(nh->fib6_info); 4393 4394 if (!err) { 4395 /* save reference to last route successfully inserted */ 4396 rt_last = nh->fib6_info; 4397 4398 /* save reference to first route for notification */ 4399 if (!rt_notif) 4400 rt_notif = nh->fib6_info; 4401 } 4402 4403 /* nh->fib6_info is used or freed at this point, reset to NULL*/ 4404 nh->fib6_info = NULL; 4405 if (err) { 4406 if (replace && nhn) 4407 ip6_print_replace_route_err(&rt6_nh_list); 4408 err_nh = nh; 4409 goto add_errout; 4410 } 4411 4412 /* Because each route is added like a single route we remove 4413 * these flags after the first nexthop: if there is a collision, 4414 * we have already failed to add the first nexthop: 4415 * fib6_add_rt2node() has rejected it; when replacing, old 4416 * nexthops have been replaced by first new, the rest should 4417 * be added to it. 4418 */ 4419 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 4420 NLM_F_REPLACE); 4421 nhn++; 4422 } 4423 4424 /* success ... tell user about new route */ 4425 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 4426 goto cleanup; 4427 4428 add_errout: 4429 /* send notification for routes that were added so that 4430 * the delete notifications sent by ip6_route_del are 4431 * coherent 4432 */ 4433 if (rt_notif) 4434 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 4435 4436 /* Delete routes that were already added */ 4437 list_for_each_entry(nh, &rt6_nh_list, next) { 4438 if (err_nh == nh) 4439 break; 4440 ip6_route_del(&nh->r_cfg, extack); 4441 } 4442 4443 cleanup: 4444 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { 4445 if (nh->fib6_info) 4446 fib6_info_release(nh->fib6_info); 4447 list_del(&nh->next); 4448 kfree(nh); 4449 } 4450 4451 return err; 4452 } 4453 4454 static int ip6_route_multipath_del(struct fib6_config *cfg, 4455 struct netlink_ext_ack *extack) 4456 { 4457 struct fib6_config r_cfg; 4458 struct rtnexthop *rtnh; 4459 int remaining; 4460 int attrlen; 4461 int err = 1, last_err = 0; 4462 4463 remaining = cfg->fc_mp_len; 4464 rtnh = (struct rtnexthop *)cfg->fc_mp; 4465 4466 /* Parse a Multipath Entry */ 4467 while (rtnh_ok(rtnh, remaining)) { 4468 memcpy(&r_cfg, cfg, sizeof(*cfg)); 4469 if (rtnh->rtnh_ifindex) 4470 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 4471 4472 attrlen = rtnh_attrlen(rtnh); 4473 if (attrlen > 0) { 4474 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 4475 4476 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 4477 if (nla) { 4478 nla_memcpy(&r_cfg.fc_gateway, nla, 16); 4479 r_cfg.fc_flags |= RTF_GATEWAY; 4480 } 4481 } 4482 err = ip6_route_del(&r_cfg, extack); 4483 if (err) 4484 last_err = err; 4485 4486 rtnh = rtnh_next(rtnh, &remaining); 4487 } 4488 4489 return last_err; 4490 } 4491 4492 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 4493 struct netlink_ext_ack *extack) 4494 { 4495 struct fib6_config cfg; 4496 int err; 4497 4498 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 4499 if (err < 0) 4500 return err; 4501 4502 if (cfg.fc_mp) 4503 return ip6_route_multipath_del(&cfg, extack); 4504 else { 4505 cfg.fc_delete_all_nh = 1; 4506 return ip6_route_del(&cfg, extack); 4507 } 4508 } 4509 4510 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 4511 struct netlink_ext_ack *extack) 4512 { 4513 struct fib6_config cfg; 4514 int err; 4515 4516 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 4517 if (err < 0) 4518 return err; 4519 4520 if (cfg.fc_mp) 4521 return ip6_route_multipath_add(&cfg, extack); 4522 else 4523 return ip6_route_add(&cfg, GFP_KERNEL, extack); 4524 } 4525 4526 static size_t rt6_nlmsg_size(struct fib6_info *rt) 4527 { 4528 int nexthop_len = 0; 4529 4530 if (rt->fib6_nsiblings) { 4531 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */ 4532 + NLA_ALIGN(sizeof(struct rtnexthop)) 4533 + nla_total_size(16) /* RTA_GATEWAY */ 4534 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate); 4535 4536 nexthop_len *= rt->fib6_nsiblings; 4537 } 4538 4539 return NLMSG_ALIGN(sizeof(struct rtmsg)) 4540 + nla_total_size(16) /* RTA_SRC */ 4541 + nla_total_size(16) /* RTA_DST */ 4542 + nla_total_size(16) /* RTA_GATEWAY */ 4543 + nla_total_size(16) /* RTA_PREFSRC */ 4544 + nla_total_size(4) /* RTA_TABLE */ 4545 + nla_total_size(4) /* RTA_IIF */ 4546 + nla_total_size(4) /* RTA_OIF */ 4547 + nla_total_size(4) /* RTA_PRIORITY */ 4548 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 4549 + nla_total_size(sizeof(struct rta_cacheinfo)) 4550 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 4551 + nla_total_size(1) /* RTA_PREF */ 4552 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate) 4553 + nexthop_len; 4554 } 4555 4556 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt, 4557 unsigned int *flags, bool skip_oif) 4558 { 4559 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 4560 *flags |= RTNH_F_DEAD; 4561 4562 if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) { 4563 *flags |= RTNH_F_LINKDOWN; 4564 4565 rcu_read_lock(); 4566 if (fib6_ignore_linkdown(rt)) 4567 *flags |= RTNH_F_DEAD; 4568 rcu_read_unlock(); 4569 } 4570 4571 if (rt->fib6_flags & RTF_GATEWAY) { 4572 if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0) 4573 goto nla_put_failure; 4574 } 4575 4576 *flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK); 4577 if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD) 4578 *flags |= RTNH_F_OFFLOAD; 4579 4580 /* not needed for multipath encoding b/c it has a rtnexthop struct */ 4581 if (!skip_oif && rt->fib6_nh.nh_dev && 4582 nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex)) 4583 goto nla_put_failure; 4584 4585 if (rt->fib6_nh.nh_lwtstate && 4586 lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0) 4587 goto nla_put_failure; 4588 4589 return 0; 4590 4591 nla_put_failure: 4592 return -EMSGSIZE; 4593 } 4594 4595 /* add multipath next hop */ 4596 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt) 4597 { 4598 const struct net_device *dev = rt->fib6_nh.nh_dev; 4599 struct rtnexthop *rtnh; 4600 unsigned int flags = 0; 4601 4602 rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh)); 4603 if (!rtnh) 4604 goto nla_put_failure; 4605 4606 rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1; 4607 rtnh->rtnh_ifindex = dev ? dev->ifindex : 0; 4608 4609 if (rt6_nexthop_info(skb, rt, &flags, true) < 0) 4610 goto nla_put_failure; 4611 4612 rtnh->rtnh_flags = flags; 4613 4614 /* length of rtnetlink header + attributes */ 4615 rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh; 4616 4617 return 0; 4618 4619 nla_put_failure: 4620 return -EMSGSIZE; 4621 } 4622 4623 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 4624 struct fib6_info *rt, struct dst_entry *dst, 4625 struct in6_addr *dest, struct in6_addr *src, 4626 int iif, int type, u32 portid, u32 seq, 4627 unsigned int flags) 4628 { 4629 struct rt6_info *rt6 = (struct rt6_info *)dst; 4630 struct rt6key *rt6_dst, *rt6_src; 4631 u32 *pmetrics, table, rt6_flags; 4632 struct nlmsghdr *nlh; 4633 struct rtmsg *rtm; 4634 long expires = 0; 4635 4636 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 4637 if (!nlh) 4638 return -EMSGSIZE; 4639 4640 if (rt6) { 4641 rt6_dst = &rt6->rt6i_dst; 4642 rt6_src = &rt6->rt6i_src; 4643 rt6_flags = rt6->rt6i_flags; 4644 } else { 4645 rt6_dst = &rt->fib6_dst; 4646 rt6_src = &rt->fib6_src; 4647 rt6_flags = rt->fib6_flags; 4648 } 4649 4650 rtm = nlmsg_data(nlh); 4651 rtm->rtm_family = AF_INET6; 4652 rtm->rtm_dst_len = rt6_dst->plen; 4653 rtm->rtm_src_len = rt6_src->plen; 4654 rtm->rtm_tos = 0; 4655 if (rt->fib6_table) 4656 table = rt->fib6_table->tb6_id; 4657 else 4658 table = RT6_TABLE_UNSPEC; 4659 rtm->rtm_table = table; 4660 if (nla_put_u32(skb, RTA_TABLE, table)) 4661 goto nla_put_failure; 4662 4663 rtm->rtm_type = rt->fib6_type; 4664 rtm->rtm_flags = 0; 4665 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 4666 rtm->rtm_protocol = rt->fib6_protocol; 4667 4668 if (rt6_flags & RTF_CACHE) 4669 rtm->rtm_flags |= RTM_F_CLONED; 4670 4671 if (dest) { 4672 if (nla_put_in6_addr(skb, RTA_DST, dest)) 4673 goto nla_put_failure; 4674 rtm->rtm_dst_len = 128; 4675 } else if (rtm->rtm_dst_len) 4676 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 4677 goto nla_put_failure; 4678 #ifdef CONFIG_IPV6_SUBTREES 4679 if (src) { 4680 if (nla_put_in6_addr(skb, RTA_SRC, src)) 4681 goto nla_put_failure; 4682 rtm->rtm_src_len = 128; 4683 } else if (rtm->rtm_src_len && 4684 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 4685 goto nla_put_failure; 4686 #endif 4687 if (iif) { 4688 #ifdef CONFIG_IPV6_MROUTE 4689 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 4690 int err = ip6mr_get_route(net, skb, rtm, portid); 4691 4692 if (err == 0) 4693 return 0; 4694 if (err < 0) 4695 goto nla_put_failure; 4696 } else 4697 #endif 4698 if (nla_put_u32(skb, RTA_IIF, iif)) 4699 goto nla_put_failure; 4700 } else if (dest) { 4701 struct in6_addr saddr_buf; 4702 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && 4703 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 4704 goto nla_put_failure; 4705 } 4706 4707 if (rt->fib6_prefsrc.plen) { 4708 struct in6_addr saddr_buf; 4709 saddr_buf = rt->fib6_prefsrc.addr; 4710 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 4711 goto nla_put_failure; 4712 } 4713 4714 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 4715 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 4716 goto nla_put_failure; 4717 4718 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 4719 goto nla_put_failure; 4720 4721 /* For multipath routes, walk the siblings list and add 4722 * each as a nexthop within RTA_MULTIPATH. 4723 */ 4724 if (rt6) { 4725 if (rt6_flags & RTF_GATEWAY && 4726 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 4727 goto nla_put_failure; 4728 4729 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) 4730 goto nla_put_failure; 4731 } else if (rt->fib6_nsiblings) { 4732 struct fib6_info *sibling, *next_sibling; 4733 struct nlattr *mp; 4734 4735 mp = nla_nest_start(skb, RTA_MULTIPATH); 4736 if (!mp) 4737 goto nla_put_failure; 4738 4739 if (rt6_add_nexthop(skb, rt) < 0) 4740 goto nla_put_failure; 4741 4742 list_for_each_entry_safe(sibling, next_sibling, 4743 &rt->fib6_siblings, fib6_siblings) { 4744 if (rt6_add_nexthop(skb, sibling) < 0) 4745 goto nla_put_failure; 4746 } 4747 4748 nla_nest_end(skb, mp); 4749 } else { 4750 if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0) 4751 goto nla_put_failure; 4752 } 4753 4754 if (rt6_flags & RTF_EXPIRES) { 4755 expires = dst ? dst->expires : rt->expires; 4756 expires -= jiffies; 4757 } 4758 4759 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 4760 goto nla_put_failure; 4761 4762 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 4763 goto nla_put_failure; 4764 4765 4766 nlmsg_end(skb, nlh); 4767 return 0; 4768 4769 nla_put_failure: 4770 nlmsg_cancel(skb, nlh); 4771 return -EMSGSIZE; 4772 } 4773 4774 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 4775 const struct net_device *dev) 4776 { 4777 if (f6i->fib6_nh.nh_dev == dev) 4778 return true; 4779 4780 if (f6i->fib6_nsiblings) { 4781 struct fib6_info *sibling, *next_sibling; 4782 4783 list_for_each_entry_safe(sibling, next_sibling, 4784 &f6i->fib6_siblings, fib6_siblings) { 4785 if (sibling->fib6_nh.nh_dev == dev) 4786 return true; 4787 } 4788 } 4789 4790 return false; 4791 } 4792 4793 int rt6_dump_route(struct fib6_info *rt, void *p_arg) 4794 { 4795 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 4796 struct fib_dump_filter *filter = &arg->filter; 4797 unsigned int flags = NLM_F_MULTI; 4798 struct net *net = arg->net; 4799 4800 if (rt == net->ipv6.fib6_null_entry) 4801 return 0; 4802 4803 if ((filter->flags & RTM_F_PREFIX) && 4804 !(rt->fib6_flags & RTF_PREFIX_RT)) { 4805 /* success since this is not a prefix route */ 4806 return 1; 4807 } 4808 if (filter->filter_set) { 4809 if ((filter->rt_type && rt->fib6_type != filter->rt_type) || 4810 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 4811 (filter->protocol && rt->fib6_protocol != filter->protocol)) { 4812 return 1; 4813 } 4814 flags |= NLM_F_DUMP_FILTERED; 4815 } 4816 4817 return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0, 4818 RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid, 4819 arg->cb->nlh->nlmsg_seq, flags); 4820 } 4821 4822 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 4823 struct netlink_ext_ack *extack) 4824 { 4825 struct net *net = sock_net(in_skb->sk); 4826 struct nlattr *tb[RTA_MAX+1]; 4827 int err, iif = 0, oif = 0; 4828 struct fib6_info *from; 4829 struct dst_entry *dst; 4830 struct rt6_info *rt; 4831 struct sk_buff *skb; 4832 struct rtmsg *rtm; 4833 struct flowi6 fl6 = {}; 4834 bool fibmatch; 4835 4836 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, 4837 extack); 4838 if (err < 0) 4839 goto errout; 4840 4841 err = -EINVAL; 4842 rtm = nlmsg_data(nlh); 4843 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); 4844 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 4845 4846 if (tb[RTA_SRC]) { 4847 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 4848 goto errout; 4849 4850 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 4851 } 4852 4853 if (tb[RTA_DST]) { 4854 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 4855 goto errout; 4856 4857 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 4858 } 4859 4860 if (tb[RTA_IIF]) 4861 iif = nla_get_u32(tb[RTA_IIF]); 4862 4863 if (tb[RTA_OIF]) 4864 oif = nla_get_u32(tb[RTA_OIF]); 4865 4866 if (tb[RTA_MARK]) 4867 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 4868 4869 if (tb[RTA_UID]) 4870 fl6.flowi6_uid = make_kuid(current_user_ns(), 4871 nla_get_u32(tb[RTA_UID])); 4872 else 4873 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 4874 4875 if (tb[RTA_SPORT]) 4876 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 4877 4878 if (tb[RTA_DPORT]) 4879 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 4880 4881 if (tb[RTA_IP_PROTO]) { 4882 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 4883 &fl6.flowi6_proto, extack); 4884 if (err) 4885 goto errout; 4886 } 4887 4888 if (iif) { 4889 struct net_device *dev; 4890 int flags = 0; 4891 4892 rcu_read_lock(); 4893 4894 dev = dev_get_by_index_rcu(net, iif); 4895 if (!dev) { 4896 rcu_read_unlock(); 4897 err = -ENODEV; 4898 goto errout; 4899 } 4900 4901 fl6.flowi6_iif = iif; 4902 4903 if (!ipv6_addr_any(&fl6.saddr)) 4904 flags |= RT6_LOOKUP_F_HAS_SADDR; 4905 4906 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 4907 4908 rcu_read_unlock(); 4909 } else { 4910 fl6.flowi6_oif = oif; 4911 4912 dst = ip6_route_output(net, NULL, &fl6); 4913 } 4914 4915 4916 rt = container_of(dst, struct rt6_info, dst); 4917 if (rt->dst.error) { 4918 err = rt->dst.error; 4919 ip6_rt_put(rt); 4920 goto errout; 4921 } 4922 4923 if (rt == net->ipv6.ip6_null_entry) { 4924 err = rt->dst.error; 4925 ip6_rt_put(rt); 4926 goto errout; 4927 } 4928 4929 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 4930 if (!skb) { 4931 ip6_rt_put(rt); 4932 err = -ENOBUFS; 4933 goto errout; 4934 } 4935 4936 skb_dst_set(skb, &rt->dst); 4937 4938 rcu_read_lock(); 4939 from = rcu_dereference(rt->from); 4940 4941 if (fibmatch) 4942 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif, 4943 RTM_NEWROUTE, NETLINK_CB(in_skb).portid, 4944 nlh->nlmsg_seq, 0); 4945 else 4946 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 4947 &fl6.saddr, iif, RTM_NEWROUTE, 4948 NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 4949 0); 4950 rcu_read_unlock(); 4951 4952 if (err < 0) { 4953 kfree_skb(skb); 4954 goto errout; 4955 } 4956 4957 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 4958 errout: 4959 return err; 4960 } 4961 4962 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 4963 unsigned int nlm_flags) 4964 { 4965 struct sk_buff *skb; 4966 struct net *net = info->nl_net; 4967 u32 seq; 4968 int err; 4969 4970 err = -ENOBUFS; 4971 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 4972 4973 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 4974 if (!skb) 4975 goto errout; 4976 4977 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 4978 event, info->portid, seq, nlm_flags); 4979 if (err < 0) { 4980 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 4981 WARN_ON(err == -EMSGSIZE); 4982 kfree_skb(skb); 4983 goto errout; 4984 } 4985 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 4986 info->nlh, gfp_any()); 4987 return; 4988 errout: 4989 if (err < 0) 4990 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 4991 } 4992 4993 static int ip6_route_dev_notify(struct notifier_block *this, 4994 unsigned long event, void *ptr) 4995 { 4996 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4997 struct net *net = dev_net(dev); 4998 4999 if (!(dev->flags & IFF_LOOPBACK)) 5000 return NOTIFY_OK; 5001 5002 if (event == NETDEV_REGISTER) { 5003 net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev; 5004 net->ipv6.ip6_null_entry->dst.dev = dev; 5005 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 5006 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5007 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 5008 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 5009 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 5010 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 5011 #endif 5012 } else if (event == NETDEV_UNREGISTER && 5013 dev->reg_state != NETREG_UNREGISTERED) { 5014 /* NETDEV_UNREGISTER could be fired for multiple times by 5015 * netdev_wait_allrefs(). Make sure we only call this once. 5016 */ 5017 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 5018 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5019 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 5020 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 5021 #endif 5022 } 5023 5024 return NOTIFY_OK; 5025 } 5026 5027 /* 5028 * /proc 5029 */ 5030 5031 #ifdef CONFIG_PROC_FS 5032 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 5033 { 5034 struct net *net = (struct net *)seq->private; 5035 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 5036 net->ipv6.rt6_stats->fib_nodes, 5037 net->ipv6.rt6_stats->fib_route_nodes, 5038 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 5039 net->ipv6.rt6_stats->fib_rt_entries, 5040 net->ipv6.rt6_stats->fib_rt_cache, 5041 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 5042 net->ipv6.rt6_stats->fib_discarded_routes); 5043 5044 return 0; 5045 } 5046 #endif /* CONFIG_PROC_FS */ 5047 5048 #ifdef CONFIG_SYSCTL 5049 5050 static 5051 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, 5052 void __user *buffer, size_t *lenp, loff_t *ppos) 5053 { 5054 struct net *net; 5055 int delay; 5056 if (!write) 5057 return -EINVAL; 5058 5059 net = (struct net *)ctl->extra1; 5060 delay = net->ipv6.sysctl.flush_delay; 5061 proc_dointvec(ctl, write, buffer, lenp, ppos); 5062 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 5063 return 0; 5064 } 5065 5066 static int zero; 5067 static int one = 1; 5068 5069 static struct ctl_table ipv6_route_table_template[] = { 5070 { 5071 .procname = "flush", 5072 .data = &init_net.ipv6.sysctl.flush_delay, 5073 .maxlen = sizeof(int), 5074 .mode = 0200, 5075 .proc_handler = ipv6_sysctl_rtcache_flush 5076 }, 5077 { 5078 .procname = "gc_thresh", 5079 .data = &ip6_dst_ops_template.gc_thresh, 5080 .maxlen = sizeof(int), 5081 .mode = 0644, 5082 .proc_handler = proc_dointvec, 5083 }, 5084 { 5085 .procname = "max_size", 5086 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 5087 .maxlen = sizeof(int), 5088 .mode = 0644, 5089 .proc_handler = proc_dointvec, 5090 }, 5091 { 5092 .procname = "gc_min_interval", 5093 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 5094 .maxlen = sizeof(int), 5095 .mode = 0644, 5096 .proc_handler = proc_dointvec_jiffies, 5097 }, 5098 { 5099 .procname = "gc_timeout", 5100 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 5101 .maxlen = sizeof(int), 5102 .mode = 0644, 5103 .proc_handler = proc_dointvec_jiffies, 5104 }, 5105 { 5106 .procname = "gc_interval", 5107 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 5108 .maxlen = sizeof(int), 5109 .mode = 0644, 5110 .proc_handler = proc_dointvec_jiffies, 5111 }, 5112 { 5113 .procname = "gc_elasticity", 5114 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 5115 .maxlen = sizeof(int), 5116 .mode = 0644, 5117 .proc_handler = proc_dointvec, 5118 }, 5119 { 5120 .procname = "mtu_expires", 5121 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 5122 .maxlen = sizeof(int), 5123 .mode = 0644, 5124 .proc_handler = proc_dointvec_jiffies, 5125 }, 5126 { 5127 .procname = "min_adv_mss", 5128 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 5129 .maxlen = sizeof(int), 5130 .mode = 0644, 5131 .proc_handler = proc_dointvec, 5132 }, 5133 { 5134 .procname = "gc_min_interval_ms", 5135 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 5136 .maxlen = sizeof(int), 5137 .mode = 0644, 5138 .proc_handler = proc_dointvec_ms_jiffies, 5139 }, 5140 { 5141 .procname = "skip_notify_on_dev_down", 5142 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 5143 .maxlen = sizeof(int), 5144 .mode = 0644, 5145 .proc_handler = proc_dointvec, 5146 .extra1 = &zero, 5147 .extra2 = &one, 5148 }, 5149 { } 5150 }; 5151 5152 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 5153 { 5154 struct ctl_table *table; 5155 5156 table = kmemdup(ipv6_route_table_template, 5157 sizeof(ipv6_route_table_template), 5158 GFP_KERNEL); 5159 5160 if (table) { 5161 table[0].data = &net->ipv6.sysctl.flush_delay; 5162 table[0].extra1 = net; 5163 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 5164 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size; 5165 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 5166 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 5167 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 5168 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 5169 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 5170 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 5171 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 5172 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 5173 5174 /* Don't export sysctls to unprivileged users */ 5175 if (net->user_ns != &init_user_ns) 5176 table[0].procname = NULL; 5177 } 5178 5179 return table; 5180 } 5181 #endif 5182 5183 static int __net_init ip6_route_net_init(struct net *net) 5184 { 5185 int ret = -ENOMEM; 5186 5187 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 5188 sizeof(net->ipv6.ip6_dst_ops)); 5189 5190 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 5191 goto out_ip6_dst_ops; 5192 5193 net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template, 5194 sizeof(*net->ipv6.fib6_null_entry), 5195 GFP_KERNEL); 5196 if (!net->ipv6.fib6_null_entry) 5197 goto out_ip6_dst_entries; 5198 5199 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 5200 sizeof(*net->ipv6.ip6_null_entry), 5201 GFP_KERNEL); 5202 if (!net->ipv6.ip6_null_entry) 5203 goto out_fib6_null_entry; 5204 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5205 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 5206 ip6_template_metrics, true); 5207 5208 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5209 net->ipv6.fib6_has_custom_rules = false; 5210 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 5211 sizeof(*net->ipv6.ip6_prohibit_entry), 5212 GFP_KERNEL); 5213 if (!net->ipv6.ip6_prohibit_entry) 5214 goto out_ip6_null_entry; 5215 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5216 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 5217 ip6_template_metrics, true); 5218 5219 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 5220 sizeof(*net->ipv6.ip6_blk_hole_entry), 5221 GFP_KERNEL); 5222 if (!net->ipv6.ip6_blk_hole_entry) 5223 goto out_ip6_prohibit_entry; 5224 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5225 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 5226 ip6_template_metrics, true); 5227 #endif 5228 5229 net->ipv6.sysctl.flush_delay = 0; 5230 net->ipv6.sysctl.ip6_rt_max_size = 4096; 5231 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 5232 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 5233 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 5234 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 5235 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 5236 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 5237 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 5238 5239 net->ipv6.ip6_rt_gc_expire = 30*HZ; 5240 5241 ret = 0; 5242 out: 5243 return ret; 5244 5245 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5246 out_ip6_prohibit_entry: 5247 kfree(net->ipv6.ip6_prohibit_entry); 5248 out_ip6_null_entry: 5249 kfree(net->ipv6.ip6_null_entry); 5250 #endif 5251 out_fib6_null_entry: 5252 kfree(net->ipv6.fib6_null_entry); 5253 out_ip6_dst_entries: 5254 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 5255 out_ip6_dst_ops: 5256 goto out; 5257 } 5258 5259 static void __net_exit ip6_route_net_exit(struct net *net) 5260 { 5261 kfree(net->ipv6.fib6_null_entry); 5262 kfree(net->ipv6.ip6_null_entry); 5263 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5264 kfree(net->ipv6.ip6_prohibit_entry); 5265 kfree(net->ipv6.ip6_blk_hole_entry); 5266 #endif 5267 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 5268 } 5269 5270 static int __net_init ip6_route_net_init_late(struct net *net) 5271 { 5272 #ifdef CONFIG_PROC_FS 5273 proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops, 5274 sizeof(struct ipv6_route_iter)); 5275 proc_create_net_single("rt6_stats", 0444, net->proc_net, 5276 rt6_stats_seq_show, NULL); 5277 #endif 5278 return 0; 5279 } 5280 5281 static void __net_exit ip6_route_net_exit_late(struct net *net) 5282 { 5283 #ifdef CONFIG_PROC_FS 5284 remove_proc_entry("ipv6_route", net->proc_net); 5285 remove_proc_entry("rt6_stats", net->proc_net); 5286 #endif 5287 } 5288 5289 static struct pernet_operations ip6_route_net_ops = { 5290 .init = ip6_route_net_init, 5291 .exit = ip6_route_net_exit, 5292 }; 5293 5294 static int __net_init ipv6_inetpeer_init(struct net *net) 5295 { 5296 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 5297 5298 if (!bp) 5299 return -ENOMEM; 5300 inet_peer_base_init(bp); 5301 net->ipv6.peers = bp; 5302 return 0; 5303 } 5304 5305 static void __net_exit ipv6_inetpeer_exit(struct net *net) 5306 { 5307 struct inet_peer_base *bp = net->ipv6.peers; 5308 5309 net->ipv6.peers = NULL; 5310 inetpeer_invalidate_tree(bp); 5311 kfree(bp); 5312 } 5313 5314 static struct pernet_operations ipv6_inetpeer_ops = { 5315 .init = ipv6_inetpeer_init, 5316 .exit = ipv6_inetpeer_exit, 5317 }; 5318 5319 static struct pernet_operations ip6_route_net_late_ops = { 5320 .init = ip6_route_net_init_late, 5321 .exit = ip6_route_net_exit_late, 5322 }; 5323 5324 static struct notifier_block ip6_route_dev_notifier = { 5325 .notifier_call = ip6_route_dev_notify, 5326 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 5327 }; 5328 5329 void __init ip6_route_init_special_entries(void) 5330 { 5331 /* Registering of the loopback is done before this portion of code, 5332 * the loopback reference in rt6_info will not be taken, do it 5333 * manually for init_net */ 5334 init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev; 5335 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 5336 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5337 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5338 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 5339 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5340 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 5341 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5342 #endif 5343 } 5344 5345 int __init ip6_route_init(void) 5346 { 5347 int ret; 5348 int cpu; 5349 5350 ret = -ENOMEM; 5351 ip6_dst_ops_template.kmem_cachep = 5352 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 5353 SLAB_HWCACHE_ALIGN, NULL); 5354 if (!ip6_dst_ops_template.kmem_cachep) 5355 goto out; 5356 5357 ret = dst_entries_init(&ip6_dst_blackhole_ops); 5358 if (ret) 5359 goto out_kmem_cache; 5360 5361 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 5362 if (ret) 5363 goto out_dst_entries; 5364 5365 ret = register_pernet_subsys(&ip6_route_net_ops); 5366 if (ret) 5367 goto out_register_inetpeer; 5368 5369 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 5370 5371 ret = fib6_init(); 5372 if (ret) 5373 goto out_register_subsys; 5374 5375 ret = xfrm6_init(); 5376 if (ret) 5377 goto out_fib6_init; 5378 5379 ret = fib6_rules_init(); 5380 if (ret) 5381 goto xfrm6_init; 5382 5383 ret = register_pernet_subsys(&ip6_route_net_late_ops); 5384 if (ret) 5385 goto fib6_rules_init; 5386 5387 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, 5388 inet6_rtm_newroute, NULL, 0); 5389 if (ret < 0) 5390 goto out_register_late_subsys; 5391 5392 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, 5393 inet6_rtm_delroute, NULL, 0); 5394 if (ret < 0) 5395 goto out_register_late_subsys; 5396 5397 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, 5398 inet6_rtm_getroute, NULL, 5399 RTNL_FLAG_DOIT_UNLOCKED); 5400 if (ret < 0) 5401 goto out_register_late_subsys; 5402 5403 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 5404 if (ret) 5405 goto out_register_late_subsys; 5406 5407 for_each_possible_cpu(cpu) { 5408 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 5409 5410 INIT_LIST_HEAD(&ul->head); 5411 spin_lock_init(&ul->lock); 5412 } 5413 5414 out: 5415 return ret; 5416 5417 out_register_late_subsys: 5418 rtnl_unregister_all(PF_INET6); 5419 unregister_pernet_subsys(&ip6_route_net_late_ops); 5420 fib6_rules_init: 5421 fib6_rules_cleanup(); 5422 xfrm6_init: 5423 xfrm6_fini(); 5424 out_fib6_init: 5425 fib6_gc_cleanup(); 5426 out_register_subsys: 5427 unregister_pernet_subsys(&ip6_route_net_ops); 5428 out_register_inetpeer: 5429 unregister_pernet_subsys(&ipv6_inetpeer_ops); 5430 out_dst_entries: 5431 dst_entries_destroy(&ip6_dst_blackhole_ops); 5432 out_kmem_cache: 5433 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 5434 goto out; 5435 } 5436 5437 void ip6_route_cleanup(void) 5438 { 5439 unregister_netdevice_notifier(&ip6_route_dev_notifier); 5440 unregister_pernet_subsys(&ip6_route_net_late_ops); 5441 fib6_rules_cleanup(); 5442 xfrm6_fini(); 5443 fib6_gc_cleanup(); 5444 unregister_pernet_subsys(&ipv6_inetpeer_ops); 5445 unregister_pernet_subsys(&ip6_route_net_ops); 5446 dst_entries_destroy(&ip6_dst_blackhole_ops); 5447 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 5448 } 5449