xref: /openbmc/linux/net/ipv6/route.c (revision e7f127b2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux INET6 implementation
4  *	FIB front-end.
5  *
6  *	Authors:
7  *	Pedro Roque		<roque@di.fc.ul.pt>
8  */
9 
10 /*	Changes:
11  *
12  *	YOSHIFUJI Hideaki @USAGI
13  *		reworked default router selection.
14  *		- respect outgoing interface
15  *		- select from (probably) reachable routers (i.e.
16  *		routers in REACHABLE, STALE, DELAY or PROBE states).
17  *		- always select the same router if it is (probably)
18  *		reachable.  otherwise, round-robin the list.
19  *	Ville Nuorvala
20  *		Fixed routing subtrees.
21  */
22 
23 #define pr_fmt(fmt) "IPv6: " fmt
24 
25 #include <linux/capability.h>
26 #include <linux/errno.h>
27 #include <linux/export.h>
28 #include <linux/types.h>
29 #include <linux/times.h>
30 #include <linux/socket.h>
31 #include <linux/sockios.h>
32 #include <linux/net.h>
33 #include <linux/route.h>
34 #include <linux/netdevice.h>
35 #include <linux/in6.h>
36 #include <linux/mroute6.h>
37 #include <linux/init.h>
38 #include <linux/if_arp.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 #include <linux/nsproxy.h>
42 #include <linux/slab.h>
43 #include <linux/jhash.h>
44 #include <linux/siphash.h>
45 #include <net/net_namespace.h>
46 #include <net/snmp.h>
47 #include <net/ipv6.h>
48 #include <net/ip6_fib.h>
49 #include <net/ip6_route.h>
50 #include <net/ndisc.h>
51 #include <net/addrconf.h>
52 #include <net/tcp.h>
53 #include <linux/rtnetlink.h>
54 #include <net/dst.h>
55 #include <net/dst_metadata.h>
56 #include <net/xfrm.h>
57 #include <net/netevent.h>
58 #include <net/netlink.h>
59 #include <net/rtnh.h>
60 #include <net/lwtunnel.h>
61 #include <net/ip_tunnels.h>
62 #include <net/l3mdev.h>
63 #include <net/ip.h>
64 #include <linux/uaccess.h>
65 #include <linux/btf_ids.h>
66 
67 #ifdef CONFIG_SYSCTL
68 #include <linux/sysctl.h>
69 #endif
70 
71 static int ip6_rt_type_to_error(u8 fib6_type);
72 
73 #define CREATE_TRACE_POINTS
74 #include <trace/events/fib6.h>
75 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
76 #undef CREATE_TRACE_POINTS
77 
78 enum rt6_nud_state {
79 	RT6_NUD_FAIL_HARD = -3,
80 	RT6_NUD_FAIL_PROBE = -2,
81 	RT6_NUD_FAIL_DO_RR = -1,
82 	RT6_NUD_SUCCEED = 1
83 };
84 
85 INDIRECT_CALLABLE_SCOPE
86 struct dst_entry	*ip6_dst_check(struct dst_entry *dst, u32 cookie);
87 static unsigned int	 ip6_default_advmss(const struct dst_entry *dst);
88 INDIRECT_CALLABLE_SCOPE
89 unsigned int		ip6_mtu(const struct dst_entry *dst);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void		ip6_dst_destroy(struct dst_entry *);
92 static void		ip6_dst_ifdown(struct dst_entry *,
93 				       struct net_device *dev, int how);
94 static int		 ip6_dst_gc(struct dst_ops *ops);
95 
96 static int		ip6_pkt_discard(struct sk_buff *skb);
97 static int		ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
98 static int		ip6_pkt_prohibit(struct sk_buff *skb);
99 static int		ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
100 static void		ip6_link_failure(struct sk_buff *skb);
101 static void		ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
102 					   struct sk_buff *skb, u32 mtu,
103 					   bool confirm_neigh);
104 static void		rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
105 					struct sk_buff *skb);
106 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif,
107 			   int strict);
108 static size_t rt6_nlmsg_size(struct fib6_info *f6i);
109 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
110 			 struct fib6_info *rt, struct dst_entry *dst,
111 			 struct in6_addr *dest, struct in6_addr *src,
112 			 int iif, int type, u32 portid, u32 seq,
113 			 unsigned int flags);
114 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res,
115 					   const struct in6_addr *daddr,
116 					   const struct in6_addr *saddr);
117 
118 #ifdef CONFIG_IPV6_ROUTE_INFO
119 static struct fib6_info *rt6_add_route_info(struct net *net,
120 					   const struct in6_addr *prefix, int prefixlen,
121 					   const struct in6_addr *gwaddr,
122 					   struct net_device *dev,
123 					   unsigned int pref);
124 static struct fib6_info *rt6_get_route_info(struct net *net,
125 					   const struct in6_addr *prefix, int prefixlen,
126 					   const struct in6_addr *gwaddr,
127 					   struct net_device *dev);
128 #endif
129 
130 struct uncached_list {
131 	spinlock_t		lock;
132 	struct list_head	head;
133 };
134 
135 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
136 
137 void rt6_uncached_list_add(struct rt6_info *rt)
138 {
139 	struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
140 
141 	rt->rt6i_uncached_list = ul;
142 
143 	spin_lock_bh(&ul->lock);
144 	list_add_tail(&rt->rt6i_uncached, &ul->head);
145 	spin_unlock_bh(&ul->lock);
146 }
147 
148 void rt6_uncached_list_del(struct rt6_info *rt)
149 {
150 	if (!list_empty(&rt->rt6i_uncached)) {
151 		struct uncached_list *ul = rt->rt6i_uncached_list;
152 		struct net *net = dev_net(rt->dst.dev);
153 
154 		spin_lock_bh(&ul->lock);
155 		list_del(&rt->rt6i_uncached);
156 		atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache);
157 		spin_unlock_bh(&ul->lock);
158 	}
159 }
160 
161 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev)
162 {
163 	struct net_device *loopback_dev = net->loopback_dev;
164 	int cpu;
165 
166 	if (dev == loopback_dev)
167 		return;
168 
169 	for_each_possible_cpu(cpu) {
170 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
171 		struct rt6_info *rt;
172 
173 		spin_lock_bh(&ul->lock);
174 		list_for_each_entry(rt, &ul->head, rt6i_uncached) {
175 			struct inet6_dev *rt_idev = rt->rt6i_idev;
176 			struct net_device *rt_dev = rt->dst.dev;
177 
178 			if (rt_idev->dev == dev) {
179 				rt->rt6i_idev = in6_dev_get(loopback_dev);
180 				in6_dev_put(rt_idev);
181 			}
182 
183 			if (rt_dev == dev) {
184 				rt->dst.dev = blackhole_netdev;
185 				dev_replace_track(rt_dev, blackhole_netdev,
186 						  &rt->dst.dev_tracker,
187 						  GFP_ATOMIC);
188 			}
189 		}
190 		spin_unlock_bh(&ul->lock);
191 	}
192 }
193 
194 static inline const void *choose_neigh_daddr(const struct in6_addr *p,
195 					     struct sk_buff *skb,
196 					     const void *daddr)
197 {
198 	if (!ipv6_addr_any(p))
199 		return (const void *) p;
200 	else if (skb)
201 		return &ipv6_hdr(skb)->daddr;
202 	return daddr;
203 }
204 
205 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
206 				   struct net_device *dev,
207 				   struct sk_buff *skb,
208 				   const void *daddr)
209 {
210 	struct neighbour *n;
211 
212 	daddr = choose_neigh_daddr(gw, skb, daddr);
213 	n = __ipv6_neigh_lookup(dev, daddr);
214 	if (n)
215 		return n;
216 
217 	n = neigh_create(&nd_tbl, daddr, dev);
218 	return IS_ERR(n) ? NULL : n;
219 }
220 
221 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
222 					      struct sk_buff *skb,
223 					      const void *daddr)
224 {
225 	const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
226 
227 	return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any),
228 				dst->dev, skb, daddr);
229 }
230 
231 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
232 {
233 	struct net_device *dev = dst->dev;
234 	struct rt6_info *rt = (struct rt6_info *)dst;
235 
236 	daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr);
237 	if (!daddr)
238 		return;
239 	if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
240 		return;
241 	if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
242 		return;
243 	__ipv6_confirm_neigh(dev, daddr);
244 }
245 
246 static struct dst_ops ip6_dst_ops_template = {
247 	.family			=	AF_INET6,
248 	.gc			=	ip6_dst_gc,
249 	.gc_thresh		=	1024,
250 	.check			=	ip6_dst_check,
251 	.default_advmss		=	ip6_default_advmss,
252 	.mtu			=	ip6_mtu,
253 	.cow_metrics		=	dst_cow_metrics_generic,
254 	.destroy		=	ip6_dst_destroy,
255 	.ifdown			=	ip6_dst_ifdown,
256 	.negative_advice	=	ip6_negative_advice,
257 	.link_failure		=	ip6_link_failure,
258 	.update_pmtu		=	ip6_rt_update_pmtu,
259 	.redirect		=	rt6_do_redirect,
260 	.local_out		=	__ip6_local_out,
261 	.neigh_lookup		=	ip6_dst_neigh_lookup,
262 	.confirm_neigh		=	ip6_confirm_neigh,
263 };
264 
265 static struct dst_ops ip6_dst_blackhole_ops = {
266 	.family			= AF_INET6,
267 	.default_advmss		= ip6_default_advmss,
268 	.neigh_lookup		= ip6_dst_neigh_lookup,
269 	.check			= ip6_dst_check,
270 	.destroy		= ip6_dst_destroy,
271 	.cow_metrics		= dst_cow_metrics_generic,
272 	.update_pmtu		= dst_blackhole_update_pmtu,
273 	.redirect		= dst_blackhole_redirect,
274 	.mtu			= dst_blackhole_mtu,
275 };
276 
277 static const u32 ip6_template_metrics[RTAX_MAX] = {
278 	[RTAX_HOPLIMIT - 1] = 0,
279 };
280 
281 static const struct fib6_info fib6_null_entry_template = {
282 	.fib6_flags	= (RTF_REJECT | RTF_NONEXTHOP),
283 	.fib6_protocol  = RTPROT_KERNEL,
284 	.fib6_metric	= ~(u32)0,
285 	.fib6_ref	= REFCOUNT_INIT(1),
286 	.fib6_type	= RTN_UNREACHABLE,
287 	.fib6_metrics	= (struct dst_metrics *)&dst_default_metrics,
288 };
289 
290 static const struct rt6_info ip6_null_entry_template = {
291 	.dst = {
292 		.__refcnt	= ATOMIC_INIT(1),
293 		.__use		= 1,
294 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
295 		.error		= -ENETUNREACH,
296 		.input		= ip6_pkt_discard,
297 		.output		= ip6_pkt_discard_out,
298 	},
299 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
300 };
301 
302 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
303 
304 static const struct rt6_info ip6_prohibit_entry_template = {
305 	.dst = {
306 		.__refcnt	= ATOMIC_INIT(1),
307 		.__use		= 1,
308 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
309 		.error		= -EACCES,
310 		.input		= ip6_pkt_prohibit,
311 		.output		= ip6_pkt_prohibit_out,
312 	},
313 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
314 };
315 
316 static const struct rt6_info ip6_blk_hole_entry_template = {
317 	.dst = {
318 		.__refcnt	= ATOMIC_INIT(1),
319 		.__use		= 1,
320 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
321 		.error		= -EINVAL,
322 		.input		= dst_discard,
323 		.output		= dst_discard_out,
324 	},
325 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
326 };
327 
328 #endif
329 
330 static void rt6_info_init(struct rt6_info *rt)
331 {
332 	memset_after(rt, 0, dst);
333 	INIT_LIST_HEAD(&rt->rt6i_uncached);
334 }
335 
336 /* allocate dst with ip6_dst_ops */
337 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
338 			       int flags)
339 {
340 	struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
341 					1, DST_OBSOLETE_FORCE_CHK, flags);
342 
343 	if (rt) {
344 		rt6_info_init(rt);
345 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
346 	}
347 
348 	return rt;
349 }
350 EXPORT_SYMBOL(ip6_dst_alloc);
351 
352 static void ip6_dst_destroy(struct dst_entry *dst)
353 {
354 	struct rt6_info *rt = (struct rt6_info *)dst;
355 	struct fib6_info *from;
356 	struct inet6_dev *idev;
357 
358 	ip_dst_metrics_put(dst);
359 	rt6_uncached_list_del(rt);
360 
361 	idev = rt->rt6i_idev;
362 	if (idev) {
363 		rt->rt6i_idev = NULL;
364 		in6_dev_put(idev);
365 	}
366 
367 	from = xchg((__force struct fib6_info **)&rt->from, NULL);
368 	fib6_info_release(from);
369 }
370 
371 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
372 			   int how)
373 {
374 	struct rt6_info *rt = (struct rt6_info *)dst;
375 	struct inet6_dev *idev = rt->rt6i_idev;
376 	struct net_device *loopback_dev =
377 		dev_net(dev)->loopback_dev;
378 
379 	if (idev && idev->dev != loopback_dev) {
380 		struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev);
381 		if (loopback_idev) {
382 			rt->rt6i_idev = loopback_idev;
383 			in6_dev_put(idev);
384 		}
385 	}
386 }
387 
388 static bool __rt6_check_expired(const struct rt6_info *rt)
389 {
390 	if (rt->rt6i_flags & RTF_EXPIRES)
391 		return time_after(jiffies, rt->dst.expires);
392 	else
393 		return false;
394 }
395 
396 static bool rt6_check_expired(const struct rt6_info *rt)
397 {
398 	struct fib6_info *from;
399 
400 	from = rcu_dereference(rt->from);
401 
402 	if (rt->rt6i_flags & RTF_EXPIRES) {
403 		if (time_after(jiffies, rt->dst.expires))
404 			return true;
405 	} else if (from) {
406 		return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
407 			fib6_check_expired(from);
408 	}
409 	return false;
410 }
411 
412 void fib6_select_path(const struct net *net, struct fib6_result *res,
413 		      struct flowi6 *fl6, int oif, bool have_oif_match,
414 		      const struct sk_buff *skb, int strict)
415 {
416 	struct fib6_info *sibling, *next_sibling;
417 	struct fib6_info *match = res->f6i;
418 
419 	if (!match->nh && (!match->fib6_nsiblings || have_oif_match))
420 		goto out;
421 
422 	if (match->nh && have_oif_match && res->nh)
423 		return;
424 
425 	/* We might have already computed the hash for ICMPv6 errors. In such
426 	 * case it will always be non-zero. Otherwise now is the time to do it.
427 	 */
428 	if (!fl6->mp_hash &&
429 	    (!match->nh || nexthop_is_multipath(match->nh)))
430 		fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
431 
432 	if (unlikely(match->nh)) {
433 		nexthop_path_fib6_result(res, fl6->mp_hash);
434 		return;
435 	}
436 
437 	if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound))
438 		goto out;
439 
440 	list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
441 				 fib6_siblings) {
442 		const struct fib6_nh *nh = sibling->fib6_nh;
443 		int nh_upper_bound;
444 
445 		nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound);
446 		if (fl6->mp_hash > nh_upper_bound)
447 			continue;
448 		if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0)
449 			break;
450 		match = sibling;
451 		break;
452 	}
453 
454 out:
455 	res->f6i = match;
456 	res->nh = match->fib6_nh;
457 }
458 
459 /*
460  *	Route lookup. rcu_read_lock() should be held.
461  */
462 
463 static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh,
464 			       const struct in6_addr *saddr, int oif, int flags)
465 {
466 	const struct net_device *dev;
467 
468 	if (nh->fib_nh_flags & RTNH_F_DEAD)
469 		return false;
470 
471 	dev = nh->fib_nh_dev;
472 	if (oif) {
473 		if (dev->ifindex == oif)
474 			return true;
475 	} else {
476 		if (ipv6_chk_addr(net, saddr, dev,
477 				  flags & RT6_LOOKUP_F_IFACE))
478 			return true;
479 	}
480 
481 	return false;
482 }
483 
484 struct fib6_nh_dm_arg {
485 	struct net		*net;
486 	const struct in6_addr	*saddr;
487 	int			oif;
488 	int			flags;
489 	struct fib6_nh		*nh;
490 };
491 
492 static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg)
493 {
494 	struct fib6_nh_dm_arg *arg = _arg;
495 
496 	arg->nh = nh;
497 	return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif,
498 				  arg->flags);
499 }
500 
501 /* returns fib6_nh from nexthop or NULL */
502 static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh,
503 					struct fib6_result *res,
504 					const struct in6_addr *saddr,
505 					int oif, int flags)
506 {
507 	struct fib6_nh_dm_arg arg = {
508 		.net   = net,
509 		.saddr = saddr,
510 		.oif   = oif,
511 		.flags = flags,
512 	};
513 
514 	if (nexthop_is_blackhole(nh))
515 		return NULL;
516 
517 	if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg))
518 		return arg.nh;
519 
520 	return NULL;
521 }
522 
523 static void rt6_device_match(struct net *net, struct fib6_result *res,
524 			     const struct in6_addr *saddr, int oif, int flags)
525 {
526 	struct fib6_info *f6i = res->f6i;
527 	struct fib6_info *spf6i;
528 	struct fib6_nh *nh;
529 
530 	if (!oif && ipv6_addr_any(saddr)) {
531 		if (unlikely(f6i->nh)) {
532 			nh = nexthop_fib6_nh(f6i->nh);
533 			if (nexthop_is_blackhole(f6i->nh))
534 				goto out_blackhole;
535 		} else {
536 			nh = f6i->fib6_nh;
537 		}
538 		if (!(nh->fib_nh_flags & RTNH_F_DEAD))
539 			goto out;
540 	}
541 
542 	for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) {
543 		bool matched = false;
544 
545 		if (unlikely(spf6i->nh)) {
546 			nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr,
547 					      oif, flags);
548 			if (nh)
549 				matched = true;
550 		} else {
551 			nh = spf6i->fib6_nh;
552 			if (__rt6_device_match(net, nh, saddr, oif, flags))
553 				matched = true;
554 		}
555 		if (matched) {
556 			res->f6i = spf6i;
557 			goto out;
558 		}
559 	}
560 
561 	if (oif && flags & RT6_LOOKUP_F_IFACE) {
562 		res->f6i = net->ipv6.fib6_null_entry;
563 		nh = res->f6i->fib6_nh;
564 		goto out;
565 	}
566 
567 	if (unlikely(f6i->nh)) {
568 		nh = nexthop_fib6_nh(f6i->nh);
569 		if (nexthop_is_blackhole(f6i->nh))
570 			goto out_blackhole;
571 	} else {
572 		nh = f6i->fib6_nh;
573 	}
574 
575 	if (nh->fib_nh_flags & RTNH_F_DEAD) {
576 		res->f6i = net->ipv6.fib6_null_entry;
577 		nh = res->f6i->fib6_nh;
578 	}
579 out:
580 	res->nh = nh;
581 	res->fib6_type = res->f6i->fib6_type;
582 	res->fib6_flags = res->f6i->fib6_flags;
583 	return;
584 
585 out_blackhole:
586 	res->fib6_flags |= RTF_REJECT;
587 	res->fib6_type = RTN_BLACKHOLE;
588 	res->nh = nh;
589 }
590 
591 #ifdef CONFIG_IPV6_ROUTER_PREF
592 struct __rt6_probe_work {
593 	struct work_struct work;
594 	struct in6_addr target;
595 	struct net_device *dev;
596 	netdevice_tracker dev_tracker;
597 };
598 
599 static void rt6_probe_deferred(struct work_struct *w)
600 {
601 	struct in6_addr mcaddr;
602 	struct __rt6_probe_work *work =
603 		container_of(w, struct __rt6_probe_work, work);
604 
605 	addrconf_addr_solict_mult(&work->target, &mcaddr);
606 	ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
607 	dev_put_track(work->dev, &work->dev_tracker);
608 	kfree(work);
609 }
610 
611 static void rt6_probe(struct fib6_nh *fib6_nh)
612 {
613 	struct __rt6_probe_work *work = NULL;
614 	const struct in6_addr *nh_gw;
615 	unsigned long last_probe;
616 	struct neighbour *neigh;
617 	struct net_device *dev;
618 	struct inet6_dev *idev;
619 
620 	/*
621 	 * Okay, this does not seem to be appropriate
622 	 * for now, however, we need to check if it
623 	 * is really so; aka Router Reachability Probing.
624 	 *
625 	 * Router Reachability Probe MUST be rate-limited
626 	 * to no more than one per minute.
627 	 */
628 	if (!fib6_nh->fib_nh_gw_family)
629 		return;
630 
631 	nh_gw = &fib6_nh->fib_nh_gw6;
632 	dev = fib6_nh->fib_nh_dev;
633 	rcu_read_lock_bh();
634 	last_probe = READ_ONCE(fib6_nh->last_probe);
635 	idev = __in6_dev_get(dev);
636 	neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
637 	if (neigh) {
638 		if (neigh->nud_state & NUD_VALID)
639 			goto out;
640 
641 		write_lock(&neigh->lock);
642 		if (!(neigh->nud_state & NUD_VALID) &&
643 		    time_after(jiffies,
644 			       neigh->updated + idev->cnf.rtr_probe_interval)) {
645 			work = kmalloc(sizeof(*work), GFP_ATOMIC);
646 			if (work)
647 				__neigh_set_probe_once(neigh);
648 		}
649 		write_unlock(&neigh->lock);
650 	} else if (time_after(jiffies, last_probe +
651 				       idev->cnf.rtr_probe_interval)) {
652 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
653 	}
654 
655 	if (!work || cmpxchg(&fib6_nh->last_probe,
656 			     last_probe, jiffies) != last_probe) {
657 		kfree(work);
658 	} else {
659 		INIT_WORK(&work->work, rt6_probe_deferred);
660 		work->target = *nh_gw;
661 		dev_hold_track(dev, &work->dev_tracker, GFP_ATOMIC);
662 		work->dev = dev;
663 		schedule_work(&work->work);
664 	}
665 
666 out:
667 	rcu_read_unlock_bh();
668 }
669 #else
670 static inline void rt6_probe(struct fib6_nh *fib6_nh)
671 {
672 }
673 #endif
674 
675 /*
676  * Default Router Selection (RFC 2461 6.3.6)
677  */
678 static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh)
679 {
680 	enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
681 	struct neighbour *neigh;
682 
683 	rcu_read_lock_bh();
684 	neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev,
685 					  &fib6_nh->fib_nh_gw6);
686 	if (neigh) {
687 		read_lock(&neigh->lock);
688 		if (neigh->nud_state & NUD_VALID)
689 			ret = RT6_NUD_SUCCEED;
690 #ifdef CONFIG_IPV6_ROUTER_PREF
691 		else if (!(neigh->nud_state & NUD_FAILED))
692 			ret = RT6_NUD_SUCCEED;
693 		else
694 			ret = RT6_NUD_FAIL_PROBE;
695 #endif
696 		read_unlock(&neigh->lock);
697 	} else {
698 		ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
699 		      RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
700 	}
701 	rcu_read_unlock_bh();
702 
703 	return ret;
704 }
705 
706 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif,
707 			   int strict)
708 {
709 	int m = 0;
710 
711 	if (!oif || nh->fib_nh_dev->ifindex == oif)
712 		m = 2;
713 
714 	if (!m && (strict & RT6_LOOKUP_F_IFACE))
715 		return RT6_NUD_FAIL_HARD;
716 #ifdef CONFIG_IPV6_ROUTER_PREF
717 	m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2;
718 #endif
719 	if ((strict & RT6_LOOKUP_F_REACHABLE) &&
720 	    !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) {
721 		int n = rt6_check_neigh(nh);
722 		if (n < 0)
723 			return n;
724 	}
725 	return m;
726 }
727 
728 static bool find_match(struct fib6_nh *nh, u32 fib6_flags,
729 		       int oif, int strict, int *mpri, bool *do_rr)
730 {
731 	bool match_do_rr = false;
732 	bool rc = false;
733 	int m;
734 
735 	if (nh->fib_nh_flags & RTNH_F_DEAD)
736 		goto out;
737 
738 	if (ip6_ignore_linkdown(nh->fib_nh_dev) &&
739 	    nh->fib_nh_flags & RTNH_F_LINKDOWN &&
740 	    !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
741 		goto out;
742 
743 	m = rt6_score_route(nh, fib6_flags, oif, strict);
744 	if (m == RT6_NUD_FAIL_DO_RR) {
745 		match_do_rr = true;
746 		m = 0; /* lowest valid score */
747 	} else if (m == RT6_NUD_FAIL_HARD) {
748 		goto out;
749 	}
750 
751 	if (strict & RT6_LOOKUP_F_REACHABLE)
752 		rt6_probe(nh);
753 
754 	/* note that m can be RT6_NUD_FAIL_PROBE at this point */
755 	if (m > *mpri) {
756 		*do_rr = match_do_rr;
757 		*mpri = m;
758 		rc = true;
759 	}
760 out:
761 	return rc;
762 }
763 
764 struct fib6_nh_frl_arg {
765 	u32		flags;
766 	int		oif;
767 	int		strict;
768 	int		*mpri;
769 	bool		*do_rr;
770 	struct fib6_nh	*nh;
771 };
772 
773 static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg)
774 {
775 	struct fib6_nh_frl_arg *arg = _arg;
776 
777 	arg->nh = nh;
778 	return find_match(nh, arg->flags, arg->oif, arg->strict,
779 			  arg->mpri, arg->do_rr);
780 }
781 
782 static void __find_rr_leaf(struct fib6_info *f6i_start,
783 			   struct fib6_info *nomatch, u32 metric,
784 			   struct fib6_result *res, struct fib6_info **cont,
785 			   int oif, int strict, bool *do_rr, int *mpri)
786 {
787 	struct fib6_info *f6i;
788 
789 	for (f6i = f6i_start;
790 	     f6i && f6i != nomatch;
791 	     f6i = rcu_dereference(f6i->fib6_next)) {
792 		bool matched = false;
793 		struct fib6_nh *nh;
794 
795 		if (cont && f6i->fib6_metric != metric) {
796 			*cont = f6i;
797 			return;
798 		}
799 
800 		if (fib6_check_expired(f6i))
801 			continue;
802 
803 		if (unlikely(f6i->nh)) {
804 			struct fib6_nh_frl_arg arg = {
805 				.flags  = f6i->fib6_flags,
806 				.oif    = oif,
807 				.strict = strict,
808 				.mpri   = mpri,
809 				.do_rr  = do_rr
810 			};
811 
812 			if (nexthop_is_blackhole(f6i->nh)) {
813 				res->fib6_flags = RTF_REJECT;
814 				res->fib6_type = RTN_BLACKHOLE;
815 				res->f6i = f6i;
816 				res->nh = nexthop_fib6_nh(f6i->nh);
817 				return;
818 			}
819 			if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match,
820 						     &arg)) {
821 				matched = true;
822 				nh = arg.nh;
823 			}
824 		} else {
825 			nh = f6i->fib6_nh;
826 			if (find_match(nh, f6i->fib6_flags, oif, strict,
827 				       mpri, do_rr))
828 				matched = true;
829 		}
830 		if (matched) {
831 			res->f6i = f6i;
832 			res->nh = nh;
833 			res->fib6_flags = f6i->fib6_flags;
834 			res->fib6_type = f6i->fib6_type;
835 		}
836 	}
837 }
838 
839 static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf,
840 			 struct fib6_info *rr_head, int oif, int strict,
841 			 bool *do_rr, struct fib6_result *res)
842 {
843 	u32 metric = rr_head->fib6_metric;
844 	struct fib6_info *cont = NULL;
845 	int mpri = -1;
846 
847 	__find_rr_leaf(rr_head, NULL, metric, res, &cont,
848 		       oif, strict, do_rr, &mpri);
849 
850 	__find_rr_leaf(leaf, rr_head, metric, res, &cont,
851 		       oif, strict, do_rr, &mpri);
852 
853 	if (res->f6i || !cont)
854 		return;
855 
856 	__find_rr_leaf(cont, NULL, metric, res, NULL,
857 		       oif, strict, do_rr, &mpri);
858 }
859 
860 static void rt6_select(struct net *net, struct fib6_node *fn, int oif,
861 		       struct fib6_result *res, int strict)
862 {
863 	struct fib6_info *leaf = rcu_dereference(fn->leaf);
864 	struct fib6_info *rt0;
865 	bool do_rr = false;
866 	int key_plen;
867 
868 	/* make sure this function or its helpers sets f6i */
869 	res->f6i = NULL;
870 
871 	if (!leaf || leaf == net->ipv6.fib6_null_entry)
872 		goto out;
873 
874 	rt0 = rcu_dereference(fn->rr_ptr);
875 	if (!rt0)
876 		rt0 = leaf;
877 
878 	/* Double check to make sure fn is not an intermediate node
879 	 * and fn->leaf does not points to its child's leaf
880 	 * (This might happen if all routes under fn are deleted from
881 	 * the tree and fib6_repair_tree() is called on the node.)
882 	 */
883 	key_plen = rt0->fib6_dst.plen;
884 #ifdef CONFIG_IPV6_SUBTREES
885 	if (rt0->fib6_src.plen)
886 		key_plen = rt0->fib6_src.plen;
887 #endif
888 	if (fn->fn_bit != key_plen)
889 		goto out;
890 
891 	find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res);
892 	if (do_rr) {
893 		struct fib6_info *next = rcu_dereference(rt0->fib6_next);
894 
895 		/* no entries matched; do round-robin */
896 		if (!next || next->fib6_metric != rt0->fib6_metric)
897 			next = leaf;
898 
899 		if (next != rt0) {
900 			spin_lock_bh(&leaf->fib6_table->tb6_lock);
901 			/* make sure next is not being deleted from the tree */
902 			if (next->fib6_node)
903 				rcu_assign_pointer(fn->rr_ptr, next);
904 			spin_unlock_bh(&leaf->fib6_table->tb6_lock);
905 		}
906 	}
907 
908 out:
909 	if (!res->f6i) {
910 		res->f6i = net->ipv6.fib6_null_entry;
911 		res->nh = res->f6i->fib6_nh;
912 		res->fib6_flags = res->f6i->fib6_flags;
913 		res->fib6_type = res->f6i->fib6_type;
914 	}
915 }
916 
917 static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res)
918 {
919 	return (res->f6i->fib6_flags & RTF_NONEXTHOP) ||
920 	       res->nh->fib_nh_gw_family;
921 }
922 
923 #ifdef CONFIG_IPV6_ROUTE_INFO
924 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
925 		  const struct in6_addr *gwaddr)
926 {
927 	struct net *net = dev_net(dev);
928 	struct route_info *rinfo = (struct route_info *) opt;
929 	struct in6_addr prefix_buf, *prefix;
930 	unsigned int pref;
931 	unsigned long lifetime;
932 	struct fib6_info *rt;
933 
934 	if (len < sizeof(struct route_info)) {
935 		return -EINVAL;
936 	}
937 
938 	/* Sanity check for prefix_len and length */
939 	if (rinfo->length > 3) {
940 		return -EINVAL;
941 	} else if (rinfo->prefix_len > 128) {
942 		return -EINVAL;
943 	} else if (rinfo->prefix_len > 64) {
944 		if (rinfo->length < 2) {
945 			return -EINVAL;
946 		}
947 	} else if (rinfo->prefix_len > 0) {
948 		if (rinfo->length < 1) {
949 			return -EINVAL;
950 		}
951 	}
952 
953 	pref = rinfo->route_pref;
954 	if (pref == ICMPV6_ROUTER_PREF_INVALID)
955 		return -EINVAL;
956 
957 	lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
958 
959 	if (rinfo->length == 3)
960 		prefix = (struct in6_addr *)rinfo->prefix;
961 	else {
962 		/* this function is safe */
963 		ipv6_addr_prefix(&prefix_buf,
964 				 (struct in6_addr *)rinfo->prefix,
965 				 rinfo->prefix_len);
966 		prefix = &prefix_buf;
967 	}
968 
969 	if (rinfo->prefix_len == 0)
970 		rt = rt6_get_dflt_router(net, gwaddr, dev);
971 	else
972 		rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
973 					gwaddr, dev);
974 
975 	if (rt && !lifetime) {
976 		ip6_del_rt(net, rt, false);
977 		rt = NULL;
978 	}
979 
980 	if (!rt && lifetime)
981 		rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
982 					dev, pref);
983 	else if (rt)
984 		rt->fib6_flags = RTF_ROUTEINFO |
985 				 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
986 
987 	if (rt) {
988 		if (!addrconf_finite_timeout(lifetime))
989 			fib6_clean_expires(rt);
990 		else
991 			fib6_set_expires(rt, jiffies + HZ * lifetime);
992 
993 		fib6_info_release(rt);
994 	}
995 	return 0;
996 }
997 #endif
998 
999 /*
1000  *	Misc support functions
1001  */
1002 
1003 /* called with rcu_lock held */
1004 static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res)
1005 {
1006 	struct net_device *dev = res->nh->fib_nh_dev;
1007 
1008 	if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
1009 		/* for copies of local routes, dst->dev needs to be the
1010 		 * device if it is a master device, the master device if
1011 		 * device is enslaved, and the loopback as the default
1012 		 */
1013 		if (netif_is_l3_slave(dev) &&
1014 		    !rt6_need_strict(&res->f6i->fib6_dst.addr))
1015 			dev = l3mdev_master_dev_rcu(dev);
1016 		else if (!netif_is_l3_master(dev))
1017 			dev = dev_net(dev)->loopback_dev;
1018 		/* last case is netif_is_l3_master(dev) is true in which
1019 		 * case we want dev returned to be dev
1020 		 */
1021 	}
1022 
1023 	return dev;
1024 }
1025 
1026 static const int fib6_prop[RTN_MAX + 1] = {
1027 	[RTN_UNSPEC]	= 0,
1028 	[RTN_UNICAST]	= 0,
1029 	[RTN_LOCAL]	= 0,
1030 	[RTN_BROADCAST]	= 0,
1031 	[RTN_ANYCAST]	= 0,
1032 	[RTN_MULTICAST]	= 0,
1033 	[RTN_BLACKHOLE]	= -EINVAL,
1034 	[RTN_UNREACHABLE] = -EHOSTUNREACH,
1035 	[RTN_PROHIBIT]	= -EACCES,
1036 	[RTN_THROW]	= -EAGAIN,
1037 	[RTN_NAT]	= -EINVAL,
1038 	[RTN_XRESOLVE]	= -EINVAL,
1039 };
1040 
1041 static int ip6_rt_type_to_error(u8 fib6_type)
1042 {
1043 	return fib6_prop[fib6_type];
1044 }
1045 
1046 static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
1047 {
1048 	unsigned short flags = 0;
1049 
1050 	if (rt->dst_nocount)
1051 		flags |= DST_NOCOUNT;
1052 	if (rt->dst_nopolicy)
1053 		flags |= DST_NOPOLICY;
1054 
1055 	return flags;
1056 }
1057 
1058 static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type)
1059 {
1060 	rt->dst.error = ip6_rt_type_to_error(fib6_type);
1061 
1062 	switch (fib6_type) {
1063 	case RTN_BLACKHOLE:
1064 		rt->dst.output = dst_discard_out;
1065 		rt->dst.input = dst_discard;
1066 		break;
1067 	case RTN_PROHIBIT:
1068 		rt->dst.output = ip6_pkt_prohibit_out;
1069 		rt->dst.input = ip6_pkt_prohibit;
1070 		break;
1071 	case RTN_THROW:
1072 	case RTN_UNREACHABLE:
1073 	default:
1074 		rt->dst.output = ip6_pkt_discard_out;
1075 		rt->dst.input = ip6_pkt_discard;
1076 		break;
1077 	}
1078 }
1079 
1080 static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res)
1081 {
1082 	struct fib6_info *f6i = res->f6i;
1083 
1084 	if (res->fib6_flags & RTF_REJECT) {
1085 		ip6_rt_init_dst_reject(rt, res->fib6_type);
1086 		return;
1087 	}
1088 
1089 	rt->dst.error = 0;
1090 	rt->dst.output = ip6_output;
1091 
1092 	if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) {
1093 		rt->dst.input = ip6_input;
1094 	} else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
1095 		rt->dst.input = ip6_mc_input;
1096 	} else {
1097 		rt->dst.input = ip6_forward;
1098 	}
1099 
1100 	if (res->nh->fib_nh_lws) {
1101 		rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws);
1102 		lwtunnel_set_redirect(&rt->dst);
1103 	}
1104 
1105 	rt->dst.lastuse = jiffies;
1106 }
1107 
1108 /* Caller must already hold reference to @from */
1109 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
1110 {
1111 	rt->rt6i_flags &= ~RTF_EXPIRES;
1112 	rcu_assign_pointer(rt->from, from);
1113 	ip_dst_init_metrics(&rt->dst, from->fib6_metrics);
1114 }
1115 
1116 /* Caller must already hold reference to f6i in result */
1117 static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res)
1118 {
1119 	const struct fib6_nh *nh = res->nh;
1120 	const struct net_device *dev = nh->fib_nh_dev;
1121 	struct fib6_info *f6i = res->f6i;
1122 
1123 	ip6_rt_init_dst(rt, res);
1124 
1125 	rt->rt6i_dst = f6i->fib6_dst;
1126 	rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
1127 	rt->rt6i_flags = res->fib6_flags;
1128 	if (nh->fib_nh_gw_family) {
1129 		rt->rt6i_gateway = nh->fib_nh_gw6;
1130 		rt->rt6i_flags |= RTF_GATEWAY;
1131 	}
1132 	rt6_set_from(rt, f6i);
1133 #ifdef CONFIG_IPV6_SUBTREES
1134 	rt->rt6i_src = f6i->fib6_src;
1135 #endif
1136 }
1137 
1138 static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
1139 					struct in6_addr *saddr)
1140 {
1141 	struct fib6_node *pn, *sn;
1142 	while (1) {
1143 		if (fn->fn_flags & RTN_TL_ROOT)
1144 			return NULL;
1145 		pn = rcu_dereference(fn->parent);
1146 		sn = FIB6_SUBTREE(pn);
1147 		if (sn && sn != fn)
1148 			fn = fib6_node_lookup(sn, NULL, saddr);
1149 		else
1150 			fn = pn;
1151 		if (fn->fn_flags & RTN_RTINFO)
1152 			return fn;
1153 	}
1154 }
1155 
1156 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt)
1157 {
1158 	struct rt6_info *rt = *prt;
1159 
1160 	if (dst_hold_safe(&rt->dst))
1161 		return true;
1162 	if (net) {
1163 		rt = net->ipv6.ip6_null_entry;
1164 		dst_hold(&rt->dst);
1165 	} else {
1166 		rt = NULL;
1167 	}
1168 	*prt = rt;
1169 	return false;
1170 }
1171 
1172 /* called with rcu_lock held */
1173 static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res)
1174 {
1175 	struct net_device *dev = res->nh->fib_nh_dev;
1176 	struct fib6_info *f6i = res->f6i;
1177 	unsigned short flags;
1178 	struct rt6_info *nrt;
1179 
1180 	if (!fib6_info_hold_safe(f6i))
1181 		goto fallback;
1182 
1183 	flags = fib6_info_dst_flags(f6i);
1184 	nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
1185 	if (!nrt) {
1186 		fib6_info_release(f6i);
1187 		goto fallback;
1188 	}
1189 
1190 	ip6_rt_copy_init(nrt, res);
1191 	return nrt;
1192 
1193 fallback:
1194 	nrt = dev_net(dev)->ipv6.ip6_null_entry;
1195 	dst_hold(&nrt->dst);
1196 	return nrt;
1197 }
1198 
1199 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net,
1200 					     struct fib6_table *table,
1201 					     struct flowi6 *fl6,
1202 					     const struct sk_buff *skb,
1203 					     int flags)
1204 {
1205 	struct fib6_result res = {};
1206 	struct fib6_node *fn;
1207 	struct rt6_info *rt;
1208 
1209 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1210 		flags &= ~RT6_LOOKUP_F_IFACE;
1211 
1212 	rcu_read_lock();
1213 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1214 restart:
1215 	res.f6i = rcu_dereference(fn->leaf);
1216 	if (!res.f6i)
1217 		res.f6i = net->ipv6.fib6_null_entry;
1218 	else
1219 		rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif,
1220 				 flags);
1221 
1222 	if (res.f6i == net->ipv6.fib6_null_entry) {
1223 		fn = fib6_backtrack(fn, &fl6->saddr);
1224 		if (fn)
1225 			goto restart;
1226 
1227 		rt = net->ipv6.ip6_null_entry;
1228 		dst_hold(&rt->dst);
1229 		goto out;
1230 	} else if (res.fib6_flags & RTF_REJECT) {
1231 		goto do_create;
1232 	}
1233 
1234 	fib6_select_path(net, &res, fl6, fl6->flowi6_oif,
1235 			 fl6->flowi6_oif != 0, skb, flags);
1236 
1237 	/* Search through exception table */
1238 	rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr);
1239 	if (rt) {
1240 		if (ip6_hold_safe(net, &rt))
1241 			dst_use_noref(&rt->dst, jiffies);
1242 	} else {
1243 do_create:
1244 		rt = ip6_create_rt_rcu(&res);
1245 	}
1246 
1247 out:
1248 	trace_fib6_table_lookup(net, &res, table, fl6);
1249 
1250 	rcu_read_unlock();
1251 
1252 	return rt;
1253 }
1254 
1255 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
1256 				   const struct sk_buff *skb, int flags)
1257 {
1258 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
1259 }
1260 EXPORT_SYMBOL_GPL(ip6_route_lookup);
1261 
1262 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
1263 			    const struct in6_addr *saddr, int oif,
1264 			    const struct sk_buff *skb, int strict)
1265 {
1266 	struct flowi6 fl6 = {
1267 		.flowi6_oif = oif,
1268 		.daddr = *daddr,
1269 	};
1270 	struct dst_entry *dst;
1271 	int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
1272 
1273 	if (saddr) {
1274 		memcpy(&fl6.saddr, saddr, sizeof(*saddr));
1275 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1276 	}
1277 
1278 	dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
1279 	if (dst->error == 0)
1280 		return (struct rt6_info *) dst;
1281 
1282 	dst_release(dst);
1283 
1284 	return NULL;
1285 }
1286 EXPORT_SYMBOL(rt6_lookup);
1287 
1288 /* ip6_ins_rt is called with FREE table->tb6_lock.
1289  * It takes new route entry, the addition fails by any reason the
1290  * route is released.
1291  * Caller must hold dst before calling it.
1292  */
1293 
1294 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
1295 			struct netlink_ext_ack *extack)
1296 {
1297 	int err;
1298 	struct fib6_table *table;
1299 
1300 	table = rt->fib6_table;
1301 	spin_lock_bh(&table->tb6_lock);
1302 	err = fib6_add(&table->tb6_root, rt, info, extack);
1303 	spin_unlock_bh(&table->tb6_lock);
1304 
1305 	return err;
1306 }
1307 
1308 int ip6_ins_rt(struct net *net, struct fib6_info *rt)
1309 {
1310 	struct nl_info info = {	.nl_net = net, };
1311 
1312 	return __ip6_ins_rt(rt, &info, NULL);
1313 }
1314 
1315 static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res,
1316 					   const struct in6_addr *daddr,
1317 					   const struct in6_addr *saddr)
1318 {
1319 	struct fib6_info *f6i = res->f6i;
1320 	struct net_device *dev;
1321 	struct rt6_info *rt;
1322 
1323 	/*
1324 	 *	Clone the route.
1325 	 */
1326 
1327 	if (!fib6_info_hold_safe(f6i))
1328 		return NULL;
1329 
1330 	dev = ip6_rt_get_dev_rcu(res);
1331 	rt = ip6_dst_alloc(dev_net(dev), dev, 0);
1332 	if (!rt) {
1333 		fib6_info_release(f6i);
1334 		return NULL;
1335 	}
1336 
1337 	ip6_rt_copy_init(rt, res);
1338 	rt->rt6i_flags |= RTF_CACHE;
1339 	rt->rt6i_dst.addr = *daddr;
1340 	rt->rt6i_dst.plen = 128;
1341 
1342 	if (!rt6_is_gw_or_nonexthop(res)) {
1343 		if (f6i->fib6_dst.plen != 128 &&
1344 		    ipv6_addr_equal(&f6i->fib6_dst.addr, daddr))
1345 			rt->rt6i_flags |= RTF_ANYCAST;
1346 #ifdef CONFIG_IPV6_SUBTREES
1347 		if (rt->rt6i_src.plen && saddr) {
1348 			rt->rt6i_src.addr = *saddr;
1349 			rt->rt6i_src.plen = 128;
1350 		}
1351 #endif
1352 	}
1353 
1354 	return rt;
1355 }
1356 
1357 static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res)
1358 {
1359 	struct fib6_info *f6i = res->f6i;
1360 	unsigned short flags = fib6_info_dst_flags(f6i);
1361 	struct net_device *dev;
1362 	struct rt6_info *pcpu_rt;
1363 
1364 	if (!fib6_info_hold_safe(f6i))
1365 		return NULL;
1366 
1367 	rcu_read_lock();
1368 	dev = ip6_rt_get_dev_rcu(res);
1369 	pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT);
1370 	rcu_read_unlock();
1371 	if (!pcpu_rt) {
1372 		fib6_info_release(f6i);
1373 		return NULL;
1374 	}
1375 	ip6_rt_copy_init(pcpu_rt, res);
1376 	pcpu_rt->rt6i_flags |= RTF_PCPU;
1377 
1378 	if (f6i->nh)
1379 		pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev));
1380 
1381 	return pcpu_rt;
1382 }
1383 
1384 static bool rt6_is_valid(const struct rt6_info *rt6)
1385 {
1386 	return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev));
1387 }
1388 
1389 /* It should be called with rcu_read_lock() acquired */
1390 static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res)
1391 {
1392 	struct rt6_info *pcpu_rt;
1393 
1394 	pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu);
1395 
1396 	if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) {
1397 		struct rt6_info *prev, **p;
1398 
1399 		p = this_cpu_ptr(res->nh->rt6i_pcpu);
1400 		prev = xchg(p, NULL);
1401 		if (prev) {
1402 			dst_dev_put(&prev->dst);
1403 			dst_release(&prev->dst);
1404 		}
1405 
1406 		pcpu_rt = NULL;
1407 	}
1408 
1409 	return pcpu_rt;
1410 }
1411 
1412 static struct rt6_info *rt6_make_pcpu_route(struct net *net,
1413 					    const struct fib6_result *res)
1414 {
1415 	struct rt6_info *pcpu_rt, *prev, **p;
1416 
1417 	pcpu_rt = ip6_rt_pcpu_alloc(res);
1418 	if (!pcpu_rt)
1419 		return NULL;
1420 
1421 	p = this_cpu_ptr(res->nh->rt6i_pcpu);
1422 	prev = cmpxchg(p, NULL, pcpu_rt);
1423 	BUG_ON(prev);
1424 
1425 	if (res->f6i->fib6_destroying) {
1426 		struct fib6_info *from;
1427 
1428 		from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL);
1429 		fib6_info_release(from);
1430 	}
1431 
1432 	return pcpu_rt;
1433 }
1434 
1435 /* exception hash table implementation
1436  */
1437 static DEFINE_SPINLOCK(rt6_exception_lock);
1438 
1439 /* Remove rt6_ex from hash table and free the memory
1440  * Caller must hold rt6_exception_lock
1441  */
1442 static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
1443 				 struct rt6_exception *rt6_ex)
1444 {
1445 	struct fib6_info *from;
1446 	struct net *net;
1447 
1448 	if (!bucket || !rt6_ex)
1449 		return;
1450 
1451 	net = dev_net(rt6_ex->rt6i->dst.dev);
1452 	net->ipv6.rt6_stats->fib_rt_cache--;
1453 
1454 	/* purge completely the exception to allow releasing the held resources:
1455 	 * some [sk] cache may keep the dst around for unlimited time
1456 	 */
1457 	from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL);
1458 	fib6_info_release(from);
1459 	dst_dev_put(&rt6_ex->rt6i->dst);
1460 
1461 	hlist_del_rcu(&rt6_ex->hlist);
1462 	dst_release(&rt6_ex->rt6i->dst);
1463 	kfree_rcu(rt6_ex, rcu);
1464 	WARN_ON_ONCE(!bucket->depth);
1465 	bucket->depth--;
1466 }
1467 
1468 /* Remove oldest rt6_ex in bucket and free the memory
1469  * Caller must hold rt6_exception_lock
1470  */
1471 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
1472 {
1473 	struct rt6_exception *rt6_ex, *oldest = NULL;
1474 
1475 	if (!bucket)
1476 		return;
1477 
1478 	hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1479 		if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
1480 			oldest = rt6_ex;
1481 	}
1482 	rt6_remove_exception(bucket, oldest);
1483 }
1484 
1485 static u32 rt6_exception_hash(const struct in6_addr *dst,
1486 			      const struct in6_addr *src)
1487 {
1488 	static siphash_aligned_key_t rt6_exception_key;
1489 	struct {
1490 		struct in6_addr dst;
1491 		struct in6_addr src;
1492 	} __aligned(SIPHASH_ALIGNMENT) combined = {
1493 		.dst = *dst,
1494 	};
1495 	u64 val;
1496 
1497 	net_get_random_once(&rt6_exception_key, sizeof(rt6_exception_key));
1498 
1499 #ifdef CONFIG_IPV6_SUBTREES
1500 	if (src)
1501 		combined.src = *src;
1502 #endif
1503 	val = siphash(&combined, sizeof(combined), &rt6_exception_key);
1504 
1505 	return hash_64(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
1506 }
1507 
1508 /* Helper function to find the cached rt in the hash table
1509  * and update bucket pointer to point to the bucket for this
1510  * (daddr, saddr) pair
1511  * Caller must hold rt6_exception_lock
1512  */
1513 static struct rt6_exception *
1514 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
1515 			      const struct in6_addr *daddr,
1516 			      const struct in6_addr *saddr)
1517 {
1518 	struct rt6_exception *rt6_ex;
1519 	u32 hval;
1520 
1521 	if (!(*bucket) || !daddr)
1522 		return NULL;
1523 
1524 	hval = rt6_exception_hash(daddr, saddr);
1525 	*bucket += hval;
1526 
1527 	hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
1528 		struct rt6_info *rt6 = rt6_ex->rt6i;
1529 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1530 
1531 #ifdef CONFIG_IPV6_SUBTREES
1532 		if (matched && saddr)
1533 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1534 #endif
1535 		if (matched)
1536 			return rt6_ex;
1537 	}
1538 	return NULL;
1539 }
1540 
1541 /* Helper function to find the cached rt in the hash table
1542  * and update bucket pointer to point to the bucket for this
1543  * (daddr, saddr) pair
1544  * Caller must hold rcu_read_lock()
1545  */
1546 static struct rt6_exception *
1547 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
1548 			 const struct in6_addr *daddr,
1549 			 const struct in6_addr *saddr)
1550 {
1551 	struct rt6_exception *rt6_ex;
1552 	u32 hval;
1553 
1554 	WARN_ON_ONCE(!rcu_read_lock_held());
1555 
1556 	if (!(*bucket) || !daddr)
1557 		return NULL;
1558 
1559 	hval = rt6_exception_hash(daddr, saddr);
1560 	*bucket += hval;
1561 
1562 	hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
1563 		struct rt6_info *rt6 = rt6_ex->rt6i;
1564 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1565 
1566 #ifdef CONFIG_IPV6_SUBTREES
1567 		if (matched && saddr)
1568 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1569 #endif
1570 		if (matched)
1571 			return rt6_ex;
1572 	}
1573 	return NULL;
1574 }
1575 
1576 static unsigned int fib6_mtu(const struct fib6_result *res)
1577 {
1578 	const struct fib6_nh *nh = res->nh;
1579 	unsigned int mtu;
1580 
1581 	if (res->f6i->fib6_pmtu) {
1582 		mtu = res->f6i->fib6_pmtu;
1583 	} else {
1584 		struct net_device *dev = nh->fib_nh_dev;
1585 		struct inet6_dev *idev;
1586 
1587 		rcu_read_lock();
1588 		idev = __in6_dev_get(dev);
1589 		mtu = idev->cnf.mtu6;
1590 		rcu_read_unlock();
1591 	}
1592 
1593 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
1594 
1595 	return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu);
1596 }
1597 
1598 #define FIB6_EXCEPTION_BUCKET_FLUSHED  0x1UL
1599 
1600 /* used when the flushed bit is not relevant, only access to the bucket
1601  * (ie., all bucket users except rt6_insert_exception);
1602  *
1603  * called under rcu lock; sometimes called with rt6_exception_lock held
1604  */
1605 static
1606 struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh,
1607 						       spinlock_t *lock)
1608 {
1609 	struct rt6_exception_bucket *bucket;
1610 
1611 	if (lock)
1612 		bucket = rcu_dereference_protected(nh->rt6i_exception_bucket,
1613 						   lockdep_is_held(lock));
1614 	else
1615 		bucket = rcu_dereference(nh->rt6i_exception_bucket);
1616 
1617 	/* remove bucket flushed bit if set */
1618 	if (bucket) {
1619 		unsigned long p = (unsigned long)bucket;
1620 
1621 		p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED;
1622 		bucket = (struct rt6_exception_bucket *)p;
1623 	}
1624 
1625 	return bucket;
1626 }
1627 
1628 static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket)
1629 {
1630 	unsigned long p = (unsigned long)bucket;
1631 
1632 	return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED);
1633 }
1634 
1635 /* called with rt6_exception_lock held */
1636 static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh,
1637 					      spinlock_t *lock)
1638 {
1639 	struct rt6_exception_bucket *bucket;
1640 	unsigned long p;
1641 
1642 	bucket = rcu_dereference_protected(nh->rt6i_exception_bucket,
1643 					   lockdep_is_held(lock));
1644 
1645 	p = (unsigned long)bucket;
1646 	p |= FIB6_EXCEPTION_BUCKET_FLUSHED;
1647 	bucket = (struct rt6_exception_bucket *)p;
1648 	rcu_assign_pointer(nh->rt6i_exception_bucket, bucket);
1649 }
1650 
1651 static int rt6_insert_exception(struct rt6_info *nrt,
1652 				const struct fib6_result *res)
1653 {
1654 	struct net *net = dev_net(nrt->dst.dev);
1655 	struct rt6_exception_bucket *bucket;
1656 	struct fib6_info *f6i = res->f6i;
1657 	struct in6_addr *src_key = NULL;
1658 	struct rt6_exception *rt6_ex;
1659 	struct fib6_nh *nh = res->nh;
1660 	int max_depth;
1661 	int err = 0;
1662 
1663 	spin_lock_bh(&rt6_exception_lock);
1664 
1665 	bucket = rcu_dereference_protected(nh->rt6i_exception_bucket,
1666 					  lockdep_is_held(&rt6_exception_lock));
1667 	if (!bucket) {
1668 		bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
1669 				 GFP_ATOMIC);
1670 		if (!bucket) {
1671 			err = -ENOMEM;
1672 			goto out;
1673 		}
1674 		rcu_assign_pointer(nh->rt6i_exception_bucket, bucket);
1675 	} else if (fib6_nh_excptn_bucket_flushed(bucket)) {
1676 		err = -EINVAL;
1677 		goto out;
1678 	}
1679 
1680 #ifdef CONFIG_IPV6_SUBTREES
1681 	/* fib6_src.plen != 0 indicates f6i is in subtree
1682 	 * and exception table is indexed by a hash of
1683 	 * both fib6_dst and fib6_src.
1684 	 * Otherwise, the exception table is indexed by
1685 	 * a hash of only fib6_dst.
1686 	 */
1687 	if (f6i->fib6_src.plen)
1688 		src_key = &nrt->rt6i_src.addr;
1689 #endif
1690 	/* rt6_mtu_change() might lower mtu on f6i.
1691 	 * Only insert this exception route if its mtu
1692 	 * is less than f6i's mtu value.
1693 	 */
1694 	if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) {
1695 		err = -EINVAL;
1696 		goto out;
1697 	}
1698 
1699 	rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
1700 					       src_key);
1701 	if (rt6_ex)
1702 		rt6_remove_exception(bucket, rt6_ex);
1703 
1704 	rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
1705 	if (!rt6_ex) {
1706 		err = -ENOMEM;
1707 		goto out;
1708 	}
1709 	rt6_ex->rt6i = nrt;
1710 	rt6_ex->stamp = jiffies;
1711 	hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
1712 	bucket->depth++;
1713 	net->ipv6.rt6_stats->fib_rt_cache++;
1714 
1715 	/* Randomize max depth to avoid some side channels attacks. */
1716 	max_depth = FIB6_MAX_DEPTH + prandom_u32_max(FIB6_MAX_DEPTH);
1717 	while (bucket->depth > max_depth)
1718 		rt6_exception_remove_oldest(bucket);
1719 
1720 out:
1721 	spin_unlock_bh(&rt6_exception_lock);
1722 
1723 	/* Update fn->fn_sernum to invalidate all cached dst */
1724 	if (!err) {
1725 		spin_lock_bh(&f6i->fib6_table->tb6_lock);
1726 		fib6_update_sernum(net, f6i);
1727 		spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1728 		fib6_force_start_gc(net);
1729 	}
1730 
1731 	return err;
1732 }
1733 
1734 static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from)
1735 {
1736 	struct rt6_exception_bucket *bucket;
1737 	struct rt6_exception *rt6_ex;
1738 	struct hlist_node *tmp;
1739 	int i;
1740 
1741 	spin_lock_bh(&rt6_exception_lock);
1742 
1743 	bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
1744 	if (!bucket)
1745 		goto out;
1746 
1747 	/* Prevent rt6_insert_exception() to recreate the bucket list */
1748 	if (!from)
1749 		fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock);
1750 
1751 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1752 		hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) {
1753 			if (!from ||
1754 			    rcu_access_pointer(rt6_ex->rt6i->from) == from)
1755 				rt6_remove_exception(bucket, rt6_ex);
1756 		}
1757 		WARN_ON_ONCE(!from && bucket->depth);
1758 		bucket++;
1759 	}
1760 out:
1761 	spin_unlock_bh(&rt6_exception_lock);
1762 }
1763 
1764 static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg)
1765 {
1766 	struct fib6_info *f6i = arg;
1767 
1768 	fib6_nh_flush_exceptions(nh, f6i);
1769 
1770 	return 0;
1771 }
1772 
1773 void rt6_flush_exceptions(struct fib6_info *f6i)
1774 {
1775 	if (f6i->nh)
1776 		nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions,
1777 					 f6i);
1778 	else
1779 		fib6_nh_flush_exceptions(f6i->fib6_nh, f6i);
1780 }
1781 
1782 /* Find cached rt in the hash table inside passed in rt
1783  * Caller has to hold rcu_read_lock()
1784  */
1785 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res,
1786 					   const struct in6_addr *daddr,
1787 					   const struct in6_addr *saddr)
1788 {
1789 	const struct in6_addr *src_key = NULL;
1790 	struct rt6_exception_bucket *bucket;
1791 	struct rt6_exception *rt6_ex;
1792 	struct rt6_info *ret = NULL;
1793 
1794 #ifdef CONFIG_IPV6_SUBTREES
1795 	/* fib6i_src.plen != 0 indicates f6i is in subtree
1796 	 * and exception table is indexed by a hash of
1797 	 * both fib6_dst and fib6_src.
1798 	 * However, the src addr used to create the hash
1799 	 * might not be exactly the passed in saddr which
1800 	 * is a /128 addr from the flow.
1801 	 * So we need to use f6i->fib6_src to redo lookup
1802 	 * if the passed in saddr does not find anything.
1803 	 * (See the logic in ip6_rt_cache_alloc() on how
1804 	 * rt->rt6i_src is updated.)
1805 	 */
1806 	if (res->f6i->fib6_src.plen)
1807 		src_key = saddr;
1808 find_ex:
1809 #endif
1810 	bucket = fib6_nh_get_excptn_bucket(res->nh, NULL);
1811 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
1812 
1813 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
1814 		ret = rt6_ex->rt6i;
1815 
1816 #ifdef CONFIG_IPV6_SUBTREES
1817 	/* Use fib6_src as src_key and redo lookup */
1818 	if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) {
1819 		src_key = &res->f6i->fib6_src.addr;
1820 		goto find_ex;
1821 	}
1822 #endif
1823 
1824 	return ret;
1825 }
1826 
1827 /* Remove the passed in cached rt from the hash table that contains it */
1828 static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen,
1829 				    const struct rt6_info *rt)
1830 {
1831 	const struct in6_addr *src_key = NULL;
1832 	struct rt6_exception_bucket *bucket;
1833 	struct rt6_exception *rt6_ex;
1834 	int err;
1835 
1836 	if (!rcu_access_pointer(nh->rt6i_exception_bucket))
1837 		return -ENOENT;
1838 
1839 	spin_lock_bh(&rt6_exception_lock);
1840 	bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
1841 
1842 #ifdef CONFIG_IPV6_SUBTREES
1843 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1844 	 * and exception table is indexed by a hash of
1845 	 * both rt6i_dst and rt6i_src.
1846 	 * Otherwise, the exception table is indexed by
1847 	 * a hash of only rt6i_dst.
1848 	 */
1849 	if (plen)
1850 		src_key = &rt->rt6i_src.addr;
1851 #endif
1852 	rt6_ex = __rt6_find_exception_spinlock(&bucket,
1853 					       &rt->rt6i_dst.addr,
1854 					       src_key);
1855 	if (rt6_ex) {
1856 		rt6_remove_exception(bucket, rt6_ex);
1857 		err = 0;
1858 	} else {
1859 		err = -ENOENT;
1860 	}
1861 
1862 	spin_unlock_bh(&rt6_exception_lock);
1863 	return err;
1864 }
1865 
1866 struct fib6_nh_excptn_arg {
1867 	struct rt6_info	*rt;
1868 	int		plen;
1869 };
1870 
1871 static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg)
1872 {
1873 	struct fib6_nh_excptn_arg *arg = _arg;
1874 	int err;
1875 
1876 	err = fib6_nh_remove_exception(nh, arg->plen, arg->rt);
1877 	if (err == 0)
1878 		return 1;
1879 
1880 	return 0;
1881 }
1882 
1883 static int rt6_remove_exception_rt(struct rt6_info *rt)
1884 {
1885 	struct fib6_info *from;
1886 
1887 	from = rcu_dereference(rt->from);
1888 	if (!from || !(rt->rt6i_flags & RTF_CACHE))
1889 		return -EINVAL;
1890 
1891 	if (from->nh) {
1892 		struct fib6_nh_excptn_arg arg = {
1893 			.rt = rt,
1894 			.plen = from->fib6_src.plen
1895 		};
1896 		int rc;
1897 
1898 		/* rc = 1 means an entry was found */
1899 		rc = nexthop_for_each_fib6_nh(from->nh,
1900 					      rt6_nh_remove_exception_rt,
1901 					      &arg);
1902 		return rc ? 0 : -ENOENT;
1903 	}
1904 
1905 	return fib6_nh_remove_exception(from->fib6_nh,
1906 					from->fib6_src.plen, rt);
1907 }
1908 
1909 /* Find rt6_ex which contains the passed in rt cache and
1910  * refresh its stamp
1911  */
1912 static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen,
1913 				     const struct rt6_info *rt)
1914 {
1915 	const struct in6_addr *src_key = NULL;
1916 	struct rt6_exception_bucket *bucket;
1917 	struct rt6_exception *rt6_ex;
1918 
1919 	bucket = fib6_nh_get_excptn_bucket(nh, NULL);
1920 #ifdef CONFIG_IPV6_SUBTREES
1921 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1922 	 * and exception table is indexed by a hash of
1923 	 * both rt6i_dst and rt6i_src.
1924 	 * Otherwise, the exception table is indexed by
1925 	 * a hash of only rt6i_dst.
1926 	 */
1927 	if (plen)
1928 		src_key = &rt->rt6i_src.addr;
1929 #endif
1930 	rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key);
1931 	if (rt6_ex)
1932 		rt6_ex->stamp = jiffies;
1933 }
1934 
1935 struct fib6_nh_match_arg {
1936 	const struct net_device *dev;
1937 	const struct in6_addr	*gw;
1938 	struct fib6_nh		*match;
1939 };
1940 
1941 /* determine if fib6_nh has given device and gateway */
1942 static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg)
1943 {
1944 	struct fib6_nh_match_arg *arg = _arg;
1945 
1946 	if (arg->dev != nh->fib_nh_dev ||
1947 	    (arg->gw && !nh->fib_nh_gw_family) ||
1948 	    (!arg->gw && nh->fib_nh_gw_family) ||
1949 	    (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6)))
1950 		return 0;
1951 
1952 	arg->match = nh;
1953 
1954 	/* found a match, break the loop */
1955 	return 1;
1956 }
1957 
1958 static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
1959 {
1960 	struct fib6_info *from;
1961 	struct fib6_nh *fib6_nh;
1962 
1963 	rcu_read_lock();
1964 
1965 	from = rcu_dereference(rt->from);
1966 	if (!from || !(rt->rt6i_flags & RTF_CACHE))
1967 		goto unlock;
1968 
1969 	if (from->nh) {
1970 		struct fib6_nh_match_arg arg = {
1971 			.dev = rt->dst.dev,
1972 			.gw = &rt->rt6i_gateway,
1973 		};
1974 
1975 		nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg);
1976 
1977 		if (!arg.match)
1978 			goto unlock;
1979 		fib6_nh = arg.match;
1980 	} else {
1981 		fib6_nh = from->fib6_nh;
1982 	}
1983 	fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt);
1984 unlock:
1985 	rcu_read_unlock();
1986 }
1987 
1988 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
1989 					 struct rt6_info *rt, int mtu)
1990 {
1991 	/* If the new MTU is lower than the route PMTU, this new MTU will be the
1992 	 * lowest MTU in the path: always allow updating the route PMTU to
1993 	 * reflect PMTU decreases.
1994 	 *
1995 	 * If the new MTU is higher, and the route PMTU is equal to the local
1996 	 * MTU, this means the old MTU is the lowest in the path, so allow
1997 	 * updating it: if other nodes now have lower MTUs, PMTU discovery will
1998 	 * handle this.
1999 	 */
2000 
2001 	if (dst_mtu(&rt->dst) >= mtu)
2002 		return true;
2003 
2004 	if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
2005 		return true;
2006 
2007 	return false;
2008 }
2009 
2010 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
2011 				       const struct fib6_nh *nh, int mtu)
2012 {
2013 	struct rt6_exception_bucket *bucket;
2014 	struct rt6_exception *rt6_ex;
2015 	int i;
2016 
2017 	bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
2018 	if (!bucket)
2019 		return;
2020 
2021 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
2022 		hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
2023 			struct rt6_info *entry = rt6_ex->rt6i;
2024 
2025 			/* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
2026 			 * route), the metrics of its rt->from have already
2027 			 * been updated.
2028 			 */
2029 			if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
2030 			    rt6_mtu_change_route_allowed(idev, entry, mtu))
2031 				dst_metric_set(&entry->dst, RTAX_MTU, mtu);
2032 		}
2033 		bucket++;
2034 	}
2035 }
2036 
2037 #define RTF_CACHE_GATEWAY	(RTF_GATEWAY | RTF_CACHE)
2038 
2039 static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh,
2040 					    const struct in6_addr *gateway)
2041 {
2042 	struct rt6_exception_bucket *bucket;
2043 	struct rt6_exception *rt6_ex;
2044 	struct hlist_node *tmp;
2045 	int i;
2046 
2047 	if (!rcu_access_pointer(nh->rt6i_exception_bucket))
2048 		return;
2049 
2050 	spin_lock_bh(&rt6_exception_lock);
2051 	bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
2052 	if (bucket) {
2053 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
2054 			hlist_for_each_entry_safe(rt6_ex, tmp,
2055 						  &bucket->chain, hlist) {
2056 				struct rt6_info *entry = rt6_ex->rt6i;
2057 
2058 				if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
2059 				    RTF_CACHE_GATEWAY &&
2060 				    ipv6_addr_equal(gateway,
2061 						    &entry->rt6i_gateway)) {
2062 					rt6_remove_exception(bucket, rt6_ex);
2063 				}
2064 			}
2065 			bucket++;
2066 		}
2067 	}
2068 
2069 	spin_unlock_bh(&rt6_exception_lock);
2070 }
2071 
2072 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
2073 				      struct rt6_exception *rt6_ex,
2074 				      struct fib6_gc_args *gc_args,
2075 				      unsigned long now)
2076 {
2077 	struct rt6_info *rt = rt6_ex->rt6i;
2078 
2079 	/* we are pruning and obsoleting aged-out and non gateway exceptions
2080 	 * even if others have still references to them, so that on next
2081 	 * dst_check() such references can be dropped.
2082 	 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
2083 	 * expired, independently from their aging, as per RFC 8201 section 4
2084 	 */
2085 	if (!(rt->rt6i_flags & RTF_EXPIRES)) {
2086 		if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
2087 			RT6_TRACE("aging clone %p\n", rt);
2088 			rt6_remove_exception(bucket, rt6_ex);
2089 			return;
2090 		}
2091 	} else if (time_after(jiffies, rt->dst.expires)) {
2092 		RT6_TRACE("purging expired route %p\n", rt);
2093 		rt6_remove_exception(bucket, rt6_ex);
2094 		return;
2095 	}
2096 
2097 	if (rt->rt6i_flags & RTF_GATEWAY) {
2098 		struct neighbour *neigh;
2099 
2100 		neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
2101 
2102 		if (!(neigh && (neigh->flags & NTF_ROUTER))) {
2103 			RT6_TRACE("purging route %p via non-router but gateway\n",
2104 				  rt);
2105 			rt6_remove_exception(bucket, rt6_ex);
2106 			return;
2107 		}
2108 	}
2109 
2110 	gc_args->more++;
2111 }
2112 
2113 static void fib6_nh_age_exceptions(const struct fib6_nh *nh,
2114 				   struct fib6_gc_args *gc_args,
2115 				   unsigned long now)
2116 {
2117 	struct rt6_exception_bucket *bucket;
2118 	struct rt6_exception *rt6_ex;
2119 	struct hlist_node *tmp;
2120 	int i;
2121 
2122 	if (!rcu_access_pointer(nh->rt6i_exception_bucket))
2123 		return;
2124 
2125 	rcu_read_lock_bh();
2126 	spin_lock(&rt6_exception_lock);
2127 	bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock);
2128 	if (bucket) {
2129 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
2130 			hlist_for_each_entry_safe(rt6_ex, tmp,
2131 						  &bucket->chain, hlist) {
2132 				rt6_age_examine_exception(bucket, rt6_ex,
2133 							  gc_args, now);
2134 			}
2135 			bucket++;
2136 		}
2137 	}
2138 	spin_unlock(&rt6_exception_lock);
2139 	rcu_read_unlock_bh();
2140 }
2141 
2142 struct fib6_nh_age_excptn_arg {
2143 	struct fib6_gc_args	*gc_args;
2144 	unsigned long		now;
2145 };
2146 
2147 static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg)
2148 {
2149 	struct fib6_nh_age_excptn_arg *arg = _arg;
2150 
2151 	fib6_nh_age_exceptions(nh, arg->gc_args, arg->now);
2152 	return 0;
2153 }
2154 
2155 void rt6_age_exceptions(struct fib6_info *f6i,
2156 			struct fib6_gc_args *gc_args,
2157 			unsigned long now)
2158 {
2159 	if (f6i->nh) {
2160 		struct fib6_nh_age_excptn_arg arg = {
2161 			.gc_args = gc_args,
2162 			.now = now
2163 		};
2164 
2165 		nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions,
2166 					 &arg);
2167 	} else {
2168 		fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now);
2169 	}
2170 }
2171 
2172 /* must be called with rcu lock held */
2173 int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif,
2174 		      struct flowi6 *fl6, struct fib6_result *res, int strict)
2175 {
2176 	struct fib6_node *fn, *saved_fn;
2177 
2178 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
2179 	saved_fn = fn;
2180 
2181 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
2182 		oif = 0;
2183 
2184 redo_rt6_select:
2185 	rt6_select(net, fn, oif, res, strict);
2186 	if (res->f6i == net->ipv6.fib6_null_entry) {
2187 		fn = fib6_backtrack(fn, &fl6->saddr);
2188 		if (fn)
2189 			goto redo_rt6_select;
2190 		else if (strict & RT6_LOOKUP_F_REACHABLE) {
2191 			/* also consider unreachable route */
2192 			strict &= ~RT6_LOOKUP_F_REACHABLE;
2193 			fn = saved_fn;
2194 			goto redo_rt6_select;
2195 		}
2196 	}
2197 
2198 	trace_fib6_table_lookup(net, res, table, fl6);
2199 
2200 	return 0;
2201 }
2202 
2203 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
2204 			       int oif, struct flowi6 *fl6,
2205 			       const struct sk_buff *skb, int flags)
2206 {
2207 	struct fib6_result res = {};
2208 	struct rt6_info *rt = NULL;
2209 	int strict = 0;
2210 
2211 	WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) &&
2212 		     !rcu_read_lock_held());
2213 
2214 	strict |= flags & RT6_LOOKUP_F_IFACE;
2215 	strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
2216 	if (net->ipv6.devconf_all->forwarding == 0)
2217 		strict |= RT6_LOOKUP_F_REACHABLE;
2218 
2219 	rcu_read_lock();
2220 
2221 	fib6_table_lookup(net, table, oif, fl6, &res, strict);
2222 	if (res.f6i == net->ipv6.fib6_null_entry)
2223 		goto out;
2224 
2225 	fib6_select_path(net, &res, fl6, oif, false, skb, strict);
2226 
2227 	/*Search through exception table */
2228 	rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr);
2229 	if (rt) {
2230 		goto out;
2231 	} else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
2232 			    !res.nh->fib_nh_gw_family)) {
2233 		/* Create a RTF_CACHE clone which will not be
2234 		 * owned by the fib6 tree.  It is for the special case where
2235 		 * the daddr in the skb during the neighbor look-up is different
2236 		 * from the fl6->daddr used to look-up route here.
2237 		 */
2238 		rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL);
2239 
2240 		if (rt) {
2241 			/* 1 refcnt is taken during ip6_rt_cache_alloc().
2242 			 * As rt6_uncached_list_add() does not consume refcnt,
2243 			 * this refcnt is always returned to the caller even
2244 			 * if caller sets RT6_LOOKUP_F_DST_NOREF flag.
2245 			 */
2246 			rt6_uncached_list_add(rt);
2247 			atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
2248 			rcu_read_unlock();
2249 
2250 			return rt;
2251 		}
2252 	} else {
2253 		/* Get a percpu copy */
2254 		local_bh_disable();
2255 		rt = rt6_get_pcpu_route(&res);
2256 
2257 		if (!rt)
2258 			rt = rt6_make_pcpu_route(net, &res);
2259 
2260 		local_bh_enable();
2261 	}
2262 out:
2263 	if (!rt)
2264 		rt = net->ipv6.ip6_null_entry;
2265 	if (!(flags & RT6_LOOKUP_F_DST_NOREF))
2266 		ip6_hold_safe(net, &rt);
2267 	rcu_read_unlock();
2268 
2269 	return rt;
2270 }
2271 EXPORT_SYMBOL_GPL(ip6_pol_route);
2272 
2273 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net,
2274 					    struct fib6_table *table,
2275 					    struct flowi6 *fl6,
2276 					    const struct sk_buff *skb,
2277 					    int flags)
2278 {
2279 	return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
2280 }
2281 
2282 struct dst_entry *ip6_route_input_lookup(struct net *net,
2283 					 struct net_device *dev,
2284 					 struct flowi6 *fl6,
2285 					 const struct sk_buff *skb,
2286 					 int flags)
2287 {
2288 	if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
2289 		flags |= RT6_LOOKUP_F_IFACE;
2290 
2291 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
2292 }
2293 EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
2294 
2295 static void ip6_multipath_l3_keys(const struct sk_buff *skb,
2296 				  struct flow_keys *keys,
2297 				  struct flow_keys *flkeys)
2298 {
2299 	const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
2300 	const struct ipv6hdr *key_iph = outer_iph;
2301 	struct flow_keys *_flkeys = flkeys;
2302 	const struct ipv6hdr *inner_iph;
2303 	const struct icmp6hdr *icmph;
2304 	struct ipv6hdr _inner_iph;
2305 	struct icmp6hdr _icmph;
2306 
2307 	if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
2308 		goto out;
2309 
2310 	icmph = skb_header_pointer(skb, skb_transport_offset(skb),
2311 				   sizeof(_icmph), &_icmph);
2312 	if (!icmph)
2313 		goto out;
2314 
2315 	if (!icmpv6_is_err(icmph->icmp6_type))
2316 		goto out;
2317 
2318 	inner_iph = skb_header_pointer(skb,
2319 				       skb_transport_offset(skb) + sizeof(*icmph),
2320 				       sizeof(_inner_iph), &_inner_iph);
2321 	if (!inner_iph)
2322 		goto out;
2323 
2324 	key_iph = inner_iph;
2325 	_flkeys = NULL;
2326 out:
2327 	if (_flkeys) {
2328 		keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
2329 		keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
2330 		keys->tags.flow_label = _flkeys->tags.flow_label;
2331 		keys->basic.ip_proto = _flkeys->basic.ip_proto;
2332 	} else {
2333 		keys->addrs.v6addrs.src = key_iph->saddr;
2334 		keys->addrs.v6addrs.dst = key_iph->daddr;
2335 		keys->tags.flow_label = ip6_flowlabel(key_iph);
2336 		keys->basic.ip_proto = key_iph->nexthdr;
2337 	}
2338 }
2339 
2340 static u32 rt6_multipath_custom_hash_outer(const struct net *net,
2341 					   const struct sk_buff *skb,
2342 					   bool *p_has_inner)
2343 {
2344 	u32 hash_fields = ip6_multipath_hash_fields(net);
2345 	struct flow_keys keys, hash_keys;
2346 
2347 	if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK))
2348 		return 0;
2349 
2350 	memset(&hash_keys, 0, sizeof(hash_keys));
2351 	skb_flow_dissect_flow_keys(skb, &keys, FLOW_DISSECTOR_F_STOP_AT_ENCAP);
2352 
2353 	hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2354 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP)
2355 		hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
2356 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP)
2357 		hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst;
2358 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO)
2359 		hash_keys.basic.ip_proto = keys.basic.ip_proto;
2360 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL)
2361 		hash_keys.tags.flow_label = keys.tags.flow_label;
2362 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT)
2363 		hash_keys.ports.src = keys.ports.src;
2364 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT)
2365 		hash_keys.ports.dst = keys.ports.dst;
2366 
2367 	*p_has_inner = !!(keys.control.flags & FLOW_DIS_ENCAPSULATION);
2368 	return flow_hash_from_keys(&hash_keys);
2369 }
2370 
2371 static u32 rt6_multipath_custom_hash_inner(const struct net *net,
2372 					   const struct sk_buff *skb,
2373 					   bool has_inner)
2374 {
2375 	u32 hash_fields = ip6_multipath_hash_fields(net);
2376 	struct flow_keys keys, hash_keys;
2377 
2378 	/* We assume the packet carries an encapsulation, but if none was
2379 	 * encountered during dissection of the outer flow, then there is no
2380 	 * point in calling the flow dissector again.
2381 	 */
2382 	if (!has_inner)
2383 		return 0;
2384 
2385 	if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_MASK))
2386 		return 0;
2387 
2388 	memset(&hash_keys, 0, sizeof(hash_keys));
2389 	skb_flow_dissect_flow_keys(skb, &keys, 0);
2390 
2391 	if (!(keys.control.flags & FLOW_DIS_ENCAPSULATION))
2392 		return 0;
2393 
2394 	if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2395 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
2396 		if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP)
2397 			hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
2398 		if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP)
2399 			hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst;
2400 	} else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2401 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2402 		if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP)
2403 			hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
2404 		if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP)
2405 			hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst;
2406 		if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_FLOWLABEL)
2407 			hash_keys.tags.flow_label = keys.tags.flow_label;
2408 	}
2409 
2410 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_IP_PROTO)
2411 		hash_keys.basic.ip_proto = keys.basic.ip_proto;
2412 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_PORT)
2413 		hash_keys.ports.src = keys.ports.src;
2414 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_PORT)
2415 		hash_keys.ports.dst = keys.ports.dst;
2416 
2417 	return flow_hash_from_keys(&hash_keys);
2418 }
2419 
2420 static u32 rt6_multipath_custom_hash_skb(const struct net *net,
2421 					 const struct sk_buff *skb)
2422 {
2423 	u32 mhash, mhash_inner;
2424 	bool has_inner = true;
2425 
2426 	mhash = rt6_multipath_custom_hash_outer(net, skb, &has_inner);
2427 	mhash_inner = rt6_multipath_custom_hash_inner(net, skb, has_inner);
2428 
2429 	return jhash_2words(mhash, mhash_inner, 0);
2430 }
2431 
2432 static u32 rt6_multipath_custom_hash_fl6(const struct net *net,
2433 					 const struct flowi6 *fl6)
2434 {
2435 	u32 hash_fields = ip6_multipath_hash_fields(net);
2436 	struct flow_keys hash_keys;
2437 
2438 	if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK))
2439 		return 0;
2440 
2441 	memset(&hash_keys, 0, sizeof(hash_keys));
2442 	hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2443 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP)
2444 		hash_keys.addrs.v6addrs.src = fl6->saddr;
2445 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP)
2446 		hash_keys.addrs.v6addrs.dst = fl6->daddr;
2447 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO)
2448 		hash_keys.basic.ip_proto = fl6->flowi6_proto;
2449 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL)
2450 		hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
2451 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT)
2452 		hash_keys.ports.src = fl6->fl6_sport;
2453 	if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT)
2454 		hash_keys.ports.dst = fl6->fl6_dport;
2455 
2456 	return flow_hash_from_keys(&hash_keys);
2457 }
2458 
2459 /* if skb is set it will be used and fl6 can be NULL */
2460 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
2461 		       const struct sk_buff *skb, struct flow_keys *flkeys)
2462 {
2463 	struct flow_keys hash_keys;
2464 	u32 mhash = 0;
2465 
2466 	switch (ip6_multipath_hash_policy(net)) {
2467 	case 0:
2468 		memset(&hash_keys, 0, sizeof(hash_keys));
2469 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2470 		if (skb) {
2471 			ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
2472 		} else {
2473 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2474 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2475 			hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
2476 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2477 		}
2478 		mhash = flow_hash_from_keys(&hash_keys);
2479 		break;
2480 	case 1:
2481 		if (skb) {
2482 			unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
2483 			struct flow_keys keys;
2484 
2485 			/* short-circuit if we already have L4 hash present */
2486 			if (skb->l4_hash)
2487 				return skb_get_hash_raw(skb) >> 1;
2488 
2489 			memset(&hash_keys, 0, sizeof(hash_keys));
2490 
2491 			if (!flkeys) {
2492 				skb_flow_dissect_flow_keys(skb, &keys, flag);
2493 				flkeys = &keys;
2494 			}
2495 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2496 			hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2497 			hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2498 			hash_keys.ports.src = flkeys->ports.src;
2499 			hash_keys.ports.dst = flkeys->ports.dst;
2500 			hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2501 		} else {
2502 			memset(&hash_keys, 0, sizeof(hash_keys));
2503 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2504 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2505 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2506 			hash_keys.ports.src = fl6->fl6_sport;
2507 			hash_keys.ports.dst = fl6->fl6_dport;
2508 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2509 		}
2510 		mhash = flow_hash_from_keys(&hash_keys);
2511 		break;
2512 	case 2:
2513 		memset(&hash_keys, 0, sizeof(hash_keys));
2514 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2515 		if (skb) {
2516 			struct flow_keys keys;
2517 
2518 			if (!flkeys) {
2519 				skb_flow_dissect_flow_keys(skb, &keys, 0);
2520 				flkeys = &keys;
2521 			}
2522 
2523 			/* Inner can be v4 or v6 */
2524 			if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2525 				hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
2526 				hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src;
2527 				hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst;
2528 			} else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2529 				hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2530 				hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2531 				hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2532 				hash_keys.tags.flow_label = flkeys->tags.flow_label;
2533 				hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2534 			} else {
2535 				/* Same as case 0 */
2536 				hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2537 				ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
2538 			}
2539 		} else {
2540 			/* Same as case 0 */
2541 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2542 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2543 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2544 			hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
2545 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2546 		}
2547 		mhash = flow_hash_from_keys(&hash_keys);
2548 		break;
2549 	case 3:
2550 		if (skb)
2551 			mhash = rt6_multipath_custom_hash_skb(net, skb);
2552 		else
2553 			mhash = rt6_multipath_custom_hash_fl6(net, fl6);
2554 		break;
2555 	}
2556 
2557 	return mhash >> 1;
2558 }
2559 
2560 /* Called with rcu held */
2561 void ip6_route_input(struct sk_buff *skb)
2562 {
2563 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2564 	struct net *net = dev_net(skb->dev);
2565 	int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF;
2566 	struct ip_tunnel_info *tun_info;
2567 	struct flowi6 fl6 = {
2568 		.flowi6_iif = skb->dev->ifindex,
2569 		.daddr = iph->daddr,
2570 		.saddr = iph->saddr,
2571 		.flowlabel = ip6_flowinfo(iph),
2572 		.flowi6_mark = skb->mark,
2573 		.flowi6_proto = iph->nexthdr,
2574 	};
2575 	struct flow_keys *flkeys = NULL, _flkeys;
2576 
2577 	tun_info = skb_tunnel_info(skb);
2578 	if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
2579 		fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
2580 
2581 	if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
2582 		flkeys = &_flkeys;
2583 
2584 	if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
2585 		fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
2586 	skb_dst_drop(skb);
2587 	skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev,
2588 						      &fl6, skb, flags));
2589 }
2590 
2591 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net,
2592 					     struct fib6_table *table,
2593 					     struct flowi6 *fl6,
2594 					     const struct sk_buff *skb,
2595 					     int flags)
2596 {
2597 	return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
2598 }
2599 
2600 struct dst_entry *ip6_route_output_flags_noref(struct net *net,
2601 					       const struct sock *sk,
2602 					       struct flowi6 *fl6, int flags)
2603 {
2604 	bool any_src;
2605 
2606 	if (ipv6_addr_type(&fl6->daddr) &
2607 	    (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) {
2608 		struct dst_entry *dst;
2609 
2610 		/* This function does not take refcnt on the dst */
2611 		dst = l3mdev_link_scope_lookup(net, fl6);
2612 		if (dst)
2613 			return dst;
2614 	}
2615 
2616 	fl6->flowi6_iif = LOOPBACK_IFINDEX;
2617 
2618 	flags |= RT6_LOOKUP_F_DST_NOREF;
2619 	any_src = ipv6_addr_any(&fl6->saddr);
2620 	if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
2621 	    (fl6->flowi6_oif && any_src))
2622 		flags |= RT6_LOOKUP_F_IFACE;
2623 
2624 	if (!any_src)
2625 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2626 	else if (sk)
2627 		flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
2628 
2629 	return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
2630 }
2631 EXPORT_SYMBOL_GPL(ip6_route_output_flags_noref);
2632 
2633 struct dst_entry *ip6_route_output_flags(struct net *net,
2634 					 const struct sock *sk,
2635 					 struct flowi6 *fl6,
2636 					 int flags)
2637 {
2638 	struct dst_entry *dst;
2639 	struct rt6_info *rt6;
2640 
2641 	rcu_read_lock();
2642 	dst = ip6_route_output_flags_noref(net, sk, fl6, flags);
2643 	rt6 = (struct rt6_info *)dst;
2644 	/* For dst cached in uncached_list, refcnt is already taken. */
2645 	if (list_empty(&rt6->rt6i_uncached) && !dst_hold_safe(dst)) {
2646 		dst = &net->ipv6.ip6_null_entry->dst;
2647 		dst_hold(dst);
2648 	}
2649 	rcu_read_unlock();
2650 
2651 	return dst;
2652 }
2653 EXPORT_SYMBOL_GPL(ip6_route_output_flags);
2654 
2655 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2656 {
2657 	struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
2658 	struct net_device *loopback_dev = net->loopback_dev;
2659 	struct dst_entry *new = NULL;
2660 
2661 	rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
2662 		       DST_OBSOLETE_DEAD, 0);
2663 	if (rt) {
2664 		rt6_info_init(rt);
2665 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
2666 
2667 		new = &rt->dst;
2668 		new->__use = 1;
2669 		new->input = dst_discard;
2670 		new->output = dst_discard_out;
2671 
2672 		dst_copy_metrics(new, &ort->dst);
2673 
2674 		rt->rt6i_idev = in6_dev_get(loopback_dev);
2675 		rt->rt6i_gateway = ort->rt6i_gateway;
2676 		rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
2677 
2678 		memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
2679 #ifdef CONFIG_IPV6_SUBTREES
2680 		memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
2681 #endif
2682 	}
2683 
2684 	dst_release(dst_orig);
2685 	return new ? new : ERR_PTR(-ENOMEM);
2686 }
2687 
2688 /*
2689  *	Destination cache support functions
2690  */
2691 
2692 static bool fib6_check(struct fib6_info *f6i, u32 cookie)
2693 {
2694 	u32 rt_cookie = 0;
2695 
2696 	if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
2697 		return false;
2698 
2699 	if (fib6_check_expired(f6i))
2700 		return false;
2701 
2702 	return true;
2703 }
2704 
2705 static struct dst_entry *rt6_check(struct rt6_info *rt,
2706 				   struct fib6_info *from,
2707 				   u32 cookie)
2708 {
2709 	u32 rt_cookie = 0;
2710 
2711 	if (!from || !fib6_get_cookie_safe(from, &rt_cookie) ||
2712 	    rt_cookie != cookie)
2713 		return NULL;
2714 
2715 	if (rt6_check_expired(rt))
2716 		return NULL;
2717 
2718 	return &rt->dst;
2719 }
2720 
2721 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
2722 					    struct fib6_info *from,
2723 					    u32 cookie)
2724 {
2725 	if (!__rt6_check_expired(rt) &&
2726 	    rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
2727 	    fib6_check(from, cookie))
2728 		return &rt->dst;
2729 	else
2730 		return NULL;
2731 }
2732 
2733 INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst,
2734 							u32 cookie)
2735 {
2736 	struct dst_entry *dst_ret;
2737 	struct fib6_info *from;
2738 	struct rt6_info *rt;
2739 
2740 	rt = container_of(dst, struct rt6_info, dst);
2741 
2742 	if (rt->sernum)
2743 		return rt6_is_valid(rt) ? dst : NULL;
2744 
2745 	rcu_read_lock();
2746 
2747 	/* All IPV6 dsts are created with ->obsolete set to the value
2748 	 * DST_OBSOLETE_FORCE_CHK which forces validation calls down
2749 	 * into this function always.
2750 	 */
2751 
2752 	from = rcu_dereference(rt->from);
2753 
2754 	if (from && (rt->rt6i_flags & RTF_PCPU ||
2755 	    unlikely(!list_empty(&rt->rt6i_uncached))))
2756 		dst_ret = rt6_dst_from_check(rt, from, cookie);
2757 	else
2758 		dst_ret = rt6_check(rt, from, cookie);
2759 
2760 	rcu_read_unlock();
2761 
2762 	return dst_ret;
2763 }
2764 EXPORT_INDIRECT_CALLABLE(ip6_dst_check);
2765 
2766 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
2767 {
2768 	struct rt6_info *rt = (struct rt6_info *) dst;
2769 
2770 	if (rt) {
2771 		if (rt->rt6i_flags & RTF_CACHE) {
2772 			rcu_read_lock();
2773 			if (rt6_check_expired(rt)) {
2774 				rt6_remove_exception_rt(rt);
2775 				dst = NULL;
2776 			}
2777 			rcu_read_unlock();
2778 		} else {
2779 			dst_release(dst);
2780 			dst = NULL;
2781 		}
2782 	}
2783 	return dst;
2784 }
2785 
2786 static void ip6_link_failure(struct sk_buff *skb)
2787 {
2788 	struct rt6_info *rt;
2789 
2790 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
2791 
2792 	rt = (struct rt6_info *) skb_dst(skb);
2793 	if (rt) {
2794 		rcu_read_lock();
2795 		if (rt->rt6i_flags & RTF_CACHE) {
2796 			rt6_remove_exception_rt(rt);
2797 		} else {
2798 			struct fib6_info *from;
2799 			struct fib6_node *fn;
2800 
2801 			from = rcu_dereference(rt->from);
2802 			if (from) {
2803 				fn = rcu_dereference(from->fib6_node);
2804 				if (fn && (rt->rt6i_flags & RTF_DEFAULT))
2805 					fn->fn_sernum = -1;
2806 			}
2807 		}
2808 		rcu_read_unlock();
2809 	}
2810 }
2811 
2812 static void rt6_update_expires(struct rt6_info *rt0, int timeout)
2813 {
2814 	if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
2815 		struct fib6_info *from;
2816 
2817 		rcu_read_lock();
2818 		from = rcu_dereference(rt0->from);
2819 		if (from)
2820 			rt0->dst.expires = from->expires;
2821 		rcu_read_unlock();
2822 	}
2823 
2824 	dst_set_expires(&rt0->dst, timeout);
2825 	rt0->rt6i_flags |= RTF_EXPIRES;
2826 }
2827 
2828 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
2829 {
2830 	struct net *net = dev_net(rt->dst.dev);
2831 
2832 	dst_metric_set(&rt->dst, RTAX_MTU, mtu);
2833 	rt->rt6i_flags |= RTF_MODIFIED;
2834 	rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
2835 }
2836 
2837 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
2838 {
2839 	return !(rt->rt6i_flags & RTF_CACHE) &&
2840 		(rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from));
2841 }
2842 
2843 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
2844 				 const struct ipv6hdr *iph, u32 mtu,
2845 				 bool confirm_neigh)
2846 {
2847 	const struct in6_addr *daddr, *saddr;
2848 	struct rt6_info *rt6 = (struct rt6_info *)dst;
2849 
2850 	/* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU)
2851 	 * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it.
2852 	 * [see also comment in rt6_mtu_change_route()]
2853 	 */
2854 
2855 	if (iph) {
2856 		daddr = &iph->daddr;
2857 		saddr = &iph->saddr;
2858 	} else if (sk) {
2859 		daddr = &sk->sk_v6_daddr;
2860 		saddr = &inet6_sk(sk)->saddr;
2861 	} else {
2862 		daddr = NULL;
2863 		saddr = NULL;
2864 	}
2865 
2866 	if (confirm_neigh)
2867 		dst_confirm_neigh(dst, daddr);
2868 
2869 	if (mtu < IPV6_MIN_MTU)
2870 		return;
2871 	if (mtu >= dst_mtu(dst))
2872 		return;
2873 
2874 	if (!rt6_cache_allowed_for_pmtu(rt6)) {
2875 		rt6_do_update_pmtu(rt6, mtu);
2876 		/* update rt6_ex->stamp for cache */
2877 		if (rt6->rt6i_flags & RTF_CACHE)
2878 			rt6_update_exception_stamp_rt(rt6);
2879 	} else if (daddr) {
2880 		struct fib6_result res = {};
2881 		struct rt6_info *nrt6;
2882 
2883 		rcu_read_lock();
2884 		res.f6i = rcu_dereference(rt6->from);
2885 		if (!res.f6i)
2886 			goto out_unlock;
2887 
2888 		res.fib6_flags = res.f6i->fib6_flags;
2889 		res.fib6_type = res.f6i->fib6_type;
2890 
2891 		if (res.f6i->nh) {
2892 			struct fib6_nh_match_arg arg = {
2893 				.dev = dst->dev,
2894 				.gw = &rt6->rt6i_gateway,
2895 			};
2896 
2897 			nexthop_for_each_fib6_nh(res.f6i->nh,
2898 						 fib6_nh_find_match, &arg);
2899 
2900 			/* fib6_info uses a nexthop that does not have fib6_nh
2901 			 * using the dst->dev + gw. Should be impossible.
2902 			 */
2903 			if (!arg.match)
2904 				goto out_unlock;
2905 
2906 			res.nh = arg.match;
2907 		} else {
2908 			res.nh = res.f6i->fib6_nh;
2909 		}
2910 
2911 		nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr);
2912 		if (nrt6) {
2913 			rt6_do_update_pmtu(nrt6, mtu);
2914 			if (rt6_insert_exception(nrt6, &res))
2915 				dst_release_immediate(&nrt6->dst);
2916 		}
2917 out_unlock:
2918 		rcu_read_unlock();
2919 	}
2920 }
2921 
2922 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
2923 			       struct sk_buff *skb, u32 mtu,
2924 			       bool confirm_neigh)
2925 {
2926 	__ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu,
2927 			     confirm_neigh);
2928 }
2929 
2930 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
2931 		     int oif, u32 mark, kuid_t uid)
2932 {
2933 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2934 	struct dst_entry *dst;
2935 	struct flowi6 fl6 = {
2936 		.flowi6_oif = oif,
2937 		.flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark),
2938 		.daddr = iph->daddr,
2939 		.saddr = iph->saddr,
2940 		.flowlabel = ip6_flowinfo(iph),
2941 		.flowi6_uid = uid,
2942 	};
2943 
2944 	dst = ip6_route_output(net, NULL, &fl6);
2945 	if (!dst->error)
2946 		__ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true);
2947 	dst_release(dst);
2948 }
2949 EXPORT_SYMBOL_GPL(ip6_update_pmtu);
2950 
2951 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
2952 {
2953 	int oif = sk->sk_bound_dev_if;
2954 	struct dst_entry *dst;
2955 
2956 	if (!oif && skb->dev)
2957 		oif = l3mdev_master_ifindex(skb->dev);
2958 
2959 	ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid);
2960 
2961 	dst = __sk_dst_get(sk);
2962 	if (!dst || !dst->obsolete ||
2963 	    dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
2964 		return;
2965 
2966 	bh_lock_sock(sk);
2967 	if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
2968 		ip6_datagram_dst_update(sk, false);
2969 	bh_unlock_sock(sk);
2970 }
2971 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
2972 
2973 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
2974 			   const struct flowi6 *fl6)
2975 {
2976 #ifdef CONFIG_IPV6_SUBTREES
2977 	struct ipv6_pinfo *np = inet6_sk(sk);
2978 #endif
2979 
2980 	ip6_dst_store(sk, dst,
2981 		      ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
2982 		      &sk->sk_v6_daddr : NULL,
2983 #ifdef CONFIG_IPV6_SUBTREES
2984 		      ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
2985 		      &np->saddr :
2986 #endif
2987 		      NULL);
2988 }
2989 
2990 static bool ip6_redirect_nh_match(const struct fib6_result *res,
2991 				  struct flowi6 *fl6,
2992 				  const struct in6_addr *gw,
2993 				  struct rt6_info **ret)
2994 {
2995 	const struct fib6_nh *nh = res->nh;
2996 
2997 	if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family ||
2998 	    fl6->flowi6_oif != nh->fib_nh_dev->ifindex)
2999 		return false;
3000 
3001 	/* rt_cache's gateway might be different from its 'parent'
3002 	 * in the case of an ip redirect.
3003 	 * So we keep searching in the exception table if the gateway
3004 	 * is different.
3005 	 */
3006 	if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) {
3007 		struct rt6_info *rt_cache;
3008 
3009 		rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr);
3010 		if (rt_cache &&
3011 		    ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) {
3012 			*ret = rt_cache;
3013 			return true;
3014 		}
3015 		return false;
3016 	}
3017 	return true;
3018 }
3019 
3020 struct fib6_nh_rd_arg {
3021 	struct fib6_result	*res;
3022 	struct flowi6		*fl6;
3023 	const struct in6_addr	*gw;
3024 	struct rt6_info		**ret;
3025 };
3026 
3027 static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg)
3028 {
3029 	struct fib6_nh_rd_arg *arg = _arg;
3030 
3031 	arg->res->nh = nh;
3032 	return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret);
3033 }
3034 
3035 /* Handle redirects */
3036 struct ip6rd_flowi {
3037 	struct flowi6 fl6;
3038 	struct in6_addr gateway;
3039 };
3040 
3041 INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net,
3042 					     struct fib6_table *table,
3043 					     struct flowi6 *fl6,
3044 					     const struct sk_buff *skb,
3045 					     int flags)
3046 {
3047 	struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
3048 	struct rt6_info *ret = NULL;
3049 	struct fib6_result res = {};
3050 	struct fib6_nh_rd_arg arg = {
3051 		.res = &res,
3052 		.fl6 = fl6,
3053 		.gw  = &rdfl->gateway,
3054 		.ret = &ret
3055 	};
3056 	struct fib6_info *rt;
3057 	struct fib6_node *fn;
3058 
3059 	/* l3mdev_update_flow overrides oif if the device is enslaved; in
3060 	 * this case we must match on the real ingress device, so reset it
3061 	 */
3062 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
3063 		fl6->flowi6_oif = skb->dev->ifindex;
3064 
3065 	/* Get the "current" route for this destination and
3066 	 * check if the redirect has come from appropriate router.
3067 	 *
3068 	 * RFC 4861 specifies that redirects should only be
3069 	 * accepted if they come from the nexthop to the target.
3070 	 * Due to the way the routes are chosen, this notion
3071 	 * is a bit fuzzy and one might need to check all possible
3072 	 * routes.
3073 	 */
3074 
3075 	rcu_read_lock();
3076 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
3077 restart:
3078 	for_each_fib6_node_rt_rcu(fn) {
3079 		res.f6i = rt;
3080 		if (fib6_check_expired(rt))
3081 			continue;
3082 		if (rt->fib6_flags & RTF_REJECT)
3083 			break;
3084 		if (unlikely(rt->nh)) {
3085 			if (nexthop_is_blackhole(rt->nh))
3086 				continue;
3087 			/* on match, res->nh is filled in and potentially ret */
3088 			if (nexthop_for_each_fib6_nh(rt->nh,
3089 						     fib6_nh_redirect_match,
3090 						     &arg))
3091 				goto out;
3092 		} else {
3093 			res.nh = rt->fib6_nh;
3094 			if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway,
3095 						  &ret))
3096 				goto out;
3097 		}
3098 	}
3099 
3100 	if (!rt)
3101 		rt = net->ipv6.fib6_null_entry;
3102 	else if (rt->fib6_flags & RTF_REJECT) {
3103 		ret = net->ipv6.ip6_null_entry;
3104 		goto out;
3105 	}
3106 
3107 	if (rt == net->ipv6.fib6_null_entry) {
3108 		fn = fib6_backtrack(fn, &fl6->saddr);
3109 		if (fn)
3110 			goto restart;
3111 	}
3112 
3113 	res.f6i = rt;
3114 	res.nh = rt->fib6_nh;
3115 out:
3116 	if (ret) {
3117 		ip6_hold_safe(net, &ret);
3118 	} else {
3119 		res.fib6_flags = res.f6i->fib6_flags;
3120 		res.fib6_type = res.f6i->fib6_type;
3121 		ret = ip6_create_rt_rcu(&res);
3122 	}
3123 
3124 	rcu_read_unlock();
3125 
3126 	trace_fib6_table_lookup(net, &res, table, fl6);
3127 	return ret;
3128 };
3129 
3130 static struct dst_entry *ip6_route_redirect(struct net *net,
3131 					    const struct flowi6 *fl6,
3132 					    const struct sk_buff *skb,
3133 					    const struct in6_addr *gateway)
3134 {
3135 	int flags = RT6_LOOKUP_F_HAS_SADDR;
3136 	struct ip6rd_flowi rdfl;
3137 
3138 	rdfl.fl6 = *fl6;
3139 	rdfl.gateway = *gateway;
3140 
3141 	return fib6_rule_lookup(net, &rdfl.fl6, skb,
3142 				flags, __ip6_route_redirect);
3143 }
3144 
3145 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
3146 		  kuid_t uid)
3147 {
3148 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
3149 	struct dst_entry *dst;
3150 	struct flowi6 fl6 = {
3151 		.flowi6_iif = LOOPBACK_IFINDEX,
3152 		.flowi6_oif = oif,
3153 		.flowi6_mark = mark,
3154 		.daddr = iph->daddr,
3155 		.saddr = iph->saddr,
3156 		.flowlabel = ip6_flowinfo(iph),
3157 		.flowi6_uid = uid,
3158 	};
3159 
3160 	dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
3161 	rt6_do_redirect(dst, NULL, skb);
3162 	dst_release(dst);
3163 }
3164 EXPORT_SYMBOL_GPL(ip6_redirect);
3165 
3166 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif)
3167 {
3168 	const struct ipv6hdr *iph = ipv6_hdr(skb);
3169 	const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
3170 	struct dst_entry *dst;
3171 	struct flowi6 fl6 = {
3172 		.flowi6_iif = LOOPBACK_IFINDEX,
3173 		.flowi6_oif = oif,
3174 		.daddr = msg->dest,
3175 		.saddr = iph->daddr,
3176 		.flowi6_uid = sock_net_uid(net, NULL),
3177 	};
3178 
3179 	dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
3180 	rt6_do_redirect(dst, NULL, skb);
3181 	dst_release(dst);
3182 }
3183 
3184 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
3185 {
3186 	ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
3187 		     sk->sk_uid);
3188 }
3189 EXPORT_SYMBOL_GPL(ip6_sk_redirect);
3190 
3191 static unsigned int ip6_default_advmss(const struct dst_entry *dst)
3192 {
3193 	struct net_device *dev = dst->dev;
3194 	unsigned int mtu = dst_mtu(dst);
3195 	struct net *net = dev_net(dev);
3196 
3197 	mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
3198 
3199 	if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
3200 		mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
3201 
3202 	/*
3203 	 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
3204 	 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
3205 	 * IPV6_MAXPLEN is also valid and means: "any MSS,
3206 	 * rely only on pmtu discovery"
3207 	 */
3208 	if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
3209 		mtu = IPV6_MAXPLEN;
3210 	return mtu;
3211 }
3212 
3213 INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst)
3214 {
3215 	return ip6_dst_mtu_maybe_forward(dst, false);
3216 }
3217 EXPORT_INDIRECT_CALLABLE(ip6_mtu);
3218 
3219 /* MTU selection:
3220  * 1. mtu on route is locked - use it
3221  * 2. mtu from nexthop exception
3222  * 3. mtu from egress device
3223  *
3224  * based on ip6_dst_mtu_forward and exception logic of
3225  * rt6_find_cached_rt; called with rcu_read_lock
3226  */
3227 u32 ip6_mtu_from_fib6(const struct fib6_result *res,
3228 		      const struct in6_addr *daddr,
3229 		      const struct in6_addr *saddr)
3230 {
3231 	const struct fib6_nh *nh = res->nh;
3232 	struct fib6_info *f6i = res->f6i;
3233 	struct inet6_dev *idev;
3234 	struct rt6_info *rt;
3235 	u32 mtu = 0;
3236 
3237 	if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
3238 		mtu = f6i->fib6_pmtu;
3239 		if (mtu)
3240 			goto out;
3241 	}
3242 
3243 	rt = rt6_find_cached_rt(res, daddr, saddr);
3244 	if (unlikely(rt)) {
3245 		mtu = dst_metric_raw(&rt->dst, RTAX_MTU);
3246 	} else {
3247 		struct net_device *dev = nh->fib_nh_dev;
3248 
3249 		mtu = IPV6_MIN_MTU;
3250 		idev = __in6_dev_get(dev);
3251 		if (idev && idev->cnf.mtu6 > mtu)
3252 			mtu = idev->cnf.mtu6;
3253 	}
3254 
3255 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
3256 out:
3257 	return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu);
3258 }
3259 
3260 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
3261 				  struct flowi6 *fl6)
3262 {
3263 	struct dst_entry *dst;
3264 	struct rt6_info *rt;
3265 	struct inet6_dev *idev = in6_dev_get(dev);
3266 	struct net *net = dev_net(dev);
3267 
3268 	if (unlikely(!idev))
3269 		return ERR_PTR(-ENODEV);
3270 
3271 	rt = ip6_dst_alloc(net, dev, 0);
3272 	if (unlikely(!rt)) {
3273 		in6_dev_put(idev);
3274 		dst = ERR_PTR(-ENOMEM);
3275 		goto out;
3276 	}
3277 
3278 	rt->dst.input = ip6_input;
3279 	rt->dst.output  = ip6_output;
3280 	rt->rt6i_gateway  = fl6->daddr;
3281 	rt->rt6i_dst.addr = fl6->daddr;
3282 	rt->rt6i_dst.plen = 128;
3283 	rt->rt6i_idev     = idev;
3284 	dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
3285 
3286 	/* Add this dst into uncached_list so that rt6_disable_ip() can
3287 	 * do proper release of the net_device
3288 	 */
3289 	rt6_uncached_list_add(rt);
3290 	atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
3291 
3292 	dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
3293 
3294 out:
3295 	return dst;
3296 }
3297 
3298 static int ip6_dst_gc(struct dst_ops *ops)
3299 {
3300 	struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
3301 	int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
3302 	int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
3303 	int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
3304 	int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
3305 	unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
3306 	int entries;
3307 
3308 	entries = dst_entries_get_fast(ops);
3309 	if (entries > rt_max_size)
3310 		entries = dst_entries_get_slow(ops);
3311 
3312 	if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
3313 	    entries <= rt_max_size)
3314 		goto out;
3315 
3316 	net->ipv6.ip6_rt_gc_expire++;
3317 	fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true);
3318 	entries = dst_entries_get_slow(ops);
3319 	if (entries < ops->gc_thresh)
3320 		net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
3321 out:
3322 	net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
3323 	return entries > rt_max_size;
3324 }
3325 
3326 static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg,
3327 			       const struct in6_addr *gw_addr, u32 tbid,
3328 			       int flags, struct fib6_result *res)
3329 {
3330 	struct flowi6 fl6 = {
3331 		.flowi6_oif = cfg->fc_ifindex,
3332 		.daddr = *gw_addr,
3333 		.saddr = cfg->fc_prefsrc,
3334 	};
3335 	struct fib6_table *table;
3336 	int err;
3337 
3338 	table = fib6_get_table(net, tbid);
3339 	if (!table)
3340 		return -EINVAL;
3341 
3342 	if (!ipv6_addr_any(&cfg->fc_prefsrc))
3343 		flags |= RT6_LOOKUP_F_HAS_SADDR;
3344 
3345 	flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
3346 
3347 	err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags);
3348 	if (!err && res->f6i != net->ipv6.fib6_null_entry)
3349 		fib6_select_path(net, res, &fl6, cfg->fc_ifindex,
3350 				 cfg->fc_ifindex != 0, NULL, flags);
3351 
3352 	return err;
3353 }
3354 
3355 static int ip6_route_check_nh_onlink(struct net *net,
3356 				     struct fib6_config *cfg,
3357 				     const struct net_device *dev,
3358 				     struct netlink_ext_ack *extack)
3359 {
3360 	u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
3361 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
3362 	struct fib6_result res = {};
3363 	int err;
3364 
3365 	err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res);
3366 	if (!err && !(res.fib6_flags & RTF_REJECT) &&
3367 	    /* ignore match if it is the default route */
3368 	    !ipv6_addr_any(&res.f6i->fib6_dst.addr) &&
3369 	    (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) {
3370 		NL_SET_ERR_MSG(extack,
3371 			       "Nexthop has invalid gateway or device mismatch");
3372 		err = -EINVAL;
3373 	}
3374 
3375 	return err;
3376 }
3377 
3378 static int ip6_route_check_nh(struct net *net,
3379 			      struct fib6_config *cfg,
3380 			      struct net_device **_dev,
3381 			      struct inet6_dev **idev)
3382 {
3383 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
3384 	struct net_device *dev = _dev ? *_dev : NULL;
3385 	int flags = RT6_LOOKUP_F_IFACE;
3386 	struct fib6_result res = {};
3387 	int err = -EHOSTUNREACH;
3388 
3389 	if (cfg->fc_table) {
3390 		err = ip6_nh_lookup_table(net, cfg, gw_addr,
3391 					  cfg->fc_table, flags, &res);
3392 		/* gw_addr can not require a gateway or resolve to a reject
3393 		 * route. If a device is given, it must match the result.
3394 		 */
3395 		if (err || res.fib6_flags & RTF_REJECT ||
3396 		    res.nh->fib_nh_gw_family ||
3397 		    (dev && dev != res.nh->fib_nh_dev))
3398 			err = -EHOSTUNREACH;
3399 	}
3400 
3401 	if (err < 0) {
3402 		struct flowi6 fl6 = {
3403 			.flowi6_oif = cfg->fc_ifindex,
3404 			.daddr = *gw_addr,
3405 		};
3406 
3407 		err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags);
3408 		if (err || res.fib6_flags & RTF_REJECT ||
3409 		    res.nh->fib_nh_gw_family)
3410 			err = -EHOSTUNREACH;
3411 
3412 		if (err)
3413 			return err;
3414 
3415 		fib6_select_path(net, &res, &fl6, cfg->fc_ifindex,
3416 				 cfg->fc_ifindex != 0, NULL, flags);
3417 	}
3418 
3419 	err = 0;
3420 	if (dev) {
3421 		if (dev != res.nh->fib_nh_dev)
3422 			err = -EHOSTUNREACH;
3423 	} else {
3424 		*_dev = dev = res.nh->fib_nh_dev;
3425 		dev_hold(dev);
3426 		*idev = in6_dev_get(dev);
3427 	}
3428 
3429 	return err;
3430 }
3431 
3432 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
3433 			   struct net_device **_dev, struct inet6_dev **idev,
3434 			   struct netlink_ext_ack *extack)
3435 {
3436 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
3437 	int gwa_type = ipv6_addr_type(gw_addr);
3438 	bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
3439 	const struct net_device *dev = *_dev;
3440 	bool need_addr_check = !dev;
3441 	int err = -EINVAL;
3442 
3443 	/* if gw_addr is local we will fail to detect this in case
3444 	 * address is still TENTATIVE (DAD in progress). rt6_lookup()
3445 	 * will return already-added prefix route via interface that
3446 	 * prefix route was assigned to, which might be non-loopback.
3447 	 */
3448 	if (dev &&
3449 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
3450 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
3451 		goto out;
3452 	}
3453 
3454 	if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
3455 		/* IPv6 strictly inhibits using not link-local
3456 		 * addresses as nexthop address.
3457 		 * Otherwise, router will not able to send redirects.
3458 		 * It is very good, but in some (rare!) circumstances
3459 		 * (SIT, PtP, NBMA NOARP links) it is handy to allow
3460 		 * some exceptions. --ANK
3461 		 * We allow IPv4-mapped nexthops to support RFC4798-type
3462 		 * addressing
3463 		 */
3464 		if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
3465 			NL_SET_ERR_MSG(extack, "Invalid gateway address");
3466 			goto out;
3467 		}
3468 
3469 		rcu_read_lock();
3470 
3471 		if (cfg->fc_flags & RTNH_F_ONLINK)
3472 			err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
3473 		else
3474 			err = ip6_route_check_nh(net, cfg, _dev, idev);
3475 
3476 		rcu_read_unlock();
3477 
3478 		if (err)
3479 			goto out;
3480 	}
3481 
3482 	/* reload in case device was changed */
3483 	dev = *_dev;
3484 
3485 	err = -EINVAL;
3486 	if (!dev) {
3487 		NL_SET_ERR_MSG(extack, "Egress device not specified");
3488 		goto out;
3489 	} else if (dev->flags & IFF_LOOPBACK) {
3490 		NL_SET_ERR_MSG(extack,
3491 			       "Egress device can not be loopback device for this route");
3492 		goto out;
3493 	}
3494 
3495 	/* if we did not check gw_addr above, do so now that the
3496 	 * egress device has been resolved.
3497 	 */
3498 	if (need_addr_check &&
3499 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
3500 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
3501 		goto out;
3502 	}
3503 
3504 	err = 0;
3505 out:
3506 	return err;
3507 }
3508 
3509 static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type)
3510 {
3511 	if ((flags & RTF_REJECT) ||
3512 	    (dev && (dev->flags & IFF_LOOPBACK) &&
3513 	     !(addr_type & IPV6_ADDR_LOOPBACK) &&
3514 	     !(flags & (RTF_ANYCAST | RTF_LOCAL))))
3515 		return true;
3516 
3517 	return false;
3518 }
3519 
3520 int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh,
3521 		 struct fib6_config *cfg, gfp_t gfp_flags,
3522 		 struct netlink_ext_ack *extack)
3523 {
3524 	struct net_device *dev = NULL;
3525 	struct inet6_dev *idev = NULL;
3526 	int addr_type;
3527 	int err;
3528 
3529 	fib6_nh->fib_nh_family = AF_INET6;
3530 #ifdef CONFIG_IPV6_ROUTER_PREF
3531 	fib6_nh->last_probe = jiffies;
3532 #endif
3533 	if (cfg->fc_is_fdb) {
3534 		fib6_nh->fib_nh_gw6 = cfg->fc_gateway;
3535 		fib6_nh->fib_nh_gw_family = AF_INET6;
3536 		return 0;
3537 	}
3538 
3539 	err = -ENODEV;
3540 	if (cfg->fc_ifindex) {
3541 		dev = dev_get_by_index(net, cfg->fc_ifindex);
3542 		if (!dev)
3543 			goto out;
3544 		idev = in6_dev_get(dev);
3545 		if (!idev)
3546 			goto out;
3547 	}
3548 
3549 	if (cfg->fc_flags & RTNH_F_ONLINK) {
3550 		if (!dev) {
3551 			NL_SET_ERR_MSG(extack,
3552 				       "Nexthop device required for onlink");
3553 			goto out;
3554 		}
3555 
3556 		if (!(dev->flags & IFF_UP)) {
3557 			NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3558 			err = -ENETDOWN;
3559 			goto out;
3560 		}
3561 
3562 		fib6_nh->fib_nh_flags |= RTNH_F_ONLINK;
3563 	}
3564 
3565 	fib6_nh->fib_nh_weight = 1;
3566 
3567 	/* We cannot add true routes via loopback here,
3568 	 * they would result in kernel looping; promote them to reject routes
3569 	 */
3570 	addr_type = ipv6_addr_type(&cfg->fc_dst);
3571 	if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) {
3572 		/* hold loopback dev/idev if we haven't done so. */
3573 		if (dev != net->loopback_dev) {
3574 			if (dev) {
3575 				dev_put(dev);
3576 				in6_dev_put(idev);
3577 			}
3578 			dev = net->loopback_dev;
3579 			dev_hold(dev);
3580 			idev = in6_dev_get(dev);
3581 			if (!idev) {
3582 				err = -ENODEV;
3583 				goto out;
3584 			}
3585 		}
3586 		goto pcpu_alloc;
3587 	}
3588 
3589 	if (cfg->fc_flags & RTF_GATEWAY) {
3590 		err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
3591 		if (err)
3592 			goto out;
3593 
3594 		fib6_nh->fib_nh_gw6 = cfg->fc_gateway;
3595 		fib6_nh->fib_nh_gw_family = AF_INET6;
3596 	}
3597 
3598 	err = -ENODEV;
3599 	if (!dev)
3600 		goto out;
3601 
3602 	if (idev->cnf.disable_ipv6) {
3603 		NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
3604 		err = -EACCES;
3605 		goto out;
3606 	}
3607 
3608 	if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) {
3609 		NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3610 		err = -ENETDOWN;
3611 		goto out;
3612 	}
3613 
3614 	if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
3615 	    !netif_carrier_ok(dev))
3616 		fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN;
3617 
3618 	err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap,
3619 				 cfg->fc_encap_type, cfg, gfp_flags, extack);
3620 	if (err)
3621 		goto out;
3622 
3623 pcpu_alloc:
3624 	fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags);
3625 	if (!fib6_nh->rt6i_pcpu) {
3626 		err = -ENOMEM;
3627 		goto out;
3628 	}
3629 
3630 	fib6_nh->fib_nh_dev = dev;
3631 	netdev_tracker_alloc(dev, &fib6_nh->fib_nh_dev_tracker, gfp_flags);
3632 
3633 	fib6_nh->fib_nh_oif = dev->ifindex;
3634 	err = 0;
3635 out:
3636 	if (idev)
3637 		in6_dev_put(idev);
3638 
3639 	if (err) {
3640 		lwtstate_put(fib6_nh->fib_nh_lws);
3641 		fib6_nh->fib_nh_lws = NULL;
3642 		dev_put(dev);
3643 	}
3644 
3645 	return err;
3646 }
3647 
3648 void fib6_nh_release(struct fib6_nh *fib6_nh)
3649 {
3650 	struct rt6_exception_bucket *bucket;
3651 
3652 	rcu_read_lock();
3653 
3654 	fib6_nh_flush_exceptions(fib6_nh, NULL);
3655 	bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL);
3656 	if (bucket) {
3657 		rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL);
3658 		kfree(bucket);
3659 	}
3660 
3661 	rcu_read_unlock();
3662 
3663 	fib6_nh_release_dsts(fib6_nh);
3664 	free_percpu(fib6_nh->rt6i_pcpu);
3665 
3666 	fib_nh_common_release(&fib6_nh->nh_common);
3667 }
3668 
3669 void fib6_nh_release_dsts(struct fib6_nh *fib6_nh)
3670 {
3671 	int cpu;
3672 
3673 	if (!fib6_nh->rt6i_pcpu)
3674 		return;
3675 
3676 	for_each_possible_cpu(cpu) {
3677 		struct rt6_info *pcpu_rt, **ppcpu_rt;
3678 
3679 		ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
3680 		pcpu_rt = xchg(ppcpu_rt, NULL);
3681 		if (pcpu_rt) {
3682 			dst_dev_put(&pcpu_rt->dst);
3683 			dst_release(&pcpu_rt->dst);
3684 		}
3685 	}
3686 }
3687 
3688 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
3689 					      gfp_t gfp_flags,
3690 					      struct netlink_ext_ack *extack)
3691 {
3692 	struct net *net = cfg->fc_nlinfo.nl_net;
3693 	struct fib6_info *rt = NULL;
3694 	struct nexthop *nh = NULL;
3695 	struct fib6_table *table;
3696 	struct fib6_nh *fib6_nh;
3697 	int err = -EINVAL;
3698 	int addr_type;
3699 
3700 	/* RTF_PCPU is an internal flag; can not be set by userspace */
3701 	if (cfg->fc_flags & RTF_PCPU) {
3702 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
3703 		goto out;
3704 	}
3705 
3706 	/* RTF_CACHE is an internal flag; can not be set by userspace */
3707 	if (cfg->fc_flags & RTF_CACHE) {
3708 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
3709 		goto out;
3710 	}
3711 
3712 	if (cfg->fc_type > RTN_MAX) {
3713 		NL_SET_ERR_MSG(extack, "Invalid route type");
3714 		goto out;
3715 	}
3716 
3717 	if (cfg->fc_dst_len > 128) {
3718 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
3719 		goto out;
3720 	}
3721 	if (cfg->fc_src_len > 128) {
3722 		NL_SET_ERR_MSG(extack, "Invalid source address length");
3723 		goto out;
3724 	}
3725 #ifndef CONFIG_IPV6_SUBTREES
3726 	if (cfg->fc_src_len) {
3727 		NL_SET_ERR_MSG(extack,
3728 			       "Specifying source address requires IPV6_SUBTREES to be enabled");
3729 		goto out;
3730 	}
3731 #endif
3732 	if (cfg->fc_nh_id) {
3733 		nh = nexthop_find_by_id(net, cfg->fc_nh_id);
3734 		if (!nh) {
3735 			NL_SET_ERR_MSG(extack, "Nexthop id does not exist");
3736 			goto out;
3737 		}
3738 		err = fib6_check_nexthop(nh, cfg, extack);
3739 		if (err)
3740 			goto out;
3741 	}
3742 
3743 	err = -ENOBUFS;
3744 	if (cfg->fc_nlinfo.nlh &&
3745 	    !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
3746 		table = fib6_get_table(net, cfg->fc_table);
3747 		if (!table) {
3748 			pr_warn("NLM_F_CREATE should be specified when creating new route\n");
3749 			table = fib6_new_table(net, cfg->fc_table);
3750 		}
3751 	} else {
3752 		table = fib6_new_table(net, cfg->fc_table);
3753 	}
3754 
3755 	if (!table)
3756 		goto out;
3757 
3758 	err = -ENOMEM;
3759 	rt = fib6_info_alloc(gfp_flags, !nh);
3760 	if (!rt)
3761 		goto out;
3762 
3763 	rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len,
3764 					       extack);
3765 	if (IS_ERR(rt->fib6_metrics)) {
3766 		err = PTR_ERR(rt->fib6_metrics);
3767 		/* Do not leave garbage there. */
3768 		rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics;
3769 		goto out_free;
3770 	}
3771 
3772 	if (cfg->fc_flags & RTF_ADDRCONF)
3773 		rt->dst_nocount = true;
3774 
3775 	if (cfg->fc_flags & RTF_EXPIRES)
3776 		fib6_set_expires(rt, jiffies +
3777 				clock_t_to_jiffies(cfg->fc_expires));
3778 	else
3779 		fib6_clean_expires(rt);
3780 
3781 	if (cfg->fc_protocol == RTPROT_UNSPEC)
3782 		cfg->fc_protocol = RTPROT_BOOT;
3783 	rt->fib6_protocol = cfg->fc_protocol;
3784 
3785 	rt->fib6_table = table;
3786 	rt->fib6_metric = cfg->fc_metric;
3787 	rt->fib6_type = cfg->fc_type ? : RTN_UNICAST;
3788 	rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY;
3789 
3790 	ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
3791 	rt->fib6_dst.plen = cfg->fc_dst_len;
3792 
3793 #ifdef CONFIG_IPV6_SUBTREES
3794 	ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
3795 	rt->fib6_src.plen = cfg->fc_src_len;
3796 #endif
3797 	if (nh) {
3798 		if (rt->fib6_src.plen) {
3799 			NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing");
3800 			goto out_free;
3801 		}
3802 		if (!nexthop_get(nh)) {
3803 			NL_SET_ERR_MSG(extack, "Nexthop has been deleted");
3804 			goto out_free;
3805 		}
3806 		rt->nh = nh;
3807 		fib6_nh = nexthop_fib6_nh(rt->nh);
3808 	} else {
3809 		err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack);
3810 		if (err)
3811 			goto out;
3812 
3813 		fib6_nh = rt->fib6_nh;
3814 
3815 		/* We cannot add true routes via loopback here, they would
3816 		 * result in kernel looping; promote them to reject routes
3817 		 */
3818 		addr_type = ipv6_addr_type(&cfg->fc_dst);
3819 		if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev,
3820 				   addr_type))
3821 			rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP;
3822 	}
3823 
3824 	if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
3825 		struct net_device *dev = fib6_nh->fib_nh_dev;
3826 
3827 		if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
3828 			NL_SET_ERR_MSG(extack, "Invalid source address");
3829 			err = -EINVAL;
3830 			goto out;
3831 		}
3832 		rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
3833 		rt->fib6_prefsrc.plen = 128;
3834 	} else
3835 		rt->fib6_prefsrc.plen = 0;
3836 
3837 	return rt;
3838 out:
3839 	fib6_info_release(rt);
3840 	return ERR_PTR(err);
3841 out_free:
3842 	ip_fib_metrics_put(rt->fib6_metrics);
3843 	kfree(rt);
3844 	return ERR_PTR(err);
3845 }
3846 
3847 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
3848 		  struct netlink_ext_ack *extack)
3849 {
3850 	struct fib6_info *rt;
3851 	int err;
3852 
3853 	rt = ip6_route_info_create(cfg, gfp_flags, extack);
3854 	if (IS_ERR(rt))
3855 		return PTR_ERR(rt);
3856 
3857 	err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
3858 	fib6_info_release(rt);
3859 
3860 	return err;
3861 }
3862 
3863 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
3864 {
3865 	struct net *net = info->nl_net;
3866 	struct fib6_table *table;
3867 	int err;
3868 
3869 	if (rt == net->ipv6.fib6_null_entry) {
3870 		err = -ENOENT;
3871 		goto out;
3872 	}
3873 
3874 	table = rt->fib6_table;
3875 	spin_lock_bh(&table->tb6_lock);
3876 	err = fib6_del(rt, info);
3877 	spin_unlock_bh(&table->tb6_lock);
3878 
3879 out:
3880 	fib6_info_release(rt);
3881 	return err;
3882 }
3883 
3884 int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify)
3885 {
3886 	struct nl_info info = {
3887 		.nl_net = net,
3888 		.skip_notify = skip_notify
3889 	};
3890 
3891 	return __ip6_del_rt(rt, &info);
3892 }
3893 
3894 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
3895 {
3896 	struct nl_info *info = &cfg->fc_nlinfo;
3897 	struct net *net = info->nl_net;
3898 	struct sk_buff *skb = NULL;
3899 	struct fib6_table *table;
3900 	int err = -ENOENT;
3901 
3902 	if (rt == net->ipv6.fib6_null_entry)
3903 		goto out_put;
3904 	table = rt->fib6_table;
3905 	spin_lock_bh(&table->tb6_lock);
3906 
3907 	if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
3908 		struct fib6_info *sibling, *next_sibling;
3909 		struct fib6_node *fn;
3910 
3911 		/* prefer to send a single notification with all hops */
3912 		skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
3913 		if (skb) {
3914 			u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
3915 
3916 			if (rt6_fill_node(net, skb, rt, NULL,
3917 					  NULL, NULL, 0, RTM_DELROUTE,
3918 					  info->portid, seq, 0) < 0) {
3919 				kfree_skb(skb);
3920 				skb = NULL;
3921 			} else
3922 				info->skip_notify = 1;
3923 		}
3924 
3925 		/* 'rt' points to the first sibling route. If it is not the
3926 		 * leaf, then we do not need to send a notification. Otherwise,
3927 		 * we need to check if the last sibling has a next route or not
3928 		 * and emit a replace or delete notification, respectively.
3929 		 */
3930 		info->skip_notify_kernel = 1;
3931 		fn = rcu_dereference_protected(rt->fib6_node,
3932 					    lockdep_is_held(&table->tb6_lock));
3933 		if (rcu_access_pointer(fn->leaf) == rt) {
3934 			struct fib6_info *last_sibling, *replace_rt;
3935 
3936 			last_sibling = list_last_entry(&rt->fib6_siblings,
3937 						       struct fib6_info,
3938 						       fib6_siblings);
3939 			replace_rt = rcu_dereference_protected(
3940 					    last_sibling->fib6_next,
3941 					    lockdep_is_held(&table->tb6_lock));
3942 			if (replace_rt)
3943 				call_fib6_entry_notifiers_replace(net,
3944 								  replace_rt);
3945 			else
3946 				call_fib6_multipath_entry_notifiers(net,
3947 						       FIB_EVENT_ENTRY_DEL,
3948 						       rt, rt->fib6_nsiblings,
3949 						       NULL);
3950 		}
3951 		list_for_each_entry_safe(sibling, next_sibling,
3952 					 &rt->fib6_siblings,
3953 					 fib6_siblings) {
3954 			err = fib6_del(sibling, info);
3955 			if (err)
3956 				goto out_unlock;
3957 		}
3958 	}
3959 
3960 	err = fib6_del(rt, info);
3961 out_unlock:
3962 	spin_unlock_bh(&table->tb6_lock);
3963 out_put:
3964 	fib6_info_release(rt);
3965 
3966 	if (skb) {
3967 		rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
3968 			    info->nlh, gfp_any());
3969 	}
3970 	return err;
3971 }
3972 
3973 static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
3974 {
3975 	int rc = -ESRCH;
3976 
3977 	if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
3978 		goto out;
3979 
3980 	if (cfg->fc_flags & RTF_GATEWAY &&
3981 	    !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
3982 		goto out;
3983 
3984 	rc = rt6_remove_exception_rt(rt);
3985 out:
3986 	return rc;
3987 }
3988 
3989 static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt,
3990 			     struct fib6_nh *nh)
3991 {
3992 	struct fib6_result res = {
3993 		.f6i = rt,
3994 		.nh = nh,
3995 	};
3996 	struct rt6_info *rt_cache;
3997 
3998 	rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src);
3999 	if (rt_cache)
4000 		return __ip6_del_cached_rt(rt_cache, cfg);
4001 
4002 	return 0;
4003 }
4004 
4005 struct fib6_nh_del_cached_rt_arg {
4006 	struct fib6_config *cfg;
4007 	struct fib6_info *f6i;
4008 };
4009 
4010 static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg)
4011 {
4012 	struct fib6_nh_del_cached_rt_arg *arg = _arg;
4013 	int rc;
4014 
4015 	rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh);
4016 	return rc != -ESRCH ? rc : 0;
4017 }
4018 
4019 static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i)
4020 {
4021 	struct fib6_nh_del_cached_rt_arg arg = {
4022 		.cfg = cfg,
4023 		.f6i = f6i
4024 	};
4025 
4026 	return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg);
4027 }
4028 
4029 static int ip6_route_del(struct fib6_config *cfg,
4030 			 struct netlink_ext_ack *extack)
4031 {
4032 	struct fib6_table *table;
4033 	struct fib6_info *rt;
4034 	struct fib6_node *fn;
4035 	int err = -ESRCH;
4036 
4037 	table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
4038 	if (!table) {
4039 		NL_SET_ERR_MSG(extack, "FIB table does not exist");
4040 		return err;
4041 	}
4042 
4043 	rcu_read_lock();
4044 
4045 	fn = fib6_locate(&table->tb6_root,
4046 			 &cfg->fc_dst, cfg->fc_dst_len,
4047 			 &cfg->fc_src, cfg->fc_src_len,
4048 			 !(cfg->fc_flags & RTF_CACHE));
4049 
4050 	if (fn) {
4051 		for_each_fib6_node_rt_rcu(fn) {
4052 			struct fib6_nh *nh;
4053 
4054 			if (rt->nh && cfg->fc_nh_id &&
4055 			    rt->nh->id != cfg->fc_nh_id)
4056 				continue;
4057 
4058 			if (cfg->fc_flags & RTF_CACHE) {
4059 				int rc = 0;
4060 
4061 				if (rt->nh) {
4062 					rc = ip6_del_cached_rt_nh(cfg, rt);
4063 				} else if (cfg->fc_nh_id) {
4064 					continue;
4065 				} else {
4066 					nh = rt->fib6_nh;
4067 					rc = ip6_del_cached_rt(cfg, rt, nh);
4068 				}
4069 				if (rc != -ESRCH) {
4070 					rcu_read_unlock();
4071 					return rc;
4072 				}
4073 				continue;
4074 			}
4075 
4076 			if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
4077 				continue;
4078 			if (cfg->fc_protocol &&
4079 			    cfg->fc_protocol != rt->fib6_protocol)
4080 				continue;
4081 
4082 			if (rt->nh) {
4083 				if (!fib6_info_hold_safe(rt))
4084 					continue;
4085 				rcu_read_unlock();
4086 
4087 				return __ip6_del_rt(rt, &cfg->fc_nlinfo);
4088 			}
4089 			if (cfg->fc_nh_id)
4090 				continue;
4091 
4092 			nh = rt->fib6_nh;
4093 			if (cfg->fc_ifindex &&
4094 			    (!nh->fib_nh_dev ||
4095 			     nh->fib_nh_dev->ifindex != cfg->fc_ifindex))
4096 				continue;
4097 			if (cfg->fc_flags & RTF_GATEWAY &&
4098 			    !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6))
4099 				continue;
4100 			if (!fib6_info_hold_safe(rt))
4101 				continue;
4102 			rcu_read_unlock();
4103 
4104 			/* if gateway was specified only delete the one hop */
4105 			if (cfg->fc_flags & RTF_GATEWAY)
4106 				return __ip6_del_rt(rt, &cfg->fc_nlinfo);
4107 
4108 			return __ip6_del_rt_siblings(rt, cfg);
4109 		}
4110 	}
4111 	rcu_read_unlock();
4112 
4113 	return err;
4114 }
4115 
4116 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
4117 {
4118 	struct netevent_redirect netevent;
4119 	struct rt6_info *rt, *nrt = NULL;
4120 	struct fib6_result res = {};
4121 	struct ndisc_options ndopts;
4122 	struct inet6_dev *in6_dev;
4123 	struct neighbour *neigh;
4124 	struct rd_msg *msg;
4125 	int optlen, on_link;
4126 	u8 *lladdr;
4127 
4128 	optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
4129 	optlen -= sizeof(*msg);
4130 
4131 	if (optlen < 0) {
4132 		net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
4133 		return;
4134 	}
4135 
4136 	msg = (struct rd_msg *)icmp6_hdr(skb);
4137 
4138 	if (ipv6_addr_is_multicast(&msg->dest)) {
4139 		net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
4140 		return;
4141 	}
4142 
4143 	on_link = 0;
4144 	if (ipv6_addr_equal(&msg->dest, &msg->target)) {
4145 		on_link = 1;
4146 	} else if (ipv6_addr_type(&msg->target) !=
4147 		   (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
4148 		net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
4149 		return;
4150 	}
4151 
4152 	in6_dev = __in6_dev_get(skb->dev);
4153 	if (!in6_dev)
4154 		return;
4155 	if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
4156 		return;
4157 
4158 	/* RFC2461 8.1:
4159 	 *	The IP source address of the Redirect MUST be the same as the current
4160 	 *	first-hop router for the specified ICMP Destination Address.
4161 	 */
4162 
4163 	if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
4164 		net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
4165 		return;
4166 	}
4167 
4168 	lladdr = NULL;
4169 	if (ndopts.nd_opts_tgt_lladdr) {
4170 		lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
4171 					     skb->dev);
4172 		if (!lladdr) {
4173 			net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
4174 			return;
4175 		}
4176 	}
4177 
4178 	rt = (struct rt6_info *) dst;
4179 	if (rt->rt6i_flags & RTF_REJECT) {
4180 		net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
4181 		return;
4182 	}
4183 
4184 	/* Redirect received -> path was valid.
4185 	 * Look, redirects are sent only in response to data packets,
4186 	 * so that this nexthop apparently is reachable. --ANK
4187 	 */
4188 	dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
4189 
4190 	neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
4191 	if (!neigh)
4192 		return;
4193 
4194 	/*
4195 	 *	We have finally decided to accept it.
4196 	 */
4197 
4198 	ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
4199 		     NEIGH_UPDATE_F_WEAK_OVERRIDE|
4200 		     NEIGH_UPDATE_F_OVERRIDE|
4201 		     (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
4202 				     NEIGH_UPDATE_F_ISROUTER)),
4203 		     NDISC_REDIRECT, &ndopts);
4204 
4205 	rcu_read_lock();
4206 	res.f6i = rcu_dereference(rt->from);
4207 	if (!res.f6i)
4208 		goto out;
4209 
4210 	if (res.f6i->nh) {
4211 		struct fib6_nh_match_arg arg = {
4212 			.dev = dst->dev,
4213 			.gw = &rt->rt6i_gateway,
4214 		};
4215 
4216 		nexthop_for_each_fib6_nh(res.f6i->nh,
4217 					 fib6_nh_find_match, &arg);
4218 
4219 		/* fib6_info uses a nexthop that does not have fib6_nh
4220 		 * using the dst->dev. Should be impossible
4221 		 */
4222 		if (!arg.match)
4223 			goto out;
4224 		res.nh = arg.match;
4225 	} else {
4226 		res.nh = res.f6i->fib6_nh;
4227 	}
4228 
4229 	res.fib6_flags = res.f6i->fib6_flags;
4230 	res.fib6_type = res.f6i->fib6_type;
4231 	nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL);
4232 	if (!nrt)
4233 		goto out;
4234 
4235 	nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
4236 	if (on_link)
4237 		nrt->rt6i_flags &= ~RTF_GATEWAY;
4238 
4239 	nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
4240 
4241 	/* rt6_insert_exception() will take care of duplicated exceptions */
4242 	if (rt6_insert_exception(nrt, &res)) {
4243 		dst_release_immediate(&nrt->dst);
4244 		goto out;
4245 	}
4246 
4247 	netevent.old = &rt->dst;
4248 	netevent.new = &nrt->dst;
4249 	netevent.daddr = &msg->dest;
4250 	netevent.neigh = neigh;
4251 	call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
4252 
4253 out:
4254 	rcu_read_unlock();
4255 	neigh_release(neigh);
4256 }
4257 
4258 #ifdef CONFIG_IPV6_ROUTE_INFO
4259 static struct fib6_info *rt6_get_route_info(struct net *net,
4260 					   const struct in6_addr *prefix, int prefixlen,
4261 					   const struct in6_addr *gwaddr,
4262 					   struct net_device *dev)
4263 {
4264 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
4265 	int ifindex = dev->ifindex;
4266 	struct fib6_node *fn;
4267 	struct fib6_info *rt = NULL;
4268 	struct fib6_table *table;
4269 
4270 	table = fib6_get_table(net, tb_id);
4271 	if (!table)
4272 		return NULL;
4273 
4274 	rcu_read_lock();
4275 	fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
4276 	if (!fn)
4277 		goto out;
4278 
4279 	for_each_fib6_node_rt_rcu(fn) {
4280 		/* these routes do not use nexthops */
4281 		if (rt->nh)
4282 			continue;
4283 		if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex)
4284 			continue;
4285 		if (!(rt->fib6_flags & RTF_ROUTEINFO) ||
4286 		    !rt->fib6_nh->fib_nh_gw_family)
4287 			continue;
4288 		if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr))
4289 			continue;
4290 		if (!fib6_info_hold_safe(rt))
4291 			continue;
4292 		break;
4293 	}
4294 out:
4295 	rcu_read_unlock();
4296 	return rt;
4297 }
4298 
4299 static struct fib6_info *rt6_add_route_info(struct net *net,
4300 					   const struct in6_addr *prefix, int prefixlen,
4301 					   const struct in6_addr *gwaddr,
4302 					   struct net_device *dev,
4303 					   unsigned int pref)
4304 {
4305 	struct fib6_config cfg = {
4306 		.fc_metric	= IP6_RT_PRIO_USER,
4307 		.fc_ifindex	= dev->ifindex,
4308 		.fc_dst_len	= prefixlen,
4309 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
4310 				  RTF_UP | RTF_PREF(pref),
4311 		.fc_protocol = RTPROT_RA,
4312 		.fc_type = RTN_UNICAST,
4313 		.fc_nlinfo.portid = 0,
4314 		.fc_nlinfo.nlh = NULL,
4315 		.fc_nlinfo.nl_net = net,
4316 	};
4317 
4318 	cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
4319 	cfg.fc_dst = *prefix;
4320 	cfg.fc_gateway = *gwaddr;
4321 
4322 	/* We should treat it as a default route if prefix length is 0. */
4323 	if (!prefixlen)
4324 		cfg.fc_flags |= RTF_DEFAULT;
4325 
4326 	ip6_route_add(&cfg, GFP_ATOMIC, NULL);
4327 
4328 	return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
4329 }
4330 #endif
4331 
4332 struct fib6_info *rt6_get_dflt_router(struct net *net,
4333 				     const struct in6_addr *addr,
4334 				     struct net_device *dev)
4335 {
4336 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
4337 	struct fib6_info *rt;
4338 	struct fib6_table *table;
4339 
4340 	table = fib6_get_table(net, tb_id);
4341 	if (!table)
4342 		return NULL;
4343 
4344 	rcu_read_lock();
4345 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
4346 		struct fib6_nh *nh;
4347 
4348 		/* RA routes do not use nexthops */
4349 		if (rt->nh)
4350 			continue;
4351 
4352 		nh = rt->fib6_nh;
4353 		if (dev == nh->fib_nh_dev &&
4354 		    ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
4355 		    ipv6_addr_equal(&nh->fib_nh_gw6, addr))
4356 			break;
4357 	}
4358 	if (rt && !fib6_info_hold_safe(rt))
4359 		rt = NULL;
4360 	rcu_read_unlock();
4361 	return rt;
4362 }
4363 
4364 struct fib6_info *rt6_add_dflt_router(struct net *net,
4365 				     const struct in6_addr *gwaddr,
4366 				     struct net_device *dev,
4367 				     unsigned int pref,
4368 				     u32 defrtr_usr_metric)
4369 {
4370 	struct fib6_config cfg = {
4371 		.fc_table	= l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
4372 		.fc_metric	= defrtr_usr_metric,
4373 		.fc_ifindex	= dev->ifindex,
4374 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
4375 				  RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
4376 		.fc_protocol = RTPROT_RA,
4377 		.fc_type = RTN_UNICAST,
4378 		.fc_nlinfo.portid = 0,
4379 		.fc_nlinfo.nlh = NULL,
4380 		.fc_nlinfo.nl_net = net,
4381 	};
4382 
4383 	cfg.fc_gateway = *gwaddr;
4384 
4385 	if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
4386 		struct fib6_table *table;
4387 
4388 		table = fib6_get_table(dev_net(dev), cfg.fc_table);
4389 		if (table)
4390 			table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
4391 	}
4392 
4393 	return rt6_get_dflt_router(net, gwaddr, dev);
4394 }
4395 
4396 static void __rt6_purge_dflt_routers(struct net *net,
4397 				     struct fib6_table *table)
4398 {
4399 	struct fib6_info *rt;
4400 
4401 restart:
4402 	rcu_read_lock();
4403 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
4404 		struct net_device *dev = fib6_info_nh_dev(rt);
4405 		struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
4406 
4407 		if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
4408 		    (!idev || idev->cnf.accept_ra != 2) &&
4409 		    fib6_info_hold_safe(rt)) {
4410 			rcu_read_unlock();
4411 			ip6_del_rt(net, rt, false);
4412 			goto restart;
4413 		}
4414 	}
4415 	rcu_read_unlock();
4416 
4417 	table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
4418 }
4419 
4420 void rt6_purge_dflt_routers(struct net *net)
4421 {
4422 	struct fib6_table *table;
4423 	struct hlist_head *head;
4424 	unsigned int h;
4425 
4426 	rcu_read_lock();
4427 
4428 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
4429 		head = &net->ipv6.fib_table_hash[h];
4430 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
4431 			if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
4432 				__rt6_purge_dflt_routers(net, table);
4433 		}
4434 	}
4435 
4436 	rcu_read_unlock();
4437 }
4438 
4439 static void rtmsg_to_fib6_config(struct net *net,
4440 				 struct in6_rtmsg *rtmsg,
4441 				 struct fib6_config *cfg)
4442 {
4443 	*cfg = (struct fib6_config){
4444 		.fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
4445 			 : RT6_TABLE_MAIN,
4446 		.fc_ifindex = rtmsg->rtmsg_ifindex,
4447 		.fc_metric = rtmsg->rtmsg_metric ? : IP6_RT_PRIO_USER,
4448 		.fc_expires = rtmsg->rtmsg_info,
4449 		.fc_dst_len = rtmsg->rtmsg_dst_len,
4450 		.fc_src_len = rtmsg->rtmsg_src_len,
4451 		.fc_flags = rtmsg->rtmsg_flags,
4452 		.fc_type = rtmsg->rtmsg_type,
4453 
4454 		.fc_nlinfo.nl_net = net,
4455 
4456 		.fc_dst = rtmsg->rtmsg_dst,
4457 		.fc_src = rtmsg->rtmsg_src,
4458 		.fc_gateway = rtmsg->rtmsg_gateway,
4459 	};
4460 }
4461 
4462 int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg)
4463 {
4464 	struct fib6_config cfg;
4465 	int err;
4466 
4467 	if (cmd != SIOCADDRT && cmd != SIOCDELRT)
4468 		return -EINVAL;
4469 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
4470 		return -EPERM;
4471 
4472 	rtmsg_to_fib6_config(net, rtmsg, &cfg);
4473 
4474 	rtnl_lock();
4475 	switch (cmd) {
4476 	case SIOCADDRT:
4477 		err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
4478 		break;
4479 	case SIOCDELRT:
4480 		err = ip6_route_del(&cfg, NULL);
4481 		break;
4482 	}
4483 	rtnl_unlock();
4484 	return err;
4485 }
4486 
4487 /*
4488  *	Drop the packet on the floor
4489  */
4490 
4491 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
4492 {
4493 	struct dst_entry *dst = skb_dst(skb);
4494 	struct net *net = dev_net(dst->dev);
4495 	struct inet6_dev *idev;
4496 	int type;
4497 
4498 	if (netif_is_l3_master(skb->dev) &&
4499 	    dst->dev == net->loopback_dev)
4500 		idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif));
4501 	else
4502 		idev = ip6_dst_idev(dst);
4503 
4504 	switch (ipstats_mib_noroutes) {
4505 	case IPSTATS_MIB_INNOROUTES:
4506 		type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
4507 		if (type == IPV6_ADDR_ANY) {
4508 			IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS);
4509 			break;
4510 		}
4511 		fallthrough;
4512 	case IPSTATS_MIB_OUTNOROUTES:
4513 		IP6_INC_STATS(net, idev, ipstats_mib_noroutes);
4514 		break;
4515 	}
4516 
4517 	/* Start over by dropping the dst for l3mdev case */
4518 	if (netif_is_l3_master(skb->dev))
4519 		skb_dst_drop(skb);
4520 
4521 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
4522 	kfree_skb(skb);
4523 	return 0;
4524 }
4525 
4526 static int ip6_pkt_discard(struct sk_buff *skb)
4527 {
4528 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
4529 }
4530 
4531 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
4532 {
4533 	skb->dev = skb_dst(skb)->dev;
4534 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
4535 }
4536 
4537 static int ip6_pkt_prohibit(struct sk_buff *skb)
4538 {
4539 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
4540 }
4541 
4542 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
4543 {
4544 	skb->dev = skb_dst(skb)->dev;
4545 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
4546 }
4547 
4548 /*
4549  *	Allocate a dst for local (unicast / anycast) address.
4550  */
4551 
4552 struct fib6_info *addrconf_f6i_alloc(struct net *net,
4553 				     struct inet6_dev *idev,
4554 				     const struct in6_addr *addr,
4555 				     bool anycast, gfp_t gfp_flags)
4556 {
4557 	struct fib6_config cfg = {
4558 		.fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL,
4559 		.fc_ifindex = idev->dev->ifindex,
4560 		.fc_flags = RTF_UP | RTF_NONEXTHOP,
4561 		.fc_dst = *addr,
4562 		.fc_dst_len = 128,
4563 		.fc_protocol = RTPROT_KERNEL,
4564 		.fc_nlinfo.nl_net = net,
4565 		.fc_ignore_dev_down = true,
4566 	};
4567 	struct fib6_info *f6i;
4568 
4569 	if (anycast) {
4570 		cfg.fc_type = RTN_ANYCAST;
4571 		cfg.fc_flags |= RTF_ANYCAST;
4572 	} else {
4573 		cfg.fc_type = RTN_LOCAL;
4574 		cfg.fc_flags |= RTF_LOCAL;
4575 	}
4576 
4577 	f6i = ip6_route_info_create(&cfg, gfp_flags, NULL);
4578 	if (!IS_ERR(f6i))
4579 		f6i->dst_nocount = true;
4580 	return f6i;
4581 }
4582 
4583 /* remove deleted ip from prefsrc entries */
4584 struct arg_dev_net_ip {
4585 	struct net_device *dev;
4586 	struct net *net;
4587 	struct in6_addr *addr;
4588 };
4589 
4590 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
4591 {
4592 	struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
4593 	struct net *net = ((struct arg_dev_net_ip *)arg)->net;
4594 	struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
4595 
4596 	if (!rt->nh &&
4597 	    ((void *)rt->fib6_nh->fib_nh_dev == dev || !dev) &&
4598 	    rt != net->ipv6.fib6_null_entry &&
4599 	    ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
4600 		spin_lock_bh(&rt6_exception_lock);
4601 		/* remove prefsrc entry */
4602 		rt->fib6_prefsrc.plen = 0;
4603 		spin_unlock_bh(&rt6_exception_lock);
4604 	}
4605 	return 0;
4606 }
4607 
4608 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
4609 {
4610 	struct net *net = dev_net(ifp->idev->dev);
4611 	struct arg_dev_net_ip adni = {
4612 		.dev = ifp->idev->dev,
4613 		.net = net,
4614 		.addr = &ifp->addr,
4615 	};
4616 	fib6_clean_all(net, fib6_remove_prefsrc, &adni);
4617 }
4618 
4619 #define RTF_RA_ROUTER		(RTF_ADDRCONF | RTF_DEFAULT)
4620 
4621 /* Remove routers and update dst entries when gateway turn into host. */
4622 static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
4623 {
4624 	struct in6_addr *gateway = (struct in6_addr *)arg;
4625 	struct fib6_nh *nh;
4626 
4627 	/* RA routes do not use nexthops */
4628 	if (rt->nh)
4629 		return 0;
4630 
4631 	nh = rt->fib6_nh;
4632 	if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
4633 	    nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6))
4634 		return -1;
4635 
4636 	/* Further clean up cached routes in exception table.
4637 	 * This is needed because cached route may have a different
4638 	 * gateway than its 'parent' in the case of an ip redirect.
4639 	 */
4640 	fib6_nh_exceptions_clean_tohost(nh, gateway);
4641 
4642 	return 0;
4643 }
4644 
4645 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
4646 {
4647 	fib6_clean_all(net, fib6_clean_tohost, gateway);
4648 }
4649 
4650 struct arg_netdev_event {
4651 	const struct net_device *dev;
4652 	union {
4653 		unsigned char nh_flags;
4654 		unsigned long event;
4655 	};
4656 };
4657 
4658 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
4659 {
4660 	struct fib6_info *iter;
4661 	struct fib6_node *fn;
4662 
4663 	fn = rcu_dereference_protected(rt->fib6_node,
4664 			lockdep_is_held(&rt->fib6_table->tb6_lock));
4665 	iter = rcu_dereference_protected(fn->leaf,
4666 			lockdep_is_held(&rt->fib6_table->tb6_lock));
4667 	while (iter) {
4668 		if (iter->fib6_metric == rt->fib6_metric &&
4669 		    rt6_qualify_for_ecmp(iter))
4670 			return iter;
4671 		iter = rcu_dereference_protected(iter->fib6_next,
4672 				lockdep_is_held(&rt->fib6_table->tb6_lock));
4673 	}
4674 
4675 	return NULL;
4676 }
4677 
4678 /* only called for fib entries with builtin fib6_nh */
4679 static bool rt6_is_dead(const struct fib6_info *rt)
4680 {
4681 	if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD ||
4682 	    (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN &&
4683 	     ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev)))
4684 		return true;
4685 
4686 	return false;
4687 }
4688 
4689 static int rt6_multipath_total_weight(const struct fib6_info *rt)
4690 {
4691 	struct fib6_info *iter;
4692 	int total = 0;
4693 
4694 	if (!rt6_is_dead(rt))
4695 		total += rt->fib6_nh->fib_nh_weight;
4696 
4697 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
4698 		if (!rt6_is_dead(iter))
4699 			total += iter->fib6_nh->fib_nh_weight;
4700 	}
4701 
4702 	return total;
4703 }
4704 
4705 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
4706 {
4707 	int upper_bound = -1;
4708 
4709 	if (!rt6_is_dead(rt)) {
4710 		*weight += rt->fib6_nh->fib_nh_weight;
4711 		upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
4712 						    total) - 1;
4713 	}
4714 	atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound);
4715 }
4716 
4717 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
4718 {
4719 	struct fib6_info *iter;
4720 	int weight = 0;
4721 
4722 	rt6_upper_bound_set(rt, &weight, total);
4723 
4724 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4725 		rt6_upper_bound_set(iter, &weight, total);
4726 }
4727 
4728 void rt6_multipath_rebalance(struct fib6_info *rt)
4729 {
4730 	struct fib6_info *first;
4731 	int total;
4732 
4733 	/* In case the entire multipath route was marked for flushing,
4734 	 * then there is no need to rebalance upon the removal of every
4735 	 * sibling route.
4736 	 */
4737 	if (!rt->fib6_nsiblings || rt->should_flush)
4738 		return;
4739 
4740 	/* During lookup routes are evaluated in order, so we need to
4741 	 * make sure upper bounds are assigned from the first sibling
4742 	 * onwards.
4743 	 */
4744 	first = rt6_multipath_first_sibling(rt);
4745 	if (WARN_ON_ONCE(!first))
4746 		return;
4747 
4748 	total = rt6_multipath_total_weight(first);
4749 	rt6_multipath_upper_bound_set(first, total);
4750 }
4751 
4752 static int fib6_ifup(struct fib6_info *rt, void *p_arg)
4753 {
4754 	const struct arg_netdev_event *arg = p_arg;
4755 	struct net *net = dev_net(arg->dev);
4756 
4757 	if (rt != net->ipv6.fib6_null_entry && !rt->nh &&
4758 	    rt->fib6_nh->fib_nh_dev == arg->dev) {
4759 		rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags;
4760 		fib6_update_sernum_upto_root(net, rt);
4761 		rt6_multipath_rebalance(rt);
4762 	}
4763 
4764 	return 0;
4765 }
4766 
4767 void rt6_sync_up(struct net_device *dev, unsigned char nh_flags)
4768 {
4769 	struct arg_netdev_event arg = {
4770 		.dev = dev,
4771 		{
4772 			.nh_flags = nh_flags,
4773 		},
4774 	};
4775 
4776 	if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
4777 		arg.nh_flags |= RTNH_F_LINKDOWN;
4778 
4779 	fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
4780 }
4781 
4782 /* only called for fib entries with inline fib6_nh */
4783 static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
4784 				   const struct net_device *dev)
4785 {
4786 	struct fib6_info *iter;
4787 
4788 	if (rt->fib6_nh->fib_nh_dev == dev)
4789 		return true;
4790 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4791 		if (iter->fib6_nh->fib_nh_dev == dev)
4792 			return true;
4793 
4794 	return false;
4795 }
4796 
4797 static void rt6_multipath_flush(struct fib6_info *rt)
4798 {
4799 	struct fib6_info *iter;
4800 
4801 	rt->should_flush = 1;
4802 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4803 		iter->should_flush = 1;
4804 }
4805 
4806 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
4807 					     const struct net_device *down_dev)
4808 {
4809 	struct fib6_info *iter;
4810 	unsigned int dead = 0;
4811 
4812 	if (rt->fib6_nh->fib_nh_dev == down_dev ||
4813 	    rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD)
4814 		dead++;
4815 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4816 		if (iter->fib6_nh->fib_nh_dev == down_dev ||
4817 		    iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD)
4818 			dead++;
4819 
4820 	return dead;
4821 }
4822 
4823 static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
4824 				       const struct net_device *dev,
4825 				       unsigned char nh_flags)
4826 {
4827 	struct fib6_info *iter;
4828 
4829 	if (rt->fib6_nh->fib_nh_dev == dev)
4830 		rt->fib6_nh->fib_nh_flags |= nh_flags;
4831 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4832 		if (iter->fib6_nh->fib_nh_dev == dev)
4833 			iter->fib6_nh->fib_nh_flags |= nh_flags;
4834 }
4835 
4836 /* called with write lock held for table with rt */
4837 static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
4838 {
4839 	const struct arg_netdev_event *arg = p_arg;
4840 	const struct net_device *dev = arg->dev;
4841 	struct net *net = dev_net(dev);
4842 
4843 	if (rt == net->ipv6.fib6_null_entry || rt->nh)
4844 		return 0;
4845 
4846 	switch (arg->event) {
4847 	case NETDEV_UNREGISTER:
4848 		return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0;
4849 	case NETDEV_DOWN:
4850 		if (rt->should_flush)
4851 			return -1;
4852 		if (!rt->fib6_nsiblings)
4853 			return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0;
4854 		if (rt6_multipath_uses_dev(rt, dev)) {
4855 			unsigned int count;
4856 
4857 			count = rt6_multipath_dead_count(rt, dev);
4858 			if (rt->fib6_nsiblings + 1 == count) {
4859 				rt6_multipath_flush(rt);
4860 				return -1;
4861 			}
4862 			rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
4863 						   RTNH_F_LINKDOWN);
4864 			fib6_update_sernum(net, rt);
4865 			rt6_multipath_rebalance(rt);
4866 		}
4867 		return -2;
4868 	case NETDEV_CHANGE:
4869 		if (rt->fib6_nh->fib_nh_dev != dev ||
4870 		    rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
4871 			break;
4872 		rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN;
4873 		rt6_multipath_rebalance(rt);
4874 		break;
4875 	}
4876 
4877 	return 0;
4878 }
4879 
4880 void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
4881 {
4882 	struct arg_netdev_event arg = {
4883 		.dev = dev,
4884 		{
4885 			.event = event,
4886 		},
4887 	};
4888 	struct net *net = dev_net(dev);
4889 
4890 	if (net->ipv6.sysctl.skip_notify_on_dev_down)
4891 		fib6_clean_all_skip_notify(net, fib6_ifdown, &arg);
4892 	else
4893 		fib6_clean_all(net, fib6_ifdown, &arg);
4894 }
4895 
4896 void rt6_disable_ip(struct net_device *dev, unsigned long event)
4897 {
4898 	rt6_sync_down_dev(dev, event);
4899 	rt6_uncached_list_flush_dev(dev_net(dev), dev);
4900 	neigh_ifdown(&nd_tbl, dev);
4901 }
4902 
4903 struct rt6_mtu_change_arg {
4904 	struct net_device *dev;
4905 	unsigned int mtu;
4906 	struct fib6_info *f6i;
4907 };
4908 
4909 static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg)
4910 {
4911 	struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg;
4912 	struct fib6_info *f6i = arg->f6i;
4913 
4914 	/* For administrative MTU increase, there is no way to discover
4915 	 * IPv6 PMTU increase, so PMTU increase should be updated here.
4916 	 * Since RFC 1981 doesn't include administrative MTU increase
4917 	 * update PMTU increase is a MUST. (i.e. jumbo frame)
4918 	 */
4919 	if (nh->fib_nh_dev == arg->dev) {
4920 		struct inet6_dev *idev = __in6_dev_get(arg->dev);
4921 		u32 mtu = f6i->fib6_pmtu;
4922 
4923 		if (mtu >= arg->mtu ||
4924 		    (mtu < arg->mtu && mtu == idev->cnf.mtu6))
4925 			fib6_metric_set(f6i, RTAX_MTU, arg->mtu);
4926 
4927 		spin_lock_bh(&rt6_exception_lock);
4928 		rt6_exceptions_update_pmtu(idev, nh, arg->mtu);
4929 		spin_unlock_bh(&rt6_exception_lock);
4930 	}
4931 
4932 	return 0;
4933 }
4934 
4935 static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg)
4936 {
4937 	struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
4938 	struct inet6_dev *idev;
4939 
4940 	/* In IPv6 pmtu discovery is not optional,
4941 	   so that RTAX_MTU lock cannot disable it.
4942 	   We still use this lock to block changes
4943 	   caused by addrconf/ndisc.
4944 	*/
4945 
4946 	idev = __in6_dev_get(arg->dev);
4947 	if (!idev)
4948 		return 0;
4949 
4950 	if (fib6_metric_locked(f6i, RTAX_MTU))
4951 		return 0;
4952 
4953 	arg->f6i = f6i;
4954 	if (f6i->nh) {
4955 		/* fib6_nh_mtu_change only returns 0, so this is safe */
4956 		return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change,
4957 						arg);
4958 	}
4959 
4960 	return fib6_nh_mtu_change(f6i->fib6_nh, arg);
4961 }
4962 
4963 void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
4964 {
4965 	struct rt6_mtu_change_arg arg = {
4966 		.dev = dev,
4967 		.mtu = mtu,
4968 	};
4969 
4970 	fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
4971 }
4972 
4973 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
4974 	[RTA_UNSPEC]		= { .strict_start_type = RTA_DPORT + 1 },
4975 	[RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
4976 	[RTA_PREFSRC]		= { .len = sizeof(struct in6_addr) },
4977 	[RTA_OIF]               = { .type = NLA_U32 },
4978 	[RTA_IIF]		= { .type = NLA_U32 },
4979 	[RTA_PRIORITY]          = { .type = NLA_U32 },
4980 	[RTA_METRICS]           = { .type = NLA_NESTED },
4981 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
4982 	[RTA_PREF]              = { .type = NLA_U8 },
4983 	[RTA_ENCAP_TYPE]	= { .type = NLA_U16 },
4984 	[RTA_ENCAP]		= { .type = NLA_NESTED },
4985 	[RTA_EXPIRES]		= { .type = NLA_U32 },
4986 	[RTA_UID]		= { .type = NLA_U32 },
4987 	[RTA_MARK]		= { .type = NLA_U32 },
4988 	[RTA_TABLE]		= { .type = NLA_U32 },
4989 	[RTA_IP_PROTO]		= { .type = NLA_U8 },
4990 	[RTA_SPORT]		= { .type = NLA_U16 },
4991 	[RTA_DPORT]		= { .type = NLA_U16 },
4992 	[RTA_NH_ID]		= { .type = NLA_U32 },
4993 };
4994 
4995 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
4996 			      struct fib6_config *cfg,
4997 			      struct netlink_ext_ack *extack)
4998 {
4999 	struct rtmsg *rtm;
5000 	struct nlattr *tb[RTA_MAX+1];
5001 	unsigned int pref;
5002 	int err;
5003 
5004 	err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
5005 				     rtm_ipv6_policy, extack);
5006 	if (err < 0)
5007 		goto errout;
5008 
5009 	err = -EINVAL;
5010 	rtm = nlmsg_data(nlh);
5011 
5012 	*cfg = (struct fib6_config){
5013 		.fc_table = rtm->rtm_table,
5014 		.fc_dst_len = rtm->rtm_dst_len,
5015 		.fc_src_len = rtm->rtm_src_len,
5016 		.fc_flags = RTF_UP,
5017 		.fc_protocol = rtm->rtm_protocol,
5018 		.fc_type = rtm->rtm_type,
5019 
5020 		.fc_nlinfo.portid = NETLINK_CB(skb).portid,
5021 		.fc_nlinfo.nlh = nlh,
5022 		.fc_nlinfo.nl_net = sock_net(skb->sk),
5023 	};
5024 
5025 	if (rtm->rtm_type == RTN_UNREACHABLE ||
5026 	    rtm->rtm_type == RTN_BLACKHOLE ||
5027 	    rtm->rtm_type == RTN_PROHIBIT ||
5028 	    rtm->rtm_type == RTN_THROW)
5029 		cfg->fc_flags |= RTF_REJECT;
5030 
5031 	if (rtm->rtm_type == RTN_LOCAL)
5032 		cfg->fc_flags |= RTF_LOCAL;
5033 
5034 	if (rtm->rtm_flags & RTM_F_CLONED)
5035 		cfg->fc_flags |= RTF_CACHE;
5036 
5037 	cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
5038 
5039 	if (tb[RTA_NH_ID]) {
5040 		if (tb[RTA_GATEWAY]   || tb[RTA_OIF] ||
5041 		    tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) {
5042 			NL_SET_ERR_MSG(extack,
5043 				       "Nexthop specification and nexthop id are mutually exclusive");
5044 			goto errout;
5045 		}
5046 		cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]);
5047 	}
5048 
5049 	if (tb[RTA_GATEWAY]) {
5050 		cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
5051 		cfg->fc_flags |= RTF_GATEWAY;
5052 	}
5053 	if (tb[RTA_VIA]) {
5054 		NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute");
5055 		goto errout;
5056 	}
5057 
5058 	if (tb[RTA_DST]) {
5059 		int plen = (rtm->rtm_dst_len + 7) >> 3;
5060 
5061 		if (nla_len(tb[RTA_DST]) < plen)
5062 			goto errout;
5063 
5064 		nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
5065 	}
5066 
5067 	if (tb[RTA_SRC]) {
5068 		int plen = (rtm->rtm_src_len + 7) >> 3;
5069 
5070 		if (nla_len(tb[RTA_SRC]) < plen)
5071 			goto errout;
5072 
5073 		nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
5074 	}
5075 
5076 	if (tb[RTA_PREFSRC])
5077 		cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
5078 
5079 	if (tb[RTA_OIF])
5080 		cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
5081 
5082 	if (tb[RTA_PRIORITY])
5083 		cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
5084 
5085 	if (tb[RTA_METRICS]) {
5086 		cfg->fc_mx = nla_data(tb[RTA_METRICS]);
5087 		cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
5088 	}
5089 
5090 	if (tb[RTA_TABLE])
5091 		cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
5092 
5093 	if (tb[RTA_MULTIPATH]) {
5094 		cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
5095 		cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
5096 
5097 		err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
5098 						     cfg->fc_mp_len, extack);
5099 		if (err < 0)
5100 			goto errout;
5101 	}
5102 
5103 	if (tb[RTA_PREF]) {
5104 		pref = nla_get_u8(tb[RTA_PREF]);
5105 		if (pref != ICMPV6_ROUTER_PREF_LOW &&
5106 		    pref != ICMPV6_ROUTER_PREF_HIGH)
5107 			pref = ICMPV6_ROUTER_PREF_MEDIUM;
5108 		cfg->fc_flags |= RTF_PREF(pref);
5109 	}
5110 
5111 	if (tb[RTA_ENCAP])
5112 		cfg->fc_encap = tb[RTA_ENCAP];
5113 
5114 	if (tb[RTA_ENCAP_TYPE]) {
5115 		cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
5116 
5117 		err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
5118 		if (err < 0)
5119 			goto errout;
5120 	}
5121 
5122 	if (tb[RTA_EXPIRES]) {
5123 		unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
5124 
5125 		if (addrconf_finite_timeout(timeout)) {
5126 			cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
5127 			cfg->fc_flags |= RTF_EXPIRES;
5128 		}
5129 	}
5130 
5131 	err = 0;
5132 errout:
5133 	return err;
5134 }
5135 
5136 struct rt6_nh {
5137 	struct fib6_info *fib6_info;
5138 	struct fib6_config r_cfg;
5139 	struct list_head next;
5140 };
5141 
5142 static int ip6_route_info_append(struct net *net,
5143 				 struct list_head *rt6_nh_list,
5144 				 struct fib6_info *rt,
5145 				 struct fib6_config *r_cfg)
5146 {
5147 	struct rt6_nh *nh;
5148 	int err = -EEXIST;
5149 
5150 	list_for_each_entry(nh, rt6_nh_list, next) {
5151 		/* check if fib6_info already exists */
5152 		if (rt6_duplicate_nexthop(nh->fib6_info, rt))
5153 			return err;
5154 	}
5155 
5156 	nh = kzalloc(sizeof(*nh), GFP_KERNEL);
5157 	if (!nh)
5158 		return -ENOMEM;
5159 	nh->fib6_info = rt;
5160 	memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
5161 	list_add_tail(&nh->next, rt6_nh_list);
5162 
5163 	return 0;
5164 }
5165 
5166 static void ip6_route_mpath_notify(struct fib6_info *rt,
5167 				   struct fib6_info *rt_last,
5168 				   struct nl_info *info,
5169 				   __u16 nlflags)
5170 {
5171 	/* if this is an APPEND route, then rt points to the first route
5172 	 * inserted and rt_last points to last route inserted. Userspace
5173 	 * wants a consistent dump of the route which starts at the first
5174 	 * nexthop. Since sibling routes are always added at the end of
5175 	 * the list, find the first sibling of the last route appended
5176 	 */
5177 	if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
5178 		rt = list_first_entry(&rt_last->fib6_siblings,
5179 				      struct fib6_info,
5180 				      fib6_siblings);
5181 	}
5182 
5183 	if (rt)
5184 		inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
5185 }
5186 
5187 static bool ip6_route_mpath_should_notify(const struct fib6_info *rt)
5188 {
5189 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
5190 	bool should_notify = false;
5191 	struct fib6_info *leaf;
5192 	struct fib6_node *fn;
5193 
5194 	rcu_read_lock();
5195 	fn = rcu_dereference(rt->fib6_node);
5196 	if (!fn)
5197 		goto out;
5198 
5199 	leaf = rcu_dereference(fn->leaf);
5200 	if (!leaf)
5201 		goto out;
5202 
5203 	if (rt == leaf ||
5204 	    (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric &&
5205 	     rt6_qualify_for_ecmp(leaf)))
5206 		should_notify = true;
5207 out:
5208 	rcu_read_unlock();
5209 
5210 	return should_notify;
5211 }
5212 
5213 static int fib6_gw_from_attr(struct in6_addr *gw, struct nlattr *nla,
5214 			     struct netlink_ext_ack *extack)
5215 {
5216 	if (nla_len(nla) < sizeof(*gw)) {
5217 		NL_SET_ERR_MSG(extack, "Invalid IPv6 address in RTA_GATEWAY");
5218 		return -EINVAL;
5219 	}
5220 
5221 	*gw = nla_get_in6_addr(nla);
5222 
5223 	return 0;
5224 }
5225 
5226 static int ip6_route_multipath_add(struct fib6_config *cfg,
5227 				   struct netlink_ext_ack *extack)
5228 {
5229 	struct fib6_info *rt_notif = NULL, *rt_last = NULL;
5230 	struct nl_info *info = &cfg->fc_nlinfo;
5231 	struct fib6_config r_cfg;
5232 	struct rtnexthop *rtnh;
5233 	struct fib6_info *rt;
5234 	struct rt6_nh *err_nh;
5235 	struct rt6_nh *nh, *nh_safe;
5236 	__u16 nlflags;
5237 	int remaining;
5238 	int attrlen;
5239 	int err = 1;
5240 	int nhn = 0;
5241 	int replace = (cfg->fc_nlinfo.nlh &&
5242 		       (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
5243 	LIST_HEAD(rt6_nh_list);
5244 
5245 	nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
5246 	if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
5247 		nlflags |= NLM_F_APPEND;
5248 
5249 	remaining = cfg->fc_mp_len;
5250 	rtnh = (struct rtnexthop *)cfg->fc_mp;
5251 
5252 	/* Parse a Multipath Entry and build a list (rt6_nh_list) of
5253 	 * fib6_info structs per nexthop
5254 	 */
5255 	while (rtnh_ok(rtnh, remaining)) {
5256 		memcpy(&r_cfg, cfg, sizeof(*cfg));
5257 		if (rtnh->rtnh_ifindex)
5258 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
5259 
5260 		attrlen = rtnh_attrlen(rtnh);
5261 		if (attrlen > 0) {
5262 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
5263 
5264 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
5265 			if (nla) {
5266 				err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla,
5267 							extack);
5268 				if (err)
5269 					goto cleanup;
5270 
5271 				r_cfg.fc_flags |= RTF_GATEWAY;
5272 			}
5273 			r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
5274 
5275 			/* RTA_ENCAP_TYPE length checked in
5276 			 * lwtunnel_valid_encap_type_attr
5277 			 */
5278 			nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
5279 			if (nla)
5280 				r_cfg.fc_encap_type = nla_get_u16(nla);
5281 		}
5282 
5283 		r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
5284 		rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
5285 		if (IS_ERR(rt)) {
5286 			err = PTR_ERR(rt);
5287 			rt = NULL;
5288 			goto cleanup;
5289 		}
5290 		if (!rt6_qualify_for_ecmp(rt)) {
5291 			err = -EINVAL;
5292 			NL_SET_ERR_MSG(extack,
5293 				       "Device only routes can not be added for IPv6 using the multipath API.");
5294 			fib6_info_release(rt);
5295 			goto cleanup;
5296 		}
5297 
5298 		rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1;
5299 
5300 		err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
5301 					    rt, &r_cfg);
5302 		if (err) {
5303 			fib6_info_release(rt);
5304 			goto cleanup;
5305 		}
5306 
5307 		rtnh = rtnh_next(rtnh, &remaining);
5308 	}
5309 
5310 	if (list_empty(&rt6_nh_list)) {
5311 		NL_SET_ERR_MSG(extack,
5312 			       "Invalid nexthop configuration - no valid nexthops");
5313 		return -EINVAL;
5314 	}
5315 
5316 	/* for add and replace send one notification with all nexthops.
5317 	 * Skip the notification in fib6_add_rt2node and send one with
5318 	 * the full route when done
5319 	 */
5320 	info->skip_notify = 1;
5321 
5322 	/* For add and replace, send one notification with all nexthops. For
5323 	 * append, send one notification with all appended nexthops.
5324 	 */
5325 	info->skip_notify_kernel = 1;
5326 
5327 	err_nh = NULL;
5328 	list_for_each_entry(nh, &rt6_nh_list, next) {
5329 		err = __ip6_ins_rt(nh->fib6_info, info, extack);
5330 		fib6_info_release(nh->fib6_info);
5331 
5332 		if (!err) {
5333 			/* save reference to last route successfully inserted */
5334 			rt_last = nh->fib6_info;
5335 
5336 			/* save reference to first route for notification */
5337 			if (!rt_notif)
5338 				rt_notif = nh->fib6_info;
5339 		}
5340 
5341 		/* nh->fib6_info is used or freed at this point, reset to NULL*/
5342 		nh->fib6_info = NULL;
5343 		if (err) {
5344 			if (replace && nhn)
5345 				NL_SET_ERR_MSG_MOD(extack,
5346 						   "multipath route replace failed (check consistency of installed routes)");
5347 			err_nh = nh;
5348 			goto add_errout;
5349 		}
5350 
5351 		/* Because each route is added like a single route we remove
5352 		 * these flags after the first nexthop: if there is a collision,
5353 		 * we have already failed to add the first nexthop:
5354 		 * fib6_add_rt2node() has rejected it; when replacing, old
5355 		 * nexthops have been replaced by first new, the rest should
5356 		 * be added to it.
5357 		 */
5358 		if (cfg->fc_nlinfo.nlh) {
5359 			cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
5360 							     NLM_F_REPLACE);
5361 			cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE;
5362 		}
5363 		nhn++;
5364 	}
5365 
5366 	/* An in-kernel notification should only be sent in case the new
5367 	 * multipath route is added as the first route in the node, or if
5368 	 * it was appended to it. We pass 'rt_notif' since it is the first
5369 	 * sibling and might allow us to skip some checks in the replace case.
5370 	 */
5371 	if (ip6_route_mpath_should_notify(rt_notif)) {
5372 		enum fib_event_type fib_event;
5373 
5374 		if (rt_notif->fib6_nsiblings != nhn - 1)
5375 			fib_event = FIB_EVENT_ENTRY_APPEND;
5376 		else
5377 			fib_event = FIB_EVENT_ENTRY_REPLACE;
5378 
5379 		err = call_fib6_multipath_entry_notifiers(info->nl_net,
5380 							  fib_event, rt_notif,
5381 							  nhn - 1, extack);
5382 		if (err) {
5383 			/* Delete all the siblings that were just added */
5384 			err_nh = NULL;
5385 			goto add_errout;
5386 		}
5387 	}
5388 
5389 	/* success ... tell user about new route */
5390 	ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
5391 	goto cleanup;
5392 
5393 add_errout:
5394 	/* send notification for routes that were added so that
5395 	 * the delete notifications sent by ip6_route_del are
5396 	 * coherent
5397 	 */
5398 	if (rt_notif)
5399 		ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
5400 
5401 	/* Delete routes that were already added */
5402 	list_for_each_entry(nh, &rt6_nh_list, next) {
5403 		if (err_nh == nh)
5404 			break;
5405 		ip6_route_del(&nh->r_cfg, extack);
5406 	}
5407 
5408 cleanup:
5409 	list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
5410 		if (nh->fib6_info)
5411 			fib6_info_release(nh->fib6_info);
5412 		list_del(&nh->next);
5413 		kfree(nh);
5414 	}
5415 
5416 	return err;
5417 }
5418 
5419 static int ip6_route_multipath_del(struct fib6_config *cfg,
5420 				   struct netlink_ext_ack *extack)
5421 {
5422 	struct fib6_config r_cfg;
5423 	struct rtnexthop *rtnh;
5424 	int last_err = 0;
5425 	int remaining;
5426 	int attrlen;
5427 	int err;
5428 
5429 	remaining = cfg->fc_mp_len;
5430 	rtnh = (struct rtnexthop *)cfg->fc_mp;
5431 
5432 	/* Parse a Multipath Entry */
5433 	while (rtnh_ok(rtnh, remaining)) {
5434 		memcpy(&r_cfg, cfg, sizeof(*cfg));
5435 		if (rtnh->rtnh_ifindex)
5436 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
5437 
5438 		attrlen = rtnh_attrlen(rtnh);
5439 		if (attrlen > 0) {
5440 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
5441 
5442 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
5443 			if (nla) {
5444 				err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla,
5445 							extack);
5446 				if (err) {
5447 					last_err = err;
5448 					goto next_rtnh;
5449 				}
5450 
5451 				r_cfg.fc_flags |= RTF_GATEWAY;
5452 			}
5453 		}
5454 		err = ip6_route_del(&r_cfg, extack);
5455 		if (err)
5456 			last_err = err;
5457 
5458 next_rtnh:
5459 		rtnh = rtnh_next(rtnh, &remaining);
5460 	}
5461 
5462 	return last_err;
5463 }
5464 
5465 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
5466 			      struct netlink_ext_ack *extack)
5467 {
5468 	struct fib6_config cfg;
5469 	int err;
5470 
5471 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
5472 	if (err < 0)
5473 		return err;
5474 
5475 	if (cfg.fc_nh_id &&
5476 	    !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) {
5477 		NL_SET_ERR_MSG(extack, "Nexthop id does not exist");
5478 		return -EINVAL;
5479 	}
5480 
5481 	if (cfg.fc_mp)
5482 		return ip6_route_multipath_del(&cfg, extack);
5483 	else {
5484 		cfg.fc_delete_all_nh = 1;
5485 		return ip6_route_del(&cfg, extack);
5486 	}
5487 }
5488 
5489 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
5490 			      struct netlink_ext_ack *extack)
5491 {
5492 	struct fib6_config cfg;
5493 	int err;
5494 
5495 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
5496 	if (err < 0)
5497 		return err;
5498 
5499 	if (cfg.fc_metric == 0)
5500 		cfg.fc_metric = IP6_RT_PRIO_USER;
5501 
5502 	if (cfg.fc_mp)
5503 		return ip6_route_multipath_add(&cfg, extack);
5504 	else
5505 		return ip6_route_add(&cfg, GFP_KERNEL, extack);
5506 }
5507 
5508 /* add the overhead of this fib6_nh to nexthop_len */
5509 static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg)
5510 {
5511 	int *nexthop_len = arg;
5512 
5513 	*nexthop_len += nla_total_size(0)	 /* RTA_MULTIPATH */
5514 		     + NLA_ALIGN(sizeof(struct rtnexthop))
5515 		     + nla_total_size(16); /* RTA_GATEWAY */
5516 
5517 	if (nh->fib_nh_lws) {
5518 		/* RTA_ENCAP_TYPE */
5519 		*nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws);
5520 		/* RTA_ENCAP */
5521 		*nexthop_len += nla_total_size(2);
5522 	}
5523 
5524 	return 0;
5525 }
5526 
5527 static size_t rt6_nlmsg_size(struct fib6_info *f6i)
5528 {
5529 	int nexthop_len;
5530 
5531 	if (f6i->nh) {
5532 		nexthop_len = nla_total_size(4); /* RTA_NH_ID */
5533 		nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size,
5534 					 &nexthop_len);
5535 	} else {
5536 		struct fib6_nh *nh = f6i->fib6_nh;
5537 
5538 		nexthop_len = 0;
5539 		if (f6i->fib6_nsiblings) {
5540 			nexthop_len = nla_total_size(0)	 /* RTA_MULTIPATH */
5541 				    + NLA_ALIGN(sizeof(struct rtnexthop))
5542 				    + nla_total_size(16) /* RTA_GATEWAY */
5543 				    + lwtunnel_get_encap_size(nh->fib_nh_lws);
5544 
5545 			nexthop_len *= f6i->fib6_nsiblings;
5546 		}
5547 		nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws);
5548 	}
5549 
5550 	return NLMSG_ALIGN(sizeof(struct rtmsg))
5551 	       + nla_total_size(16) /* RTA_SRC */
5552 	       + nla_total_size(16) /* RTA_DST */
5553 	       + nla_total_size(16) /* RTA_GATEWAY */
5554 	       + nla_total_size(16) /* RTA_PREFSRC */
5555 	       + nla_total_size(4) /* RTA_TABLE */
5556 	       + nla_total_size(4) /* RTA_IIF */
5557 	       + nla_total_size(4) /* RTA_OIF */
5558 	       + nla_total_size(4) /* RTA_PRIORITY */
5559 	       + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
5560 	       + nla_total_size(sizeof(struct rta_cacheinfo))
5561 	       + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
5562 	       + nla_total_size(1) /* RTA_PREF */
5563 	       + nexthop_len;
5564 }
5565 
5566 static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh,
5567 				 unsigned char *flags)
5568 {
5569 	if (nexthop_is_multipath(nh)) {
5570 		struct nlattr *mp;
5571 
5572 		mp = nla_nest_start_noflag(skb, RTA_MULTIPATH);
5573 		if (!mp)
5574 			goto nla_put_failure;
5575 
5576 		if (nexthop_mpath_fill_node(skb, nh, AF_INET6))
5577 			goto nla_put_failure;
5578 
5579 		nla_nest_end(skb, mp);
5580 	} else {
5581 		struct fib6_nh *fib6_nh;
5582 
5583 		fib6_nh = nexthop_fib6_nh(nh);
5584 		if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6,
5585 				     flags, false) < 0)
5586 			goto nla_put_failure;
5587 	}
5588 
5589 	return 0;
5590 
5591 nla_put_failure:
5592 	return -EMSGSIZE;
5593 }
5594 
5595 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
5596 			 struct fib6_info *rt, struct dst_entry *dst,
5597 			 struct in6_addr *dest, struct in6_addr *src,
5598 			 int iif, int type, u32 portid, u32 seq,
5599 			 unsigned int flags)
5600 {
5601 	struct rt6_info *rt6 = (struct rt6_info *)dst;
5602 	struct rt6key *rt6_dst, *rt6_src;
5603 	u32 *pmetrics, table, rt6_flags;
5604 	unsigned char nh_flags = 0;
5605 	struct nlmsghdr *nlh;
5606 	struct rtmsg *rtm;
5607 	long expires = 0;
5608 
5609 	nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
5610 	if (!nlh)
5611 		return -EMSGSIZE;
5612 
5613 	if (rt6) {
5614 		rt6_dst = &rt6->rt6i_dst;
5615 		rt6_src = &rt6->rt6i_src;
5616 		rt6_flags = rt6->rt6i_flags;
5617 	} else {
5618 		rt6_dst = &rt->fib6_dst;
5619 		rt6_src = &rt->fib6_src;
5620 		rt6_flags = rt->fib6_flags;
5621 	}
5622 
5623 	rtm = nlmsg_data(nlh);
5624 	rtm->rtm_family = AF_INET6;
5625 	rtm->rtm_dst_len = rt6_dst->plen;
5626 	rtm->rtm_src_len = rt6_src->plen;
5627 	rtm->rtm_tos = 0;
5628 	if (rt->fib6_table)
5629 		table = rt->fib6_table->tb6_id;
5630 	else
5631 		table = RT6_TABLE_UNSPEC;
5632 	rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT;
5633 	if (nla_put_u32(skb, RTA_TABLE, table))
5634 		goto nla_put_failure;
5635 
5636 	rtm->rtm_type = rt->fib6_type;
5637 	rtm->rtm_flags = 0;
5638 	rtm->rtm_scope = RT_SCOPE_UNIVERSE;
5639 	rtm->rtm_protocol = rt->fib6_protocol;
5640 
5641 	if (rt6_flags & RTF_CACHE)
5642 		rtm->rtm_flags |= RTM_F_CLONED;
5643 
5644 	if (dest) {
5645 		if (nla_put_in6_addr(skb, RTA_DST, dest))
5646 			goto nla_put_failure;
5647 		rtm->rtm_dst_len = 128;
5648 	} else if (rtm->rtm_dst_len)
5649 		if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr))
5650 			goto nla_put_failure;
5651 #ifdef CONFIG_IPV6_SUBTREES
5652 	if (src) {
5653 		if (nla_put_in6_addr(skb, RTA_SRC, src))
5654 			goto nla_put_failure;
5655 		rtm->rtm_src_len = 128;
5656 	} else if (rtm->rtm_src_len &&
5657 		   nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr))
5658 		goto nla_put_failure;
5659 #endif
5660 	if (iif) {
5661 #ifdef CONFIG_IPV6_MROUTE
5662 		if (ipv6_addr_is_multicast(&rt6_dst->addr)) {
5663 			int err = ip6mr_get_route(net, skb, rtm, portid);
5664 
5665 			if (err == 0)
5666 				return 0;
5667 			if (err < 0)
5668 				goto nla_put_failure;
5669 		} else
5670 #endif
5671 			if (nla_put_u32(skb, RTA_IIF, iif))
5672 				goto nla_put_failure;
5673 	} else if (dest) {
5674 		struct in6_addr saddr_buf;
5675 		if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
5676 		    nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
5677 			goto nla_put_failure;
5678 	}
5679 
5680 	if (rt->fib6_prefsrc.plen) {
5681 		struct in6_addr saddr_buf;
5682 		saddr_buf = rt->fib6_prefsrc.addr;
5683 		if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
5684 			goto nla_put_failure;
5685 	}
5686 
5687 	pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
5688 	if (rtnetlink_put_metrics(skb, pmetrics) < 0)
5689 		goto nla_put_failure;
5690 
5691 	if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
5692 		goto nla_put_failure;
5693 
5694 	/* For multipath routes, walk the siblings list and add
5695 	 * each as a nexthop within RTA_MULTIPATH.
5696 	 */
5697 	if (rt6) {
5698 		if (rt6_flags & RTF_GATEWAY &&
5699 		    nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway))
5700 			goto nla_put_failure;
5701 
5702 		if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex))
5703 			goto nla_put_failure;
5704 
5705 		if (dst->lwtstate &&
5706 		    lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0)
5707 			goto nla_put_failure;
5708 	} else if (rt->fib6_nsiblings) {
5709 		struct fib6_info *sibling, *next_sibling;
5710 		struct nlattr *mp;
5711 
5712 		mp = nla_nest_start_noflag(skb, RTA_MULTIPATH);
5713 		if (!mp)
5714 			goto nla_put_failure;
5715 
5716 		if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common,
5717 				    rt->fib6_nh->fib_nh_weight, AF_INET6,
5718 				    0) < 0)
5719 			goto nla_put_failure;
5720 
5721 		list_for_each_entry_safe(sibling, next_sibling,
5722 					 &rt->fib6_siblings, fib6_siblings) {
5723 			if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common,
5724 					    sibling->fib6_nh->fib_nh_weight,
5725 					    AF_INET6, 0) < 0)
5726 				goto nla_put_failure;
5727 		}
5728 
5729 		nla_nest_end(skb, mp);
5730 	} else if (rt->nh) {
5731 		if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id))
5732 			goto nla_put_failure;
5733 
5734 		if (nexthop_is_blackhole(rt->nh))
5735 			rtm->rtm_type = RTN_BLACKHOLE;
5736 
5737 		if (net->ipv4.sysctl_nexthop_compat_mode &&
5738 		    rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0)
5739 			goto nla_put_failure;
5740 
5741 		rtm->rtm_flags |= nh_flags;
5742 	} else {
5743 		if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6,
5744 				     &nh_flags, false) < 0)
5745 			goto nla_put_failure;
5746 
5747 		rtm->rtm_flags |= nh_flags;
5748 	}
5749 
5750 	if (rt6_flags & RTF_EXPIRES) {
5751 		expires = dst ? dst->expires : rt->expires;
5752 		expires -= jiffies;
5753 	}
5754 
5755 	if (!dst) {
5756 		if (rt->offload)
5757 			rtm->rtm_flags |= RTM_F_OFFLOAD;
5758 		if (rt->trap)
5759 			rtm->rtm_flags |= RTM_F_TRAP;
5760 		if (rt->offload_failed)
5761 			rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED;
5762 	}
5763 
5764 	if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
5765 		goto nla_put_failure;
5766 
5767 	if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags)))
5768 		goto nla_put_failure;
5769 
5770 
5771 	nlmsg_end(skb, nlh);
5772 	return 0;
5773 
5774 nla_put_failure:
5775 	nlmsg_cancel(skb, nlh);
5776 	return -EMSGSIZE;
5777 }
5778 
5779 static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg)
5780 {
5781 	const struct net_device *dev = arg;
5782 
5783 	if (nh->fib_nh_dev == dev)
5784 		return 1;
5785 
5786 	return 0;
5787 }
5788 
5789 static bool fib6_info_uses_dev(const struct fib6_info *f6i,
5790 			       const struct net_device *dev)
5791 {
5792 	if (f6i->nh) {
5793 		struct net_device *_dev = (struct net_device *)dev;
5794 
5795 		return !!nexthop_for_each_fib6_nh(f6i->nh,
5796 						  fib6_info_nh_uses_dev,
5797 						  _dev);
5798 	}
5799 
5800 	if (f6i->fib6_nh->fib_nh_dev == dev)
5801 		return true;
5802 
5803 	if (f6i->fib6_nsiblings) {
5804 		struct fib6_info *sibling, *next_sibling;
5805 
5806 		list_for_each_entry_safe(sibling, next_sibling,
5807 					 &f6i->fib6_siblings, fib6_siblings) {
5808 			if (sibling->fib6_nh->fib_nh_dev == dev)
5809 				return true;
5810 		}
5811 	}
5812 
5813 	return false;
5814 }
5815 
5816 struct fib6_nh_exception_dump_walker {
5817 	struct rt6_rtnl_dump_arg *dump;
5818 	struct fib6_info *rt;
5819 	unsigned int flags;
5820 	unsigned int skip;
5821 	unsigned int count;
5822 };
5823 
5824 static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg)
5825 {
5826 	struct fib6_nh_exception_dump_walker *w = arg;
5827 	struct rt6_rtnl_dump_arg *dump = w->dump;
5828 	struct rt6_exception_bucket *bucket;
5829 	struct rt6_exception *rt6_ex;
5830 	int i, err;
5831 
5832 	bucket = fib6_nh_get_excptn_bucket(nh, NULL);
5833 	if (!bucket)
5834 		return 0;
5835 
5836 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
5837 		hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
5838 			if (w->skip) {
5839 				w->skip--;
5840 				continue;
5841 			}
5842 
5843 			/* Expiration of entries doesn't bump sernum, insertion
5844 			 * does. Removal is triggered by insertion, so we can
5845 			 * rely on the fact that if entries change between two
5846 			 * partial dumps, this node is scanned again completely,
5847 			 * see rt6_insert_exception() and fib6_dump_table().
5848 			 *
5849 			 * Count expired entries we go through as handled
5850 			 * entries that we'll skip next time, in case of partial
5851 			 * node dump. Otherwise, if entries expire meanwhile,
5852 			 * we'll skip the wrong amount.
5853 			 */
5854 			if (rt6_check_expired(rt6_ex->rt6i)) {
5855 				w->count++;
5856 				continue;
5857 			}
5858 
5859 			err = rt6_fill_node(dump->net, dump->skb, w->rt,
5860 					    &rt6_ex->rt6i->dst, NULL, NULL, 0,
5861 					    RTM_NEWROUTE,
5862 					    NETLINK_CB(dump->cb->skb).portid,
5863 					    dump->cb->nlh->nlmsg_seq, w->flags);
5864 			if (err)
5865 				return err;
5866 
5867 			w->count++;
5868 		}
5869 		bucket++;
5870 	}
5871 
5872 	return 0;
5873 }
5874 
5875 /* Return -1 if done with node, number of handled routes on partial dump */
5876 int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip)
5877 {
5878 	struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
5879 	struct fib_dump_filter *filter = &arg->filter;
5880 	unsigned int flags = NLM_F_MULTI;
5881 	struct net *net = arg->net;
5882 	int count = 0;
5883 
5884 	if (rt == net->ipv6.fib6_null_entry)
5885 		return -1;
5886 
5887 	if ((filter->flags & RTM_F_PREFIX) &&
5888 	    !(rt->fib6_flags & RTF_PREFIX_RT)) {
5889 		/* success since this is not a prefix route */
5890 		return -1;
5891 	}
5892 	if (filter->filter_set &&
5893 	    ((filter->rt_type  && rt->fib6_type != filter->rt_type) ||
5894 	     (filter->dev      && !fib6_info_uses_dev(rt, filter->dev)) ||
5895 	     (filter->protocol && rt->fib6_protocol != filter->protocol))) {
5896 		return -1;
5897 	}
5898 
5899 	if (filter->filter_set ||
5900 	    !filter->dump_routes || !filter->dump_exceptions) {
5901 		flags |= NLM_F_DUMP_FILTERED;
5902 	}
5903 
5904 	if (filter->dump_routes) {
5905 		if (skip) {
5906 			skip--;
5907 		} else {
5908 			if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL,
5909 					  0, RTM_NEWROUTE,
5910 					  NETLINK_CB(arg->cb->skb).portid,
5911 					  arg->cb->nlh->nlmsg_seq, flags)) {
5912 				return 0;
5913 			}
5914 			count++;
5915 		}
5916 	}
5917 
5918 	if (filter->dump_exceptions) {
5919 		struct fib6_nh_exception_dump_walker w = { .dump = arg,
5920 							   .rt = rt,
5921 							   .flags = flags,
5922 							   .skip = skip,
5923 							   .count = 0 };
5924 		int err;
5925 
5926 		rcu_read_lock();
5927 		if (rt->nh) {
5928 			err = nexthop_for_each_fib6_nh(rt->nh,
5929 						       rt6_nh_dump_exceptions,
5930 						       &w);
5931 		} else {
5932 			err = rt6_nh_dump_exceptions(rt->fib6_nh, &w);
5933 		}
5934 		rcu_read_unlock();
5935 
5936 		if (err)
5937 			return count += w.count;
5938 	}
5939 
5940 	return -1;
5941 }
5942 
5943 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb,
5944 					const struct nlmsghdr *nlh,
5945 					struct nlattr **tb,
5946 					struct netlink_ext_ack *extack)
5947 {
5948 	struct rtmsg *rtm;
5949 	int i, err;
5950 
5951 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
5952 		NL_SET_ERR_MSG_MOD(extack,
5953 				   "Invalid header for get route request");
5954 		return -EINVAL;
5955 	}
5956 
5957 	if (!netlink_strict_get_check(skb))
5958 		return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX,
5959 					      rtm_ipv6_policy, extack);
5960 
5961 	rtm = nlmsg_data(nlh);
5962 	if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) ||
5963 	    (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) ||
5964 	    rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope ||
5965 	    rtm->rtm_type) {
5966 		NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request");
5967 		return -EINVAL;
5968 	}
5969 	if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) {
5970 		NL_SET_ERR_MSG_MOD(extack,
5971 				   "Invalid flags for get route request");
5972 		return -EINVAL;
5973 	}
5974 
5975 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
5976 					    rtm_ipv6_policy, extack);
5977 	if (err)
5978 		return err;
5979 
5980 	if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
5981 	    (tb[RTA_DST] && !rtm->rtm_dst_len)) {
5982 		NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6");
5983 		return -EINVAL;
5984 	}
5985 
5986 	for (i = 0; i <= RTA_MAX; i++) {
5987 		if (!tb[i])
5988 			continue;
5989 
5990 		switch (i) {
5991 		case RTA_SRC:
5992 		case RTA_DST:
5993 		case RTA_IIF:
5994 		case RTA_OIF:
5995 		case RTA_MARK:
5996 		case RTA_UID:
5997 		case RTA_SPORT:
5998 		case RTA_DPORT:
5999 		case RTA_IP_PROTO:
6000 			break;
6001 		default:
6002 			NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request");
6003 			return -EINVAL;
6004 		}
6005 	}
6006 
6007 	return 0;
6008 }
6009 
6010 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
6011 			      struct netlink_ext_ack *extack)
6012 {
6013 	struct net *net = sock_net(in_skb->sk);
6014 	struct nlattr *tb[RTA_MAX+1];
6015 	int err, iif = 0, oif = 0;
6016 	struct fib6_info *from;
6017 	struct dst_entry *dst;
6018 	struct rt6_info *rt;
6019 	struct sk_buff *skb;
6020 	struct rtmsg *rtm;
6021 	struct flowi6 fl6 = {};
6022 	bool fibmatch;
6023 
6024 	err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
6025 	if (err < 0)
6026 		goto errout;
6027 
6028 	err = -EINVAL;
6029 	rtm = nlmsg_data(nlh);
6030 	fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
6031 	fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
6032 
6033 	if (tb[RTA_SRC]) {
6034 		if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
6035 			goto errout;
6036 
6037 		fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
6038 	}
6039 
6040 	if (tb[RTA_DST]) {
6041 		if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
6042 			goto errout;
6043 
6044 		fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
6045 	}
6046 
6047 	if (tb[RTA_IIF])
6048 		iif = nla_get_u32(tb[RTA_IIF]);
6049 
6050 	if (tb[RTA_OIF])
6051 		oif = nla_get_u32(tb[RTA_OIF]);
6052 
6053 	if (tb[RTA_MARK])
6054 		fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
6055 
6056 	if (tb[RTA_UID])
6057 		fl6.flowi6_uid = make_kuid(current_user_ns(),
6058 					   nla_get_u32(tb[RTA_UID]));
6059 	else
6060 		fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
6061 
6062 	if (tb[RTA_SPORT])
6063 		fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
6064 
6065 	if (tb[RTA_DPORT])
6066 		fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
6067 
6068 	if (tb[RTA_IP_PROTO]) {
6069 		err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
6070 						  &fl6.flowi6_proto, AF_INET6,
6071 						  extack);
6072 		if (err)
6073 			goto errout;
6074 	}
6075 
6076 	if (iif) {
6077 		struct net_device *dev;
6078 		int flags = 0;
6079 
6080 		rcu_read_lock();
6081 
6082 		dev = dev_get_by_index_rcu(net, iif);
6083 		if (!dev) {
6084 			rcu_read_unlock();
6085 			err = -ENODEV;
6086 			goto errout;
6087 		}
6088 
6089 		fl6.flowi6_iif = iif;
6090 
6091 		if (!ipv6_addr_any(&fl6.saddr))
6092 			flags |= RT6_LOOKUP_F_HAS_SADDR;
6093 
6094 		dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
6095 
6096 		rcu_read_unlock();
6097 	} else {
6098 		fl6.flowi6_oif = oif;
6099 
6100 		dst = ip6_route_output(net, NULL, &fl6);
6101 	}
6102 
6103 
6104 	rt = container_of(dst, struct rt6_info, dst);
6105 	if (rt->dst.error) {
6106 		err = rt->dst.error;
6107 		ip6_rt_put(rt);
6108 		goto errout;
6109 	}
6110 
6111 	if (rt == net->ipv6.ip6_null_entry) {
6112 		err = rt->dst.error;
6113 		ip6_rt_put(rt);
6114 		goto errout;
6115 	}
6116 
6117 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
6118 	if (!skb) {
6119 		ip6_rt_put(rt);
6120 		err = -ENOBUFS;
6121 		goto errout;
6122 	}
6123 
6124 	skb_dst_set(skb, &rt->dst);
6125 
6126 	rcu_read_lock();
6127 	from = rcu_dereference(rt->from);
6128 	if (from) {
6129 		if (fibmatch)
6130 			err = rt6_fill_node(net, skb, from, NULL, NULL, NULL,
6131 					    iif, RTM_NEWROUTE,
6132 					    NETLINK_CB(in_skb).portid,
6133 					    nlh->nlmsg_seq, 0);
6134 		else
6135 			err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
6136 					    &fl6.saddr, iif, RTM_NEWROUTE,
6137 					    NETLINK_CB(in_skb).portid,
6138 					    nlh->nlmsg_seq, 0);
6139 	} else {
6140 		err = -ENETUNREACH;
6141 	}
6142 	rcu_read_unlock();
6143 
6144 	if (err < 0) {
6145 		kfree_skb(skb);
6146 		goto errout;
6147 	}
6148 
6149 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
6150 errout:
6151 	return err;
6152 }
6153 
6154 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
6155 		     unsigned int nlm_flags)
6156 {
6157 	struct sk_buff *skb;
6158 	struct net *net = info->nl_net;
6159 	u32 seq;
6160 	int err;
6161 
6162 	err = -ENOBUFS;
6163 	seq = info->nlh ? info->nlh->nlmsg_seq : 0;
6164 
6165 	skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
6166 	if (!skb)
6167 		goto errout;
6168 
6169 	err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
6170 			    event, info->portid, seq, nlm_flags);
6171 	if (err < 0) {
6172 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
6173 		WARN_ON(err == -EMSGSIZE);
6174 		kfree_skb(skb);
6175 		goto errout;
6176 	}
6177 	rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
6178 		    info->nlh, gfp_any());
6179 	return;
6180 errout:
6181 	if (err < 0)
6182 		rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
6183 }
6184 
6185 void fib6_rt_update(struct net *net, struct fib6_info *rt,
6186 		    struct nl_info *info)
6187 {
6188 	u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
6189 	struct sk_buff *skb;
6190 	int err = -ENOBUFS;
6191 
6192 	skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
6193 	if (!skb)
6194 		goto errout;
6195 
6196 	err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
6197 			    RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE);
6198 	if (err < 0) {
6199 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
6200 		WARN_ON(err == -EMSGSIZE);
6201 		kfree_skb(skb);
6202 		goto errout;
6203 	}
6204 	rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
6205 		    info->nlh, gfp_any());
6206 	return;
6207 errout:
6208 	if (err < 0)
6209 		rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
6210 }
6211 
6212 void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i,
6213 			    bool offload, bool trap, bool offload_failed)
6214 {
6215 	struct sk_buff *skb;
6216 	int err;
6217 
6218 	if (f6i->offload == offload && f6i->trap == trap &&
6219 	    f6i->offload_failed == offload_failed)
6220 		return;
6221 
6222 	f6i->offload = offload;
6223 	f6i->trap = trap;
6224 
6225 	/* 2 means send notifications only if offload_failed was changed. */
6226 	if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 &&
6227 	    f6i->offload_failed == offload_failed)
6228 		return;
6229 
6230 	f6i->offload_failed = offload_failed;
6231 
6232 	if (!rcu_access_pointer(f6i->fib6_node))
6233 		/* The route was removed from the tree, do not send
6234 		 * notification.
6235 		 */
6236 		return;
6237 
6238 	if (!net->ipv6.sysctl.fib_notify_on_flag_change)
6239 		return;
6240 
6241 	skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL);
6242 	if (!skb) {
6243 		err = -ENOBUFS;
6244 		goto errout;
6245 	}
6246 
6247 	err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0,
6248 			    0, 0);
6249 	if (err < 0) {
6250 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
6251 		WARN_ON(err == -EMSGSIZE);
6252 		kfree_skb(skb);
6253 		goto errout;
6254 	}
6255 
6256 	rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL);
6257 	return;
6258 
6259 errout:
6260 	rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
6261 }
6262 EXPORT_SYMBOL(fib6_info_hw_flags_set);
6263 
6264 static int ip6_route_dev_notify(struct notifier_block *this,
6265 				unsigned long event, void *ptr)
6266 {
6267 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6268 	struct net *net = dev_net(dev);
6269 
6270 	if (!(dev->flags & IFF_LOOPBACK))
6271 		return NOTIFY_OK;
6272 
6273 	if (event == NETDEV_REGISTER) {
6274 		net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev;
6275 		net->ipv6.ip6_null_entry->dst.dev = dev;
6276 		net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
6277 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
6278 		net->ipv6.ip6_prohibit_entry->dst.dev = dev;
6279 		net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
6280 		net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
6281 		net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
6282 #endif
6283 	 } else if (event == NETDEV_UNREGISTER &&
6284 		    dev->reg_state != NETREG_UNREGISTERED) {
6285 		/* NETDEV_UNREGISTER could be fired for multiple times by
6286 		 * netdev_wait_allrefs(). Make sure we only call this once.
6287 		 */
6288 		in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
6289 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
6290 		in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
6291 		in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
6292 #endif
6293 	}
6294 
6295 	return NOTIFY_OK;
6296 }
6297 
6298 /*
6299  *	/proc
6300  */
6301 
6302 #ifdef CONFIG_PROC_FS
6303 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
6304 {
6305 	struct net *net = (struct net *)seq->private;
6306 	seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
6307 		   net->ipv6.rt6_stats->fib_nodes,
6308 		   net->ipv6.rt6_stats->fib_route_nodes,
6309 		   atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
6310 		   net->ipv6.rt6_stats->fib_rt_entries,
6311 		   net->ipv6.rt6_stats->fib_rt_cache,
6312 		   dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
6313 		   net->ipv6.rt6_stats->fib_discarded_routes);
6314 
6315 	return 0;
6316 }
6317 #endif	/* CONFIG_PROC_FS */
6318 
6319 #ifdef CONFIG_SYSCTL
6320 
6321 static int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
6322 			      void *buffer, size_t *lenp, loff_t *ppos)
6323 {
6324 	struct net *net;
6325 	int delay;
6326 	int ret;
6327 	if (!write)
6328 		return -EINVAL;
6329 
6330 	net = (struct net *)ctl->extra1;
6331 	delay = net->ipv6.sysctl.flush_delay;
6332 	ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
6333 	if (ret)
6334 		return ret;
6335 
6336 	fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
6337 	return 0;
6338 }
6339 
6340 static struct ctl_table ipv6_route_table_template[] = {
6341 	{
6342 		.procname	=	"max_size",
6343 		.data		=	&init_net.ipv6.sysctl.ip6_rt_max_size,
6344 		.maxlen		=	sizeof(int),
6345 		.mode		=	0644,
6346 		.proc_handler	=	proc_dointvec,
6347 	},
6348 	{
6349 		.procname	=	"gc_thresh",
6350 		.data		=	&ip6_dst_ops_template.gc_thresh,
6351 		.maxlen		=	sizeof(int),
6352 		.mode		=	0644,
6353 		.proc_handler	=	proc_dointvec,
6354 	},
6355 	{
6356 		.procname	=	"flush",
6357 		.data		=	&init_net.ipv6.sysctl.flush_delay,
6358 		.maxlen		=	sizeof(int),
6359 		.mode		=	0200,
6360 		.proc_handler	=	ipv6_sysctl_rtcache_flush
6361 	},
6362 	{
6363 		.procname	=	"gc_min_interval",
6364 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
6365 		.maxlen		=	sizeof(int),
6366 		.mode		=	0644,
6367 		.proc_handler	=	proc_dointvec_jiffies,
6368 	},
6369 	{
6370 		.procname	=	"gc_timeout",
6371 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_timeout,
6372 		.maxlen		=	sizeof(int),
6373 		.mode		=	0644,
6374 		.proc_handler	=	proc_dointvec_jiffies,
6375 	},
6376 	{
6377 		.procname	=	"gc_interval",
6378 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_interval,
6379 		.maxlen		=	sizeof(int),
6380 		.mode		=	0644,
6381 		.proc_handler	=	proc_dointvec_jiffies,
6382 	},
6383 	{
6384 		.procname	=	"gc_elasticity",
6385 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
6386 		.maxlen		=	sizeof(int),
6387 		.mode		=	0644,
6388 		.proc_handler	=	proc_dointvec,
6389 	},
6390 	{
6391 		.procname	=	"mtu_expires",
6392 		.data		=	&init_net.ipv6.sysctl.ip6_rt_mtu_expires,
6393 		.maxlen		=	sizeof(int),
6394 		.mode		=	0644,
6395 		.proc_handler	=	proc_dointvec_jiffies,
6396 	},
6397 	{
6398 		.procname	=	"min_adv_mss",
6399 		.data		=	&init_net.ipv6.sysctl.ip6_rt_min_advmss,
6400 		.maxlen		=	sizeof(int),
6401 		.mode		=	0644,
6402 		.proc_handler	=	proc_dointvec,
6403 	},
6404 	{
6405 		.procname	=	"gc_min_interval_ms",
6406 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
6407 		.maxlen		=	sizeof(int),
6408 		.mode		=	0644,
6409 		.proc_handler	=	proc_dointvec_ms_jiffies,
6410 	},
6411 	{
6412 		.procname	=	"skip_notify_on_dev_down",
6413 		.data		=	&init_net.ipv6.sysctl.skip_notify_on_dev_down,
6414 		.maxlen		=	sizeof(int),
6415 		.mode		=	0644,
6416 		.proc_handler	=	proc_dointvec_minmax,
6417 		.extra1		=	SYSCTL_ZERO,
6418 		.extra2		=	SYSCTL_ONE,
6419 	},
6420 	{ }
6421 };
6422 
6423 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
6424 {
6425 	struct ctl_table *table;
6426 
6427 	table = kmemdup(ipv6_route_table_template,
6428 			sizeof(ipv6_route_table_template),
6429 			GFP_KERNEL);
6430 
6431 	if (table) {
6432 		table[0].data = &net->ipv6.sysctl.ip6_rt_max_size;
6433 		table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
6434 		table[2].data = &net->ipv6.sysctl.flush_delay;
6435 		table[2].extra1 = net;
6436 		table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
6437 		table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
6438 		table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
6439 		table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
6440 		table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
6441 		table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
6442 		table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
6443 		table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down;
6444 
6445 		/* Don't export sysctls to unprivileged users */
6446 		if (net->user_ns != &init_user_ns)
6447 			table[1].procname = NULL;
6448 	}
6449 
6450 	return table;
6451 }
6452 #endif
6453 
6454 static int __net_init ip6_route_net_init(struct net *net)
6455 {
6456 	int ret = -ENOMEM;
6457 
6458 	memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
6459 	       sizeof(net->ipv6.ip6_dst_ops));
6460 
6461 	if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
6462 		goto out_ip6_dst_ops;
6463 
6464 	net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true);
6465 	if (!net->ipv6.fib6_null_entry)
6466 		goto out_ip6_dst_entries;
6467 	memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template,
6468 	       sizeof(*net->ipv6.fib6_null_entry));
6469 
6470 	net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
6471 					   sizeof(*net->ipv6.ip6_null_entry),
6472 					   GFP_KERNEL);
6473 	if (!net->ipv6.ip6_null_entry)
6474 		goto out_fib6_null_entry;
6475 	net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
6476 	dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
6477 			 ip6_template_metrics, true);
6478 	INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->rt6i_uncached);
6479 
6480 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
6481 	net->ipv6.fib6_has_custom_rules = false;
6482 	net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
6483 					       sizeof(*net->ipv6.ip6_prohibit_entry),
6484 					       GFP_KERNEL);
6485 	if (!net->ipv6.ip6_prohibit_entry)
6486 		goto out_ip6_null_entry;
6487 	net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
6488 	dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
6489 			 ip6_template_metrics, true);
6490 	INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->rt6i_uncached);
6491 
6492 	net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
6493 					       sizeof(*net->ipv6.ip6_blk_hole_entry),
6494 					       GFP_KERNEL);
6495 	if (!net->ipv6.ip6_blk_hole_entry)
6496 		goto out_ip6_prohibit_entry;
6497 	net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
6498 	dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
6499 			 ip6_template_metrics, true);
6500 	INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->rt6i_uncached);
6501 #ifdef CONFIG_IPV6_SUBTREES
6502 	net->ipv6.fib6_routes_require_src = 0;
6503 #endif
6504 #endif
6505 
6506 	net->ipv6.sysctl.flush_delay = 0;
6507 	net->ipv6.sysctl.ip6_rt_max_size = 4096;
6508 	net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
6509 	net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
6510 	net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
6511 	net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
6512 	net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
6513 	net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
6514 	net->ipv6.sysctl.skip_notify_on_dev_down = 0;
6515 
6516 	net->ipv6.ip6_rt_gc_expire = 30*HZ;
6517 
6518 	ret = 0;
6519 out:
6520 	return ret;
6521 
6522 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
6523 out_ip6_prohibit_entry:
6524 	kfree(net->ipv6.ip6_prohibit_entry);
6525 out_ip6_null_entry:
6526 	kfree(net->ipv6.ip6_null_entry);
6527 #endif
6528 out_fib6_null_entry:
6529 	kfree(net->ipv6.fib6_null_entry);
6530 out_ip6_dst_entries:
6531 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
6532 out_ip6_dst_ops:
6533 	goto out;
6534 }
6535 
6536 static void __net_exit ip6_route_net_exit(struct net *net)
6537 {
6538 	kfree(net->ipv6.fib6_null_entry);
6539 	kfree(net->ipv6.ip6_null_entry);
6540 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
6541 	kfree(net->ipv6.ip6_prohibit_entry);
6542 	kfree(net->ipv6.ip6_blk_hole_entry);
6543 #endif
6544 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
6545 }
6546 
6547 static int __net_init ip6_route_net_init_late(struct net *net)
6548 {
6549 #ifdef CONFIG_PROC_FS
6550 	proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops,
6551 			sizeof(struct ipv6_route_iter));
6552 	proc_create_net_single("rt6_stats", 0444, net->proc_net,
6553 			rt6_stats_seq_show, NULL);
6554 #endif
6555 	return 0;
6556 }
6557 
6558 static void __net_exit ip6_route_net_exit_late(struct net *net)
6559 {
6560 #ifdef CONFIG_PROC_FS
6561 	remove_proc_entry("ipv6_route", net->proc_net);
6562 	remove_proc_entry("rt6_stats", net->proc_net);
6563 #endif
6564 }
6565 
6566 static struct pernet_operations ip6_route_net_ops = {
6567 	.init = ip6_route_net_init,
6568 	.exit = ip6_route_net_exit,
6569 };
6570 
6571 static int __net_init ipv6_inetpeer_init(struct net *net)
6572 {
6573 	struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
6574 
6575 	if (!bp)
6576 		return -ENOMEM;
6577 	inet_peer_base_init(bp);
6578 	net->ipv6.peers = bp;
6579 	return 0;
6580 }
6581 
6582 static void __net_exit ipv6_inetpeer_exit(struct net *net)
6583 {
6584 	struct inet_peer_base *bp = net->ipv6.peers;
6585 
6586 	net->ipv6.peers = NULL;
6587 	inetpeer_invalidate_tree(bp);
6588 	kfree(bp);
6589 }
6590 
6591 static struct pernet_operations ipv6_inetpeer_ops = {
6592 	.init	=	ipv6_inetpeer_init,
6593 	.exit	=	ipv6_inetpeer_exit,
6594 };
6595 
6596 static struct pernet_operations ip6_route_net_late_ops = {
6597 	.init = ip6_route_net_init_late,
6598 	.exit = ip6_route_net_exit_late,
6599 };
6600 
6601 static struct notifier_block ip6_route_dev_notifier = {
6602 	.notifier_call = ip6_route_dev_notify,
6603 	.priority = ADDRCONF_NOTIFY_PRIORITY - 10,
6604 };
6605 
6606 void __init ip6_route_init_special_entries(void)
6607 {
6608 	/* Registering of the loopback is done before this portion of code,
6609 	 * the loopback reference in rt6_info will not be taken, do it
6610 	 * manually for init_net */
6611 	init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev;
6612 	init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
6613 	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
6614   #ifdef CONFIG_IPV6_MULTIPLE_TABLES
6615 	init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
6616 	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
6617 	init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
6618 	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
6619   #endif
6620 }
6621 
6622 #if IS_BUILTIN(CONFIG_IPV6)
6623 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
6624 DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt)
6625 
6626 BTF_ID_LIST(btf_fib6_info_id)
6627 BTF_ID(struct, fib6_info)
6628 
6629 static const struct bpf_iter_seq_info ipv6_route_seq_info = {
6630 	.seq_ops		= &ipv6_route_seq_ops,
6631 	.init_seq_private	= bpf_iter_init_seq_net,
6632 	.fini_seq_private	= bpf_iter_fini_seq_net,
6633 	.seq_priv_size		= sizeof(struct ipv6_route_iter),
6634 };
6635 
6636 static struct bpf_iter_reg ipv6_route_reg_info = {
6637 	.target			= "ipv6_route",
6638 	.ctx_arg_info_size	= 1,
6639 	.ctx_arg_info		= {
6640 		{ offsetof(struct bpf_iter__ipv6_route, rt),
6641 		  PTR_TO_BTF_ID_OR_NULL },
6642 	},
6643 	.seq_info		= &ipv6_route_seq_info,
6644 };
6645 
6646 static int __init bpf_iter_register(void)
6647 {
6648 	ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id;
6649 	return bpf_iter_reg_target(&ipv6_route_reg_info);
6650 }
6651 
6652 static void bpf_iter_unregister(void)
6653 {
6654 	bpf_iter_unreg_target(&ipv6_route_reg_info);
6655 }
6656 #endif
6657 #endif
6658 
6659 int __init ip6_route_init(void)
6660 {
6661 	int ret;
6662 	int cpu;
6663 
6664 	ret = -ENOMEM;
6665 	ip6_dst_ops_template.kmem_cachep =
6666 		kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
6667 				  SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL);
6668 	if (!ip6_dst_ops_template.kmem_cachep)
6669 		goto out;
6670 
6671 	ret = dst_entries_init(&ip6_dst_blackhole_ops);
6672 	if (ret)
6673 		goto out_kmem_cache;
6674 
6675 	ret = register_pernet_subsys(&ipv6_inetpeer_ops);
6676 	if (ret)
6677 		goto out_dst_entries;
6678 
6679 	ret = register_pernet_subsys(&ip6_route_net_ops);
6680 	if (ret)
6681 		goto out_register_inetpeer;
6682 
6683 	ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
6684 
6685 	ret = fib6_init();
6686 	if (ret)
6687 		goto out_register_subsys;
6688 
6689 	ret = xfrm6_init();
6690 	if (ret)
6691 		goto out_fib6_init;
6692 
6693 	ret = fib6_rules_init();
6694 	if (ret)
6695 		goto xfrm6_init;
6696 
6697 	ret = register_pernet_subsys(&ip6_route_net_late_ops);
6698 	if (ret)
6699 		goto fib6_rules_init;
6700 
6701 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
6702 				   inet6_rtm_newroute, NULL, 0);
6703 	if (ret < 0)
6704 		goto out_register_late_subsys;
6705 
6706 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
6707 				   inet6_rtm_delroute, NULL, 0);
6708 	if (ret < 0)
6709 		goto out_register_late_subsys;
6710 
6711 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
6712 				   inet6_rtm_getroute, NULL,
6713 				   RTNL_FLAG_DOIT_UNLOCKED);
6714 	if (ret < 0)
6715 		goto out_register_late_subsys;
6716 
6717 	ret = register_netdevice_notifier(&ip6_route_dev_notifier);
6718 	if (ret)
6719 		goto out_register_late_subsys;
6720 
6721 #if IS_BUILTIN(CONFIG_IPV6)
6722 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
6723 	ret = bpf_iter_register();
6724 	if (ret)
6725 		goto out_register_late_subsys;
6726 #endif
6727 #endif
6728 
6729 	for_each_possible_cpu(cpu) {
6730 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
6731 
6732 		INIT_LIST_HEAD(&ul->head);
6733 		spin_lock_init(&ul->lock);
6734 	}
6735 
6736 out:
6737 	return ret;
6738 
6739 out_register_late_subsys:
6740 	rtnl_unregister_all(PF_INET6);
6741 	unregister_pernet_subsys(&ip6_route_net_late_ops);
6742 fib6_rules_init:
6743 	fib6_rules_cleanup();
6744 xfrm6_init:
6745 	xfrm6_fini();
6746 out_fib6_init:
6747 	fib6_gc_cleanup();
6748 out_register_subsys:
6749 	unregister_pernet_subsys(&ip6_route_net_ops);
6750 out_register_inetpeer:
6751 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
6752 out_dst_entries:
6753 	dst_entries_destroy(&ip6_dst_blackhole_ops);
6754 out_kmem_cache:
6755 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
6756 	goto out;
6757 }
6758 
6759 void ip6_route_cleanup(void)
6760 {
6761 #if IS_BUILTIN(CONFIG_IPV6)
6762 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
6763 	bpf_iter_unregister();
6764 #endif
6765 #endif
6766 	unregister_netdevice_notifier(&ip6_route_dev_notifier);
6767 	unregister_pernet_subsys(&ip6_route_net_late_ops);
6768 	fib6_rules_cleanup();
6769 	xfrm6_fini();
6770 	fib6_gc_cleanup();
6771 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
6772 	unregister_pernet_subsys(&ip6_route_net_ops);
6773 	dst_entries_destroy(&ip6_dst_blackhole_ops);
6774 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
6775 }
6776