1 /* 2 * Linux INET6 implementation 3 * FIB front-end. 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* Changes: 15 * 16 * YOSHIFUJI Hideaki @USAGI 17 * reworked default router selection. 18 * - respect outgoing interface 19 * - select from (probably) reachable routers (i.e. 20 * routers in REACHABLE, STALE, DELAY or PROBE states). 21 * - always select the same router if it is (probably) 22 * reachable. otherwise, round-robin the list. 23 * Ville Nuorvala 24 * Fixed routing subtrees. 25 */ 26 27 #define pr_fmt(fmt) "IPv6: " fmt 28 29 #include <linux/capability.h> 30 #include <linux/errno.h> 31 #include <linux/export.h> 32 #include <linux/types.h> 33 #include <linux/times.h> 34 #include <linux/socket.h> 35 #include <linux/sockios.h> 36 #include <linux/net.h> 37 #include <linux/route.h> 38 #include <linux/netdevice.h> 39 #include <linux/in6.h> 40 #include <linux/mroute6.h> 41 #include <linux/init.h> 42 #include <linux/if_arp.h> 43 #include <linux/proc_fs.h> 44 #include <linux/seq_file.h> 45 #include <linux/nsproxy.h> 46 #include <linux/slab.h> 47 #include <linux/jhash.h> 48 #include <net/net_namespace.h> 49 #include <net/snmp.h> 50 #include <net/ipv6.h> 51 #include <net/ip6_fib.h> 52 #include <net/ip6_route.h> 53 #include <net/ndisc.h> 54 #include <net/addrconf.h> 55 #include <net/tcp.h> 56 #include <linux/rtnetlink.h> 57 #include <net/dst.h> 58 #include <net/dst_metadata.h> 59 #include <net/xfrm.h> 60 #include <net/netevent.h> 61 #include <net/netlink.h> 62 #include <net/nexthop.h> 63 #include <net/lwtunnel.h> 64 #include <net/ip_tunnels.h> 65 #include <net/l3mdev.h> 66 #include <trace/events/fib6.h> 67 68 #include <linux/uaccess.h> 69 70 #ifdef CONFIG_SYSCTL 71 #include <linux/sysctl.h> 72 #endif 73 74 enum rt6_nud_state { 75 RT6_NUD_FAIL_HARD = -3, 76 RT6_NUD_FAIL_PROBE = -2, 77 RT6_NUD_FAIL_DO_RR = -1, 78 RT6_NUD_SUCCEED = 1 79 }; 80 81 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 82 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 83 static unsigned int ip6_mtu(const struct dst_entry *dst); 84 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 85 static void ip6_dst_destroy(struct dst_entry *); 86 static void ip6_dst_ifdown(struct dst_entry *, 87 struct net_device *dev, int how); 88 static int ip6_dst_gc(struct dst_ops *ops); 89 90 static int ip6_pkt_discard(struct sk_buff *skb); 91 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 92 static int ip6_pkt_prohibit(struct sk_buff *skb); 93 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 94 static void ip6_link_failure(struct sk_buff *skb); 95 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 96 struct sk_buff *skb, u32 mtu); 97 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 98 struct sk_buff *skb); 99 static int rt6_score_route(struct fib6_info *rt, int oif, int strict); 100 static size_t rt6_nlmsg_size(struct fib6_info *rt); 101 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 102 struct fib6_info *rt, struct dst_entry *dst, 103 struct in6_addr *dest, struct in6_addr *src, 104 int iif, int type, u32 portid, u32 seq, 105 unsigned int flags); 106 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt, 107 struct in6_addr *daddr, 108 struct in6_addr *saddr); 109 110 #ifdef CONFIG_IPV6_ROUTE_INFO 111 static struct fib6_info *rt6_add_route_info(struct net *net, 112 const struct in6_addr *prefix, int prefixlen, 113 const struct in6_addr *gwaddr, 114 struct net_device *dev, 115 unsigned int pref); 116 static struct fib6_info *rt6_get_route_info(struct net *net, 117 const struct in6_addr *prefix, int prefixlen, 118 const struct in6_addr *gwaddr, 119 struct net_device *dev); 120 #endif 121 122 struct uncached_list { 123 spinlock_t lock; 124 struct list_head head; 125 }; 126 127 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 128 129 void rt6_uncached_list_add(struct rt6_info *rt) 130 { 131 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 132 133 rt->rt6i_uncached_list = ul; 134 135 spin_lock_bh(&ul->lock); 136 list_add_tail(&rt->rt6i_uncached, &ul->head); 137 spin_unlock_bh(&ul->lock); 138 } 139 140 void rt6_uncached_list_del(struct rt6_info *rt) 141 { 142 if (!list_empty(&rt->rt6i_uncached)) { 143 struct uncached_list *ul = rt->rt6i_uncached_list; 144 struct net *net = dev_net(rt->dst.dev); 145 146 spin_lock_bh(&ul->lock); 147 list_del(&rt->rt6i_uncached); 148 atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache); 149 spin_unlock_bh(&ul->lock); 150 } 151 } 152 153 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev) 154 { 155 struct net_device *loopback_dev = net->loopback_dev; 156 int cpu; 157 158 if (dev == loopback_dev) 159 return; 160 161 for_each_possible_cpu(cpu) { 162 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 163 struct rt6_info *rt; 164 165 spin_lock_bh(&ul->lock); 166 list_for_each_entry(rt, &ul->head, rt6i_uncached) { 167 struct inet6_dev *rt_idev = rt->rt6i_idev; 168 struct net_device *rt_dev = rt->dst.dev; 169 170 if (rt_idev->dev == dev) { 171 rt->rt6i_idev = in6_dev_get(loopback_dev); 172 in6_dev_put(rt_idev); 173 } 174 175 if (rt_dev == dev) { 176 rt->dst.dev = loopback_dev; 177 dev_hold(rt->dst.dev); 178 dev_put(rt_dev); 179 } 180 } 181 spin_unlock_bh(&ul->lock); 182 } 183 } 184 185 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 186 struct sk_buff *skb, 187 const void *daddr) 188 { 189 if (!ipv6_addr_any(p)) 190 return (const void *) p; 191 else if (skb) 192 return &ipv6_hdr(skb)->daddr; 193 return daddr; 194 } 195 196 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 197 struct net_device *dev, 198 struct sk_buff *skb, 199 const void *daddr) 200 { 201 struct neighbour *n; 202 203 daddr = choose_neigh_daddr(gw, skb, daddr); 204 n = __ipv6_neigh_lookup(dev, daddr); 205 if (n) 206 return n; 207 return neigh_create(&nd_tbl, daddr, dev); 208 } 209 210 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 211 struct sk_buff *skb, 212 const void *daddr) 213 { 214 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); 215 216 return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr); 217 } 218 219 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 220 { 221 struct net_device *dev = dst->dev; 222 struct rt6_info *rt = (struct rt6_info *)dst; 223 224 daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr); 225 if (!daddr) 226 return; 227 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 228 return; 229 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 230 return; 231 __ipv6_confirm_neigh(dev, daddr); 232 } 233 234 static struct dst_ops ip6_dst_ops_template = { 235 .family = AF_INET6, 236 .gc = ip6_dst_gc, 237 .gc_thresh = 1024, 238 .check = ip6_dst_check, 239 .default_advmss = ip6_default_advmss, 240 .mtu = ip6_mtu, 241 .cow_metrics = dst_cow_metrics_generic, 242 .destroy = ip6_dst_destroy, 243 .ifdown = ip6_dst_ifdown, 244 .negative_advice = ip6_negative_advice, 245 .link_failure = ip6_link_failure, 246 .update_pmtu = ip6_rt_update_pmtu, 247 .redirect = rt6_do_redirect, 248 .local_out = __ip6_local_out, 249 .neigh_lookup = ip6_dst_neigh_lookup, 250 .confirm_neigh = ip6_confirm_neigh, 251 }; 252 253 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst) 254 { 255 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU); 256 257 return mtu ? : dst->dev->mtu; 258 } 259 260 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk, 261 struct sk_buff *skb, u32 mtu) 262 { 263 } 264 265 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk, 266 struct sk_buff *skb) 267 { 268 } 269 270 static struct dst_ops ip6_dst_blackhole_ops = { 271 .family = AF_INET6, 272 .destroy = ip6_dst_destroy, 273 .check = ip6_dst_check, 274 .mtu = ip6_blackhole_mtu, 275 .default_advmss = ip6_default_advmss, 276 .update_pmtu = ip6_rt_blackhole_update_pmtu, 277 .redirect = ip6_rt_blackhole_redirect, 278 .cow_metrics = dst_cow_metrics_generic, 279 .neigh_lookup = ip6_dst_neigh_lookup, 280 }; 281 282 static const u32 ip6_template_metrics[RTAX_MAX] = { 283 [RTAX_HOPLIMIT - 1] = 0, 284 }; 285 286 static const struct fib6_info fib6_null_entry_template = { 287 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 288 .fib6_protocol = RTPROT_KERNEL, 289 .fib6_metric = ~(u32)0, 290 .fib6_ref = ATOMIC_INIT(1), 291 .fib6_type = RTN_UNREACHABLE, 292 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 293 }; 294 295 static const struct rt6_info ip6_null_entry_template = { 296 .dst = { 297 .__refcnt = ATOMIC_INIT(1), 298 .__use = 1, 299 .obsolete = DST_OBSOLETE_FORCE_CHK, 300 .error = -ENETUNREACH, 301 .input = ip6_pkt_discard, 302 .output = ip6_pkt_discard_out, 303 }, 304 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 305 }; 306 307 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 308 309 static const struct rt6_info ip6_prohibit_entry_template = { 310 .dst = { 311 .__refcnt = ATOMIC_INIT(1), 312 .__use = 1, 313 .obsolete = DST_OBSOLETE_FORCE_CHK, 314 .error = -EACCES, 315 .input = ip6_pkt_prohibit, 316 .output = ip6_pkt_prohibit_out, 317 }, 318 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 319 }; 320 321 static const struct rt6_info ip6_blk_hole_entry_template = { 322 .dst = { 323 .__refcnt = ATOMIC_INIT(1), 324 .__use = 1, 325 .obsolete = DST_OBSOLETE_FORCE_CHK, 326 .error = -EINVAL, 327 .input = dst_discard, 328 .output = dst_discard_out, 329 }, 330 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 331 }; 332 333 #endif 334 335 static void rt6_info_init(struct rt6_info *rt) 336 { 337 struct dst_entry *dst = &rt->dst; 338 339 memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst)); 340 INIT_LIST_HEAD(&rt->rt6i_uncached); 341 } 342 343 /* allocate dst with ip6_dst_ops */ 344 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 345 int flags) 346 { 347 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 348 1, DST_OBSOLETE_FORCE_CHK, flags); 349 350 if (rt) { 351 rt6_info_init(rt); 352 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 353 } 354 355 return rt; 356 } 357 EXPORT_SYMBOL(ip6_dst_alloc); 358 359 static void ip6_dst_destroy(struct dst_entry *dst) 360 { 361 struct rt6_info *rt = (struct rt6_info *)dst; 362 struct fib6_info *from; 363 struct inet6_dev *idev; 364 365 dst_destroy_metrics_generic(dst); 366 rt6_uncached_list_del(rt); 367 368 idev = rt->rt6i_idev; 369 if (idev) { 370 rt->rt6i_idev = NULL; 371 in6_dev_put(idev); 372 } 373 374 rcu_read_lock(); 375 from = rcu_dereference(rt->from); 376 rcu_assign_pointer(rt->from, NULL); 377 fib6_info_release(from); 378 rcu_read_unlock(); 379 } 380 381 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 382 int how) 383 { 384 struct rt6_info *rt = (struct rt6_info *)dst; 385 struct inet6_dev *idev = rt->rt6i_idev; 386 struct net_device *loopback_dev = 387 dev_net(dev)->loopback_dev; 388 389 if (idev && idev->dev != loopback_dev) { 390 struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev); 391 if (loopback_idev) { 392 rt->rt6i_idev = loopback_idev; 393 in6_dev_put(idev); 394 } 395 } 396 } 397 398 static bool __rt6_check_expired(const struct rt6_info *rt) 399 { 400 if (rt->rt6i_flags & RTF_EXPIRES) 401 return time_after(jiffies, rt->dst.expires); 402 else 403 return false; 404 } 405 406 static bool rt6_check_expired(const struct rt6_info *rt) 407 { 408 struct fib6_info *from; 409 410 from = rcu_dereference(rt->from); 411 412 if (rt->rt6i_flags & RTF_EXPIRES) { 413 if (time_after(jiffies, rt->dst.expires)) 414 return true; 415 } else if (from) { 416 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || 417 fib6_check_expired(from); 418 } 419 return false; 420 } 421 422 struct fib6_info *fib6_multipath_select(const struct net *net, 423 struct fib6_info *match, 424 struct flowi6 *fl6, int oif, 425 const struct sk_buff *skb, 426 int strict) 427 { 428 struct fib6_info *sibling, *next_sibling; 429 430 /* We might have already computed the hash for ICMPv6 errors. In such 431 * case it will always be non-zero. Otherwise now is the time to do it. 432 */ 433 if (!fl6->mp_hash) 434 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 435 436 if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound)) 437 return match; 438 439 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, 440 fib6_siblings) { 441 int nh_upper_bound; 442 443 nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound); 444 if (fl6->mp_hash > nh_upper_bound) 445 continue; 446 if (rt6_score_route(sibling, oif, strict) < 0) 447 break; 448 match = sibling; 449 break; 450 } 451 452 return match; 453 } 454 455 /* 456 * Route lookup. rcu_read_lock() should be held. 457 */ 458 459 static inline struct fib6_info *rt6_device_match(struct net *net, 460 struct fib6_info *rt, 461 const struct in6_addr *saddr, 462 int oif, 463 int flags) 464 { 465 struct fib6_info *sprt; 466 467 if (!oif && ipv6_addr_any(saddr) && 468 !(rt->fib6_nh.nh_flags & RTNH_F_DEAD)) 469 return rt; 470 471 for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) { 472 const struct net_device *dev = sprt->fib6_nh.nh_dev; 473 474 if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD) 475 continue; 476 477 if (oif) { 478 if (dev->ifindex == oif) 479 return sprt; 480 } else { 481 if (ipv6_chk_addr(net, saddr, dev, 482 flags & RT6_LOOKUP_F_IFACE)) 483 return sprt; 484 } 485 } 486 487 if (oif && flags & RT6_LOOKUP_F_IFACE) 488 return net->ipv6.fib6_null_entry; 489 490 return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt; 491 } 492 493 #ifdef CONFIG_IPV6_ROUTER_PREF 494 struct __rt6_probe_work { 495 struct work_struct work; 496 struct in6_addr target; 497 struct net_device *dev; 498 }; 499 500 static void rt6_probe_deferred(struct work_struct *w) 501 { 502 struct in6_addr mcaddr; 503 struct __rt6_probe_work *work = 504 container_of(w, struct __rt6_probe_work, work); 505 506 addrconf_addr_solict_mult(&work->target, &mcaddr); 507 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 508 dev_put(work->dev); 509 kfree(work); 510 } 511 512 static void rt6_probe(struct fib6_info *rt) 513 { 514 struct __rt6_probe_work *work; 515 const struct in6_addr *nh_gw; 516 struct neighbour *neigh; 517 struct net_device *dev; 518 519 /* 520 * Okay, this does not seem to be appropriate 521 * for now, however, we need to check if it 522 * is really so; aka Router Reachability Probing. 523 * 524 * Router Reachability Probe MUST be rate-limited 525 * to no more than one per minute. 526 */ 527 if (!rt || !(rt->fib6_flags & RTF_GATEWAY)) 528 return; 529 530 nh_gw = &rt->fib6_nh.nh_gw; 531 dev = rt->fib6_nh.nh_dev; 532 rcu_read_lock_bh(); 533 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 534 if (neigh) { 535 struct inet6_dev *idev; 536 537 if (neigh->nud_state & NUD_VALID) 538 goto out; 539 540 idev = __in6_dev_get(dev); 541 work = NULL; 542 write_lock(&neigh->lock); 543 if (!(neigh->nud_state & NUD_VALID) && 544 time_after(jiffies, 545 neigh->updated + idev->cnf.rtr_probe_interval)) { 546 work = kmalloc(sizeof(*work), GFP_ATOMIC); 547 if (work) 548 __neigh_set_probe_once(neigh); 549 } 550 write_unlock(&neigh->lock); 551 } else { 552 work = kmalloc(sizeof(*work), GFP_ATOMIC); 553 } 554 555 if (work) { 556 INIT_WORK(&work->work, rt6_probe_deferred); 557 work->target = *nh_gw; 558 dev_hold(dev); 559 work->dev = dev; 560 schedule_work(&work->work); 561 } 562 563 out: 564 rcu_read_unlock_bh(); 565 } 566 #else 567 static inline void rt6_probe(struct fib6_info *rt) 568 { 569 } 570 #endif 571 572 /* 573 * Default Router Selection (RFC 2461 6.3.6) 574 */ 575 static inline int rt6_check_dev(struct fib6_info *rt, int oif) 576 { 577 const struct net_device *dev = rt->fib6_nh.nh_dev; 578 579 if (!oif || dev->ifindex == oif) 580 return 2; 581 return 0; 582 } 583 584 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt) 585 { 586 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 587 struct neighbour *neigh; 588 589 if (rt->fib6_flags & RTF_NONEXTHOP || 590 !(rt->fib6_flags & RTF_GATEWAY)) 591 return RT6_NUD_SUCCEED; 592 593 rcu_read_lock_bh(); 594 neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev, 595 &rt->fib6_nh.nh_gw); 596 if (neigh) { 597 read_lock(&neigh->lock); 598 if (neigh->nud_state & NUD_VALID) 599 ret = RT6_NUD_SUCCEED; 600 #ifdef CONFIG_IPV6_ROUTER_PREF 601 else if (!(neigh->nud_state & NUD_FAILED)) 602 ret = RT6_NUD_SUCCEED; 603 else 604 ret = RT6_NUD_FAIL_PROBE; 605 #endif 606 read_unlock(&neigh->lock); 607 } else { 608 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 609 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 610 } 611 rcu_read_unlock_bh(); 612 613 return ret; 614 } 615 616 static int rt6_score_route(struct fib6_info *rt, int oif, int strict) 617 { 618 int m; 619 620 m = rt6_check_dev(rt, oif); 621 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 622 return RT6_NUD_FAIL_HARD; 623 #ifdef CONFIG_IPV6_ROUTER_PREF 624 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2; 625 #endif 626 if (strict & RT6_LOOKUP_F_REACHABLE) { 627 int n = rt6_check_neigh(rt); 628 if (n < 0) 629 return n; 630 } 631 return m; 632 } 633 634 /* called with rc_read_lock held */ 635 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i) 636 { 637 const struct net_device *dev = fib6_info_nh_dev(f6i); 638 bool rc = false; 639 640 if (dev) { 641 const struct inet6_dev *idev = __in6_dev_get(dev); 642 643 rc = !!idev->cnf.ignore_routes_with_linkdown; 644 } 645 646 return rc; 647 } 648 649 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict, 650 int *mpri, struct fib6_info *match, 651 bool *do_rr) 652 { 653 int m; 654 bool match_do_rr = false; 655 656 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 657 goto out; 658 659 if (fib6_ignore_linkdown(rt) && 660 rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN && 661 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 662 goto out; 663 664 if (fib6_check_expired(rt)) 665 goto out; 666 667 m = rt6_score_route(rt, oif, strict); 668 if (m == RT6_NUD_FAIL_DO_RR) { 669 match_do_rr = true; 670 m = 0; /* lowest valid score */ 671 } else if (m == RT6_NUD_FAIL_HARD) { 672 goto out; 673 } 674 675 if (strict & RT6_LOOKUP_F_REACHABLE) 676 rt6_probe(rt); 677 678 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 679 if (m > *mpri) { 680 *do_rr = match_do_rr; 681 *mpri = m; 682 match = rt; 683 } 684 out: 685 return match; 686 } 687 688 static struct fib6_info *find_rr_leaf(struct fib6_node *fn, 689 struct fib6_info *leaf, 690 struct fib6_info *rr_head, 691 u32 metric, int oif, int strict, 692 bool *do_rr) 693 { 694 struct fib6_info *rt, *match, *cont; 695 int mpri = -1; 696 697 match = NULL; 698 cont = NULL; 699 for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) { 700 if (rt->fib6_metric != metric) { 701 cont = rt; 702 break; 703 } 704 705 match = find_match(rt, oif, strict, &mpri, match, do_rr); 706 } 707 708 for (rt = leaf; rt && rt != rr_head; 709 rt = rcu_dereference(rt->fib6_next)) { 710 if (rt->fib6_metric != metric) { 711 cont = rt; 712 break; 713 } 714 715 match = find_match(rt, oif, strict, &mpri, match, do_rr); 716 } 717 718 if (match || !cont) 719 return match; 720 721 for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next)) 722 match = find_match(rt, oif, strict, &mpri, match, do_rr); 723 724 return match; 725 } 726 727 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn, 728 int oif, int strict) 729 { 730 struct fib6_info *leaf = rcu_dereference(fn->leaf); 731 struct fib6_info *match, *rt0; 732 bool do_rr = false; 733 int key_plen; 734 735 if (!leaf || leaf == net->ipv6.fib6_null_entry) 736 return net->ipv6.fib6_null_entry; 737 738 rt0 = rcu_dereference(fn->rr_ptr); 739 if (!rt0) 740 rt0 = leaf; 741 742 /* Double check to make sure fn is not an intermediate node 743 * and fn->leaf does not points to its child's leaf 744 * (This might happen if all routes under fn are deleted from 745 * the tree and fib6_repair_tree() is called on the node.) 746 */ 747 key_plen = rt0->fib6_dst.plen; 748 #ifdef CONFIG_IPV6_SUBTREES 749 if (rt0->fib6_src.plen) 750 key_plen = rt0->fib6_src.plen; 751 #endif 752 if (fn->fn_bit != key_plen) 753 return net->ipv6.fib6_null_entry; 754 755 match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict, 756 &do_rr); 757 758 if (do_rr) { 759 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 760 761 /* no entries matched; do round-robin */ 762 if (!next || next->fib6_metric != rt0->fib6_metric) 763 next = leaf; 764 765 if (next != rt0) { 766 spin_lock_bh(&leaf->fib6_table->tb6_lock); 767 /* make sure next is not being deleted from the tree */ 768 if (next->fib6_node) 769 rcu_assign_pointer(fn->rr_ptr, next); 770 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 771 } 772 } 773 774 return match ? match : net->ipv6.fib6_null_entry; 775 } 776 777 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt) 778 { 779 return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY)); 780 } 781 782 #ifdef CONFIG_IPV6_ROUTE_INFO 783 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 784 const struct in6_addr *gwaddr) 785 { 786 struct net *net = dev_net(dev); 787 struct route_info *rinfo = (struct route_info *) opt; 788 struct in6_addr prefix_buf, *prefix; 789 unsigned int pref; 790 unsigned long lifetime; 791 struct fib6_info *rt; 792 793 if (len < sizeof(struct route_info)) { 794 return -EINVAL; 795 } 796 797 /* Sanity check for prefix_len and length */ 798 if (rinfo->length > 3) { 799 return -EINVAL; 800 } else if (rinfo->prefix_len > 128) { 801 return -EINVAL; 802 } else if (rinfo->prefix_len > 64) { 803 if (rinfo->length < 2) { 804 return -EINVAL; 805 } 806 } else if (rinfo->prefix_len > 0) { 807 if (rinfo->length < 1) { 808 return -EINVAL; 809 } 810 } 811 812 pref = rinfo->route_pref; 813 if (pref == ICMPV6_ROUTER_PREF_INVALID) 814 return -EINVAL; 815 816 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 817 818 if (rinfo->length == 3) 819 prefix = (struct in6_addr *)rinfo->prefix; 820 else { 821 /* this function is safe */ 822 ipv6_addr_prefix(&prefix_buf, 823 (struct in6_addr *)rinfo->prefix, 824 rinfo->prefix_len); 825 prefix = &prefix_buf; 826 } 827 828 if (rinfo->prefix_len == 0) 829 rt = rt6_get_dflt_router(net, gwaddr, dev); 830 else 831 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 832 gwaddr, dev); 833 834 if (rt && !lifetime) { 835 ip6_del_rt(net, rt); 836 rt = NULL; 837 } 838 839 if (!rt && lifetime) 840 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 841 dev, pref); 842 else if (rt) 843 rt->fib6_flags = RTF_ROUTEINFO | 844 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 845 846 if (rt) { 847 if (!addrconf_finite_timeout(lifetime)) 848 fib6_clean_expires(rt); 849 else 850 fib6_set_expires(rt, jiffies + HZ * lifetime); 851 852 fib6_info_release(rt); 853 } 854 return 0; 855 } 856 #endif 857 858 /* 859 * Misc support functions 860 */ 861 862 /* called with rcu_lock held */ 863 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt) 864 { 865 struct net_device *dev = rt->fib6_nh.nh_dev; 866 867 if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 868 /* for copies of local routes, dst->dev needs to be the 869 * device if it is a master device, the master device if 870 * device is enslaved, and the loopback as the default 871 */ 872 if (netif_is_l3_slave(dev) && 873 !rt6_need_strict(&rt->fib6_dst.addr)) 874 dev = l3mdev_master_dev_rcu(dev); 875 else if (!netif_is_l3_master(dev)) 876 dev = dev_net(dev)->loopback_dev; 877 /* last case is netif_is_l3_master(dev) is true in which 878 * case we want dev returned to be dev 879 */ 880 } 881 882 return dev; 883 } 884 885 static const int fib6_prop[RTN_MAX + 1] = { 886 [RTN_UNSPEC] = 0, 887 [RTN_UNICAST] = 0, 888 [RTN_LOCAL] = 0, 889 [RTN_BROADCAST] = 0, 890 [RTN_ANYCAST] = 0, 891 [RTN_MULTICAST] = 0, 892 [RTN_BLACKHOLE] = -EINVAL, 893 [RTN_UNREACHABLE] = -EHOSTUNREACH, 894 [RTN_PROHIBIT] = -EACCES, 895 [RTN_THROW] = -EAGAIN, 896 [RTN_NAT] = -EINVAL, 897 [RTN_XRESOLVE] = -EINVAL, 898 }; 899 900 static int ip6_rt_type_to_error(u8 fib6_type) 901 { 902 return fib6_prop[fib6_type]; 903 } 904 905 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 906 { 907 unsigned short flags = 0; 908 909 if (rt->dst_nocount) 910 flags |= DST_NOCOUNT; 911 if (rt->dst_nopolicy) 912 flags |= DST_NOPOLICY; 913 if (rt->dst_host) 914 flags |= DST_HOST; 915 916 return flags; 917 } 918 919 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort) 920 { 921 rt->dst.error = ip6_rt_type_to_error(ort->fib6_type); 922 923 switch (ort->fib6_type) { 924 case RTN_BLACKHOLE: 925 rt->dst.output = dst_discard_out; 926 rt->dst.input = dst_discard; 927 break; 928 case RTN_PROHIBIT: 929 rt->dst.output = ip6_pkt_prohibit_out; 930 rt->dst.input = ip6_pkt_prohibit; 931 break; 932 case RTN_THROW: 933 case RTN_UNREACHABLE: 934 default: 935 rt->dst.output = ip6_pkt_discard_out; 936 rt->dst.input = ip6_pkt_discard; 937 break; 938 } 939 } 940 941 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort) 942 { 943 rt->dst.flags |= fib6_info_dst_flags(ort); 944 945 if (ort->fib6_flags & RTF_REJECT) { 946 ip6_rt_init_dst_reject(rt, ort); 947 return; 948 } 949 950 rt->dst.error = 0; 951 rt->dst.output = ip6_output; 952 953 if (ort->fib6_type == RTN_LOCAL) { 954 rt->dst.input = ip6_input; 955 } else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 956 rt->dst.input = ip6_mc_input; 957 } else { 958 rt->dst.input = ip6_forward; 959 } 960 961 if (ort->fib6_nh.nh_lwtstate) { 962 rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate); 963 lwtunnel_set_redirect(&rt->dst); 964 } 965 966 rt->dst.lastuse = jiffies; 967 } 968 969 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 970 { 971 rt->rt6i_flags &= ~RTF_EXPIRES; 972 fib6_info_hold(from); 973 rcu_assign_pointer(rt->from, from); 974 dst_init_metrics(&rt->dst, from->fib6_metrics->metrics, true); 975 if (from->fib6_metrics != &dst_default_metrics) { 976 rt->dst._metrics |= DST_METRICS_REFCOUNTED; 977 refcount_inc(&from->fib6_metrics->refcnt); 978 } 979 } 980 981 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort) 982 { 983 struct net_device *dev = fib6_info_nh_dev(ort); 984 985 ip6_rt_init_dst(rt, ort); 986 987 rt->rt6i_dst = ort->fib6_dst; 988 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 989 rt->rt6i_gateway = ort->fib6_nh.nh_gw; 990 rt->rt6i_flags = ort->fib6_flags; 991 rt6_set_from(rt, ort); 992 #ifdef CONFIG_IPV6_SUBTREES 993 rt->rt6i_src = ort->fib6_src; 994 #endif 995 rt->rt6i_prefsrc = ort->fib6_prefsrc; 996 rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate); 997 } 998 999 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1000 struct in6_addr *saddr) 1001 { 1002 struct fib6_node *pn, *sn; 1003 while (1) { 1004 if (fn->fn_flags & RTN_TL_ROOT) 1005 return NULL; 1006 pn = rcu_dereference(fn->parent); 1007 sn = FIB6_SUBTREE(pn); 1008 if (sn && sn != fn) 1009 fn = fib6_node_lookup(sn, NULL, saddr); 1010 else 1011 fn = pn; 1012 if (fn->fn_flags & RTN_RTINFO) 1013 return fn; 1014 } 1015 } 1016 1017 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt, 1018 bool null_fallback) 1019 { 1020 struct rt6_info *rt = *prt; 1021 1022 if (dst_hold_safe(&rt->dst)) 1023 return true; 1024 if (null_fallback) { 1025 rt = net->ipv6.ip6_null_entry; 1026 dst_hold(&rt->dst); 1027 } else { 1028 rt = NULL; 1029 } 1030 *prt = rt; 1031 return false; 1032 } 1033 1034 /* called with rcu_lock held */ 1035 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt) 1036 { 1037 unsigned short flags = fib6_info_dst_flags(rt); 1038 struct net_device *dev = rt->fib6_nh.nh_dev; 1039 struct rt6_info *nrt; 1040 1041 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1042 if (nrt) 1043 ip6_rt_copy_init(nrt, rt); 1044 1045 return nrt; 1046 } 1047 1048 static struct rt6_info *ip6_pol_route_lookup(struct net *net, 1049 struct fib6_table *table, 1050 struct flowi6 *fl6, 1051 const struct sk_buff *skb, 1052 int flags) 1053 { 1054 struct fib6_info *f6i; 1055 struct fib6_node *fn; 1056 struct rt6_info *rt; 1057 1058 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1059 flags &= ~RT6_LOOKUP_F_IFACE; 1060 1061 rcu_read_lock(); 1062 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1063 restart: 1064 f6i = rcu_dereference(fn->leaf); 1065 if (!f6i) { 1066 f6i = net->ipv6.fib6_null_entry; 1067 } else { 1068 f6i = rt6_device_match(net, f6i, &fl6->saddr, 1069 fl6->flowi6_oif, flags); 1070 if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0) 1071 f6i = fib6_multipath_select(net, f6i, fl6, 1072 fl6->flowi6_oif, skb, 1073 flags); 1074 } 1075 if (f6i == net->ipv6.fib6_null_entry) { 1076 fn = fib6_backtrack(fn, &fl6->saddr); 1077 if (fn) 1078 goto restart; 1079 } 1080 1081 trace_fib6_table_lookup(net, f6i, table, fl6); 1082 1083 /* Search through exception table */ 1084 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr); 1085 if (rt) { 1086 if (ip6_hold_safe(net, &rt, true)) 1087 dst_use_noref(&rt->dst, jiffies); 1088 } else if (f6i == net->ipv6.fib6_null_entry) { 1089 rt = net->ipv6.ip6_null_entry; 1090 dst_hold(&rt->dst); 1091 } else { 1092 rt = ip6_create_rt_rcu(f6i); 1093 if (!rt) { 1094 rt = net->ipv6.ip6_null_entry; 1095 dst_hold(&rt->dst); 1096 } 1097 } 1098 1099 rcu_read_unlock(); 1100 1101 return rt; 1102 } 1103 1104 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1105 const struct sk_buff *skb, int flags) 1106 { 1107 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1108 } 1109 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1110 1111 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1112 const struct in6_addr *saddr, int oif, 1113 const struct sk_buff *skb, int strict) 1114 { 1115 struct flowi6 fl6 = { 1116 .flowi6_oif = oif, 1117 .daddr = *daddr, 1118 }; 1119 struct dst_entry *dst; 1120 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1121 1122 if (saddr) { 1123 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1124 flags |= RT6_LOOKUP_F_HAS_SADDR; 1125 } 1126 1127 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1128 if (dst->error == 0) 1129 return (struct rt6_info *) dst; 1130 1131 dst_release(dst); 1132 1133 return NULL; 1134 } 1135 EXPORT_SYMBOL(rt6_lookup); 1136 1137 /* ip6_ins_rt is called with FREE table->tb6_lock. 1138 * It takes new route entry, the addition fails by any reason the 1139 * route is released. 1140 * Caller must hold dst before calling it. 1141 */ 1142 1143 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1144 struct netlink_ext_ack *extack) 1145 { 1146 int err; 1147 struct fib6_table *table; 1148 1149 table = rt->fib6_table; 1150 spin_lock_bh(&table->tb6_lock); 1151 err = fib6_add(&table->tb6_root, rt, info, extack); 1152 spin_unlock_bh(&table->tb6_lock); 1153 1154 return err; 1155 } 1156 1157 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1158 { 1159 struct nl_info info = { .nl_net = net, }; 1160 1161 return __ip6_ins_rt(rt, &info, NULL); 1162 } 1163 1164 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort, 1165 const struct in6_addr *daddr, 1166 const struct in6_addr *saddr) 1167 { 1168 struct net_device *dev; 1169 struct rt6_info *rt; 1170 1171 /* 1172 * Clone the route. 1173 */ 1174 1175 dev = ip6_rt_get_dev_rcu(ort); 1176 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1177 if (!rt) 1178 return NULL; 1179 1180 ip6_rt_copy_init(rt, ort); 1181 rt->rt6i_flags |= RTF_CACHE; 1182 rt->dst.flags |= DST_HOST; 1183 rt->rt6i_dst.addr = *daddr; 1184 rt->rt6i_dst.plen = 128; 1185 1186 if (!rt6_is_gw_or_nonexthop(ort)) { 1187 if (ort->fib6_dst.plen != 128 && 1188 ipv6_addr_equal(&ort->fib6_dst.addr, daddr)) 1189 rt->rt6i_flags |= RTF_ANYCAST; 1190 #ifdef CONFIG_IPV6_SUBTREES 1191 if (rt->rt6i_src.plen && saddr) { 1192 rt->rt6i_src.addr = *saddr; 1193 rt->rt6i_src.plen = 128; 1194 } 1195 #endif 1196 } 1197 1198 return rt; 1199 } 1200 1201 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt) 1202 { 1203 unsigned short flags = fib6_info_dst_flags(rt); 1204 struct net_device *dev; 1205 struct rt6_info *pcpu_rt; 1206 1207 rcu_read_lock(); 1208 dev = ip6_rt_get_dev_rcu(rt); 1209 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags); 1210 rcu_read_unlock(); 1211 if (!pcpu_rt) 1212 return NULL; 1213 ip6_rt_copy_init(pcpu_rt, rt); 1214 pcpu_rt->rt6i_flags |= RTF_PCPU; 1215 return pcpu_rt; 1216 } 1217 1218 /* It should be called with rcu_read_lock() acquired */ 1219 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt) 1220 { 1221 struct rt6_info *pcpu_rt, **p; 1222 1223 p = this_cpu_ptr(rt->rt6i_pcpu); 1224 pcpu_rt = *p; 1225 1226 if (pcpu_rt) 1227 ip6_hold_safe(NULL, &pcpu_rt, false); 1228 1229 return pcpu_rt; 1230 } 1231 1232 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1233 struct fib6_info *rt) 1234 { 1235 struct rt6_info *pcpu_rt, *prev, **p; 1236 1237 pcpu_rt = ip6_rt_pcpu_alloc(rt); 1238 if (!pcpu_rt) { 1239 dst_hold(&net->ipv6.ip6_null_entry->dst); 1240 return net->ipv6.ip6_null_entry; 1241 } 1242 1243 dst_hold(&pcpu_rt->dst); 1244 p = this_cpu_ptr(rt->rt6i_pcpu); 1245 prev = cmpxchg(p, NULL, pcpu_rt); 1246 BUG_ON(prev); 1247 1248 return pcpu_rt; 1249 } 1250 1251 /* exception hash table implementation 1252 */ 1253 static DEFINE_SPINLOCK(rt6_exception_lock); 1254 1255 /* Remove rt6_ex from hash table and free the memory 1256 * Caller must hold rt6_exception_lock 1257 */ 1258 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1259 struct rt6_exception *rt6_ex) 1260 { 1261 struct net *net; 1262 1263 if (!bucket || !rt6_ex) 1264 return; 1265 1266 net = dev_net(rt6_ex->rt6i->dst.dev); 1267 hlist_del_rcu(&rt6_ex->hlist); 1268 dst_release(&rt6_ex->rt6i->dst); 1269 kfree_rcu(rt6_ex, rcu); 1270 WARN_ON_ONCE(!bucket->depth); 1271 bucket->depth--; 1272 net->ipv6.rt6_stats->fib_rt_cache--; 1273 } 1274 1275 /* Remove oldest rt6_ex in bucket and free the memory 1276 * Caller must hold rt6_exception_lock 1277 */ 1278 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1279 { 1280 struct rt6_exception *rt6_ex, *oldest = NULL; 1281 1282 if (!bucket) 1283 return; 1284 1285 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1286 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1287 oldest = rt6_ex; 1288 } 1289 rt6_remove_exception(bucket, oldest); 1290 } 1291 1292 static u32 rt6_exception_hash(const struct in6_addr *dst, 1293 const struct in6_addr *src) 1294 { 1295 static u32 seed __read_mostly; 1296 u32 val; 1297 1298 net_get_random_once(&seed, sizeof(seed)); 1299 val = jhash(dst, sizeof(*dst), seed); 1300 1301 #ifdef CONFIG_IPV6_SUBTREES 1302 if (src) 1303 val = jhash(src, sizeof(*src), val); 1304 #endif 1305 return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1306 } 1307 1308 /* Helper function to find the cached rt in the hash table 1309 * and update bucket pointer to point to the bucket for this 1310 * (daddr, saddr) pair 1311 * Caller must hold rt6_exception_lock 1312 */ 1313 static struct rt6_exception * 1314 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1315 const struct in6_addr *daddr, 1316 const struct in6_addr *saddr) 1317 { 1318 struct rt6_exception *rt6_ex; 1319 u32 hval; 1320 1321 if (!(*bucket) || !daddr) 1322 return NULL; 1323 1324 hval = rt6_exception_hash(daddr, saddr); 1325 *bucket += hval; 1326 1327 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1328 struct rt6_info *rt6 = rt6_ex->rt6i; 1329 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1330 1331 #ifdef CONFIG_IPV6_SUBTREES 1332 if (matched && saddr) 1333 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1334 #endif 1335 if (matched) 1336 return rt6_ex; 1337 } 1338 return NULL; 1339 } 1340 1341 /* Helper function to find the cached rt in the hash table 1342 * and update bucket pointer to point to the bucket for this 1343 * (daddr, saddr) pair 1344 * Caller must hold rcu_read_lock() 1345 */ 1346 static struct rt6_exception * 1347 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1348 const struct in6_addr *daddr, 1349 const struct in6_addr *saddr) 1350 { 1351 struct rt6_exception *rt6_ex; 1352 u32 hval; 1353 1354 WARN_ON_ONCE(!rcu_read_lock_held()); 1355 1356 if (!(*bucket) || !daddr) 1357 return NULL; 1358 1359 hval = rt6_exception_hash(daddr, saddr); 1360 *bucket += hval; 1361 1362 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1363 struct rt6_info *rt6 = rt6_ex->rt6i; 1364 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1365 1366 #ifdef CONFIG_IPV6_SUBTREES 1367 if (matched && saddr) 1368 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1369 #endif 1370 if (matched) 1371 return rt6_ex; 1372 } 1373 return NULL; 1374 } 1375 1376 static unsigned int fib6_mtu(const struct fib6_info *rt) 1377 { 1378 unsigned int mtu; 1379 1380 if (rt->fib6_pmtu) { 1381 mtu = rt->fib6_pmtu; 1382 } else { 1383 struct net_device *dev = fib6_info_nh_dev(rt); 1384 struct inet6_dev *idev; 1385 1386 rcu_read_lock(); 1387 idev = __in6_dev_get(dev); 1388 mtu = idev->cnf.mtu6; 1389 rcu_read_unlock(); 1390 } 1391 1392 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1393 1394 return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu); 1395 } 1396 1397 static int rt6_insert_exception(struct rt6_info *nrt, 1398 struct fib6_info *ort) 1399 { 1400 struct net *net = dev_net(nrt->dst.dev); 1401 struct rt6_exception_bucket *bucket; 1402 struct in6_addr *src_key = NULL; 1403 struct rt6_exception *rt6_ex; 1404 int err = 0; 1405 1406 spin_lock_bh(&rt6_exception_lock); 1407 1408 if (ort->exception_bucket_flushed) { 1409 err = -EINVAL; 1410 goto out; 1411 } 1412 1413 bucket = rcu_dereference_protected(ort->rt6i_exception_bucket, 1414 lockdep_is_held(&rt6_exception_lock)); 1415 if (!bucket) { 1416 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1417 GFP_ATOMIC); 1418 if (!bucket) { 1419 err = -ENOMEM; 1420 goto out; 1421 } 1422 rcu_assign_pointer(ort->rt6i_exception_bucket, bucket); 1423 } 1424 1425 #ifdef CONFIG_IPV6_SUBTREES 1426 /* rt6i_src.plen != 0 indicates ort is in subtree 1427 * and exception table is indexed by a hash of 1428 * both rt6i_dst and rt6i_src. 1429 * Otherwise, the exception table is indexed by 1430 * a hash of only rt6i_dst. 1431 */ 1432 if (ort->fib6_src.plen) 1433 src_key = &nrt->rt6i_src.addr; 1434 #endif 1435 1436 /* Update rt6i_prefsrc as it could be changed 1437 * in rt6_remove_prefsrc() 1438 */ 1439 nrt->rt6i_prefsrc = ort->fib6_prefsrc; 1440 /* rt6_mtu_change() might lower mtu on ort. 1441 * Only insert this exception route if its mtu 1442 * is less than ort's mtu value. 1443 */ 1444 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) { 1445 err = -EINVAL; 1446 goto out; 1447 } 1448 1449 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1450 src_key); 1451 if (rt6_ex) 1452 rt6_remove_exception(bucket, rt6_ex); 1453 1454 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1455 if (!rt6_ex) { 1456 err = -ENOMEM; 1457 goto out; 1458 } 1459 rt6_ex->rt6i = nrt; 1460 rt6_ex->stamp = jiffies; 1461 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1462 bucket->depth++; 1463 net->ipv6.rt6_stats->fib_rt_cache++; 1464 1465 if (bucket->depth > FIB6_MAX_DEPTH) 1466 rt6_exception_remove_oldest(bucket); 1467 1468 out: 1469 spin_unlock_bh(&rt6_exception_lock); 1470 1471 /* Update fn->fn_sernum to invalidate all cached dst */ 1472 if (!err) { 1473 spin_lock_bh(&ort->fib6_table->tb6_lock); 1474 fib6_update_sernum(net, ort); 1475 spin_unlock_bh(&ort->fib6_table->tb6_lock); 1476 fib6_force_start_gc(net); 1477 } 1478 1479 return err; 1480 } 1481 1482 void rt6_flush_exceptions(struct fib6_info *rt) 1483 { 1484 struct rt6_exception_bucket *bucket; 1485 struct rt6_exception *rt6_ex; 1486 struct hlist_node *tmp; 1487 int i; 1488 1489 spin_lock_bh(&rt6_exception_lock); 1490 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1491 rt->exception_bucket_flushed = 1; 1492 1493 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1494 lockdep_is_held(&rt6_exception_lock)); 1495 if (!bucket) 1496 goto out; 1497 1498 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1499 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) 1500 rt6_remove_exception(bucket, rt6_ex); 1501 WARN_ON_ONCE(bucket->depth); 1502 bucket++; 1503 } 1504 1505 out: 1506 spin_unlock_bh(&rt6_exception_lock); 1507 } 1508 1509 /* Find cached rt in the hash table inside passed in rt 1510 * Caller has to hold rcu_read_lock() 1511 */ 1512 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt, 1513 struct in6_addr *daddr, 1514 struct in6_addr *saddr) 1515 { 1516 struct rt6_exception_bucket *bucket; 1517 struct in6_addr *src_key = NULL; 1518 struct rt6_exception *rt6_ex; 1519 struct rt6_info *res = NULL; 1520 1521 bucket = rcu_dereference(rt->rt6i_exception_bucket); 1522 1523 #ifdef CONFIG_IPV6_SUBTREES 1524 /* rt6i_src.plen != 0 indicates rt is in subtree 1525 * and exception table is indexed by a hash of 1526 * both rt6i_dst and rt6i_src. 1527 * Otherwise, the exception table is indexed by 1528 * a hash of only rt6i_dst. 1529 */ 1530 if (rt->fib6_src.plen) 1531 src_key = saddr; 1532 #endif 1533 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1534 1535 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1536 res = rt6_ex->rt6i; 1537 1538 return res; 1539 } 1540 1541 /* Remove the passed in cached rt from the hash table that contains it */ 1542 static int rt6_remove_exception_rt(struct rt6_info *rt) 1543 { 1544 struct rt6_exception_bucket *bucket; 1545 struct in6_addr *src_key = NULL; 1546 struct rt6_exception *rt6_ex; 1547 struct fib6_info *from; 1548 int err; 1549 1550 from = rcu_dereference(rt->from); 1551 if (!from || 1552 !(rt->rt6i_flags & RTF_CACHE)) 1553 return -EINVAL; 1554 1555 if (!rcu_access_pointer(from->rt6i_exception_bucket)) 1556 return -ENOENT; 1557 1558 spin_lock_bh(&rt6_exception_lock); 1559 bucket = rcu_dereference_protected(from->rt6i_exception_bucket, 1560 lockdep_is_held(&rt6_exception_lock)); 1561 #ifdef CONFIG_IPV6_SUBTREES 1562 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1563 * and exception table is indexed by a hash of 1564 * both rt6i_dst and rt6i_src. 1565 * Otherwise, the exception table is indexed by 1566 * a hash of only rt6i_dst. 1567 */ 1568 if (from->fib6_src.plen) 1569 src_key = &rt->rt6i_src.addr; 1570 #endif 1571 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1572 &rt->rt6i_dst.addr, 1573 src_key); 1574 if (rt6_ex) { 1575 rt6_remove_exception(bucket, rt6_ex); 1576 err = 0; 1577 } else { 1578 err = -ENOENT; 1579 } 1580 1581 spin_unlock_bh(&rt6_exception_lock); 1582 return err; 1583 } 1584 1585 /* Find rt6_ex which contains the passed in rt cache and 1586 * refresh its stamp 1587 */ 1588 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 1589 { 1590 struct rt6_exception_bucket *bucket; 1591 struct fib6_info *from = rt->from; 1592 struct in6_addr *src_key = NULL; 1593 struct rt6_exception *rt6_ex; 1594 1595 if (!from || 1596 !(rt->rt6i_flags & RTF_CACHE)) 1597 return; 1598 1599 rcu_read_lock(); 1600 bucket = rcu_dereference(from->rt6i_exception_bucket); 1601 1602 #ifdef CONFIG_IPV6_SUBTREES 1603 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1604 * and exception table is indexed by a hash of 1605 * both rt6i_dst and rt6i_src. 1606 * Otherwise, the exception table is indexed by 1607 * a hash of only rt6i_dst. 1608 */ 1609 if (from->fib6_src.plen) 1610 src_key = &rt->rt6i_src.addr; 1611 #endif 1612 rt6_ex = __rt6_find_exception_rcu(&bucket, 1613 &rt->rt6i_dst.addr, 1614 src_key); 1615 if (rt6_ex) 1616 rt6_ex->stamp = jiffies; 1617 1618 rcu_read_unlock(); 1619 } 1620 1621 static void rt6_exceptions_remove_prefsrc(struct fib6_info *rt) 1622 { 1623 struct rt6_exception_bucket *bucket; 1624 struct rt6_exception *rt6_ex; 1625 int i; 1626 1627 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1628 lockdep_is_held(&rt6_exception_lock)); 1629 1630 if (bucket) { 1631 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1632 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1633 rt6_ex->rt6i->rt6i_prefsrc.plen = 0; 1634 } 1635 bucket++; 1636 } 1637 } 1638 } 1639 1640 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 1641 struct rt6_info *rt, int mtu) 1642 { 1643 /* If the new MTU is lower than the route PMTU, this new MTU will be the 1644 * lowest MTU in the path: always allow updating the route PMTU to 1645 * reflect PMTU decreases. 1646 * 1647 * If the new MTU is higher, and the route PMTU is equal to the local 1648 * MTU, this means the old MTU is the lowest in the path, so allow 1649 * updating it: if other nodes now have lower MTUs, PMTU discovery will 1650 * handle this. 1651 */ 1652 1653 if (dst_mtu(&rt->dst) >= mtu) 1654 return true; 1655 1656 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 1657 return true; 1658 1659 return false; 1660 } 1661 1662 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 1663 struct fib6_info *rt, int mtu) 1664 { 1665 struct rt6_exception_bucket *bucket; 1666 struct rt6_exception *rt6_ex; 1667 int i; 1668 1669 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1670 lockdep_is_held(&rt6_exception_lock)); 1671 1672 if (!bucket) 1673 return; 1674 1675 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1676 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1677 struct rt6_info *entry = rt6_ex->rt6i; 1678 1679 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 1680 * route), the metrics of its rt->from have already 1681 * been updated. 1682 */ 1683 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 1684 rt6_mtu_change_route_allowed(idev, entry, mtu)) 1685 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 1686 } 1687 bucket++; 1688 } 1689 } 1690 1691 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 1692 1693 static void rt6_exceptions_clean_tohost(struct fib6_info *rt, 1694 struct in6_addr *gateway) 1695 { 1696 struct rt6_exception_bucket *bucket; 1697 struct rt6_exception *rt6_ex; 1698 struct hlist_node *tmp; 1699 int i; 1700 1701 if (!rcu_access_pointer(rt->rt6i_exception_bucket)) 1702 return; 1703 1704 spin_lock_bh(&rt6_exception_lock); 1705 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1706 lockdep_is_held(&rt6_exception_lock)); 1707 1708 if (bucket) { 1709 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1710 hlist_for_each_entry_safe(rt6_ex, tmp, 1711 &bucket->chain, hlist) { 1712 struct rt6_info *entry = rt6_ex->rt6i; 1713 1714 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 1715 RTF_CACHE_GATEWAY && 1716 ipv6_addr_equal(gateway, 1717 &entry->rt6i_gateway)) { 1718 rt6_remove_exception(bucket, rt6_ex); 1719 } 1720 } 1721 bucket++; 1722 } 1723 } 1724 1725 spin_unlock_bh(&rt6_exception_lock); 1726 } 1727 1728 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 1729 struct rt6_exception *rt6_ex, 1730 struct fib6_gc_args *gc_args, 1731 unsigned long now) 1732 { 1733 struct rt6_info *rt = rt6_ex->rt6i; 1734 1735 /* we are pruning and obsoleting aged-out and non gateway exceptions 1736 * even if others have still references to them, so that on next 1737 * dst_check() such references can be dropped. 1738 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 1739 * expired, independently from their aging, as per RFC 8201 section 4 1740 */ 1741 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 1742 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 1743 RT6_TRACE("aging clone %p\n", rt); 1744 rt6_remove_exception(bucket, rt6_ex); 1745 return; 1746 } 1747 } else if (time_after(jiffies, rt->dst.expires)) { 1748 RT6_TRACE("purging expired route %p\n", rt); 1749 rt6_remove_exception(bucket, rt6_ex); 1750 return; 1751 } 1752 1753 if (rt->rt6i_flags & RTF_GATEWAY) { 1754 struct neighbour *neigh; 1755 __u8 neigh_flags = 0; 1756 1757 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 1758 if (neigh) 1759 neigh_flags = neigh->flags; 1760 1761 if (!(neigh_flags & NTF_ROUTER)) { 1762 RT6_TRACE("purging route %p via non-router but gateway\n", 1763 rt); 1764 rt6_remove_exception(bucket, rt6_ex); 1765 return; 1766 } 1767 } 1768 1769 gc_args->more++; 1770 } 1771 1772 void rt6_age_exceptions(struct fib6_info *rt, 1773 struct fib6_gc_args *gc_args, 1774 unsigned long now) 1775 { 1776 struct rt6_exception_bucket *bucket; 1777 struct rt6_exception *rt6_ex; 1778 struct hlist_node *tmp; 1779 int i; 1780 1781 if (!rcu_access_pointer(rt->rt6i_exception_bucket)) 1782 return; 1783 1784 rcu_read_lock_bh(); 1785 spin_lock(&rt6_exception_lock); 1786 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket, 1787 lockdep_is_held(&rt6_exception_lock)); 1788 1789 if (bucket) { 1790 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1791 hlist_for_each_entry_safe(rt6_ex, tmp, 1792 &bucket->chain, hlist) { 1793 rt6_age_examine_exception(bucket, rt6_ex, 1794 gc_args, now); 1795 } 1796 bucket++; 1797 } 1798 } 1799 spin_unlock(&rt6_exception_lock); 1800 rcu_read_unlock_bh(); 1801 } 1802 1803 /* must be called with rcu lock held */ 1804 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table, 1805 int oif, struct flowi6 *fl6, int strict) 1806 { 1807 struct fib6_node *fn, *saved_fn; 1808 struct fib6_info *f6i; 1809 1810 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1811 saved_fn = fn; 1812 1813 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1814 oif = 0; 1815 1816 redo_rt6_select: 1817 f6i = rt6_select(net, fn, oif, strict); 1818 if (f6i == net->ipv6.fib6_null_entry) { 1819 fn = fib6_backtrack(fn, &fl6->saddr); 1820 if (fn) 1821 goto redo_rt6_select; 1822 else if (strict & RT6_LOOKUP_F_REACHABLE) { 1823 /* also consider unreachable route */ 1824 strict &= ~RT6_LOOKUP_F_REACHABLE; 1825 fn = saved_fn; 1826 goto redo_rt6_select; 1827 } 1828 } 1829 1830 trace_fib6_table_lookup(net, f6i, table, fl6); 1831 1832 return f6i; 1833 } 1834 1835 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 1836 int oif, struct flowi6 *fl6, 1837 const struct sk_buff *skb, int flags) 1838 { 1839 struct fib6_info *f6i; 1840 struct rt6_info *rt; 1841 int strict = 0; 1842 1843 strict |= flags & RT6_LOOKUP_F_IFACE; 1844 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 1845 if (net->ipv6.devconf_all->forwarding == 0) 1846 strict |= RT6_LOOKUP_F_REACHABLE; 1847 1848 rcu_read_lock(); 1849 1850 f6i = fib6_table_lookup(net, table, oif, fl6, strict); 1851 if (f6i->fib6_nsiblings) 1852 f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict); 1853 1854 if (f6i == net->ipv6.fib6_null_entry) { 1855 rt = net->ipv6.ip6_null_entry; 1856 rcu_read_unlock(); 1857 dst_hold(&rt->dst); 1858 return rt; 1859 } 1860 1861 /*Search through exception table */ 1862 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr); 1863 if (rt) { 1864 if (ip6_hold_safe(net, &rt, true)) 1865 dst_use_noref(&rt->dst, jiffies); 1866 1867 rcu_read_unlock(); 1868 return rt; 1869 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 1870 !(f6i->fib6_flags & RTF_GATEWAY))) { 1871 /* Create a RTF_CACHE clone which will not be 1872 * owned by the fib6 tree. It is for the special case where 1873 * the daddr in the skb during the neighbor look-up is different 1874 * from the fl6->daddr used to look-up route here. 1875 */ 1876 struct rt6_info *uncached_rt; 1877 1878 uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL); 1879 1880 rcu_read_unlock(); 1881 1882 if (uncached_rt) { 1883 /* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc() 1884 * No need for another dst_hold() 1885 */ 1886 rt6_uncached_list_add(uncached_rt); 1887 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 1888 } else { 1889 uncached_rt = net->ipv6.ip6_null_entry; 1890 dst_hold(&uncached_rt->dst); 1891 } 1892 1893 return uncached_rt; 1894 } else { 1895 /* Get a percpu copy */ 1896 1897 struct rt6_info *pcpu_rt; 1898 1899 local_bh_disable(); 1900 pcpu_rt = rt6_get_pcpu_route(f6i); 1901 1902 if (!pcpu_rt) 1903 pcpu_rt = rt6_make_pcpu_route(net, f6i); 1904 1905 local_bh_enable(); 1906 rcu_read_unlock(); 1907 1908 return pcpu_rt; 1909 } 1910 } 1911 EXPORT_SYMBOL_GPL(ip6_pol_route); 1912 1913 static struct rt6_info *ip6_pol_route_input(struct net *net, 1914 struct fib6_table *table, 1915 struct flowi6 *fl6, 1916 const struct sk_buff *skb, 1917 int flags) 1918 { 1919 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 1920 } 1921 1922 struct dst_entry *ip6_route_input_lookup(struct net *net, 1923 struct net_device *dev, 1924 struct flowi6 *fl6, 1925 const struct sk_buff *skb, 1926 int flags) 1927 { 1928 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 1929 flags |= RT6_LOOKUP_F_IFACE; 1930 1931 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 1932 } 1933 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 1934 1935 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 1936 struct flow_keys *keys, 1937 struct flow_keys *flkeys) 1938 { 1939 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 1940 const struct ipv6hdr *key_iph = outer_iph; 1941 struct flow_keys *_flkeys = flkeys; 1942 const struct ipv6hdr *inner_iph; 1943 const struct icmp6hdr *icmph; 1944 struct ipv6hdr _inner_iph; 1945 struct icmp6hdr _icmph; 1946 1947 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 1948 goto out; 1949 1950 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 1951 sizeof(_icmph), &_icmph); 1952 if (!icmph) 1953 goto out; 1954 1955 if (icmph->icmp6_type != ICMPV6_DEST_UNREACH && 1956 icmph->icmp6_type != ICMPV6_PKT_TOOBIG && 1957 icmph->icmp6_type != ICMPV6_TIME_EXCEED && 1958 icmph->icmp6_type != ICMPV6_PARAMPROB) 1959 goto out; 1960 1961 inner_iph = skb_header_pointer(skb, 1962 skb_transport_offset(skb) + sizeof(*icmph), 1963 sizeof(_inner_iph), &_inner_iph); 1964 if (!inner_iph) 1965 goto out; 1966 1967 key_iph = inner_iph; 1968 _flkeys = NULL; 1969 out: 1970 if (_flkeys) { 1971 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 1972 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 1973 keys->tags.flow_label = _flkeys->tags.flow_label; 1974 keys->basic.ip_proto = _flkeys->basic.ip_proto; 1975 } else { 1976 keys->addrs.v6addrs.src = key_iph->saddr; 1977 keys->addrs.v6addrs.dst = key_iph->daddr; 1978 keys->tags.flow_label = ip6_flowinfo(key_iph); 1979 keys->basic.ip_proto = key_iph->nexthdr; 1980 } 1981 } 1982 1983 /* if skb is set it will be used and fl6 can be NULL */ 1984 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 1985 const struct sk_buff *skb, struct flow_keys *flkeys) 1986 { 1987 struct flow_keys hash_keys; 1988 u32 mhash; 1989 1990 switch (ip6_multipath_hash_policy(net)) { 1991 case 0: 1992 memset(&hash_keys, 0, sizeof(hash_keys)); 1993 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 1994 if (skb) { 1995 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 1996 } else { 1997 hash_keys.addrs.v6addrs.src = fl6->saddr; 1998 hash_keys.addrs.v6addrs.dst = fl6->daddr; 1999 hash_keys.tags.flow_label = (__force u32)fl6->flowlabel; 2000 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2001 } 2002 break; 2003 case 1: 2004 if (skb) { 2005 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 2006 struct flow_keys keys; 2007 2008 /* short-circuit if we already have L4 hash present */ 2009 if (skb->l4_hash) 2010 return skb_get_hash_raw(skb) >> 1; 2011 2012 memset(&hash_keys, 0, sizeof(hash_keys)); 2013 2014 if (!flkeys) { 2015 skb_flow_dissect_flow_keys(skb, &keys, flag); 2016 flkeys = &keys; 2017 } 2018 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2019 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2020 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2021 hash_keys.ports.src = flkeys->ports.src; 2022 hash_keys.ports.dst = flkeys->ports.dst; 2023 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2024 } else { 2025 memset(&hash_keys, 0, sizeof(hash_keys)); 2026 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2027 hash_keys.addrs.v6addrs.src = fl6->saddr; 2028 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2029 hash_keys.ports.src = fl6->fl6_sport; 2030 hash_keys.ports.dst = fl6->fl6_dport; 2031 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2032 } 2033 break; 2034 } 2035 mhash = flow_hash_from_keys(&hash_keys); 2036 2037 return mhash >> 1; 2038 } 2039 2040 void ip6_route_input(struct sk_buff *skb) 2041 { 2042 const struct ipv6hdr *iph = ipv6_hdr(skb); 2043 struct net *net = dev_net(skb->dev); 2044 int flags = RT6_LOOKUP_F_HAS_SADDR; 2045 struct ip_tunnel_info *tun_info; 2046 struct flowi6 fl6 = { 2047 .flowi6_iif = skb->dev->ifindex, 2048 .daddr = iph->daddr, 2049 .saddr = iph->saddr, 2050 .flowlabel = ip6_flowinfo(iph), 2051 .flowi6_mark = skb->mark, 2052 .flowi6_proto = iph->nexthdr, 2053 }; 2054 struct flow_keys *flkeys = NULL, _flkeys; 2055 2056 tun_info = skb_tunnel_info(skb); 2057 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2058 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2059 2060 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2061 flkeys = &_flkeys; 2062 2063 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2064 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2065 skb_dst_drop(skb); 2066 skb_dst_set(skb, 2067 ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags)); 2068 } 2069 2070 static struct rt6_info *ip6_pol_route_output(struct net *net, 2071 struct fib6_table *table, 2072 struct flowi6 *fl6, 2073 const struct sk_buff *skb, 2074 int flags) 2075 { 2076 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2077 } 2078 2079 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk, 2080 struct flowi6 *fl6, int flags) 2081 { 2082 bool any_src; 2083 2084 if (rt6_need_strict(&fl6->daddr)) { 2085 struct dst_entry *dst; 2086 2087 dst = l3mdev_link_scope_lookup(net, fl6); 2088 if (dst) 2089 return dst; 2090 } 2091 2092 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2093 2094 any_src = ipv6_addr_any(&fl6->saddr); 2095 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2096 (fl6->flowi6_oif && any_src)) 2097 flags |= RT6_LOOKUP_F_IFACE; 2098 2099 if (!any_src) 2100 flags |= RT6_LOOKUP_F_HAS_SADDR; 2101 else if (sk) 2102 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 2103 2104 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2105 } 2106 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2107 2108 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2109 { 2110 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 2111 struct net_device *loopback_dev = net->loopback_dev; 2112 struct dst_entry *new = NULL; 2113 2114 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, 2115 DST_OBSOLETE_DEAD, 0); 2116 if (rt) { 2117 rt6_info_init(rt); 2118 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2119 2120 new = &rt->dst; 2121 new->__use = 1; 2122 new->input = dst_discard; 2123 new->output = dst_discard_out; 2124 2125 dst_copy_metrics(new, &ort->dst); 2126 2127 rt->rt6i_idev = in6_dev_get(loopback_dev); 2128 rt->rt6i_gateway = ort->rt6i_gateway; 2129 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2130 2131 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2132 #ifdef CONFIG_IPV6_SUBTREES 2133 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2134 #endif 2135 } 2136 2137 dst_release(dst_orig); 2138 return new ? new : ERR_PTR(-ENOMEM); 2139 } 2140 2141 /* 2142 * Destination cache support functions 2143 */ 2144 2145 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2146 { 2147 u32 rt_cookie = 0; 2148 2149 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2150 return false; 2151 2152 if (fib6_check_expired(f6i)) 2153 return false; 2154 2155 return true; 2156 } 2157 2158 static struct dst_entry *rt6_check(struct rt6_info *rt, 2159 struct fib6_info *from, 2160 u32 cookie) 2161 { 2162 u32 rt_cookie = 0; 2163 2164 if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) || 2165 rt_cookie != cookie) 2166 return NULL; 2167 2168 if (rt6_check_expired(rt)) 2169 return NULL; 2170 2171 return &rt->dst; 2172 } 2173 2174 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2175 struct fib6_info *from, 2176 u32 cookie) 2177 { 2178 if (!__rt6_check_expired(rt) && 2179 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && 2180 fib6_check(from, cookie)) 2181 return &rt->dst; 2182 else 2183 return NULL; 2184 } 2185 2186 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie) 2187 { 2188 struct dst_entry *dst_ret; 2189 struct fib6_info *from; 2190 struct rt6_info *rt; 2191 2192 rt = container_of(dst, struct rt6_info, dst); 2193 2194 rcu_read_lock(); 2195 2196 /* All IPV6 dsts are created with ->obsolete set to the value 2197 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2198 * into this function always. 2199 */ 2200 2201 from = rcu_dereference(rt->from); 2202 2203 if (from && (rt->rt6i_flags & RTF_PCPU || 2204 unlikely(!list_empty(&rt->rt6i_uncached)))) 2205 dst_ret = rt6_dst_from_check(rt, from, cookie); 2206 else 2207 dst_ret = rt6_check(rt, from, cookie); 2208 2209 rcu_read_unlock(); 2210 2211 return dst_ret; 2212 } 2213 2214 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 2215 { 2216 struct rt6_info *rt = (struct rt6_info *) dst; 2217 2218 if (rt) { 2219 if (rt->rt6i_flags & RTF_CACHE) { 2220 rcu_read_lock(); 2221 if (rt6_check_expired(rt)) { 2222 rt6_remove_exception_rt(rt); 2223 dst = NULL; 2224 } 2225 rcu_read_unlock(); 2226 } else { 2227 dst_release(dst); 2228 dst = NULL; 2229 } 2230 } 2231 return dst; 2232 } 2233 2234 static void ip6_link_failure(struct sk_buff *skb) 2235 { 2236 struct rt6_info *rt; 2237 2238 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2239 2240 rt = (struct rt6_info *) skb_dst(skb); 2241 if (rt) { 2242 rcu_read_lock(); 2243 if (rt->rt6i_flags & RTF_CACHE) { 2244 if (dst_hold_safe(&rt->dst)) 2245 rt6_remove_exception_rt(rt); 2246 } else { 2247 struct fib6_info *from; 2248 struct fib6_node *fn; 2249 2250 from = rcu_dereference(rt->from); 2251 if (from) { 2252 fn = rcu_dereference(from->fib6_node); 2253 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2254 fn->fn_sernum = -1; 2255 } 2256 } 2257 rcu_read_unlock(); 2258 } 2259 } 2260 2261 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2262 { 2263 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2264 struct fib6_info *from; 2265 2266 rcu_read_lock(); 2267 from = rcu_dereference(rt0->from); 2268 if (from) 2269 rt0->dst.expires = from->expires; 2270 rcu_read_unlock(); 2271 } 2272 2273 dst_set_expires(&rt0->dst, timeout); 2274 rt0->rt6i_flags |= RTF_EXPIRES; 2275 } 2276 2277 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2278 { 2279 struct net *net = dev_net(rt->dst.dev); 2280 2281 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2282 rt->rt6i_flags |= RTF_MODIFIED; 2283 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2284 } 2285 2286 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2287 { 2288 bool from_set; 2289 2290 rcu_read_lock(); 2291 from_set = !!rcu_dereference(rt->from); 2292 rcu_read_unlock(); 2293 2294 return !(rt->rt6i_flags & RTF_CACHE) && 2295 (rt->rt6i_flags & RTF_PCPU || from_set); 2296 } 2297 2298 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2299 const struct ipv6hdr *iph, u32 mtu) 2300 { 2301 const struct in6_addr *daddr, *saddr; 2302 struct rt6_info *rt6 = (struct rt6_info *)dst; 2303 2304 if (rt6->rt6i_flags & RTF_LOCAL) 2305 return; 2306 2307 if (dst_metric_locked(dst, RTAX_MTU)) 2308 return; 2309 2310 if (iph) { 2311 daddr = &iph->daddr; 2312 saddr = &iph->saddr; 2313 } else if (sk) { 2314 daddr = &sk->sk_v6_daddr; 2315 saddr = &inet6_sk(sk)->saddr; 2316 } else { 2317 daddr = NULL; 2318 saddr = NULL; 2319 } 2320 dst_confirm_neigh(dst, daddr); 2321 mtu = max_t(u32, mtu, IPV6_MIN_MTU); 2322 if (mtu >= dst_mtu(dst)) 2323 return; 2324 2325 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2326 rt6_do_update_pmtu(rt6, mtu); 2327 /* update rt6_ex->stamp for cache */ 2328 if (rt6->rt6i_flags & RTF_CACHE) 2329 rt6_update_exception_stamp_rt(rt6); 2330 } else if (daddr) { 2331 struct fib6_info *from; 2332 struct rt6_info *nrt6; 2333 2334 rcu_read_lock(); 2335 from = rcu_dereference(rt6->from); 2336 nrt6 = ip6_rt_cache_alloc(from, daddr, saddr); 2337 if (nrt6) { 2338 rt6_do_update_pmtu(nrt6, mtu); 2339 if (rt6_insert_exception(nrt6, from)) 2340 dst_release_immediate(&nrt6->dst); 2341 } 2342 rcu_read_unlock(); 2343 } 2344 } 2345 2346 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2347 struct sk_buff *skb, u32 mtu) 2348 { 2349 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu); 2350 } 2351 2352 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2353 int oif, u32 mark, kuid_t uid) 2354 { 2355 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2356 struct dst_entry *dst; 2357 struct flowi6 fl6; 2358 2359 memset(&fl6, 0, sizeof(fl6)); 2360 fl6.flowi6_oif = oif; 2361 fl6.flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark); 2362 fl6.daddr = iph->daddr; 2363 fl6.saddr = iph->saddr; 2364 fl6.flowlabel = ip6_flowinfo(iph); 2365 fl6.flowi6_uid = uid; 2366 2367 dst = ip6_route_output(net, NULL, &fl6); 2368 if (!dst->error) 2369 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu)); 2370 dst_release(dst); 2371 } 2372 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 2373 2374 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 2375 { 2376 struct dst_entry *dst; 2377 2378 ip6_update_pmtu(skb, sock_net(sk), mtu, 2379 sk->sk_bound_dev_if, sk->sk_mark, sk->sk_uid); 2380 2381 dst = __sk_dst_get(sk); 2382 if (!dst || !dst->obsolete || 2383 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 2384 return; 2385 2386 bh_lock_sock(sk); 2387 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 2388 ip6_datagram_dst_update(sk, false); 2389 bh_unlock_sock(sk); 2390 } 2391 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 2392 2393 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 2394 const struct flowi6 *fl6) 2395 { 2396 #ifdef CONFIG_IPV6_SUBTREES 2397 struct ipv6_pinfo *np = inet6_sk(sk); 2398 #endif 2399 2400 ip6_dst_store(sk, dst, 2401 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 2402 &sk->sk_v6_daddr : NULL, 2403 #ifdef CONFIG_IPV6_SUBTREES 2404 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 2405 &np->saddr : 2406 #endif 2407 NULL); 2408 } 2409 2410 /* Handle redirects */ 2411 struct ip6rd_flowi { 2412 struct flowi6 fl6; 2413 struct in6_addr gateway; 2414 }; 2415 2416 static struct rt6_info *__ip6_route_redirect(struct net *net, 2417 struct fib6_table *table, 2418 struct flowi6 *fl6, 2419 const struct sk_buff *skb, 2420 int flags) 2421 { 2422 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 2423 struct rt6_info *ret = NULL, *rt_cache; 2424 struct fib6_info *rt; 2425 struct fib6_node *fn; 2426 2427 /* Get the "current" route for this destination and 2428 * check if the redirect has come from appropriate router. 2429 * 2430 * RFC 4861 specifies that redirects should only be 2431 * accepted if they come from the nexthop to the target. 2432 * Due to the way the routes are chosen, this notion 2433 * is a bit fuzzy and one might need to check all possible 2434 * routes. 2435 */ 2436 2437 rcu_read_lock(); 2438 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2439 restart: 2440 for_each_fib6_node_rt_rcu(fn) { 2441 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 2442 continue; 2443 if (fib6_check_expired(rt)) 2444 continue; 2445 if (rt->fib6_flags & RTF_REJECT) 2446 break; 2447 if (!(rt->fib6_flags & RTF_GATEWAY)) 2448 continue; 2449 if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex) 2450 continue; 2451 /* rt_cache's gateway might be different from its 'parent' 2452 * in the case of an ip redirect. 2453 * So we keep searching in the exception table if the gateway 2454 * is different. 2455 */ 2456 if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) { 2457 rt_cache = rt6_find_cached_rt(rt, 2458 &fl6->daddr, 2459 &fl6->saddr); 2460 if (rt_cache && 2461 ipv6_addr_equal(&rdfl->gateway, 2462 &rt_cache->rt6i_gateway)) { 2463 ret = rt_cache; 2464 break; 2465 } 2466 continue; 2467 } 2468 break; 2469 } 2470 2471 if (!rt) 2472 rt = net->ipv6.fib6_null_entry; 2473 else if (rt->fib6_flags & RTF_REJECT) { 2474 ret = net->ipv6.ip6_null_entry; 2475 goto out; 2476 } 2477 2478 if (rt == net->ipv6.fib6_null_entry) { 2479 fn = fib6_backtrack(fn, &fl6->saddr); 2480 if (fn) 2481 goto restart; 2482 } 2483 2484 out: 2485 if (ret) 2486 dst_hold(&ret->dst); 2487 else 2488 ret = ip6_create_rt_rcu(rt); 2489 2490 rcu_read_unlock(); 2491 2492 trace_fib6_table_lookup(net, rt, table, fl6); 2493 return ret; 2494 }; 2495 2496 static struct dst_entry *ip6_route_redirect(struct net *net, 2497 const struct flowi6 *fl6, 2498 const struct sk_buff *skb, 2499 const struct in6_addr *gateway) 2500 { 2501 int flags = RT6_LOOKUP_F_HAS_SADDR; 2502 struct ip6rd_flowi rdfl; 2503 2504 rdfl.fl6 = *fl6; 2505 rdfl.gateway = *gateway; 2506 2507 return fib6_rule_lookup(net, &rdfl.fl6, skb, 2508 flags, __ip6_route_redirect); 2509 } 2510 2511 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 2512 kuid_t uid) 2513 { 2514 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2515 struct dst_entry *dst; 2516 struct flowi6 fl6; 2517 2518 memset(&fl6, 0, sizeof(fl6)); 2519 fl6.flowi6_iif = LOOPBACK_IFINDEX; 2520 fl6.flowi6_oif = oif; 2521 fl6.flowi6_mark = mark; 2522 fl6.daddr = iph->daddr; 2523 fl6.saddr = iph->saddr; 2524 fl6.flowlabel = ip6_flowinfo(iph); 2525 fl6.flowi6_uid = uid; 2526 2527 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 2528 rt6_do_redirect(dst, NULL, skb); 2529 dst_release(dst); 2530 } 2531 EXPORT_SYMBOL_GPL(ip6_redirect); 2532 2533 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif, 2534 u32 mark) 2535 { 2536 const struct ipv6hdr *iph = ipv6_hdr(skb); 2537 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 2538 struct dst_entry *dst; 2539 struct flowi6 fl6; 2540 2541 memset(&fl6, 0, sizeof(fl6)); 2542 fl6.flowi6_iif = LOOPBACK_IFINDEX; 2543 fl6.flowi6_oif = oif; 2544 fl6.flowi6_mark = mark; 2545 fl6.daddr = msg->dest; 2546 fl6.saddr = iph->daddr; 2547 fl6.flowi6_uid = sock_net_uid(net, NULL); 2548 2549 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 2550 rt6_do_redirect(dst, NULL, skb); 2551 dst_release(dst); 2552 } 2553 2554 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 2555 { 2556 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark, 2557 sk->sk_uid); 2558 } 2559 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 2560 2561 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 2562 { 2563 struct net_device *dev = dst->dev; 2564 unsigned int mtu = dst_mtu(dst); 2565 struct net *net = dev_net(dev); 2566 2567 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 2568 2569 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 2570 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 2571 2572 /* 2573 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 2574 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 2575 * IPV6_MAXPLEN is also valid and means: "any MSS, 2576 * rely only on pmtu discovery" 2577 */ 2578 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 2579 mtu = IPV6_MAXPLEN; 2580 return mtu; 2581 } 2582 2583 static unsigned int ip6_mtu(const struct dst_entry *dst) 2584 { 2585 struct inet6_dev *idev; 2586 unsigned int mtu; 2587 2588 mtu = dst_metric_raw(dst, RTAX_MTU); 2589 if (mtu) 2590 goto out; 2591 2592 mtu = IPV6_MIN_MTU; 2593 2594 rcu_read_lock(); 2595 idev = __in6_dev_get(dst->dev); 2596 if (idev) 2597 mtu = idev->cnf.mtu6; 2598 rcu_read_unlock(); 2599 2600 out: 2601 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 2602 2603 return mtu - lwtunnel_headroom(dst->lwtstate, mtu); 2604 } 2605 2606 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 2607 struct flowi6 *fl6) 2608 { 2609 struct dst_entry *dst; 2610 struct rt6_info *rt; 2611 struct inet6_dev *idev = in6_dev_get(dev); 2612 struct net *net = dev_net(dev); 2613 2614 if (unlikely(!idev)) 2615 return ERR_PTR(-ENODEV); 2616 2617 rt = ip6_dst_alloc(net, dev, 0); 2618 if (unlikely(!rt)) { 2619 in6_dev_put(idev); 2620 dst = ERR_PTR(-ENOMEM); 2621 goto out; 2622 } 2623 2624 rt->dst.flags |= DST_HOST; 2625 rt->dst.input = ip6_input; 2626 rt->dst.output = ip6_output; 2627 rt->rt6i_gateway = fl6->daddr; 2628 rt->rt6i_dst.addr = fl6->daddr; 2629 rt->rt6i_dst.plen = 128; 2630 rt->rt6i_idev = idev; 2631 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 2632 2633 /* Add this dst into uncached_list so that rt6_disable_ip() can 2634 * do proper release of the net_device 2635 */ 2636 rt6_uncached_list_add(rt); 2637 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 2638 2639 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 2640 2641 out: 2642 return dst; 2643 } 2644 2645 static int ip6_dst_gc(struct dst_ops *ops) 2646 { 2647 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 2648 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 2649 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size; 2650 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 2651 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 2652 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 2653 int entries; 2654 2655 entries = dst_entries_get_fast(ops); 2656 if (time_after(rt_last_gc + rt_min_interval, jiffies) && 2657 entries <= rt_max_size) 2658 goto out; 2659 2660 net->ipv6.ip6_rt_gc_expire++; 2661 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true); 2662 entries = dst_entries_get_slow(ops); 2663 if (entries < ops->gc_thresh) 2664 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1; 2665 out: 2666 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity; 2667 return entries > rt_max_size; 2668 } 2669 2670 static int ip6_convert_metrics(struct net *net, struct fib6_info *rt, 2671 struct fib6_config *cfg) 2672 { 2673 struct dst_metrics *p; 2674 2675 if (!cfg->fc_mx) 2676 return 0; 2677 2678 p = kzalloc(sizeof(*rt->fib6_metrics), GFP_KERNEL); 2679 if (unlikely(!p)) 2680 return -ENOMEM; 2681 2682 refcount_set(&p->refcnt, 1); 2683 rt->fib6_metrics = p; 2684 2685 return ip_metrics_convert(net, cfg->fc_mx, cfg->fc_mx_len, p->metrics); 2686 } 2687 2688 static struct rt6_info *ip6_nh_lookup_table(struct net *net, 2689 struct fib6_config *cfg, 2690 const struct in6_addr *gw_addr, 2691 u32 tbid, int flags) 2692 { 2693 struct flowi6 fl6 = { 2694 .flowi6_oif = cfg->fc_ifindex, 2695 .daddr = *gw_addr, 2696 .saddr = cfg->fc_prefsrc, 2697 }; 2698 struct fib6_table *table; 2699 struct rt6_info *rt; 2700 2701 table = fib6_get_table(net, tbid); 2702 if (!table) 2703 return NULL; 2704 2705 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 2706 flags |= RT6_LOOKUP_F_HAS_SADDR; 2707 2708 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 2709 rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags); 2710 2711 /* if table lookup failed, fall back to full lookup */ 2712 if (rt == net->ipv6.ip6_null_entry) { 2713 ip6_rt_put(rt); 2714 rt = NULL; 2715 } 2716 2717 return rt; 2718 } 2719 2720 static int ip6_route_check_nh_onlink(struct net *net, 2721 struct fib6_config *cfg, 2722 const struct net_device *dev, 2723 struct netlink_ext_ack *extack) 2724 { 2725 u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN; 2726 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2727 u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT; 2728 struct rt6_info *grt; 2729 int err; 2730 2731 err = 0; 2732 grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0); 2733 if (grt) { 2734 if (!grt->dst.error && 2735 (grt->rt6i_flags & flags || dev != grt->dst.dev)) { 2736 NL_SET_ERR_MSG(extack, 2737 "Nexthop has invalid gateway or device mismatch"); 2738 err = -EINVAL; 2739 } 2740 2741 ip6_rt_put(grt); 2742 } 2743 2744 return err; 2745 } 2746 2747 static int ip6_route_check_nh(struct net *net, 2748 struct fib6_config *cfg, 2749 struct net_device **_dev, 2750 struct inet6_dev **idev) 2751 { 2752 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2753 struct net_device *dev = _dev ? *_dev : NULL; 2754 struct rt6_info *grt = NULL; 2755 int err = -EHOSTUNREACH; 2756 2757 if (cfg->fc_table) { 2758 int flags = RT6_LOOKUP_F_IFACE; 2759 2760 grt = ip6_nh_lookup_table(net, cfg, gw_addr, 2761 cfg->fc_table, flags); 2762 if (grt) { 2763 if (grt->rt6i_flags & RTF_GATEWAY || 2764 (dev && dev != grt->dst.dev)) { 2765 ip6_rt_put(grt); 2766 grt = NULL; 2767 } 2768 } 2769 } 2770 2771 if (!grt) 2772 grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1); 2773 2774 if (!grt) 2775 goto out; 2776 2777 if (dev) { 2778 if (dev != grt->dst.dev) { 2779 ip6_rt_put(grt); 2780 goto out; 2781 } 2782 } else { 2783 *_dev = dev = grt->dst.dev; 2784 *idev = grt->rt6i_idev; 2785 dev_hold(dev); 2786 in6_dev_hold(grt->rt6i_idev); 2787 } 2788 2789 if (!(grt->rt6i_flags & RTF_GATEWAY)) 2790 err = 0; 2791 2792 ip6_rt_put(grt); 2793 2794 out: 2795 return err; 2796 } 2797 2798 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 2799 struct net_device **_dev, struct inet6_dev **idev, 2800 struct netlink_ext_ack *extack) 2801 { 2802 const struct in6_addr *gw_addr = &cfg->fc_gateway; 2803 int gwa_type = ipv6_addr_type(gw_addr); 2804 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 2805 const struct net_device *dev = *_dev; 2806 bool need_addr_check = !dev; 2807 int err = -EINVAL; 2808 2809 /* if gw_addr is local we will fail to detect this in case 2810 * address is still TENTATIVE (DAD in progress). rt6_lookup() 2811 * will return already-added prefix route via interface that 2812 * prefix route was assigned to, which might be non-loopback. 2813 */ 2814 if (dev && 2815 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 2816 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 2817 goto out; 2818 } 2819 2820 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 2821 /* IPv6 strictly inhibits using not link-local 2822 * addresses as nexthop address. 2823 * Otherwise, router will not able to send redirects. 2824 * It is very good, but in some (rare!) circumstances 2825 * (SIT, PtP, NBMA NOARP links) it is handy to allow 2826 * some exceptions. --ANK 2827 * We allow IPv4-mapped nexthops to support RFC4798-type 2828 * addressing 2829 */ 2830 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 2831 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 2832 goto out; 2833 } 2834 2835 if (cfg->fc_flags & RTNH_F_ONLINK) 2836 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 2837 else 2838 err = ip6_route_check_nh(net, cfg, _dev, idev); 2839 2840 if (err) 2841 goto out; 2842 } 2843 2844 /* reload in case device was changed */ 2845 dev = *_dev; 2846 2847 err = -EINVAL; 2848 if (!dev) { 2849 NL_SET_ERR_MSG(extack, "Egress device not specified"); 2850 goto out; 2851 } else if (dev->flags & IFF_LOOPBACK) { 2852 NL_SET_ERR_MSG(extack, 2853 "Egress device can not be loopback device for this route"); 2854 goto out; 2855 } 2856 2857 /* if we did not check gw_addr above, do so now that the 2858 * egress device has been resolved. 2859 */ 2860 if (need_addr_check && 2861 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 2862 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 2863 goto out; 2864 } 2865 2866 err = 0; 2867 out: 2868 return err; 2869 } 2870 2871 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 2872 gfp_t gfp_flags, 2873 struct netlink_ext_ack *extack) 2874 { 2875 struct net *net = cfg->fc_nlinfo.nl_net; 2876 struct fib6_info *rt = NULL; 2877 struct net_device *dev = NULL; 2878 struct inet6_dev *idev = NULL; 2879 struct fib6_table *table; 2880 int addr_type; 2881 int err = -EINVAL; 2882 2883 /* RTF_PCPU is an internal flag; can not be set by userspace */ 2884 if (cfg->fc_flags & RTF_PCPU) { 2885 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 2886 goto out; 2887 } 2888 2889 /* RTF_CACHE is an internal flag; can not be set by userspace */ 2890 if (cfg->fc_flags & RTF_CACHE) { 2891 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 2892 goto out; 2893 } 2894 2895 if (cfg->fc_type > RTN_MAX) { 2896 NL_SET_ERR_MSG(extack, "Invalid route type"); 2897 goto out; 2898 } 2899 2900 if (cfg->fc_dst_len > 128) { 2901 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 2902 goto out; 2903 } 2904 if (cfg->fc_src_len > 128) { 2905 NL_SET_ERR_MSG(extack, "Invalid source address length"); 2906 goto out; 2907 } 2908 #ifndef CONFIG_IPV6_SUBTREES 2909 if (cfg->fc_src_len) { 2910 NL_SET_ERR_MSG(extack, 2911 "Specifying source address requires IPV6_SUBTREES to be enabled"); 2912 goto out; 2913 } 2914 #endif 2915 if (cfg->fc_ifindex) { 2916 err = -ENODEV; 2917 dev = dev_get_by_index(net, cfg->fc_ifindex); 2918 if (!dev) 2919 goto out; 2920 idev = in6_dev_get(dev); 2921 if (!idev) 2922 goto out; 2923 } 2924 2925 if (cfg->fc_metric == 0) 2926 cfg->fc_metric = IP6_RT_PRIO_USER; 2927 2928 if (cfg->fc_flags & RTNH_F_ONLINK) { 2929 if (!dev) { 2930 NL_SET_ERR_MSG(extack, 2931 "Nexthop device required for onlink"); 2932 err = -ENODEV; 2933 goto out; 2934 } 2935 2936 if (!(dev->flags & IFF_UP)) { 2937 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 2938 err = -ENETDOWN; 2939 goto out; 2940 } 2941 } 2942 2943 err = -ENOBUFS; 2944 if (cfg->fc_nlinfo.nlh && 2945 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 2946 table = fib6_get_table(net, cfg->fc_table); 2947 if (!table) { 2948 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 2949 table = fib6_new_table(net, cfg->fc_table); 2950 } 2951 } else { 2952 table = fib6_new_table(net, cfg->fc_table); 2953 } 2954 2955 if (!table) 2956 goto out; 2957 2958 err = -ENOMEM; 2959 rt = fib6_info_alloc(gfp_flags); 2960 if (!rt) 2961 goto out; 2962 2963 if (cfg->fc_flags & RTF_ADDRCONF) 2964 rt->dst_nocount = true; 2965 2966 err = ip6_convert_metrics(net, rt, cfg); 2967 if (err < 0) 2968 goto out; 2969 2970 if (cfg->fc_flags & RTF_EXPIRES) 2971 fib6_set_expires(rt, jiffies + 2972 clock_t_to_jiffies(cfg->fc_expires)); 2973 else 2974 fib6_clean_expires(rt); 2975 2976 if (cfg->fc_protocol == RTPROT_UNSPEC) 2977 cfg->fc_protocol = RTPROT_BOOT; 2978 rt->fib6_protocol = cfg->fc_protocol; 2979 2980 addr_type = ipv6_addr_type(&cfg->fc_dst); 2981 2982 if (cfg->fc_encap) { 2983 struct lwtunnel_state *lwtstate; 2984 2985 err = lwtunnel_build_state(cfg->fc_encap_type, 2986 cfg->fc_encap, AF_INET6, cfg, 2987 &lwtstate, extack); 2988 if (err) 2989 goto out; 2990 rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate); 2991 } 2992 2993 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 2994 rt->fib6_dst.plen = cfg->fc_dst_len; 2995 if (rt->fib6_dst.plen == 128) 2996 rt->dst_host = true; 2997 2998 #ifdef CONFIG_IPV6_SUBTREES 2999 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3000 rt->fib6_src.plen = cfg->fc_src_len; 3001 #endif 3002 3003 rt->fib6_metric = cfg->fc_metric; 3004 rt->fib6_nh.nh_weight = 1; 3005 3006 rt->fib6_type = cfg->fc_type; 3007 3008 /* We cannot add true routes via loopback here, 3009 they would result in kernel looping; promote them to reject routes 3010 */ 3011 if ((cfg->fc_flags & RTF_REJECT) || 3012 (dev && (dev->flags & IFF_LOOPBACK) && 3013 !(addr_type & IPV6_ADDR_LOOPBACK) && 3014 !(cfg->fc_flags & RTF_LOCAL))) { 3015 /* hold loopback dev/idev if we haven't done so. */ 3016 if (dev != net->loopback_dev) { 3017 if (dev) { 3018 dev_put(dev); 3019 in6_dev_put(idev); 3020 } 3021 dev = net->loopback_dev; 3022 dev_hold(dev); 3023 idev = in6_dev_get(dev); 3024 if (!idev) { 3025 err = -ENODEV; 3026 goto out; 3027 } 3028 } 3029 rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP; 3030 goto install_route; 3031 } 3032 3033 if (cfg->fc_flags & RTF_GATEWAY) { 3034 err = ip6_validate_gw(net, cfg, &dev, &idev, extack); 3035 if (err) 3036 goto out; 3037 3038 rt->fib6_nh.nh_gw = cfg->fc_gateway; 3039 } 3040 3041 err = -ENODEV; 3042 if (!dev) 3043 goto out; 3044 3045 if (idev->cnf.disable_ipv6) { 3046 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3047 err = -EACCES; 3048 goto out; 3049 } 3050 3051 if (!(dev->flags & IFF_UP)) { 3052 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3053 err = -ENETDOWN; 3054 goto out; 3055 } 3056 3057 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3058 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3059 NL_SET_ERR_MSG(extack, "Invalid source address"); 3060 err = -EINVAL; 3061 goto out; 3062 } 3063 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3064 rt->fib6_prefsrc.plen = 128; 3065 } else 3066 rt->fib6_prefsrc.plen = 0; 3067 3068 rt->fib6_flags = cfg->fc_flags; 3069 3070 install_route: 3071 if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3072 !netif_carrier_ok(dev)) 3073 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN; 3074 rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK); 3075 rt->fib6_nh.nh_dev = dev; 3076 rt->fib6_table = table; 3077 3078 cfg->fc_nlinfo.nl_net = dev_net(dev); 3079 3080 if (idev) 3081 in6_dev_put(idev); 3082 3083 return rt; 3084 out: 3085 if (dev) 3086 dev_put(dev); 3087 if (idev) 3088 in6_dev_put(idev); 3089 3090 fib6_info_release(rt); 3091 return ERR_PTR(err); 3092 } 3093 3094 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3095 struct netlink_ext_ack *extack) 3096 { 3097 struct fib6_info *rt; 3098 int err; 3099 3100 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3101 if (IS_ERR(rt)) 3102 return PTR_ERR(rt); 3103 3104 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3105 fib6_info_release(rt); 3106 3107 return err; 3108 } 3109 3110 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3111 { 3112 struct net *net = info->nl_net; 3113 struct fib6_table *table; 3114 int err; 3115 3116 if (rt == net->ipv6.fib6_null_entry) { 3117 err = -ENOENT; 3118 goto out; 3119 } 3120 3121 table = rt->fib6_table; 3122 spin_lock_bh(&table->tb6_lock); 3123 err = fib6_del(rt, info); 3124 spin_unlock_bh(&table->tb6_lock); 3125 3126 out: 3127 fib6_info_release(rt); 3128 return err; 3129 } 3130 3131 int ip6_del_rt(struct net *net, struct fib6_info *rt) 3132 { 3133 struct nl_info info = { .nl_net = net }; 3134 3135 return __ip6_del_rt(rt, &info); 3136 } 3137 3138 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3139 { 3140 struct nl_info *info = &cfg->fc_nlinfo; 3141 struct net *net = info->nl_net; 3142 struct sk_buff *skb = NULL; 3143 struct fib6_table *table; 3144 int err = -ENOENT; 3145 3146 if (rt == net->ipv6.fib6_null_entry) 3147 goto out_put; 3148 table = rt->fib6_table; 3149 spin_lock_bh(&table->tb6_lock); 3150 3151 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3152 struct fib6_info *sibling, *next_sibling; 3153 3154 /* prefer to send a single notification with all hops */ 3155 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 3156 if (skb) { 3157 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 3158 3159 if (rt6_fill_node(net, skb, rt, NULL, 3160 NULL, NULL, 0, RTM_DELROUTE, 3161 info->portid, seq, 0) < 0) { 3162 kfree_skb(skb); 3163 skb = NULL; 3164 } else 3165 info->skip_notify = 1; 3166 } 3167 3168 list_for_each_entry_safe(sibling, next_sibling, 3169 &rt->fib6_siblings, 3170 fib6_siblings) { 3171 err = fib6_del(sibling, info); 3172 if (err) 3173 goto out_unlock; 3174 } 3175 } 3176 3177 err = fib6_del(rt, info); 3178 out_unlock: 3179 spin_unlock_bh(&table->tb6_lock); 3180 out_put: 3181 fib6_info_release(rt); 3182 3183 if (skb) { 3184 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 3185 info->nlh, gfp_any()); 3186 } 3187 return err; 3188 } 3189 3190 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 3191 { 3192 int rc = -ESRCH; 3193 3194 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 3195 goto out; 3196 3197 if (cfg->fc_flags & RTF_GATEWAY && 3198 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 3199 goto out; 3200 if (dst_hold_safe(&rt->dst)) 3201 rc = rt6_remove_exception_rt(rt); 3202 out: 3203 return rc; 3204 } 3205 3206 static int ip6_route_del(struct fib6_config *cfg, 3207 struct netlink_ext_ack *extack) 3208 { 3209 struct rt6_info *rt_cache; 3210 struct fib6_table *table; 3211 struct fib6_info *rt; 3212 struct fib6_node *fn; 3213 int err = -ESRCH; 3214 3215 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 3216 if (!table) { 3217 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 3218 return err; 3219 } 3220 3221 rcu_read_lock(); 3222 3223 fn = fib6_locate(&table->tb6_root, 3224 &cfg->fc_dst, cfg->fc_dst_len, 3225 &cfg->fc_src, cfg->fc_src_len, 3226 !(cfg->fc_flags & RTF_CACHE)); 3227 3228 if (fn) { 3229 for_each_fib6_node_rt_rcu(fn) { 3230 if (cfg->fc_flags & RTF_CACHE) { 3231 int rc; 3232 3233 rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst, 3234 &cfg->fc_src); 3235 if (rt_cache) { 3236 rc = ip6_del_cached_rt(rt_cache, cfg); 3237 if (rc != -ESRCH) { 3238 rcu_read_unlock(); 3239 return rc; 3240 } 3241 } 3242 continue; 3243 } 3244 if (cfg->fc_ifindex && 3245 (!rt->fib6_nh.nh_dev || 3246 rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex)) 3247 continue; 3248 if (cfg->fc_flags & RTF_GATEWAY && 3249 !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw)) 3250 continue; 3251 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 3252 continue; 3253 if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol) 3254 continue; 3255 fib6_info_hold(rt); 3256 rcu_read_unlock(); 3257 3258 /* if gateway was specified only delete the one hop */ 3259 if (cfg->fc_flags & RTF_GATEWAY) 3260 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3261 3262 return __ip6_del_rt_siblings(rt, cfg); 3263 } 3264 } 3265 rcu_read_unlock(); 3266 3267 return err; 3268 } 3269 3270 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 3271 { 3272 struct netevent_redirect netevent; 3273 struct rt6_info *rt, *nrt = NULL; 3274 struct ndisc_options ndopts; 3275 struct inet6_dev *in6_dev; 3276 struct neighbour *neigh; 3277 struct fib6_info *from; 3278 struct rd_msg *msg; 3279 int optlen, on_link; 3280 u8 *lladdr; 3281 3282 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 3283 optlen -= sizeof(*msg); 3284 3285 if (optlen < 0) { 3286 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 3287 return; 3288 } 3289 3290 msg = (struct rd_msg *)icmp6_hdr(skb); 3291 3292 if (ipv6_addr_is_multicast(&msg->dest)) { 3293 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 3294 return; 3295 } 3296 3297 on_link = 0; 3298 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 3299 on_link = 1; 3300 } else if (ipv6_addr_type(&msg->target) != 3301 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 3302 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 3303 return; 3304 } 3305 3306 in6_dev = __in6_dev_get(skb->dev); 3307 if (!in6_dev) 3308 return; 3309 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) 3310 return; 3311 3312 /* RFC2461 8.1: 3313 * The IP source address of the Redirect MUST be the same as the current 3314 * first-hop router for the specified ICMP Destination Address. 3315 */ 3316 3317 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 3318 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 3319 return; 3320 } 3321 3322 lladdr = NULL; 3323 if (ndopts.nd_opts_tgt_lladdr) { 3324 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 3325 skb->dev); 3326 if (!lladdr) { 3327 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 3328 return; 3329 } 3330 } 3331 3332 rt = (struct rt6_info *) dst; 3333 if (rt->rt6i_flags & RTF_REJECT) { 3334 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 3335 return; 3336 } 3337 3338 /* Redirect received -> path was valid. 3339 * Look, redirects are sent only in response to data packets, 3340 * so that this nexthop apparently is reachable. --ANK 3341 */ 3342 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 3343 3344 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 3345 if (!neigh) 3346 return; 3347 3348 /* 3349 * We have finally decided to accept it. 3350 */ 3351 3352 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 3353 NEIGH_UPDATE_F_WEAK_OVERRIDE| 3354 NEIGH_UPDATE_F_OVERRIDE| 3355 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 3356 NEIGH_UPDATE_F_ISROUTER)), 3357 NDISC_REDIRECT, &ndopts); 3358 3359 rcu_read_lock(); 3360 from = rcu_dereference(rt->from); 3361 fib6_info_hold(from); 3362 rcu_read_unlock(); 3363 3364 nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL); 3365 if (!nrt) 3366 goto out; 3367 3368 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 3369 if (on_link) 3370 nrt->rt6i_flags &= ~RTF_GATEWAY; 3371 3372 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 3373 3374 /* No need to remove rt from the exception table if rt is 3375 * a cached route because rt6_insert_exception() will 3376 * takes care of it 3377 */ 3378 if (rt6_insert_exception(nrt, from)) { 3379 dst_release_immediate(&nrt->dst); 3380 goto out; 3381 } 3382 3383 netevent.old = &rt->dst; 3384 netevent.new = &nrt->dst; 3385 netevent.daddr = &msg->dest; 3386 netevent.neigh = neigh; 3387 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 3388 3389 out: 3390 fib6_info_release(from); 3391 neigh_release(neigh); 3392 } 3393 3394 #ifdef CONFIG_IPV6_ROUTE_INFO 3395 static struct fib6_info *rt6_get_route_info(struct net *net, 3396 const struct in6_addr *prefix, int prefixlen, 3397 const struct in6_addr *gwaddr, 3398 struct net_device *dev) 3399 { 3400 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 3401 int ifindex = dev->ifindex; 3402 struct fib6_node *fn; 3403 struct fib6_info *rt = NULL; 3404 struct fib6_table *table; 3405 3406 table = fib6_get_table(net, tb_id); 3407 if (!table) 3408 return NULL; 3409 3410 rcu_read_lock(); 3411 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 3412 if (!fn) 3413 goto out; 3414 3415 for_each_fib6_node_rt_rcu(fn) { 3416 if (rt->fib6_nh.nh_dev->ifindex != ifindex) 3417 continue; 3418 if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY)) 3419 continue; 3420 if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr)) 3421 continue; 3422 fib6_info_hold(rt); 3423 break; 3424 } 3425 out: 3426 rcu_read_unlock(); 3427 return rt; 3428 } 3429 3430 static struct fib6_info *rt6_add_route_info(struct net *net, 3431 const struct in6_addr *prefix, int prefixlen, 3432 const struct in6_addr *gwaddr, 3433 struct net_device *dev, 3434 unsigned int pref) 3435 { 3436 struct fib6_config cfg = { 3437 .fc_metric = IP6_RT_PRIO_USER, 3438 .fc_ifindex = dev->ifindex, 3439 .fc_dst_len = prefixlen, 3440 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 3441 RTF_UP | RTF_PREF(pref), 3442 .fc_protocol = RTPROT_RA, 3443 .fc_type = RTN_UNICAST, 3444 .fc_nlinfo.portid = 0, 3445 .fc_nlinfo.nlh = NULL, 3446 .fc_nlinfo.nl_net = net, 3447 }; 3448 3449 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO, 3450 cfg.fc_dst = *prefix; 3451 cfg.fc_gateway = *gwaddr; 3452 3453 /* We should treat it as a default route if prefix length is 0. */ 3454 if (!prefixlen) 3455 cfg.fc_flags |= RTF_DEFAULT; 3456 3457 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 3458 3459 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 3460 } 3461 #endif 3462 3463 struct fib6_info *rt6_get_dflt_router(struct net *net, 3464 const struct in6_addr *addr, 3465 struct net_device *dev) 3466 { 3467 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 3468 struct fib6_info *rt; 3469 struct fib6_table *table; 3470 3471 table = fib6_get_table(net, tb_id); 3472 if (!table) 3473 return NULL; 3474 3475 rcu_read_lock(); 3476 for_each_fib6_node_rt_rcu(&table->tb6_root) { 3477 if (dev == rt->fib6_nh.nh_dev && 3478 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 3479 ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr)) 3480 break; 3481 } 3482 if (rt) 3483 fib6_info_hold(rt); 3484 rcu_read_unlock(); 3485 return rt; 3486 } 3487 3488 struct fib6_info *rt6_add_dflt_router(struct net *net, 3489 const struct in6_addr *gwaddr, 3490 struct net_device *dev, 3491 unsigned int pref) 3492 { 3493 struct fib6_config cfg = { 3494 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 3495 .fc_metric = IP6_RT_PRIO_USER, 3496 .fc_ifindex = dev->ifindex, 3497 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 3498 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 3499 .fc_protocol = RTPROT_RA, 3500 .fc_type = RTN_UNICAST, 3501 .fc_nlinfo.portid = 0, 3502 .fc_nlinfo.nlh = NULL, 3503 .fc_nlinfo.nl_net = net, 3504 }; 3505 3506 cfg.fc_gateway = *gwaddr; 3507 3508 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 3509 struct fib6_table *table; 3510 3511 table = fib6_get_table(dev_net(dev), cfg.fc_table); 3512 if (table) 3513 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 3514 } 3515 3516 return rt6_get_dflt_router(net, gwaddr, dev); 3517 } 3518 3519 static void __rt6_purge_dflt_routers(struct net *net, 3520 struct fib6_table *table) 3521 { 3522 struct fib6_info *rt; 3523 3524 restart: 3525 rcu_read_lock(); 3526 for_each_fib6_node_rt_rcu(&table->tb6_root) { 3527 struct net_device *dev = fib6_info_nh_dev(rt); 3528 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 3529 3530 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 3531 (!idev || idev->cnf.accept_ra != 2)) { 3532 fib6_info_hold(rt); 3533 rcu_read_unlock(); 3534 ip6_del_rt(net, rt); 3535 goto restart; 3536 } 3537 } 3538 rcu_read_unlock(); 3539 3540 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 3541 } 3542 3543 void rt6_purge_dflt_routers(struct net *net) 3544 { 3545 struct fib6_table *table; 3546 struct hlist_head *head; 3547 unsigned int h; 3548 3549 rcu_read_lock(); 3550 3551 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 3552 head = &net->ipv6.fib_table_hash[h]; 3553 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 3554 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 3555 __rt6_purge_dflt_routers(net, table); 3556 } 3557 } 3558 3559 rcu_read_unlock(); 3560 } 3561 3562 static void rtmsg_to_fib6_config(struct net *net, 3563 struct in6_rtmsg *rtmsg, 3564 struct fib6_config *cfg) 3565 { 3566 memset(cfg, 0, sizeof(*cfg)); 3567 3568 cfg->fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 3569 : RT6_TABLE_MAIN; 3570 cfg->fc_ifindex = rtmsg->rtmsg_ifindex; 3571 cfg->fc_metric = rtmsg->rtmsg_metric; 3572 cfg->fc_expires = rtmsg->rtmsg_info; 3573 cfg->fc_dst_len = rtmsg->rtmsg_dst_len; 3574 cfg->fc_src_len = rtmsg->rtmsg_src_len; 3575 cfg->fc_flags = rtmsg->rtmsg_flags; 3576 cfg->fc_type = rtmsg->rtmsg_type; 3577 3578 cfg->fc_nlinfo.nl_net = net; 3579 3580 cfg->fc_dst = rtmsg->rtmsg_dst; 3581 cfg->fc_src = rtmsg->rtmsg_src; 3582 cfg->fc_gateway = rtmsg->rtmsg_gateway; 3583 } 3584 3585 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3586 { 3587 struct fib6_config cfg; 3588 struct in6_rtmsg rtmsg; 3589 int err; 3590 3591 switch (cmd) { 3592 case SIOCADDRT: /* Add a route */ 3593 case SIOCDELRT: /* Delete a route */ 3594 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 3595 return -EPERM; 3596 err = copy_from_user(&rtmsg, arg, 3597 sizeof(struct in6_rtmsg)); 3598 if (err) 3599 return -EFAULT; 3600 3601 rtmsg_to_fib6_config(net, &rtmsg, &cfg); 3602 3603 rtnl_lock(); 3604 switch (cmd) { 3605 case SIOCADDRT: 3606 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 3607 break; 3608 case SIOCDELRT: 3609 err = ip6_route_del(&cfg, NULL); 3610 break; 3611 default: 3612 err = -EINVAL; 3613 } 3614 rtnl_unlock(); 3615 3616 return err; 3617 } 3618 3619 return -EINVAL; 3620 } 3621 3622 /* 3623 * Drop the packet on the floor 3624 */ 3625 3626 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 3627 { 3628 int type; 3629 struct dst_entry *dst = skb_dst(skb); 3630 switch (ipstats_mib_noroutes) { 3631 case IPSTATS_MIB_INNOROUTES: 3632 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 3633 if (type == IPV6_ADDR_ANY) { 3634 IP6_INC_STATS(dev_net(dst->dev), 3635 __in6_dev_get_safely(skb->dev), 3636 IPSTATS_MIB_INADDRERRORS); 3637 break; 3638 } 3639 /* FALLTHROUGH */ 3640 case IPSTATS_MIB_OUTNOROUTES: 3641 IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst), 3642 ipstats_mib_noroutes); 3643 break; 3644 } 3645 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 3646 kfree_skb(skb); 3647 return 0; 3648 } 3649 3650 static int ip6_pkt_discard(struct sk_buff *skb) 3651 { 3652 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 3653 } 3654 3655 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 3656 { 3657 skb->dev = skb_dst(skb)->dev; 3658 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 3659 } 3660 3661 static int ip6_pkt_prohibit(struct sk_buff *skb) 3662 { 3663 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 3664 } 3665 3666 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 3667 { 3668 skb->dev = skb_dst(skb)->dev; 3669 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 3670 } 3671 3672 /* 3673 * Allocate a dst for local (unicast / anycast) address. 3674 */ 3675 3676 struct fib6_info *addrconf_f6i_alloc(struct net *net, 3677 struct inet6_dev *idev, 3678 const struct in6_addr *addr, 3679 bool anycast, gfp_t gfp_flags) 3680 { 3681 u32 tb_id; 3682 struct net_device *dev = idev->dev; 3683 struct fib6_info *f6i; 3684 3685 f6i = fib6_info_alloc(gfp_flags); 3686 if (!f6i) 3687 return ERR_PTR(-ENOMEM); 3688 3689 f6i->dst_nocount = true; 3690 f6i->dst_host = true; 3691 f6i->fib6_protocol = RTPROT_KERNEL; 3692 f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP; 3693 if (anycast) { 3694 f6i->fib6_type = RTN_ANYCAST; 3695 f6i->fib6_flags |= RTF_ANYCAST; 3696 } else { 3697 f6i->fib6_type = RTN_LOCAL; 3698 f6i->fib6_flags |= RTF_LOCAL; 3699 } 3700 3701 f6i->fib6_nh.nh_gw = *addr; 3702 dev_hold(dev); 3703 f6i->fib6_nh.nh_dev = dev; 3704 f6i->fib6_dst.addr = *addr; 3705 f6i->fib6_dst.plen = 128; 3706 tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL; 3707 f6i->fib6_table = fib6_get_table(net, tb_id); 3708 3709 return f6i; 3710 } 3711 3712 /* remove deleted ip from prefsrc entries */ 3713 struct arg_dev_net_ip { 3714 struct net_device *dev; 3715 struct net *net; 3716 struct in6_addr *addr; 3717 }; 3718 3719 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 3720 { 3721 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 3722 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 3723 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 3724 3725 if (((void *)rt->fib6_nh.nh_dev == dev || !dev) && 3726 rt != net->ipv6.fib6_null_entry && 3727 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) { 3728 spin_lock_bh(&rt6_exception_lock); 3729 /* remove prefsrc entry */ 3730 rt->fib6_prefsrc.plen = 0; 3731 /* need to update cache as well */ 3732 rt6_exceptions_remove_prefsrc(rt); 3733 spin_unlock_bh(&rt6_exception_lock); 3734 } 3735 return 0; 3736 } 3737 3738 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 3739 { 3740 struct net *net = dev_net(ifp->idev->dev); 3741 struct arg_dev_net_ip adni = { 3742 .dev = ifp->idev->dev, 3743 .net = net, 3744 .addr = &ifp->addr, 3745 }; 3746 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 3747 } 3748 3749 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY) 3750 3751 /* Remove routers and update dst entries when gateway turn into host. */ 3752 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 3753 { 3754 struct in6_addr *gateway = (struct in6_addr *)arg; 3755 3756 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 3757 ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) { 3758 return -1; 3759 } 3760 3761 /* Further clean up cached routes in exception table. 3762 * This is needed because cached route may have a different 3763 * gateway than its 'parent' in the case of an ip redirect. 3764 */ 3765 rt6_exceptions_clean_tohost(rt, gateway); 3766 3767 return 0; 3768 } 3769 3770 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 3771 { 3772 fib6_clean_all(net, fib6_clean_tohost, gateway); 3773 } 3774 3775 struct arg_netdev_event { 3776 const struct net_device *dev; 3777 union { 3778 unsigned int nh_flags; 3779 unsigned long event; 3780 }; 3781 }; 3782 3783 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 3784 { 3785 struct fib6_info *iter; 3786 struct fib6_node *fn; 3787 3788 fn = rcu_dereference_protected(rt->fib6_node, 3789 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3790 iter = rcu_dereference_protected(fn->leaf, 3791 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3792 while (iter) { 3793 if (iter->fib6_metric == rt->fib6_metric && 3794 iter->fib6_nsiblings) 3795 return iter; 3796 iter = rcu_dereference_protected(iter->fib6_next, 3797 lockdep_is_held(&rt->fib6_table->tb6_lock)); 3798 } 3799 3800 return NULL; 3801 } 3802 3803 static bool rt6_is_dead(const struct fib6_info *rt) 3804 { 3805 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD || 3806 (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN && 3807 fib6_ignore_linkdown(rt))) 3808 return true; 3809 3810 return false; 3811 } 3812 3813 static int rt6_multipath_total_weight(const struct fib6_info *rt) 3814 { 3815 struct fib6_info *iter; 3816 int total = 0; 3817 3818 if (!rt6_is_dead(rt)) 3819 total += rt->fib6_nh.nh_weight; 3820 3821 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 3822 if (!rt6_is_dead(iter)) 3823 total += iter->fib6_nh.nh_weight; 3824 } 3825 3826 return total; 3827 } 3828 3829 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 3830 { 3831 int upper_bound = -1; 3832 3833 if (!rt6_is_dead(rt)) { 3834 *weight += rt->fib6_nh.nh_weight; 3835 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 3836 total) - 1; 3837 } 3838 atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound); 3839 } 3840 3841 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 3842 { 3843 struct fib6_info *iter; 3844 int weight = 0; 3845 3846 rt6_upper_bound_set(rt, &weight, total); 3847 3848 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3849 rt6_upper_bound_set(iter, &weight, total); 3850 } 3851 3852 void rt6_multipath_rebalance(struct fib6_info *rt) 3853 { 3854 struct fib6_info *first; 3855 int total; 3856 3857 /* In case the entire multipath route was marked for flushing, 3858 * then there is no need to rebalance upon the removal of every 3859 * sibling route. 3860 */ 3861 if (!rt->fib6_nsiblings || rt->should_flush) 3862 return; 3863 3864 /* During lookup routes are evaluated in order, so we need to 3865 * make sure upper bounds are assigned from the first sibling 3866 * onwards. 3867 */ 3868 first = rt6_multipath_first_sibling(rt); 3869 if (WARN_ON_ONCE(!first)) 3870 return; 3871 3872 total = rt6_multipath_total_weight(first); 3873 rt6_multipath_upper_bound_set(first, total); 3874 } 3875 3876 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 3877 { 3878 const struct arg_netdev_event *arg = p_arg; 3879 struct net *net = dev_net(arg->dev); 3880 3881 if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) { 3882 rt->fib6_nh.nh_flags &= ~arg->nh_flags; 3883 fib6_update_sernum_upto_root(net, rt); 3884 rt6_multipath_rebalance(rt); 3885 } 3886 3887 return 0; 3888 } 3889 3890 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags) 3891 { 3892 struct arg_netdev_event arg = { 3893 .dev = dev, 3894 { 3895 .nh_flags = nh_flags, 3896 }, 3897 }; 3898 3899 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 3900 arg.nh_flags |= RTNH_F_LINKDOWN; 3901 3902 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 3903 } 3904 3905 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 3906 const struct net_device *dev) 3907 { 3908 struct fib6_info *iter; 3909 3910 if (rt->fib6_nh.nh_dev == dev) 3911 return true; 3912 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3913 if (iter->fib6_nh.nh_dev == dev) 3914 return true; 3915 3916 return false; 3917 } 3918 3919 static void rt6_multipath_flush(struct fib6_info *rt) 3920 { 3921 struct fib6_info *iter; 3922 3923 rt->should_flush = 1; 3924 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3925 iter->should_flush = 1; 3926 } 3927 3928 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 3929 const struct net_device *down_dev) 3930 { 3931 struct fib6_info *iter; 3932 unsigned int dead = 0; 3933 3934 if (rt->fib6_nh.nh_dev == down_dev || 3935 rt->fib6_nh.nh_flags & RTNH_F_DEAD) 3936 dead++; 3937 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3938 if (iter->fib6_nh.nh_dev == down_dev || 3939 iter->fib6_nh.nh_flags & RTNH_F_DEAD) 3940 dead++; 3941 3942 return dead; 3943 } 3944 3945 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 3946 const struct net_device *dev, 3947 unsigned int nh_flags) 3948 { 3949 struct fib6_info *iter; 3950 3951 if (rt->fib6_nh.nh_dev == dev) 3952 rt->fib6_nh.nh_flags |= nh_flags; 3953 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 3954 if (iter->fib6_nh.nh_dev == dev) 3955 iter->fib6_nh.nh_flags |= nh_flags; 3956 } 3957 3958 /* called with write lock held for table with rt */ 3959 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 3960 { 3961 const struct arg_netdev_event *arg = p_arg; 3962 const struct net_device *dev = arg->dev; 3963 struct net *net = dev_net(dev); 3964 3965 if (rt == net->ipv6.fib6_null_entry) 3966 return 0; 3967 3968 switch (arg->event) { 3969 case NETDEV_UNREGISTER: 3970 return rt->fib6_nh.nh_dev == dev ? -1 : 0; 3971 case NETDEV_DOWN: 3972 if (rt->should_flush) 3973 return -1; 3974 if (!rt->fib6_nsiblings) 3975 return rt->fib6_nh.nh_dev == dev ? -1 : 0; 3976 if (rt6_multipath_uses_dev(rt, dev)) { 3977 unsigned int count; 3978 3979 count = rt6_multipath_dead_count(rt, dev); 3980 if (rt->fib6_nsiblings + 1 == count) { 3981 rt6_multipath_flush(rt); 3982 return -1; 3983 } 3984 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 3985 RTNH_F_LINKDOWN); 3986 fib6_update_sernum(net, rt); 3987 rt6_multipath_rebalance(rt); 3988 } 3989 return -2; 3990 case NETDEV_CHANGE: 3991 if (rt->fib6_nh.nh_dev != dev || 3992 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 3993 break; 3994 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN; 3995 rt6_multipath_rebalance(rt); 3996 break; 3997 } 3998 3999 return 0; 4000 } 4001 4002 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4003 { 4004 struct arg_netdev_event arg = { 4005 .dev = dev, 4006 { 4007 .event = event, 4008 }, 4009 }; 4010 4011 fib6_clean_all(dev_net(dev), fib6_ifdown, &arg); 4012 } 4013 4014 void rt6_disable_ip(struct net_device *dev, unsigned long event) 4015 { 4016 rt6_sync_down_dev(dev, event); 4017 rt6_uncached_list_flush_dev(dev_net(dev), dev); 4018 neigh_ifdown(&nd_tbl, dev); 4019 } 4020 4021 struct rt6_mtu_change_arg { 4022 struct net_device *dev; 4023 unsigned int mtu; 4024 }; 4025 4026 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg) 4027 { 4028 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 4029 struct inet6_dev *idev; 4030 4031 /* In IPv6 pmtu discovery is not optional, 4032 so that RTAX_MTU lock cannot disable it. 4033 We still use this lock to block changes 4034 caused by addrconf/ndisc. 4035 */ 4036 4037 idev = __in6_dev_get(arg->dev); 4038 if (!idev) 4039 return 0; 4040 4041 /* For administrative MTU increase, there is no way to discover 4042 IPv6 PMTU increase, so PMTU increase should be updated here. 4043 Since RFC 1981 doesn't include administrative MTU increase 4044 update PMTU increase is a MUST. (i.e. jumbo frame) 4045 */ 4046 if (rt->fib6_nh.nh_dev == arg->dev && 4047 !fib6_metric_locked(rt, RTAX_MTU)) { 4048 u32 mtu = rt->fib6_pmtu; 4049 4050 if (mtu >= arg->mtu || 4051 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 4052 fib6_metric_set(rt, RTAX_MTU, arg->mtu); 4053 4054 spin_lock_bh(&rt6_exception_lock); 4055 rt6_exceptions_update_pmtu(idev, rt, arg->mtu); 4056 spin_unlock_bh(&rt6_exception_lock); 4057 } 4058 return 0; 4059 } 4060 4061 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 4062 { 4063 struct rt6_mtu_change_arg arg = { 4064 .dev = dev, 4065 .mtu = mtu, 4066 }; 4067 4068 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 4069 } 4070 4071 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 4072 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 4073 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 4074 [RTA_OIF] = { .type = NLA_U32 }, 4075 [RTA_IIF] = { .type = NLA_U32 }, 4076 [RTA_PRIORITY] = { .type = NLA_U32 }, 4077 [RTA_METRICS] = { .type = NLA_NESTED }, 4078 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 4079 [RTA_PREF] = { .type = NLA_U8 }, 4080 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 4081 [RTA_ENCAP] = { .type = NLA_NESTED }, 4082 [RTA_EXPIRES] = { .type = NLA_U32 }, 4083 [RTA_UID] = { .type = NLA_U32 }, 4084 [RTA_MARK] = { .type = NLA_U32 }, 4085 [RTA_TABLE] = { .type = NLA_U32 }, 4086 }; 4087 4088 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 4089 struct fib6_config *cfg, 4090 struct netlink_ext_ack *extack) 4091 { 4092 struct rtmsg *rtm; 4093 struct nlattr *tb[RTA_MAX+1]; 4094 unsigned int pref; 4095 int err; 4096 4097 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, 4098 NULL); 4099 if (err < 0) 4100 goto errout; 4101 4102 err = -EINVAL; 4103 rtm = nlmsg_data(nlh); 4104 memset(cfg, 0, sizeof(*cfg)); 4105 4106 cfg->fc_table = rtm->rtm_table; 4107 cfg->fc_dst_len = rtm->rtm_dst_len; 4108 cfg->fc_src_len = rtm->rtm_src_len; 4109 cfg->fc_flags = RTF_UP; 4110 cfg->fc_protocol = rtm->rtm_protocol; 4111 cfg->fc_type = rtm->rtm_type; 4112 4113 if (rtm->rtm_type == RTN_UNREACHABLE || 4114 rtm->rtm_type == RTN_BLACKHOLE || 4115 rtm->rtm_type == RTN_PROHIBIT || 4116 rtm->rtm_type == RTN_THROW) 4117 cfg->fc_flags |= RTF_REJECT; 4118 4119 if (rtm->rtm_type == RTN_LOCAL) 4120 cfg->fc_flags |= RTF_LOCAL; 4121 4122 if (rtm->rtm_flags & RTM_F_CLONED) 4123 cfg->fc_flags |= RTF_CACHE; 4124 4125 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 4126 4127 cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid; 4128 cfg->fc_nlinfo.nlh = nlh; 4129 cfg->fc_nlinfo.nl_net = sock_net(skb->sk); 4130 4131 if (tb[RTA_GATEWAY]) { 4132 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 4133 cfg->fc_flags |= RTF_GATEWAY; 4134 } 4135 4136 if (tb[RTA_DST]) { 4137 int plen = (rtm->rtm_dst_len + 7) >> 3; 4138 4139 if (nla_len(tb[RTA_DST]) < plen) 4140 goto errout; 4141 4142 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 4143 } 4144 4145 if (tb[RTA_SRC]) { 4146 int plen = (rtm->rtm_src_len + 7) >> 3; 4147 4148 if (nla_len(tb[RTA_SRC]) < plen) 4149 goto errout; 4150 4151 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 4152 } 4153 4154 if (tb[RTA_PREFSRC]) 4155 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 4156 4157 if (tb[RTA_OIF]) 4158 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 4159 4160 if (tb[RTA_PRIORITY]) 4161 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 4162 4163 if (tb[RTA_METRICS]) { 4164 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 4165 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 4166 } 4167 4168 if (tb[RTA_TABLE]) 4169 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 4170 4171 if (tb[RTA_MULTIPATH]) { 4172 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 4173 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 4174 4175 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, 4176 cfg->fc_mp_len, extack); 4177 if (err < 0) 4178 goto errout; 4179 } 4180 4181 if (tb[RTA_PREF]) { 4182 pref = nla_get_u8(tb[RTA_PREF]); 4183 if (pref != ICMPV6_ROUTER_PREF_LOW && 4184 pref != ICMPV6_ROUTER_PREF_HIGH) 4185 pref = ICMPV6_ROUTER_PREF_MEDIUM; 4186 cfg->fc_flags |= RTF_PREF(pref); 4187 } 4188 4189 if (tb[RTA_ENCAP]) 4190 cfg->fc_encap = tb[RTA_ENCAP]; 4191 4192 if (tb[RTA_ENCAP_TYPE]) { 4193 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 4194 4195 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 4196 if (err < 0) 4197 goto errout; 4198 } 4199 4200 if (tb[RTA_EXPIRES]) { 4201 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 4202 4203 if (addrconf_finite_timeout(timeout)) { 4204 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 4205 cfg->fc_flags |= RTF_EXPIRES; 4206 } 4207 } 4208 4209 err = 0; 4210 errout: 4211 return err; 4212 } 4213 4214 struct rt6_nh { 4215 struct fib6_info *fib6_info; 4216 struct fib6_config r_cfg; 4217 struct list_head next; 4218 }; 4219 4220 static void ip6_print_replace_route_err(struct list_head *rt6_nh_list) 4221 { 4222 struct rt6_nh *nh; 4223 4224 list_for_each_entry(nh, rt6_nh_list, next) { 4225 pr_warn("IPV6: multipath route replace failed (check consistency of installed routes): %pI6c nexthop %pI6c ifi %d\n", 4226 &nh->r_cfg.fc_dst, &nh->r_cfg.fc_gateway, 4227 nh->r_cfg.fc_ifindex); 4228 } 4229 } 4230 4231 static int ip6_route_info_append(struct net *net, 4232 struct list_head *rt6_nh_list, 4233 struct fib6_info *rt, 4234 struct fib6_config *r_cfg) 4235 { 4236 struct rt6_nh *nh; 4237 int err = -EEXIST; 4238 4239 list_for_each_entry(nh, rt6_nh_list, next) { 4240 /* check if fib6_info already exists */ 4241 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 4242 return err; 4243 } 4244 4245 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 4246 if (!nh) 4247 return -ENOMEM; 4248 nh->fib6_info = rt; 4249 err = ip6_convert_metrics(net, rt, r_cfg); 4250 if (err) { 4251 kfree(nh); 4252 return err; 4253 } 4254 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 4255 list_add_tail(&nh->next, rt6_nh_list); 4256 4257 return 0; 4258 } 4259 4260 static void ip6_route_mpath_notify(struct fib6_info *rt, 4261 struct fib6_info *rt_last, 4262 struct nl_info *info, 4263 __u16 nlflags) 4264 { 4265 /* if this is an APPEND route, then rt points to the first route 4266 * inserted and rt_last points to last route inserted. Userspace 4267 * wants a consistent dump of the route which starts at the first 4268 * nexthop. Since sibling routes are always added at the end of 4269 * the list, find the first sibling of the last route appended 4270 */ 4271 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { 4272 rt = list_first_entry(&rt_last->fib6_siblings, 4273 struct fib6_info, 4274 fib6_siblings); 4275 } 4276 4277 if (rt) 4278 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 4279 } 4280 4281 static int ip6_route_multipath_add(struct fib6_config *cfg, 4282 struct netlink_ext_ack *extack) 4283 { 4284 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 4285 struct nl_info *info = &cfg->fc_nlinfo; 4286 struct fib6_config r_cfg; 4287 struct rtnexthop *rtnh; 4288 struct fib6_info *rt; 4289 struct rt6_nh *err_nh; 4290 struct rt6_nh *nh, *nh_safe; 4291 __u16 nlflags; 4292 int remaining; 4293 int attrlen; 4294 int err = 1; 4295 int nhn = 0; 4296 int replace = (cfg->fc_nlinfo.nlh && 4297 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 4298 LIST_HEAD(rt6_nh_list); 4299 4300 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 4301 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 4302 nlflags |= NLM_F_APPEND; 4303 4304 remaining = cfg->fc_mp_len; 4305 rtnh = (struct rtnexthop *)cfg->fc_mp; 4306 4307 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 4308 * fib6_info structs per nexthop 4309 */ 4310 while (rtnh_ok(rtnh, remaining)) { 4311 memcpy(&r_cfg, cfg, sizeof(*cfg)); 4312 if (rtnh->rtnh_ifindex) 4313 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 4314 4315 attrlen = rtnh_attrlen(rtnh); 4316 if (attrlen > 0) { 4317 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 4318 4319 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 4320 if (nla) { 4321 r_cfg.fc_gateway = nla_get_in6_addr(nla); 4322 r_cfg.fc_flags |= RTF_GATEWAY; 4323 } 4324 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 4325 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 4326 if (nla) 4327 r_cfg.fc_encap_type = nla_get_u16(nla); 4328 } 4329 4330 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 4331 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 4332 if (IS_ERR(rt)) { 4333 err = PTR_ERR(rt); 4334 rt = NULL; 4335 goto cleanup; 4336 } 4337 4338 rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1; 4339 4340 err = ip6_route_info_append(info->nl_net, &rt6_nh_list, 4341 rt, &r_cfg); 4342 if (err) { 4343 fib6_info_release(rt); 4344 goto cleanup; 4345 } 4346 4347 rtnh = rtnh_next(rtnh, &remaining); 4348 } 4349 4350 /* for add and replace send one notification with all nexthops. 4351 * Skip the notification in fib6_add_rt2node and send one with 4352 * the full route when done 4353 */ 4354 info->skip_notify = 1; 4355 4356 err_nh = NULL; 4357 list_for_each_entry(nh, &rt6_nh_list, next) { 4358 rt_last = nh->fib6_info; 4359 err = __ip6_ins_rt(nh->fib6_info, info, extack); 4360 fib6_info_release(nh->fib6_info); 4361 4362 /* save reference to first route for notification */ 4363 if (!rt_notif && !err) 4364 rt_notif = nh->fib6_info; 4365 4366 /* nh->fib6_info is used or freed at this point, reset to NULL*/ 4367 nh->fib6_info = NULL; 4368 if (err) { 4369 if (replace && nhn) 4370 ip6_print_replace_route_err(&rt6_nh_list); 4371 err_nh = nh; 4372 goto add_errout; 4373 } 4374 4375 /* Because each route is added like a single route we remove 4376 * these flags after the first nexthop: if there is a collision, 4377 * we have already failed to add the first nexthop: 4378 * fib6_add_rt2node() has rejected it; when replacing, old 4379 * nexthops have been replaced by first new, the rest should 4380 * be added to it. 4381 */ 4382 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 4383 NLM_F_REPLACE); 4384 cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_APPEND; 4385 nhn++; 4386 } 4387 4388 /* success ... tell user about new route */ 4389 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 4390 goto cleanup; 4391 4392 add_errout: 4393 /* send notification for routes that were added so that 4394 * the delete notifications sent by ip6_route_del are 4395 * coherent 4396 */ 4397 if (rt_notif) 4398 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 4399 4400 /* Delete routes that were already added */ 4401 list_for_each_entry(nh, &rt6_nh_list, next) { 4402 if (err_nh == nh) 4403 break; 4404 ip6_route_del(&nh->r_cfg, extack); 4405 } 4406 4407 cleanup: 4408 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { 4409 if (nh->fib6_info) 4410 fib6_info_release(nh->fib6_info); 4411 list_del(&nh->next); 4412 kfree(nh); 4413 } 4414 4415 return err; 4416 } 4417 4418 static int ip6_route_multipath_del(struct fib6_config *cfg, 4419 struct netlink_ext_ack *extack) 4420 { 4421 struct fib6_config r_cfg; 4422 struct rtnexthop *rtnh; 4423 int remaining; 4424 int attrlen; 4425 int err = 1, last_err = 0; 4426 4427 remaining = cfg->fc_mp_len; 4428 rtnh = (struct rtnexthop *)cfg->fc_mp; 4429 4430 /* Parse a Multipath Entry */ 4431 while (rtnh_ok(rtnh, remaining)) { 4432 memcpy(&r_cfg, cfg, sizeof(*cfg)); 4433 if (rtnh->rtnh_ifindex) 4434 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 4435 4436 attrlen = rtnh_attrlen(rtnh); 4437 if (attrlen > 0) { 4438 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 4439 4440 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 4441 if (nla) { 4442 nla_memcpy(&r_cfg.fc_gateway, nla, 16); 4443 r_cfg.fc_flags |= RTF_GATEWAY; 4444 } 4445 } 4446 err = ip6_route_del(&r_cfg, extack); 4447 if (err) 4448 last_err = err; 4449 4450 rtnh = rtnh_next(rtnh, &remaining); 4451 } 4452 4453 return last_err; 4454 } 4455 4456 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 4457 struct netlink_ext_ack *extack) 4458 { 4459 struct fib6_config cfg; 4460 int err; 4461 4462 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 4463 if (err < 0) 4464 return err; 4465 4466 if (cfg.fc_mp) 4467 return ip6_route_multipath_del(&cfg, extack); 4468 else { 4469 cfg.fc_delete_all_nh = 1; 4470 return ip6_route_del(&cfg, extack); 4471 } 4472 } 4473 4474 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 4475 struct netlink_ext_ack *extack) 4476 { 4477 struct fib6_config cfg; 4478 int err; 4479 4480 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 4481 if (err < 0) 4482 return err; 4483 4484 if (cfg.fc_mp) 4485 return ip6_route_multipath_add(&cfg, extack); 4486 else 4487 return ip6_route_add(&cfg, GFP_KERNEL, extack); 4488 } 4489 4490 static size_t rt6_nlmsg_size(struct fib6_info *rt) 4491 { 4492 int nexthop_len = 0; 4493 4494 if (rt->fib6_nsiblings) { 4495 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */ 4496 + NLA_ALIGN(sizeof(struct rtnexthop)) 4497 + nla_total_size(16) /* RTA_GATEWAY */ 4498 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate); 4499 4500 nexthop_len *= rt->fib6_nsiblings; 4501 } 4502 4503 return NLMSG_ALIGN(sizeof(struct rtmsg)) 4504 + nla_total_size(16) /* RTA_SRC */ 4505 + nla_total_size(16) /* RTA_DST */ 4506 + nla_total_size(16) /* RTA_GATEWAY */ 4507 + nla_total_size(16) /* RTA_PREFSRC */ 4508 + nla_total_size(4) /* RTA_TABLE */ 4509 + nla_total_size(4) /* RTA_IIF */ 4510 + nla_total_size(4) /* RTA_OIF */ 4511 + nla_total_size(4) /* RTA_PRIORITY */ 4512 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 4513 + nla_total_size(sizeof(struct rta_cacheinfo)) 4514 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 4515 + nla_total_size(1) /* RTA_PREF */ 4516 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate) 4517 + nexthop_len; 4518 } 4519 4520 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt, 4521 unsigned int *flags, bool skip_oif) 4522 { 4523 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD) 4524 *flags |= RTNH_F_DEAD; 4525 4526 if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) { 4527 *flags |= RTNH_F_LINKDOWN; 4528 4529 rcu_read_lock(); 4530 if (fib6_ignore_linkdown(rt)) 4531 *flags |= RTNH_F_DEAD; 4532 rcu_read_unlock(); 4533 } 4534 4535 if (rt->fib6_flags & RTF_GATEWAY) { 4536 if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0) 4537 goto nla_put_failure; 4538 } 4539 4540 *flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK); 4541 if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD) 4542 *flags |= RTNH_F_OFFLOAD; 4543 4544 /* not needed for multipath encoding b/c it has a rtnexthop struct */ 4545 if (!skip_oif && rt->fib6_nh.nh_dev && 4546 nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex)) 4547 goto nla_put_failure; 4548 4549 if (rt->fib6_nh.nh_lwtstate && 4550 lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0) 4551 goto nla_put_failure; 4552 4553 return 0; 4554 4555 nla_put_failure: 4556 return -EMSGSIZE; 4557 } 4558 4559 /* add multipath next hop */ 4560 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt) 4561 { 4562 const struct net_device *dev = rt->fib6_nh.nh_dev; 4563 struct rtnexthop *rtnh; 4564 unsigned int flags = 0; 4565 4566 rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh)); 4567 if (!rtnh) 4568 goto nla_put_failure; 4569 4570 rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1; 4571 rtnh->rtnh_ifindex = dev ? dev->ifindex : 0; 4572 4573 if (rt6_nexthop_info(skb, rt, &flags, true) < 0) 4574 goto nla_put_failure; 4575 4576 rtnh->rtnh_flags = flags; 4577 4578 /* length of rtnetlink header + attributes */ 4579 rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh; 4580 4581 return 0; 4582 4583 nla_put_failure: 4584 return -EMSGSIZE; 4585 } 4586 4587 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 4588 struct fib6_info *rt, struct dst_entry *dst, 4589 struct in6_addr *dest, struct in6_addr *src, 4590 int iif, int type, u32 portid, u32 seq, 4591 unsigned int flags) 4592 { 4593 struct rtmsg *rtm; 4594 struct nlmsghdr *nlh; 4595 long expires = 0; 4596 u32 *pmetrics; 4597 u32 table; 4598 4599 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 4600 if (!nlh) 4601 return -EMSGSIZE; 4602 4603 rtm = nlmsg_data(nlh); 4604 rtm->rtm_family = AF_INET6; 4605 rtm->rtm_dst_len = rt->fib6_dst.plen; 4606 rtm->rtm_src_len = rt->fib6_src.plen; 4607 rtm->rtm_tos = 0; 4608 if (rt->fib6_table) 4609 table = rt->fib6_table->tb6_id; 4610 else 4611 table = RT6_TABLE_UNSPEC; 4612 rtm->rtm_table = table; 4613 if (nla_put_u32(skb, RTA_TABLE, table)) 4614 goto nla_put_failure; 4615 4616 rtm->rtm_type = rt->fib6_type; 4617 rtm->rtm_flags = 0; 4618 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 4619 rtm->rtm_protocol = rt->fib6_protocol; 4620 4621 if (rt->fib6_flags & RTF_CACHE) 4622 rtm->rtm_flags |= RTM_F_CLONED; 4623 4624 if (dest) { 4625 if (nla_put_in6_addr(skb, RTA_DST, dest)) 4626 goto nla_put_failure; 4627 rtm->rtm_dst_len = 128; 4628 } else if (rtm->rtm_dst_len) 4629 if (nla_put_in6_addr(skb, RTA_DST, &rt->fib6_dst.addr)) 4630 goto nla_put_failure; 4631 #ifdef CONFIG_IPV6_SUBTREES 4632 if (src) { 4633 if (nla_put_in6_addr(skb, RTA_SRC, src)) 4634 goto nla_put_failure; 4635 rtm->rtm_src_len = 128; 4636 } else if (rtm->rtm_src_len && 4637 nla_put_in6_addr(skb, RTA_SRC, &rt->fib6_src.addr)) 4638 goto nla_put_failure; 4639 #endif 4640 if (iif) { 4641 #ifdef CONFIG_IPV6_MROUTE 4642 if (ipv6_addr_is_multicast(&rt->fib6_dst.addr)) { 4643 int err = ip6mr_get_route(net, skb, rtm, portid); 4644 4645 if (err == 0) 4646 return 0; 4647 if (err < 0) 4648 goto nla_put_failure; 4649 } else 4650 #endif 4651 if (nla_put_u32(skb, RTA_IIF, iif)) 4652 goto nla_put_failure; 4653 } else if (dest) { 4654 struct in6_addr saddr_buf; 4655 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && 4656 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 4657 goto nla_put_failure; 4658 } 4659 4660 if (rt->fib6_prefsrc.plen) { 4661 struct in6_addr saddr_buf; 4662 saddr_buf = rt->fib6_prefsrc.addr; 4663 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 4664 goto nla_put_failure; 4665 } 4666 4667 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 4668 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 4669 goto nla_put_failure; 4670 4671 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 4672 goto nla_put_failure; 4673 4674 /* For multipath routes, walk the siblings list and add 4675 * each as a nexthop within RTA_MULTIPATH. 4676 */ 4677 if (rt->fib6_nsiblings) { 4678 struct fib6_info *sibling, *next_sibling; 4679 struct nlattr *mp; 4680 4681 mp = nla_nest_start(skb, RTA_MULTIPATH); 4682 if (!mp) 4683 goto nla_put_failure; 4684 4685 if (rt6_add_nexthop(skb, rt) < 0) 4686 goto nla_put_failure; 4687 4688 list_for_each_entry_safe(sibling, next_sibling, 4689 &rt->fib6_siblings, fib6_siblings) { 4690 if (rt6_add_nexthop(skb, sibling) < 0) 4691 goto nla_put_failure; 4692 } 4693 4694 nla_nest_end(skb, mp); 4695 } else { 4696 if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0) 4697 goto nla_put_failure; 4698 } 4699 4700 if (rt->fib6_flags & RTF_EXPIRES) { 4701 expires = dst ? dst->expires : rt->expires; 4702 expires -= jiffies; 4703 } 4704 4705 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 4706 goto nla_put_failure; 4707 4708 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt->fib6_flags))) 4709 goto nla_put_failure; 4710 4711 4712 nlmsg_end(skb, nlh); 4713 return 0; 4714 4715 nla_put_failure: 4716 nlmsg_cancel(skb, nlh); 4717 return -EMSGSIZE; 4718 } 4719 4720 int rt6_dump_route(struct fib6_info *rt, void *p_arg) 4721 { 4722 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 4723 struct net *net = arg->net; 4724 4725 if (rt == net->ipv6.fib6_null_entry) 4726 return 0; 4727 4728 if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) { 4729 struct rtmsg *rtm = nlmsg_data(arg->cb->nlh); 4730 4731 /* user wants prefix routes only */ 4732 if (rtm->rtm_flags & RTM_F_PREFIX && 4733 !(rt->fib6_flags & RTF_PREFIX_RT)) { 4734 /* success since this is not a prefix route */ 4735 return 1; 4736 } 4737 } 4738 4739 return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0, 4740 RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid, 4741 arg->cb->nlh->nlmsg_seq, NLM_F_MULTI); 4742 } 4743 4744 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 4745 struct netlink_ext_ack *extack) 4746 { 4747 struct net *net = sock_net(in_skb->sk); 4748 struct nlattr *tb[RTA_MAX+1]; 4749 int err, iif = 0, oif = 0; 4750 struct fib6_info *from; 4751 struct dst_entry *dst; 4752 struct rt6_info *rt; 4753 struct sk_buff *skb; 4754 struct rtmsg *rtm; 4755 struct flowi6 fl6; 4756 bool fibmatch; 4757 4758 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, 4759 extack); 4760 if (err < 0) 4761 goto errout; 4762 4763 err = -EINVAL; 4764 memset(&fl6, 0, sizeof(fl6)); 4765 rtm = nlmsg_data(nlh); 4766 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); 4767 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 4768 4769 if (tb[RTA_SRC]) { 4770 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 4771 goto errout; 4772 4773 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 4774 } 4775 4776 if (tb[RTA_DST]) { 4777 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 4778 goto errout; 4779 4780 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 4781 } 4782 4783 if (tb[RTA_IIF]) 4784 iif = nla_get_u32(tb[RTA_IIF]); 4785 4786 if (tb[RTA_OIF]) 4787 oif = nla_get_u32(tb[RTA_OIF]); 4788 4789 if (tb[RTA_MARK]) 4790 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 4791 4792 if (tb[RTA_UID]) 4793 fl6.flowi6_uid = make_kuid(current_user_ns(), 4794 nla_get_u32(tb[RTA_UID])); 4795 else 4796 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 4797 4798 if (iif) { 4799 struct net_device *dev; 4800 int flags = 0; 4801 4802 rcu_read_lock(); 4803 4804 dev = dev_get_by_index_rcu(net, iif); 4805 if (!dev) { 4806 rcu_read_unlock(); 4807 err = -ENODEV; 4808 goto errout; 4809 } 4810 4811 fl6.flowi6_iif = iif; 4812 4813 if (!ipv6_addr_any(&fl6.saddr)) 4814 flags |= RT6_LOOKUP_F_HAS_SADDR; 4815 4816 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 4817 4818 rcu_read_unlock(); 4819 } else { 4820 fl6.flowi6_oif = oif; 4821 4822 dst = ip6_route_output(net, NULL, &fl6); 4823 } 4824 4825 4826 rt = container_of(dst, struct rt6_info, dst); 4827 if (rt->dst.error) { 4828 err = rt->dst.error; 4829 ip6_rt_put(rt); 4830 goto errout; 4831 } 4832 4833 if (rt == net->ipv6.ip6_null_entry) { 4834 err = rt->dst.error; 4835 ip6_rt_put(rt); 4836 goto errout; 4837 } 4838 4839 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 4840 if (!skb) { 4841 ip6_rt_put(rt); 4842 err = -ENOBUFS; 4843 goto errout; 4844 } 4845 4846 skb_dst_set(skb, &rt->dst); 4847 4848 rcu_read_lock(); 4849 from = rcu_dereference(rt->from); 4850 4851 if (fibmatch) 4852 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif, 4853 RTM_NEWROUTE, NETLINK_CB(in_skb).portid, 4854 nlh->nlmsg_seq, 0); 4855 else 4856 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 4857 &fl6.saddr, iif, RTM_NEWROUTE, 4858 NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 4859 0); 4860 rcu_read_unlock(); 4861 4862 if (err < 0) { 4863 kfree_skb(skb); 4864 goto errout; 4865 } 4866 4867 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 4868 errout: 4869 return err; 4870 } 4871 4872 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 4873 unsigned int nlm_flags) 4874 { 4875 struct sk_buff *skb; 4876 struct net *net = info->nl_net; 4877 u32 seq; 4878 int err; 4879 4880 err = -ENOBUFS; 4881 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 4882 4883 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 4884 if (!skb) 4885 goto errout; 4886 4887 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 4888 event, info->portid, seq, nlm_flags); 4889 if (err < 0) { 4890 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 4891 WARN_ON(err == -EMSGSIZE); 4892 kfree_skb(skb); 4893 goto errout; 4894 } 4895 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 4896 info->nlh, gfp_any()); 4897 return; 4898 errout: 4899 if (err < 0) 4900 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 4901 } 4902 4903 static int ip6_route_dev_notify(struct notifier_block *this, 4904 unsigned long event, void *ptr) 4905 { 4906 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4907 struct net *net = dev_net(dev); 4908 4909 if (!(dev->flags & IFF_LOOPBACK)) 4910 return NOTIFY_OK; 4911 4912 if (event == NETDEV_REGISTER) { 4913 net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev; 4914 net->ipv6.ip6_null_entry->dst.dev = dev; 4915 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 4916 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 4917 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 4918 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 4919 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 4920 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 4921 #endif 4922 } else if (event == NETDEV_UNREGISTER && 4923 dev->reg_state != NETREG_UNREGISTERED) { 4924 /* NETDEV_UNREGISTER could be fired for multiple times by 4925 * netdev_wait_allrefs(). Make sure we only call this once. 4926 */ 4927 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 4928 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 4929 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 4930 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 4931 #endif 4932 } 4933 4934 return NOTIFY_OK; 4935 } 4936 4937 /* 4938 * /proc 4939 */ 4940 4941 #ifdef CONFIG_PROC_FS 4942 4943 static const struct file_operations ipv6_route_proc_fops = { 4944 .open = ipv6_route_open, 4945 .read = seq_read, 4946 .llseek = seq_lseek, 4947 .release = seq_release_net, 4948 }; 4949 4950 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 4951 { 4952 struct net *net = (struct net *)seq->private; 4953 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 4954 net->ipv6.rt6_stats->fib_nodes, 4955 net->ipv6.rt6_stats->fib_route_nodes, 4956 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 4957 net->ipv6.rt6_stats->fib_rt_entries, 4958 net->ipv6.rt6_stats->fib_rt_cache, 4959 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 4960 net->ipv6.rt6_stats->fib_discarded_routes); 4961 4962 return 0; 4963 } 4964 4965 static int rt6_stats_seq_open(struct inode *inode, struct file *file) 4966 { 4967 return single_open_net(inode, file, rt6_stats_seq_show); 4968 } 4969 4970 static const struct file_operations rt6_stats_seq_fops = { 4971 .open = rt6_stats_seq_open, 4972 .read = seq_read, 4973 .llseek = seq_lseek, 4974 .release = single_release_net, 4975 }; 4976 #endif /* CONFIG_PROC_FS */ 4977 4978 #ifdef CONFIG_SYSCTL 4979 4980 static 4981 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, 4982 void __user *buffer, size_t *lenp, loff_t *ppos) 4983 { 4984 struct net *net; 4985 int delay; 4986 if (!write) 4987 return -EINVAL; 4988 4989 net = (struct net *)ctl->extra1; 4990 delay = net->ipv6.sysctl.flush_delay; 4991 proc_dointvec(ctl, write, buffer, lenp, ppos); 4992 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 4993 return 0; 4994 } 4995 4996 struct ctl_table ipv6_route_table_template[] = { 4997 { 4998 .procname = "flush", 4999 .data = &init_net.ipv6.sysctl.flush_delay, 5000 .maxlen = sizeof(int), 5001 .mode = 0200, 5002 .proc_handler = ipv6_sysctl_rtcache_flush 5003 }, 5004 { 5005 .procname = "gc_thresh", 5006 .data = &ip6_dst_ops_template.gc_thresh, 5007 .maxlen = sizeof(int), 5008 .mode = 0644, 5009 .proc_handler = proc_dointvec, 5010 }, 5011 { 5012 .procname = "max_size", 5013 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 5014 .maxlen = sizeof(int), 5015 .mode = 0644, 5016 .proc_handler = proc_dointvec, 5017 }, 5018 { 5019 .procname = "gc_min_interval", 5020 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 5021 .maxlen = sizeof(int), 5022 .mode = 0644, 5023 .proc_handler = proc_dointvec_jiffies, 5024 }, 5025 { 5026 .procname = "gc_timeout", 5027 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 5028 .maxlen = sizeof(int), 5029 .mode = 0644, 5030 .proc_handler = proc_dointvec_jiffies, 5031 }, 5032 { 5033 .procname = "gc_interval", 5034 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 5035 .maxlen = sizeof(int), 5036 .mode = 0644, 5037 .proc_handler = proc_dointvec_jiffies, 5038 }, 5039 { 5040 .procname = "gc_elasticity", 5041 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 5042 .maxlen = sizeof(int), 5043 .mode = 0644, 5044 .proc_handler = proc_dointvec, 5045 }, 5046 { 5047 .procname = "mtu_expires", 5048 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 5049 .maxlen = sizeof(int), 5050 .mode = 0644, 5051 .proc_handler = proc_dointvec_jiffies, 5052 }, 5053 { 5054 .procname = "min_adv_mss", 5055 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 5056 .maxlen = sizeof(int), 5057 .mode = 0644, 5058 .proc_handler = proc_dointvec, 5059 }, 5060 { 5061 .procname = "gc_min_interval_ms", 5062 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 5063 .maxlen = sizeof(int), 5064 .mode = 0644, 5065 .proc_handler = proc_dointvec_ms_jiffies, 5066 }, 5067 { } 5068 }; 5069 5070 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 5071 { 5072 struct ctl_table *table; 5073 5074 table = kmemdup(ipv6_route_table_template, 5075 sizeof(ipv6_route_table_template), 5076 GFP_KERNEL); 5077 5078 if (table) { 5079 table[0].data = &net->ipv6.sysctl.flush_delay; 5080 table[0].extra1 = net; 5081 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 5082 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size; 5083 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 5084 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 5085 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 5086 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 5087 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 5088 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 5089 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 5090 5091 /* Don't export sysctls to unprivileged users */ 5092 if (net->user_ns != &init_user_ns) 5093 table[0].procname = NULL; 5094 } 5095 5096 return table; 5097 } 5098 #endif 5099 5100 static int __net_init ip6_route_net_init(struct net *net) 5101 { 5102 int ret = -ENOMEM; 5103 5104 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 5105 sizeof(net->ipv6.ip6_dst_ops)); 5106 5107 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 5108 goto out_ip6_dst_ops; 5109 5110 net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template, 5111 sizeof(*net->ipv6.fib6_null_entry), 5112 GFP_KERNEL); 5113 if (!net->ipv6.fib6_null_entry) 5114 goto out_ip6_dst_entries; 5115 5116 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 5117 sizeof(*net->ipv6.ip6_null_entry), 5118 GFP_KERNEL); 5119 if (!net->ipv6.ip6_null_entry) 5120 goto out_fib6_null_entry; 5121 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5122 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 5123 ip6_template_metrics, true); 5124 5125 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5126 net->ipv6.fib6_has_custom_rules = false; 5127 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 5128 sizeof(*net->ipv6.ip6_prohibit_entry), 5129 GFP_KERNEL); 5130 if (!net->ipv6.ip6_prohibit_entry) 5131 goto out_ip6_null_entry; 5132 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5133 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 5134 ip6_template_metrics, true); 5135 5136 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 5137 sizeof(*net->ipv6.ip6_blk_hole_entry), 5138 GFP_KERNEL); 5139 if (!net->ipv6.ip6_blk_hole_entry) 5140 goto out_ip6_prohibit_entry; 5141 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 5142 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 5143 ip6_template_metrics, true); 5144 #endif 5145 5146 net->ipv6.sysctl.flush_delay = 0; 5147 net->ipv6.sysctl.ip6_rt_max_size = 4096; 5148 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 5149 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 5150 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 5151 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 5152 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 5153 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 5154 5155 net->ipv6.ip6_rt_gc_expire = 30*HZ; 5156 5157 ret = 0; 5158 out: 5159 return ret; 5160 5161 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5162 out_ip6_prohibit_entry: 5163 kfree(net->ipv6.ip6_prohibit_entry); 5164 out_ip6_null_entry: 5165 kfree(net->ipv6.ip6_null_entry); 5166 #endif 5167 out_fib6_null_entry: 5168 kfree(net->ipv6.fib6_null_entry); 5169 out_ip6_dst_entries: 5170 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 5171 out_ip6_dst_ops: 5172 goto out; 5173 } 5174 5175 static void __net_exit ip6_route_net_exit(struct net *net) 5176 { 5177 kfree(net->ipv6.fib6_null_entry); 5178 kfree(net->ipv6.ip6_null_entry); 5179 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5180 kfree(net->ipv6.ip6_prohibit_entry); 5181 kfree(net->ipv6.ip6_blk_hole_entry); 5182 #endif 5183 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 5184 } 5185 5186 static int __net_init ip6_route_net_init_late(struct net *net) 5187 { 5188 #ifdef CONFIG_PROC_FS 5189 proc_create("ipv6_route", 0, net->proc_net, &ipv6_route_proc_fops); 5190 proc_create("rt6_stats", 0444, net->proc_net, &rt6_stats_seq_fops); 5191 #endif 5192 return 0; 5193 } 5194 5195 static void __net_exit ip6_route_net_exit_late(struct net *net) 5196 { 5197 #ifdef CONFIG_PROC_FS 5198 remove_proc_entry("ipv6_route", net->proc_net); 5199 remove_proc_entry("rt6_stats", net->proc_net); 5200 #endif 5201 } 5202 5203 static struct pernet_operations ip6_route_net_ops = { 5204 .init = ip6_route_net_init, 5205 .exit = ip6_route_net_exit, 5206 }; 5207 5208 static int __net_init ipv6_inetpeer_init(struct net *net) 5209 { 5210 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 5211 5212 if (!bp) 5213 return -ENOMEM; 5214 inet_peer_base_init(bp); 5215 net->ipv6.peers = bp; 5216 return 0; 5217 } 5218 5219 static void __net_exit ipv6_inetpeer_exit(struct net *net) 5220 { 5221 struct inet_peer_base *bp = net->ipv6.peers; 5222 5223 net->ipv6.peers = NULL; 5224 inetpeer_invalidate_tree(bp); 5225 kfree(bp); 5226 } 5227 5228 static struct pernet_operations ipv6_inetpeer_ops = { 5229 .init = ipv6_inetpeer_init, 5230 .exit = ipv6_inetpeer_exit, 5231 }; 5232 5233 static struct pernet_operations ip6_route_net_late_ops = { 5234 .init = ip6_route_net_init_late, 5235 .exit = ip6_route_net_exit_late, 5236 }; 5237 5238 static struct notifier_block ip6_route_dev_notifier = { 5239 .notifier_call = ip6_route_dev_notify, 5240 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 5241 }; 5242 5243 void __init ip6_route_init_special_entries(void) 5244 { 5245 /* Registering of the loopback is done before this portion of code, 5246 * the loopback reference in rt6_info will not be taken, do it 5247 * manually for init_net */ 5248 init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev; 5249 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 5250 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5251 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5252 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 5253 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5254 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 5255 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 5256 #endif 5257 } 5258 5259 int __init ip6_route_init(void) 5260 { 5261 int ret; 5262 int cpu; 5263 5264 ret = -ENOMEM; 5265 ip6_dst_ops_template.kmem_cachep = 5266 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 5267 SLAB_HWCACHE_ALIGN, NULL); 5268 if (!ip6_dst_ops_template.kmem_cachep) 5269 goto out; 5270 5271 ret = dst_entries_init(&ip6_dst_blackhole_ops); 5272 if (ret) 5273 goto out_kmem_cache; 5274 5275 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 5276 if (ret) 5277 goto out_dst_entries; 5278 5279 ret = register_pernet_subsys(&ip6_route_net_ops); 5280 if (ret) 5281 goto out_register_inetpeer; 5282 5283 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 5284 5285 ret = fib6_init(); 5286 if (ret) 5287 goto out_register_subsys; 5288 5289 ret = xfrm6_init(); 5290 if (ret) 5291 goto out_fib6_init; 5292 5293 ret = fib6_rules_init(); 5294 if (ret) 5295 goto xfrm6_init; 5296 5297 ret = register_pernet_subsys(&ip6_route_net_late_ops); 5298 if (ret) 5299 goto fib6_rules_init; 5300 5301 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, 5302 inet6_rtm_newroute, NULL, 0); 5303 if (ret < 0) 5304 goto out_register_late_subsys; 5305 5306 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, 5307 inet6_rtm_delroute, NULL, 0); 5308 if (ret < 0) 5309 goto out_register_late_subsys; 5310 5311 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, 5312 inet6_rtm_getroute, NULL, 5313 RTNL_FLAG_DOIT_UNLOCKED); 5314 if (ret < 0) 5315 goto out_register_late_subsys; 5316 5317 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 5318 if (ret) 5319 goto out_register_late_subsys; 5320 5321 for_each_possible_cpu(cpu) { 5322 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 5323 5324 INIT_LIST_HEAD(&ul->head); 5325 spin_lock_init(&ul->lock); 5326 } 5327 5328 out: 5329 return ret; 5330 5331 out_register_late_subsys: 5332 rtnl_unregister_all(PF_INET6); 5333 unregister_pernet_subsys(&ip6_route_net_late_ops); 5334 fib6_rules_init: 5335 fib6_rules_cleanup(); 5336 xfrm6_init: 5337 xfrm6_fini(); 5338 out_fib6_init: 5339 fib6_gc_cleanup(); 5340 out_register_subsys: 5341 unregister_pernet_subsys(&ip6_route_net_ops); 5342 out_register_inetpeer: 5343 unregister_pernet_subsys(&ipv6_inetpeer_ops); 5344 out_dst_entries: 5345 dst_entries_destroy(&ip6_dst_blackhole_ops); 5346 out_kmem_cache: 5347 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 5348 goto out; 5349 } 5350 5351 void ip6_route_cleanup(void) 5352 { 5353 unregister_netdevice_notifier(&ip6_route_dev_notifier); 5354 unregister_pernet_subsys(&ip6_route_net_late_ops); 5355 fib6_rules_cleanup(); 5356 xfrm6_fini(); 5357 fib6_gc_cleanup(); 5358 unregister_pernet_subsys(&ipv6_inetpeer_ops); 5359 unregister_pernet_subsys(&ip6_route_net_ops); 5360 dst_entries_destroy(&ip6_dst_blackhole_ops); 5361 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 5362 } 5363