xref: /openbmc/linux/net/ipv6/route.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  *	Linux INET6 implementation
3  *	FIB front-end.
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*	Changes:
15  *
16  *	YOSHIFUJI Hideaki @USAGI
17  *		reworked default router selection.
18  *		- respect outgoing interface
19  *		- select from (probably) reachable routers (i.e.
20  *		routers in REACHABLE, STALE, DELAY or PROBE states).
21  *		- always select the same router if it is (probably)
22  *		reachable.  otherwise, round-robin the list.
23  *	Ville Nuorvala
24  *		Fixed routing subtrees.
25  */
26 
27 #define pr_fmt(fmt) "IPv6: " fmt
28 
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/types.h>
33 #include <linux/times.h>
34 #include <linux/socket.h>
35 #include <linux/sockios.h>
36 #include <linux/net.h>
37 #include <linux/route.h>
38 #include <linux/netdevice.h>
39 #include <linux/in6.h>
40 #include <linux/mroute6.h>
41 #include <linux/init.h>
42 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/nsproxy.h>
46 #include <linux/slab.h>
47 #include <linux/jhash.h>
48 #include <net/net_namespace.h>
49 #include <net/snmp.h>
50 #include <net/ipv6.h>
51 #include <net/ip6_fib.h>
52 #include <net/ip6_route.h>
53 #include <net/ndisc.h>
54 #include <net/addrconf.h>
55 #include <net/tcp.h>
56 #include <linux/rtnetlink.h>
57 #include <net/dst.h>
58 #include <net/dst_metadata.h>
59 #include <net/xfrm.h>
60 #include <net/netevent.h>
61 #include <net/netlink.h>
62 #include <net/nexthop.h>
63 #include <net/lwtunnel.h>
64 #include <net/ip_tunnels.h>
65 #include <net/l3mdev.h>
66 #include <net/ip.h>
67 #include <linux/uaccess.h>
68 
69 #ifdef CONFIG_SYSCTL
70 #include <linux/sysctl.h>
71 #endif
72 
73 static int ip6_rt_type_to_error(u8 fib6_type);
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/fib6.h>
77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
78 #undef CREATE_TRACE_POINTS
79 
80 enum rt6_nud_state {
81 	RT6_NUD_FAIL_HARD = -3,
82 	RT6_NUD_FAIL_PROBE = -2,
83 	RT6_NUD_FAIL_DO_RR = -1,
84 	RT6_NUD_SUCCEED = 1
85 };
86 
87 static struct dst_entry	*ip6_dst_check(struct dst_entry *dst, u32 cookie);
88 static unsigned int	 ip6_default_advmss(const struct dst_entry *dst);
89 static unsigned int	 ip6_mtu(const struct dst_entry *dst);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void		ip6_dst_destroy(struct dst_entry *);
92 static void		ip6_dst_ifdown(struct dst_entry *,
93 				       struct net_device *dev, int how);
94 static int		 ip6_dst_gc(struct dst_ops *ops);
95 
96 static int		ip6_pkt_discard(struct sk_buff *skb);
97 static int		ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
98 static int		ip6_pkt_prohibit(struct sk_buff *skb);
99 static int		ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
100 static void		ip6_link_failure(struct sk_buff *skb);
101 static void		ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
102 					   struct sk_buff *skb, u32 mtu);
103 static void		rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
104 					struct sk_buff *skb);
105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict);
106 static size_t rt6_nlmsg_size(struct fib6_info *rt);
107 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
108 			 struct fib6_info *rt, struct dst_entry *dst,
109 			 struct in6_addr *dest, struct in6_addr *src,
110 			 int iif, int type, u32 portid, u32 seq,
111 			 unsigned int flags);
112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
113 					   struct in6_addr *daddr,
114 					   struct in6_addr *saddr);
115 
116 #ifdef CONFIG_IPV6_ROUTE_INFO
117 static struct fib6_info *rt6_add_route_info(struct net *net,
118 					   const struct in6_addr *prefix, int prefixlen,
119 					   const struct in6_addr *gwaddr,
120 					   struct net_device *dev,
121 					   unsigned int pref);
122 static struct fib6_info *rt6_get_route_info(struct net *net,
123 					   const struct in6_addr *prefix, int prefixlen,
124 					   const struct in6_addr *gwaddr,
125 					   struct net_device *dev);
126 #endif
127 
128 struct uncached_list {
129 	spinlock_t		lock;
130 	struct list_head	head;
131 };
132 
133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
134 
135 void rt6_uncached_list_add(struct rt6_info *rt)
136 {
137 	struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
138 
139 	rt->rt6i_uncached_list = ul;
140 
141 	spin_lock_bh(&ul->lock);
142 	list_add_tail(&rt->rt6i_uncached, &ul->head);
143 	spin_unlock_bh(&ul->lock);
144 }
145 
146 void rt6_uncached_list_del(struct rt6_info *rt)
147 {
148 	if (!list_empty(&rt->rt6i_uncached)) {
149 		struct uncached_list *ul = rt->rt6i_uncached_list;
150 		struct net *net = dev_net(rt->dst.dev);
151 
152 		spin_lock_bh(&ul->lock);
153 		list_del(&rt->rt6i_uncached);
154 		atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache);
155 		spin_unlock_bh(&ul->lock);
156 	}
157 }
158 
159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev)
160 {
161 	struct net_device *loopback_dev = net->loopback_dev;
162 	int cpu;
163 
164 	if (dev == loopback_dev)
165 		return;
166 
167 	for_each_possible_cpu(cpu) {
168 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
169 		struct rt6_info *rt;
170 
171 		spin_lock_bh(&ul->lock);
172 		list_for_each_entry(rt, &ul->head, rt6i_uncached) {
173 			struct inet6_dev *rt_idev = rt->rt6i_idev;
174 			struct net_device *rt_dev = rt->dst.dev;
175 
176 			if (rt_idev->dev == dev) {
177 				rt->rt6i_idev = in6_dev_get(loopback_dev);
178 				in6_dev_put(rt_idev);
179 			}
180 
181 			if (rt_dev == dev) {
182 				rt->dst.dev = loopback_dev;
183 				dev_hold(rt->dst.dev);
184 				dev_put(rt_dev);
185 			}
186 		}
187 		spin_unlock_bh(&ul->lock);
188 	}
189 }
190 
191 static inline const void *choose_neigh_daddr(const struct in6_addr *p,
192 					     struct sk_buff *skb,
193 					     const void *daddr)
194 {
195 	if (!ipv6_addr_any(p))
196 		return (const void *) p;
197 	else if (skb)
198 		return &ipv6_hdr(skb)->daddr;
199 	return daddr;
200 }
201 
202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
203 				   struct net_device *dev,
204 				   struct sk_buff *skb,
205 				   const void *daddr)
206 {
207 	struct neighbour *n;
208 
209 	daddr = choose_neigh_daddr(gw, skb, daddr);
210 	n = __ipv6_neigh_lookup(dev, daddr);
211 	if (n)
212 		return n;
213 	return neigh_create(&nd_tbl, daddr, dev);
214 }
215 
216 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
217 					      struct sk_buff *skb,
218 					      const void *daddr)
219 {
220 	const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
221 
222 	return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr);
223 }
224 
225 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
226 {
227 	struct net_device *dev = dst->dev;
228 	struct rt6_info *rt = (struct rt6_info *)dst;
229 
230 	daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr);
231 	if (!daddr)
232 		return;
233 	if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
234 		return;
235 	if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
236 		return;
237 	__ipv6_confirm_neigh(dev, daddr);
238 }
239 
240 static struct dst_ops ip6_dst_ops_template = {
241 	.family			=	AF_INET6,
242 	.gc			=	ip6_dst_gc,
243 	.gc_thresh		=	1024,
244 	.check			=	ip6_dst_check,
245 	.default_advmss		=	ip6_default_advmss,
246 	.mtu			=	ip6_mtu,
247 	.cow_metrics		=	dst_cow_metrics_generic,
248 	.destroy		=	ip6_dst_destroy,
249 	.ifdown			=	ip6_dst_ifdown,
250 	.negative_advice	=	ip6_negative_advice,
251 	.link_failure		=	ip6_link_failure,
252 	.update_pmtu		=	ip6_rt_update_pmtu,
253 	.redirect		=	rt6_do_redirect,
254 	.local_out		=	__ip6_local_out,
255 	.neigh_lookup		=	ip6_dst_neigh_lookup,
256 	.confirm_neigh		=	ip6_confirm_neigh,
257 };
258 
259 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst)
260 {
261 	unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
262 
263 	return mtu ? : dst->dev->mtu;
264 }
265 
266 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk,
267 					 struct sk_buff *skb, u32 mtu)
268 {
269 }
270 
271 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk,
272 				      struct sk_buff *skb)
273 {
274 }
275 
276 static struct dst_ops ip6_dst_blackhole_ops = {
277 	.family			=	AF_INET6,
278 	.destroy		=	ip6_dst_destroy,
279 	.check			=	ip6_dst_check,
280 	.mtu			=	ip6_blackhole_mtu,
281 	.default_advmss		=	ip6_default_advmss,
282 	.update_pmtu		=	ip6_rt_blackhole_update_pmtu,
283 	.redirect		=	ip6_rt_blackhole_redirect,
284 	.cow_metrics		=	dst_cow_metrics_generic,
285 	.neigh_lookup		=	ip6_dst_neigh_lookup,
286 };
287 
288 static const u32 ip6_template_metrics[RTAX_MAX] = {
289 	[RTAX_HOPLIMIT - 1] = 0,
290 };
291 
292 static const struct fib6_info fib6_null_entry_template = {
293 	.fib6_flags	= (RTF_REJECT | RTF_NONEXTHOP),
294 	.fib6_protocol  = RTPROT_KERNEL,
295 	.fib6_metric	= ~(u32)0,
296 	.fib6_ref	= ATOMIC_INIT(1),
297 	.fib6_type	= RTN_UNREACHABLE,
298 	.fib6_metrics	= (struct dst_metrics *)&dst_default_metrics,
299 };
300 
301 static const struct rt6_info ip6_null_entry_template = {
302 	.dst = {
303 		.__refcnt	= ATOMIC_INIT(1),
304 		.__use		= 1,
305 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
306 		.error		= -ENETUNREACH,
307 		.input		= ip6_pkt_discard,
308 		.output		= ip6_pkt_discard_out,
309 	},
310 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
311 };
312 
313 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
314 
315 static const struct rt6_info ip6_prohibit_entry_template = {
316 	.dst = {
317 		.__refcnt	= ATOMIC_INIT(1),
318 		.__use		= 1,
319 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
320 		.error		= -EACCES,
321 		.input		= ip6_pkt_prohibit,
322 		.output		= ip6_pkt_prohibit_out,
323 	},
324 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
325 };
326 
327 static const struct rt6_info ip6_blk_hole_entry_template = {
328 	.dst = {
329 		.__refcnt	= ATOMIC_INIT(1),
330 		.__use		= 1,
331 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
332 		.error		= -EINVAL,
333 		.input		= dst_discard,
334 		.output		= dst_discard_out,
335 	},
336 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
337 };
338 
339 #endif
340 
341 static void rt6_info_init(struct rt6_info *rt)
342 {
343 	struct dst_entry *dst = &rt->dst;
344 
345 	memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst));
346 	INIT_LIST_HEAD(&rt->rt6i_uncached);
347 }
348 
349 /* allocate dst with ip6_dst_ops */
350 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
351 			       int flags)
352 {
353 	struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
354 					1, DST_OBSOLETE_FORCE_CHK, flags);
355 
356 	if (rt) {
357 		rt6_info_init(rt);
358 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
359 	}
360 
361 	return rt;
362 }
363 EXPORT_SYMBOL(ip6_dst_alloc);
364 
365 static void ip6_dst_destroy(struct dst_entry *dst)
366 {
367 	struct rt6_info *rt = (struct rt6_info *)dst;
368 	struct fib6_info *from;
369 	struct inet6_dev *idev;
370 
371 	dst_destroy_metrics_generic(dst);
372 	rt6_uncached_list_del(rt);
373 
374 	idev = rt->rt6i_idev;
375 	if (idev) {
376 		rt->rt6i_idev = NULL;
377 		in6_dev_put(idev);
378 	}
379 
380 	rcu_read_lock();
381 	from = rcu_dereference(rt->from);
382 	rcu_assign_pointer(rt->from, NULL);
383 	fib6_info_release(from);
384 	rcu_read_unlock();
385 }
386 
387 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
388 			   int how)
389 {
390 	struct rt6_info *rt = (struct rt6_info *)dst;
391 	struct inet6_dev *idev = rt->rt6i_idev;
392 	struct net_device *loopback_dev =
393 		dev_net(dev)->loopback_dev;
394 
395 	if (idev && idev->dev != loopback_dev) {
396 		struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev);
397 		if (loopback_idev) {
398 			rt->rt6i_idev = loopback_idev;
399 			in6_dev_put(idev);
400 		}
401 	}
402 }
403 
404 static bool __rt6_check_expired(const struct rt6_info *rt)
405 {
406 	if (rt->rt6i_flags & RTF_EXPIRES)
407 		return time_after(jiffies, rt->dst.expires);
408 	else
409 		return false;
410 }
411 
412 static bool rt6_check_expired(const struct rt6_info *rt)
413 {
414 	struct fib6_info *from;
415 
416 	from = rcu_dereference(rt->from);
417 
418 	if (rt->rt6i_flags & RTF_EXPIRES) {
419 		if (time_after(jiffies, rt->dst.expires))
420 			return true;
421 	} else if (from) {
422 		return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
423 			fib6_check_expired(from);
424 	}
425 	return false;
426 }
427 
428 struct fib6_info *fib6_multipath_select(const struct net *net,
429 					struct fib6_info *match,
430 					struct flowi6 *fl6, int oif,
431 					const struct sk_buff *skb,
432 					int strict)
433 {
434 	struct fib6_info *sibling, *next_sibling;
435 
436 	/* We might have already computed the hash for ICMPv6 errors. In such
437 	 * case it will always be non-zero. Otherwise now is the time to do it.
438 	 */
439 	if (!fl6->mp_hash)
440 		fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
441 
442 	if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound))
443 		return match;
444 
445 	list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
446 				 fib6_siblings) {
447 		int nh_upper_bound;
448 
449 		nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound);
450 		if (fl6->mp_hash > nh_upper_bound)
451 			continue;
452 		if (rt6_score_route(sibling, oif, strict) < 0)
453 			break;
454 		match = sibling;
455 		break;
456 	}
457 
458 	return match;
459 }
460 
461 /*
462  *	Route lookup. rcu_read_lock() should be held.
463  */
464 
465 static inline struct fib6_info *rt6_device_match(struct net *net,
466 						 struct fib6_info *rt,
467 						    const struct in6_addr *saddr,
468 						    int oif,
469 						    int flags)
470 {
471 	struct fib6_info *sprt;
472 
473 	if (!oif && ipv6_addr_any(saddr) &&
474 	    !(rt->fib6_nh.nh_flags & RTNH_F_DEAD))
475 		return rt;
476 
477 	for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) {
478 		const struct net_device *dev = sprt->fib6_nh.nh_dev;
479 
480 		if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD)
481 			continue;
482 
483 		if (oif) {
484 			if (dev->ifindex == oif)
485 				return sprt;
486 		} else {
487 			if (ipv6_chk_addr(net, saddr, dev,
488 					  flags & RT6_LOOKUP_F_IFACE))
489 				return sprt;
490 		}
491 	}
492 
493 	if (oif && flags & RT6_LOOKUP_F_IFACE)
494 		return net->ipv6.fib6_null_entry;
495 
496 	return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt;
497 }
498 
499 #ifdef CONFIG_IPV6_ROUTER_PREF
500 struct __rt6_probe_work {
501 	struct work_struct work;
502 	struct in6_addr target;
503 	struct net_device *dev;
504 };
505 
506 static void rt6_probe_deferred(struct work_struct *w)
507 {
508 	struct in6_addr mcaddr;
509 	struct __rt6_probe_work *work =
510 		container_of(w, struct __rt6_probe_work, work);
511 
512 	addrconf_addr_solict_mult(&work->target, &mcaddr);
513 	ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
514 	dev_put(work->dev);
515 	kfree(work);
516 }
517 
518 static void rt6_probe(struct fib6_info *rt)
519 {
520 	struct __rt6_probe_work *work;
521 	const struct in6_addr *nh_gw;
522 	struct neighbour *neigh;
523 	struct net_device *dev;
524 
525 	/*
526 	 * Okay, this does not seem to be appropriate
527 	 * for now, however, we need to check if it
528 	 * is really so; aka Router Reachability Probing.
529 	 *
530 	 * Router Reachability Probe MUST be rate-limited
531 	 * to no more than one per minute.
532 	 */
533 	if (!rt || !(rt->fib6_flags & RTF_GATEWAY))
534 		return;
535 
536 	nh_gw = &rt->fib6_nh.nh_gw;
537 	dev = rt->fib6_nh.nh_dev;
538 	rcu_read_lock_bh();
539 	neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
540 	if (neigh) {
541 		struct inet6_dev *idev;
542 
543 		if (neigh->nud_state & NUD_VALID)
544 			goto out;
545 
546 		idev = __in6_dev_get(dev);
547 		work = NULL;
548 		write_lock(&neigh->lock);
549 		if (!(neigh->nud_state & NUD_VALID) &&
550 		    time_after(jiffies,
551 			       neigh->updated + idev->cnf.rtr_probe_interval)) {
552 			work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 			if (work)
554 				__neigh_set_probe_once(neigh);
555 		}
556 		write_unlock(&neigh->lock);
557 	} else {
558 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
559 	}
560 
561 	if (work) {
562 		INIT_WORK(&work->work, rt6_probe_deferred);
563 		work->target = *nh_gw;
564 		dev_hold(dev);
565 		work->dev = dev;
566 		schedule_work(&work->work);
567 	}
568 
569 out:
570 	rcu_read_unlock_bh();
571 }
572 #else
573 static inline void rt6_probe(struct fib6_info *rt)
574 {
575 }
576 #endif
577 
578 /*
579  * Default Router Selection (RFC 2461 6.3.6)
580  */
581 static inline int rt6_check_dev(struct fib6_info *rt, int oif)
582 {
583 	const struct net_device *dev = rt->fib6_nh.nh_dev;
584 
585 	if (!oif || dev->ifindex == oif)
586 		return 2;
587 	return 0;
588 }
589 
590 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt)
591 {
592 	enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
593 	struct neighbour *neigh;
594 
595 	if (rt->fib6_flags & RTF_NONEXTHOP ||
596 	    !(rt->fib6_flags & RTF_GATEWAY))
597 		return RT6_NUD_SUCCEED;
598 
599 	rcu_read_lock_bh();
600 	neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev,
601 					  &rt->fib6_nh.nh_gw);
602 	if (neigh) {
603 		read_lock(&neigh->lock);
604 		if (neigh->nud_state & NUD_VALID)
605 			ret = RT6_NUD_SUCCEED;
606 #ifdef CONFIG_IPV6_ROUTER_PREF
607 		else if (!(neigh->nud_state & NUD_FAILED))
608 			ret = RT6_NUD_SUCCEED;
609 		else
610 			ret = RT6_NUD_FAIL_PROBE;
611 #endif
612 		read_unlock(&neigh->lock);
613 	} else {
614 		ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
615 		      RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
616 	}
617 	rcu_read_unlock_bh();
618 
619 	return ret;
620 }
621 
622 static int rt6_score_route(struct fib6_info *rt, int oif, int strict)
623 {
624 	int m;
625 
626 	m = rt6_check_dev(rt, oif);
627 	if (!m && (strict & RT6_LOOKUP_F_IFACE))
628 		return RT6_NUD_FAIL_HARD;
629 #ifdef CONFIG_IPV6_ROUTER_PREF
630 	m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2;
631 #endif
632 	if (strict & RT6_LOOKUP_F_REACHABLE) {
633 		int n = rt6_check_neigh(rt);
634 		if (n < 0)
635 			return n;
636 	}
637 	return m;
638 }
639 
640 /* called with rc_read_lock held */
641 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i)
642 {
643 	const struct net_device *dev = fib6_info_nh_dev(f6i);
644 	bool rc = false;
645 
646 	if (dev) {
647 		const struct inet6_dev *idev = __in6_dev_get(dev);
648 
649 		rc = !!idev->cnf.ignore_routes_with_linkdown;
650 	}
651 
652 	return rc;
653 }
654 
655 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict,
656 				   int *mpri, struct fib6_info *match,
657 				   bool *do_rr)
658 {
659 	int m;
660 	bool match_do_rr = false;
661 
662 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
663 		goto out;
664 
665 	if (fib6_ignore_linkdown(rt) &&
666 	    rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
667 	    !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
668 		goto out;
669 
670 	if (fib6_check_expired(rt))
671 		goto out;
672 
673 	m = rt6_score_route(rt, oif, strict);
674 	if (m == RT6_NUD_FAIL_DO_RR) {
675 		match_do_rr = true;
676 		m = 0; /* lowest valid score */
677 	} else if (m == RT6_NUD_FAIL_HARD) {
678 		goto out;
679 	}
680 
681 	if (strict & RT6_LOOKUP_F_REACHABLE)
682 		rt6_probe(rt);
683 
684 	/* note that m can be RT6_NUD_FAIL_PROBE at this point */
685 	if (m > *mpri) {
686 		*do_rr = match_do_rr;
687 		*mpri = m;
688 		match = rt;
689 	}
690 out:
691 	return match;
692 }
693 
694 static struct fib6_info *find_rr_leaf(struct fib6_node *fn,
695 				     struct fib6_info *leaf,
696 				     struct fib6_info *rr_head,
697 				     u32 metric, int oif, int strict,
698 				     bool *do_rr)
699 {
700 	struct fib6_info *rt, *match, *cont;
701 	int mpri = -1;
702 
703 	match = NULL;
704 	cont = NULL;
705 	for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) {
706 		if (rt->fib6_metric != metric) {
707 			cont = rt;
708 			break;
709 		}
710 
711 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
712 	}
713 
714 	for (rt = leaf; rt && rt != rr_head;
715 	     rt = rcu_dereference(rt->fib6_next)) {
716 		if (rt->fib6_metric != metric) {
717 			cont = rt;
718 			break;
719 		}
720 
721 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
722 	}
723 
724 	if (match || !cont)
725 		return match;
726 
727 	for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next))
728 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
729 
730 	return match;
731 }
732 
733 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn,
734 				   int oif, int strict)
735 {
736 	struct fib6_info *leaf = rcu_dereference(fn->leaf);
737 	struct fib6_info *match, *rt0;
738 	bool do_rr = false;
739 	int key_plen;
740 
741 	if (!leaf || leaf == net->ipv6.fib6_null_entry)
742 		return net->ipv6.fib6_null_entry;
743 
744 	rt0 = rcu_dereference(fn->rr_ptr);
745 	if (!rt0)
746 		rt0 = leaf;
747 
748 	/* Double check to make sure fn is not an intermediate node
749 	 * and fn->leaf does not points to its child's leaf
750 	 * (This might happen if all routes under fn are deleted from
751 	 * the tree and fib6_repair_tree() is called on the node.)
752 	 */
753 	key_plen = rt0->fib6_dst.plen;
754 #ifdef CONFIG_IPV6_SUBTREES
755 	if (rt0->fib6_src.plen)
756 		key_plen = rt0->fib6_src.plen;
757 #endif
758 	if (fn->fn_bit != key_plen)
759 		return net->ipv6.fib6_null_entry;
760 
761 	match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict,
762 			     &do_rr);
763 
764 	if (do_rr) {
765 		struct fib6_info *next = rcu_dereference(rt0->fib6_next);
766 
767 		/* no entries matched; do round-robin */
768 		if (!next || next->fib6_metric != rt0->fib6_metric)
769 			next = leaf;
770 
771 		if (next != rt0) {
772 			spin_lock_bh(&leaf->fib6_table->tb6_lock);
773 			/* make sure next is not being deleted from the tree */
774 			if (next->fib6_node)
775 				rcu_assign_pointer(fn->rr_ptr, next);
776 			spin_unlock_bh(&leaf->fib6_table->tb6_lock);
777 		}
778 	}
779 
780 	return match ? match : net->ipv6.fib6_null_entry;
781 }
782 
783 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt)
784 {
785 	return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY));
786 }
787 
788 #ifdef CONFIG_IPV6_ROUTE_INFO
789 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
790 		  const struct in6_addr *gwaddr)
791 {
792 	struct net *net = dev_net(dev);
793 	struct route_info *rinfo = (struct route_info *) opt;
794 	struct in6_addr prefix_buf, *prefix;
795 	unsigned int pref;
796 	unsigned long lifetime;
797 	struct fib6_info *rt;
798 
799 	if (len < sizeof(struct route_info)) {
800 		return -EINVAL;
801 	}
802 
803 	/* Sanity check for prefix_len and length */
804 	if (rinfo->length > 3) {
805 		return -EINVAL;
806 	} else if (rinfo->prefix_len > 128) {
807 		return -EINVAL;
808 	} else if (rinfo->prefix_len > 64) {
809 		if (rinfo->length < 2) {
810 			return -EINVAL;
811 		}
812 	} else if (rinfo->prefix_len > 0) {
813 		if (rinfo->length < 1) {
814 			return -EINVAL;
815 		}
816 	}
817 
818 	pref = rinfo->route_pref;
819 	if (pref == ICMPV6_ROUTER_PREF_INVALID)
820 		return -EINVAL;
821 
822 	lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
823 
824 	if (rinfo->length == 3)
825 		prefix = (struct in6_addr *)rinfo->prefix;
826 	else {
827 		/* this function is safe */
828 		ipv6_addr_prefix(&prefix_buf,
829 				 (struct in6_addr *)rinfo->prefix,
830 				 rinfo->prefix_len);
831 		prefix = &prefix_buf;
832 	}
833 
834 	if (rinfo->prefix_len == 0)
835 		rt = rt6_get_dflt_router(net, gwaddr, dev);
836 	else
837 		rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
838 					gwaddr, dev);
839 
840 	if (rt && !lifetime) {
841 		ip6_del_rt(net, rt);
842 		rt = NULL;
843 	}
844 
845 	if (!rt && lifetime)
846 		rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
847 					dev, pref);
848 	else if (rt)
849 		rt->fib6_flags = RTF_ROUTEINFO |
850 				 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
851 
852 	if (rt) {
853 		if (!addrconf_finite_timeout(lifetime))
854 			fib6_clean_expires(rt);
855 		else
856 			fib6_set_expires(rt, jiffies + HZ * lifetime);
857 
858 		fib6_info_release(rt);
859 	}
860 	return 0;
861 }
862 #endif
863 
864 /*
865  *	Misc support functions
866  */
867 
868 /* called with rcu_lock held */
869 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt)
870 {
871 	struct net_device *dev = rt->fib6_nh.nh_dev;
872 
873 	if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
874 		/* for copies of local routes, dst->dev needs to be the
875 		 * device if it is a master device, the master device if
876 		 * device is enslaved, and the loopback as the default
877 		 */
878 		if (netif_is_l3_slave(dev) &&
879 		    !rt6_need_strict(&rt->fib6_dst.addr))
880 			dev = l3mdev_master_dev_rcu(dev);
881 		else if (!netif_is_l3_master(dev))
882 			dev = dev_net(dev)->loopback_dev;
883 		/* last case is netif_is_l3_master(dev) is true in which
884 		 * case we want dev returned to be dev
885 		 */
886 	}
887 
888 	return dev;
889 }
890 
891 static const int fib6_prop[RTN_MAX + 1] = {
892 	[RTN_UNSPEC]	= 0,
893 	[RTN_UNICAST]	= 0,
894 	[RTN_LOCAL]	= 0,
895 	[RTN_BROADCAST]	= 0,
896 	[RTN_ANYCAST]	= 0,
897 	[RTN_MULTICAST]	= 0,
898 	[RTN_BLACKHOLE]	= -EINVAL,
899 	[RTN_UNREACHABLE] = -EHOSTUNREACH,
900 	[RTN_PROHIBIT]	= -EACCES,
901 	[RTN_THROW]	= -EAGAIN,
902 	[RTN_NAT]	= -EINVAL,
903 	[RTN_XRESOLVE]	= -EINVAL,
904 };
905 
906 static int ip6_rt_type_to_error(u8 fib6_type)
907 {
908 	return fib6_prop[fib6_type];
909 }
910 
911 static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
912 {
913 	unsigned short flags = 0;
914 
915 	if (rt->dst_nocount)
916 		flags |= DST_NOCOUNT;
917 	if (rt->dst_nopolicy)
918 		flags |= DST_NOPOLICY;
919 	if (rt->dst_host)
920 		flags |= DST_HOST;
921 
922 	return flags;
923 }
924 
925 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort)
926 {
927 	rt->dst.error = ip6_rt_type_to_error(ort->fib6_type);
928 
929 	switch (ort->fib6_type) {
930 	case RTN_BLACKHOLE:
931 		rt->dst.output = dst_discard_out;
932 		rt->dst.input = dst_discard;
933 		break;
934 	case RTN_PROHIBIT:
935 		rt->dst.output = ip6_pkt_prohibit_out;
936 		rt->dst.input = ip6_pkt_prohibit;
937 		break;
938 	case RTN_THROW:
939 	case RTN_UNREACHABLE:
940 	default:
941 		rt->dst.output = ip6_pkt_discard_out;
942 		rt->dst.input = ip6_pkt_discard;
943 		break;
944 	}
945 }
946 
947 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort)
948 {
949 	rt->dst.flags |= fib6_info_dst_flags(ort);
950 
951 	if (ort->fib6_flags & RTF_REJECT) {
952 		ip6_rt_init_dst_reject(rt, ort);
953 		return;
954 	}
955 
956 	rt->dst.error = 0;
957 	rt->dst.output = ip6_output;
958 
959 	if (ort->fib6_type == RTN_LOCAL) {
960 		rt->dst.input = ip6_input;
961 	} else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
962 		rt->dst.input = ip6_mc_input;
963 	} else {
964 		rt->dst.input = ip6_forward;
965 	}
966 
967 	if (ort->fib6_nh.nh_lwtstate) {
968 		rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
969 		lwtunnel_set_redirect(&rt->dst);
970 	}
971 
972 	rt->dst.lastuse = jiffies;
973 }
974 
975 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
976 {
977 	rt->rt6i_flags &= ~RTF_EXPIRES;
978 	fib6_info_hold(from);
979 	rcu_assign_pointer(rt->from, from);
980 	dst_init_metrics(&rt->dst, from->fib6_metrics->metrics, true);
981 	if (from->fib6_metrics != &dst_default_metrics) {
982 		rt->dst._metrics |= DST_METRICS_REFCOUNTED;
983 		refcount_inc(&from->fib6_metrics->refcnt);
984 	}
985 }
986 
987 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort)
988 {
989 	struct net_device *dev = fib6_info_nh_dev(ort);
990 
991 	ip6_rt_init_dst(rt, ort);
992 
993 	rt->rt6i_dst = ort->fib6_dst;
994 	rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
995 	rt->rt6i_gateway = ort->fib6_nh.nh_gw;
996 	rt->rt6i_flags = ort->fib6_flags;
997 	rt6_set_from(rt, ort);
998 #ifdef CONFIG_IPV6_SUBTREES
999 	rt->rt6i_src = ort->fib6_src;
1000 #endif
1001 	rt->rt6i_prefsrc = ort->fib6_prefsrc;
1002 	rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
1003 }
1004 
1005 static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
1006 					struct in6_addr *saddr)
1007 {
1008 	struct fib6_node *pn, *sn;
1009 	while (1) {
1010 		if (fn->fn_flags & RTN_TL_ROOT)
1011 			return NULL;
1012 		pn = rcu_dereference(fn->parent);
1013 		sn = FIB6_SUBTREE(pn);
1014 		if (sn && sn != fn)
1015 			fn = fib6_node_lookup(sn, NULL, saddr);
1016 		else
1017 			fn = pn;
1018 		if (fn->fn_flags & RTN_RTINFO)
1019 			return fn;
1020 	}
1021 }
1022 
1023 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt,
1024 			  bool null_fallback)
1025 {
1026 	struct rt6_info *rt = *prt;
1027 
1028 	if (dst_hold_safe(&rt->dst))
1029 		return true;
1030 	if (null_fallback) {
1031 		rt = net->ipv6.ip6_null_entry;
1032 		dst_hold(&rt->dst);
1033 	} else {
1034 		rt = NULL;
1035 	}
1036 	*prt = rt;
1037 	return false;
1038 }
1039 
1040 /* called with rcu_lock held */
1041 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt)
1042 {
1043 	unsigned short flags = fib6_info_dst_flags(rt);
1044 	struct net_device *dev = rt->fib6_nh.nh_dev;
1045 	struct rt6_info *nrt;
1046 
1047 	nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
1048 	if (nrt)
1049 		ip6_rt_copy_init(nrt, rt);
1050 
1051 	return nrt;
1052 }
1053 
1054 static struct rt6_info *ip6_pol_route_lookup(struct net *net,
1055 					     struct fib6_table *table,
1056 					     struct flowi6 *fl6,
1057 					     const struct sk_buff *skb,
1058 					     int flags)
1059 {
1060 	struct fib6_info *f6i;
1061 	struct fib6_node *fn;
1062 	struct rt6_info *rt;
1063 
1064 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1065 		flags &= ~RT6_LOOKUP_F_IFACE;
1066 
1067 	rcu_read_lock();
1068 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1069 restart:
1070 	f6i = rcu_dereference(fn->leaf);
1071 	if (!f6i) {
1072 		f6i = net->ipv6.fib6_null_entry;
1073 	} else {
1074 		f6i = rt6_device_match(net, f6i, &fl6->saddr,
1075 				      fl6->flowi6_oif, flags);
1076 		if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0)
1077 			f6i = fib6_multipath_select(net, f6i, fl6,
1078 						    fl6->flowi6_oif, skb,
1079 						    flags);
1080 	}
1081 	if (f6i == net->ipv6.fib6_null_entry) {
1082 		fn = fib6_backtrack(fn, &fl6->saddr);
1083 		if (fn)
1084 			goto restart;
1085 	}
1086 
1087 	trace_fib6_table_lookup(net, f6i, table, fl6);
1088 
1089 	/* Search through exception table */
1090 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1091 	if (rt) {
1092 		if (ip6_hold_safe(net, &rt, true))
1093 			dst_use_noref(&rt->dst, jiffies);
1094 	} else if (f6i == net->ipv6.fib6_null_entry) {
1095 		rt = net->ipv6.ip6_null_entry;
1096 		dst_hold(&rt->dst);
1097 	} else {
1098 		rt = ip6_create_rt_rcu(f6i);
1099 		if (!rt) {
1100 			rt = net->ipv6.ip6_null_entry;
1101 			dst_hold(&rt->dst);
1102 		}
1103 	}
1104 
1105 	rcu_read_unlock();
1106 
1107 	return rt;
1108 }
1109 
1110 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
1111 				   const struct sk_buff *skb, int flags)
1112 {
1113 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
1114 }
1115 EXPORT_SYMBOL_GPL(ip6_route_lookup);
1116 
1117 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
1118 			    const struct in6_addr *saddr, int oif,
1119 			    const struct sk_buff *skb, int strict)
1120 {
1121 	struct flowi6 fl6 = {
1122 		.flowi6_oif = oif,
1123 		.daddr = *daddr,
1124 	};
1125 	struct dst_entry *dst;
1126 	int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
1127 
1128 	if (saddr) {
1129 		memcpy(&fl6.saddr, saddr, sizeof(*saddr));
1130 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1131 	}
1132 
1133 	dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
1134 	if (dst->error == 0)
1135 		return (struct rt6_info *) dst;
1136 
1137 	dst_release(dst);
1138 
1139 	return NULL;
1140 }
1141 EXPORT_SYMBOL(rt6_lookup);
1142 
1143 /* ip6_ins_rt is called with FREE table->tb6_lock.
1144  * It takes new route entry, the addition fails by any reason the
1145  * route is released.
1146  * Caller must hold dst before calling it.
1147  */
1148 
1149 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
1150 			struct netlink_ext_ack *extack)
1151 {
1152 	int err;
1153 	struct fib6_table *table;
1154 
1155 	table = rt->fib6_table;
1156 	spin_lock_bh(&table->tb6_lock);
1157 	err = fib6_add(&table->tb6_root, rt, info, extack);
1158 	spin_unlock_bh(&table->tb6_lock);
1159 
1160 	return err;
1161 }
1162 
1163 int ip6_ins_rt(struct net *net, struct fib6_info *rt)
1164 {
1165 	struct nl_info info = {	.nl_net = net, };
1166 
1167 	return __ip6_ins_rt(rt, &info, NULL);
1168 }
1169 
1170 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort,
1171 					   const struct in6_addr *daddr,
1172 					   const struct in6_addr *saddr)
1173 {
1174 	struct net_device *dev;
1175 	struct rt6_info *rt;
1176 
1177 	/*
1178 	 *	Clone the route.
1179 	 */
1180 
1181 	dev = ip6_rt_get_dev_rcu(ort);
1182 	rt = ip6_dst_alloc(dev_net(dev), dev, 0);
1183 	if (!rt)
1184 		return NULL;
1185 
1186 	ip6_rt_copy_init(rt, ort);
1187 	rt->rt6i_flags |= RTF_CACHE;
1188 	rt->dst.flags |= DST_HOST;
1189 	rt->rt6i_dst.addr = *daddr;
1190 	rt->rt6i_dst.plen = 128;
1191 
1192 	if (!rt6_is_gw_or_nonexthop(ort)) {
1193 		if (ort->fib6_dst.plen != 128 &&
1194 		    ipv6_addr_equal(&ort->fib6_dst.addr, daddr))
1195 			rt->rt6i_flags |= RTF_ANYCAST;
1196 #ifdef CONFIG_IPV6_SUBTREES
1197 		if (rt->rt6i_src.plen && saddr) {
1198 			rt->rt6i_src.addr = *saddr;
1199 			rt->rt6i_src.plen = 128;
1200 		}
1201 #endif
1202 	}
1203 
1204 	return rt;
1205 }
1206 
1207 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt)
1208 {
1209 	unsigned short flags = fib6_info_dst_flags(rt);
1210 	struct net_device *dev;
1211 	struct rt6_info *pcpu_rt;
1212 
1213 	rcu_read_lock();
1214 	dev = ip6_rt_get_dev_rcu(rt);
1215 	pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags);
1216 	rcu_read_unlock();
1217 	if (!pcpu_rt)
1218 		return NULL;
1219 	ip6_rt_copy_init(pcpu_rt, rt);
1220 	pcpu_rt->rt6i_flags |= RTF_PCPU;
1221 	return pcpu_rt;
1222 }
1223 
1224 /* It should be called with rcu_read_lock() acquired */
1225 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt)
1226 {
1227 	struct rt6_info *pcpu_rt, **p;
1228 
1229 	p = this_cpu_ptr(rt->rt6i_pcpu);
1230 	pcpu_rt = *p;
1231 
1232 	if (pcpu_rt)
1233 		ip6_hold_safe(NULL, &pcpu_rt, false);
1234 
1235 	return pcpu_rt;
1236 }
1237 
1238 static struct rt6_info *rt6_make_pcpu_route(struct net *net,
1239 					    struct fib6_info *rt)
1240 {
1241 	struct rt6_info *pcpu_rt, *prev, **p;
1242 
1243 	pcpu_rt = ip6_rt_pcpu_alloc(rt);
1244 	if (!pcpu_rt) {
1245 		dst_hold(&net->ipv6.ip6_null_entry->dst);
1246 		return net->ipv6.ip6_null_entry;
1247 	}
1248 
1249 	dst_hold(&pcpu_rt->dst);
1250 	p = this_cpu_ptr(rt->rt6i_pcpu);
1251 	prev = cmpxchg(p, NULL, pcpu_rt);
1252 	BUG_ON(prev);
1253 
1254 	return pcpu_rt;
1255 }
1256 
1257 /* exception hash table implementation
1258  */
1259 static DEFINE_SPINLOCK(rt6_exception_lock);
1260 
1261 /* Remove rt6_ex from hash table and free the memory
1262  * Caller must hold rt6_exception_lock
1263  */
1264 static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
1265 				 struct rt6_exception *rt6_ex)
1266 {
1267 	struct net *net;
1268 
1269 	if (!bucket || !rt6_ex)
1270 		return;
1271 
1272 	net = dev_net(rt6_ex->rt6i->dst.dev);
1273 	hlist_del_rcu(&rt6_ex->hlist);
1274 	dst_release(&rt6_ex->rt6i->dst);
1275 	kfree_rcu(rt6_ex, rcu);
1276 	WARN_ON_ONCE(!bucket->depth);
1277 	bucket->depth--;
1278 	net->ipv6.rt6_stats->fib_rt_cache--;
1279 }
1280 
1281 /* Remove oldest rt6_ex in bucket and free the memory
1282  * Caller must hold rt6_exception_lock
1283  */
1284 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
1285 {
1286 	struct rt6_exception *rt6_ex, *oldest = NULL;
1287 
1288 	if (!bucket)
1289 		return;
1290 
1291 	hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1292 		if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
1293 			oldest = rt6_ex;
1294 	}
1295 	rt6_remove_exception(bucket, oldest);
1296 }
1297 
1298 static u32 rt6_exception_hash(const struct in6_addr *dst,
1299 			      const struct in6_addr *src)
1300 {
1301 	static u32 seed __read_mostly;
1302 	u32 val;
1303 
1304 	net_get_random_once(&seed, sizeof(seed));
1305 	val = jhash(dst, sizeof(*dst), seed);
1306 
1307 #ifdef CONFIG_IPV6_SUBTREES
1308 	if (src)
1309 		val = jhash(src, sizeof(*src), val);
1310 #endif
1311 	return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
1312 }
1313 
1314 /* Helper function to find the cached rt in the hash table
1315  * and update bucket pointer to point to the bucket for this
1316  * (daddr, saddr) pair
1317  * Caller must hold rt6_exception_lock
1318  */
1319 static struct rt6_exception *
1320 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
1321 			      const struct in6_addr *daddr,
1322 			      const struct in6_addr *saddr)
1323 {
1324 	struct rt6_exception *rt6_ex;
1325 	u32 hval;
1326 
1327 	if (!(*bucket) || !daddr)
1328 		return NULL;
1329 
1330 	hval = rt6_exception_hash(daddr, saddr);
1331 	*bucket += hval;
1332 
1333 	hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
1334 		struct rt6_info *rt6 = rt6_ex->rt6i;
1335 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1336 
1337 #ifdef CONFIG_IPV6_SUBTREES
1338 		if (matched && saddr)
1339 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1340 #endif
1341 		if (matched)
1342 			return rt6_ex;
1343 	}
1344 	return NULL;
1345 }
1346 
1347 /* Helper function to find the cached rt in the hash table
1348  * and update bucket pointer to point to the bucket for this
1349  * (daddr, saddr) pair
1350  * Caller must hold rcu_read_lock()
1351  */
1352 static struct rt6_exception *
1353 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
1354 			 const struct in6_addr *daddr,
1355 			 const struct in6_addr *saddr)
1356 {
1357 	struct rt6_exception *rt6_ex;
1358 	u32 hval;
1359 
1360 	WARN_ON_ONCE(!rcu_read_lock_held());
1361 
1362 	if (!(*bucket) || !daddr)
1363 		return NULL;
1364 
1365 	hval = rt6_exception_hash(daddr, saddr);
1366 	*bucket += hval;
1367 
1368 	hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
1369 		struct rt6_info *rt6 = rt6_ex->rt6i;
1370 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1371 
1372 #ifdef CONFIG_IPV6_SUBTREES
1373 		if (matched && saddr)
1374 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1375 #endif
1376 		if (matched)
1377 			return rt6_ex;
1378 	}
1379 	return NULL;
1380 }
1381 
1382 static unsigned int fib6_mtu(const struct fib6_info *rt)
1383 {
1384 	unsigned int mtu;
1385 
1386 	if (rt->fib6_pmtu) {
1387 		mtu = rt->fib6_pmtu;
1388 	} else {
1389 		struct net_device *dev = fib6_info_nh_dev(rt);
1390 		struct inet6_dev *idev;
1391 
1392 		rcu_read_lock();
1393 		idev = __in6_dev_get(dev);
1394 		mtu = idev->cnf.mtu6;
1395 		rcu_read_unlock();
1396 	}
1397 
1398 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
1399 
1400 	return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu);
1401 }
1402 
1403 static int rt6_insert_exception(struct rt6_info *nrt,
1404 				struct fib6_info *ort)
1405 {
1406 	struct net *net = dev_net(nrt->dst.dev);
1407 	struct rt6_exception_bucket *bucket;
1408 	struct in6_addr *src_key = NULL;
1409 	struct rt6_exception *rt6_ex;
1410 	int err = 0;
1411 
1412 	spin_lock_bh(&rt6_exception_lock);
1413 
1414 	if (ort->exception_bucket_flushed) {
1415 		err = -EINVAL;
1416 		goto out;
1417 	}
1418 
1419 	bucket = rcu_dereference_protected(ort->rt6i_exception_bucket,
1420 					lockdep_is_held(&rt6_exception_lock));
1421 	if (!bucket) {
1422 		bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
1423 				 GFP_ATOMIC);
1424 		if (!bucket) {
1425 			err = -ENOMEM;
1426 			goto out;
1427 		}
1428 		rcu_assign_pointer(ort->rt6i_exception_bucket, bucket);
1429 	}
1430 
1431 #ifdef CONFIG_IPV6_SUBTREES
1432 	/* rt6i_src.plen != 0 indicates ort is in subtree
1433 	 * and exception table is indexed by a hash of
1434 	 * both rt6i_dst and rt6i_src.
1435 	 * Otherwise, the exception table is indexed by
1436 	 * a hash of only rt6i_dst.
1437 	 */
1438 	if (ort->fib6_src.plen)
1439 		src_key = &nrt->rt6i_src.addr;
1440 #endif
1441 
1442 	/* Update rt6i_prefsrc as it could be changed
1443 	 * in rt6_remove_prefsrc()
1444 	 */
1445 	nrt->rt6i_prefsrc = ort->fib6_prefsrc;
1446 	/* rt6_mtu_change() might lower mtu on ort.
1447 	 * Only insert this exception route if its mtu
1448 	 * is less than ort's mtu value.
1449 	 */
1450 	if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) {
1451 		err = -EINVAL;
1452 		goto out;
1453 	}
1454 
1455 	rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
1456 					       src_key);
1457 	if (rt6_ex)
1458 		rt6_remove_exception(bucket, rt6_ex);
1459 
1460 	rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
1461 	if (!rt6_ex) {
1462 		err = -ENOMEM;
1463 		goto out;
1464 	}
1465 	rt6_ex->rt6i = nrt;
1466 	rt6_ex->stamp = jiffies;
1467 	hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
1468 	bucket->depth++;
1469 	net->ipv6.rt6_stats->fib_rt_cache++;
1470 
1471 	if (bucket->depth > FIB6_MAX_DEPTH)
1472 		rt6_exception_remove_oldest(bucket);
1473 
1474 out:
1475 	spin_unlock_bh(&rt6_exception_lock);
1476 
1477 	/* Update fn->fn_sernum to invalidate all cached dst */
1478 	if (!err) {
1479 		spin_lock_bh(&ort->fib6_table->tb6_lock);
1480 		fib6_update_sernum(net, ort);
1481 		spin_unlock_bh(&ort->fib6_table->tb6_lock);
1482 		fib6_force_start_gc(net);
1483 	}
1484 
1485 	return err;
1486 }
1487 
1488 void rt6_flush_exceptions(struct fib6_info *rt)
1489 {
1490 	struct rt6_exception_bucket *bucket;
1491 	struct rt6_exception *rt6_ex;
1492 	struct hlist_node *tmp;
1493 	int i;
1494 
1495 	spin_lock_bh(&rt6_exception_lock);
1496 	/* Prevent rt6_insert_exception() to recreate the bucket list */
1497 	rt->exception_bucket_flushed = 1;
1498 
1499 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1500 				    lockdep_is_held(&rt6_exception_lock));
1501 	if (!bucket)
1502 		goto out;
1503 
1504 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1505 		hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist)
1506 			rt6_remove_exception(bucket, rt6_ex);
1507 		WARN_ON_ONCE(bucket->depth);
1508 		bucket++;
1509 	}
1510 
1511 out:
1512 	spin_unlock_bh(&rt6_exception_lock);
1513 }
1514 
1515 /* Find cached rt in the hash table inside passed in rt
1516  * Caller has to hold rcu_read_lock()
1517  */
1518 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
1519 					   struct in6_addr *daddr,
1520 					   struct in6_addr *saddr)
1521 {
1522 	struct rt6_exception_bucket *bucket;
1523 	struct in6_addr *src_key = NULL;
1524 	struct rt6_exception *rt6_ex;
1525 	struct rt6_info *res = NULL;
1526 
1527 	bucket = rcu_dereference(rt->rt6i_exception_bucket);
1528 
1529 #ifdef CONFIG_IPV6_SUBTREES
1530 	/* rt6i_src.plen != 0 indicates rt is in subtree
1531 	 * and exception table is indexed by a hash of
1532 	 * both rt6i_dst and rt6i_src.
1533 	 * Otherwise, the exception table is indexed by
1534 	 * a hash of only rt6i_dst.
1535 	 */
1536 	if (rt->fib6_src.plen)
1537 		src_key = saddr;
1538 #endif
1539 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
1540 
1541 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
1542 		res = rt6_ex->rt6i;
1543 
1544 	return res;
1545 }
1546 
1547 /* Remove the passed in cached rt from the hash table that contains it */
1548 static int rt6_remove_exception_rt(struct rt6_info *rt)
1549 {
1550 	struct rt6_exception_bucket *bucket;
1551 	struct in6_addr *src_key = NULL;
1552 	struct rt6_exception *rt6_ex;
1553 	struct fib6_info *from;
1554 	int err;
1555 
1556 	from = rcu_dereference(rt->from);
1557 	if (!from ||
1558 	    !(rt->rt6i_flags & RTF_CACHE))
1559 		return -EINVAL;
1560 
1561 	if (!rcu_access_pointer(from->rt6i_exception_bucket))
1562 		return -ENOENT;
1563 
1564 	spin_lock_bh(&rt6_exception_lock);
1565 	bucket = rcu_dereference_protected(from->rt6i_exception_bucket,
1566 				    lockdep_is_held(&rt6_exception_lock));
1567 #ifdef CONFIG_IPV6_SUBTREES
1568 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1569 	 * and exception table is indexed by a hash of
1570 	 * both rt6i_dst and rt6i_src.
1571 	 * Otherwise, the exception table is indexed by
1572 	 * a hash of only rt6i_dst.
1573 	 */
1574 	if (from->fib6_src.plen)
1575 		src_key = &rt->rt6i_src.addr;
1576 #endif
1577 	rt6_ex = __rt6_find_exception_spinlock(&bucket,
1578 					       &rt->rt6i_dst.addr,
1579 					       src_key);
1580 	if (rt6_ex) {
1581 		rt6_remove_exception(bucket, rt6_ex);
1582 		err = 0;
1583 	} else {
1584 		err = -ENOENT;
1585 	}
1586 
1587 	spin_unlock_bh(&rt6_exception_lock);
1588 	return err;
1589 }
1590 
1591 /* Find rt6_ex which contains the passed in rt cache and
1592  * refresh its stamp
1593  */
1594 static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
1595 {
1596 	struct rt6_exception_bucket *bucket;
1597 	struct fib6_info *from = rt->from;
1598 	struct in6_addr *src_key = NULL;
1599 	struct rt6_exception *rt6_ex;
1600 
1601 	if (!from ||
1602 	    !(rt->rt6i_flags & RTF_CACHE))
1603 		return;
1604 
1605 	rcu_read_lock();
1606 	bucket = rcu_dereference(from->rt6i_exception_bucket);
1607 
1608 #ifdef CONFIG_IPV6_SUBTREES
1609 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1610 	 * and exception table is indexed by a hash of
1611 	 * both rt6i_dst and rt6i_src.
1612 	 * Otherwise, the exception table is indexed by
1613 	 * a hash of only rt6i_dst.
1614 	 */
1615 	if (from->fib6_src.plen)
1616 		src_key = &rt->rt6i_src.addr;
1617 #endif
1618 	rt6_ex = __rt6_find_exception_rcu(&bucket,
1619 					  &rt->rt6i_dst.addr,
1620 					  src_key);
1621 	if (rt6_ex)
1622 		rt6_ex->stamp = jiffies;
1623 
1624 	rcu_read_unlock();
1625 }
1626 
1627 static void rt6_exceptions_remove_prefsrc(struct fib6_info *rt)
1628 {
1629 	struct rt6_exception_bucket *bucket;
1630 	struct rt6_exception *rt6_ex;
1631 	int i;
1632 
1633 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1634 					lockdep_is_held(&rt6_exception_lock));
1635 
1636 	if (bucket) {
1637 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1638 			hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1639 				rt6_ex->rt6i->rt6i_prefsrc.plen = 0;
1640 			}
1641 			bucket++;
1642 		}
1643 	}
1644 }
1645 
1646 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
1647 					 struct rt6_info *rt, int mtu)
1648 {
1649 	/* If the new MTU is lower than the route PMTU, this new MTU will be the
1650 	 * lowest MTU in the path: always allow updating the route PMTU to
1651 	 * reflect PMTU decreases.
1652 	 *
1653 	 * If the new MTU is higher, and the route PMTU is equal to the local
1654 	 * MTU, this means the old MTU is the lowest in the path, so allow
1655 	 * updating it: if other nodes now have lower MTUs, PMTU discovery will
1656 	 * handle this.
1657 	 */
1658 
1659 	if (dst_mtu(&rt->dst) >= mtu)
1660 		return true;
1661 
1662 	if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
1663 		return true;
1664 
1665 	return false;
1666 }
1667 
1668 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
1669 				       struct fib6_info *rt, int mtu)
1670 {
1671 	struct rt6_exception_bucket *bucket;
1672 	struct rt6_exception *rt6_ex;
1673 	int i;
1674 
1675 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1676 					lockdep_is_held(&rt6_exception_lock));
1677 
1678 	if (!bucket)
1679 		return;
1680 
1681 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1682 		hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1683 			struct rt6_info *entry = rt6_ex->rt6i;
1684 
1685 			/* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
1686 			 * route), the metrics of its rt->from have already
1687 			 * been updated.
1688 			 */
1689 			if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
1690 			    rt6_mtu_change_route_allowed(idev, entry, mtu))
1691 				dst_metric_set(&entry->dst, RTAX_MTU, mtu);
1692 		}
1693 		bucket++;
1694 	}
1695 }
1696 
1697 #define RTF_CACHE_GATEWAY	(RTF_GATEWAY | RTF_CACHE)
1698 
1699 static void rt6_exceptions_clean_tohost(struct fib6_info *rt,
1700 					struct in6_addr *gateway)
1701 {
1702 	struct rt6_exception_bucket *bucket;
1703 	struct rt6_exception *rt6_ex;
1704 	struct hlist_node *tmp;
1705 	int i;
1706 
1707 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1708 		return;
1709 
1710 	spin_lock_bh(&rt6_exception_lock);
1711 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1712 				     lockdep_is_held(&rt6_exception_lock));
1713 
1714 	if (bucket) {
1715 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1716 			hlist_for_each_entry_safe(rt6_ex, tmp,
1717 						  &bucket->chain, hlist) {
1718 				struct rt6_info *entry = rt6_ex->rt6i;
1719 
1720 				if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
1721 				    RTF_CACHE_GATEWAY &&
1722 				    ipv6_addr_equal(gateway,
1723 						    &entry->rt6i_gateway)) {
1724 					rt6_remove_exception(bucket, rt6_ex);
1725 				}
1726 			}
1727 			bucket++;
1728 		}
1729 	}
1730 
1731 	spin_unlock_bh(&rt6_exception_lock);
1732 }
1733 
1734 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
1735 				      struct rt6_exception *rt6_ex,
1736 				      struct fib6_gc_args *gc_args,
1737 				      unsigned long now)
1738 {
1739 	struct rt6_info *rt = rt6_ex->rt6i;
1740 
1741 	/* we are pruning and obsoleting aged-out and non gateway exceptions
1742 	 * even if others have still references to them, so that on next
1743 	 * dst_check() such references can be dropped.
1744 	 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
1745 	 * expired, independently from their aging, as per RFC 8201 section 4
1746 	 */
1747 	if (!(rt->rt6i_flags & RTF_EXPIRES)) {
1748 		if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1749 			RT6_TRACE("aging clone %p\n", rt);
1750 			rt6_remove_exception(bucket, rt6_ex);
1751 			return;
1752 		}
1753 	} else if (time_after(jiffies, rt->dst.expires)) {
1754 		RT6_TRACE("purging expired route %p\n", rt);
1755 		rt6_remove_exception(bucket, rt6_ex);
1756 		return;
1757 	}
1758 
1759 	if (rt->rt6i_flags & RTF_GATEWAY) {
1760 		struct neighbour *neigh;
1761 		__u8 neigh_flags = 0;
1762 
1763 		neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
1764 		if (neigh)
1765 			neigh_flags = neigh->flags;
1766 
1767 		if (!(neigh_flags & NTF_ROUTER)) {
1768 			RT6_TRACE("purging route %p via non-router but gateway\n",
1769 				  rt);
1770 			rt6_remove_exception(bucket, rt6_ex);
1771 			return;
1772 		}
1773 	}
1774 
1775 	gc_args->more++;
1776 }
1777 
1778 void rt6_age_exceptions(struct fib6_info *rt,
1779 			struct fib6_gc_args *gc_args,
1780 			unsigned long now)
1781 {
1782 	struct rt6_exception_bucket *bucket;
1783 	struct rt6_exception *rt6_ex;
1784 	struct hlist_node *tmp;
1785 	int i;
1786 
1787 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1788 		return;
1789 
1790 	rcu_read_lock_bh();
1791 	spin_lock(&rt6_exception_lock);
1792 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1793 				    lockdep_is_held(&rt6_exception_lock));
1794 
1795 	if (bucket) {
1796 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1797 			hlist_for_each_entry_safe(rt6_ex, tmp,
1798 						  &bucket->chain, hlist) {
1799 				rt6_age_examine_exception(bucket, rt6_ex,
1800 							  gc_args, now);
1801 			}
1802 			bucket++;
1803 		}
1804 	}
1805 	spin_unlock(&rt6_exception_lock);
1806 	rcu_read_unlock_bh();
1807 }
1808 
1809 /* must be called with rcu lock held */
1810 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table,
1811 				    int oif, struct flowi6 *fl6, int strict)
1812 {
1813 	struct fib6_node *fn, *saved_fn;
1814 	struct fib6_info *f6i;
1815 
1816 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1817 	saved_fn = fn;
1818 
1819 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1820 		oif = 0;
1821 
1822 redo_rt6_select:
1823 	f6i = rt6_select(net, fn, oif, strict);
1824 	if (f6i == net->ipv6.fib6_null_entry) {
1825 		fn = fib6_backtrack(fn, &fl6->saddr);
1826 		if (fn)
1827 			goto redo_rt6_select;
1828 		else if (strict & RT6_LOOKUP_F_REACHABLE) {
1829 			/* also consider unreachable route */
1830 			strict &= ~RT6_LOOKUP_F_REACHABLE;
1831 			fn = saved_fn;
1832 			goto redo_rt6_select;
1833 		}
1834 	}
1835 
1836 	trace_fib6_table_lookup(net, f6i, table, fl6);
1837 
1838 	return f6i;
1839 }
1840 
1841 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
1842 			       int oif, struct flowi6 *fl6,
1843 			       const struct sk_buff *skb, int flags)
1844 {
1845 	struct fib6_info *f6i;
1846 	struct rt6_info *rt;
1847 	int strict = 0;
1848 
1849 	strict |= flags & RT6_LOOKUP_F_IFACE;
1850 	strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
1851 	if (net->ipv6.devconf_all->forwarding == 0)
1852 		strict |= RT6_LOOKUP_F_REACHABLE;
1853 
1854 	rcu_read_lock();
1855 
1856 	f6i = fib6_table_lookup(net, table, oif, fl6, strict);
1857 	if (f6i->fib6_nsiblings)
1858 		f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict);
1859 
1860 	if (f6i == net->ipv6.fib6_null_entry) {
1861 		rt = net->ipv6.ip6_null_entry;
1862 		rcu_read_unlock();
1863 		dst_hold(&rt->dst);
1864 		return rt;
1865 	}
1866 
1867 	/*Search through exception table */
1868 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1869 	if (rt) {
1870 		if (ip6_hold_safe(net, &rt, true))
1871 			dst_use_noref(&rt->dst, jiffies);
1872 
1873 		rcu_read_unlock();
1874 		return rt;
1875 	} else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
1876 			    !(f6i->fib6_flags & RTF_GATEWAY))) {
1877 		/* Create a RTF_CACHE clone which will not be
1878 		 * owned by the fib6 tree.  It is for the special case where
1879 		 * the daddr in the skb during the neighbor look-up is different
1880 		 * from the fl6->daddr used to look-up route here.
1881 		 */
1882 		struct rt6_info *uncached_rt;
1883 
1884 		uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL);
1885 
1886 		rcu_read_unlock();
1887 
1888 		if (uncached_rt) {
1889 			/* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc()
1890 			 * No need for another dst_hold()
1891 			 */
1892 			rt6_uncached_list_add(uncached_rt);
1893 			atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
1894 		} else {
1895 			uncached_rt = net->ipv6.ip6_null_entry;
1896 			dst_hold(&uncached_rt->dst);
1897 		}
1898 
1899 		return uncached_rt;
1900 	} else {
1901 		/* Get a percpu copy */
1902 
1903 		struct rt6_info *pcpu_rt;
1904 
1905 		local_bh_disable();
1906 		pcpu_rt = rt6_get_pcpu_route(f6i);
1907 
1908 		if (!pcpu_rt)
1909 			pcpu_rt = rt6_make_pcpu_route(net, f6i);
1910 
1911 		local_bh_enable();
1912 		rcu_read_unlock();
1913 
1914 		return pcpu_rt;
1915 	}
1916 }
1917 EXPORT_SYMBOL_GPL(ip6_pol_route);
1918 
1919 static struct rt6_info *ip6_pol_route_input(struct net *net,
1920 					    struct fib6_table *table,
1921 					    struct flowi6 *fl6,
1922 					    const struct sk_buff *skb,
1923 					    int flags)
1924 {
1925 	return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
1926 }
1927 
1928 struct dst_entry *ip6_route_input_lookup(struct net *net,
1929 					 struct net_device *dev,
1930 					 struct flowi6 *fl6,
1931 					 const struct sk_buff *skb,
1932 					 int flags)
1933 {
1934 	if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
1935 		flags |= RT6_LOOKUP_F_IFACE;
1936 
1937 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
1938 }
1939 EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
1940 
1941 static void ip6_multipath_l3_keys(const struct sk_buff *skb,
1942 				  struct flow_keys *keys,
1943 				  struct flow_keys *flkeys)
1944 {
1945 	const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
1946 	const struct ipv6hdr *key_iph = outer_iph;
1947 	struct flow_keys *_flkeys = flkeys;
1948 	const struct ipv6hdr *inner_iph;
1949 	const struct icmp6hdr *icmph;
1950 	struct ipv6hdr _inner_iph;
1951 	struct icmp6hdr _icmph;
1952 
1953 	if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
1954 		goto out;
1955 
1956 	icmph = skb_header_pointer(skb, skb_transport_offset(skb),
1957 				   sizeof(_icmph), &_icmph);
1958 	if (!icmph)
1959 		goto out;
1960 
1961 	if (icmph->icmp6_type != ICMPV6_DEST_UNREACH &&
1962 	    icmph->icmp6_type != ICMPV6_PKT_TOOBIG &&
1963 	    icmph->icmp6_type != ICMPV6_TIME_EXCEED &&
1964 	    icmph->icmp6_type != ICMPV6_PARAMPROB)
1965 		goto out;
1966 
1967 	inner_iph = skb_header_pointer(skb,
1968 				       skb_transport_offset(skb) + sizeof(*icmph),
1969 				       sizeof(_inner_iph), &_inner_iph);
1970 	if (!inner_iph)
1971 		goto out;
1972 
1973 	key_iph = inner_iph;
1974 	_flkeys = NULL;
1975 out:
1976 	if (_flkeys) {
1977 		keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
1978 		keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
1979 		keys->tags.flow_label = _flkeys->tags.flow_label;
1980 		keys->basic.ip_proto = _flkeys->basic.ip_proto;
1981 	} else {
1982 		keys->addrs.v6addrs.src = key_iph->saddr;
1983 		keys->addrs.v6addrs.dst = key_iph->daddr;
1984 		keys->tags.flow_label = ip6_flowlabel(key_iph);
1985 		keys->basic.ip_proto = key_iph->nexthdr;
1986 	}
1987 }
1988 
1989 /* if skb is set it will be used and fl6 can be NULL */
1990 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
1991 		       const struct sk_buff *skb, struct flow_keys *flkeys)
1992 {
1993 	struct flow_keys hash_keys;
1994 	u32 mhash;
1995 
1996 	switch (ip6_multipath_hash_policy(net)) {
1997 	case 0:
1998 		memset(&hash_keys, 0, sizeof(hash_keys));
1999 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2000 		if (skb) {
2001 			ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
2002 		} else {
2003 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2004 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2005 			hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
2006 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2007 		}
2008 		break;
2009 	case 1:
2010 		if (skb) {
2011 			unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
2012 			struct flow_keys keys;
2013 
2014 			/* short-circuit if we already have L4 hash present */
2015 			if (skb->l4_hash)
2016 				return skb_get_hash_raw(skb) >> 1;
2017 
2018 			memset(&hash_keys, 0, sizeof(hash_keys));
2019 
2020                         if (!flkeys) {
2021 				skb_flow_dissect_flow_keys(skb, &keys, flag);
2022 				flkeys = &keys;
2023 			}
2024 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2025 			hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2026 			hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2027 			hash_keys.ports.src = flkeys->ports.src;
2028 			hash_keys.ports.dst = flkeys->ports.dst;
2029 			hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2030 		} else {
2031 			memset(&hash_keys, 0, sizeof(hash_keys));
2032 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2033 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2034 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2035 			hash_keys.ports.src = fl6->fl6_sport;
2036 			hash_keys.ports.dst = fl6->fl6_dport;
2037 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2038 		}
2039 		break;
2040 	}
2041 	mhash = flow_hash_from_keys(&hash_keys);
2042 
2043 	return mhash >> 1;
2044 }
2045 
2046 void ip6_route_input(struct sk_buff *skb)
2047 {
2048 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2049 	struct net *net = dev_net(skb->dev);
2050 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2051 	struct ip_tunnel_info *tun_info;
2052 	struct flowi6 fl6 = {
2053 		.flowi6_iif = skb->dev->ifindex,
2054 		.daddr = iph->daddr,
2055 		.saddr = iph->saddr,
2056 		.flowlabel = ip6_flowinfo(iph),
2057 		.flowi6_mark = skb->mark,
2058 		.flowi6_proto = iph->nexthdr,
2059 	};
2060 	struct flow_keys *flkeys = NULL, _flkeys;
2061 
2062 	tun_info = skb_tunnel_info(skb);
2063 	if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
2064 		fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
2065 
2066 	if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
2067 		flkeys = &_flkeys;
2068 
2069 	if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
2070 		fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
2071 	skb_dst_drop(skb);
2072 	skb_dst_set(skb,
2073 		    ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags));
2074 }
2075 
2076 static struct rt6_info *ip6_pol_route_output(struct net *net,
2077 					     struct fib6_table *table,
2078 					     struct flowi6 *fl6,
2079 					     const struct sk_buff *skb,
2080 					     int flags)
2081 {
2082 	return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
2083 }
2084 
2085 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk,
2086 					 struct flowi6 *fl6, int flags)
2087 {
2088 	bool any_src;
2089 
2090 	if (rt6_need_strict(&fl6->daddr)) {
2091 		struct dst_entry *dst;
2092 
2093 		dst = l3mdev_link_scope_lookup(net, fl6);
2094 		if (dst)
2095 			return dst;
2096 	}
2097 
2098 	fl6->flowi6_iif = LOOPBACK_IFINDEX;
2099 
2100 	any_src = ipv6_addr_any(&fl6->saddr);
2101 	if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
2102 	    (fl6->flowi6_oif && any_src))
2103 		flags |= RT6_LOOKUP_F_IFACE;
2104 
2105 	if (!any_src)
2106 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2107 	else if (sk)
2108 		flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
2109 
2110 	return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
2111 }
2112 EXPORT_SYMBOL_GPL(ip6_route_output_flags);
2113 
2114 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2115 {
2116 	struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
2117 	struct net_device *loopback_dev = net->loopback_dev;
2118 	struct dst_entry *new = NULL;
2119 
2120 	rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
2121 		       DST_OBSOLETE_DEAD, 0);
2122 	if (rt) {
2123 		rt6_info_init(rt);
2124 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
2125 
2126 		new = &rt->dst;
2127 		new->__use = 1;
2128 		new->input = dst_discard;
2129 		new->output = dst_discard_out;
2130 
2131 		dst_copy_metrics(new, &ort->dst);
2132 
2133 		rt->rt6i_idev = in6_dev_get(loopback_dev);
2134 		rt->rt6i_gateway = ort->rt6i_gateway;
2135 		rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
2136 
2137 		memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
2138 #ifdef CONFIG_IPV6_SUBTREES
2139 		memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
2140 #endif
2141 	}
2142 
2143 	dst_release(dst_orig);
2144 	return new ? new : ERR_PTR(-ENOMEM);
2145 }
2146 
2147 /*
2148  *	Destination cache support functions
2149  */
2150 
2151 static bool fib6_check(struct fib6_info *f6i, u32 cookie)
2152 {
2153 	u32 rt_cookie = 0;
2154 
2155 	if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
2156 		return false;
2157 
2158 	if (fib6_check_expired(f6i))
2159 		return false;
2160 
2161 	return true;
2162 }
2163 
2164 static struct dst_entry *rt6_check(struct rt6_info *rt,
2165 				   struct fib6_info *from,
2166 				   u32 cookie)
2167 {
2168 	u32 rt_cookie = 0;
2169 
2170 	if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) ||
2171 	    rt_cookie != cookie)
2172 		return NULL;
2173 
2174 	if (rt6_check_expired(rt))
2175 		return NULL;
2176 
2177 	return &rt->dst;
2178 }
2179 
2180 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
2181 					    struct fib6_info *from,
2182 					    u32 cookie)
2183 {
2184 	if (!__rt6_check_expired(rt) &&
2185 	    rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
2186 	    fib6_check(from, cookie))
2187 		return &rt->dst;
2188 	else
2189 		return NULL;
2190 }
2191 
2192 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
2193 {
2194 	struct dst_entry *dst_ret;
2195 	struct fib6_info *from;
2196 	struct rt6_info *rt;
2197 
2198 	rt = container_of(dst, struct rt6_info, dst);
2199 
2200 	rcu_read_lock();
2201 
2202 	/* All IPV6 dsts are created with ->obsolete set to the value
2203 	 * DST_OBSOLETE_FORCE_CHK which forces validation calls down
2204 	 * into this function always.
2205 	 */
2206 
2207 	from = rcu_dereference(rt->from);
2208 
2209 	if (from && (rt->rt6i_flags & RTF_PCPU ||
2210 	    unlikely(!list_empty(&rt->rt6i_uncached))))
2211 		dst_ret = rt6_dst_from_check(rt, from, cookie);
2212 	else
2213 		dst_ret = rt6_check(rt, from, cookie);
2214 
2215 	rcu_read_unlock();
2216 
2217 	return dst_ret;
2218 }
2219 
2220 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
2221 {
2222 	struct rt6_info *rt = (struct rt6_info *) dst;
2223 
2224 	if (rt) {
2225 		if (rt->rt6i_flags & RTF_CACHE) {
2226 			rcu_read_lock();
2227 			if (rt6_check_expired(rt)) {
2228 				rt6_remove_exception_rt(rt);
2229 				dst = NULL;
2230 			}
2231 			rcu_read_unlock();
2232 		} else {
2233 			dst_release(dst);
2234 			dst = NULL;
2235 		}
2236 	}
2237 	return dst;
2238 }
2239 
2240 static void ip6_link_failure(struct sk_buff *skb)
2241 {
2242 	struct rt6_info *rt;
2243 
2244 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
2245 
2246 	rt = (struct rt6_info *) skb_dst(skb);
2247 	if (rt) {
2248 		rcu_read_lock();
2249 		if (rt->rt6i_flags & RTF_CACHE) {
2250 			if (dst_hold_safe(&rt->dst))
2251 				rt6_remove_exception_rt(rt);
2252 		} else {
2253 			struct fib6_info *from;
2254 			struct fib6_node *fn;
2255 
2256 			from = rcu_dereference(rt->from);
2257 			if (from) {
2258 				fn = rcu_dereference(from->fib6_node);
2259 				if (fn && (rt->rt6i_flags & RTF_DEFAULT))
2260 					fn->fn_sernum = -1;
2261 			}
2262 		}
2263 		rcu_read_unlock();
2264 	}
2265 }
2266 
2267 static void rt6_update_expires(struct rt6_info *rt0, int timeout)
2268 {
2269 	if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
2270 		struct fib6_info *from;
2271 
2272 		rcu_read_lock();
2273 		from = rcu_dereference(rt0->from);
2274 		if (from)
2275 			rt0->dst.expires = from->expires;
2276 		rcu_read_unlock();
2277 	}
2278 
2279 	dst_set_expires(&rt0->dst, timeout);
2280 	rt0->rt6i_flags |= RTF_EXPIRES;
2281 }
2282 
2283 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
2284 {
2285 	struct net *net = dev_net(rt->dst.dev);
2286 
2287 	dst_metric_set(&rt->dst, RTAX_MTU, mtu);
2288 	rt->rt6i_flags |= RTF_MODIFIED;
2289 	rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
2290 }
2291 
2292 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
2293 {
2294 	bool from_set;
2295 
2296 	rcu_read_lock();
2297 	from_set = !!rcu_dereference(rt->from);
2298 	rcu_read_unlock();
2299 
2300 	return !(rt->rt6i_flags & RTF_CACHE) &&
2301 		(rt->rt6i_flags & RTF_PCPU || from_set);
2302 }
2303 
2304 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
2305 				 const struct ipv6hdr *iph, u32 mtu)
2306 {
2307 	const struct in6_addr *daddr, *saddr;
2308 	struct rt6_info *rt6 = (struct rt6_info *)dst;
2309 
2310 	if (dst_metric_locked(dst, RTAX_MTU))
2311 		return;
2312 
2313 	if (iph) {
2314 		daddr = &iph->daddr;
2315 		saddr = &iph->saddr;
2316 	} else if (sk) {
2317 		daddr = &sk->sk_v6_daddr;
2318 		saddr = &inet6_sk(sk)->saddr;
2319 	} else {
2320 		daddr = NULL;
2321 		saddr = NULL;
2322 	}
2323 	dst_confirm_neigh(dst, daddr);
2324 	mtu = max_t(u32, mtu, IPV6_MIN_MTU);
2325 	if (mtu >= dst_mtu(dst))
2326 		return;
2327 
2328 	if (!rt6_cache_allowed_for_pmtu(rt6)) {
2329 		rt6_do_update_pmtu(rt6, mtu);
2330 		/* update rt6_ex->stamp for cache */
2331 		if (rt6->rt6i_flags & RTF_CACHE)
2332 			rt6_update_exception_stamp_rt(rt6);
2333 	} else if (daddr) {
2334 		struct fib6_info *from;
2335 		struct rt6_info *nrt6;
2336 
2337 		rcu_read_lock();
2338 		from = rcu_dereference(rt6->from);
2339 		nrt6 = ip6_rt_cache_alloc(from, daddr, saddr);
2340 		if (nrt6) {
2341 			rt6_do_update_pmtu(nrt6, mtu);
2342 			if (rt6_insert_exception(nrt6, from))
2343 				dst_release_immediate(&nrt6->dst);
2344 		}
2345 		rcu_read_unlock();
2346 	}
2347 }
2348 
2349 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
2350 			       struct sk_buff *skb, u32 mtu)
2351 {
2352 	__ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu);
2353 }
2354 
2355 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
2356 		     int oif, u32 mark, kuid_t uid)
2357 {
2358 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2359 	struct dst_entry *dst;
2360 	struct flowi6 fl6;
2361 
2362 	memset(&fl6, 0, sizeof(fl6));
2363 	fl6.flowi6_oif = oif;
2364 	fl6.flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark);
2365 	fl6.daddr = iph->daddr;
2366 	fl6.saddr = iph->saddr;
2367 	fl6.flowlabel = ip6_flowinfo(iph);
2368 	fl6.flowi6_uid = uid;
2369 
2370 	dst = ip6_route_output(net, NULL, &fl6);
2371 	if (!dst->error)
2372 		__ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu));
2373 	dst_release(dst);
2374 }
2375 EXPORT_SYMBOL_GPL(ip6_update_pmtu);
2376 
2377 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
2378 {
2379 	struct dst_entry *dst;
2380 
2381 	ip6_update_pmtu(skb, sock_net(sk), mtu,
2382 			sk->sk_bound_dev_if, sk->sk_mark, sk->sk_uid);
2383 
2384 	dst = __sk_dst_get(sk);
2385 	if (!dst || !dst->obsolete ||
2386 	    dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
2387 		return;
2388 
2389 	bh_lock_sock(sk);
2390 	if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
2391 		ip6_datagram_dst_update(sk, false);
2392 	bh_unlock_sock(sk);
2393 }
2394 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
2395 
2396 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
2397 			   const struct flowi6 *fl6)
2398 {
2399 #ifdef CONFIG_IPV6_SUBTREES
2400 	struct ipv6_pinfo *np = inet6_sk(sk);
2401 #endif
2402 
2403 	ip6_dst_store(sk, dst,
2404 		      ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
2405 		      &sk->sk_v6_daddr : NULL,
2406 #ifdef CONFIG_IPV6_SUBTREES
2407 		      ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
2408 		      &np->saddr :
2409 #endif
2410 		      NULL);
2411 }
2412 
2413 /* Handle redirects */
2414 struct ip6rd_flowi {
2415 	struct flowi6 fl6;
2416 	struct in6_addr gateway;
2417 };
2418 
2419 static struct rt6_info *__ip6_route_redirect(struct net *net,
2420 					     struct fib6_table *table,
2421 					     struct flowi6 *fl6,
2422 					     const struct sk_buff *skb,
2423 					     int flags)
2424 {
2425 	struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
2426 	struct rt6_info *ret = NULL, *rt_cache;
2427 	struct fib6_info *rt;
2428 	struct fib6_node *fn;
2429 
2430 	/* Get the "current" route for this destination and
2431 	 * check if the redirect has come from appropriate router.
2432 	 *
2433 	 * RFC 4861 specifies that redirects should only be
2434 	 * accepted if they come from the nexthop to the target.
2435 	 * Due to the way the routes are chosen, this notion
2436 	 * is a bit fuzzy and one might need to check all possible
2437 	 * routes.
2438 	 */
2439 
2440 	rcu_read_lock();
2441 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
2442 restart:
2443 	for_each_fib6_node_rt_rcu(fn) {
2444 		if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
2445 			continue;
2446 		if (fib6_check_expired(rt))
2447 			continue;
2448 		if (rt->fib6_flags & RTF_REJECT)
2449 			break;
2450 		if (!(rt->fib6_flags & RTF_GATEWAY))
2451 			continue;
2452 		if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex)
2453 			continue;
2454 		/* rt_cache's gateway might be different from its 'parent'
2455 		 * in the case of an ip redirect.
2456 		 * So we keep searching in the exception table if the gateway
2457 		 * is different.
2458 		 */
2459 		if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) {
2460 			rt_cache = rt6_find_cached_rt(rt,
2461 						      &fl6->daddr,
2462 						      &fl6->saddr);
2463 			if (rt_cache &&
2464 			    ipv6_addr_equal(&rdfl->gateway,
2465 					    &rt_cache->rt6i_gateway)) {
2466 				ret = rt_cache;
2467 				break;
2468 			}
2469 			continue;
2470 		}
2471 		break;
2472 	}
2473 
2474 	if (!rt)
2475 		rt = net->ipv6.fib6_null_entry;
2476 	else if (rt->fib6_flags & RTF_REJECT) {
2477 		ret = net->ipv6.ip6_null_entry;
2478 		goto out;
2479 	}
2480 
2481 	if (rt == net->ipv6.fib6_null_entry) {
2482 		fn = fib6_backtrack(fn, &fl6->saddr);
2483 		if (fn)
2484 			goto restart;
2485 	}
2486 
2487 out:
2488 	if (ret)
2489 		dst_hold(&ret->dst);
2490 	else
2491 		ret = ip6_create_rt_rcu(rt);
2492 
2493 	rcu_read_unlock();
2494 
2495 	trace_fib6_table_lookup(net, rt, table, fl6);
2496 	return ret;
2497 };
2498 
2499 static struct dst_entry *ip6_route_redirect(struct net *net,
2500 					    const struct flowi6 *fl6,
2501 					    const struct sk_buff *skb,
2502 					    const struct in6_addr *gateway)
2503 {
2504 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2505 	struct ip6rd_flowi rdfl;
2506 
2507 	rdfl.fl6 = *fl6;
2508 	rdfl.gateway = *gateway;
2509 
2510 	return fib6_rule_lookup(net, &rdfl.fl6, skb,
2511 				flags, __ip6_route_redirect);
2512 }
2513 
2514 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
2515 		  kuid_t uid)
2516 {
2517 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2518 	struct dst_entry *dst;
2519 	struct flowi6 fl6;
2520 
2521 	memset(&fl6, 0, sizeof(fl6));
2522 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
2523 	fl6.flowi6_oif = oif;
2524 	fl6.flowi6_mark = mark;
2525 	fl6.daddr = iph->daddr;
2526 	fl6.saddr = iph->saddr;
2527 	fl6.flowlabel = ip6_flowinfo(iph);
2528 	fl6.flowi6_uid = uid;
2529 
2530 	dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
2531 	rt6_do_redirect(dst, NULL, skb);
2532 	dst_release(dst);
2533 }
2534 EXPORT_SYMBOL_GPL(ip6_redirect);
2535 
2536 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif,
2537 			    u32 mark)
2538 {
2539 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2540 	const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
2541 	struct dst_entry *dst;
2542 	struct flowi6 fl6;
2543 
2544 	memset(&fl6, 0, sizeof(fl6));
2545 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
2546 	fl6.flowi6_oif = oif;
2547 	fl6.flowi6_mark = mark;
2548 	fl6.daddr = msg->dest;
2549 	fl6.saddr = iph->daddr;
2550 	fl6.flowi6_uid = sock_net_uid(net, NULL);
2551 
2552 	dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
2553 	rt6_do_redirect(dst, NULL, skb);
2554 	dst_release(dst);
2555 }
2556 
2557 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
2558 {
2559 	ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
2560 		     sk->sk_uid);
2561 }
2562 EXPORT_SYMBOL_GPL(ip6_sk_redirect);
2563 
2564 static unsigned int ip6_default_advmss(const struct dst_entry *dst)
2565 {
2566 	struct net_device *dev = dst->dev;
2567 	unsigned int mtu = dst_mtu(dst);
2568 	struct net *net = dev_net(dev);
2569 
2570 	mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
2571 
2572 	if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
2573 		mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
2574 
2575 	/*
2576 	 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
2577 	 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
2578 	 * IPV6_MAXPLEN is also valid and means: "any MSS,
2579 	 * rely only on pmtu discovery"
2580 	 */
2581 	if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
2582 		mtu = IPV6_MAXPLEN;
2583 	return mtu;
2584 }
2585 
2586 static unsigned int ip6_mtu(const struct dst_entry *dst)
2587 {
2588 	struct inet6_dev *idev;
2589 	unsigned int mtu;
2590 
2591 	mtu = dst_metric_raw(dst, RTAX_MTU);
2592 	if (mtu)
2593 		goto out;
2594 
2595 	mtu = IPV6_MIN_MTU;
2596 
2597 	rcu_read_lock();
2598 	idev = __in6_dev_get(dst->dev);
2599 	if (idev)
2600 		mtu = idev->cnf.mtu6;
2601 	rcu_read_unlock();
2602 
2603 out:
2604 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2605 
2606 	return mtu - lwtunnel_headroom(dst->lwtstate, mtu);
2607 }
2608 
2609 /* MTU selection:
2610  * 1. mtu on route is locked - use it
2611  * 2. mtu from nexthop exception
2612  * 3. mtu from egress device
2613  *
2614  * based on ip6_dst_mtu_forward and exception logic of
2615  * rt6_find_cached_rt; called with rcu_read_lock
2616  */
2617 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr,
2618 		      struct in6_addr *saddr)
2619 {
2620 	struct rt6_exception_bucket *bucket;
2621 	struct rt6_exception *rt6_ex;
2622 	struct in6_addr *src_key;
2623 	struct inet6_dev *idev;
2624 	u32 mtu = 0;
2625 
2626 	if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
2627 		mtu = f6i->fib6_pmtu;
2628 		if (mtu)
2629 			goto out;
2630 	}
2631 
2632 	src_key = NULL;
2633 #ifdef CONFIG_IPV6_SUBTREES
2634 	if (f6i->fib6_src.plen)
2635 		src_key = saddr;
2636 #endif
2637 
2638 	bucket = rcu_dereference(f6i->rt6i_exception_bucket);
2639 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
2640 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
2641 		mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU);
2642 
2643 	if (likely(!mtu)) {
2644 		struct net_device *dev = fib6_info_nh_dev(f6i);
2645 
2646 		mtu = IPV6_MIN_MTU;
2647 		idev = __in6_dev_get(dev);
2648 		if (idev && idev->cnf.mtu6 > mtu)
2649 			mtu = idev->cnf.mtu6;
2650 	}
2651 
2652 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2653 out:
2654 	return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu);
2655 }
2656 
2657 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
2658 				  struct flowi6 *fl6)
2659 {
2660 	struct dst_entry *dst;
2661 	struct rt6_info *rt;
2662 	struct inet6_dev *idev = in6_dev_get(dev);
2663 	struct net *net = dev_net(dev);
2664 
2665 	if (unlikely(!idev))
2666 		return ERR_PTR(-ENODEV);
2667 
2668 	rt = ip6_dst_alloc(net, dev, 0);
2669 	if (unlikely(!rt)) {
2670 		in6_dev_put(idev);
2671 		dst = ERR_PTR(-ENOMEM);
2672 		goto out;
2673 	}
2674 
2675 	rt->dst.flags |= DST_HOST;
2676 	rt->dst.input = ip6_input;
2677 	rt->dst.output  = ip6_output;
2678 	rt->rt6i_gateway  = fl6->daddr;
2679 	rt->rt6i_dst.addr = fl6->daddr;
2680 	rt->rt6i_dst.plen = 128;
2681 	rt->rt6i_idev     = idev;
2682 	dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
2683 
2684 	/* Add this dst into uncached_list so that rt6_disable_ip() can
2685 	 * do proper release of the net_device
2686 	 */
2687 	rt6_uncached_list_add(rt);
2688 	atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
2689 
2690 	dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
2691 
2692 out:
2693 	return dst;
2694 }
2695 
2696 static int ip6_dst_gc(struct dst_ops *ops)
2697 {
2698 	struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
2699 	int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
2700 	int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
2701 	int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
2702 	int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
2703 	unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
2704 	int entries;
2705 
2706 	entries = dst_entries_get_fast(ops);
2707 	if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
2708 	    entries <= rt_max_size)
2709 		goto out;
2710 
2711 	net->ipv6.ip6_rt_gc_expire++;
2712 	fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true);
2713 	entries = dst_entries_get_slow(ops);
2714 	if (entries < ops->gc_thresh)
2715 		net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
2716 out:
2717 	net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
2718 	return entries > rt_max_size;
2719 }
2720 
2721 static int ip6_convert_metrics(struct net *net, struct fib6_info *rt,
2722 			       struct fib6_config *cfg)
2723 {
2724 	struct dst_metrics *p;
2725 
2726 	if (!cfg->fc_mx)
2727 		return 0;
2728 
2729 	p = kzalloc(sizeof(*rt->fib6_metrics), GFP_KERNEL);
2730 	if (unlikely(!p))
2731 		return -ENOMEM;
2732 
2733 	refcount_set(&p->refcnt, 1);
2734 	rt->fib6_metrics = p;
2735 
2736 	return ip_metrics_convert(net, cfg->fc_mx, cfg->fc_mx_len, p->metrics);
2737 }
2738 
2739 static struct rt6_info *ip6_nh_lookup_table(struct net *net,
2740 					    struct fib6_config *cfg,
2741 					    const struct in6_addr *gw_addr,
2742 					    u32 tbid, int flags)
2743 {
2744 	struct flowi6 fl6 = {
2745 		.flowi6_oif = cfg->fc_ifindex,
2746 		.daddr = *gw_addr,
2747 		.saddr = cfg->fc_prefsrc,
2748 	};
2749 	struct fib6_table *table;
2750 	struct rt6_info *rt;
2751 
2752 	table = fib6_get_table(net, tbid);
2753 	if (!table)
2754 		return NULL;
2755 
2756 	if (!ipv6_addr_any(&cfg->fc_prefsrc))
2757 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2758 
2759 	flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
2760 	rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags);
2761 
2762 	/* if table lookup failed, fall back to full lookup */
2763 	if (rt == net->ipv6.ip6_null_entry) {
2764 		ip6_rt_put(rt);
2765 		rt = NULL;
2766 	}
2767 
2768 	return rt;
2769 }
2770 
2771 static int ip6_route_check_nh_onlink(struct net *net,
2772 				     struct fib6_config *cfg,
2773 				     const struct net_device *dev,
2774 				     struct netlink_ext_ack *extack)
2775 {
2776 	u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN;
2777 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2778 	u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT;
2779 	struct rt6_info *grt;
2780 	int err;
2781 
2782 	err = 0;
2783 	grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0);
2784 	if (grt) {
2785 		if (!grt->dst.error &&
2786 		    (grt->rt6i_flags & flags || dev != grt->dst.dev)) {
2787 			NL_SET_ERR_MSG(extack,
2788 				       "Nexthop has invalid gateway or device mismatch");
2789 			err = -EINVAL;
2790 		}
2791 
2792 		ip6_rt_put(grt);
2793 	}
2794 
2795 	return err;
2796 }
2797 
2798 static int ip6_route_check_nh(struct net *net,
2799 			      struct fib6_config *cfg,
2800 			      struct net_device **_dev,
2801 			      struct inet6_dev **idev)
2802 {
2803 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2804 	struct net_device *dev = _dev ? *_dev : NULL;
2805 	struct rt6_info *grt = NULL;
2806 	int err = -EHOSTUNREACH;
2807 
2808 	if (cfg->fc_table) {
2809 		int flags = RT6_LOOKUP_F_IFACE;
2810 
2811 		grt = ip6_nh_lookup_table(net, cfg, gw_addr,
2812 					  cfg->fc_table, flags);
2813 		if (grt) {
2814 			if (grt->rt6i_flags & RTF_GATEWAY ||
2815 			    (dev && dev != grt->dst.dev)) {
2816 				ip6_rt_put(grt);
2817 				grt = NULL;
2818 			}
2819 		}
2820 	}
2821 
2822 	if (!grt)
2823 		grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1);
2824 
2825 	if (!grt)
2826 		goto out;
2827 
2828 	if (dev) {
2829 		if (dev != grt->dst.dev) {
2830 			ip6_rt_put(grt);
2831 			goto out;
2832 		}
2833 	} else {
2834 		*_dev = dev = grt->dst.dev;
2835 		*idev = grt->rt6i_idev;
2836 		dev_hold(dev);
2837 		in6_dev_hold(grt->rt6i_idev);
2838 	}
2839 
2840 	if (!(grt->rt6i_flags & RTF_GATEWAY))
2841 		err = 0;
2842 
2843 	ip6_rt_put(grt);
2844 
2845 out:
2846 	return err;
2847 }
2848 
2849 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
2850 			   struct net_device **_dev, struct inet6_dev **idev,
2851 			   struct netlink_ext_ack *extack)
2852 {
2853 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2854 	int gwa_type = ipv6_addr_type(gw_addr);
2855 	bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
2856 	const struct net_device *dev = *_dev;
2857 	bool need_addr_check = !dev;
2858 	int err = -EINVAL;
2859 
2860 	/* if gw_addr is local we will fail to detect this in case
2861 	 * address is still TENTATIVE (DAD in progress). rt6_lookup()
2862 	 * will return already-added prefix route via interface that
2863 	 * prefix route was assigned to, which might be non-loopback.
2864 	 */
2865 	if (dev &&
2866 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2867 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2868 		goto out;
2869 	}
2870 
2871 	if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
2872 		/* IPv6 strictly inhibits using not link-local
2873 		 * addresses as nexthop address.
2874 		 * Otherwise, router will not able to send redirects.
2875 		 * It is very good, but in some (rare!) circumstances
2876 		 * (SIT, PtP, NBMA NOARP links) it is handy to allow
2877 		 * some exceptions. --ANK
2878 		 * We allow IPv4-mapped nexthops to support RFC4798-type
2879 		 * addressing
2880 		 */
2881 		if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
2882 			NL_SET_ERR_MSG(extack, "Invalid gateway address");
2883 			goto out;
2884 		}
2885 
2886 		if (cfg->fc_flags & RTNH_F_ONLINK)
2887 			err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
2888 		else
2889 			err = ip6_route_check_nh(net, cfg, _dev, idev);
2890 
2891 		if (err)
2892 			goto out;
2893 	}
2894 
2895 	/* reload in case device was changed */
2896 	dev = *_dev;
2897 
2898 	err = -EINVAL;
2899 	if (!dev) {
2900 		NL_SET_ERR_MSG(extack, "Egress device not specified");
2901 		goto out;
2902 	} else if (dev->flags & IFF_LOOPBACK) {
2903 		NL_SET_ERR_MSG(extack,
2904 			       "Egress device can not be loopback device for this route");
2905 		goto out;
2906 	}
2907 
2908 	/* if we did not check gw_addr above, do so now that the
2909 	 * egress device has been resolved.
2910 	 */
2911 	if (need_addr_check &&
2912 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2913 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2914 		goto out;
2915 	}
2916 
2917 	err = 0;
2918 out:
2919 	return err;
2920 }
2921 
2922 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
2923 					      gfp_t gfp_flags,
2924 					      struct netlink_ext_ack *extack)
2925 {
2926 	struct net *net = cfg->fc_nlinfo.nl_net;
2927 	struct fib6_info *rt = NULL;
2928 	struct net_device *dev = NULL;
2929 	struct inet6_dev *idev = NULL;
2930 	struct fib6_table *table;
2931 	int addr_type;
2932 	int err = -EINVAL;
2933 
2934 	/* RTF_PCPU is an internal flag; can not be set by userspace */
2935 	if (cfg->fc_flags & RTF_PCPU) {
2936 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
2937 		goto out;
2938 	}
2939 
2940 	/* RTF_CACHE is an internal flag; can not be set by userspace */
2941 	if (cfg->fc_flags & RTF_CACHE) {
2942 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
2943 		goto out;
2944 	}
2945 
2946 	if (cfg->fc_type > RTN_MAX) {
2947 		NL_SET_ERR_MSG(extack, "Invalid route type");
2948 		goto out;
2949 	}
2950 
2951 	if (cfg->fc_dst_len > 128) {
2952 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
2953 		goto out;
2954 	}
2955 	if (cfg->fc_src_len > 128) {
2956 		NL_SET_ERR_MSG(extack, "Invalid source address length");
2957 		goto out;
2958 	}
2959 #ifndef CONFIG_IPV6_SUBTREES
2960 	if (cfg->fc_src_len) {
2961 		NL_SET_ERR_MSG(extack,
2962 			       "Specifying source address requires IPV6_SUBTREES to be enabled");
2963 		goto out;
2964 	}
2965 #endif
2966 	if (cfg->fc_ifindex) {
2967 		err = -ENODEV;
2968 		dev = dev_get_by_index(net, cfg->fc_ifindex);
2969 		if (!dev)
2970 			goto out;
2971 		idev = in6_dev_get(dev);
2972 		if (!idev)
2973 			goto out;
2974 	}
2975 
2976 	if (cfg->fc_metric == 0)
2977 		cfg->fc_metric = IP6_RT_PRIO_USER;
2978 
2979 	if (cfg->fc_flags & RTNH_F_ONLINK) {
2980 		if (!dev) {
2981 			NL_SET_ERR_MSG(extack,
2982 				       "Nexthop device required for onlink");
2983 			err = -ENODEV;
2984 			goto out;
2985 		}
2986 
2987 		if (!(dev->flags & IFF_UP)) {
2988 			NL_SET_ERR_MSG(extack, "Nexthop device is not up");
2989 			err = -ENETDOWN;
2990 			goto out;
2991 		}
2992 	}
2993 
2994 	err = -ENOBUFS;
2995 	if (cfg->fc_nlinfo.nlh &&
2996 	    !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
2997 		table = fib6_get_table(net, cfg->fc_table);
2998 		if (!table) {
2999 			pr_warn("NLM_F_CREATE should be specified when creating new route\n");
3000 			table = fib6_new_table(net, cfg->fc_table);
3001 		}
3002 	} else {
3003 		table = fib6_new_table(net, cfg->fc_table);
3004 	}
3005 
3006 	if (!table)
3007 		goto out;
3008 
3009 	err = -ENOMEM;
3010 	rt = fib6_info_alloc(gfp_flags);
3011 	if (!rt)
3012 		goto out;
3013 
3014 	if (cfg->fc_flags & RTF_ADDRCONF)
3015 		rt->dst_nocount = true;
3016 
3017 	err = ip6_convert_metrics(net, rt, cfg);
3018 	if (err < 0)
3019 		goto out;
3020 
3021 	if (cfg->fc_flags & RTF_EXPIRES)
3022 		fib6_set_expires(rt, jiffies +
3023 				clock_t_to_jiffies(cfg->fc_expires));
3024 	else
3025 		fib6_clean_expires(rt);
3026 
3027 	if (cfg->fc_protocol == RTPROT_UNSPEC)
3028 		cfg->fc_protocol = RTPROT_BOOT;
3029 	rt->fib6_protocol = cfg->fc_protocol;
3030 
3031 	addr_type = ipv6_addr_type(&cfg->fc_dst);
3032 
3033 	if (cfg->fc_encap) {
3034 		struct lwtunnel_state *lwtstate;
3035 
3036 		err = lwtunnel_build_state(cfg->fc_encap_type,
3037 					   cfg->fc_encap, AF_INET6, cfg,
3038 					   &lwtstate, extack);
3039 		if (err)
3040 			goto out;
3041 		rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate);
3042 	}
3043 
3044 	ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
3045 	rt->fib6_dst.plen = cfg->fc_dst_len;
3046 	if (rt->fib6_dst.plen == 128)
3047 		rt->dst_host = true;
3048 
3049 #ifdef CONFIG_IPV6_SUBTREES
3050 	ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
3051 	rt->fib6_src.plen = cfg->fc_src_len;
3052 #endif
3053 
3054 	rt->fib6_metric = cfg->fc_metric;
3055 	rt->fib6_nh.nh_weight = 1;
3056 
3057 	rt->fib6_type = cfg->fc_type;
3058 
3059 	/* We cannot add true routes via loopback here,
3060 	   they would result in kernel looping; promote them to reject routes
3061 	 */
3062 	if ((cfg->fc_flags & RTF_REJECT) ||
3063 	    (dev && (dev->flags & IFF_LOOPBACK) &&
3064 	     !(addr_type & IPV6_ADDR_LOOPBACK) &&
3065 	     !(cfg->fc_flags & RTF_LOCAL))) {
3066 		/* hold loopback dev/idev if we haven't done so. */
3067 		if (dev != net->loopback_dev) {
3068 			if (dev) {
3069 				dev_put(dev);
3070 				in6_dev_put(idev);
3071 			}
3072 			dev = net->loopback_dev;
3073 			dev_hold(dev);
3074 			idev = in6_dev_get(dev);
3075 			if (!idev) {
3076 				err = -ENODEV;
3077 				goto out;
3078 			}
3079 		}
3080 		rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP;
3081 		goto install_route;
3082 	}
3083 
3084 	if (cfg->fc_flags & RTF_GATEWAY) {
3085 		err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
3086 		if (err)
3087 			goto out;
3088 
3089 		rt->fib6_nh.nh_gw = cfg->fc_gateway;
3090 	}
3091 
3092 	err = -ENODEV;
3093 	if (!dev)
3094 		goto out;
3095 
3096 	if (idev->cnf.disable_ipv6) {
3097 		NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
3098 		err = -EACCES;
3099 		goto out;
3100 	}
3101 
3102 	if (!(dev->flags & IFF_UP)) {
3103 		NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3104 		err = -ENETDOWN;
3105 		goto out;
3106 	}
3107 
3108 	if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
3109 		if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
3110 			NL_SET_ERR_MSG(extack, "Invalid source address");
3111 			err = -EINVAL;
3112 			goto out;
3113 		}
3114 		rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
3115 		rt->fib6_prefsrc.plen = 128;
3116 	} else
3117 		rt->fib6_prefsrc.plen = 0;
3118 
3119 	rt->fib6_flags = cfg->fc_flags;
3120 
3121 install_route:
3122 	if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
3123 	    !netif_carrier_ok(dev))
3124 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
3125 	rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK);
3126 	rt->fib6_nh.nh_dev = dev;
3127 	rt->fib6_table = table;
3128 
3129 	cfg->fc_nlinfo.nl_net = dev_net(dev);
3130 
3131 	if (idev)
3132 		in6_dev_put(idev);
3133 
3134 	return rt;
3135 out:
3136 	if (dev)
3137 		dev_put(dev);
3138 	if (idev)
3139 		in6_dev_put(idev);
3140 
3141 	fib6_info_release(rt);
3142 	return ERR_PTR(err);
3143 }
3144 
3145 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
3146 		  struct netlink_ext_ack *extack)
3147 {
3148 	struct fib6_info *rt;
3149 	int err;
3150 
3151 	rt = ip6_route_info_create(cfg, gfp_flags, extack);
3152 	if (IS_ERR(rt))
3153 		return PTR_ERR(rt);
3154 
3155 	err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
3156 	fib6_info_release(rt);
3157 
3158 	return err;
3159 }
3160 
3161 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
3162 {
3163 	struct net *net = info->nl_net;
3164 	struct fib6_table *table;
3165 	int err;
3166 
3167 	if (rt == net->ipv6.fib6_null_entry) {
3168 		err = -ENOENT;
3169 		goto out;
3170 	}
3171 
3172 	table = rt->fib6_table;
3173 	spin_lock_bh(&table->tb6_lock);
3174 	err = fib6_del(rt, info);
3175 	spin_unlock_bh(&table->tb6_lock);
3176 
3177 out:
3178 	fib6_info_release(rt);
3179 	return err;
3180 }
3181 
3182 int ip6_del_rt(struct net *net, struct fib6_info *rt)
3183 {
3184 	struct nl_info info = { .nl_net = net };
3185 
3186 	return __ip6_del_rt(rt, &info);
3187 }
3188 
3189 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
3190 {
3191 	struct nl_info *info = &cfg->fc_nlinfo;
3192 	struct net *net = info->nl_net;
3193 	struct sk_buff *skb = NULL;
3194 	struct fib6_table *table;
3195 	int err = -ENOENT;
3196 
3197 	if (rt == net->ipv6.fib6_null_entry)
3198 		goto out_put;
3199 	table = rt->fib6_table;
3200 	spin_lock_bh(&table->tb6_lock);
3201 
3202 	if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
3203 		struct fib6_info *sibling, *next_sibling;
3204 
3205 		/* prefer to send a single notification with all hops */
3206 		skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
3207 		if (skb) {
3208 			u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
3209 
3210 			if (rt6_fill_node(net, skb, rt, NULL,
3211 					  NULL, NULL, 0, RTM_DELROUTE,
3212 					  info->portid, seq, 0) < 0) {
3213 				kfree_skb(skb);
3214 				skb = NULL;
3215 			} else
3216 				info->skip_notify = 1;
3217 		}
3218 
3219 		list_for_each_entry_safe(sibling, next_sibling,
3220 					 &rt->fib6_siblings,
3221 					 fib6_siblings) {
3222 			err = fib6_del(sibling, info);
3223 			if (err)
3224 				goto out_unlock;
3225 		}
3226 	}
3227 
3228 	err = fib6_del(rt, info);
3229 out_unlock:
3230 	spin_unlock_bh(&table->tb6_lock);
3231 out_put:
3232 	fib6_info_release(rt);
3233 
3234 	if (skb) {
3235 		rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
3236 			    info->nlh, gfp_any());
3237 	}
3238 	return err;
3239 }
3240 
3241 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
3242 {
3243 	int rc = -ESRCH;
3244 
3245 	if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
3246 		goto out;
3247 
3248 	if (cfg->fc_flags & RTF_GATEWAY &&
3249 	    !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
3250 		goto out;
3251 	if (dst_hold_safe(&rt->dst))
3252 		rc = rt6_remove_exception_rt(rt);
3253 out:
3254 	return rc;
3255 }
3256 
3257 static int ip6_route_del(struct fib6_config *cfg,
3258 			 struct netlink_ext_ack *extack)
3259 {
3260 	struct rt6_info *rt_cache;
3261 	struct fib6_table *table;
3262 	struct fib6_info *rt;
3263 	struct fib6_node *fn;
3264 	int err = -ESRCH;
3265 
3266 	table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
3267 	if (!table) {
3268 		NL_SET_ERR_MSG(extack, "FIB table does not exist");
3269 		return err;
3270 	}
3271 
3272 	rcu_read_lock();
3273 
3274 	fn = fib6_locate(&table->tb6_root,
3275 			 &cfg->fc_dst, cfg->fc_dst_len,
3276 			 &cfg->fc_src, cfg->fc_src_len,
3277 			 !(cfg->fc_flags & RTF_CACHE));
3278 
3279 	if (fn) {
3280 		for_each_fib6_node_rt_rcu(fn) {
3281 			if (cfg->fc_flags & RTF_CACHE) {
3282 				int rc;
3283 
3284 				rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst,
3285 							      &cfg->fc_src);
3286 				if (rt_cache) {
3287 					rc = ip6_del_cached_rt(rt_cache, cfg);
3288 					if (rc != -ESRCH) {
3289 						rcu_read_unlock();
3290 						return rc;
3291 					}
3292 				}
3293 				continue;
3294 			}
3295 			if (cfg->fc_ifindex &&
3296 			    (!rt->fib6_nh.nh_dev ||
3297 			     rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex))
3298 				continue;
3299 			if (cfg->fc_flags & RTF_GATEWAY &&
3300 			    !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw))
3301 				continue;
3302 			if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
3303 				continue;
3304 			if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol)
3305 				continue;
3306 			fib6_info_hold(rt);
3307 			rcu_read_unlock();
3308 
3309 			/* if gateway was specified only delete the one hop */
3310 			if (cfg->fc_flags & RTF_GATEWAY)
3311 				return __ip6_del_rt(rt, &cfg->fc_nlinfo);
3312 
3313 			return __ip6_del_rt_siblings(rt, cfg);
3314 		}
3315 	}
3316 	rcu_read_unlock();
3317 
3318 	return err;
3319 }
3320 
3321 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
3322 {
3323 	struct netevent_redirect netevent;
3324 	struct rt6_info *rt, *nrt = NULL;
3325 	struct ndisc_options ndopts;
3326 	struct inet6_dev *in6_dev;
3327 	struct neighbour *neigh;
3328 	struct fib6_info *from;
3329 	struct rd_msg *msg;
3330 	int optlen, on_link;
3331 	u8 *lladdr;
3332 
3333 	optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
3334 	optlen -= sizeof(*msg);
3335 
3336 	if (optlen < 0) {
3337 		net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
3338 		return;
3339 	}
3340 
3341 	msg = (struct rd_msg *)icmp6_hdr(skb);
3342 
3343 	if (ipv6_addr_is_multicast(&msg->dest)) {
3344 		net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
3345 		return;
3346 	}
3347 
3348 	on_link = 0;
3349 	if (ipv6_addr_equal(&msg->dest, &msg->target)) {
3350 		on_link = 1;
3351 	} else if (ipv6_addr_type(&msg->target) !=
3352 		   (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
3353 		net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
3354 		return;
3355 	}
3356 
3357 	in6_dev = __in6_dev_get(skb->dev);
3358 	if (!in6_dev)
3359 		return;
3360 	if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
3361 		return;
3362 
3363 	/* RFC2461 8.1:
3364 	 *	The IP source address of the Redirect MUST be the same as the current
3365 	 *	first-hop router for the specified ICMP Destination Address.
3366 	 */
3367 
3368 	if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
3369 		net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
3370 		return;
3371 	}
3372 
3373 	lladdr = NULL;
3374 	if (ndopts.nd_opts_tgt_lladdr) {
3375 		lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
3376 					     skb->dev);
3377 		if (!lladdr) {
3378 			net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
3379 			return;
3380 		}
3381 	}
3382 
3383 	rt = (struct rt6_info *) dst;
3384 	if (rt->rt6i_flags & RTF_REJECT) {
3385 		net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
3386 		return;
3387 	}
3388 
3389 	/* Redirect received -> path was valid.
3390 	 * Look, redirects are sent only in response to data packets,
3391 	 * so that this nexthop apparently is reachable. --ANK
3392 	 */
3393 	dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
3394 
3395 	neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
3396 	if (!neigh)
3397 		return;
3398 
3399 	/*
3400 	 *	We have finally decided to accept it.
3401 	 */
3402 
3403 	ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
3404 		     NEIGH_UPDATE_F_WEAK_OVERRIDE|
3405 		     NEIGH_UPDATE_F_OVERRIDE|
3406 		     (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
3407 				     NEIGH_UPDATE_F_ISROUTER)),
3408 		     NDISC_REDIRECT, &ndopts);
3409 
3410 	rcu_read_lock();
3411 	from = rcu_dereference(rt->from);
3412 	fib6_info_hold(from);
3413 	rcu_read_unlock();
3414 
3415 	nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL);
3416 	if (!nrt)
3417 		goto out;
3418 
3419 	nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
3420 	if (on_link)
3421 		nrt->rt6i_flags &= ~RTF_GATEWAY;
3422 
3423 	nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
3424 
3425 	/* No need to remove rt from the exception table if rt is
3426 	 * a cached route because rt6_insert_exception() will
3427 	 * takes care of it
3428 	 */
3429 	if (rt6_insert_exception(nrt, from)) {
3430 		dst_release_immediate(&nrt->dst);
3431 		goto out;
3432 	}
3433 
3434 	netevent.old = &rt->dst;
3435 	netevent.new = &nrt->dst;
3436 	netevent.daddr = &msg->dest;
3437 	netevent.neigh = neigh;
3438 	call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
3439 
3440 out:
3441 	fib6_info_release(from);
3442 	neigh_release(neigh);
3443 }
3444 
3445 #ifdef CONFIG_IPV6_ROUTE_INFO
3446 static struct fib6_info *rt6_get_route_info(struct net *net,
3447 					   const struct in6_addr *prefix, int prefixlen,
3448 					   const struct in6_addr *gwaddr,
3449 					   struct net_device *dev)
3450 {
3451 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
3452 	int ifindex = dev->ifindex;
3453 	struct fib6_node *fn;
3454 	struct fib6_info *rt = NULL;
3455 	struct fib6_table *table;
3456 
3457 	table = fib6_get_table(net, tb_id);
3458 	if (!table)
3459 		return NULL;
3460 
3461 	rcu_read_lock();
3462 	fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
3463 	if (!fn)
3464 		goto out;
3465 
3466 	for_each_fib6_node_rt_rcu(fn) {
3467 		if (rt->fib6_nh.nh_dev->ifindex != ifindex)
3468 			continue;
3469 		if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
3470 			continue;
3471 		if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr))
3472 			continue;
3473 		fib6_info_hold(rt);
3474 		break;
3475 	}
3476 out:
3477 	rcu_read_unlock();
3478 	return rt;
3479 }
3480 
3481 static struct fib6_info *rt6_add_route_info(struct net *net,
3482 					   const struct in6_addr *prefix, int prefixlen,
3483 					   const struct in6_addr *gwaddr,
3484 					   struct net_device *dev,
3485 					   unsigned int pref)
3486 {
3487 	struct fib6_config cfg = {
3488 		.fc_metric	= IP6_RT_PRIO_USER,
3489 		.fc_ifindex	= dev->ifindex,
3490 		.fc_dst_len	= prefixlen,
3491 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
3492 				  RTF_UP | RTF_PREF(pref),
3493 		.fc_protocol = RTPROT_RA,
3494 		.fc_type = RTN_UNICAST,
3495 		.fc_nlinfo.portid = 0,
3496 		.fc_nlinfo.nlh = NULL,
3497 		.fc_nlinfo.nl_net = net,
3498 	};
3499 
3500 	cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO,
3501 	cfg.fc_dst = *prefix;
3502 	cfg.fc_gateway = *gwaddr;
3503 
3504 	/* We should treat it as a default route if prefix length is 0. */
3505 	if (!prefixlen)
3506 		cfg.fc_flags |= RTF_DEFAULT;
3507 
3508 	ip6_route_add(&cfg, GFP_ATOMIC, NULL);
3509 
3510 	return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
3511 }
3512 #endif
3513 
3514 struct fib6_info *rt6_get_dflt_router(struct net *net,
3515 				     const struct in6_addr *addr,
3516 				     struct net_device *dev)
3517 {
3518 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
3519 	struct fib6_info *rt;
3520 	struct fib6_table *table;
3521 
3522 	table = fib6_get_table(net, tb_id);
3523 	if (!table)
3524 		return NULL;
3525 
3526 	rcu_read_lock();
3527 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3528 		if (dev == rt->fib6_nh.nh_dev &&
3529 		    ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
3530 		    ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr))
3531 			break;
3532 	}
3533 	if (rt)
3534 		fib6_info_hold(rt);
3535 	rcu_read_unlock();
3536 	return rt;
3537 }
3538 
3539 struct fib6_info *rt6_add_dflt_router(struct net *net,
3540 				     const struct in6_addr *gwaddr,
3541 				     struct net_device *dev,
3542 				     unsigned int pref)
3543 {
3544 	struct fib6_config cfg = {
3545 		.fc_table	= l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
3546 		.fc_metric	= IP6_RT_PRIO_USER,
3547 		.fc_ifindex	= dev->ifindex,
3548 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
3549 				  RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
3550 		.fc_protocol = RTPROT_RA,
3551 		.fc_type = RTN_UNICAST,
3552 		.fc_nlinfo.portid = 0,
3553 		.fc_nlinfo.nlh = NULL,
3554 		.fc_nlinfo.nl_net = net,
3555 	};
3556 
3557 	cfg.fc_gateway = *gwaddr;
3558 
3559 	if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
3560 		struct fib6_table *table;
3561 
3562 		table = fib6_get_table(dev_net(dev), cfg.fc_table);
3563 		if (table)
3564 			table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
3565 	}
3566 
3567 	return rt6_get_dflt_router(net, gwaddr, dev);
3568 }
3569 
3570 static void __rt6_purge_dflt_routers(struct net *net,
3571 				     struct fib6_table *table)
3572 {
3573 	struct fib6_info *rt;
3574 
3575 restart:
3576 	rcu_read_lock();
3577 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3578 		struct net_device *dev = fib6_info_nh_dev(rt);
3579 		struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
3580 
3581 		if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
3582 		    (!idev || idev->cnf.accept_ra != 2)) {
3583 			fib6_info_hold(rt);
3584 			rcu_read_unlock();
3585 			ip6_del_rt(net, rt);
3586 			goto restart;
3587 		}
3588 	}
3589 	rcu_read_unlock();
3590 
3591 	table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
3592 }
3593 
3594 void rt6_purge_dflt_routers(struct net *net)
3595 {
3596 	struct fib6_table *table;
3597 	struct hlist_head *head;
3598 	unsigned int h;
3599 
3600 	rcu_read_lock();
3601 
3602 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
3603 		head = &net->ipv6.fib_table_hash[h];
3604 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
3605 			if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
3606 				__rt6_purge_dflt_routers(net, table);
3607 		}
3608 	}
3609 
3610 	rcu_read_unlock();
3611 }
3612 
3613 static void rtmsg_to_fib6_config(struct net *net,
3614 				 struct in6_rtmsg *rtmsg,
3615 				 struct fib6_config *cfg)
3616 {
3617 	memset(cfg, 0, sizeof(*cfg));
3618 
3619 	cfg->fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
3620 			 : RT6_TABLE_MAIN;
3621 	cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
3622 	cfg->fc_metric = rtmsg->rtmsg_metric;
3623 	cfg->fc_expires = rtmsg->rtmsg_info;
3624 	cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
3625 	cfg->fc_src_len = rtmsg->rtmsg_src_len;
3626 	cfg->fc_flags = rtmsg->rtmsg_flags;
3627 	cfg->fc_type = rtmsg->rtmsg_type;
3628 
3629 	cfg->fc_nlinfo.nl_net = net;
3630 
3631 	cfg->fc_dst = rtmsg->rtmsg_dst;
3632 	cfg->fc_src = rtmsg->rtmsg_src;
3633 	cfg->fc_gateway = rtmsg->rtmsg_gateway;
3634 }
3635 
3636 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3637 {
3638 	struct fib6_config cfg;
3639 	struct in6_rtmsg rtmsg;
3640 	int err;
3641 
3642 	switch (cmd) {
3643 	case SIOCADDRT:		/* Add a route */
3644 	case SIOCDELRT:		/* Delete a route */
3645 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3646 			return -EPERM;
3647 		err = copy_from_user(&rtmsg, arg,
3648 				     sizeof(struct in6_rtmsg));
3649 		if (err)
3650 			return -EFAULT;
3651 
3652 		rtmsg_to_fib6_config(net, &rtmsg, &cfg);
3653 
3654 		rtnl_lock();
3655 		switch (cmd) {
3656 		case SIOCADDRT:
3657 			err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
3658 			break;
3659 		case SIOCDELRT:
3660 			err = ip6_route_del(&cfg, NULL);
3661 			break;
3662 		default:
3663 			err = -EINVAL;
3664 		}
3665 		rtnl_unlock();
3666 
3667 		return err;
3668 	}
3669 
3670 	return -EINVAL;
3671 }
3672 
3673 /*
3674  *	Drop the packet on the floor
3675  */
3676 
3677 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
3678 {
3679 	int type;
3680 	struct dst_entry *dst = skb_dst(skb);
3681 	switch (ipstats_mib_noroutes) {
3682 	case IPSTATS_MIB_INNOROUTES:
3683 		type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
3684 		if (type == IPV6_ADDR_ANY) {
3685 			IP6_INC_STATS(dev_net(dst->dev),
3686 				      __in6_dev_get_safely(skb->dev),
3687 				      IPSTATS_MIB_INADDRERRORS);
3688 			break;
3689 		}
3690 		/* FALLTHROUGH */
3691 	case IPSTATS_MIB_OUTNOROUTES:
3692 		IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
3693 			      ipstats_mib_noroutes);
3694 		break;
3695 	}
3696 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
3697 	kfree_skb(skb);
3698 	return 0;
3699 }
3700 
3701 static int ip6_pkt_discard(struct sk_buff *skb)
3702 {
3703 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
3704 }
3705 
3706 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3707 {
3708 	skb->dev = skb_dst(skb)->dev;
3709 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
3710 }
3711 
3712 static int ip6_pkt_prohibit(struct sk_buff *skb)
3713 {
3714 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
3715 }
3716 
3717 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3718 {
3719 	skb->dev = skb_dst(skb)->dev;
3720 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
3721 }
3722 
3723 /*
3724  *	Allocate a dst for local (unicast / anycast) address.
3725  */
3726 
3727 struct fib6_info *addrconf_f6i_alloc(struct net *net,
3728 				     struct inet6_dev *idev,
3729 				     const struct in6_addr *addr,
3730 				     bool anycast, gfp_t gfp_flags)
3731 {
3732 	u32 tb_id;
3733 	struct net_device *dev = idev->dev;
3734 	struct fib6_info *f6i;
3735 
3736 	f6i = fib6_info_alloc(gfp_flags);
3737 	if (!f6i)
3738 		return ERR_PTR(-ENOMEM);
3739 
3740 	f6i->dst_nocount = true;
3741 	f6i->dst_host = true;
3742 	f6i->fib6_protocol = RTPROT_KERNEL;
3743 	f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP;
3744 	if (anycast) {
3745 		f6i->fib6_type = RTN_ANYCAST;
3746 		f6i->fib6_flags |= RTF_ANYCAST;
3747 	} else {
3748 		f6i->fib6_type = RTN_LOCAL;
3749 		f6i->fib6_flags |= RTF_LOCAL;
3750 	}
3751 
3752 	f6i->fib6_nh.nh_gw = *addr;
3753 	dev_hold(dev);
3754 	f6i->fib6_nh.nh_dev = dev;
3755 	f6i->fib6_dst.addr = *addr;
3756 	f6i->fib6_dst.plen = 128;
3757 	tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL;
3758 	f6i->fib6_table = fib6_get_table(net, tb_id);
3759 
3760 	return f6i;
3761 }
3762 
3763 /* remove deleted ip from prefsrc entries */
3764 struct arg_dev_net_ip {
3765 	struct net_device *dev;
3766 	struct net *net;
3767 	struct in6_addr *addr;
3768 };
3769 
3770 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
3771 {
3772 	struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
3773 	struct net *net = ((struct arg_dev_net_ip *)arg)->net;
3774 	struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
3775 
3776 	if (((void *)rt->fib6_nh.nh_dev == dev || !dev) &&
3777 	    rt != net->ipv6.fib6_null_entry &&
3778 	    ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
3779 		spin_lock_bh(&rt6_exception_lock);
3780 		/* remove prefsrc entry */
3781 		rt->fib6_prefsrc.plen = 0;
3782 		/* need to update cache as well */
3783 		rt6_exceptions_remove_prefsrc(rt);
3784 		spin_unlock_bh(&rt6_exception_lock);
3785 	}
3786 	return 0;
3787 }
3788 
3789 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
3790 {
3791 	struct net *net = dev_net(ifp->idev->dev);
3792 	struct arg_dev_net_ip adni = {
3793 		.dev = ifp->idev->dev,
3794 		.net = net,
3795 		.addr = &ifp->addr,
3796 	};
3797 	fib6_clean_all(net, fib6_remove_prefsrc, &adni);
3798 }
3799 
3800 #define RTF_RA_ROUTER		(RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY)
3801 
3802 /* Remove routers and update dst entries when gateway turn into host. */
3803 static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
3804 {
3805 	struct in6_addr *gateway = (struct in6_addr *)arg;
3806 
3807 	if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
3808 	    ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) {
3809 		return -1;
3810 	}
3811 
3812 	/* Further clean up cached routes in exception table.
3813 	 * This is needed because cached route may have a different
3814 	 * gateway than its 'parent' in the case of an ip redirect.
3815 	 */
3816 	rt6_exceptions_clean_tohost(rt, gateway);
3817 
3818 	return 0;
3819 }
3820 
3821 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
3822 {
3823 	fib6_clean_all(net, fib6_clean_tohost, gateway);
3824 }
3825 
3826 struct arg_netdev_event {
3827 	const struct net_device *dev;
3828 	union {
3829 		unsigned int nh_flags;
3830 		unsigned long event;
3831 	};
3832 };
3833 
3834 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
3835 {
3836 	struct fib6_info *iter;
3837 	struct fib6_node *fn;
3838 
3839 	fn = rcu_dereference_protected(rt->fib6_node,
3840 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3841 	iter = rcu_dereference_protected(fn->leaf,
3842 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3843 	while (iter) {
3844 		if (iter->fib6_metric == rt->fib6_metric &&
3845 		    iter->fib6_nsiblings)
3846 			return iter;
3847 		iter = rcu_dereference_protected(iter->fib6_next,
3848 				lockdep_is_held(&rt->fib6_table->tb6_lock));
3849 	}
3850 
3851 	return NULL;
3852 }
3853 
3854 static bool rt6_is_dead(const struct fib6_info *rt)
3855 {
3856 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD ||
3857 	    (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
3858 	     fib6_ignore_linkdown(rt)))
3859 		return true;
3860 
3861 	return false;
3862 }
3863 
3864 static int rt6_multipath_total_weight(const struct fib6_info *rt)
3865 {
3866 	struct fib6_info *iter;
3867 	int total = 0;
3868 
3869 	if (!rt6_is_dead(rt))
3870 		total += rt->fib6_nh.nh_weight;
3871 
3872 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
3873 		if (!rt6_is_dead(iter))
3874 			total += iter->fib6_nh.nh_weight;
3875 	}
3876 
3877 	return total;
3878 }
3879 
3880 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
3881 {
3882 	int upper_bound = -1;
3883 
3884 	if (!rt6_is_dead(rt)) {
3885 		*weight += rt->fib6_nh.nh_weight;
3886 		upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
3887 						    total) - 1;
3888 	}
3889 	atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound);
3890 }
3891 
3892 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
3893 {
3894 	struct fib6_info *iter;
3895 	int weight = 0;
3896 
3897 	rt6_upper_bound_set(rt, &weight, total);
3898 
3899 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3900 		rt6_upper_bound_set(iter, &weight, total);
3901 }
3902 
3903 void rt6_multipath_rebalance(struct fib6_info *rt)
3904 {
3905 	struct fib6_info *first;
3906 	int total;
3907 
3908 	/* In case the entire multipath route was marked for flushing,
3909 	 * then there is no need to rebalance upon the removal of every
3910 	 * sibling route.
3911 	 */
3912 	if (!rt->fib6_nsiblings || rt->should_flush)
3913 		return;
3914 
3915 	/* During lookup routes are evaluated in order, so we need to
3916 	 * make sure upper bounds are assigned from the first sibling
3917 	 * onwards.
3918 	 */
3919 	first = rt6_multipath_first_sibling(rt);
3920 	if (WARN_ON_ONCE(!first))
3921 		return;
3922 
3923 	total = rt6_multipath_total_weight(first);
3924 	rt6_multipath_upper_bound_set(first, total);
3925 }
3926 
3927 static int fib6_ifup(struct fib6_info *rt, void *p_arg)
3928 {
3929 	const struct arg_netdev_event *arg = p_arg;
3930 	struct net *net = dev_net(arg->dev);
3931 
3932 	if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) {
3933 		rt->fib6_nh.nh_flags &= ~arg->nh_flags;
3934 		fib6_update_sernum_upto_root(net, rt);
3935 		rt6_multipath_rebalance(rt);
3936 	}
3937 
3938 	return 0;
3939 }
3940 
3941 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags)
3942 {
3943 	struct arg_netdev_event arg = {
3944 		.dev = dev,
3945 		{
3946 			.nh_flags = nh_flags,
3947 		},
3948 	};
3949 
3950 	if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
3951 		arg.nh_flags |= RTNH_F_LINKDOWN;
3952 
3953 	fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
3954 }
3955 
3956 static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
3957 				   const struct net_device *dev)
3958 {
3959 	struct fib6_info *iter;
3960 
3961 	if (rt->fib6_nh.nh_dev == dev)
3962 		return true;
3963 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3964 		if (iter->fib6_nh.nh_dev == dev)
3965 			return true;
3966 
3967 	return false;
3968 }
3969 
3970 static void rt6_multipath_flush(struct fib6_info *rt)
3971 {
3972 	struct fib6_info *iter;
3973 
3974 	rt->should_flush = 1;
3975 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3976 		iter->should_flush = 1;
3977 }
3978 
3979 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
3980 					     const struct net_device *down_dev)
3981 {
3982 	struct fib6_info *iter;
3983 	unsigned int dead = 0;
3984 
3985 	if (rt->fib6_nh.nh_dev == down_dev ||
3986 	    rt->fib6_nh.nh_flags & RTNH_F_DEAD)
3987 		dead++;
3988 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3989 		if (iter->fib6_nh.nh_dev == down_dev ||
3990 		    iter->fib6_nh.nh_flags & RTNH_F_DEAD)
3991 			dead++;
3992 
3993 	return dead;
3994 }
3995 
3996 static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
3997 				       const struct net_device *dev,
3998 				       unsigned int nh_flags)
3999 {
4000 	struct fib6_info *iter;
4001 
4002 	if (rt->fib6_nh.nh_dev == dev)
4003 		rt->fib6_nh.nh_flags |= nh_flags;
4004 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4005 		if (iter->fib6_nh.nh_dev == dev)
4006 			iter->fib6_nh.nh_flags |= nh_flags;
4007 }
4008 
4009 /* called with write lock held for table with rt */
4010 static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
4011 {
4012 	const struct arg_netdev_event *arg = p_arg;
4013 	const struct net_device *dev = arg->dev;
4014 	struct net *net = dev_net(dev);
4015 
4016 	if (rt == net->ipv6.fib6_null_entry)
4017 		return 0;
4018 
4019 	switch (arg->event) {
4020 	case NETDEV_UNREGISTER:
4021 		return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4022 	case NETDEV_DOWN:
4023 		if (rt->should_flush)
4024 			return -1;
4025 		if (!rt->fib6_nsiblings)
4026 			return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4027 		if (rt6_multipath_uses_dev(rt, dev)) {
4028 			unsigned int count;
4029 
4030 			count = rt6_multipath_dead_count(rt, dev);
4031 			if (rt->fib6_nsiblings + 1 == count) {
4032 				rt6_multipath_flush(rt);
4033 				return -1;
4034 			}
4035 			rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
4036 						   RTNH_F_LINKDOWN);
4037 			fib6_update_sernum(net, rt);
4038 			rt6_multipath_rebalance(rt);
4039 		}
4040 		return -2;
4041 	case NETDEV_CHANGE:
4042 		if (rt->fib6_nh.nh_dev != dev ||
4043 		    rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
4044 			break;
4045 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
4046 		rt6_multipath_rebalance(rt);
4047 		break;
4048 	}
4049 
4050 	return 0;
4051 }
4052 
4053 void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
4054 {
4055 	struct arg_netdev_event arg = {
4056 		.dev = dev,
4057 		{
4058 			.event = event,
4059 		},
4060 	};
4061 
4062 	fib6_clean_all(dev_net(dev), fib6_ifdown, &arg);
4063 }
4064 
4065 void rt6_disable_ip(struct net_device *dev, unsigned long event)
4066 {
4067 	rt6_sync_down_dev(dev, event);
4068 	rt6_uncached_list_flush_dev(dev_net(dev), dev);
4069 	neigh_ifdown(&nd_tbl, dev);
4070 }
4071 
4072 struct rt6_mtu_change_arg {
4073 	struct net_device *dev;
4074 	unsigned int mtu;
4075 };
4076 
4077 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg)
4078 {
4079 	struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
4080 	struct inet6_dev *idev;
4081 
4082 	/* In IPv6 pmtu discovery is not optional,
4083 	   so that RTAX_MTU lock cannot disable it.
4084 	   We still use this lock to block changes
4085 	   caused by addrconf/ndisc.
4086 	*/
4087 
4088 	idev = __in6_dev_get(arg->dev);
4089 	if (!idev)
4090 		return 0;
4091 
4092 	/* For administrative MTU increase, there is no way to discover
4093 	   IPv6 PMTU increase, so PMTU increase should be updated here.
4094 	   Since RFC 1981 doesn't include administrative MTU increase
4095 	   update PMTU increase is a MUST. (i.e. jumbo frame)
4096 	 */
4097 	if (rt->fib6_nh.nh_dev == arg->dev &&
4098 	    !fib6_metric_locked(rt, RTAX_MTU)) {
4099 		u32 mtu = rt->fib6_pmtu;
4100 
4101 		if (mtu >= arg->mtu ||
4102 		    (mtu < arg->mtu && mtu == idev->cnf.mtu6))
4103 			fib6_metric_set(rt, RTAX_MTU, arg->mtu);
4104 
4105 		spin_lock_bh(&rt6_exception_lock);
4106 		rt6_exceptions_update_pmtu(idev, rt, arg->mtu);
4107 		spin_unlock_bh(&rt6_exception_lock);
4108 	}
4109 	return 0;
4110 }
4111 
4112 void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
4113 {
4114 	struct rt6_mtu_change_arg arg = {
4115 		.dev = dev,
4116 		.mtu = mtu,
4117 	};
4118 
4119 	fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
4120 }
4121 
4122 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
4123 	[RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
4124 	[RTA_PREFSRC]		= { .len = sizeof(struct in6_addr) },
4125 	[RTA_OIF]               = { .type = NLA_U32 },
4126 	[RTA_IIF]		= { .type = NLA_U32 },
4127 	[RTA_PRIORITY]          = { .type = NLA_U32 },
4128 	[RTA_METRICS]           = { .type = NLA_NESTED },
4129 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
4130 	[RTA_PREF]              = { .type = NLA_U8 },
4131 	[RTA_ENCAP_TYPE]	= { .type = NLA_U16 },
4132 	[RTA_ENCAP]		= { .type = NLA_NESTED },
4133 	[RTA_EXPIRES]		= { .type = NLA_U32 },
4134 	[RTA_UID]		= { .type = NLA_U32 },
4135 	[RTA_MARK]		= { .type = NLA_U32 },
4136 	[RTA_TABLE]		= { .type = NLA_U32 },
4137 	[RTA_IP_PROTO]		= { .type = NLA_U8 },
4138 	[RTA_SPORT]		= { .type = NLA_U16 },
4139 	[RTA_DPORT]		= { .type = NLA_U16 },
4140 };
4141 
4142 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
4143 			      struct fib6_config *cfg,
4144 			      struct netlink_ext_ack *extack)
4145 {
4146 	struct rtmsg *rtm;
4147 	struct nlattr *tb[RTA_MAX+1];
4148 	unsigned int pref;
4149 	int err;
4150 
4151 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4152 			  NULL);
4153 	if (err < 0)
4154 		goto errout;
4155 
4156 	err = -EINVAL;
4157 	rtm = nlmsg_data(nlh);
4158 	memset(cfg, 0, sizeof(*cfg));
4159 
4160 	cfg->fc_table = rtm->rtm_table;
4161 	cfg->fc_dst_len = rtm->rtm_dst_len;
4162 	cfg->fc_src_len = rtm->rtm_src_len;
4163 	cfg->fc_flags = RTF_UP;
4164 	cfg->fc_protocol = rtm->rtm_protocol;
4165 	cfg->fc_type = rtm->rtm_type;
4166 
4167 	if (rtm->rtm_type == RTN_UNREACHABLE ||
4168 	    rtm->rtm_type == RTN_BLACKHOLE ||
4169 	    rtm->rtm_type == RTN_PROHIBIT ||
4170 	    rtm->rtm_type == RTN_THROW)
4171 		cfg->fc_flags |= RTF_REJECT;
4172 
4173 	if (rtm->rtm_type == RTN_LOCAL)
4174 		cfg->fc_flags |= RTF_LOCAL;
4175 
4176 	if (rtm->rtm_flags & RTM_F_CLONED)
4177 		cfg->fc_flags |= RTF_CACHE;
4178 
4179 	cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
4180 
4181 	cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
4182 	cfg->fc_nlinfo.nlh = nlh;
4183 	cfg->fc_nlinfo.nl_net = sock_net(skb->sk);
4184 
4185 	if (tb[RTA_GATEWAY]) {
4186 		cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
4187 		cfg->fc_flags |= RTF_GATEWAY;
4188 	}
4189 
4190 	if (tb[RTA_DST]) {
4191 		int plen = (rtm->rtm_dst_len + 7) >> 3;
4192 
4193 		if (nla_len(tb[RTA_DST]) < plen)
4194 			goto errout;
4195 
4196 		nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
4197 	}
4198 
4199 	if (tb[RTA_SRC]) {
4200 		int plen = (rtm->rtm_src_len + 7) >> 3;
4201 
4202 		if (nla_len(tb[RTA_SRC]) < plen)
4203 			goto errout;
4204 
4205 		nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
4206 	}
4207 
4208 	if (tb[RTA_PREFSRC])
4209 		cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
4210 
4211 	if (tb[RTA_OIF])
4212 		cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
4213 
4214 	if (tb[RTA_PRIORITY])
4215 		cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
4216 
4217 	if (tb[RTA_METRICS]) {
4218 		cfg->fc_mx = nla_data(tb[RTA_METRICS]);
4219 		cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
4220 	}
4221 
4222 	if (tb[RTA_TABLE])
4223 		cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
4224 
4225 	if (tb[RTA_MULTIPATH]) {
4226 		cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
4227 		cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
4228 
4229 		err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
4230 						     cfg->fc_mp_len, extack);
4231 		if (err < 0)
4232 			goto errout;
4233 	}
4234 
4235 	if (tb[RTA_PREF]) {
4236 		pref = nla_get_u8(tb[RTA_PREF]);
4237 		if (pref != ICMPV6_ROUTER_PREF_LOW &&
4238 		    pref != ICMPV6_ROUTER_PREF_HIGH)
4239 			pref = ICMPV6_ROUTER_PREF_MEDIUM;
4240 		cfg->fc_flags |= RTF_PREF(pref);
4241 	}
4242 
4243 	if (tb[RTA_ENCAP])
4244 		cfg->fc_encap = tb[RTA_ENCAP];
4245 
4246 	if (tb[RTA_ENCAP_TYPE]) {
4247 		cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
4248 
4249 		err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
4250 		if (err < 0)
4251 			goto errout;
4252 	}
4253 
4254 	if (tb[RTA_EXPIRES]) {
4255 		unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
4256 
4257 		if (addrconf_finite_timeout(timeout)) {
4258 			cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
4259 			cfg->fc_flags |= RTF_EXPIRES;
4260 		}
4261 	}
4262 
4263 	err = 0;
4264 errout:
4265 	return err;
4266 }
4267 
4268 struct rt6_nh {
4269 	struct fib6_info *fib6_info;
4270 	struct fib6_config r_cfg;
4271 	struct list_head next;
4272 };
4273 
4274 static void ip6_print_replace_route_err(struct list_head *rt6_nh_list)
4275 {
4276 	struct rt6_nh *nh;
4277 
4278 	list_for_each_entry(nh, rt6_nh_list, next) {
4279 		pr_warn("IPV6: multipath route replace failed (check consistency of installed routes): %pI6c nexthop %pI6c ifi %d\n",
4280 		        &nh->r_cfg.fc_dst, &nh->r_cfg.fc_gateway,
4281 		        nh->r_cfg.fc_ifindex);
4282 	}
4283 }
4284 
4285 static int ip6_route_info_append(struct net *net,
4286 				 struct list_head *rt6_nh_list,
4287 				 struct fib6_info *rt,
4288 				 struct fib6_config *r_cfg)
4289 {
4290 	struct rt6_nh *nh;
4291 	int err = -EEXIST;
4292 
4293 	list_for_each_entry(nh, rt6_nh_list, next) {
4294 		/* check if fib6_info already exists */
4295 		if (rt6_duplicate_nexthop(nh->fib6_info, rt))
4296 			return err;
4297 	}
4298 
4299 	nh = kzalloc(sizeof(*nh), GFP_KERNEL);
4300 	if (!nh)
4301 		return -ENOMEM;
4302 	nh->fib6_info = rt;
4303 	err = ip6_convert_metrics(net, rt, r_cfg);
4304 	if (err) {
4305 		kfree(nh);
4306 		return err;
4307 	}
4308 	memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
4309 	list_add_tail(&nh->next, rt6_nh_list);
4310 
4311 	return 0;
4312 }
4313 
4314 static void ip6_route_mpath_notify(struct fib6_info *rt,
4315 				   struct fib6_info *rt_last,
4316 				   struct nl_info *info,
4317 				   __u16 nlflags)
4318 {
4319 	/* if this is an APPEND route, then rt points to the first route
4320 	 * inserted and rt_last points to last route inserted. Userspace
4321 	 * wants a consistent dump of the route which starts at the first
4322 	 * nexthop. Since sibling routes are always added at the end of
4323 	 * the list, find the first sibling of the last route appended
4324 	 */
4325 	if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
4326 		rt = list_first_entry(&rt_last->fib6_siblings,
4327 				      struct fib6_info,
4328 				      fib6_siblings);
4329 	}
4330 
4331 	if (rt)
4332 		inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
4333 }
4334 
4335 static int ip6_route_multipath_add(struct fib6_config *cfg,
4336 				   struct netlink_ext_ack *extack)
4337 {
4338 	struct fib6_info *rt_notif = NULL, *rt_last = NULL;
4339 	struct nl_info *info = &cfg->fc_nlinfo;
4340 	struct fib6_config r_cfg;
4341 	struct rtnexthop *rtnh;
4342 	struct fib6_info *rt;
4343 	struct rt6_nh *err_nh;
4344 	struct rt6_nh *nh, *nh_safe;
4345 	__u16 nlflags;
4346 	int remaining;
4347 	int attrlen;
4348 	int err = 1;
4349 	int nhn = 0;
4350 	int replace = (cfg->fc_nlinfo.nlh &&
4351 		       (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
4352 	LIST_HEAD(rt6_nh_list);
4353 
4354 	nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
4355 	if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
4356 		nlflags |= NLM_F_APPEND;
4357 
4358 	remaining = cfg->fc_mp_len;
4359 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4360 
4361 	/* Parse a Multipath Entry and build a list (rt6_nh_list) of
4362 	 * fib6_info structs per nexthop
4363 	 */
4364 	while (rtnh_ok(rtnh, remaining)) {
4365 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4366 		if (rtnh->rtnh_ifindex)
4367 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4368 
4369 		attrlen = rtnh_attrlen(rtnh);
4370 		if (attrlen > 0) {
4371 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4372 
4373 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4374 			if (nla) {
4375 				r_cfg.fc_gateway = nla_get_in6_addr(nla);
4376 				r_cfg.fc_flags |= RTF_GATEWAY;
4377 			}
4378 			r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
4379 			nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
4380 			if (nla)
4381 				r_cfg.fc_encap_type = nla_get_u16(nla);
4382 		}
4383 
4384 		r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
4385 		rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
4386 		if (IS_ERR(rt)) {
4387 			err = PTR_ERR(rt);
4388 			rt = NULL;
4389 			goto cleanup;
4390 		}
4391 
4392 		rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1;
4393 
4394 		err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
4395 					    rt, &r_cfg);
4396 		if (err) {
4397 			fib6_info_release(rt);
4398 			goto cleanup;
4399 		}
4400 
4401 		rtnh = rtnh_next(rtnh, &remaining);
4402 	}
4403 
4404 	/* for add and replace send one notification with all nexthops.
4405 	 * Skip the notification in fib6_add_rt2node and send one with
4406 	 * the full route when done
4407 	 */
4408 	info->skip_notify = 1;
4409 
4410 	err_nh = NULL;
4411 	list_for_each_entry(nh, &rt6_nh_list, next) {
4412 		err = __ip6_ins_rt(nh->fib6_info, info, extack);
4413 		fib6_info_release(nh->fib6_info);
4414 
4415 		if (!err) {
4416 			/* save reference to last route successfully inserted */
4417 			rt_last = nh->fib6_info;
4418 
4419 			/* save reference to first route for notification */
4420 			if (!rt_notif)
4421 				rt_notif = nh->fib6_info;
4422 		}
4423 
4424 		/* nh->fib6_info is used or freed at this point, reset to NULL*/
4425 		nh->fib6_info = NULL;
4426 		if (err) {
4427 			if (replace && nhn)
4428 				ip6_print_replace_route_err(&rt6_nh_list);
4429 			err_nh = nh;
4430 			goto add_errout;
4431 		}
4432 
4433 		/* Because each route is added like a single route we remove
4434 		 * these flags after the first nexthop: if there is a collision,
4435 		 * we have already failed to add the first nexthop:
4436 		 * fib6_add_rt2node() has rejected it; when replacing, old
4437 		 * nexthops have been replaced by first new, the rest should
4438 		 * be added to it.
4439 		 */
4440 		cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
4441 						     NLM_F_REPLACE);
4442 		cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_APPEND;
4443 		nhn++;
4444 	}
4445 
4446 	/* success ... tell user about new route */
4447 	ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4448 	goto cleanup;
4449 
4450 add_errout:
4451 	/* send notification for routes that were added so that
4452 	 * the delete notifications sent by ip6_route_del are
4453 	 * coherent
4454 	 */
4455 	if (rt_notif)
4456 		ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4457 
4458 	/* Delete routes that were already added */
4459 	list_for_each_entry(nh, &rt6_nh_list, next) {
4460 		if (err_nh == nh)
4461 			break;
4462 		ip6_route_del(&nh->r_cfg, extack);
4463 	}
4464 
4465 cleanup:
4466 	list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
4467 		if (nh->fib6_info)
4468 			fib6_info_release(nh->fib6_info);
4469 		list_del(&nh->next);
4470 		kfree(nh);
4471 	}
4472 
4473 	return err;
4474 }
4475 
4476 static int ip6_route_multipath_del(struct fib6_config *cfg,
4477 				   struct netlink_ext_ack *extack)
4478 {
4479 	struct fib6_config r_cfg;
4480 	struct rtnexthop *rtnh;
4481 	int remaining;
4482 	int attrlen;
4483 	int err = 1, last_err = 0;
4484 
4485 	remaining = cfg->fc_mp_len;
4486 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4487 
4488 	/* Parse a Multipath Entry */
4489 	while (rtnh_ok(rtnh, remaining)) {
4490 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4491 		if (rtnh->rtnh_ifindex)
4492 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4493 
4494 		attrlen = rtnh_attrlen(rtnh);
4495 		if (attrlen > 0) {
4496 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4497 
4498 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4499 			if (nla) {
4500 				nla_memcpy(&r_cfg.fc_gateway, nla, 16);
4501 				r_cfg.fc_flags |= RTF_GATEWAY;
4502 			}
4503 		}
4504 		err = ip6_route_del(&r_cfg, extack);
4505 		if (err)
4506 			last_err = err;
4507 
4508 		rtnh = rtnh_next(rtnh, &remaining);
4509 	}
4510 
4511 	return last_err;
4512 }
4513 
4514 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4515 			      struct netlink_ext_ack *extack)
4516 {
4517 	struct fib6_config cfg;
4518 	int err;
4519 
4520 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4521 	if (err < 0)
4522 		return err;
4523 
4524 	if (cfg.fc_mp)
4525 		return ip6_route_multipath_del(&cfg, extack);
4526 	else {
4527 		cfg.fc_delete_all_nh = 1;
4528 		return ip6_route_del(&cfg, extack);
4529 	}
4530 }
4531 
4532 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4533 			      struct netlink_ext_ack *extack)
4534 {
4535 	struct fib6_config cfg;
4536 	int err;
4537 
4538 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4539 	if (err < 0)
4540 		return err;
4541 
4542 	if (cfg.fc_mp)
4543 		return ip6_route_multipath_add(&cfg, extack);
4544 	else
4545 		return ip6_route_add(&cfg, GFP_KERNEL, extack);
4546 }
4547 
4548 static size_t rt6_nlmsg_size(struct fib6_info *rt)
4549 {
4550 	int nexthop_len = 0;
4551 
4552 	if (rt->fib6_nsiblings) {
4553 		nexthop_len = nla_total_size(0)	 /* RTA_MULTIPATH */
4554 			    + NLA_ALIGN(sizeof(struct rtnexthop))
4555 			    + nla_total_size(16) /* RTA_GATEWAY */
4556 			    + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate);
4557 
4558 		nexthop_len *= rt->fib6_nsiblings;
4559 	}
4560 
4561 	return NLMSG_ALIGN(sizeof(struct rtmsg))
4562 	       + nla_total_size(16) /* RTA_SRC */
4563 	       + nla_total_size(16) /* RTA_DST */
4564 	       + nla_total_size(16) /* RTA_GATEWAY */
4565 	       + nla_total_size(16) /* RTA_PREFSRC */
4566 	       + nla_total_size(4) /* RTA_TABLE */
4567 	       + nla_total_size(4) /* RTA_IIF */
4568 	       + nla_total_size(4) /* RTA_OIF */
4569 	       + nla_total_size(4) /* RTA_PRIORITY */
4570 	       + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
4571 	       + nla_total_size(sizeof(struct rta_cacheinfo))
4572 	       + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
4573 	       + nla_total_size(1) /* RTA_PREF */
4574 	       + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate)
4575 	       + nexthop_len;
4576 }
4577 
4578 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt,
4579 			    unsigned int *flags, bool skip_oif)
4580 {
4581 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4582 		*flags |= RTNH_F_DEAD;
4583 
4584 	if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) {
4585 		*flags |= RTNH_F_LINKDOWN;
4586 
4587 		rcu_read_lock();
4588 		if (fib6_ignore_linkdown(rt))
4589 			*flags |= RTNH_F_DEAD;
4590 		rcu_read_unlock();
4591 	}
4592 
4593 	if (rt->fib6_flags & RTF_GATEWAY) {
4594 		if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0)
4595 			goto nla_put_failure;
4596 	}
4597 
4598 	*flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK);
4599 	if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD)
4600 		*flags |= RTNH_F_OFFLOAD;
4601 
4602 	/* not needed for multipath encoding b/c it has a rtnexthop struct */
4603 	if (!skip_oif && rt->fib6_nh.nh_dev &&
4604 	    nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex))
4605 		goto nla_put_failure;
4606 
4607 	if (rt->fib6_nh.nh_lwtstate &&
4608 	    lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0)
4609 		goto nla_put_failure;
4610 
4611 	return 0;
4612 
4613 nla_put_failure:
4614 	return -EMSGSIZE;
4615 }
4616 
4617 /* add multipath next hop */
4618 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt)
4619 {
4620 	const struct net_device *dev = rt->fib6_nh.nh_dev;
4621 	struct rtnexthop *rtnh;
4622 	unsigned int flags = 0;
4623 
4624 	rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh));
4625 	if (!rtnh)
4626 		goto nla_put_failure;
4627 
4628 	rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1;
4629 	rtnh->rtnh_ifindex = dev ? dev->ifindex : 0;
4630 
4631 	if (rt6_nexthop_info(skb, rt, &flags, true) < 0)
4632 		goto nla_put_failure;
4633 
4634 	rtnh->rtnh_flags = flags;
4635 
4636 	/* length of rtnetlink header + attributes */
4637 	rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh;
4638 
4639 	return 0;
4640 
4641 nla_put_failure:
4642 	return -EMSGSIZE;
4643 }
4644 
4645 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
4646 			 struct fib6_info *rt, struct dst_entry *dst,
4647 			 struct in6_addr *dest, struct in6_addr *src,
4648 			 int iif, int type, u32 portid, u32 seq,
4649 			 unsigned int flags)
4650 {
4651 	struct rtmsg *rtm;
4652 	struct nlmsghdr *nlh;
4653 	long expires = 0;
4654 	u32 *pmetrics;
4655 	u32 table;
4656 
4657 	nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
4658 	if (!nlh)
4659 		return -EMSGSIZE;
4660 
4661 	rtm = nlmsg_data(nlh);
4662 	rtm->rtm_family = AF_INET6;
4663 	rtm->rtm_dst_len = rt->fib6_dst.plen;
4664 	rtm->rtm_src_len = rt->fib6_src.plen;
4665 	rtm->rtm_tos = 0;
4666 	if (rt->fib6_table)
4667 		table = rt->fib6_table->tb6_id;
4668 	else
4669 		table = RT6_TABLE_UNSPEC;
4670 	rtm->rtm_table = table;
4671 	if (nla_put_u32(skb, RTA_TABLE, table))
4672 		goto nla_put_failure;
4673 
4674 	rtm->rtm_type = rt->fib6_type;
4675 	rtm->rtm_flags = 0;
4676 	rtm->rtm_scope = RT_SCOPE_UNIVERSE;
4677 	rtm->rtm_protocol = rt->fib6_protocol;
4678 
4679 	if (rt->fib6_flags & RTF_CACHE)
4680 		rtm->rtm_flags |= RTM_F_CLONED;
4681 
4682 	if (dest) {
4683 		if (nla_put_in6_addr(skb, RTA_DST, dest))
4684 			goto nla_put_failure;
4685 		rtm->rtm_dst_len = 128;
4686 	} else if (rtm->rtm_dst_len)
4687 		if (nla_put_in6_addr(skb, RTA_DST, &rt->fib6_dst.addr))
4688 			goto nla_put_failure;
4689 #ifdef CONFIG_IPV6_SUBTREES
4690 	if (src) {
4691 		if (nla_put_in6_addr(skb, RTA_SRC, src))
4692 			goto nla_put_failure;
4693 		rtm->rtm_src_len = 128;
4694 	} else if (rtm->rtm_src_len &&
4695 		   nla_put_in6_addr(skb, RTA_SRC, &rt->fib6_src.addr))
4696 		goto nla_put_failure;
4697 #endif
4698 	if (iif) {
4699 #ifdef CONFIG_IPV6_MROUTE
4700 		if (ipv6_addr_is_multicast(&rt->fib6_dst.addr)) {
4701 			int err = ip6mr_get_route(net, skb, rtm, portid);
4702 
4703 			if (err == 0)
4704 				return 0;
4705 			if (err < 0)
4706 				goto nla_put_failure;
4707 		} else
4708 #endif
4709 			if (nla_put_u32(skb, RTA_IIF, iif))
4710 				goto nla_put_failure;
4711 	} else if (dest) {
4712 		struct in6_addr saddr_buf;
4713 		if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
4714 		    nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4715 			goto nla_put_failure;
4716 	}
4717 
4718 	if (rt->fib6_prefsrc.plen) {
4719 		struct in6_addr saddr_buf;
4720 		saddr_buf = rt->fib6_prefsrc.addr;
4721 		if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4722 			goto nla_put_failure;
4723 	}
4724 
4725 	pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
4726 	if (rtnetlink_put_metrics(skb, pmetrics) < 0)
4727 		goto nla_put_failure;
4728 
4729 	if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
4730 		goto nla_put_failure;
4731 
4732 	/* For multipath routes, walk the siblings list and add
4733 	 * each as a nexthop within RTA_MULTIPATH.
4734 	 */
4735 	if (rt->fib6_nsiblings) {
4736 		struct fib6_info *sibling, *next_sibling;
4737 		struct nlattr *mp;
4738 
4739 		mp = nla_nest_start(skb, RTA_MULTIPATH);
4740 		if (!mp)
4741 			goto nla_put_failure;
4742 
4743 		if (rt6_add_nexthop(skb, rt) < 0)
4744 			goto nla_put_failure;
4745 
4746 		list_for_each_entry_safe(sibling, next_sibling,
4747 					 &rt->fib6_siblings, fib6_siblings) {
4748 			if (rt6_add_nexthop(skb, sibling) < 0)
4749 				goto nla_put_failure;
4750 		}
4751 
4752 		nla_nest_end(skb, mp);
4753 	} else {
4754 		if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0)
4755 			goto nla_put_failure;
4756 	}
4757 
4758 	if (rt->fib6_flags & RTF_EXPIRES) {
4759 		expires = dst ? dst->expires : rt->expires;
4760 		expires -= jiffies;
4761 	}
4762 
4763 	if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
4764 		goto nla_put_failure;
4765 
4766 	if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt->fib6_flags)))
4767 		goto nla_put_failure;
4768 
4769 
4770 	nlmsg_end(skb, nlh);
4771 	return 0;
4772 
4773 nla_put_failure:
4774 	nlmsg_cancel(skb, nlh);
4775 	return -EMSGSIZE;
4776 }
4777 
4778 int rt6_dump_route(struct fib6_info *rt, void *p_arg)
4779 {
4780 	struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
4781 	struct net *net = arg->net;
4782 
4783 	if (rt == net->ipv6.fib6_null_entry)
4784 		return 0;
4785 
4786 	if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
4787 		struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
4788 
4789 		/* user wants prefix routes only */
4790 		if (rtm->rtm_flags & RTM_F_PREFIX &&
4791 		    !(rt->fib6_flags & RTF_PREFIX_RT)) {
4792 			/* success since this is not a prefix route */
4793 			return 1;
4794 		}
4795 	}
4796 
4797 	return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0,
4798 			     RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid,
4799 			     arg->cb->nlh->nlmsg_seq, NLM_F_MULTI);
4800 }
4801 
4802 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
4803 			      struct netlink_ext_ack *extack)
4804 {
4805 	struct net *net = sock_net(in_skb->sk);
4806 	struct nlattr *tb[RTA_MAX+1];
4807 	int err, iif = 0, oif = 0;
4808 	struct fib6_info *from;
4809 	struct dst_entry *dst;
4810 	struct rt6_info *rt;
4811 	struct sk_buff *skb;
4812 	struct rtmsg *rtm;
4813 	struct flowi6 fl6;
4814 	bool fibmatch;
4815 
4816 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4817 			  extack);
4818 	if (err < 0)
4819 		goto errout;
4820 
4821 	err = -EINVAL;
4822 	memset(&fl6, 0, sizeof(fl6));
4823 	rtm = nlmsg_data(nlh);
4824 	fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
4825 	fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
4826 
4827 	if (tb[RTA_SRC]) {
4828 		if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
4829 			goto errout;
4830 
4831 		fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
4832 	}
4833 
4834 	if (tb[RTA_DST]) {
4835 		if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
4836 			goto errout;
4837 
4838 		fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
4839 	}
4840 
4841 	if (tb[RTA_IIF])
4842 		iif = nla_get_u32(tb[RTA_IIF]);
4843 
4844 	if (tb[RTA_OIF])
4845 		oif = nla_get_u32(tb[RTA_OIF]);
4846 
4847 	if (tb[RTA_MARK])
4848 		fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
4849 
4850 	if (tb[RTA_UID])
4851 		fl6.flowi6_uid = make_kuid(current_user_ns(),
4852 					   nla_get_u32(tb[RTA_UID]));
4853 	else
4854 		fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
4855 
4856 	if (tb[RTA_SPORT])
4857 		fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
4858 
4859 	if (tb[RTA_DPORT])
4860 		fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
4861 
4862 	if (tb[RTA_IP_PROTO]) {
4863 		err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
4864 						  &fl6.flowi6_proto, extack);
4865 		if (err)
4866 			goto errout;
4867 	}
4868 
4869 	if (iif) {
4870 		struct net_device *dev;
4871 		int flags = 0;
4872 
4873 		rcu_read_lock();
4874 
4875 		dev = dev_get_by_index_rcu(net, iif);
4876 		if (!dev) {
4877 			rcu_read_unlock();
4878 			err = -ENODEV;
4879 			goto errout;
4880 		}
4881 
4882 		fl6.flowi6_iif = iif;
4883 
4884 		if (!ipv6_addr_any(&fl6.saddr))
4885 			flags |= RT6_LOOKUP_F_HAS_SADDR;
4886 
4887 		dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
4888 
4889 		rcu_read_unlock();
4890 	} else {
4891 		fl6.flowi6_oif = oif;
4892 
4893 		dst = ip6_route_output(net, NULL, &fl6);
4894 	}
4895 
4896 
4897 	rt = container_of(dst, struct rt6_info, dst);
4898 	if (rt->dst.error) {
4899 		err = rt->dst.error;
4900 		ip6_rt_put(rt);
4901 		goto errout;
4902 	}
4903 
4904 	if (rt == net->ipv6.ip6_null_entry) {
4905 		err = rt->dst.error;
4906 		ip6_rt_put(rt);
4907 		goto errout;
4908 	}
4909 
4910 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
4911 	if (!skb) {
4912 		ip6_rt_put(rt);
4913 		err = -ENOBUFS;
4914 		goto errout;
4915 	}
4916 
4917 	skb_dst_set(skb, &rt->dst);
4918 
4919 	rcu_read_lock();
4920 	from = rcu_dereference(rt->from);
4921 
4922 	if (fibmatch)
4923 		err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif,
4924 				    RTM_NEWROUTE, NETLINK_CB(in_skb).portid,
4925 				    nlh->nlmsg_seq, 0);
4926 	else
4927 		err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
4928 				    &fl6.saddr, iif, RTM_NEWROUTE,
4929 				    NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
4930 				    0);
4931 	rcu_read_unlock();
4932 
4933 	if (err < 0) {
4934 		kfree_skb(skb);
4935 		goto errout;
4936 	}
4937 
4938 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
4939 errout:
4940 	return err;
4941 }
4942 
4943 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
4944 		     unsigned int nlm_flags)
4945 {
4946 	struct sk_buff *skb;
4947 	struct net *net = info->nl_net;
4948 	u32 seq;
4949 	int err;
4950 
4951 	err = -ENOBUFS;
4952 	seq = info->nlh ? info->nlh->nlmsg_seq : 0;
4953 
4954 	skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
4955 	if (!skb)
4956 		goto errout;
4957 
4958 	err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
4959 			    event, info->portid, seq, nlm_flags);
4960 	if (err < 0) {
4961 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
4962 		WARN_ON(err == -EMSGSIZE);
4963 		kfree_skb(skb);
4964 		goto errout;
4965 	}
4966 	rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
4967 		    info->nlh, gfp_any());
4968 	return;
4969 errout:
4970 	if (err < 0)
4971 		rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
4972 }
4973 
4974 static int ip6_route_dev_notify(struct notifier_block *this,
4975 				unsigned long event, void *ptr)
4976 {
4977 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4978 	struct net *net = dev_net(dev);
4979 
4980 	if (!(dev->flags & IFF_LOOPBACK))
4981 		return NOTIFY_OK;
4982 
4983 	if (event == NETDEV_REGISTER) {
4984 		net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev;
4985 		net->ipv6.ip6_null_entry->dst.dev = dev;
4986 		net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
4987 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
4988 		net->ipv6.ip6_prohibit_entry->dst.dev = dev;
4989 		net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
4990 		net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
4991 		net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
4992 #endif
4993 	 } else if (event == NETDEV_UNREGISTER &&
4994 		    dev->reg_state != NETREG_UNREGISTERED) {
4995 		/* NETDEV_UNREGISTER could be fired for multiple times by
4996 		 * netdev_wait_allrefs(). Make sure we only call this once.
4997 		 */
4998 		in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
4999 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5000 		in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
5001 		in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
5002 #endif
5003 	}
5004 
5005 	return NOTIFY_OK;
5006 }
5007 
5008 /*
5009  *	/proc
5010  */
5011 
5012 #ifdef CONFIG_PROC_FS
5013 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
5014 {
5015 	struct net *net = (struct net *)seq->private;
5016 	seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
5017 		   net->ipv6.rt6_stats->fib_nodes,
5018 		   net->ipv6.rt6_stats->fib_route_nodes,
5019 		   atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
5020 		   net->ipv6.rt6_stats->fib_rt_entries,
5021 		   net->ipv6.rt6_stats->fib_rt_cache,
5022 		   dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
5023 		   net->ipv6.rt6_stats->fib_discarded_routes);
5024 
5025 	return 0;
5026 }
5027 #endif	/* CONFIG_PROC_FS */
5028 
5029 #ifdef CONFIG_SYSCTL
5030 
5031 static
5032 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
5033 			      void __user *buffer, size_t *lenp, loff_t *ppos)
5034 {
5035 	struct net *net;
5036 	int delay;
5037 	if (!write)
5038 		return -EINVAL;
5039 
5040 	net = (struct net *)ctl->extra1;
5041 	delay = net->ipv6.sysctl.flush_delay;
5042 	proc_dointvec(ctl, write, buffer, lenp, ppos);
5043 	fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
5044 	return 0;
5045 }
5046 
5047 struct ctl_table ipv6_route_table_template[] = {
5048 	{
5049 		.procname	=	"flush",
5050 		.data		=	&init_net.ipv6.sysctl.flush_delay,
5051 		.maxlen		=	sizeof(int),
5052 		.mode		=	0200,
5053 		.proc_handler	=	ipv6_sysctl_rtcache_flush
5054 	},
5055 	{
5056 		.procname	=	"gc_thresh",
5057 		.data		=	&ip6_dst_ops_template.gc_thresh,
5058 		.maxlen		=	sizeof(int),
5059 		.mode		=	0644,
5060 		.proc_handler	=	proc_dointvec,
5061 	},
5062 	{
5063 		.procname	=	"max_size",
5064 		.data		=	&init_net.ipv6.sysctl.ip6_rt_max_size,
5065 		.maxlen		=	sizeof(int),
5066 		.mode		=	0644,
5067 		.proc_handler	=	proc_dointvec,
5068 	},
5069 	{
5070 		.procname	=	"gc_min_interval",
5071 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5072 		.maxlen		=	sizeof(int),
5073 		.mode		=	0644,
5074 		.proc_handler	=	proc_dointvec_jiffies,
5075 	},
5076 	{
5077 		.procname	=	"gc_timeout",
5078 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_timeout,
5079 		.maxlen		=	sizeof(int),
5080 		.mode		=	0644,
5081 		.proc_handler	=	proc_dointvec_jiffies,
5082 	},
5083 	{
5084 		.procname	=	"gc_interval",
5085 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_interval,
5086 		.maxlen		=	sizeof(int),
5087 		.mode		=	0644,
5088 		.proc_handler	=	proc_dointvec_jiffies,
5089 	},
5090 	{
5091 		.procname	=	"gc_elasticity",
5092 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
5093 		.maxlen		=	sizeof(int),
5094 		.mode		=	0644,
5095 		.proc_handler	=	proc_dointvec,
5096 	},
5097 	{
5098 		.procname	=	"mtu_expires",
5099 		.data		=	&init_net.ipv6.sysctl.ip6_rt_mtu_expires,
5100 		.maxlen		=	sizeof(int),
5101 		.mode		=	0644,
5102 		.proc_handler	=	proc_dointvec_jiffies,
5103 	},
5104 	{
5105 		.procname	=	"min_adv_mss",
5106 		.data		=	&init_net.ipv6.sysctl.ip6_rt_min_advmss,
5107 		.maxlen		=	sizeof(int),
5108 		.mode		=	0644,
5109 		.proc_handler	=	proc_dointvec,
5110 	},
5111 	{
5112 		.procname	=	"gc_min_interval_ms",
5113 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5114 		.maxlen		=	sizeof(int),
5115 		.mode		=	0644,
5116 		.proc_handler	=	proc_dointvec_ms_jiffies,
5117 	},
5118 	{ }
5119 };
5120 
5121 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
5122 {
5123 	struct ctl_table *table;
5124 
5125 	table = kmemdup(ipv6_route_table_template,
5126 			sizeof(ipv6_route_table_template),
5127 			GFP_KERNEL);
5128 
5129 	if (table) {
5130 		table[0].data = &net->ipv6.sysctl.flush_delay;
5131 		table[0].extra1 = net;
5132 		table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
5133 		table[2].data = &net->ipv6.sysctl.ip6_rt_max_size;
5134 		table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5135 		table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
5136 		table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
5137 		table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
5138 		table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
5139 		table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
5140 		table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5141 
5142 		/* Don't export sysctls to unprivileged users */
5143 		if (net->user_ns != &init_user_ns)
5144 			table[0].procname = NULL;
5145 	}
5146 
5147 	return table;
5148 }
5149 #endif
5150 
5151 static int __net_init ip6_route_net_init(struct net *net)
5152 {
5153 	int ret = -ENOMEM;
5154 
5155 	memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
5156 	       sizeof(net->ipv6.ip6_dst_ops));
5157 
5158 	if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
5159 		goto out_ip6_dst_ops;
5160 
5161 	net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template,
5162 					    sizeof(*net->ipv6.fib6_null_entry),
5163 					    GFP_KERNEL);
5164 	if (!net->ipv6.fib6_null_entry)
5165 		goto out_ip6_dst_entries;
5166 
5167 	net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
5168 					   sizeof(*net->ipv6.ip6_null_entry),
5169 					   GFP_KERNEL);
5170 	if (!net->ipv6.ip6_null_entry)
5171 		goto out_fib6_null_entry;
5172 	net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5173 	dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
5174 			 ip6_template_metrics, true);
5175 
5176 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5177 	net->ipv6.fib6_has_custom_rules = false;
5178 	net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
5179 					       sizeof(*net->ipv6.ip6_prohibit_entry),
5180 					       GFP_KERNEL);
5181 	if (!net->ipv6.ip6_prohibit_entry)
5182 		goto out_ip6_null_entry;
5183 	net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5184 	dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
5185 			 ip6_template_metrics, true);
5186 
5187 	net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
5188 					       sizeof(*net->ipv6.ip6_blk_hole_entry),
5189 					       GFP_KERNEL);
5190 	if (!net->ipv6.ip6_blk_hole_entry)
5191 		goto out_ip6_prohibit_entry;
5192 	net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5193 	dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
5194 			 ip6_template_metrics, true);
5195 #endif
5196 
5197 	net->ipv6.sysctl.flush_delay = 0;
5198 	net->ipv6.sysctl.ip6_rt_max_size = 4096;
5199 	net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
5200 	net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
5201 	net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
5202 	net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
5203 	net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
5204 	net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
5205 
5206 	net->ipv6.ip6_rt_gc_expire = 30*HZ;
5207 
5208 	ret = 0;
5209 out:
5210 	return ret;
5211 
5212 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5213 out_ip6_prohibit_entry:
5214 	kfree(net->ipv6.ip6_prohibit_entry);
5215 out_ip6_null_entry:
5216 	kfree(net->ipv6.ip6_null_entry);
5217 #endif
5218 out_fib6_null_entry:
5219 	kfree(net->ipv6.fib6_null_entry);
5220 out_ip6_dst_entries:
5221 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5222 out_ip6_dst_ops:
5223 	goto out;
5224 }
5225 
5226 static void __net_exit ip6_route_net_exit(struct net *net)
5227 {
5228 	kfree(net->ipv6.fib6_null_entry);
5229 	kfree(net->ipv6.ip6_null_entry);
5230 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5231 	kfree(net->ipv6.ip6_prohibit_entry);
5232 	kfree(net->ipv6.ip6_blk_hole_entry);
5233 #endif
5234 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5235 }
5236 
5237 static int __net_init ip6_route_net_init_late(struct net *net)
5238 {
5239 #ifdef CONFIG_PROC_FS
5240 	proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops,
5241 			sizeof(struct ipv6_route_iter));
5242 	proc_create_net_single("rt6_stats", 0444, net->proc_net,
5243 			rt6_stats_seq_show, NULL);
5244 #endif
5245 	return 0;
5246 }
5247 
5248 static void __net_exit ip6_route_net_exit_late(struct net *net)
5249 {
5250 #ifdef CONFIG_PROC_FS
5251 	remove_proc_entry("ipv6_route", net->proc_net);
5252 	remove_proc_entry("rt6_stats", net->proc_net);
5253 #endif
5254 }
5255 
5256 static struct pernet_operations ip6_route_net_ops = {
5257 	.init = ip6_route_net_init,
5258 	.exit = ip6_route_net_exit,
5259 };
5260 
5261 static int __net_init ipv6_inetpeer_init(struct net *net)
5262 {
5263 	struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
5264 
5265 	if (!bp)
5266 		return -ENOMEM;
5267 	inet_peer_base_init(bp);
5268 	net->ipv6.peers = bp;
5269 	return 0;
5270 }
5271 
5272 static void __net_exit ipv6_inetpeer_exit(struct net *net)
5273 {
5274 	struct inet_peer_base *bp = net->ipv6.peers;
5275 
5276 	net->ipv6.peers = NULL;
5277 	inetpeer_invalidate_tree(bp);
5278 	kfree(bp);
5279 }
5280 
5281 static struct pernet_operations ipv6_inetpeer_ops = {
5282 	.init	=	ipv6_inetpeer_init,
5283 	.exit	=	ipv6_inetpeer_exit,
5284 };
5285 
5286 static struct pernet_operations ip6_route_net_late_ops = {
5287 	.init = ip6_route_net_init_late,
5288 	.exit = ip6_route_net_exit_late,
5289 };
5290 
5291 static struct notifier_block ip6_route_dev_notifier = {
5292 	.notifier_call = ip6_route_dev_notify,
5293 	.priority = ADDRCONF_NOTIFY_PRIORITY - 10,
5294 };
5295 
5296 void __init ip6_route_init_special_entries(void)
5297 {
5298 	/* Registering of the loopback is done before this portion of code,
5299 	 * the loopback reference in rt6_info will not be taken, do it
5300 	 * manually for init_net */
5301 	init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev;
5302 	init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
5303 	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5304   #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5305 	init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
5306 	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5307 	init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
5308 	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5309   #endif
5310 }
5311 
5312 int __init ip6_route_init(void)
5313 {
5314 	int ret;
5315 	int cpu;
5316 
5317 	ret = -ENOMEM;
5318 	ip6_dst_ops_template.kmem_cachep =
5319 		kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
5320 				  SLAB_HWCACHE_ALIGN, NULL);
5321 	if (!ip6_dst_ops_template.kmem_cachep)
5322 		goto out;
5323 
5324 	ret = dst_entries_init(&ip6_dst_blackhole_ops);
5325 	if (ret)
5326 		goto out_kmem_cache;
5327 
5328 	ret = register_pernet_subsys(&ipv6_inetpeer_ops);
5329 	if (ret)
5330 		goto out_dst_entries;
5331 
5332 	ret = register_pernet_subsys(&ip6_route_net_ops);
5333 	if (ret)
5334 		goto out_register_inetpeer;
5335 
5336 	ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
5337 
5338 	ret = fib6_init();
5339 	if (ret)
5340 		goto out_register_subsys;
5341 
5342 	ret = xfrm6_init();
5343 	if (ret)
5344 		goto out_fib6_init;
5345 
5346 	ret = fib6_rules_init();
5347 	if (ret)
5348 		goto xfrm6_init;
5349 
5350 	ret = register_pernet_subsys(&ip6_route_net_late_ops);
5351 	if (ret)
5352 		goto fib6_rules_init;
5353 
5354 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
5355 				   inet6_rtm_newroute, NULL, 0);
5356 	if (ret < 0)
5357 		goto out_register_late_subsys;
5358 
5359 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
5360 				   inet6_rtm_delroute, NULL, 0);
5361 	if (ret < 0)
5362 		goto out_register_late_subsys;
5363 
5364 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
5365 				   inet6_rtm_getroute, NULL,
5366 				   RTNL_FLAG_DOIT_UNLOCKED);
5367 	if (ret < 0)
5368 		goto out_register_late_subsys;
5369 
5370 	ret = register_netdevice_notifier(&ip6_route_dev_notifier);
5371 	if (ret)
5372 		goto out_register_late_subsys;
5373 
5374 	for_each_possible_cpu(cpu) {
5375 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
5376 
5377 		INIT_LIST_HEAD(&ul->head);
5378 		spin_lock_init(&ul->lock);
5379 	}
5380 
5381 out:
5382 	return ret;
5383 
5384 out_register_late_subsys:
5385 	rtnl_unregister_all(PF_INET6);
5386 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5387 fib6_rules_init:
5388 	fib6_rules_cleanup();
5389 xfrm6_init:
5390 	xfrm6_fini();
5391 out_fib6_init:
5392 	fib6_gc_cleanup();
5393 out_register_subsys:
5394 	unregister_pernet_subsys(&ip6_route_net_ops);
5395 out_register_inetpeer:
5396 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5397 out_dst_entries:
5398 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5399 out_kmem_cache:
5400 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5401 	goto out;
5402 }
5403 
5404 void ip6_route_cleanup(void)
5405 {
5406 	unregister_netdevice_notifier(&ip6_route_dev_notifier);
5407 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5408 	fib6_rules_cleanup();
5409 	xfrm6_fini();
5410 	fib6_gc_cleanup();
5411 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5412 	unregister_pernet_subsys(&ip6_route_net_ops);
5413 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5414 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5415 }
5416