xref: /openbmc/linux/net/ipv6/route.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *	Linux INET6 implementation
3  *	FIB front-end.
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*	Changes:
15  *
16  *	YOSHIFUJI Hideaki @USAGI
17  *		reworked default router selection.
18  *		- respect outgoing interface
19  *		- select from (probably) reachable routers (i.e.
20  *		routers in REACHABLE, STALE, DELAY or PROBE states).
21  *		- always select the same router if it is (probably)
22  *		reachable.  otherwise, round-robin the list.
23  *	Ville Nuorvala
24  *		Fixed routing subtrees.
25  */
26 
27 #include <linux/capability.h>
28 #include <linux/errno.h>
29 #include <linux/types.h>
30 #include <linux/times.h>
31 #include <linux/socket.h>
32 #include <linux/sockios.h>
33 #include <linux/net.h>
34 #include <linux/route.h>
35 #include <linux/netdevice.h>
36 #include <linux/in6.h>
37 #include <linux/mroute6.h>
38 #include <linux/init.h>
39 #include <linux/if_arp.h>
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 #include <linux/nsproxy.h>
43 #include <net/net_namespace.h>
44 #include <net/snmp.h>
45 #include <net/ipv6.h>
46 #include <net/ip6_fib.h>
47 #include <net/ip6_route.h>
48 #include <net/ndisc.h>
49 #include <net/addrconf.h>
50 #include <net/tcp.h>
51 #include <linux/rtnetlink.h>
52 #include <net/dst.h>
53 #include <net/xfrm.h>
54 #include <net/netevent.h>
55 #include <net/netlink.h>
56 
57 #include <asm/uaccess.h>
58 
59 #ifdef CONFIG_SYSCTL
60 #include <linux/sysctl.h>
61 #endif
62 
63 /* Set to 3 to get tracing. */
64 #define RT6_DEBUG 2
65 
66 #if RT6_DEBUG >= 3
67 #define RDBG(x) printk x
68 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
69 #else
70 #define RDBG(x)
71 #define RT6_TRACE(x...) do { ; } while (0)
72 #endif
73 
74 #define CLONE_OFFLINK_ROUTE 0
75 
76 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort);
77 static struct dst_entry	*ip6_dst_check(struct dst_entry *dst, u32 cookie);
78 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
79 static void		ip6_dst_destroy(struct dst_entry *);
80 static void		ip6_dst_ifdown(struct dst_entry *,
81 				       struct net_device *dev, int how);
82 static int		 ip6_dst_gc(struct dst_ops *ops);
83 
84 static int		ip6_pkt_discard(struct sk_buff *skb);
85 static int		ip6_pkt_discard_out(struct sk_buff *skb);
86 static void		ip6_link_failure(struct sk_buff *skb);
87 static void		ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu);
88 
89 #ifdef CONFIG_IPV6_ROUTE_INFO
90 static struct rt6_info *rt6_add_route_info(struct net *net,
91 					   struct in6_addr *prefix, int prefixlen,
92 					   struct in6_addr *gwaddr, int ifindex,
93 					   unsigned pref);
94 static struct rt6_info *rt6_get_route_info(struct net *net,
95 					   struct in6_addr *prefix, int prefixlen,
96 					   struct in6_addr *gwaddr, int ifindex);
97 #endif
98 
99 static struct dst_ops ip6_dst_ops_template = {
100 	.family			=	AF_INET6,
101 	.protocol		=	__constant_htons(ETH_P_IPV6),
102 	.gc			=	ip6_dst_gc,
103 	.gc_thresh		=	1024,
104 	.check			=	ip6_dst_check,
105 	.destroy		=	ip6_dst_destroy,
106 	.ifdown			=	ip6_dst_ifdown,
107 	.negative_advice	=	ip6_negative_advice,
108 	.link_failure		=	ip6_link_failure,
109 	.update_pmtu		=	ip6_rt_update_pmtu,
110 	.local_out		=	__ip6_local_out,
111 	.entry_size		=	sizeof(struct rt6_info),
112 	.entries		=	ATOMIC_INIT(0),
113 };
114 
115 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, u32 mtu)
116 {
117 }
118 
119 static struct dst_ops ip6_dst_blackhole_ops = {
120 	.family			=	AF_INET6,
121 	.protocol		=	__constant_htons(ETH_P_IPV6),
122 	.destroy		=	ip6_dst_destroy,
123 	.check			=	ip6_dst_check,
124 	.update_pmtu		=	ip6_rt_blackhole_update_pmtu,
125 	.entry_size		=	sizeof(struct rt6_info),
126 	.entries		=	ATOMIC_INIT(0),
127 };
128 
129 static struct rt6_info ip6_null_entry_template = {
130 	.u = {
131 		.dst = {
132 			.__refcnt	= ATOMIC_INIT(1),
133 			.__use		= 1,
134 			.obsolete	= -1,
135 			.error		= -ENETUNREACH,
136 			.metrics	= { [RTAX_HOPLIMIT - 1] = 255, },
137 			.input		= ip6_pkt_discard,
138 			.output		= ip6_pkt_discard_out,
139 		}
140 	},
141 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
142 	.rt6i_metric	= ~(u32) 0,
143 	.rt6i_ref	= ATOMIC_INIT(1),
144 };
145 
146 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
147 
148 static int ip6_pkt_prohibit(struct sk_buff *skb);
149 static int ip6_pkt_prohibit_out(struct sk_buff *skb);
150 
151 static struct rt6_info ip6_prohibit_entry_template = {
152 	.u = {
153 		.dst = {
154 			.__refcnt	= ATOMIC_INIT(1),
155 			.__use		= 1,
156 			.obsolete	= -1,
157 			.error		= -EACCES,
158 			.metrics	= { [RTAX_HOPLIMIT - 1] = 255, },
159 			.input		= ip6_pkt_prohibit,
160 			.output		= ip6_pkt_prohibit_out,
161 		}
162 	},
163 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
164 	.rt6i_metric	= ~(u32) 0,
165 	.rt6i_ref	= ATOMIC_INIT(1),
166 };
167 
168 static struct rt6_info ip6_blk_hole_entry_template = {
169 	.u = {
170 		.dst = {
171 			.__refcnt	= ATOMIC_INIT(1),
172 			.__use		= 1,
173 			.obsolete	= -1,
174 			.error		= -EINVAL,
175 			.metrics	= { [RTAX_HOPLIMIT - 1] = 255, },
176 			.input		= dst_discard,
177 			.output		= dst_discard,
178 		}
179 	},
180 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
181 	.rt6i_metric	= ~(u32) 0,
182 	.rt6i_ref	= ATOMIC_INIT(1),
183 };
184 
185 #endif
186 
187 /* allocate dst with ip6_dst_ops */
188 static inline struct rt6_info *ip6_dst_alloc(struct dst_ops *ops)
189 {
190 	return (struct rt6_info *)dst_alloc(ops);
191 }
192 
193 static void ip6_dst_destroy(struct dst_entry *dst)
194 {
195 	struct rt6_info *rt = (struct rt6_info *)dst;
196 	struct inet6_dev *idev = rt->rt6i_idev;
197 
198 	if (idev != NULL) {
199 		rt->rt6i_idev = NULL;
200 		in6_dev_put(idev);
201 	}
202 }
203 
204 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
205 			   int how)
206 {
207 	struct rt6_info *rt = (struct rt6_info *)dst;
208 	struct inet6_dev *idev = rt->rt6i_idev;
209 	struct net_device *loopback_dev =
210 		dev_net(dev)->loopback_dev;
211 
212 	if (dev != loopback_dev && idev != NULL && idev->dev == dev) {
213 		struct inet6_dev *loopback_idev =
214 			in6_dev_get(loopback_dev);
215 		if (loopback_idev != NULL) {
216 			rt->rt6i_idev = loopback_idev;
217 			in6_dev_put(idev);
218 		}
219 	}
220 }
221 
222 static __inline__ int rt6_check_expired(const struct rt6_info *rt)
223 {
224 	return (rt->rt6i_flags & RTF_EXPIRES &&
225 		time_after(jiffies, rt->rt6i_expires));
226 }
227 
228 static inline int rt6_need_strict(struct in6_addr *daddr)
229 {
230 	return (ipv6_addr_type(daddr) &
231 		(IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL | IPV6_ADDR_LOOPBACK));
232 }
233 
234 /*
235  *	Route lookup. Any table->tb6_lock is implied.
236  */
237 
238 static inline struct rt6_info *rt6_device_match(struct net *net,
239 						    struct rt6_info *rt,
240 						    struct in6_addr *saddr,
241 						    int oif,
242 						    int flags)
243 {
244 	struct rt6_info *local = NULL;
245 	struct rt6_info *sprt;
246 
247 	if (!oif && ipv6_addr_any(saddr))
248 		goto out;
249 
250 	for (sprt = rt; sprt; sprt = sprt->u.dst.rt6_next) {
251 		struct net_device *dev = sprt->rt6i_dev;
252 
253 		if (oif) {
254 			if (dev->ifindex == oif)
255 				return sprt;
256 			if (dev->flags & IFF_LOOPBACK) {
257 				if (sprt->rt6i_idev == NULL ||
258 				    sprt->rt6i_idev->dev->ifindex != oif) {
259 					if (flags & RT6_LOOKUP_F_IFACE && oif)
260 						continue;
261 					if (local && (!oif ||
262 						      local->rt6i_idev->dev->ifindex == oif))
263 						continue;
264 				}
265 				local = sprt;
266 			}
267 		} else {
268 			if (ipv6_chk_addr(net, saddr, dev,
269 					  flags & RT6_LOOKUP_F_IFACE))
270 				return sprt;
271 		}
272 	}
273 
274 	if (oif) {
275 		if (local)
276 			return local;
277 
278 		if (flags & RT6_LOOKUP_F_IFACE)
279 			return net->ipv6.ip6_null_entry;
280 	}
281 out:
282 	return rt;
283 }
284 
285 #ifdef CONFIG_IPV6_ROUTER_PREF
286 static void rt6_probe(struct rt6_info *rt)
287 {
288 	struct neighbour *neigh = rt ? rt->rt6i_nexthop : NULL;
289 	/*
290 	 * Okay, this does not seem to be appropriate
291 	 * for now, however, we need to check if it
292 	 * is really so; aka Router Reachability Probing.
293 	 *
294 	 * Router Reachability Probe MUST be rate-limited
295 	 * to no more than one per minute.
296 	 */
297 	if (!neigh || (neigh->nud_state & NUD_VALID))
298 		return;
299 	read_lock_bh(&neigh->lock);
300 	if (!(neigh->nud_state & NUD_VALID) &&
301 	    time_after(jiffies, neigh->updated + rt->rt6i_idev->cnf.rtr_probe_interval)) {
302 		struct in6_addr mcaddr;
303 		struct in6_addr *target;
304 
305 		neigh->updated = jiffies;
306 		read_unlock_bh(&neigh->lock);
307 
308 		target = (struct in6_addr *)&neigh->primary_key;
309 		addrconf_addr_solict_mult(target, &mcaddr);
310 		ndisc_send_ns(rt->rt6i_dev, NULL, target, &mcaddr, NULL);
311 	} else
312 		read_unlock_bh(&neigh->lock);
313 }
314 #else
315 static inline void rt6_probe(struct rt6_info *rt)
316 {
317 	return;
318 }
319 #endif
320 
321 /*
322  * Default Router Selection (RFC 2461 6.3.6)
323  */
324 static inline int rt6_check_dev(struct rt6_info *rt, int oif)
325 {
326 	struct net_device *dev = rt->rt6i_dev;
327 	if (!oif || dev->ifindex == oif)
328 		return 2;
329 	if ((dev->flags & IFF_LOOPBACK) &&
330 	    rt->rt6i_idev && rt->rt6i_idev->dev->ifindex == oif)
331 		return 1;
332 	return 0;
333 }
334 
335 static inline int rt6_check_neigh(struct rt6_info *rt)
336 {
337 	struct neighbour *neigh = rt->rt6i_nexthop;
338 	int m;
339 	if (rt->rt6i_flags & RTF_NONEXTHOP ||
340 	    !(rt->rt6i_flags & RTF_GATEWAY))
341 		m = 1;
342 	else if (neigh) {
343 		read_lock_bh(&neigh->lock);
344 		if (neigh->nud_state & NUD_VALID)
345 			m = 2;
346 #ifdef CONFIG_IPV6_ROUTER_PREF
347 		else if (neigh->nud_state & NUD_FAILED)
348 			m = 0;
349 #endif
350 		else
351 			m = 1;
352 		read_unlock_bh(&neigh->lock);
353 	} else
354 		m = 0;
355 	return m;
356 }
357 
358 static int rt6_score_route(struct rt6_info *rt, int oif,
359 			   int strict)
360 {
361 	int m, n;
362 
363 	m = rt6_check_dev(rt, oif);
364 	if (!m && (strict & RT6_LOOKUP_F_IFACE))
365 		return -1;
366 #ifdef CONFIG_IPV6_ROUTER_PREF
367 	m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->rt6i_flags)) << 2;
368 #endif
369 	n = rt6_check_neigh(rt);
370 	if (!n && (strict & RT6_LOOKUP_F_REACHABLE))
371 		return -1;
372 	return m;
373 }
374 
375 static struct rt6_info *find_match(struct rt6_info *rt, int oif, int strict,
376 				   int *mpri, struct rt6_info *match)
377 {
378 	int m;
379 
380 	if (rt6_check_expired(rt))
381 		goto out;
382 
383 	m = rt6_score_route(rt, oif, strict);
384 	if (m < 0)
385 		goto out;
386 
387 	if (m > *mpri) {
388 		if (strict & RT6_LOOKUP_F_REACHABLE)
389 			rt6_probe(match);
390 		*mpri = m;
391 		match = rt;
392 	} else if (strict & RT6_LOOKUP_F_REACHABLE) {
393 		rt6_probe(rt);
394 	}
395 
396 out:
397 	return match;
398 }
399 
400 static struct rt6_info *find_rr_leaf(struct fib6_node *fn,
401 				     struct rt6_info *rr_head,
402 				     u32 metric, int oif, int strict)
403 {
404 	struct rt6_info *rt, *match;
405 	int mpri = -1;
406 
407 	match = NULL;
408 	for (rt = rr_head; rt && rt->rt6i_metric == metric;
409 	     rt = rt->u.dst.rt6_next)
410 		match = find_match(rt, oif, strict, &mpri, match);
411 	for (rt = fn->leaf; rt && rt != rr_head && rt->rt6i_metric == metric;
412 	     rt = rt->u.dst.rt6_next)
413 		match = find_match(rt, oif, strict, &mpri, match);
414 
415 	return match;
416 }
417 
418 static struct rt6_info *rt6_select(struct fib6_node *fn, int oif, int strict)
419 {
420 	struct rt6_info *match, *rt0;
421 	struct net *net;
422 
423 	RT6_TRACE("%s(fn->leaf=%p, oif=%d)\n",
424 		  __func__, fn->leaf, oif);
425 
426 	rt0 = fn->rr_ptr;
427 	if (!rt0)
428 		fn->rr_ptr = rt0 = fn->leaf;
429 
430 	match = find_rr_leaf(fn, rt0, rt0->rt6i_metric, oif, strict);
431 
432 	if (!match &&
433 	    (strict & RT6_LOOKUP_F_REACHABLE)) {
434 		struct rt6_info *next = rt0->u.dst.rt6_next;
435 
436 		/* no entries matched; do round-robin */
437 		if (!next || next->rt6i_metric != rt0->rt6i_metric)
438 			next = fn->leaf;
439 
440 		if (next != rt0)
441 			fn->rr_ptr = next;
442 	}
443 
444 	RT6_TRACE("%s() => %p\n",
445 		  __func__, match);
446 
447 	net = dev_net(rt0->rt6i_dev);
448 	return (match ? match : net->ipv6.ip6_null_entry);
449 }
450 
451 #ifdef CONFIG_IPV6_ROUTE_INFO
452 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
453 		  struct in6_addr *gwaddr)
454 {
455 	struct net *net = dev_net(dev);
456 	struct route_info *rinfo = (struct route_info *) opt;
457 	struct in6_addr prefix_buf, *prefix;
458 	unsigned int pref;
459 	unsigned long lifetime;
460 	struct rt6_info *rt;
461 
462 	if (len < sizeof(struct route_info)) {
463 		return -EINVAL;
464 	}
465 
466 	/* Sanity check for prefix_len and length */
467 	if (rinfo->length > 3) {
468 		return -EINVAL;
469 	} else if (rinfo->prefix_len > 128) {
470 		return -EINVAL;
471 	} else if (rinfo->prefix_len > 64) {
472 		if (rinfo->length < 2) {
473 			return -EINVAL;
474 		}
475 	} else if (rinfo->prefix_len > 0) {
476 		if (rinfo->length < 1) {
477 			return -EINVAL;
478 		}
479 	}
480 
481 	pref = rinfo->route_pref;
482 	if (pref == ICMPV6_ROUTER_PREF_INVALID)
483 		pref = ICMPV6_ROUTER_PREF_MEDIUM;
484 
485 	lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
486 
487 	if (rinfo->length == 3)
488 		prefix = (struct in6_addr *)rinfo->prefix;
489 	else {
490 		/* this function is safe */
491 		ipv6_addr_prefix(&prefix_buf,
492 				 (struct in6_addr *)rinfo->prefix,
493 				 rinfo->prefix_len);
494 		prefix = &prefix_buf;
495 	}
496 
497 	rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, gwaddr,
498 				dev->ifindex);
499 
500 	if (rt && !lifetime) {
501 		ip6_del_rt(rt);
502 		rt = NULL;
503 	}
504 
505 	if (!rt && lifetime)
506 		rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, dev->ifindex,
507 					pref);
508 	else if (rt)
509 		rt->rt6i_flags = RTF_ROUTEINFO |
510 				 (rt->rt6i_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
511 
512 	if (rt) {
513 		if (!addrconf_finite_timeout(lifetime)) {
514 			rt->rt6i_flags &= ~RTF_EXPIRES;
515 		} else {
516 			rt->rt6i_expires = jiffies + HZ * lifetime;
517 			rt->rt6i_flags |= RTF_EXPIRES;
518 		}
519 		dst_release(&rt->u.dst);
520 	}
521 	return 0;
522 }
523 #endif
524 
525 #define BACKTRACK(__net, saddr)			\
526 do { \
527 	if (rt == __net->ipv6.ip6_null_entry) {	\
528 		struct fib6_node *pn; \
529 		while (1) { \
530 			if (fn->fn_flags & RTN_TL_ROOT) \
531 				goto out; \
532 			pn = fn->parent; \
533 			if (FIB6_SUBTREE(pn) && FIB6_SUBTREE(pn) != fn) \
534 				fn = fib6_lookup(FIB6_SUBTREE(pn), NULL, saddr); \
535 			else \
536 				fn = pn; \
537 			if (fn->fn_flags & RTN_RTINFO) \
538 				goto restart; \
539 		} \
540 	} \
541 } while(0)
542 
543 static struct rt6_info *ip6_pol_route_lookup(struct net *net,
544 					     struct fib6_table *table,
545 					     struct flowi *fl, int flags)
546 {
547 	struct fib6_node *fn;
548 	struct rt6_info *rt;
549 
550 	read_lock_bh(&table->tb6_lock);
551 	fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
552 restart:
553 	rt = fn->leaf;
554 	rt = rt6_device_match(net, rt, &fl->fl6_src, fl->oif, flags);
555 	BACKTRACK(net, &fl->fl6_src);
556 out:
557 	dst_use(&rt->u.dst, jiffies);
558 	read_unlock_bh(&table->tb6_lock);
559 	return rt;
560 
561 }
562 
563 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
564 			    const struct in6_addr *saddr, int oif, int strict)
565 {
566 	struct flowi fl = {
567 		.oif = oif,
568 		.nl_u = {
569 			.ip6_u = {
570 				.daddr = *daddr,
571 			},
572 		},
573 	};
574 	struct dst_entry *dst;
575 	int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
576 
577 	if (saddr) {
578 		memcpy(&fl.fl6_src, saddr, sizeof(*saddr));
579 		flags |= RT6_LOOKUP_F_HAS_SADDR;
580 	}
581 
582 	dst = fib6_rule_lookup(net, &fl, flags, ip6_pol_route_lookup);
583 	if (dst->error == 0)
584 		return (struct rt6_info *) dst;
585 
586 	dst_release(dst);
587 
588 	return NULL;
589 }
590 
591 EXPORT_SYMBOL(rt6_lookup);
592 
593 /* ip6_ins_rt is called with FREE table->tb6_lock.
594    It takes new route entry, the addition fails by any reason the
595    route is freed. In any case, if caller does not hold it, it may
596    be destroyed.
597  */
598 
599 static int __ip6_ins_rt(struct rt6_info *rt, struct nl_info *info)
600 {
601 	int err;
602 	struct fib6_table *table;
603 
604 	table = rt->rt6i_table;
605 	write_lock_bh(&table->tb6_lock);
606 	err = fib6_add(&table->tb6_root, rt, info);
607 	write_unlock_bh(&table->tb6_lock);
608 
609 	return err;
610 }
611 
612 int ip6_ins_rt(struct rt6_info *rt)
613 {
614 	struct nl_info info = {
615 		.nl_net = dev_net(rt->rt6i_dev),
616 	};
617 	return __ip6_ins_rt(rt, &info);
618 }
619 
620 static struct rt6_info *rt6_alloc_cow(struct rt6_info *ort, struct in6_addr *daddr,
621 				      struct in6_addr *saddr)
622 {
623 	struct rt6_info *rt;
624 
625 	/*
626 	 *	Clone the route.
627 	 */
628 
629 	rt = ip6_rt_copy(ort);
630 
631 	if (rt) {
632 		if (!(rt->rt6i_flags&RTF_GATEWAY)) {
633 			if (rt->rt6i_dst.plen != 128 &&
634 			    ipv6_addr_equal(&rt->rt6i_dst.addr, daddr))
635 				rt->rt6i_flags |= RTF_ANYCAST;
636 			ipv6_addr_copy(&rt->rt6i_gateway, daddr);
637 		}
638 
639 		ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
640 		rt->rt6i_dst.plen = 128;
641 		rt->rt6i_flags |= RTF_CACHE;
642 		rt->u.dst.flags |= DST_HOST;
643 
644 #ifdef CONFIG_IPV6_SUBTREES
645 		if (rt->rt6i_src.plen && saddr) {
646 			ipv6_addr_copy(&rt->rt6i_src.addr, saddr);
647 			rt->rt6i_src.plen = 128;
648 		}
649 #endif
650 
651 		rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
652 
653 	}
654 
655 	return rt;
656 }
657 
658 static struct rt6_info *rt6_alloc_clone(struct rt6_info *ort, struct in6_addr *daddr)
659 {
660 	struct rt6_info *rt = ip6_rt_copy(ort);
661 	if (rt) {
662 		ipv6_addr_copy(&rt->rt6i_dst.addr, daddr);
663 		rt->rt6i_dst.plen = 128;
664 		rt->rt6i_flags |= RTF_CACHE;
665 		rt->u.dst.flags |= DST_HOST;
666 		rt->rt6i_nexthop = neigh_clone(ort->rt6i_nexthop);
667 	}
668 	return rt;
669 }
670 
671 static struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, int oif,
672 				      struct flowi *fl, int flags)
673 {
674 	struct fib6_node *fn;
675 	struct rt6_info *rt, *nrt;
676 	int strict = 0;
677 	int attempts = 3;
678 	int err;
679 	int reachable = net->ipv6.devconf_all->forwarding ? 0 : RT6_LOOKUP_F_REACHABLE;
680 
681 	strict |= flags & RT6_LOOKUP_F_IFACE;
682 
683 relookup:
684 	read_lock_bh(&table->tb6_lock);
685 
686 restart_2:
687 	fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
688 
689 restart:
690 	rt = rt6_select(fn, oif, strict | reachable);
691 
692 	BACKTRACK(net, &fl->fl6_src);
693 	if (rt == net->ipv6.ip6_null_entry ||
694 	    rt->rt6i_flags & RTF_CACHE)
695 		goto out;
696 
697 	dst_hold(&rt->u.dst);
698 	read_unlock_bh(&table->tb6_lock);
699 
700 	if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
701 		nrt = rt6_alloc_cow(rt, &fl->fl6_dst, &fl->fl6_src);
702 	else {
703 #if CLONE_OFFLINK_ROUTE
704 		nrt = rt6_alloc_clone(rt, &fl->fl6_dst);
705 #else
706 		goto out2;
707 #endif
708 	}
709 
710 	dst_release(&rt->u.dst);
711 	rt = nrt ? : net->ipv6.ip6_null_entry;
712 
713 	dst_hold(&rt->u.dst);
714 	if (nrt) {
715 		err = ip6_ins_rt(nrt);
716 		if (!err)
717 			goto out2;
718 	}
719 
720 	if (--attempts <= 0)
721 		goto out2;
722 
723 	/*
724 	 * Race condition! In the gap, when table->tb6_lock was
725 	 * released someone could insert this route.  Relookup.
726 	 */
727 	dst_release(&rt->u.dst);
728 	goto relookup;
729 
730 out:
731 	if (reachable) {
732 		reachable = 0;
733 		goto restart_2;
734 	}
735 	dst_hold(&rt->u.dst);
736 	read_unlock_bh(&table->tb6_lock);
737 out2:
738 	rt->u.dst.lastuse = jiffies;
739 	rt->u.dst.__use++;
740 
741 	return rt;
742 }
743 
744 static struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table,
745 					    struct flowi *fl, int flags)
746 {
747 	return ip6_pol_route(net, table, fl->iif, fl, flags);
748 }
749 
750 void ip6_route_input(struct sk_buff *skb)
751 {
752 	struct ipv6hdr *iph = ipv6_hdr(skb);
753 	struct net *net = dev_net(skb->dev);
754 	int flags = RT6_LOOKUP_F_HAS_SADDR;
755 	struct flowi fl = {
756 		.iif = skb->dev->ifindex,
757 		.nl_u = {
758 			.ip6_u = {
759 				.daddr = iph->daddr,
760 				.saddr = iph->saddr,
761 				.flowlabel = (* (__be32 *) iph)&IPV6_FLOWINFO_MASK,
762 			},
763 		},
764 		.mark = skb->mark,
765 		.proto = iph->nexthdr,
766 	};
767 
768 	if (rt6_need_strict(&iph->daddr))
769 		flags |= RT6_LOOKUP_F_IFACE;
770 
771 	skb->dst = fib6_rule_lookup(net, &fl, flags, ip6_pol_route_input);
772 }
773 
774 static struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table,
775 					     struct flowi *fl, int flags)
776 {
777 	return ip6_pol_route(net, table, fl->oif, fl, flags);
778 }
779 
780 struct dst_entry * ip6_route_output(struct net *net, struct sock *sk,
781 				    struct flowi *fl)
782 {
783 	int flags = 0;
784 
785 	if (rt6_need_strict(&fl->fl6_dst))
786 		flags |= RT6_LOOKUP_F_IFACE;
787 
788 	if (!ipv6_addr_any(&fl->fl6_src))
789 		flags |= RT6_LOOKUP_F_HAS_SADDR;
790 	else if (sk) {
791 		unsigned int prefs = inet6_sk(sk)->srcprefs;
792 		if (prefs & IPV6_PREFER_SRC_TMP)
793 			flags |= RT6_LOOKUP_F_SRCPREF_TMP;
794 		if (prefs & IPV6_PREFER_SRC_PUBLIC)
795 			flags |= RT6_LOOKUP_F_SRCPREF_PUBLIC;
796 		if (prefs & IPV6_PREFER_SRC_COA)
797 			flags |= RT6_LOOKUP_F_SRCPREF_COA;
798 	}
799 
800 	return fib6_rule_lookup(net, fl, flags, ip6_pol_route_output);
801 }
802 
803 EXPORT_SYMBOL(ip6_route_output);
804 
805 int ip6_dst_blackhole(struct sock *sk, struct dst_entry **dstp, struct flowi *fl)
806 {
807 	struct rt6_info *ort = (struct rt6_info *) *dstp;
808 	struct rt6_info *rt = (struct rt6_info *)
809 		dst_alloc(&ip6_dst_blackhole_ops);
810 	struct dst_entry *new = NULL;
811 
812 	if (rt) {
813 		new = &rt->u.dst;
814 
815 		atomic_set(&new->__refcnt, 1);
816 		new->__use = 1;
817 		new->input = dst_discard;
818 		new->output = dst_discard;
819 
820 		memcpy(new->metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
821 		new->dev = ort->u.dst.dev;
822 		if (new->dev)
823 			dev_hold(new->dev);
824 		rt->rt6i_idev = ort->rt6i_idev;
825 		if (rt->rt6i_idev)
826 			in6_dev_hold(rt->rt6i_idev);
827 		rt->rt6i_expires = 0;
828 
829 		ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
830 		rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
831 		rt->rt6i_metric = 0;
832 
833 		memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
834 #ifdef CONFIG_IPV6_SUBTREES
835 		memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
836 #endif
837 
838 		dst_free(new);
839 	}
840 
841 	dst_release(*dstp);
842 	*dstp = new;
843 	return (new ? 0 : -ENOMEM);
844 }
845 EXPORT_SYMBOL_GPL(ip6_dst_blackhole);
846 
847 /*
848  *	Destination cache support functions
849  */
850 
851 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
852 {
853 	struct rt6_info *rt;
854 
855 	rt = (struct rt6_info *) dst;
856 
857 	if (rt && rt->rt6i_node && (rt->rt6i_node->fn_sernum == cookie))
858 		return dst;
859 
860 	return NULL;
861 }
862 
863 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
864 {
865 	struct rt6_info *rt = (struct rt6_info *) dst;
866 
867 	if (rt) {
868 		if (rt->rt6i_flags & RTF_CACHE)
869 			ip6_del_rt(rt);
870 		else
871 			dst_release(dst);
872 	}
873 	return NULL;
874 }
875 
876 static void ip6_link_failure(struct sk_buff *skb)
877 {
878 	struct rt6_info *rt;
879 
880 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0, skb->dev);
881 
882 	rt = (struct rt6_info *) skb->dst;
883 	if (rt) {
884 		if (rt->rt6i_flags&RTF_CACHE) {
885 			dst_set_expires(&rt->u.dst, 0);
886 			rt->rt6i_flags |= RTF_EXPIRES;
887 		} else if (rt->rt6i_node && (rt->rt6i_flags & RTF_DEFAULT))
888 			rt->rt6i_node->fn_sernum = -1;
889 	}
890 }
891 
892 static void ip6_rt_update_pmtu(struct dst_entry *dst, u32 mtu)
893 {
894 	struct rt6_info *rt6 = (struct rt6_info*)dst;
895 
896 	if (mtu < dst_mtu(dst) && rt6->rt6i_dst.plen == 128) {
897 		rt6->rt6i_flags |= RTF_MODIFIED;
898 		if (mtu < IPV6_MIN_MTU) {
899 			mtu = IPV6_MIN_MTU;
900 			dst->metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
901 		}
902 		dst->metrics[RTAX_MTU-1] = mtu;
903 		call_netevent_notifiers(NETEVENT_PMTU_UPDATE, dst);
904 	}
905 }
906 
907 static int ipv6_get_mtu(struct net_device *dev);
908 
909 static inline unsigned int ipv6_advmss(struct net *net, unsigned int mtu)
910 {
911 	mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
912 
913 	if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
914 		mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
915 
916 	/*
917 	 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
918 	 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
919 	 * IPV6_MAXPLEN is also valid and means: "any MSS,
920 	 * rely only on pmtu discovery"
921 	 */
922 	if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
923 		mtu = IPV6_MAXPLEN;
924 	return mtu;
925 }
926 
927 static struct dst_entry *icmp6_dst_gc_list;
928 static DEFINE_SPINLOCK(icmp6_dst_lock);
929 
930 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
931 				  struct neighbour *neigh,
932 				  const struct in6_addr *addr)
933 {
934 	struct rt6_info *rt;
935 	struct inet6_dev *idev = in6_dev_get(dev);
936 	struct net *net = dev_net(dev);
937 
938 	if (unlikely(idev == NULL))
939 		return NULL;
940 
941 	rt = ip6_dst_alloc(net->ipv6.ip6_dst_ops);
942 	if (unlikely(rt == NULL)) {
943 		in6_dev_put(idev);
944 		goto out;
945 	}
946 
947 	dev_hold(dev);
948 	if (neigh)
949 		neigh_hold(neigh);
950 	else
951 		neigh = ndisc_get_neigh(dev, addr);
952 
953 	rt->rt6i_dev	  = dev;
954 	rt->rt6i_idev     = idev;
955 	rt->rt6i_nexthop  = neigh;
956 	atomic_set(&rt->u.dst.__refcnt, 1);
957 	rt->u.dst.metrics[RTAX_HOPLIMIT-1] = 255;
958 	rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
959 	rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(net, dst_mtu(&rt->u.dst));
960 	rt->u.dst.output  = ip6_output;
961 
962 #if 0	/* there's no chance to use these for ndisc */
963 	rt->u.dst.flags   = ipv6_addr_type(addr) & IPV6_ADDR_UNICAST
964 				? DST_HOST
965 				: 0;
966 	ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
967 	rt->rt6i_dst.plen = 128;
968 #endif
969 
970 	spin_lock_bh(&icmp6_dst_lock);
971 	rt->u.dst.next = icmp6_dst_gc_list;
972 	icmp6_dst_gc_list = &rt->u.dst;
973 	spin_unlock_bh(&icmp6_dst_lock);
974 
975 	fib6_force_start_gc(net);
976 
977 out:
978 	return &rt->u.dst;
979 }
980 
981 int icmp6_dst_gc(void)
982 {
983 	struct dst_entry *dst, *next, **pprev;
984 	int more = 0;
985 
986 	next = NULL;
987 
988 	spin_lock_bh(&icmp6_dst_lock);
989 	pprev = &icmp6_dst_gc_list;
990 
991 	while ((dst = *pprev) != NULL) {
992 		if (!atomic_read(&dst->__refcnt)) {
993 			*pprev = dst->next;
994 			dst_free(dst);
995 		} else {
996 			pprev = &dst->next;
997 			++more;
998 		}
999 	}
1000 
1001 	spin_unlock_bh(&icmp6_dst_lock);
1002 
1003 	return more;
1004 }
1005 
1006 static void icmp6_clean_all(int (*func)(struct rt6_info *rt, void *arg),
1007 			    void *arg)
1008 {
1009 	struct dst_entry *dst, **pprev;
1010 
1011 	spin_lock_bh(&icmp6_dst_lock);
1012 	pprev = &icmp6_dst_gc_list;
1013 	while ((dst = *pprev) != NULL) {
1014 		struct rt6_info *rt = (struct rt6_info *) dst;
1015 		if (func(rt, arg)) {
1016 			*pprev = dst->next;
1017 			dst_free(dst);
1018 		} else {
1019 			pprev = &dst->next;
1020 		}
1021 	}
1022 	spin_unlock_bh(&icmp6_dst_lock);
1023 }
1024 
1025 static int ip6_dst_gc(struct dst_ops *ops)
1026 {
1027 	unsigned long now = jiffies;
1028 	struct net *net = ops->dst_net;
1029 	int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
1030 	int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
1031 	int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
1032 	int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
1033 	unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
1034 
1035 	if (time_after(rt_last_gc + rt_min_interval, now) &&
1036 	    atomic_read(&ops->entries) <= rt_max_size)
1037 		goto out;
1038 
1039 	net->ipv6.ip6_rt_gc_expire++;
1040 	fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net);
1041 	net->ipv6.ip6_rt_last_gc = now;
1042 	if (atomic_read(&ops->entries) < ops->gc_thresh)
1043 		net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
1044 out:
1045 	net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
1046 	return (atomic_read(&ops->entries) > rt_max_size);
1047 }
1048 
1049 /* Clean host part of a prefix. Not necessary in radix tree,
1050    but results in cleaner routing tables.
1051 
1052    Remove it only when all the things will work!
1053  */
1054 
1055 static int ipv6_get_mtu(struct net_device *dev)
1056 {
1057 	int mtu = IPV6_MIN_MTU;
1058 	struct inet6_dev *idev;
1059 
1060 	idev = in6_dev_get(dev);
1061 	if (idev) {
1062 		mtu = idev->cnf.mtu6;
1063 		in6_dev_put(idev);
1064 	}
1065 	return mtu;
1066 }
1067 
1068 int ip6_dst_hoplimit(struct dst_entry *dst)
1069 {
1070 	int hoplimit = dst_metric(dst, RTAX_HOPLIMIT);
1071 	if (hoplimit < 0) {
1072 		struct net_device *dev = dst->dev;
1073 		struct inet6_dev *idev = in6_dev_get(dev);
1074 		if (idev) {
1075 			hoplimit = idev->cnf.hop_limit;
1076 			in6_dev_put(idev);
1077 		} else
1078 			hoplimit = dev_net(dev)->ipv6.devconf_all->hop_limit;
1079 	}
1080 	return hoplimit;
1081 }
1082 
1083 /*
1084  *
1085  */
1086 
1087 int ip6_route_add(struct fib6_config *cfg)
1088 {
1089 	int err;
1090 	struct net *net = cfg->fc_nlinfo.nl_net;
1091 	struct rt6_info *rt = NULL;
1092 	struct net_device *dev = NULL;
1093 	struct inet6_dev *idev = NULL;
1094 	struct fib6_table *table;
1095 	int addr_type;
1096 
1097 	if (cfg->fc_dst_len > 128 || cfg->fc_src_len > 128)
1098 		return -EINVAL;
1099 #ifndef CONFIG_IPV6_SUBTREES
1100 	if (cfg->fc_src_len)
1101 		return -EINVAL;
1102 #endif
1103 	if (cfg->fc_ifindex) {
1104 		err = -ENODEV;
1105 		dev = dev_get_by_index(net, cfg->fc_ifindex);
1106 		if (!dev)
1107 			goto out;
1108 		idev = in6_dev_get(dev);
1109 		if (!idev)
1110 			goto out;
1111 	}
1112 
1113 	if (cfg->fc_metric == 0)
1114 		cfg->fc_metric = IP6_RT_PRIO_USER;
1115 
1116 	table = fib6_new_table(net, cfg->fc_table);
1117 	if (table == NULL) {
1118 		err = -ENOBUFS;
1119 		goto out;
1120 	}
1121 
1122 	rt = ip6_dst_alloc(net->ipv6.ip6_dst_ops);
1123 
1124 	if (rt == NULL) {
1125 		err = -ENOMEM;
1126 		goto out;
1127 	}
1128 
1129 	rt->u.dst.obsolete = -1;
1130 	rt->rt6i_expires = (cfg->fc_flags & RTF_EXPIRES) ?
1131 				jiffies + clock_t_to_jiffies(cfg->fc_expires) :
1132 				0;
1133 
1134 	if (cfg->fc_protocol == RTPROT_UNSPEC)
1135 		cfg->fc_protocol = RTPROT_BOOT;
1136 	rt->rt6i_protocol = cfg->fc_protocol;
1137 
1138 	addr_type = ipv6_addr_type(&cfg->fc_dst);
1139 
1140 	if (addr_type & IPV6_ADDR_MULTICAST)
1141 		rt->u.dst.input = ip6_mc_input;
1142 	else
1143 		rt->u.dst.input = ip6_forward;
1144 
1145 	rt->u.dst.output = ip6_output;
1146 
1147 	ipv6_addr_prefix(&rt->rt6i_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
1148 	rt->rt6i_dst.plen = cfg->fc_dst_len;
1149 	if (rt->rt6i_dst.plen == 128)
1150 	       rt->u.dst.flags = DST_HOST;
1151 
1152 #ifdef CONFIG_IPV6_SUBTREES
1153 	ipv6_addr_prefix(&rt->rt6i_src.addr, &cfg->fc_src, cfg->fc_src_len);
1154 	rt->rt6i_src.plen = cfg->fc_src_len;
1155 #endif
1156 
1157 	rt->rt6i_metric = cfg->fc_metric;
1158 
1159 	/* We cannot add true routes via loopback here,
1160 	   they would result in kernel looping; promote them to reject routes
1161 	 */
1162 	if ((cfg->fc_flags & RTF_REJECT) ||
1163 	    (dev && (dev->flags&IFF_LOOPBACK) && !(addr_type&IPV6_ADDR_LOOPBACK))) {
1164 		/* hold loopback dev/idev if we haven't done so. */
1165 		if (dev != net->loopback_dev) {
1166 			if (dev) {
1167 				dev_put(dev);
1168 				in6_dev_put(idev);
1169 			}
1170 			dev = net->loopback_dev;
1171 			dev_hold(dev);
1172 			idev = in6_dev_get(dev);
1173 			if (!idev) {
1174 				err = -ENODEV;
1175 				goto out;
1176 			}
1177 		}
1178 		rt->u.dst.output = ip6_pkt_discard_out;
1179 		rt->u.dst.input = ip6_pkt_discard;
1180 		rt->u.dst.error = -ENETUNREACH;
1181 		rt->rt6i_flags = RTF_REJECT|RTF_NONEXTHOP;
1182 		goto install_route;
1183 	}
1184 
1185 	if (cfg->fc_flags & RTF_GATEWAY) {
1186 		struct in6_addr *gw_addr;
1187 		int gwa_type;
1188 
1189 		gw_addr = &cfg->fc_gateway;
1190 		ipv6_addr_copy(&rt->rt6i_gateway, gw_addr);
1191 		gwa_type = ipv6_addr_type(gw_addr);
1192 
1193 		if (gwa_type != (IPV6_ADDR_LINKLOCAL|IPV6_ADDR_UNICAST)) {
1194 			struct rt6_info *grt;
1195 
1196 			/* IPv6 strictly inhibits using not link-local
1197 			   addresses as nexthop address.
1198 			   Otherwise, router will not able to send redirects.
1199 			   It is very good, but in some (rare!) circumstances
1200 			   (SIT, PtP, NBMA NOARP links) it is handy to allow
1201 			   some exceptions. --ANK
1202 			 */
1203 			err = -EINVAL;
1204 			if (!(gwa_type&IPV6_ADDR_UNICAST))
1205 				goto out;
1206 
1207 			grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, 1);
1208 
1209 			err = -EHOSTUNREACH;
1210 			if (grt == NULL)
1211 				goto out;
1212 			if (dev) {
1213 				if (dev != grt->rt6i_dev) {
1214 					dst_release(&grt->u.dst);
1215 					goto out;
1216 				}
1217 			} else {
1218 				dev = grt->rt6i_dev;
1219 				idev = grt->rt6i_idev;
1220 				dev_hold(dev);
1221 				in6_dev_hold(grt->rt6i_idev);
1222 			}
1223 			if (!(grt->rt6i_flags&RTF_GATEWAY))
1224 				err = 0;
1225 			dst_release(&grt->u.dst);
1226 
1227 			if (err)
1228 				goto out;
1229 		}
1230 		err = -EINVAL;
1231 		if (dev == NULL || (dev->flags&IFF_LOOPBACK))
1232 			goto out;
1233 	}
1234 
1235 	err = -ENODEV;
1236 	if (dev == NULL)
1237 		goto out;
1238 
1239 	if (cfg->fc_flags & (RTF_GATEWAY | RTF_NONEXTHOP)) {
1240 		rt->rt6i_nexthop = __neigh_lookup_errno(&nd_tbl, &rt->rt6i_gateway, dev);
1241 		if (IS_ERR(rt->rt6i_nexthop)) {
1242 			err = PTR_ERR(rt->rt6i_nexthop);
1243 			rt->rt6i_nexthop = NULL;
1244 			goto out;
1245 		}
1246 	}
1247 
1248 	rt->rt6i_flags = cfg->fc_flags;
1249 
1250 install_route:
1251 	if (cfg->fc_mx) {
1252 		struct nlattr *nla;
1253 		int remaining;
1254 
1255 		nla_for_each_attr(nla, cfg->fc_mx, cfg->fc_mx_len, remaining) {
1256 			int type = nla_type(nla);
1257 
1258 			if (type) {
1259 				if (type > RTAX_MAX) {
1260 					err = -EINVAL;
1261 					goto out;
1262 				}
1263 
1264 				rt->u.dst.metrics[type - 1] = nla_get_u32(nla);
1265 			}
1266 		}
1267 	}
1268 
1269 	if (dst_metric(&rt->u.dst, RTAX_HOPLIMIT) == 0)
1270 		rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1271 	if (!dst_mtu(&rt->u.dst))
1272 		rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(dev);
1273 	if (!dst_metric(&rt->u.dst, RTAX_ADVMSS))
1274 		rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(net, dst_mtu(&rt->u.dst));
1275 	rt->u.dst.dev = dev;
1276 	rt->rt6i_idev = idev;
1277 	rt->rt6i_table = table;
1278 
1279 	cfg->fc_nlinfo.nl_net = dev_net(dev);
1280 
1281 	return __ip6_ins_rt(rt, &cfg->fc_nlinfo);
1282 
1283 out:
1284 	if (dev)
1285 		dev_put(dev);
1286 	if (idev)
1287 		in6_dev_put(idev);
1288 	if (rt)
1289 		dst_free(&rt->u.dst);
1290 	return err;
1291 }
1292 
1293 static int __ip6_del_rt(struct rt6_info *rt, struct nl_info *info)
1294 {
1295 	int err;
1296 	struct fib6_table *table;
1297 	struct net *net = dev_net(rt->rt6i_dev);
1298 
1299 	if (rt == net->ipv6.ip6_null_entry)
1300 		return -ENOENT;
1301 
1302 	table = rt->rt6i_table;
1303 	write_lock_bh(&table->tb6_lock);
1304 
1305 	err = fib6_del(rt, info);
1306 	dst_release(&rt->u.dst);
1307 
1308 	write_unlock_bh(&table->tb6_lock);
1309 
1310 	return err;
1311 }
1312 
1313 int ip6_del_rt(struct rt6_info *rt)
1314 {
1315 	struct nl_info info = {
1316 		.nl_net = dev_net(rt->rt6i_dev),
1317 	};
1318 	return __ip6_del_rt(rt, &info);
1319 }
1320 
1321 static int ip6_route_del(struct fib6_config *cfg)
1322 {
1323 	struct fib6_table *table;
1324 	struct fib6_node *fn;
1325 	struct rt6_info *rt;
1326 	int err = -ESRCH;
1327 
1328 	table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
1329 	if (table == NULL)
1330 		return err;
1331 
1332 	read_lock_bh(&table->tb6_lock);
1333 
1334 	fn = fib6_locate(&table->tb6_root,
1335 			 &cfg->fc_dst, cfg->fc_dst_len,
1336 			 &cfg->fc_src, cfg->fc_src_len);
1337 
1338 	if (fn) {
1339 		for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1340 			if (cfg->fc_ifindex &&
1341 			    (rt->rt6i_dev == NULL ||
1342 			     rt->rt6i_dev->ifindex != cfg->fc_ifindex))
1343 				continue;
1344 			if (cfg->fc_flags & RTF_GATEWAY &&
1345 			    !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
1346 				continue;
1347 			if (cfg->fc_metric && cfg->fc_metric != rt->rt6i_metric)
1348 				continue;
1349 			dst_hold(&rt->u.dst);
1350 			read_unlock_bh(&table->tb6_lock);
1351 
1352 			return __ip6_del_rt(rt, &cfg->fc_nlinfo);
1353 		}
1354 	}
1355 	read_unlock_bh(&table->tb6_lock);
1356 
1357 	return err;
1358 }
1359 
1360 /*
1361  *	Handle redirects
1362  */
1363 struct ip6rd_flowi {
1364 	struct flowi fl;
1365 	struct in6_addr gateway;
1366 };
1367 
1368 static struct rt6_info *__ip6_route_redirect(struct net *net,
1369 					     struct fib6_table *table,
1370 					     struct flowi *fl,
1371 					     int flags)
1372 {
1373 	struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl;
1374 	struct rt6_info *rt;
1375 	struct fib6_node *fn;
1376 
1377 	/*
1378 	 * Get the "current" route for this destination and
1379 	 * check if the redirect has come from approriate router.
1380 	 *
1381 	 * RFC 2461 specifies that redirects should only be
1382 	 * accepted if they come from the nexthop to the target.
1383 	 * Due to the way the routes are chosen, this notion
1384 	 * is a bit fuzzy and one might need to check all possible
1385 	 * routes.
1386 	 */
1387 
1388 	read_lock_bh(&table->tb6_lock);
1389 	fn = fib6_lookup(&table->tb6_root, &fl->fl6_dst, &fl->fl6_src);
1390 restart:
1391 	for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1392 		/*
1393 		 * Current route is on-link; redirect is always invalid.
1394 		 *
1395 		 * Seems, previous statement is not true. It could
1396 		 * be node, which looks for us as on-link (f.e. proxy ndisc)
1397 		 * But then router serving it might decide, that we should
1398 		 * know truth 8)8) --ANK (980726).
1399 		 */
1400 		if (rt6_check_expired(rt))
1401 			continue;
1402 		if (!(rt->rt6i_flags & RTF_GATEWAY))
1403 			continue;
1404 		if (fl->oif != rt->rt6i_dev->ifindex)
1405 			continue;
1406 		if (!ipv6_addr_equal(&rdfl->gateway, &rt->rt6i_gateway))
1407 			continue;
1408 		break;
1409 	}
1410 
1411 	if (!rt)
1412 		rt = net->ipv6.ip6_null_entry;
1413 	BACKTRACK(net, &fl->fl6_src);
1414 out:
1415 	dst_hold(&rt->u.dst);
1416 
1417 	read_unlock_bh(&table->tb6_lock);
1418 
1419 	return rt;
1420 };
1421 
1422 static struct rt6_info *ip6_route_redirect(struct in6_addr *dest,
1423 					   struct in6_addr *src,
1424 					   struct in6_addr *gateway,
1425 					   struct net_device *dev)
1426 {
1427 	int flags = RT6_LOOKUP_F_HAS_SADDR;
1428 	struct net *net = dev_net(dev);
1429 	struct ip6rd_flowi rdfl = {
1430 		.fl = {
1431 			.oif = dev->ifindex,
1432 			.nl_u = {
1433 				.ip6_u = {
1434 					.daddr = *dest,
1435 					.saddr = *src,
1436 				},
1437 			},
1438 		},
1439 		.gateway = *gateway,
1440 	};
1441 
1442 	if (rt6_need_strict(dest))
1443 		flags |= RT6_LOOKUP_F_IFACE;
1444 
1445 	return (struct rt6_info *)fib6_rule_lookup(net, (struct flowi *)&rdfl,
1446 						   flags, __ip6_route_redirect);
1447 }
1448 
1449 void rt6_redirect(struct in6_addr *dest, struct in6_addr *src,
1450 		  struct in6_addr *saddr,
1451 		  struct neighbour *neigh, u8 *lladdr, int on_link)
1452 {
1453 	struct rt6_info *rt, *nrt = NULL;
1454 	struct netevent_redirect netevent;
1455 	struct net *net = dev_net(neigh->dev);
1456 
1457 	rt = ip6_route_redirect(dest, src, saddr, neigh->dev);
1458 
1459 	if (rt == net->ipv6.ip6_null_entry) {
1460 		if (net_ratelimit())
1461 			printk(KERN_DEBUG "rt6_redirect: source isn't a valid nexthop "
1462 			       "for redirect target\n");
1463 		goto out;
1464 	}
1465 
1466 	/*
1467 	 *	We have finally decided to accept it.
1468 	 */
1469 
1470 	neigh_update(neigh, lladdr, NUD_STALE,
1471 		     NEIGH_UPDATE_F_WEAK_OVERRIDE|
1472 		     NEIGH_UPDATE_F_OVERRIDE|
1473 		     (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
1474 				     NEIGH_UPDATE_F_ISROUTER))
1475 		     );
1476 
1477 	/*
1478 	 * Redirect received -> path was valid.
1479 	 * Look, redirects are sent only in response to data packets,
1480 	 * so that this nexthop apparently is reachable. --ANK
1481 	 */
1482 	dst_confirm(&rt->u.dst);
1483 
1484 	/* Duplicate redirect: silently ignore. */
1485 	if (neigh == rt->u.dst.neighbour)
1486 		goto out;
1487 
1488 	nrt = ip6_rt_copy(rt);
1489 	if (nrt == NULL)
1490 		goto out;
1491 
1492 	nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
1493 	if (on_link)
1494 		nrt->rt6i_flags &= ~RTF_GATEWAY;
1495 
1496 	ipv6_addr_copy(&nrt->rt6i_dst.addr, dest);
1497 	nrt->rt6i_dst.plen = 128;
1498 	nrt->u.dst.flags |= DST_HOST;
1499 
1500 	ipv6_addr_copy(&nrt->rt6i_gateway, (struct in6_addr*)neigh->primary_key);
1501 	nrt->rt6i_nexthop = neigh_clone(neigh);
1502 	/* Reset pmtu, it may be better */
1503 	nrt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(neigh->dev);
1504 	nrt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(dev_net(neigh->dev),
1505 							dst_mtu(&nrt->u.dst));
1506 
1507 	if (ip6_ins_rt(nrt))
1508 		goto out;
1509 
1510 	netevent.old = &rt->u.dst;
1511 	netevent.new = &nrt->u.dst;
1512 	call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
1513 
1514 	if (rt->rt6i_flags&RTF_CACHE) {
1515 		ip6_del_rt(rt);
1516 		return;
1517 	}
1518 
1519 out:
1520 	dst_release(&rt->u.dst);
1521 	return;
1522 }
1523 
1524 /*
1525  *	Handle ICMP "packet too big" messages
1526  *	i.e. Path MTU discovery
1527  */
1528 
1529 void rt6_pmtu_discovery(struct in6_addr *daddr, struct in6_addr *saddr,
1530 			struct net_device *dev, u32 pmtu)
1531 {
1532 	struct rt6_info *rt, *nrt;
1533 	struct net *net = dev_net(dev);
1534 	int allfrag = 0;
1535 
1536 	rt = rt6_lookup(net, daddr, saddr, dev->ifindex, 0);
1537 	if (rt == NULL)
1538 		return;
1539 
1540 	if (pmtu >= dst_mtu(&rt->u.dst))
1541 		goto out;
1542 
1543 	if (pmtu < IPV6_MIN_MTU) {
1544 		/*
1545 		 * According to RFC2460, PMTU is set to the IPv6 Minimum Link
1546 		 * MTU (1280) and a fragment header should always be included
1547 		 * after a node receiving Too Big message reporting PMTU is
1548 		 * less than the IPv6 Minimum Link MTU.
1549 		 */
1550 		pmtu = IPV6_MIN_MTU;
1551 		allfrag = 1;
1552 	}
1553 
1554 	/* New mtu received -> path was valid.
1555 	   They are sent only in response to data packets,
1556 	   so that this nexthop apparently is reachable. --ANK
1557 	 */
1558 	dst_confirm(&rt->u.dst);
1559 
1560 	/* Host route. If it is static, it would be better
1561 	   not to override it, but add new one, so that
1562 	   when cache entry will expire old pmtu
1563 	   would return automatically.
1564 	 */
1565 	if (rt->rt6i_flags & RTF_CACHE) {
1566 		rt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1567 		if (allfrag)
1568 			rt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1569 		dst_set_expires(&rt->u.dst, net->ipv6.sysctl.ip6_rt_mtu_expires);
1570 		rt->rt6i_flags |= RTF_MODIFIED|RTF_EXPIRES;
1571 		goto out;
1572 	}
1573 
1574 	/* Network route.
1575 	   Two cases are possible:
1576 	   1. It is connected route. Action: COW
1577 	   2. It is gatewayed route or NONEXTHOP route. Action: clone it.
1578 	 */
1579 	if (!rt->rt6i_nexthop && !(rt->rt6i_flags & RTF_NONEXTHOP))
1580 		nrt = rt6_alloc_cow(rt, daddr, saddr);
1581 	else
1582 		nrt = rt6_alloc_clone(rt, daddr);
1583 
1584 	if (nrt) {
1585 		nrt->u.dst.metrics[RTAX_MTU-1] = pmtu;
1586 		if (allfrag)
1587 			nrt->u.dst.metrics[RTAX_FEATURES-1] |= RTAX_FEATURE_ALLFRAG;
1588 
1589 		/* According to RFC 1981, detecting PMTU increase shouldn't be
1590 		 * happened within 5 mins, the recommended timer is 10 mins.
1591 		 * Here this route expiration time is set to ip6_rt_mtu_expires
1592 		 * which is 10 mins. After 10 mins the decreased pmtu is expired
1593 		 * and detecting PMTU increase will be automatically happened.
1594 		 */
1595 		dst_set_expires(&nrt->u.dst, net->ipv6.sysctl.ip6_rt_mtu_expires);
1596 		nrt->rt6i_flags |= RTF_DYNAMIC|RTF_EXPIRES;
1597 
1598 		ip6_ins_rt(nrt);
1599 	}
1600 out:
1601 	dst_release(&rt->u.dst);
1602 }
1603 
1604 /*
1605  *	Misc support functions
1606  */
1607 
1608 static struct rt6_info * ip6_rt_copy(struct rt6_info *ort)
1609 {
1610 	struct net *net = dev_net(ort->rt6i_dev);
1611 	struct rt6_info *rt = ip6_dst_alloc(net->ipv6.ip6_dst_ops);
1612 
1613 	if (rt) {
1614 		rt->u.dst.input = ort->u.dst.input;
1615 		rt->u.dst.output = ort->u.dst.output;
1616 
1617 		memcpy(rt->u.dst.metrics, ort->u.dst.metrics, RTAX_MAX*sizeof(u32));
1618 		rt->u.dst.error = ort->u.dst.error;
1619 		rt->u.dst.dev = ort->u.dst.dev;
1620 		if (rt->u.dst.dev)
1621 			dev_hold(rt->u.dst.dev);
1622 		rt->rt6i_idev = ort->rt6i_idev;
1623 		if (rt->rt6i_idev)
1624 			in6_dev_hold(rt->rt6i_idev);
1625 		rt->u.dst.lastuse = jiffies;
1626 		rt->rt6i_expires = 0;
1627 
1628 		ipv6_addr_copy(&rt->rt6i_gateway, &ort->rt6i_gateway);
1629 		rt->rt6i_flags = ort->rt6i_flags & ~RTF_EXPIRES;
1630 		rt->rt6i_metric = 0;
1631 
1632 		memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
1633 #ifdef CONFIG_IPV6_SUBTREES
1634 		memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
1635 #endif
1636 		rt->rt6i_table = ort->rt6i_table;
1637 	}
1638 	return rt;
1639 }
1640 
1641 #ifdef CONFIG_IPV6_ROUTE_INFO
1642 static struct rt6_info *rt6_get_route_info(struct net *net,
1643 					   struct in6_addr *prefix, int prefixlen,
1644 					   struct in6_addr *gwaddr, int ifindex)
1645 {
1646 	struct fib6_node *fn;
1647 	struct rt6_info *rt = NULL;
1648 	struct fib6_table *table;
1649 
1650 	table = fib6_get_table(net, RT6_TABLE_INFO);
1651 	if (table == NULL)
1652 		return NULL;
1653 
1654 	write_lock_bh(&table->tb6_lock);
1655 	fn = fib6_locate(&table->tb6_root, prefix ,prefixlen, NULL, 0);
1656 	if (!fn)
1657 		goto out;
1658 
1659 	for (rt = fn->leaf; rt; rt = rt->u.dst.rt6_next) {
1660 		if (rt->rt6i_dev->ifindex != ifindex)
1661 			continue;
1662 		if ((rt->rt6i_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
1663 			continue;
1664 		if (!ipv6_addr_equal(&rt->rt6i_gateway, gwaddr))
1665 			continue;
1666 		dst_hold(&rt->u.dst);
1667 		break;
1668 	}
1669 out:
1670 	write_unlock_bh(&table->tb6_lock);
1671 	return rt;
1672 }
1673 
1674 static struct rt6_info *rt6_add_route_info(struct net *net,
1675 					   struct in6_addr *prefix, int prefixlen,
1676 					   struct in6_addr *gwaddr, int ifindex,
1677 					   unsigned pref)
1678 {
1679 	struct fib6_config cfg = {
1680 		.fc_table	= RT6_TABLE_INFO,
1681 		.fc_metric	= IP6_RT_PRIO_USER,
1682 		.fc_ifindex	= ifindex,
1683 		.fc_dst_len	= prefixlen,
1684 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
1685 				  RTF_UP | RTF_PREF(pref),
1686 		.fc_nlinfo.pid = 0,
1687 		.fc_nlinfo.nlh = NULL,
1688 		.fc_nlinfo.nl_net = net,
1689 	};
1690 
1691 	ipv6_addr_copy(&cfg.fc_dst, prefix);
1692 	ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1693 
1694 	/* We should treat it as a default route if prefix length is 0. */
1695 	if (!prefixlen)
1696 		cfg.fc_flags |= RTF_DEFAULT;
1697 
1698 	ip6_route_add(&cfg);
1699 
1700 	return rt6_get_route_info(net, prefix, prefixlen, gwaddr, ifindex);
1701 }
1702 #endif
1703 
1704 struct rt6_info *rt6_get_dflt_router(struct in6_addr *addr, struct net_device *dev)
1705 {
1706 	struct rt6_info *rt;
1707 	struct fib6_table *table;
1708 
1709 	table = fib6_get_table(dev_net(dev), RT6_TABLE_DFLT);
1710 	if (table == NULL)
1711 		return NULL;
1712 
1713 	write_lock_bh(&table->tb6_lock);
1714 	for (rt = table->tb6_root.leaf; rt; rt=rt->u.dst.rt6_next) {
1715 		if (dev == rt->rt6i_dev &&
1716 		    ((rt->rt6i_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
1717 		    ipv6_addr_equal(&rt->rt6i_gateway, addr))
1718 			break;
1719 	}
1720 	if (rt)
1721 		dst_hold(&rt->u.dst);
1722 	write_unlock_bh(&table->tb6_lock);
1723 	return rt;
1724 }
1725 
1726 struct rt6_info *rt6_add_dflt_router(struct in6_addr *gwaddr,
1727 				     struct net_device *dev,
1728 				     unsigned int pref)
1729 {
1730 	struct fib6_config cfg = {
1731 		.fc_table	= RT6_TABLE_DFLT,
1732 		.fc_metric	= IP6_RT_PRIO_USER,
1733 		.fc_ifindex	= dev->ifindex,
1734 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
1735 				  RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
1736 		.fc_nlinfo.pid = 0,
1737 		.fc_nlinfo.nlh = NULL,
1738 		.fc_nlinfo.nl_net = dev_net(dev),
1739 	};
1740 
1741 	ipv6_addr_copy(&cfg.fc_gateway, gwaddr);
1742 
1743 	ip6_route_add(&cfg);
1744 
1745 	return rt6_get_dflt_router(gwaddr, dev);
1746 }
1747 
1748 void rt6_purge_dflt_routers(struct net *net)
1749 {
1750 	struct rt6_info *rt;
1751 	struct fib6_table *table;
1752 
1753 	/* NOTE: Keep consistent with rt6_get_dflt_router */
1754 	table = fib6_get_table(net, RT6_TABLE_DFLT);
1755 	if (table == NULL)
1756 		return;
1757 
1758 restart:
1759 	read_lock_bh(&table->tb6_lock);
1760 	for (rt = table->tb6_root.leaf; rt; rt = rt->u.dst.rt6_next) {
1761 		if (rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) {
1762 			dst_hold(&rt->u.dst);
1763 			read_unlock_bh(&table->tb6_lock);
1764 			ip6_del_rt(rt);
1765 			goto restart;
1766 		}
1767 	}
1768 	read_unlock_bh(&table->tb6_lock);
1769 }
1770 
1771 static void rtmsg_to_fib6_config(struct net *net,
1772 				 struct in6_rtmsg *rtmsg,
1773 				 struct fib6_config *cfg)
1774 {
1775 	memset(cfg, 0, sizeof(*cfg));
1776 
1777 	cfg->fc_table = RT6_TABLE_MAIN;
1778 	cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
1779 	cfg->fc_metric = rtmsg->rtmsg_metric;
1780 	cfg->fc_expires = rtmsg->rtmsg_info;
1781 	cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
1782 	cfg->fc_src_len = rtmsg->rtmsg_src_len;
1783 	cfg->fc_flags = rtmsg->rtmsg_flags;
1784 
1785 	cfg->fc_nlinfo.nl_net = net;
1786 
1787 	ipv6_addr_copy(&cfg->fc_dst, &rtmsg->rtmsg_dst);
1788 	ipv6_addr_copy(&cfg->fc_src, &rtmsg->rtmsg_src);
1789 	ipv6_addr_copy(&cfg->fc_gateway, &rtmsg->rtmsg_gateway);
1790 }
1791 
1792 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1793 {
1794 	struct fib6_config cfg;
1795 	struct in6_rtmsg rtmsg;
1796 	int err;
1797 
1798 	switch(cmd) {
1799 	case SIOCADDRT:		/* Add a route */
1800 	case SIOCDELRT:		/* Delete a route */
1801 		if (!capable(CAP_NET_ADMIN))
1802 			return -EPERM;
1803 		err = copy_from_user(&rtmsg, arg,
1804 				     sizeof(struct in6_rtmsg));
1805 		if (err)
1806 			return -EFAULT;
1807 
1808 		rtmsg_to_fib6_config(net, &rtmsg, &cfg);
1809 
1810 		rtnl_lock();
1811 		switch (cmd) {
1812 		case SIOCADDRT:
1813 			err = ip6_route_add(&cfg);
1814 			break;
1815 		case SIOCDELRT:
1816 			err = ip6_route_del(&cfg);
1817 			break;
1818 		default:
1819 			err = -EINVAL;
1820 		}
1821 		rtnl_unlock();
1822 
1823 		return err;
1824 	}
1825 
1826 	return -EINVAL;
1827 }
1828 
1829 /*
1830  *	Drop the packet on the floor
1831  */
1832 
1833 static int ip6_pkt_drop(struct sk_buff *skb, int code, int ipstats_mib_noroutes)
1834 {
1835 	int type;
1836 	struct dst_entry *dst = skb->dst;
1837 	switch (ipstats_mib_noroutes) {
1838 	case IPSTATS_MIB_INNOROUTES:
1839 		type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
1840 		if (type == IPV6_ADDR_ANY || type == IPV6_ADDR_RESERVED) {
1841 			IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
1842 				      IPSTATS_MIB_INADDRERRORS);
1843 			break;
1844 		}
1845 		/* FALLTHROUGH */
1846 	case IPSTATS_MIB_OUTNOROUTES:
1847 		IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
1848 			      ipstats_mib_noroutes);
1849 		break;
1850 	}
1851 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0, skb->dev);
1852 	kfree_skb(skb);
1853 	return 0;
1854 }
1855 
1856 static int ip6_pkt_discard(struct sk_buff *skb)
1857 {
1858 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
1859 }
1860 
1861 static int ip6_pkt_discard_out(struct sk_buff *skb)
1862 {
1863 	skb->dev = skb->dst->dev;
1864 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
1865 }
1866 
1867 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1868 
1869 static int ip6_pkt_prohibit(struct sk_buff *skb)
1870 {
1871 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
1872 }
1873 
1874 static int ip6_pkt_prohibit_out(struct sk_buff *skb)
1875 {
1876 	skb->dev = skb->dst->dev;
1877 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
1878 }
1879 
1880 #endif
1881 
1882 /*
1883  *	Allocate a dst for local (unicast / anycast) address.
1884  */
1885 
1886 struct rt6_info *addrconf_dst_alloc(struct inet6_dev *idev,
1887 				    const struct in6_addr *addr,
1888 				    int anycast)
1889 {
1890 	struct net *net = dev_net(idev->dev);
1891 	struct rt6_info *rt = ip6_dst_alloc(net->ipv6.ip6_dst_ops);
1892 
1893 	if (rt == NULL)
1894 		return ERR_PTR(-ENOMEM);
1895 
1896 	dev_hold(net->loopback_dev);
1897 	in6_dev_hold(idev);
1898 
1899 	rt->u.dst.flags = DST_HOST;
1900 	rt->u.dst.input = ip6_input;
1901 	rt->u.dst.output = ip6_output;
1902 	rt->rt6i_dev = net->loopback_dev;
1903 	rt->rt6i_idev = idev;
1904 	rt->u.dst.metrics[RTAX_MTU-1] = ipv6_get_mtu(rt->rt6i_dev);
1905 	rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(net, dst_mtu(&rt->u.dst));
1906 	rt->u.dst.metrics[RTAX_HOPLIMIT-1] = -1;
1907 	rt->u.dst.obsolete = -1;
1908 
1909 	rt->rt6i_flags = RTF_UP | RTF_NONEXTHOP;
1910 	if (anycast)
1911 		rt->rt6i_flags |= RTF_ANYCAST;
1912 	else
1913 		rt->rt6i_flags |= RTF_LOCAL;
1914 	rt->rt6i_nexthop = ndisc_get_neigh(rt->rt6i_dev, &rt->rt6i_gateway);
1915 	if (rt->rt6i_nexthop == NULL) {
1916 		dst_free(&rt->u.dst);
1917 		return ERR_PTR(-ENOMEM);
1918 	}
1919 
1920 	ipv6_addr_copy(&rt->rt6i_dst.addr, addr);
1921 	rt->rt6i_dst.plen = 128;
1922 	rt->rt6i_table = fib6_get_table(net, RT6_TABLE_LOCAL);
1923 
1924 	atomic_set(&rt->u.dst.__refcnt, 1);
1925 
1926 	return rt;
1927 }
1928 
1929 struct arg_dev_net {
1930 	struct net_device *dev;
1931 	struct net *net;
1932 };
1933 
1934 static int fib6_ifdown(struct rt6_info *rt, void *arg)
1935 {
1936 	struct net_device *dev = ((struct arg_dev_net *)arg)->dev;
1937 	struct net *net = ((struct arg_dev_net *)arg)->net;
1938 
1939 	if (((void *)rt->rt6i_dev == dev || dev == NULL) &&
1940 	    rt != net->ipv6.ip6_null_entry) {
1941 		RT6_TRACE("deleted by ifdown %p\n", rt);
1942 		return -1;
1943 	}
1944 	return 0;
1945 }
1946 
1947 void rt6_ifdown(struct net *net, struct net_device *dev)
1948 {
1949 	struct arg_dev_net adn = {
1950 		.dev = dev,
1951 		.net = net,
1952 	};
1953 
1954 	fib6_clean_all(net, fib6_ifdown, 0, &adn);
1955 	icmp6_clean_all(fib6_ifdown, &adn);
1956 }
1957 
1958 struct rt6_mtu_change_arg
1959 {
1960 	struct net_device *dev;
1961 	unsigned mtu;
1962 };
1963 
1964 static int rt6_mtu_change_route(struct rt6_info *rt, void *p_arg)
1965 {
1966 	struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
1967 	struct inet6_dev *idev;
1968 	struct net *net = dev_net(arg->dev);
1969 
1970 	/* In IPv6 pmtu discovery is not optional,
1971 	   so that RTAX_MTU lock cannot disable it.
1972 	   We still use this lock to block changes
1973 	   caused by addrconf/ndisc.
1974 	*/
1975 
1976 	idev = __in6_dev_get(arg->dev);
1977 	if (idev == NULL)
1978 		return 0;
1979 
1980 	/* For administrative MTU increase, there is no way to discover
1981 	   IPv6 PMTU increase, so PMTU increase should be updated here.
1982 	   Since RFC 1981 doesn't include administrative MTU increase
1983 	   update PMTU increase is a MUST. (i.e. jumbo frame)
1984 	 */
1985 	/*
1986 	   If new MTU is less than route PMTU, this new MTU will be the
1987 	   lowest MTU in the path, update the route PMTU to reflect PMTU
1988 	   decreases; if new MTU is greater than route PMTU, and the
1989 	   old MTU is the lowest MTU in the path, update the route PMTU
1990 	   to reflect the increase. In this case if the other nodes' MTU
1991 	   also have the lowest MTU, TOO BIG MESSAGE will be lead to
1992 	   PMTU discouvery.
1993 	 */
1994 	if (rt->rt6i_dev == arg->dev &&
1995 	    !dst_metric_locked(&rt->u.dst, RTAX_MTU) &&
1996 	    (dst_mtu(&rt->u.dst) >= arg->mtu ||
1997 	     (dst_mtu(&rt->u.dst) < arg->mtu &&
1998 	      dst_mtu(&rt->u.dst) == idev->cnf.mtu6))) {
1999 		rt->u.dst.metrics[RTAX_MTU-1] = arg->mtu;
2000 		rt->u.dst.metrics[RTAX_ADVMSS-1] = ipv6_advmss(net, arg->mtu);
2001 	}
2002 	return 0;
2003 }
2004 
2005 void rt6_mtu_change(struct net_device *dev, unsigned mtu)
2006 {
2007 	struct rt6_mtu_change_arg arg = {
2008 		.dev = dev,
2009 		.mtu = mtu,
2010 	};
2011 
2012 	fib6_clean_all(dev_net(dev), rt6_mtu_change_route, 0, &arg);
2013 }
2014 
2015 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
2016 	[RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
2017 	[RTA_OIF]               = { .type = NLA_U32 },
2018 	[RTA_IIF]		= { .type = NLA_U32 },
2019 	[RTA_PRIORITY]          = { .type = NLA_U32 },
2020 	[RTA_METRICS]           = { .type = NLA_NESTED },
2021 };
2022 
2023 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
2024 			      struct fib6_config *cfg)
2025 {
2026 	struct rtmsg *rtm;
2027 	struct nlattr *tb[RTA_MAX+1];
2028 	int err;
2029 
2030 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
2031 	if (err < 0)
2032 		goto errout;
2033 
2034 	err = -EINVAL;
2035 	rtm = nlmsg_data(nlh);
2036 	memset(cfg, 0, sizeof(*cfg));
2037 
2038 	cfg->fc_table = rtm->rtm_table;
2039 	cfg->fc_dst_len = rtm->rtm_dst_len;
2040 	cfg->fc_src_len = rtm->rtm_src_len;
2041 	cfg->fc_flags = RTF_UP;
2042 	cfg->fc_protocol = rtm->rtm_protocol;
2043 
2044 	if (rtm->rtm_type == RTN_UNREACHABLE)
2045 		cfg->fc_flags |= RTF_REJECT;
2046 
2047 	cfg->fc_nlinfo.pid = NETLINK_CB(skb).pid;
2048 	cfg->fc_nlinfo.nlh = nlh;
2049 	cfg->fc_nlinfo.nl_net = sock_net(skb->sk);
2050 
2051 	if (tb[RTA_GATEWAY]) {
2052 		nla_memcpy(&cfg->fc_gateway, tb[RTA_GATEWAY], 16);
2053 		cfg->fc_flags |= RTF_GATEWAY;
2054 	}
2055 
2056 	if (tb[RTA_DST]) {
2057 		int plen = (rtm->rtm_dst_len + 7) >> 3;
2058 
2059 		if (nla_len(tb[RTA_DST]) < plen)
2060 			goto errout;
2061 
2062 		nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
2063 	}
2064 
2065 	if (tb[RTA_SRC]) {
2066 		int plen = (rtm->rtm_src_len + 7) >> 3;
2067 
2068 		if (nla_len(tb[RTA_SRC]) < plen)
2069 			goto errout;
2070 
2071 		nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
2072 	}
2073 
2074 	if (tb[RTA_OIF])
2075 		cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
2076 
2077 	if (tb[RTA_PRIORITY])
2078 		cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
2079 
2080 	if (tb[RTA_METRICS]) {
2081 		cfg->fc_mx = nla_data(tb[RTA_METRICS]);
2082 		cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
2083 	}
2084 
2085 	if (tb[RTA_TABLE])
2086 		cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
2087 
2088 	err = 0;
2089 errout:
2090 	return err;
2091 }
2092 
2093 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2094 {
2095 	struct fib6_config cfg;
2096 	int err;
2097 
2098 	err = rtm_to_fib6_config(skb, nlh, &cfg);
2099 	if (err < 0)
2100 		return err;
2101 
2102 	return ip6_route_del(&cfg);
2103 }
2104 
2105 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
2106 {
2107 	struct fib6_config cfg;
2108 	int err;
2109 
2110 	err = rtm_to_fib6_config(skb, nlh, &cfg);
2111 	if (err < 0)
2112 		return err;
2113 
2114 	return ip6_route_add(&cfg);
2115 }
2116 
2117 static inline size_t rt6_nlmsg_size(void)
2118 {
2119 	return NLMSG_ALIGN(sizeof(struct rtmsg))
2120 	       + nla_total_size(16) /* RTA_SRC */
2121 	       + nla_total_size(16) /* RTA_DST */
2122 	       + nla_total_size(16) /* RTA_GATEWAY */
2123 	       + nla_total_size(16) /* RTA_PREFSRC */
2124 	       + nla_total_size(4) /* RTA_TABLE */
2125 	       + nla_total_size(4) /* RTA_IIF */
2126 	       + nla_total_size(4) /* RTA_OIF */
2127 	       + nla_total_size(4) /* RTA_PRIORITY */
2128 	       + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
2129 	       + nla_total_size(sizeof(struct rta_cacheinfo));
2130 }
2131 
2132 static int rt6_fill_node(struct net *net,
2133 			 struct sk_buff *skb, struct rt6_info *rt,
2134 			 struct in6_addr *dst, struct in6_addr *src,
2135 			 int iif, int type, u32 pid, u32 seq,
2136 			 int prefix, int nowait, unsigned int flags)
2137 {
2138 	struct rtmsg *rtm;
2139 	struct nlmsghdr *nlh;
2140 	long expires;
2141 	u32 table;
2142 
2143 	if (prefix) {	/* user wants prefix routes only */
2144 		if (!(rt->rt6i_flags & RTF_PREFIX_RT)) {
2145 			/* success since this is not a prefix route */
2146 			return 1;
2147 		}
2148 	}
2149 
2150 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*rtm), flags);
2151 	if (nlh == NULL)
2152 		return -EMSGSIZE;
2153 
2154 	rtm = nlmsg_data(nlh);
2155 	rtm->rtm_family = AF_INET6;
2156 	rtm->rtm_dst_len = rt->rt6i_dst.plen;
2157 	rtm->rtm_src_len = rt->rt6i_src.plen;
2158 	rtm->rtm_tos = 0;
2159 	if (rt->rt6i_table)
2160 		table = rt->rt6i_table->tb6_id;
2161 	else
2162 		table = RT6_TABLE_UNSPEC;
2163 	rtm->rtm_table = table;
2164 	NLA_PUT_U32(skb, RTA_TABLE, table);
2165 	if (rt->rt6i_flags&RTF_REJECT)
2166 		rtm->rtm_type = RTN_UNREACHABLE;
2167 	else if (rt->rt6i_dev && (rt->rt6i_dev->flags&IFF_LOOPBACK))
2168 		rtm->rtm_type = RTN_LOCAL;
2169 	else
2170 		rtm->rtm_type = RTN_UNICAST;
2171 	rtm->rtm_flags = 0;
2172 	rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2173 	rtm->rtm_protocol = rt->rt6i_protocol;
2174 	if (rt->rt6i_flags&RTF_DYNAMIC)
2175 		rtm->rtm_protocol = RTPROT_REDIRECT;
2176 	else if (rt->rt6i_flags & RTF_ADDRCONF)
2177 		rtm->rtm_protocol = RTPROT_KERNEL;
2178 	else if (rt->rt6i_flags&RTF_DEFAULT)
2179 		rtm->rtm_protocol = RTPROT_RA;
2180 
2181 	if (rt->rt6i_flags&RTF_CACHE)
2182 		rtm->rtm_flags |= RTM_F_CLONED;
2183 
2184 	if (dst) {
2185 		NLA_PUT(skb, RTA_DST, 16, dst);
2186 		rtm->rtm_dst_len = 128;
2187 	} else if (rtm->rtm_dst_len)
2188 		NLA_PUT(skb, RTA_DST, 16, &rt->rt6i_dst.addr);
2189 #ifdef CONFIG_IPV6_SUBTREES
2190 	if (src) {
2191 		NLA_PUT(skb, RTA_SRC, 16, src);
2192 		rtm->rtm_src_len = 128;
2193 	} else if (rtm->rtm_src_len)
2194 		NLA_PUT(skb, RTA_SRC, 16, &rt->rt6i_src.addr);
2195 #endif
2196 	if (iif) {
2197 #ifdef CONFIG_IPV6_MROUTE
2198 		if (ipv6_addr_is_multicast(&rt->rt6i_dst.addr)) {
2199 			int err = ip6mr_get_route(skb, rtm, nowait);
2200 			if (err <= 0) {
2201 				if (!nowait) {
2202 					if (err == 0)
2203 						return 0;
2204 					goto nla_put_failure;
2205 				} else {
2206 					if (err == -EMSGSIZE)
2207 						goto nla_put_failure;
2208 				}
2209 			}
2210 		} else
2211 #endif
2212 			NLA_PUT_U32(skb, RTA_IIF, iif);
2213 	} else if (dst) {
2214 		struct inet6_dev *idev = ip6_dst_idev(&rt->u.dst);
2215 		struct in6_addr saddr_buf;
2216 		if (ipv6_dev_get_saddr(net, idev ? idev->dev : NULL,
2217 				       dst, 0, &saddr_buf) == 0)
2218 			NLA_PUT(skb, RTA_PREFSRC, 16, &saddr_buf);
2219 	}
2220 
2221 	if (rtnetlink_put_metrics(skb, rt->u.dst.metrics) < 0)
2222 		goto nla_put_failure;
2223 
2224 	if (rt->u.dst.neighbour)
2225 		NLA_PUT(skb, RTA_GATEWAY, 16, &rt->u.dst.neighbour->primary_key);
2226 
2227 	if (rt->u.dst.dev)
2228 		NLA_PUT_U32(skb, RTA_OIF, rt->rt6i_dev->ifindex);
2229 
2230 	NLA_PUT_U32(skb, RTA_PRIORITY, rt->rt6i_metric);
2231 
2232 	if (!(rt->rt6i_flags & RTF_EXPIRES))
2233 		expires = 0;
2234 	else if (rt->rt6i_expires - jiffies < INT_MAX)
2235 		expires = rt->rt6i_expires - jiffies;
2236 	else
2237 		expires = INT_MAX;
2238 
2239 	if (rtnl_put_cacheinfo(skb, &rt->u.dst, 0, 0, 0,
2240 			       expires, rt->u.dst.error) < 0)
2241 		goto nla_put_failure;
2242 
2243 	return nlmsg_end(skb, nlh);
2244 
2245 nla_put_failure:
2246 	nlmsg_cancel(skb, nlh);
2247 	return -EMSGSIZE;
2248 }
2249 
2250 int rt6_dump_route(struct rt6_info *rt, void *p_arg)
2251 {
2252 	struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
2253 	int prefix;
2254 
2255 	if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
2256 		struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
2257 		prefix = (rtm->rtm_flags & RTM_F_PREFIX) != 0;
2258 	} else
2259 		prefix = 0;
2260 
2261 	return rt6_fill_node(arg->net,
2262 		     arg->skb, rt, NULL, NULL, 0, RTM_NEWROUTE,
2263 		     NETLINK_CB(arg->cb->skb).pid, arg->cb->nlh->nlmsg_seq,
2264 		     prefix, 0, NLM_F_MULTI);
2265 }
2266 
2267 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh, void *arg)
2268 {
2269 	struct net *net = sock_net(in_skb->sk);
2270 	struct nlattr *tb[RTA_MAX+1];
2271 	struct rt6_info *rt;
2272 	struct sk_buff *skb;
2273 	struct rtmsg *rtm;
2274 	struct flowi fl;
2275 	int err, iif = 0;
2276 
2277 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
2278 	if (err < 0)
2279 		goto errout;
2280 
2281 	err = -EINVAL;
2282 	memset(&fl, 0, sizeof(fl));
2283 
2284 	if (tb[RTA_SRC]) {
2285 		if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
2286 			goto errout;
2287 
2288 		ipv6_addr_copy(&fl.fl6_src, nla_data(tb[RTA_SRC]));
2289 	}
2290 
2291 	if (tb[RTA_DST]) {
2292 		if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
2293 			goto errout;
2294 
2295 		ipv6_addr_copy(&fl.fl6_dst, nla_data(tb[RTA_DST]));
2296 	}
2297 
2298 	if (tb[RTA_IIF])
2299 		iif = nla_get_u32(tb[RTA_IIF]);
2300 
2301 	if (tb[RTA_OIF])
2302 		fl.oif = nla_get_u32(tb[RTA_OIF]);
2303 
2304 	if (iif) {
2305 		struct net_device *dev;
2306 		dev = __dev_get_by_index(net, iif);
2307 		if (!dev) {
2308 			err = -ENODEV;
2309 			goto errout;
2310 		}
2311 	}
2312 
2313 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
2314 	if (skb == NULL) {
2315 		err = -ENOBUFS;
2316 		goto errout;
2317 	}
2318 
2319 	/* Reserve room for dummy headers, this skb can pass
2320 	   through good chunk of routing engine.
2321 	 */
2322 	skb_reset_mac_header(skb);
2323 	skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
2324 
2325 	rt = (struct rt6_info*) ip6_route_output(net, NULL, &fl);
2326 	skb->dst = &rt->u.dst;
2327 
2328 	err = rt6_fill_node(net, skb, rt, &fl.fl6_dst, &fl.fl6_src, iif,
2329 			    RTM_NEWROUTE, NETLINK_CB(in_skb).pid,
2330 			    nlh->nlmsg_seq, 0, 0, 0);
2331 	if (err < 0) {
2332 		kfree_skb(skb);
2333 		goto errout;
2334 	}
2335 
2336 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).pid);
2337 errout:
2338 	return err;
2339 }
2340 
2341 void inet6_rt_notify(int event, struct rt6_info *rt, struct nl_info *info)
2342 {
2343 	struct sk_buff *skb;
2344 	struct net *net = info->nl_net;
2345 	u32 seq;
2346 	int err;
2347 
2348 	err = -ENOBUFS;
2349 	seq = info->nlh != NULL ? info->nlh->nlmsg_seq : 0;
2350 
2351 	skb = nlmsg_new(rt6_nlmsg_size(), gfp_any());
2352 	if (skb == NULL)
2353 		goto errout;
2354 
2355 	err = rt6_fill_node(net, skb, rt, NULL, NULL, 0,
2356 				event, info->pid, seq, 0, 0, 0);
2357 	if (err < 0) {
2358 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
2359 		WARN_ON(err == -EMSGSIZE);
2360 		kfree_skb(skb);
2361 		goto errout;
2362 	}
2363 	err = rtnl_notify(skb, net, info->pid, RTNLGRP_IPV6_ROUTE,
2364 			  info->nlh, gfp_any());
2365 errout:
2366 	if (err < 0)
2367 		rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
2368 }
2369 
2370 static int ip6_route_dev_notify(struct notifier_block *this,
2371 				unsigned long event, void *data)
2372 {
2373 	struct net_device *dev = (struct net_device *)data;
2374 	struct net *net = dev_net(dev);
2375 
2376 	if (event == NETDEV_REGISTER && (dev->flags & IFF_LOOPBACK)) {
2377 		net->ipv6.ip6_null_entry->u.dst.dev = dev;
2378 		net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
2379 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2380 		net->ipv6.ip6_prohibit_entry->u.dst.dev = dev;
2381 		net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
2382 		net->ipv6.ip6_blk_hole_entry->u.dst.dev = dev;
2383 		net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
2384 #endif
2385 	}
2386 
2387 	return NOTIFY_OK;
2388 }
2389 
2390 /*
2391  *	/proc
2392  */
2393 
2394 #ifdef CONFIG_PROC_FS
2395 
2396 #define RT6_INFO_LEN (32 + 4 + 32 + 4 + 32 + 40 + 5 + 1)
2397 
2398 struct rt6_proc_arg
2399 {
2400 	char *buffer;
2401 	int offset;
2402 	int length;
2403 	int skip;
2404 	int len;
2405 };
2406 
2407 static int rt6_info_route(struct rt6_info *rt, void *p_arg)
2408 {
2409 	struct seq_file *m = p_arg;
2410 
2411 	seq_printf(m, NIP6_SEQFMT " %02x ", NIP6(rt->rt6i_dst.addr),
2412 		   rt->rt6i_dst.plen);
2413 
2414 #ifdef CONFIG_IPV6_SUBTREES
2415 	seq_printf(m, NIP6_SEQFMT " %02x ", NIP6(rt->rt6i_src.addr),
2416 		   rt->rt6i_src.plen);
2417 #else
2418 	seq_puts(m, "00000000000000000000000000000000 00 ");
2419 #endif
2420 
2421 	if (rt->rt6i_nexthop) {
2422 		seq_printf(m, NIP6_SEQFMT,
2423 			   NIP6(*((struct in6_addr *)rt->rt6i_nexthop->primary_key)));
2424 	} else {
2425 		seq_puts(m, "00000000000000000000000000000000");
2426 	}
2427 	seq_printf(m, " %08x %08x %08x %08x %8s\n",
2428 		   rt->rt6i_metric, atomic_read(&rt->u.dst.__refcnt),
2429 		   rt->u.dst.__use, rt->rt6i_flags,
2430 		   rt->rt6i_dev ? rt->rt6i_dev->name : "");
2431 	return 0;
2432 }
2433 
2434 static int ipv6_route_show(struct seq_file *m, void *v)
2435 {
2436 	struct net *net = (struct net *)m->private;
2437 	fib6_clean_all(net, rt6_info_route, 0, m);
2438 	return 0;
2439 }
2440 
2441 static int ipv6_route_open(struct inode *inode, struct file *file)
2442 {
2443 	return single_open_net(inode, file, ipv6_route_show);
2444 }
2445 
2446 static const struct file_operations ipv6_route_proc_fops = {
2447 	.owner		= THIS_MODULE,
2448 	.open		= ipv6_route_open,
2449 	.read		= seq_read,
2450 	.llseek		= seq_lseek,
2451 	.release	= single_release_net,
2452 };
2453 
2454 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
2455 {
2456 	struct net *net = (struct net *)seq->private;
2457 	seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
2458 		   net->ipv6.rt6_stats->fib_nodes,
2459 		   net->ipv6.rt6_stats->fib_route_nodes,
2460 		   net->ipv6.rt6_stats->fib_rt_alloc,
2461 		   net->ipv6.rt6_stats->fib_rt_entries,
2462 		   net->ipv6.rt6_stats->fib_rt_cache,
2463 		   atomic_read(&net->ipv6.ip6_dst_ops->entries),
2464 		   net->ipv6.rt6_stats->fib_discarded_routes);
2465 
2466 	return 0;
2467 }
2468 
2469 static int rt6_stats_seq_open(struct inode *inode, struct file *file)
2470 {
2471 	return single_open_net(inode, file, rt6_stats_seq_show);
2472 }
2473 
2474 static const struct file_operations rt6_stats_seq_fops = {
2475 	.owner	 = THIS_MODULE,
2476 	.open	 = rt6_stats_seq_open,
2477 	.read	 = seq_read,
2478 	.llseek	 = seq_lseek,
2479 	.release = single_release_net,
2480 };
2481 #endif	/* CONFIG_PROC_FS */
2482 
2483 #ifdef CONFIG_SYSCTL
2484 
2485 static
2486 int ipv6_sysctl_rtcache_flush(ctl_table *ctl, int write, struct file * filp,
2487 			      void __user *buffer, size_t *lenp, loff_t *ppos)
2488 {
2489 	struct net *net = current->nsproxy->net_ns;
2490 	int delay = net->ipv6.sysctl.flush_delay;
2491 	if (write) {
2492 		proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
2493 		fib6_run_gc(delay <= 0 ? ~0UL : (unsigned long)delay, net);
2494 		return 0;
2495 	} else
2496 		return -EINVAL;
2497 }
2498 
2499 ctl_table ipv6_route_table_template[] = {
2500 	{
2501 		.procname	=	"flush",
2502 		.data		=	&init_net.ipv6.sysctl.flush_delay,
2503 		.maxlen		=	sizeof(int),
2504 		.mode		=	0200,
2505 		.proc_handler	=	&ipv6_sysctl_rtcache_flush
2506 	},
2507 	{
2508 		.ctl_name	=	NET_IPV6_ROUTE_GC_THRESH,
2509 		.procname	=	"gc_thresh",
2510 		.data		=	&ip6_dst_ops_template.gc_thresh,
2511 		.maxlen		=	sizeof(int),
2512 		.mode		=	0644,
2513 		.proc_handler	=	&proc_dointvec,
2514 	},
2515 	{
2516 		.ctl_name	=	NET_IPV6_ROUTE_MAX_SIZE,
2517 		.procname	=	"max_size",
2518 		.data		=	&init_net.ipv6.sysctl.ip6_rt_max_size,
2519 		.maxlen		=	sizeof(int),
2520 		.mode		=	0644,
2521 		.proc_handler	=	&proc_dointvec,
2522 	},
2523 	{
2524 		.ctl_name	=	NET_IPV6_ROUTE_GC_MIN_INTERVAL,
2525 		.procname	=	"gc_min_interval",
2526 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
2527 		.maxlen		=	sizeof(int),
2528 		.mode		=	0644,
2529 		.proc_handler	=	&proc_dointvec_jiffies,
2530 		.strategy	=	&sysctl_jiffies,
2531 	},
2532 	{
2533 		.ctl_name	=	NET_IPV6_ROUTE_GC_TIMEOUT,
2534 		.procname	=	"gc_timeout",
2535 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_timeout,
2536 		.maxlen		=	sizeof(int),
2537 		.mode		=	0644,
2538 		.proc_handler	=	&proc_dointvec_jiffies,
2539 		.strategy	=	&sysctl_jiffies,
2540 	},
2541 	{
2542 		.ctl_name	=	NET_IPV6_ROUTE_GC_INTERVAL,
2543 		.procname	=	"gc_interval",
2544 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_interval,
2545 		.maxlen		=	sizeof(int),
2546 		.mode		=	0644,
2547 		.proc_handler	=	&proc_dointvec_jiffies,
2548 		.strategy	=	&sysctl_jiffies,
2549 	},
2550 	{
2551 		.ctl_name	=	NET_IPV6_ROUTE_GC_ELASTICITY,
2552 		.procname	=	"gc_elasticity",
2553 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
2554 		.maxlen		=	sizeof(int),
2555 		.mode		=	0644,
2556 		.proc_handler	=	&proc_dointvec_jiffies,
2557 		.strategy	=	&sysctl_jiffies,
2558 	},
2559 	{
2560 		.ctl_name	=	NET_IPV6_ROUTE_MTU_EXPIRES,
2561 		.procname	=	"mtu_expires",
2562 		.data		=	&init_net.ipv6.sysctl.ip6_rt_mtu_expires,
2563 		.maxlen		=	sizeof(int),
2564 		.mode		=	0644,
2565 		.proc_handler	=	&proc_dointvec_jiffies,
2566 		.strategy	=	&sysctl_jiffies,
2567 	},
2568 	{
2569 		.ctl_name	=	NET_IPV6_ROUTE_MIN_ADVMSS,
2570 		.procname	=	"min_adv_mss",
2571 		.data		=	&init_net.ipv6.sysctl.ip6_rt_min_advmss,
2572 		.maxlen		=	sizeof(int),
2573 		.mode		=	0644,
2574 		.proc_handler	=	&proc_dointvec_jiffies,
2575 		.strategy	=	&sysctl_jiffies,
2576 	},
2577 	{
2578 		.ctl_name	=	NET_IPV6_ROUTE_GC_MIN_INTERVAL_MS,
2579 		.procname	=	"gc_min_interval_ms",
2580 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
2581 		.maxlen		=	sizeof(int),
2582 		.mode		=	0644,
2583 		.proc_handler	=	&proc_dointvec_ms_jiffies,
2584 		.strategy	=	&sysctl_ms_jiffies,
2585 	},
2586 	{ .ctl_name = 0 }
2587 };
2588 
2589 struct ctl_table *ipv6_route_sysctl_init(struct net *net)
2590 {
2591 	struct ctl_table *table;
2592 
2593 	table = kmemdup(ipv6_route_table_template,
2594 			sizeof(ipv6_route_table_template),
2595 			GFP_KERNEL);
2596 
2597 	if (table) {
2598 		table[0].data = &net->ipv6.sysctl.flush_delay;
2599 		table[1].data = &net->ipv6.ip6_dst_ops->gc_thresh;
2600 		table[2].data = &net->ipv6.sysctl.ip6_rt_max_size;
2601 		table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
2602 		table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
2603 		table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
2604 		table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
2605 		table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
2606 		table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
2607 	}
2608 
2609 	return table;
2610 }
2611 #endif
2612 
2613 static int ip6_route_net_init(struct net *net)
2614 {
2615 	int ret = -ENOMEM;
2616 
2617 	net->ipv6.ip6_dst_ops = kmemdup(&ip6_dst_ops_template,
2618 					sizeof(*net->ipv6.ip6_dst_ops),
2619 					GFP_KERNEL);
2620 	if (!net->ipv6.ip6_dst_ops)
2621 		goto out;
2622 	net->ipv6.ip6_dst_ops->dst_net = hold_net(net);
2623 
2624 	net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
2625 					   sizeof(*net->ipv6.ip6_null_entry),
2626 					   GFP_KERNEL);
2627 	if (!net->ipv6.ip6_null_entry)
2628 		goto out_ip6_dst_ops;
2629 	net->ipv6.ip6_null_entry->u.dst.path =
2630 		(struct dst_entry *)net->ipv6.ip6_null_entry;
2631 	net->ipv6.ip6_null_entry->u.dst.ops = net->ipv6.ip6_dst_ops;
2632 
2633 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2634 	net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
2635 					       sizeof(*net->ipv6.ip6_prohibit_entry),
2636 					       GFP_KERNEL);
2637 	if (!net->ipv6.ip6_prohibit_entry)
2638 		goto out_ip6_null_entry;
2639 	net->ipv6.ip6_prohibit_entry->u.dst.path =
2640 		(struct dst_entry *)net->ipv6.ip6_prohibit_entry;
2641 	net->ipv6.ip6_prohibit_entry->u.dst.ops = net->ipv6.ip6_dst_ops;
2642 
2643 	net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
2644 					       sizeof(*net->ipv6.ip6_blk_hole_entry),
2645 					       GFP_KERNEL);
2646 	if (!net->ipv6.ip6_blk_hole_entry)
2647 		goto out_ip6_prohibit_entry;
2648 	net->ipv6.ip6_blk_hole_entry->u.dst.path =
2649 		(struct dst_entry *)net->ipv6.ip6_blk_hole_entry;
2650 	net->ipv6.ip6_blk_hole_entry->u.dst.ops = net->ipv6.ip6_dst_ops;
2651 #endif
2652 
2653 	net->ipv6.sysctl.flush_delay = 0;
2654 	net->ipv6.sysctl.ip6_rt_max_size = 4096;
2655 	net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
2656 	net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
2657 	net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
2658 	net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
2659 	net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
2660 	net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
2661 
2662 #ifdef CONFIG_PROC_FS
2663 	proc_net_fops_create(net, "ipv6_route", 0, &ipv6_route_proc_fops);
2664 	proc_net_fops_create(net, "rt6_stats", S_IRUGO, &rt6_stats_seq_fops);
2665 #endif
2666 	net->ipv6.ip6_rt_gc_expire = 30*HZ;
2667 
2668 	ret = 0;
2669 out:
2670 	return ret;
2671 
2672 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2673 out_ip6_prohibit_entry:
2674 	kfree(net->ipv6.ip6_prohibit_entry);
2675 out_ip6_null_entry:
2676 	kfree(net->ipv6.ip6_null_entry);
2677 #endif
2678 out_ip6_dst_ops:
2679 	release_net(net->ipv6.ip6_dst_ops->dst_net);
2680 	kfree(net->ipv6.ip6_dst_ops);
2681 	goto out;
2682 }
2683 
2684 static void ip6_route_net_exit(struct net *net)
2685 {
2686 #ifdef CONFIG_PROC_FS
2687 	proc_net_remove(net, "ipv6_route");
2688 	proc_net_remove(net, "rt6_stats");
2689 #endif
2690 	kfree(net->ipv6.ip6_null_entry);
2691 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2692 	kfree(net->ipv6.ip6_prohibit_entry);
2693 	kfree(net->ipv6.ip6_blk_hole_entry);
2694 #endif
2695 	release_net(net->ipv6.ip6_dst_ops->dst_net);
2696 	kfree(net->ipv6.ip6_dst_ops);
2697 }
2698 
2699 static struct pernet_operations ip6_route_net_ops = {
2700 	.init = ip6_route_net_init,
2701 	.exit = ip6_route_net_exit,
2702 };
2703 
2704 static struct notifier_block ip6_route_dev_notifier = {
2705 	.notifier_call = ip6_route_dev_notify,
2706 	.priority = 0,
2707 };
2708 
2709 int __init ip6_route_init(void)
2710 {
2711 	int ret;
2712 
2713 	ret = -ENOMEM;
2714 	ip6_dst_ops_template.kmem_cachep =
2715 		kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
2716 				  SLAB_HWCACHE_ALIGN, NULL);
2717 	if (!ip6_dst_ops_template.kmem_cachep)
2718 		goto out;;
2719 
2720 	ret = register_pernet_subsys(&ip6_route_net_ops);
2721 	if (ret)
2722 		goto out_kmem_cache;
2723 
2724 	ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
2725 
2726 	/* Registering of the loopback is done before this portion of code,
2727 	 * the loopback reference in rt6_info will not be taken, do it
2728 	 * manually for init_net */
2729 	init_net.ipv6.ip6_null_entry->u.dst.dev = init_net.loopback_dev;
2730 	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
2731   #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2732 	init_net.ipv6.ip6_prohibit_entry->u.dst.dev = init_net.loopback_dev;
2733 	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
2734 	init_net.ipv6.ip6_blk_hole_entry->u.dst.dev = init_net.loopback_dev;
2735 	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
2736   #endif
2737 	ret = fib6_init();
2738 	if (ret)
2739 		goto out_register_subsys;
2740 
2741 	ret = xfrm6_init();
2742 	if (ret)
2743 		goto out_fib6_init;
2744 
2745 	ret = fib6_rules_init();
2746 	if (ret)
2747 		goto xfrm6_init;
2748 
2749 	ret = -ENOBUFS;
2750 	if (__rtnl_register(PF_INET6, RTM_NEWROUTE, inet6_rtm_newroute, NULL) ||
2751 	    __rtnl_register(PF_INET6, RTM_DELROUTE, inet6_rtm_delroute, NULL) ||
2752 	    __rtnl_register(PF_INET6, RTM_GETROUTE, inet6_rtm_getroute, NULL))
2753 		goto fib6_rules_init;
2754 
2755 	ret = register_netdevice_notifier(&ip6_route_dev_notifier);
2756 	if (ret)
2757 		goto fib6_rules_init;
2758 
2759 out:
2760 	return ret;
2761 
2762 fib6_rules_init:
2763 	fib6_rules_cleanup();
2764 xfrm6_init:
2765 	xfrm6_fini();
2766 out_fib6_init:
2767 	fib6_gc_cleanup();
2768 out_register_subsys:
2769 	unregister_pernet_subsys(&ip6_route_net_ops);
2770 out_kmem_cache:
2771 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
2772 	goto out;
2773 }
2774 
2775 void ip6_route_cleanup(void)
2776 {
2777 	unregister_netdevice_notifier(&ip6_route_dev_notifier);
2778 	fib6_rules_cleanup();
2779 	xfrm6_fini();
2780 	fib6_gc_cleanup();
2781 	unregister_pernet_subsys(&ip6_route_net_ops);
2782 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
2783 }
2784