1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * FIB front-end. 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 */ 9 10 /* Changes: 11 * 12 * YOSHIFUJI Hideaki @USAGI 13 * reworked default router selection. 14 * - respect outgoing interface 15 * - select from (probably) reachable routers (i.e. 16 * routers in REACHABLE, STALE, DELAY or PROBE states). 17 * - always select the same router if it is (probably) 18 * reachable. otherwise, round-robin the list. 19 * Ville Nuorvala 20 * Fixed routing subtrees. 21 */ 22 23 #define pr_fmt(fmt) "IPv6: " fmt 24 25 #include <linux/capability.h> 26 #include <linux/errno.h> 27 #include <linux/export.h> 28 #include <linux/types.h> 29 #include <linux/times.h> 30 #include <linux/socket.h> 31 #include <linux/sockios.h> 32 #include <linux/net.h> 33 #include <linux/route.h> 34 #include <linux/netdevice.h> 35 #include <linux/in6.h> 36 #include <linux/mroute6.h> 37 #include <linux/init.h> 38 #include <linux/if_arp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/nsproxy.h> 42 #include <linux/slab.h> 43 #include <linux/jhash.h> 44 #include <net/net_namespace.h> 45 #include <net/snmp.h> 46 #include <net/ipv6.h> 47 #include <net/ip6_fib.h> 48 #include <net/ip6_route.h> 49 #include <net/ndisc.h> 50 #include <net/addrconf.h> 51 #include <net/tcp.h> 52 #include <linux/rtnetlink.h> 53 #include <net/dst.h> 54 #include <net/dst_metadata.h> 55 #include <net/xfrm.h> 56 #include <net/netevent.h> 57 #include <net/netlink.h> 58 #include <net/rtnh.h> 59 #include <net/lwtunnel.h> 60 #include <net/ip_tunnels.h> 61 #include <net/l3mdev.h> 62 #include <net/ip.h> 63 #include <linux/uaccess.h> 64 65 #ifdef CONFIG_SYSCTL 66 #include <linux/sysctl.h> 67 #endif 68 69 static int ip6_rt_type_to_error(u8 fib6_type); 70 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/fib6.h> 73 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 74 #undef CREATE_TRACE_POINTS 75 76 enum rt6_nud_state { 77 RT6_NUD_FAIL_HARD = -3, 78 RT6_NUD_FAIL_PROBE = -2, 79 RT6_NUD_FAIL_DO_RR = -1, 80 RT6_NUD_SUCCEED = 1 81 }; 82 83 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 84 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 85 static unsigned int ip6_mtu(const struct dst_entry *dst); 86 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 87 static void ip6_dst_destroy(struct dst_entry *); 88 static void ip6_dst_ifdown(struct dst_entry *, 89 struct net_device *dev, int how); 90 static int ip6_dst_gc(struct dst_ops *ops); 91 92 static int ip6_pkt_discard(struct sk_buff *skb); 93 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 94 static int ip6_pkt_prohibit(struct sk_buff *skb); 95 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 96 static void ip6_link_failure(struct sk_buff *skb); 97 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 98 struct sk_buff *skb, u32 mtu); 99 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 100 struct sk_buff *skb); 101 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 102 int strict); 103 static size_t rt6_nlmsg_size(struct fib6_info *f6i); 104 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 105 struct fib6_info *rt, struct dst_entry *dst, 106 struct in6_addr *dest, struct in6_addr *src, 107 int iif, int type, u32 portid, u32 seq, 108 unsigned int flags); 109 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 110 const struct in6_addr *daddr, 111 const struct in6_addr *saddr); 112 113 #ifdef CONFIG_IPV6_ROUTE_INFO 114 static struct fib6_info *rt6_add_route_info(struct net *net, 115 const struct in6_addr *prefix, int prefixlen, 116 const struct in6_addr *gwaddr, 117 struct net_device *dev, 118 unsigned int pref); 119 static struct fib6_info *rt6_get_route_info(struct net *net, 120 const struct in6_addr *prefix, int prefixlen, 121 const struct in6_addr *gwaddr, 122 struct net_device *dev); 123 #endif 124 125 struct uncached_list { 126 spinlock_t lock; 127 struct list_head head; 128 }; 129 130 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 131 132 void rt6_uncached_list_add(struct rt6_info *rt) 133 { 134 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 135 136 rt->rt6i_uncached_list = ul; 137 138 spin_lock_bh(&ul->lock); 139 list_add_tail(&rt->rt6i_uncached, &ul->head); 140 spin_unlock_bh(&ul->lock); 141 } 142 143 void rt6_uncached_list_del(struct rt6_info *rt) 144 { 145 if (!list_empty(&rt->rt6i_uncached)) { 146 struct uncached_list *ul = rt->rt6i_uncached_list; 147 struct net *net = dev_net(rt->dst.dev); 148 149 spin_lock_bh(&ul->lock); 150 list_del(&rt->rt6i_uncached); 151 atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache); 152 spin_unlock_bh(&ul->lock); 153 } 154 } 155 156 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev) 157 { 158 struct net_device *loopback_dev = net->loopback_dev; 159 int cpu; 160 161 if (dev == loopback_dev) 162 return; 163 164 for_each_possible_cpu(cpu) { 165 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 166 struct rt6_info *rt; 167 168 spin_lock_bh(&ul->lock); 169 list_for_each_entry(rt, &ul->head, rt6i_uncached) { 170 struct inet6_dev *rt_idev = rt->rt6i_idev; 171 struct net_device *rt_dev = rt->dst.dev; 172 173 if (rt_idev->dev == dev) { 174 rt->rt6i_idev = in6_dev_get(loopback_dev); 175 in6_dev_put(rt_idev); 176 } 177 178 if (rt_dev == dev) { 179 rt->dst.dev = loopback_dev; 180 dev_hold(rt->dst.dev); 181 dev_put(rt_dev); 182 } 183 } 184 spin_unlock_bh(&ul->lock); 185 } 186 } 187 188 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 189 struct sk_buff *skb, 190 const void *daddr) 191 { 192 if (!ipv6_addr_any(p)) 193 return (const void *) p; 194 else if (skb) 195 return &ipv6_hdr(skb)->daddr; 196 return daddr; 197 } 198 199 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 200 struct net_device *dev, 201 struct sk_buff *skb, 202 const void *daddr) 203 { 204 struct neighbour *n; 205 206 daddr = choose_neigh_daddr(gw, skb, daddr); 207 n = __ipv6_neigh_lookup(dev, daddr); 208 if (n) 209 return n; 210 211 n = neigh_create(&nd_tbl, daddr, dev); 212 return IS_ERR(n) ? NULL : n; 213 } 214 215 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 216 struct sk_buff *skb, 217 const void *daddr) 218 { 219 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); 220 221 return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr); 222 } 223 224 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 225 { 226 struct net_device *dev = dst->dev; 227 struct rt6_info *rt = (struct rt6_info *)dst; 228 229 daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr); 230 if (!daddr) 231 return; 232 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 233 return; 234 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 235 return; 236 __ipv6_confirm_neigh(dev, daddr); 237 } 238 239 static struct dst_ops ip6_dst_ops_template = { 240 .family = AF_INET6, 241 .gc = ip6_dst_gc, 242 .gc_thresh = 1024, 243 .check = ip6_dst_check, 244 .default_advmss = ip6_default_advmss, 245 .mtu = ip6_mtu, 246 .cow_metrics = dst_cow_metrics_generic, 247 .destroy = ip6_dst_destroy, 248 .ifdown = ip6_dst_ifdown, 249 .negative_advice = ip6_negative_advice, 250 .link_failure = ip6_link_failure, 251 .update_pmtu = ip6_rt_update_pmtu, 252 .redirect = rt6_do_redirect, 253 .local_out = __ip6_local_out, 254 .neigh_lookup = ip6_dst_neigh_lookup, 255 .confirm_neigh = ip6_confirm_neigh, 256 }; 257 258 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst) 259 { 260 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU); 261 262 return mtu ? : dst->dev->mtu; 263 } 264 265 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk, 266 struct sk_buff *skb, u32 mtu) 267 { 268 } 269 270 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk, 271 struct sk_buff *skb) 272 { 273 } 274 275 static struct dst_ops ip6_dst_blackhole_ops = { 276 .family = AF_INET6, 277 .destroy = ip6_dst_destroy, 278 .check = ip6_dst_check, 279 .mtu = ip6_blackhole_mtu, 280 .default_advmss = ip6_default_advmss, 281 .update_pmtu = ip6_rt_blackhole_update_pmtu, 282 .redirect = ip6_rt_blackhole_redirect, 283 .cow_metrics = dst_cow_metrics_generic, 284 .neigh_lookup = ip6_dst_neigh_lookup, 285 }; 286 287 static const u32 ip6_template_metrics[RTAX_MAX] = { 288 [RTAX_HOPLIMIT - 1] = 0, 289 }; 290 291 static const struct fib6_info fib6_null_entry_template = { 292 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 293 .fib6_protocol = RTPROT_KERNEL, 294 .fib6_metric = ~(u32)0, 295 .fib6_ref = REFCOUNT_INIT(1), 296 .fib6_type = RTN_UNREACHABLE, 297 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 298 }; 299 300 static const struct rt6_info ip6_null_entry_template = { 301 .dst = { 302 .__refcnt = ATOMIC_INIT(1), 303 .__use = 1, 304 .obsolete = DST_OBSOLETE_FORCE_CHK, 305 .error = -ENETUNREACH, 306 .input = ip6_pkt_discard, 307 .output = ip6_pkt_discard_out, 308 }, 309 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 310 }; 311 312 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 313 314 static const struct rt6_info ip6_prohibit_entry_template = { 315 .dst = { 316 .__refcnt = ATOMIC_INIT(1), 317 .__use = 1, 318 .obsolete = DST_OBSOLETE_FORCE_CHK, 319 .error = -EACCES, 320 .input = ip6_pkt_prohibit, 321 .output = ip6_pkt_prohibit_out, 322 }, 323 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 324 }; 325 326 static const struct rt6_info ip6_blk_hole_entry_template = { 327 .dst = { 328 .__refcnt = ATOMIC_INIT(1), 329 .__use = 1, 330 .obsolete = DST_OBSOLETE_FORCE_CHK, 331 .error = -EINVAL, 332 .input = dst_discard, 333 .output = dst_discard_out, 334 }, 335 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 336 }; 337 338 #endif 339 340 static void rt6_info_init(struct rt6_info *rt) 341 { 342 struct dst_entry *dst = &rt->dst; 343 344 memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst)); 345 INIT_LIST_HEAD(&rt->rt6i_uncached); 346 } 347 348 /* allocate dst with ip6_dst_ops */ 349 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 350 int flags) 351 { 352 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 353 1, DST_OBSOLETE_FORCE_CHK, flags); 354 355 if (rt) { 356 rt6_info_init(rt); 357 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 358 } 359 360 return rt; 361 } 362 EXPORT_SYMBOL(ip6_dst_alloc); 363 364 static void ip6_dst_destroy(struct dst_entry *dst) 365 { 366 struct rt6_info *rt = (struct rt6_info *)dst; 367 struct fib6_info *from; 368 struct inet6_dev *idev; 369 370 ip_dst_metrics_put(dst); 371 rt6_uncached_list_del(rt); 372 373 idev = rt->rt6i_idev; 374 if (idev) { 375 rt->rt6i_idev = NULL; 376 in6_dev_put(idev); 377 } 378 379 from = xchg((__force struct fib6_info **)&rt->from, NULL); 380 fib6_info_release(from); 381 } 382 383 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 384 int how) 385 { 386 struct rt6_info *rt = (struct rt6_info *)dst; 387 struct inet6_dev *idev = rt->rt6i_idev; 388 struct net_device *loopback_dev = 389 dev_net(dev)->loopback_dev; 390 391 if (idev && idev->dev != loopback_dev) { 392 struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev); 393 if (loopback_idev) { 394 rt->rt6i_idev = loopback_idev; 395 in6_dev_put(idev); 396 } 397 } 398 } 399 400 static bool __rt6_check_expired(const struct rt6_info *rt) 401 { 402 if (rt->rt6i_flags & RTF_EXPIRES) 403 return time_after(jiffies, rt->dst.expires); 404 else 405 return false; 406 } 407 408 static bool rt6_check_expired(const struct rt6_info *rt) 409 { 410 struct fib6_info *from; 411 412 from = rcu_dereference(rt->from); 413 414 if (rt->rt6i_flags & RTF_EXPIRES) { 415 if (time_after(jiffies, rt->dst.expires)) 416 return true; 417 } else if (from) { 418 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || 419 fib6_check_expired(from); 420 } 421 return false; 422 } 423 424 void fib6_select_path(const struct net *net, struct fib6_result *res, 425 struct flowi6 *fl6, int oif, bool have_oif_match, 426 const struct sk_buff *skb, int strict) 427 { 428 struct fib6_info *sibling, *next_sibling; 429 struct fib6_info *match = res->f6i; 430 431 if ((!match->fib6_nsiblings && !match->nh) || have_oif_match) 432 goto out; 433 434 /* We might have already computed the hash for ICMPv6 errors. In such 435 * case it will always be non-zero. Otherwise now is the time to do it. 436 */ 437 if (!fl6->mp_hash && 438 (!match->nh || nexthop_is_multipath(match->nh))) 439 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 440 441 if (unlikely(match->nh)) { 442 nexthop_path_fib6_result(res, fl6->mp_hash); 443 return; 444 } 445 446 if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound)) 447 goto out; 448 449 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, 450 fib6_siblings) { 451 const struct fib6_nh *nh = sibling->fib6_nh; 452 int nh_upper_bound; 453 454 nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); 455 if (fl6->mp_hash > nh_upper_bound) 456 continue; 457 if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) 458 break; 459 match = sibling; 460 break; 461 } 462 463 out: 464 res->f6i = match; 465 res->nh = match->fib6_nh; 466 } 467 468 /* 469 * Route lookup. rcu_read_lock() should be held. 470 */ 471 472 static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, 473 const struct in6_addr *saddr, int oif, int flags) 474 { 475 const struct net_device *dev; 476 477 if (nh->fib_nh_flags & RTNH_F_DEAD) 478 return false; 479 480 dev = nh->fib_nh_dev; 481 if (oif) { 482 if (dev->ifindex == oif) 483 return true; 484 } else { 485 if (ipv6_chk_addr(net, saddr, dev, 486 flags & RT6_LOOKUP_F_IFACE)) 487 return true; 488 } 489 490 return false; 491 } 492 493 struct fib6_nh_dm_arg { 494 struct net *net; 495 const struct in6_addr *saddr; 496 int oif; 497 int flags; 498 struct fib6_nh *nh; 499 }; 500 501 static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) 502 { 503 struct fib6_nh_dm_arg *arg = _arg; 504 505 arg->nh = nh; 506 return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, 507 arg->flags); 508 } 509 510 /* returns fib6_nh from nexthop or NULL */ 511 static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, 512 struct fib6_result *res, 513 const struct in6_addr *saddr, 514 int oif, int flags) 515 { 516 struct fib6_nh_dm_arg arg = { 517 .net = net, 518 .saddr = saddr, 519 .oif = oif, 520 .flags = flags, 521 }; 522 523 if (nexthop_is_blackhole(nh)) 524 return NULL; 525 526 if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) 527 return arg.nh; 528 529 return NULL; 530 } 531 532 static void rt6_device_match(struct net *net, struct fib6_result *res, 533 const struct in6_addr *saddr, int oif, int flags) 534 { 535 struct fib6_info *f6i = res->f6i; 536 struct fib6_info *spf6i; 537 struct fib6_nh *nh; 538 539 if (!oif && ipv6_addr_any(saddr)) { 540 if (unlikely(f6i->nh)) { 541 nh = nexthop_fib6_nh(f6i->nh); 542 if (nexthop_is_blackhole(f6i->nh)) 543 goto out_blackhole; 544 } else { 545 nh = f6i->fib6_nh; 546 } 547 if (!(nh->fib_nh_flags & RTNH_F_DEAD)) 548 goto out; 549 } 550 551 for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { 552 bool matched = false; 553 554 if (unlikely(spf6i->nh)) { 555 nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, 556 oif, flags); 557 if (nh) 558 matched = true; 559 } else { 560 nh = spf6i->fib6_nh; 561 if (__rt6_device_match(net, nh, saddr, oif, flags)) 562 matched = true; 563 } 564 if (matched) { 565 res->f6i = spf6i; 566 goto out; 567 } 568 } 569 570 if (oif && flags & RT6_LOOKUP_F_IFACE) { 571 res->f6i = net->ipv6.fib6_null_entry; 572 nh = res->f6i->fib6_nh; 573 goto out; 574 } 575 576 if (unlikely(f6i->nh)) { 577 nh = nexthop_fib6_nh(f6i->nh); 578 if (nexthop_is_blackhole(f6i->nh)) 579 goto out_blackhole; 580 } else { 581 nh = f6i->fib6_nh; 582 } 583 584 if (nh->fib_nh_flags & RTNH_F_DEAD) { 585 res->f6i = net->ipv6.fib6_null_entry; 586 nh = res->f6i->fib6_nh; 587 } 588 out: 589 res->nh = nh; 590 res->fib6_type = res->f6i->fib6_type; 591 res->fib6_flags = res->f6i->fib6_flags; 592 return; 593 594 out_blackhole: 595 res->fib6_flags |= RTF_REJECT; 596 res->fib6_type = RTN_BLACKHOLE; 597 res->nh = nh; 598 } 599 600 #ifdef CONFIG_IPV6_ROUTER_PREF 601 struct __rt6_probe_work { 602 struct work_struct work; 603 struct in6_addr target; 604 struct net_device *dev; 605 }; 606 607 static void rt6_probe_deferred(struct work_struct *w) 608 { 609 struct in6_addr mcaddr; 610 struct __rt6_probe_work *work = 611 container_of(w, struct __rt6_probe_work, work); 612 613 addrconf_addr_solict_mult(&work->target, &mcaddr); 614 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 615 dev_put(work->dev); 616 kfree(work); 617 } 618 619 static void rt6_probe(struct fib6_nh *fib6_nh) 620 { 621 struct __rt6_probe_work *work = NULL; 622 const struct in6_addr *nh_gw; 623 struct neighbour *neigh; 624 struct net_device *dev; 625 struct inet6_dev *idev; 626 627 /* 628 * Okay, this does not seem to be appropriate 629 * for now, however, we need to check if it 630 * is really so; aka Router Reachability Probing. 631 * 632 * Router Reachability Probe MUST be rate-limited 633 * to no more than one per minute. 634 */ 635 if (fib6_nh->fib_nh_gw_family) 636 return; 637 638 nh_gw = &fib6_nh->fib_nh_gw6; 639 dev = fib6_nh->fib_nh_dev; 640 rcu_read_lock_bh(); 641 idev = __in6_dev_get(dev); 642 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 643 if (neigh) { 644 if (neigh->nud_state & NUD_VALID) 645 goto out; 646 647 write_lock(&neigh->lock); 648 if (!(neigh->nud_state & NUD_VALID) && 649 time_after(jiffies, 650 neigh->updated + idev->cnf.rtr_probe_interval)) { 651 work = kmalloc(sizeof(*work), GFP_ATOMIC); 652 if (work) 653 __neigh_set_probe_once(neigh); 654 } 655 write_unlock(&neigh->lock); 656 } else if (time_after(jiffies, fib6_nh->last_probe + 657 idev->cnf.rtr_probe_interval)) { 658 work = kmalloc(sizeof(*work), GFP_ATOMIC); 659 } 660 661 if (work) { 662 fib6_nh->last_probe = jiffies; 663 INIT_WORK(&work->work, rt6_probe_deferred); 664 work->target = *nh_gw; 665 dev_hold(dev); 666 work->dev = dev; 667 schedule_work(&work->work); 668 } 669 670 out: 671 rcu_read_unlock_bh(); 672 } 673 #else 674 static inline void rt6_probe(struct fib6_nh *fib6_nh) 675 { 676 } 677 #endif 678 679 /* 680 * Default Router Selection (RFC 2461 6.3.6) 681 */ 682 static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) 683 { 684 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 685 struct neighbour *neigh; 686 687 rcu_read_lock_bh(); 688 neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, 689 &fib6_nh->fib_nh_gw6); 690 if (neigh) { 691 read_lock(&neigh->lock); 692 if (neigh->nud_state & NUD_VALID) 693 ret = RT6_NUD_SUCCEED; 694 #ifdef CONFIG_IPV6_ROUTER_PREF 695 else if (!(neigh->nud_state & NUD_FAILED)) 696 ret = RT6_NUD_SUCCEED; 697 else 698 ret = RT6_NUD_FAIL_PROBE; 699 #endif 700 read_unlock(&neigh->lock); 701 } else { 702 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 703 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 704 } 705 rcu_read_unlock_bh(); 706 707 return ret; 708 } 709 710 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 711 int strict) 712 { 713 int m = 0; 714 715 if (!oif || nh->fib_nh_dev->ifindex == oif) 716 m = 2; 717 718 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 719 return RT6_NUD_FAIL_HARD; 720 #ifdef CONFIG_IPV6_ROUTER_PREF 721 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; 722 #endif 723 if ((strict & RT6_LOOKUP_F_REACHABLE) && 724 !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { 725 int n = rt6_check_neigh(nh); 726 if (n < 0) 727 return n; 728 } 729 return m; 730 } 731 732 static bool find_match(struct fib6_nh *nh, u32 fib6_flags, 733 int oif, int strict, int *mpri, bool *do_rr) 734 { 735 bool match_do_rr = false; 736 bool rc = false; 737 int m; 738 739 if (nh->fib_nh_flags & RTNH_F_DEAD) 740 goto out; 741 742 if (ip6_ignore_linkdown(nh->fib_nh_dev) && 743 nh->fib_nh_flags & RTNH_F_LINKDOWN && 744 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 745 goto out; 746 747 m = rt6_score_route(nh, fib6_flags, oif, strict); 748 if (m == RT6_NUD_FAIL_DO_RR) { 749 match_do_rr = true; 750 m = 0; /* lowest valid score */ 751 } else if (m == RT6_NUD_FAIL_HARD) { 752 goto out; 753 } 754 755 if (strict & RT6_LOOKUP_F_REACHABLE) 756 rt6_probe(nh); 757 758 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 759 if (m > *mpri) { 760 *do_rr = match_do_rr; 761 *mpri = m; 762 rc = true; 763 } 764 out: 765 return rc; 766 } 767 768 struct fib6_nh_frl_arg { 769 u32 flags; 770 int oif; 771 int strict; 772 int *mpri; 773 bool *do_rr; 774 struct fib6_nh *nh; 775 }; 776 777 static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) 778 { 779 struct fib6_nh_frl_arg *arg = _arg; 780 781 arg->nh = nh; 782 return find_match(nh, arg->flags, arg->oif, arg->strict, 783 arg->mpri, arg->do_rr); 784 } 785 786 static void __find_rr_leaf(struct fib6_info *f6i_start, 787 struct fib6_info *nomatch, u32 metric, 788 struct fib6_result *res, struct fib6_info **cont, 789 int oif, int strict, bool *do_rr, int *mpri) 790 { 791 struct fib6_info *f6i; 792 793 for (f6i = f6i_start; 794 f6i && f6i != nomatch; 795 f6i = rcu_dereference(f6i->fib6_next)) { 796 bool matched = false; 797 struct fib6_nh *nh; 798 799 if (cont && f6i->fib6_metric != metric) { 800 *cont = f6i; 801 return; 802 } 803 804 if (fib6_check_expired(f6i)) 805 continue; 806 807 if (unlikely(f6i->nh)) { 808 struct fib6_nh_frl_arg arg = { 809 .flags = f6i->fib6_flags, 810 .oif = oif, 811 .strict = strict, 812 .mpri = mpri, 813 .do_rr = do_rr 814 }; 815 816 if (nexthop_is_blackhole(f6i->nh)) { 817 res->fib6_flags = RTF_REJECT; 818 res->fib6_type = RTN_BLACKHOLE; 819 res->f6i = f6i; 820 res->nh = nexthop_fib6_nh(f6i->nh); 821 return; 822 } 823 if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, 824 &arg)) { 825 matched = true; 826 nh = arg.nh; 827 } 828 } else { 829 nh = f6i->fib6_nh; 830 if (find_match(nh, f6i->fib6_flags, oif, strict, 831 mpri, do_rr)) 832 matched = true; 833 } 834 if (matched) { 835 res->f6i = f6i; 836 res->nh = nh; 837 res->fib6_flags = f6i->fib6_flags; 838 res->fib6_type = f6i->fib6_type; 839 } 840 } 841 } 842 843 static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, 844 struct fib6_info *rr_head, int oif, int strict, 845 bool *do_rr, struct fib6_result *res) 846 { 847 u32 metric = rr_head->fib6_metric; 848 struct fib6_info *cont = NULL; 849 int mpri = -1; 850 851 __find_rr_leaf(rr_head, NULL, metric, res, &cont, 852 oif, strict, do_rr, &mpri); 853 854 __find_rr_leaf(leaf, rr_head, metric, res, &cont, 855 oif, strict, do_rr, &mpri); 856 857 if (res->f6i || !cont) 858 return; 859 860 __find_rr_leaf(cont, NULL, metric, res, NULL, 861 oif, strict, do_rr, &mpri); 862 } 863 864 static void rt6_select(struct net *net, struct fib6_node *fn, int oif, 865 struct fib6_result *res, int strict) 866 { 867 struct fib6_info *leaf = rcu_dereference(fn->leaf); 868 struct fib6_info *rt0; 869 bool do_rr = false; 870 int key_plen; 871 872 /* make sure this function or its helpers sets f6i */ 873 res->f6i = NULL; 874 875 if (!leaf || leaf == net->ipv6.fib6_null_entry) 876 goto out; 877 878 rt0 = rcu_dereference(fn->rr_ptr); 879 if (!rt0) 880 rt0 = leaf; 881 882 /* Double check to make sure fn is not an intermediate node 883 * and fn->leaf does not points to its child's leaf 884 * (This might happen if all routes under fn are deleted from 885 * the tree and fib6_repair_tree() is called on the node.) 886 */ 887 key_plen = rt0->fib6_dst.plen; 888 #ifdef CONFIG_IPV6_SUBTREES 889 if (rt0->fib6_src.plen) 890 key_plen = rt0->fib6_src.plen; 891 #endif 892 if (fn->fn_bit != key_plen) 893 goto out; 894 895 find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); 896 if (do_rr) { 897 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 898 899 /* no entries matched; do round-robin */ 900 if (!next || next->fib6_metric != rt0->fib6_metric) 901 next = leaf; 902 903 if (next != rt0) { 904 spin_lock_bh(&leaf->fib6_table->tb6_lock); 905 /* make sure next is not being deleted from the tree */ 906 if (next->fib6_node) 907 rcu_assign_pointer(fn->rr_ptr, next); 908 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 909 } 910 } 911 912 out: 913 if (!res->f6i) { 914 res->f6i = net->ipv6.fib6_null_entry; 915 res->nh = res->f6i->fib6_nh; 916 res->fib6_flags = res->f6i->fib6_flags; 917 res->fib6_type = res->f6i->fib6_type; 918 } 919 } 920 921 static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) 922 { 923 return (res->f6i->fib6_flags & RTF_NONEXTHOP) || 924 res->nh->fib_nh_gw_family; 925 } 926 927 #ifdef CONFIG_IPV6_ROUTE_INFO 928 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 929 const struct in6_addr *gwaddr) 930 { 931 struct net *net = dev_net(dev); 932 struct route_info *rinfo = (struct route_info *) opt; 933 struct in6_addr prefix_buf, *prefix; 934 unsigned int pref; 935 unsigned long lifetime; 936 struct fib6_info *rt; 937 938 if (len < sizeof(struct route_info)) { 939 return -EINVAL; 940 } 941 942 /* Sanity check for prefix_len and length */ 943 if (rinfo->length > 3) { 944 return -EINVAL; 945 } else if (rinfo->prefix_len > 128) { 946 return -EINVAL; 947 } else if (rinfo->prefix_len > 64) { 948 if (rinfo->length < 2) { 949 return -EINVAL; 950 } 951 } else if (rinfo->prefix_len > 0) { 952 if (rinfo->length < 1) { 953 return -EINVAL; 954 } 955 } 956 957 pref = rinfo->route_pref; 958 if (pref == ICMPV6_ROUTER_PREF_INVALID) 959 return -EINVAL; 960 961 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 962 963 if (rinfo->length == 3) 964 prefix = (struct in6_addr *)rinfo->prefix; 965 else { 966 /* this function is safe */ 967 ipv6_addr_prefix(&prefix_buf, 968 (struct in6_addr *)rinfo->prefix, 969 rinfo->prefix_len); 970 prefix = &prefix_buf; 971 } 972 973 if (rinfo->prefix_len == 0) 974 rt = rt6_get_dflt_router(net, gwaddr, dev); 975 else 976 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 977 gwaddr, dev); 978 979 if (rt && !lifetime) { 980 ip6_del_rt(net, rt); 981 rt = NULL; 982 } 983 984 if (!rt && lifetime) 985 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 986 dev, pref); 987 else if (rt) 988 rt->fib6_flags = RTF_ROUTEINFO | 989 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 990 991 if (rt) { 992 if (!addrconf_finite_timeout(lifetime)) 993 fib6_clean_expires(rt); 994 else 995 fib6_set_expires(rt, jiffies + HZ * lifetime); 996 997 fib6_info_release(rt); 998 } 999 return 0; 1000 } 1001 #endif 1002 1003 /* 1004 * Misc support functions 1005 */ 1006 1007 /* called with rcu_lock held */ 1008 static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) 1009 { 1010 struct net_device *dev = res->nh->fib_nh_dev; 1011 1012 if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 1013 /* for copies of local routes, dst->dev needs to be the 1014 * device if it is a master device, the master device if 1015 * device is enslaved, and the loopback as the default 1016 */ 1017 if (netif_is_l3_slave(dev) && 1018 !rt6_need_strict(&res->f6i->fib6_dst.addr)) 1019 dev = l3mdev_master_dev_rcu(dev); 1020 else if (!netif_is_l3_master(dev)) 1021 dev = dev_net(dev)->loopback_dev; 1022 /* last case is netif_is_l3_master(dev) is true in which 1023 * case we want dev returned to be dev 1024 */ 1025 } 1026 1027 return dev; 1028 } 1029 1030 static const int fib6_prop[RTN_MAX + 1] = { 1031 [RTN_UNSPEC] = 0, 1032 [RTN_UNICAST] = 0, 1033 [RTN_LOCAL] = 0, 1034 [RTN_BROADCAST] = 0, 1035 [RTN_ANYCAST] = 0, 1036 [RTN_MULTICAST] = 0, 1037 [RTN_BLACKHOLE] = -EINVAL, 1038 [RTN_UNREACHABLE] = -EHOSTUNREACH, 1039 [RTN_PROHIBIT] = -EACCES, 1040 [RTN_THROW] = -EAGAIN, 1041 [RTN_NAT] = -EINVAL, 1042 [RTN_XRESOLVE] = -EINVAL, 1043 }; 1044 1045 static int ip6_rt_type_to_error(u8 fib6_type) 1046 { 1047 return fib6_prop[fib6_type]; 1048 } 1049 1050 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 1051 { 1052 unsigned short flags = 0; 1053 1054 if (rt->dst_nocount) 1055 flags |= DST_NOCOUNT; 1056 if (rt->dst_nopolicy) 1057 flags |= DST_NOPOLICY; 1058 if (rt->dst_host) 1059 flags |= DST_HOST; 1060 1061 return flags; 1062 } 1063 1064 static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) 1065 { 1066 rt->dst.error = ip6_rt_type_to_error(fib6_type); 1067 1068 switch (fib6_type) { 1069 case RTN_BLACKHOLE: 1070 rt->dst.output = dst_discard_out; 1071 rt->dst.input = dst_discard; 1072 break; 1073 case RTN_PROHIBIT: 1074 rt->dst.output = ip6_pkt_prohibit_out; 1075 rt->dst.input = ip6_pkt_prohibit; 1076 break; 1077 case RTN_THROW: 1078 case RTN_UNREACHABLE: 1079 default: 1080 rt->dst.output = ip6_pkt_discard_out; 1081 rt->dst.input = ip6_pkt_discard; 1082 break; 1083 } 1084 } 1085 1086 static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) 1087 { 1088 struct fib6_info *f6i = res->f6i; 1089 1090 if (res->fib6_flags & RTF_REJECT) { 1091 ip6_rt_init_dst_reject(rt, res->fib6_type); 1092 return; 1093 } 1094 1095 rt->dst.error = 0; 1096 rt->dst.output = ip6_output; 1097 1098 if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { 1099 rt->dst.input = ip6_input; 1100 } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 1101 rt->dst.input = ip6_mc_input; 1102 } else { 1103 rt->dst.input = ip6_forward; 1104 } 1105 1106 if (res->nh->fib_nh_lws) { 1107 rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); 1108 lwtunnel_set_redirect(&rt->dst); 1109 } 1110 1111 rt->dst.lastuse = jiffies; 1112 } 1113 1114 /* Caller must already hold reference to @from */ 1115 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 1116 { 1117 rt->rt6i_flags &= ~RTF_EXPIRES; 1118 rcu_assign_pointer(rt->from, from); 1119 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 1120 } 1121 1122 /* Caller must already hold reference to f6i in result */ 1123 static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) 1124 { 1125 const struct fib6_nh *nh = res->nh; 1126 const struct net_device *dev = nh->fib_nh_dev; 1127 struct fib6_info *f6i = res->f6i; 1128 1129 ip6_rt_init_dst(rt, res); 1130 1131 rt->rt6i_dst = f6i->fib6_dst; 1132 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 1133 rt->rt6i_flags = res->fib6_flags; 1134 if (nh->fib_nh_gw_family) { 1135 rt->rt6i_gateway = nh->fib_nh_gw6; 1136 rt->rt6i_flags |= RTF_GATEWAY; 1137 } 1138 rt6_set_from(rt, f6i); 1139 #ifdef CONFIG_IPV6_SUBTREES 1140 rt->rt6i_src = f6i->fib6_src; 1141 #endif 1142 } 1143 1144 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1145 struct in6_addr *saddr) 1146 { 1147 struct fib6_node *pn, *sn; 1148 while (1) { 1149 if (fn->fn_flags & RTN_TL_ROOT) 1150 return NULL; 1151 pn = rcu_dereference(fn->parent); 1152 sn = FIB6_SUBTREE(pn); 1153 if (sn && sn != fn) 1154 fn = fib6_node_lookup(sn, NULL, saddr); 1155 else 1156 fn = pn; 1157 if (fn->fn_flags & RTN_RTINFO) 1158 return fn; 1159 } 1160 } 1161 1162 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) 1163 { 1164 struct rt6_info *rt = *prt; 1165 1166 if (dst_hold_safe(&rt->dst)) 1167 return true; 1168 if (net) { 1169 rt = net->ipv6.ip6_null_entry; 1170 dst_hold(&rt->dst); 1171 } else { 1172 rt = NULL; 1173 } 1174 *prt = rt; 1175 return false; 1176 } 1177 1178 /* called with rcu_lock held */ 1179 static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) 1180 { 1181 struct net_device *dev = res->nh->fib_nh_dev; 1182 struct fib6_info *f6i = res->f6i; 1183 unsigned short flags; 1184 struct rt6_info *nrt; 1185 1186 if (!fib6_info_hold_safe(f6i)) 1187 goto fallback; 1188 1189 flags = fib6_info_dst_flags(f6i); 1190 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1191 if (!nrt) { 1192 fib6_info_release(f6i); 1193 goto fallback; 1194 } 1195 1196 ip6_rt_copy_init(nrt, res); 1197 return nrt; 1198 1199 fallback: 1200 nrt = dev_net(dev)->ipv6.ip6_null_entry; 1201 dst_hold(&nrt->dst); 1202 return nrt; 1203 } 1204 1205 static struct rt6_info *ip6_pol_route_lookup(struct net *net, 1206 struct fib6_table *table, 1207 struct flowi6 *fl6, 1208 const struct sk_buff *skb, 1209 int flags) 1210 { 1211 struct fib6_result res = {}; 1212 struct fib6_node *fn; 1213 struct rt6_info *rt; 1214 1215 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 1216 flags &= ~RT6_LOOKUP_F_IFACE; 1217 1218 rcu_read_lock(); 1219 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1220 restart: 1221 res.f6i = rcu_dereference(fn->leaf); 1222 if (!res.f6i) 1223 res.f6i = net->ipv6.fib6_null_entry; 1224 else 1225 rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, 1226 flags); 1227 1228 if (res.f6i == net->ipv6.fib6_null_entry) { 1229 fn = fib6_backtrack(fn, &fl6->saddr); 1230 if (fn) 1231 goto restart; 1232 1233 rt = net->ipv6.ip6_null_entry; 1234 dst_hold(&rt->dst); 1235 goto out; 1236 } else if (res.fib6_flags & RTF_REJECT) { 1237 goto do_create; 1238 } 1239 1240 fib6_select_path(net, &res, fl6, fl6->flowi6_oif, 1241 fl6->flowi6_oif != 0, skb, flags); 1242 1243 /* Search through exception table */ 1244 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 1245 if (rt) { 1246 if (ip6_hold_safe(net, &rt)) 1247 dst_use_noref(&rt->dst, jiffies); 1248 } else { 1249 do_create: 1250 rt = ip6_create_rt_rcu(&res); 1251 } 1252 1253 out: 1254 trace_fib6_table_lookup(net, &res, table, fl6); 1255 1256 rcu_read_unlock(); 1257 1258 return rt; 1259 } 1260 1261 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1262 const struct sk_buff *skb, int flags) 1263 { 1264 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1265 } 1266 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1267 1268 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1269 const struct in6_addr *saddr, int oif, 1270 const struct sk_buff *skb, int strict) 1271 { 1272 struct flowi6 fl6 = { 1273 .flowi6_oif = oif, 1274 .daddr = *daddr, 1275 }; 1276 struct dst_entry *dst; 1277 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1278 1279 if (saddr) { 1280 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1281 flags |= RT6_LOOKUP_F_HAS_SADDR; 1282 } 1283 1284 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1285 if (dst->error == 0) 1286 return (struct rt6_info *) dst; 1287 1288 dst_release(dst); 1289 1290 return NULL; 1291 } 1292 EXPORT_SYMBOL(rt6_lookup); 1293 1294 /* ip6_ins_rt is called with FREE table->tb6_lock. 1295 * It takes new route entry, the addition fails by any reason the 1296 * route is released. 1297 * Caller must hold dst before calling it. 1298 */ 1299 1300 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1301 struct netlink_ext_ack *extack) 1302 { 1303 int err; 1304 struct fib6_table *table; 1305 1306 table = rt->fib6_table; 1307 spin_lock_bh(&table->tb6_lock); 1308 err = fib6_add(&table->tb6_root, rt, info, extack); 1309 spin_unlock_bh(&table->tb6_lock); 1310 1311 return err; 1312 } 1313 1314 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1315 { 1316 struct nl_info info = { .nl_net = net, }; 1317 1318 return __ip6_ins_rt(rt, &info, NULL); 1319 } 1320 1321 static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, 1322 const struct in6_addr *daddr, 1323 const struct in6_addr *saddr) 1324 { 1325 struct fib6_info *f6i = res->f6i; 1326 struct net_device *dev; 1327 struct rt6_info *rt; 1328 1329 /* 1330 * Clone the route. 1331 */ 1332 1333 if (!fib6_info_hold_safe(f6i)) 1334 return NULL; 1335 1336 dev = ip6_rt_get_dev_rcu(res); 1337 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1338 if (!rt) { 1339 fib6_info_release(f6i); 1340 return NULL; 1341 } 1342 1343 ip6_rt_copy_init(rt, res); 1344 rt->rt6i_flags |= RTF_CACHE; 1345 rt->dst.flags |= DST_HOST; 1346 rt->rt6i_dst.addr = *daddr; 1347 rt->rt6i_dst.plen = 128; 1348 1349 if (!rt6_is_gw_or_nonexthop(res)) { 1350 if (f6i->fib6_dst.plen != 128 && 1351 ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) 1352 rt->rt6i_flags |= RTF_ANYCAST; 1353 #ifdef CONFIG_IPV6_SUBTREES 1354 if (rt->rt6i_src.plen && saddr) { 1355 rt->rt6i_src.addr = *saddr; 1356 rt->rt6i_src.plen = 128; 1357 } 1358 #endif 1359 } 1360 1361 return rt; 1362 } 1363 1364 static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) 1365 { 1366 struct fib6_info *f6i = res->f6i; 1367 unsigned short flags = fib6_info_dst_flags(f6i); 1368 struct net_device *dev; 1369 struct rt6_info *pcpu_rt; 1370 1371 if (!fib6_info_hold_safe(f6i)) 1372 return NULL; 1373 1374 rcu_read_lock(); 1375 dev = ip6_rt_get_dev_rcu(res); 1376 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags); 1377 rcu_read_unlock(); 1378 if (!pcpu_rt) { 1379 fib6_info_release(f6i); 1380 return NULL; 1381 } 1382 ip6_rt_copy_init(pcpu_rt, res); 1383 pcpu_rt->rt6i_flags |= RTF_PCPU; 1384 return pcpu_rt; 1385 } 1386 1387 /* It should be called with rcu_read_lock() acquired */ 1388 static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) 1389 { 1390 struct rt6_info *pcpu_rt; 1391 1392 pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); 1393 1394 return pcpu_rt; 1395 } 1396 1397 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1398 const struct fib6_result *res) 1399 { 1400 struct rt6_info *pcpu_rt, *prev, **p; 1401 1402 pcpu_rt = ip6_rt_pcpu_alloc(res); 1403 if (!pcpu_rt) 1404 return NULL; 1405 1406 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1407 prev = cmpxchg(p, NULL, pcpu_rt); 1408 BUG_ON(prev); 1409 1410 if (res->f6i->fib6_destroying) { 1411 struct fib6_info *from; 1412 1413 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 1414 fib6_info_release(from); 1415 } 1416 1417 return pcpu_rt; 1418 } 1419 1420 /* exception hash table implementation 1421 */ 1422 static DEFINE_SPINLOCK(rt6_exception_lock); 1423 1424 /* Remove rt6_ex from hash table and free the memory 1425 * Caller must hold rt6_exception_lock 1426 */ 1427 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1428 struct rt6_exception *rt6_ex) 1429 { 1430 struct fib6_info *from; 1431 struct net *net; 1432 1433 if (!bucket || !rt6_ex) 1434 return; 1435 1436 net = dev_net(rt6_ex->rt6i->dst.dev); 1437 net->ipv6.rt6_stats->fib_rt_cache--; 1438 1439 /* purge completely the exception to allow releasing the held resources: 1440 * some [sk] cache may keep the dst around for unlimited time 1441 */ 1442 from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL); 1443 fib6_info_release(from); 1444 dst_dev_put(&rt6_ex->rt6i->dst); 1445 1446 hlist_del_rcu(&rt6_ex->hlist); 1447 dst_release(&rt6_ex->rt6i->dst); 1448 kfree_rcu(rt6_ex, rcu); 1449 WARN_ON_ONCE(!bucket->depth); 1450 bucket->depth--; 1451 } 1452 1453 /* Remove oldest rt6_ex in bucket and free the memory 1454 * Caller must hold rt6_exception_lock 1455 */ 1456 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1457 { 1458 struct rt6_exception *rt6_ex, *oldest = NULL; 1459 1460 if (!bucket) 1461 return; 1462 1463 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1464 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1465 oldest = rt6_ex; 1466 } 1467 rt6_remove_exception(bucket, oldest); 1468 } 1469 1470 static u32 rt6_exception_hash(const struct in6_addr *dst, 1471 const struct in6_addr *src) 1472 { 1473 static u32 seed __read_mostly; 1474 u32 val; 1475 1476 net_get_random_once(&seed, sizeof(seed)); 1477 val = jhash(dst, sizeof(*dst), seed); 1478 1479 #ifdef CONFIG_IPV6_SUBTREES 1480 if (src) 1481 val = jhash(src, sizeof(*src), val); 1482 #endif 1483 return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1484 } 1485 1486 /* Helper function to find the cached rt in the hash table 1487 * and update bucket pointer to point to the bucket for this 1488 * (daddr, saddr) pair 1489 * Caller must hold rt6_exception_lock 1490 */ 1491 static struct rt6_exception * 1492 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1493 const struct in6_addr *daddr, 1494 const struct in6_addr *saddr) 1495 { 1496 struct rt6_exception *rt6_ex; 1497 u32 hval; 1498 1499 if (!(*bucket) || !daddr) 1500 return NULL; 1501 1502 hval = rt6_exception_hash(daddr, saddr); 1503 *bucket += hval; 1504 1505 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1506 struct rt6_info *rt6 = rt6_ex->rt6i; 1507 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1508 1509 #ifdef CONFIG_IPV6_SUBTREES 1510 if (matched && saddr) 1511 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1512 #endif 1513 if (matched) 1514 return rt6_ex; 1515 } 1516 return NULL; 1517 } 1518 1519 /* Helper function to find the cached rt in the hash table 1520 * and update bucket pointer to point to the bucket for this 1521 * (daddr, saddr) pair 1522 * Caller must hold rcu_read_lock() 1523 */ 1524 static struct rt6_exception * 1525 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1526 const struct in6_addr *daddr, 1527 const struct in6_addr *saddr) 1528 { 1529 struct rt6_exception *rt6_ex; 1530 u32 hval; 1531 1532 WARN_ON_ONCE(!rcu_read_lock_held()); 1533 1534 if (!(*bucket) || !daddr) 1535 return NULL; 1536 1537 hval = rt6_exception_hash(daddr, saddr); 1538 *bucket += hval; 1539 1540 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1541 struct rt6_info *rt6 = rt6_ex->rt6i; 1542 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1543 1544 #ifdef CONFIG_IPV6_SUBTREES 1545 if (matched && saddr) 1546 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1547 #endif 1548 if (matched) 1549 return rt6_ex; 1550 } 1551 return NULL; 1552 } 1553 1554 static unsigned int fib6_mtu(const struct fib6_result *res) 1555 { 1556 const struct fib6_nh *nh = res->nh; 1557 unsigned int mtu; 1558 1559 if (res->f6i->fib6_pmtu) { 1560 mtu = res->f6i->fib6_pmtu; 1561 } else { 1562 struct net_device *dev = nh->fib_nh_dev; 1563 struct inet6_dev *idev; 1564 1565 rcu_read_lock(); 1566 idev = __in6_dev_get(dev); 1567 mtu = idev->cnf.mtu6; 1568 rcu_read_unlock(); 1569 } 1570 1571 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1572 1573 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 1574 } 1575 1576 #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL 1577 1578 /* used when the flushed bit is not relevant, only access to the bucket 1579 * (ie., all bucket users except rt6_insert_exception); 1580 * 1581 * called under rcu lock; sometimes called with rt6_exception_lock held 1582 */ 1583 static 1584 struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, 1585 spinlock_t *lock) 1586 { 1587 struct rt6_exception_bucket *bucket; 1588 1589 if (lock) 1590 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1591 lockdep_is_held(lock)); 1592 else 1593 bucket = rcu_dereference(nh->rt6i_exception_bucket); 1594 1595 /* remove bucket flushed bit if set */ 1596 if (bucket) { 1597 unsigned long p = (unsigned long)bucket; 1598 1599 p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; 1600 bucket = (struct rt6_exception_bucket *)p; 1601 } 1602 1603 return bucket; 1604 } 1605 1606 static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) 1607 { 1608 unsigned long p = (unsigned long)bucket; 1609 1610 return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); 1611 } 1612 1613 /* called with rt6_exception_lock held */ 1614 static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, 1615 spinlock_t *lock) 1616 { 1617 struct rt6_exception_bucket *bucket; 1618 unsigned long p; 1619 1620 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1621 lockdep_is_held(lock)); 1622 1623 p = (unsigned long)bucket; 1624 p |= FIB6_EXCEPTION_BUCKET_FLUSHED; 1625 bucket = (struct rt6_exception_bucket *)p; 1626 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1627 } 1628 1629 static int rt6_insert_exception(struct rt6_info *nrt, 1630 const struct fib6_result *res) 1631 { 1632 struct net *net = dev_net(nrt->dst.dev); 1633 struct rt6_exception_bucket *bucket; 1634 struct fib6_info *f6i = res->f6i; 1635 struct in6_addr *src_key = NULL; 1636 struct rt6_exception *rt6_ex; 1637 struct fib6_nh *nh = res->nh; 1638 int err = 0; 1639 1640 spin_lock_bh(&rt6_exception_lock); 1641 1642 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1643 lockdep_is_held(&rt6_exception_lock)); 1644 if (!bucket) { 1645 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1646 GFP_ATOMIC); 1647 if (!bucket) { 1648 err = -ENOMEM; 1649 goto out; 1650 } 1651 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1652 } else if (fib6_nh_excptn_bucket_flushed(bucket)) { 1653 err = -EINVAL; 1654 goto out; 1655 } 1656 1657 #ifdef CONFIG_IPV6_SUBTREES 1658 /* fib6_src.plen != 0 indicates f6i is in subtree 1659 * and exception table is indexed by a hash of 1660 * both fib6_dst and fib6_src. 1661 * Otherwise, the exception table is indexed by 1662 * a hash of only fib6_dst. 1663 */ 1664 if (f6i->fib6_src.plen) 1665 src_key = &nrt->rt6i_src.addr; 1666 #endif 1667 /* rt6_mtu_change() might lower mtu on f6i. 1668 * Only insert this exception route if its mtu 1669 * is less than f6i's mtu value. 1670 */ 1671 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { 1672 err = -EINVAL; 1673 goto out; 1674 } 1675 1676 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1677 src_key); 1678 if (rt6_ex) 1679 rt6_remove_exception(bucket, rt6_ex); 1680 1681 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1682 if (!rt6_ex) { 1683 err = -ENOMEM; 1684 goto out; 1685 } 1686 rt6_ex->rt6i = nrt; 1687 rt6_ex->stamp = jiffies; 1688 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1689 bucket->depth++; 1690 net->ipv6.rt6_stats->fib_rt_cache++; 1691 1692 if (bucket->depth > FIB6_MAX_DEPTH) 1693 rt6_exception_remove_oldest(bucket); 1694 1695 out: 1696 spin_unlock_bh(&rt6_exception_lock); 1697 1698 /* Update fn->fn_sernum to invalidate all cached dst */ 1699 if (!err) { 1700 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1701 fib6_update_sernum(net, f6i); 1702 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1703 fib6_force_start_gc(net); 1704 } 1705 1706 return err; 1707 } 1708 1709 static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) 1710 { 1711 struct rt6_exception_bucket *bucket; 1712 struct rt6_exception *rt6_ex; 1713 struct hlist_node *tmp; 1714 int i; 1715 1716 spin_lock_bh(&rt6_exception_lock); 1717 1718 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1719 if (!bucket) 1720 goto out; 1721 1722 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1723 if (!from) 1724 fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); 1725 1726 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1727 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { 1728 if (!from || 1729 rcu_access_pointer(rt6_ex->rt6i->from) == from) 1730 rt6_remove_exception(bucket, rt6_ex); 1731 } 1732 WARN_ON_ONCE(!from && bucket->depth); 1733 bucket++; 1734 } 1735 out: 1736 spin_unlock_bh(&rt6_exception_lock); 1737 } 1738 1739 static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) 1740 { 1741 struct fib6_info *f6i = arg; 1742 1743 fib6_nh_flush_exceptions(nh, f6i); 1744 1745 return 0; 1746 } 1747 1748 void rt6_flush_exceptions(struct fib6_info *f6i) 1749 { 1750 if (f6i->nh) 1751 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, 1752 f6i); 1753 else 1754 fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); 1755 } 1756 1757 /* Find cached rt in the hash table inside passed in rt 1758 * Caller has to hold rcu_read_lock() 1759 */ 1760 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 1761 const struct in6_addr *daddr, 1762 const struct in6_addr *saddr) 1763 { 1764 const struct in6_addr *src_key = NULL; 1765 struct rt6_exception_bucket *bucket; 1766 struct rt6_exception *rt6_ex; 1767 struct rt6_info *ret = NULL; 1768 1769 #ifdef CONFIG_IPV6_SUBTREES 1770 /* fib6i_src.plen != 0 indicates f6i is in subtree 1771 * and exception table is indexed by a hash of 1772 * both fib6_dst and fib6_src. 1773 * However, the src addr used to create the hash 1774 * might not be exactly the passed in saddr which 1775 * is a /128 addr from the flow. 1776 * So we need to use f6i->fib6_src to redo lookup 1777 * if the passed in saddr does not find anything. 1778 * (See the logic in ip6_rt_cache_alloc() on how 1779 * rt->rt6i_src is updated.) 1780 */ 1781 if (res->f6i->fib6_src.plen) 1782 src_key = saddr; 1783 find_ex: 1784 #endif 1785 bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); 1786 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1787 1788 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1789 ret = rt6_ex->rt6i; 1790 1791 #ifdef CONFIG_IPV6_SUBTREES 1792 /* Use fib6_src as src_key and redo lookup */ 1793 if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { 1794 src_key = &res->f6i->fib6_src.addr; 1795 goto find_ex; 1796 } 1797 #endif 1798 1799 return ret; 1800 } 1801 1802 /* Remove the passed in cached rt from the hash table that contains it */ 1803 static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, 1804 const struct rt6_info *rt) 1805 { 1806 const struct in6_addr *src_key = NULL; 1807 struct rt6_exception_bucket *bucket; 1808 struct rt6_exception *rt6_ex; 1809 int err; 1810 1811 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 1812 return -ENOENT; 1813 1814 spin_lock_bh(&rt6_exception_lock); 1815 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1816 1817 #ifdef CONFIG_IPV6_SUBTREES 1818 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1819 * and exception table is indexed by a hash of 1820 * both rt6i_dst and rt6i_src. 1821 * Otherwise, the exception table is indexed by 1822 * a hash of only rt6i_dst. 1823 */ 1824 if (plen) 1825 src_key = &rt->rt6i_src.addr; 1826 #endif 1827 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1828 &rt->rt6i_dst.addr, 1829 src_key); 1830 if (rt6_ex) { 1831 rt6_remove_exception(bucket, rt6_ex); 1832 err = 0; 1833 } else { 1834 err = -ENOENT; 1835 } 1836 1837 spin_unlock_bh(&rt6_exception_lock); 1838 return err; 1839 } 1840 1841 struct fib6_nh_excptn_arg { 1842 struct rt6_info *rt; 1843 int plen; 1844 }; 1845 1846 static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) 1847 { 1848 struct fib6_nh_excptn_arg *arg = _arg; 1849 int err; 1850 1851 err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); 1852 if (err == 0) 1853 return 1; 1854 1855 return 0; 1856 } 1857 1858 static int rt6_remove_exception_rt(struct rt6_info *rt) 1859 { 1860 struct fib6_info *from; 1861 1862 from = rcu_dereference(rt->from); 1863 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1864 return -EINVAL; 1865 1866 if (from->nh) { 1867 struct fib6_nh_excptn_arg arg = { 1868 .rt = rt, 1869 .plen = from->fib6_src.plen 1870 }; 1871 int rc; 1872 1873 /* rc = 1 means an entry was found */ 1874 rc = nexthop_for_each_fib6_nh(from->nh, 1875 rt6_nh_remove_exception_rt, 1876 &arg); 1877 return rc ? 0 : -ENOENT; 1878 } 1879 1880 return fib6_nh_remove_exception(from->fib6_nh, 1881 from->fib6_src.plen, rt); 1882 } 1883 1884 /* Find rt6_ex which contains the passed in rt cache and 1885 * refresh its stamp 1886 */ 1887 static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, 1888 const struct rt6_info *rt) 1889 { 1890 const struct in6_addr *src_key = NULL; 1891 struct rt6_exception_bucket *bucket; 1892 struct rt6_exception *rt6_ex; 1893 1894 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 1895 #ifdef CONFIG_IPV6_SUBTREES 1896 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1897 * and exception table is indexed by a hash of 1898 * both rt6i_dst and rt6i_src. 1899 * Otherwise, the exception table is indexed by 1900 * a hash of only rt6i_dst. 1901 */ 1902 if (plen) 1903 src_key = &rt->rt6i_src.addr; 1904 #endif 1905 rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); 1906 if (rt6_ex) 1907 rt6_ex->stamp = jiffies; 1908 } 1909 1910 struct fib6_nh_match_arg { 1911 const struct net_device *dev; 1912 const struct in6_addr *gw; 1913 struct fib6_nh *match; 1914 }; 1915 1916 /* determine if fib6_nh has given device and gateway */ 1917 static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) 1918 { 1919 struct fib6_nh_match_arg *arg = _arg; 1920 1921 if (arg->dev != nh->fib_nh_dev || 1922 (arg->gw && !nh->fib_nh_gw_family) || 1923 (!arg->gw && nh->fib_nh_gw_family) || 1924 (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) 1925 return 0; 1926 1927 arg->match = nh; 1928 1929 /* found a match, break the loop */ 1930 return 1; 1931 } 1932 1933 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 1934 { 1935 struct fib6_info *from; 1936 struct fib6_nh *fib6_nh; 1937 1938 rcu_read_lock(); 1939 1940 from = rcu_dereference(rt->from); 1941 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1942 goto unlock; 1943 1944 if (from->nh) { 1945 struct fib6_nh_match_arg arg = { 1946 .dev = rt->dst.dev, 1947 .gw = &rt->rt6i_gateway, 1948 }; 1949 1950 nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); 1951 1952 if (!arg.match) 1953 return; 1954 fib6_nh = arg.match; 1955 } else { 1956 fib6_nh = from->fib6_nh; 1957 } 1958 fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); 1959 unlock: 1960 rcu_read_unlock(); 1961 } 1962 1963 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 1964 struct rt6_info *rt, int mtu) 1965 { 1966 /* If the new MTU is lower than the route PMTU, this new MTU will be the 1967 * lowest MTU in the path: always allow updating the route PMTU to 1968 * reflect PMTU decreases. 1969 * 1970 * If the new MTU is higher, and the route PMTU is equal to the local 1971 * MTU, this means the old MTU is the lowest in the path, so allow 1972 * updating it: if other nodes now have lower MTUs, PMTU discovery will 1973 * handle this. 1974 */ 1975 1976 if (dst_mtu(&rt->dst) >= mtu) 1977 return true; 1978 1979 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 1980 return true; 1981 1982 return false; 1983 } 1984 1985 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 1986 const struct fib6_nh *nh, int mtu) 1987 { 1988 struct rt6_exception_bucket *bucket; 1989 struct rt6_exception *rt6_ex; 1990 int i; 1991 1992 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1993 if (!bucket) 1994 return; 1995 1996 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1997 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1998 struct rt6_info *entry = rt6_ex->rt6i; 1999 2000 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 2001 * route), the metrics of its rt->from have already 2002 * been updated. 2003 */ 2004 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 2005 rt6_mtu_change_route_allowed(idev, entry, mtu)) 2006 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 2007 } 2008 bucket++; 2009 } 2010 } 2011 2012 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 2013 2014 static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, 2015 const struct in6_addr *gateway) 2016 { 2017 struct rt6_exception_bucket *bucket; 2018 struct rt6_exception *rt6_ex; 2019 struct hlist_node *tmp; 2020 int i; 2021 2022 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2023 return; 2024 2025 spin_lock_bh(&rt6_exception_lock); 2026 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2027 if (bucket) { 2028 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2029 hlist_for_each_entry_safe(rt6_ex, tmp, 2030 &bucket->chain, hlist) { 2031 struct rt6_info *entry = rt6_ex->rt6i; 2032 2033 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 2034 RTF_CACHE_GATEWAY && 2035 ipv6_addr_equal(gateway, 2036 &entry->rt6i_gateway)) { 2037 rt6_remove_exception(bucket, rt6_ex); 2038 } 2039 } 2040 bucket++; 2041 } 2042 } 2043 2044 spin_unlock_bh(&rt6_exception_lock); 2045 } 2046 2047 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 2048 struct rt6_exception *rt6_ex, 2049 struct fib6_gc_args *gc_args, 2050 unsigned long now) 2051 { 2052 struct rt6_info *rt = rt6_ex->rt6i; 2053 2054 /* we are pruning and obsoleting aged-out and non gateway exceptions 2055 * even if others have still references to them, so that on next 2056 * dst_check() such references can be dropped. 2057 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 2058 * expired, independently from their aging, as per RFC 8201 section 4 2059 */ 2060 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 2061 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 2062 RT6_TRACE("aging clone %p\n", rt); 2063 rt6_remove_exception(bucket, rt6_ex); 2064 return; 2065 } 2066 } else if (time_after(jiffies, rt->dst.expires)) { 2067 RT6_TRACE("purging expired route %p\n", rt); 2068 rt6_remove_exception(bucket, rt6_ex); 2069 return; 2070 } 2071 2072 if (rt->rt6i_flags & RTF_GATEWAY) { 2073 struct neighbour *neigh; 2074 __u8 neigh_flags = 0; 2075 2076 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 2077 if (neigh) 2078 neigh_flags = neigh->flags; 2079 2080 if (!(neigh_flags & NTF_ROUTER)) { 2081 RT6_TRACE("purging route %p via non-router but gateway\n", 2082 rt); 2083 rt6_remove_exception(bucket, rt6_ex); 2084 return; 2085 } 2086 } 2087 2088 gc_args->more++; 2089 } 2090 2091 static void fib6_nh_age_exceptions(const struct fib6_nh *nh, 2092 struct fib6_gc_args *gc_args, 2093 unsigned long now) 2094 { 2095 struct rt6_exception_bucket *bucket; 2096 struct rt6_exception *rt6_ex; 2097 struct hlist_node *tmp; 2098 int i; 2099 2100 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2101 return; 2102 2103 rcu_read_lock_bh(); 2104 spin_lock(&rt6_exception_lock); 2105 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2106 if (bucket) { 2107 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2108 hlist_for_each_entry_safe(rt6_ex, tmp, 2109 &bucket->chain, hlist) { 2110 rt6_age_examine_exception(bucket, rt6_ex, 2111 gc_args, now); 2112 } 2113 bucket++; 2114 } 2115 } 2116 spin_unlock(&rt6_exception_lock); 2117 rcu_read_unlock_bh(); 2118 } 2119 2120 struct fib6_nh_age_excptn_arg { 2121 struct fib6_gc_args *gc_args; 2122 unsigned long now; 2123 }; 2124 2125 static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) 2126 { 2127 struct fib6_nh_age_excptn_arg *arg = _arg; 2128 2129 fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); 2130 return 0; 2131 } 2132 2133 void rt6_age_exceptions(struct fib6_info *f6i, 2134 struct fib6_gc_args *gc_args, 2135 unsigned long now) 2136 { 2137 if (f6i->nh) { 2138 struct fib6_nh_age_excptn_arg arg = { 2139 .gc_args = gc_args, 2140 .now = now 2141 }; 2142 2143 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, 2144 &arg); 2145 } else { 2146 fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); 2147 } 2148 } 2149 2150 /* must be called with rcu lock held */ 2151 int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, 2152 struct flowi6 *fl6, struct fib6_result *res, int strict) 2153 { 2154 struct fib6_node *fn, *saved_fn; 2155 2156 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2157 saved_fn = fn; 2158 2159 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 2160 oif = 0; 2161 2162 redo_rt6_select: 2163 rt6_select(net, fn, oif, res, strict); 2164 if (res->f6i == net->ipv6.fib6_null_entry) { 2165 fn = fib6_backtrack(fn, &fl6->saddr); 2166 if (fn) 2167 goto redo_rt6_select; 2168 else if (strict & RT6_LOOKUP_F_REACHABLE) { 2169 /* also consider unreachable route */ 2170 strict &= ~RT6_LOOKUP_F_REACHABLE; 2171 fn = saved_fn; 2172 goto redo_rt6_select; 2173 } 2174 } 2175 2176 trace_fib6_table_lookup(net, res, table, fl6); 2177 2178 return 0; 2179 } 2180 2181 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 2182 int oif, struct flowi6 *fl6, 2183 const struct sk_buff *skb, int flags) 2184 { 2185 struct fib6_result res = {}; 2186 struct rt6_info *rt = NULL; 2187 int strict = 0; 2188 2189 WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && 2190 !rcu_read_lock_held()); 2191 2192 strict |= flags & RT6_LOOKUP_F_IFACE; 2193 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 2194 if (net->ipv6.devconf_all->forwarding == 0) 2195 strict |= RT6_LOOKUP_F_REACHABLE; 2196 2197 rcu_read_lock(); 2198 2199 fib6_table_lookup(net, table, oif, fl6, &res, strict); 2200 if (res.f6i == net->ipv6.fib6_null_entry) 2201 goto out; 2202 2203 fib6_select_path(net, &res, fl6, oif, false, skb, strict); 2204 2205 /*Search through exception table */ 2206 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 2207 if (rt) { 2208 goto out; 2209 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 2210 !res.nh->fib_nh_gw_family)) { 2211 /* Create a RTF_CACHE clone which will not be 2212 * owned by the fib6 tree. It is for the special case where 2213 * the daddr in the skb during the neighbor look-up is different 2214 * from the fl6->daddr used to look-up route here. 2215 */ 2216 rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); 2217 2218 if (rt) { 2219 /* 1 refcnt is taken during ip6_rt_cache_alloc(). 2220 * As rt6_uncached_list_add() does not consume refcnt, 2221 * this refcnt is always returned to the caller even 2222 * if caller sets RT6_LOOKUP_F_DST_NOREF flag. 2223 */ 2224 rt6_uncached_list_add(rt); 2225 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 2226 rcu_read_unlock(); 2227 2228 return rt; 2229 } 2230 } else { 2231 /* Get a percpu copy */ 2232 local_bh_disable(); 2233 rt = rt6_get_pcpu_route(&res); 2234 2235 if (!rt) 2236 rt = rt6_make_pcpu_route(net, &res); 2237 2238 local_bh_enable(); 2239 } 2240 out: 2241 if (!rt) 2242 rt = net->ipv6.ip6_null_entry; 2243 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 2244 ip6_hold_safe(net, &rt); 2245 rcu_read_unlock(); 2246 2247 return rt; 2248 } 2249 EXPORT_SYMBOL_GPL(ip6_pol_route); 2250 2251 static struct rt6_info *ip6_pol_route_input(struct net *net, 2252 struct fib6_table *table, 2253 struct flowi6 *fl6, 2254 const struct sk_buff *skb, 2255 int flags) 2256 { 2257 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 2258 } 2259 2260 struct dst_entry *ip6_route_input_lookup(struct net *net, 2261 struct net_device *dev, 2262 struct flowi6 *fl6, 2263 const struct sk_buff *skb, 2264 int flags) 2265 { 2266 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 2267 flags |= RT6_LOOKUP_F_IFACE; 2268 2269 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 2270 } 2271 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 2272 2273 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 2274 struct flow_keys *keys, 2275 struct flow_keys *flkeys) 2276 { 2277 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 2278 const struct ipv6hdr *key_iph = outer_iph; 2279 struct flow_keys *_flkeys = flkeys; 2280 const struct ipv6hdr *inner_iph; 2281 const struct icmp6hdr *icmph; 2282 struct ipv6hdr _inner_iph; 2283 struct icmp6hdr _icmph; 2284 2285 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 2286 goto out; 2287 2288 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 2289 sizeof(_icmph), &_icmph); 2290 if (!icmph) 2291 goto out; 2292 2293 if (icmph->icmp6_type != ICMPV6_DEST_UNREACH && 2294 icmph->icmp6_type != ICMPV6_PKT_TOOBIG && 2295 icmph->icmp6_type != ICMPV6_TIME_EXCEED && 2296 icmph->icmp6_type != ICMPV6_PARAMPROB) 2297 goto out; 2298 2299 inner_iph = skb_header_pointer(skb, 2300 skb_transport_offset(skb) + sizeof(*icmph), 2301 sizeof(_inner_iph), &_inner_iph); 2302 if (!inner_iph) 2303 goto out; 2304 2305 key_iph = inner_iph; 2306 _flkeys = NULL; 2307 out: 2308 if (_flkeys) { 2309 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 2310 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 2311 keys->tags.flow_label = _flkeys->tags.flow_label; 2312 keys->basic.ip_proto = _flkeys->basic.ip_proto; 2313 } else { 2314 keys->addrs.v6addrs.src = key_iph->saddr; 2315 keys->addrs.v6addrs.dst = key_iph->daddr; 2316 keys->tags.flow_label = ip6_flowlabel(key_iph); 2317 keys->basic.ip_proto = key_iph->nexthdr; 2318 } 2319 } 2320 2321 /* if skb is set it will be used and fl6 can be NULL */ 2322 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 2323 const struct sk_buff *skb, struct flow_keys *flkeys) 2324 { 2325 struct flow_keys hash_keys; 2326 u32 mhash; 2327 2328 switch (ip6_multipath_hash_policy(net)) { 2329 case 0: 2330 memset(&hash_keys, 0, sizeof(hash_keys)); 2331 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2332 if (skb) { 2333 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2334 } else { 2335 hash_keys.addrs.v6addrs.src = fl6->saddr; 2336 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2337 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2338 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2339 } 2340 break; 2341 case 1: 2342 if (skb) { 2343 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 2344 struct flow_keys keys; 2345 2346 /* short-circuit if we already have L4 hash present */ 2347 if (skb->l4_hash) 2348 return skb_get_hash_raw(skb) >> 1; 2349 2350 memset(&hash_keys, 0, sizeof(hash_keys)); 2351 2352 if (!flkeys) { 2353 skb_flow_dissect_flow_keys(skb, &keys, flag); 2354 flkeys = &keys; 2355 } 2356 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2357 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2358 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2359 hash_keys.ports.src = flkeys->ports.src; 2360 hash_keys.ports.dst = flkeys->ports.dst; 2361 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2362 } else { 2363 memset(&hash_keys, 0, sizeof(hash_keys)); 2364 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2365 hash_keys.addrs.v6addrs.src = fl6->saddr; 2366 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2367 hash_keys.ports.src = fl6->fl6_sport; 2368 hash_keys.ports.dst = fl6->fl6_dport; 2369 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2370 } 2371 break; 2372 } 2373 mhash = flow_hash_from_keys(&hash_keys); 2374 2375 return mhash >> 1; 2376 } 2377 2378 /* Called with rcu held */ 2379 void ip6_route_input(struct sk_buff *skb) 2380 { 2381 const struct ipv6hdr *iph = ipv6_hdr(skb); 2382 struct net *net = dev_net(skb->dev); 2383 int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; 2384 struct ip_tunnel_info *tun_info; 2385 struct flowi6 fl6 = { 2386 .flowi6_iif = skb->dev->ifindex, 2387 .daddr = iph->daddr, 2388 .saddr = iph->saddr, 2389 .flowlabel = ip6_flowinfo(iph), 2390 .flowi6_mark = skb->mark, 2391 .flowi6_proto = iph->nexthdr, 2392 }; 2393 struct flow_keys *flkeys = NULL, _flkeys; 2394 2395 tun_info = skb_tunnel_info(skb); 2396 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2397 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2398 2399 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2400 flkeys = &_flkeys; 2401 2402 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2403 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2404 skb_dst_drop(skb); 2405 skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, 2406 &fl6, skb, flags)); 2407 } 2408 2409 static struct rt6_info *ip6_pol_route_output(struct net *net, 2410 struct fib6_table *table, 2411 struct flowi6 *fl6, 2412 const struct sk_buff *skb, 2413 int flags) 2414 { 2415 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2416 } 2417 2418 struct dst_entry *ip6_route_output_flags_noref(struct net *net, 2419 const struct sock *sk, 2420 struct flowi6 *fl6, int flags) 2421 { 2422 bool any_src; 2423 2424 if (ipv6_addr_type(&fl6->daddr) & 2425 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2426 struct dst_entry *dst; 2427 2428 /* This function does not take refcnt on the dst */ 2429 dst = l3mdev_link_scope_lookup(net, fl6); 2430 if (dst) 2431 return dst; 2432 } 2433 2434 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2435 2436 flags |= RT6_LOOKUP_F_DST_NOREF; 2437 any_src = ipv6_addr_any(&fl6->saddr); 2438 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2439 (fl6->flowi6_oif && any_src)) 2440 flags |= RT6_LOOKUP_F_IFACE; 2441 2442 if (!any_src) 2443 flags |= RT6_LOOKUP_F_HAS_SADDR; 2444 else if (sk) 2445 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 2446 2447 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2448 } 2449 EXPORT_SYMBOL_GPL(ip6_route_output_flags_noref); 2450 2451 struct dst_entry *ip6_route_output_flags(struct net *net, 2452 const struct sock *sk, 2453 struct flowi6 *fl6, 2454 int flags) 2455 { 2456 struct dst_entry *dst; 2457 struct rt6_info *rt6; 2458 2459 rcu_read_lock(); 2460 dst = ip6_route_output_flags_noref(net, sk, fl6, flags); 2461 rt6 = (struct rt6_info *)dst; 2462 /* For dst cached in uncached_list, refcnt is already taken. */ 2463 if (list_empty(&rt6->rt6i_uncached) && !dst_hold_safe(dst)) { 2464 dst = &net->ipv6.ip6_null_entry->dst; 2465 dst_hold(dst); 2466 } 2467 rcu_read_unlock(); 2468 2469 return dst; 2470 } 2471 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2472 2473 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2474 { 2475 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 2476 struct net_device *loopback_dev = net->loopback_dev; 2477 struct dst_entry *new = NULL; 2478 2479 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, 2480 DST_OBSOLETE_DEAD, 0); 2481 if (rt) { 2482 rt6_info_init(rt); 2483 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2484 2485 new = &rt->dst; 2486 new->__use = 1; 2487 new->input = dst_discard; 2488 new->output = dst_discard_out; 2489 2490 dst_copy_metrics(new, &ort->dst); 2491 2492 rt->rt6i_idev = in6_dev_get(loopback_dev); 2493 rt->rt6i_gateway = ort->rt6i_gateway; 2494 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2495 2496 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2497 #ifdef CONFIG_IPV6_SUBTREES 2498 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2499 #endif 2500 } 2501 2502 dst_release(dst_orig); 2503 return new ? new : ERR_PTR(-ENOMEM); 2504 } 2505 2506 /* 2507 * Destination cache support functions 2508 */ 2509 2510 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2511 { 2512 u32 rt_cookie = 0; 2513 2514 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2515 return false; 2516 2517 if (fib6_check_expired(f6i)) 2518 return false; 2519 2520 return true; 2521 } 2522 2523 static struct dst_entry *rt6_check(struct rt6_info *rt, 2524 struct fib6_info *from, 2525 u32 cookie) 2526 { 2527 u32 rt_cookie = 0; 2528 2529 if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) || 2530 rt_cookie != cookie) 2531 return NULL; 2532 2533 if (rt6_check_expired(rt)) 2534 return NULL; 2535 2536 return &rt->dst; 2537 } 2538 2539 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2540 struct fib6_info *from, 2541 u32 cookie) 2542 { 2543 if (!__rt6_check_expired(rt) && 2544 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && 2545 fib6_check(from, cookie)) 2546 return &rt->dst; 2547 else 2548 return NULL; 2549 } 2550 2551 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie) 2552 { 2553 struct dst_entry *dst_ret; 2554 struct fib6_info *from; 2555 struct rt6_info *rt; 2556 2557 rt = container_of(dst, struct rt6_info, dst); 2558 2559 rcu_read_lock(); 2560 2561 /* All IPV6 dsts are created with ->obsolete set to the value 2562 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2563 * into this function always. 2564 */ 2565 2566 from = rcu_dereference(rt->from); 2567 2568 if (from && (rt->rt6i_flags & RTF_PCPU || 2569 unlikely(!list_empty(&rt->rt6i_uncached)))) 2570 dst_ret = rt6_dst_from_check(rt, from, cookie); 2571 else 2572 dst_ret = rt6_check(rt, from, cookie); 2573 2574 rcu_read_unlock(); 2575 2576 return dst_ret; 2577 } 2578 2579 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 2580 { 2581 struct rt6_info *rt = (struct rt6_info *) dst; 2582 2583 if (rt) { 2584 if (rt->rt6i_flags & RTF_CACHE) { 2585 rcu_read_lock(); 2586 if (rt6_check_expired(rt)) { 2587 rt6_remove_exception_rt(rt); 2588 dst = NULL; 2589 } 2590 rcu_read_unlock(); 2591 } else { 2592 dst_release(dst); 2593 dst = NULL; 2594 } 2595 } 2596 return dst; 2597 } 2598 2599 static void ip6_link_failure(struct sk_buff *skb) 2600 { 2601 struct rt6_info *rt; 2602 2603 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2604 2605 rt = (struct rt6_info *) skb_dst(skb); 2606 if (rt) { 2607 rcu_read_lock(); 2608 if (rt->rt6i_flags & RTF_CACHE) { 2609 rt6_remove_exception_rt(rt); 2610 } else { 2611 struct fib6_info *from; 2612 struct fib6_node *fn; 2613 2614 from = rcu_dereference(rt->from); 2615 if (from) { 2616 fn = rcu_dereference(from->fib6_node); 2617 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2618 fn->fn_sernum = -1; 2619 } 2620 } 2621 rcu_read_unlock(); 2622 } 2623 } 2624 2625 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2626 { 2627 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2628 struct fib6_info *from; 2629 2630 rcu_read_lock(); 2631 from = rcu_dereference(rt0->from); 2632 if (from) 2633 rt0->dst.expires = from->expires; 2634 rcu_read_unlock(); 2635 } 2636 2637 dst_set_expires(&rt0->dst, timeout); 2638 rt0->rt6i_flags |= RTF_EXPIRES; 2639 } 2640 2641 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2642 { 2643 struct net *net = dev_net(rt->dst.dev); 2644 2645 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2646 rt->rt6i_flags |= RTF_MODIFIED; 2647 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2648 } 2649 2650 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2651 { 2652 return !(rt->rt6i_flags & RTF_CACHE) && 2653 (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); 2654 } 2655 2656 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2657 const struct ipv6hdr *iph, u32 mtu) 2658 { 2659 const struct in6_addr *daddr, *saddr; 2660 struct rt6_info *rt6 = (struct rt6_info *)dst; 2661 2662 if (dst_metric_locked(dst, RTAX_MTU)) 2663 return; 2664 2665 if (iph) { 2666 daddr = &iph->daddr; 2667 saddr = &iph->saddr; 2668 } else if (sk) { 2669 daddr = &sk->sk_v6_daddr; 2670 saddr = &inet6_sk(sk)->saddr; 2671 } else { 2672 daddr = NULL; 2673 saddr = NULL; 2674 } 2675 dst_confirm_neigh(dst, daddr); 2676 mtu = max_t(u32, mtu, IPV6_MIN_MTU); 2677 if (mtu >= dst_mtu(dst)) 2678 return; 2679 2680 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2681 rt6_do_update_pmtu(rt6, mtu); 2682 /* update rt6_ex->stamp for cache */ 2683 if (rt6->rt6i_flags & RTF_CACHE) 2684 rt6_update_exception_stamp_rt(rt6); 2685 } else if (daddr) { 2686 struct fib6_result res = {}; 2687 struct rt6_info *nrt6; 2688 2689 rcu_read_lock(); 2690 res.f6i = rcu_dereference(rt6->from); 2691 if (!res.f6i) { 2692 rcu_read_unlock(); 2693 return; 2694 } 2695 res.fib6_flags = res.f6i->fib6_flags; 2696 res.fib6_type = res.f6i->fib6_type; 2697 2698 if (res.f6i->nh) { 2699 struct fib6_nh_match_arg arg = { 2700 .dev = dst->dev, 2701 .gw = &rt6->rt6i_gateway, 2702 }; 2703 2704 nexthop_for_each_fib6_nh(res.f6i->nh, 2705 fib6_nh_find_match, &arg); 2706 2707 /* fib6_info uses a nexthop that does not have fib6_nh 2708 * using the dst->dev + gw. Should be impossible. 2709 */ 2710 if (!arg.match) { 2711 rcu_read_unlock(); 2712 return; 2713 } 2714 2715 res.nh = arg.match; 2716 } else { 2717 res.nh = res.f6i->fib6_nh; 2718 } 2719 2720 nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); 2721 if (nrt6) { 2722 rt6_do_update_pmtu(nrt6, mtu); 2723 if (rt6_insert_exception(nrt6, &res)) 2724 dst_release_immediate(&nrt6->dst); 2725 } 2726 rcu_read_unlock(); 2727 } 2728 } 2729 2730 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2731 struct sk_buff *skb, u32 mtu) 2732 { 2733 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu); 2734 } 2735 2736 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2737 int oif, u32 mark, kuid_t uid) 2738 { 2739 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2740 struct dst_entry *dst; 2741 struct flowi6 fl6 = { 2742 .flowi6_oif = oif, 2743 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 2744 .daddr = iph->daddr, 2745 .saddr = iph->saddr, 2746 .flowlabel = ip6_flowinfo(iph), 2747 .flowi6_uid = uid, 2748 }; 2749 2750 dst = ip6_route_output(net, NULL, &fl6); 2751 if (!dst->error) 2752 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu)); 2753 dst_release(dst); 2754 } 2755 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 2756 2757 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 2758 { 2759 int oif = sk->sk_bound_dev_if; 2760 struct dst_entry *dst; 2761 2762 if (!oif && skb->dev) 2763 oif = l3mdev_master_ifindex(skb->dev); 2764 2765 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid); 2766 2767 dst = __sk_dst_get(sk); 2768 if (!dst || !dst->obsolete || 2769 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 2770 return; 2771 2772 bh_lock_sock(sk); 2773 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 2774 ip6_datagram_dst_update(sk, false); 2775 bh_unlock_sock(sk); 2776 } 2777 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 2778 2779 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 2780 const struct flowi6 *fl6) 2781 { 2782 #ifdef CONFIG_IPV6_SUBTREES 2783 struct ipv6_pinfo *np = inet6_sk(sk); 2784 #endif 2785 2786 ip6_dst_store(sk, dst, 2787 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 2788 &sk->sk_v6_daddr : NULL, 2789 #ifdef CONFIG_IPV6_SUBTREES 2790 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 2791 &np->saddr : 2792 #endif 2793 NULL); 2794 } 2795 2796 static bool ip6_redirect_nh_match(const struct fib6_result *res, 2797 struct flowi6 *fl6, 2798 const struct in6_addr *gw, 2799 struct rt6_info **ret) 2800 { 2801 const struct fib6_nh *nh = res->nh; 2802 2803 if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || 2804 fl6->flowi6_oif != nh->fib_nh_dev->ifindex) 2805 return false; 2806 2807 /* rt_cache's gateway might be different from its 'parent' 2808 * in the case of an ip redirect. 2809 * So we keep searching in the exception table if the gateway 2810 * is different. 2811 */ 2812 if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { 2813 struct rt6_info *rt_cache; 2814 2815 rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); 2816 if (rt_cache && 2817 ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { 2818 *ret = rt_cache; 2819 return true; 2820 } 2821 return false; 2822 } 2823 return true; 2824 } 2825 2826 struct fib6_nh_rd_arg { 2827 struct fib6_result *res; 2828 struct flowi6 *fl6; 2829 const struct in6_addr *gw; 2830 struct rt6_info **ret; 2831 }; 2832 2833 static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) 2834 { 2835 struct fib6_nh_rd_arg *arg = _arg; 2836 2837 arg->res->nh = nh; 2838 return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); 2839 } 2840 2841 /* Handle redirects */ 2842 struct ip6rd_flowi { 2843 struct flowi6 fl6; 2844 struct in6_addr gateway; 2845 }; 2846 2847 static struct rt6_info *__ip6_route_redirect(struct net *net, 2848 struct fib6_table *table, 2849 struct flowi6 *fl6, 2850 const struct sk_buff *skb, 2851 int flags) 2852 { 2853 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 2854 struct rt6_info *ret = NULL; 2855 struct fib6_result res = {}; 2856 struct fib6_nh_rd_arg arg = { 2857 .res = &res, 2858 .fl6 = fl6, 2859 .gw = &rdfl->gateway, 2860 .ret = &ret 2861 }; 2862 struct fib6_info *rt; 2863 struct fib6_node *fn; 2864 2865 /* l3mdev_update_flow overrides oif if the device is enslaved; in 2866 * this case we must match on the real ingress device, so reset it 2867 */ 2868 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF) 2869 fl6->flowi6_oif = skb->dev->ifindex; 2870 2871 /* Get the "current" route for this destination and 2872 * check if the redirect has come from appropriate router. 2873 * 2874 * RFC 4861 specifies that redirects should only be 2875 * accepted if they come from the nexthop to the target. 2876 * Due to the way the routes are chosen, this notion 2877 * is a bit fuzzy and one might need to check all possible 2878 * routes. 2879 */ 2880 2881 rcu_read_lock(); 2882 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2883 restart: 2884 for_each_fib6_node_rt_rcu(fn) { 2885 res.f6i = rt; 2886 if (fib6_check_expired(rt)) 2887 continue; 2888 if (rt->fib6_flags & RTF_REJECT) 2889 break; 2890 if (unlikely(rt->nh)) { 2891 if (nexthop_is_blackhole(rt->nh)) 2892 continue; 2893 /* on match, res->nh is filled in and potentially ret */ 2894 if (nexthop_for_each_fib6_nh(rt->nh, 2895 fib6_nh_redirect_match, 2896 &arg)) 2897 goto out; 2898 } else { 2899 res.nh = rt->fib6_nh; 2900 if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, 2901 &ret)) 2902 goto out; 2903 } 2904 } 2905 2906 if (!rt) 2907 rt = net->ipv6.fib6_null_entry; 2908 else if (rt->fib6_flags & RTF_REJECT) { 2909 ret = net->ipv6.ip6_null_entry; 2910 goto out; 2911 } 2912 2913 if (rt == net->ipv6.fib6_null_entry) { 2914 fn = fib6_backtrack(fn, &fl6->saddr); 2915 if (fn) 2916 goto restart; 2917 } 2918 2919 res.f6i = rt; 2920 res.nh = rt->fib6_nh; 2921 out: 2922 if (ret) { 2923 ip6_hold_safe(net, &ret); 2924 } else { 2925 res.fib6_flags = res.f6i->fib6_flags; 2926 res.fib6_type = res.f6i->fib6_type; 2927 ret = ip6_create_rt_rcu(&res); 2928 } 2929 2930 rcu_read_unlock(); 2931 2932 trace_fib6_table_lookup(net, &res, table, fl6); 2933 return ret; 2934 }; 2935 2936 static struct dst_entry *ip6_route_redirect(struct net *net, 2937 const struct flowi6 *fl6, 2938 const struct sk_buff *skb, 2939 const struct in6_addr *gateway) 2940 { 2941 int flags = RT6_LOOKUP_F_HAS_SADDR; 2942 struct ip6rd_flowi rdfl; 2943 2944 rdfl.fl6 = *fl6; 2945 rdfl.gateway = *gateway; 2946 2947 return fib6_rule_lookup(net, &rdfl.fl6, skb, 2948 flags, __ip6_route_redirect); 2949 } 2950 2951 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 2952 kuid_t uid) 2953 { 2954 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2955 struct dst_entry *dst; 2956 struct flowi6 fl6 = { 2957 .flowi6_iif = LOOPBACK_IFINDEX, 2958 .flowi6_oif = oif, 2959 .flowi6_mark = mark, 2960 .daddr = iph->daddr, 2961 .saddr = iph->saddr, 2962 .flowlabel = ip6_flowinfo(iph), 2963 .flowi6_uid = uid, 2964 }; 2965 2966 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 2967 rt6_do_redirect(dst, NULL, skb); 2968 dst_release(dst); 2969 } 2970 EXPORT_SYMBOL_GPL(ip6_redirect); 2971 2972 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 2973 { 2974 const struct ipv6hdr *iph = ipv6_hdr(skb); 2975 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 2976 struct dst_entry *dst; 2977 struct flowi6 fl6 = { 2978 .flowi6_iif = LOOPBACK_IFINDEX, 2979 .flowi6_oif = oif, 2980 .daddr = msg->dest, 2981 .saddr = iph->daddr, 2982 .flowi6_uid = sock_net_uid(net, NULL), 2983 }; 2984 2985 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 2986 rt6_do_redirect(dst, NULL, skb); 2987 dst_release(dst); 2988 } 2989 2990 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 2991 { 2992 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark, 2993 sk->sk_uid); 2994 } 2995 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 2996 2997 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 2998 { 2999 struct net_device *dev = dst->dev; 3000 unsigned int mtu = dst_mtu(dst); 3001 struct net *net = dev_net(dev); 3002 3003 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 3004 3005 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 3006 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 3007 3008 /* 3009 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 3010 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 3011 * IPV6_MAXPLEN is also valid and means: "any MSS, 3012 * rely only on pmtu discovery" 3013 */ 3014 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 3015 mtu = IPV6_MAXPLEN; 3016 return mtu; 3017 } 3018 3019 static unsigned int ip6_mtu(const struct dst_entry *dst) 3020 { 3021 struct inet6_dev *idev; 3022 unsigned int mtu; 3023 3024 mtu = dst_metric_raw(dst, RTAX_MTU); 3025 if (mtu) 3026 goto out; 3027 3028 mtu = IPV6_MIN_MTU; 3029 3030 rcu_read_lock(); 3031 idev = __in6_dev_get(dst->dev); 3032 if (idev) 3033 mtu = idev->cnf.mtu6; 3034 rcu_read_unlock(); 3035 3036 out: 3037 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3038 3039 return mtu - lwtunnel_headroom(dst->lwtstate, mtu); 3040 } 3041 3042 /* MTU selection: 3043 * 1. mtu on route is locked - use it 3044 * 2. mtu from nexthop exception 3045 * 3. mtu from egress device 3046 * 3047 * based on ip6_dst_mtu_forward and exception logic of 3048 * rt6_find_cached_rt; called with rcu_read_lock 3049 */ 3050 u32 ip6_mtu_from_fib6(const struct fib6_result *res, 3051 const struct in6_addr *daddr, 3052 const struct in6_addr *saddr) 3053 { 3054 const struct fib6_nh *nh = res->nh; 3055 struct fib6_info *f6i = res->f6i; 3056 struct inet6_dev *idev; 3057 struct rt6_info *rt; 3058 u32 mtu = 0; 3059 3060 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 3061 mtu = f6i->fib6_pmtu; 3062 if (mtu) 3063 goto out; 3064 } 3065 3066 rt = rt6_find_cached_rt(res, daddr, saddr); 3067 if (unlikely(rt)) { 3068 mtu = dst_metric_raw(&rt->dst, RTAX_MTU); 3069 } else { 3070 struct net_device *dev = nh->fib_nh_dev; 3071 3072 mtu = IPV6_MIN_MTU; 3073 idev = __in6_dev_get(dev); 3074 if (idev && idev->cnf.mtu6 > mtu) 3075 mtu = idev->cnf.mtu6; 3076 } 3077 3078 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3079 out: 3080 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 3081 } 3082 3083 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 3084 struct flowi6 *fl6) 3085 { 3086 struct dst_entry *dst; 3087 struct rt6_info *rt; 3088 struct inet6_dev *idev = in6_dev_get(dev); 3089 struct net *net = dev_net(dev); 3090 3091 if (unlikely(!idev)) 3092 return ERR_PTR(-ENODEV); 3093 3094 rt = ip6_dst_alloc(net, dev, 0); 3095 if (unlikely(!rt)) { 3096 in6_dev_put(idev); 3097 dst = ERR_PTR(-ENOMEM); 3098 goto out; 3099 } 3100 3101 rt->dst.flags |= DST_HOST; 3102 rt->dst.input = ip6_input; 3103 rt->dst.output = ip6_output; 3104 rt->rt6i_gateway = fl6->daddr; 3105 rt->rt6i_dst.addr = fl6->daddr; 3106 rt->rt6i_dst.plen = 128; 3107 rt->rt6i_idev = idev; 3108 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 3109 3110 /* Add this dst into uncached_list so that rt6_disable_ip() can 3111 * do proper release of the net_device 3112 */ 3113 rt6_uncached_list_add(rt); 3114 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache); 3115 3116 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 3117 3118 out: 3119 return dst; 3120 } 3121 3122 static int ip6_dst_gc(struct dst_ops *ops) 3123 { 3124 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 3125 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 3126 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size; 3127 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 3128 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 3129 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 3130 int entries; 3131 3132 entries = dst_entries_get_fast(ops); 3133 if (time_after(rt_last_gc + rt_min_interval, jiffies) && 3134 entries <= rt_max_size) 3135 goto out; 3136 3137 net->ipv6.ip6_rt_gc_expire++; 3138 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true); 3139 entries = dst_entries_get_slow(ops); 3140 if (entries < ops->gc_thresh) 3141 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1; 3142 out: 3143 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity; 3144 return entries > rt_max_size; 3145 } 3146 3147 static struct rt6_info *ip6_nh_lookup_table(struct net *net, 3148 struct fib6_config *cfg, 3149 const struct in6_addr *gw_addr, 3150 u32 tbid, int flags) 3151 { 3152 struct flowi6 fl6 = { 3153 .flowi6_oif = cfg->fc_ifindex, 3154 .daddr = *gw_addr, 3155 .saddr = cfg->fc_prefsrc, 3156 }; 3157 struct fib6_table *table; 3158 struct rt6_info *rt; 3159 3160 table = fib6_get_table(net, tbid); 3161 if (!table) 3162 return NULL; 3163 3164 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 3165 flags |= RT6_LOOKUP_F_HAS_SADDR; 3166 3167 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 3168 rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags); 3169 3170 /* if table lookup failed, fall back to full lookup */ 3171 if (rt == net->ipv6.ip6_null_entry) { 3172 ip6_rt_put(rt); 3173 rt = NULL; 3174 } 3175 3176 return rt; 3177 } 3178 3179 static int ip6_route_check_nh_onlink(struct net *net, 3180 struct fib6_config *cfg, 3181 const struct net_device *dev, 3182 struct netlink_ext_ack *extack) 3183 { 3184 u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN; 3185 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3186 u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT; 3187 struct fib6_info *from; 3188 struct rt6_info *grt; 3189 int err; 3190 3191 err = 0; 3192 grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0); 3193 if (grt) { 3194 rcu_read_lock(); 3195 from = rcu_dereference(grt->from); 3196 if (!grt->dst.error && 3197 /* ignore match if it is the default route */ 3198 from && !ipv6_addr_any(&from->fib6_dst.addr) && 3199 (grt->rt6i_flags & flags || dev != grt->dst.dev)) { 3200 NL_SET_ERR_MSG(extack, 3201 "Nexthop has invalid gateway or device mismatch"); 3202 err = -EINVAL; 3203 } 3204 rcu_read_unlock(); 3205 3206 ip6_rt_put(grt); 3207 } 3208 3209 return err; 3210 } 3211 3212 static int ip6_route_check_nh(struct net *net, 3213 struct fib6_config *cfg, 3214 struct net_device **_dev, 3215 struct inet6_dev **idev) 3216 { 3217 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3218 struct net_device *dev = _dev ? *_dev : NULL; 3219 struct rt6_info *grt = NULL; 3220 int err = -EHOSTUNREACH; 3221 3222 if (cfg->fc_table) { 3223 int flags = RT6_LOOKUP_F_IFACE; 3224 3225 grt = ip6_nh_lookup_table(net, cfg, gw_addr, 3226 cfg->fc_table, flags); 3227 if (grt) { 3228 if (grt->rt6i_flags & RTF_GATEWAY || 3229 (dev && dev != grt->dst.dev)) { 3230 ip6_rt_put(grt); 3231 grt = NULL; 3232 } 3233 } 3234 } 3235 3236 if (!grt) 3237 grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1); 3238 3239 if (!grt) 3240 goto out; 3241 3242 if (dev) { 3243 if (dev != grt->dst.dev) { 3244 ip6_rt_put(grt); 3245 goto out; 3246 } 3247 } else { 3248 *_dev = dev = grt->dst.dev; 3249 *idev = grt->rt6i_idev; 3250 dev_hold(dev); 3251 in6_dev_hold(grt->rt6i_idev); 3252 } 3253 3254 if (!(grt->rt6i_flags & RTF_GATEWAY)) 3255 err = 0; 3256 3257 ip6_rt_put(grt); 3258 3259 out: 3260 return err; 3261 } 3262 3263 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 3264 struct net_device **_dev, struct inet6_dev **idev, 3265 struct netlink_ext_ack *extack) 3266 { 3267 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3268 int gwa_type = ipv6_addr_type(gw_addr); 3269 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 3270 const struct net_device *dev = *_dev; 3271 bool need_addr_check = !dev; 3272 int err = -EINVAL; 3273 3274 /* if gw_addr is local we will fail to detect this in case 3275 * address is still TENTATIVE (DAD in progress). rt6_lookup() 3276 * will return already-added prefix route via interface that 3277 * prefix route was assigned to, which might be non-loopback. 3278 */ 3279 if (dev && 3280 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3281 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3282 goto out; 3283 } 3284 3285 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 3286 /* IPv6 strictly inhibits using not link-local 3287 * addresses as nexthop address. 3288 * Otherwise, router will not able to send redirects. 3289 * It is very good, but in some (rare!) circumstances 3290 * (SIT, PtP, NBMA NOARP links) it is handy to allow 3291 * some exceptions. --ANK 3292 * We allow IPv4-mapped nexthops to support RFC4798-type 3293 * addressing 3294 */ 3295 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 3296 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 3297 goto out; 3298 } 3299 3300 if (cfg->fc_flags & RTNH_F_ONLINK) 3301 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 3302 else 3303 err = ip6_route_check_nh(net, cfg, _dev, idev); 3304 3305 if (err) 3306 goto out; 3307 } 3308 3309 /* reload in case device was changed */ 3310 dev = *_dev; 3311 3312 err = -EINVAL; 3313 if (!dev) { 3314 NL_SET_ERR_MSG(extack, "Egress device not specified"); 3315 goto out; 3316 } else if (dev->flags & IFF_LOOPBACK) { 3317 NL_SET_ERR_MSG(extack, 3318 "Egress device can not be loopback device for this route"); 3319 goto out; 3320 } 3321 3322 /* if we did not check gw_addr above, do so now that the 3323 * egress device has been resolved. 3324 */ 3325 if (need_addr_check && 3326 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3327 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3328 goto out; 3329 } 3330 3331 err = 0; 3332 out: 3333 return err; 3334 } 3335 3336 static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) 3337 { 3338 if ((flags & RTF_REJECT) || 3339 (dev && (dev->flags & IFF_LOOPBACK) && 3340 !(addr_type & IPV6_ADDR_LOOPBACK) && 3341 !(flags & RTF_LOCAL))) 3342 return true; 3343 3344 return false; 3345 } 3346 3347 int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, 3348 struct fib6_config *cfg, gfp_t gfp_flags, 3349 struct netlink_ext_ack *extack) 3350 { 3351 struct net_device *dev = NULL; 3352 struct inet6_dev *idev = NULL; 3353 int addr_type; 3354 int err; 3355 3356 fib6_nh->fib_nh_family = AF_INET6; 3357 3358 err = -ENODEV; 3359 if (cfg->fc_ifindex) { 3360 dev = dev_get_by_index(net, cfg->fc_ifindex); 3361 if (!dev) 3362 goto out; 3363 idev = in6_dev_get(dev); 3364 if (!idev) 3365 goto out; 3366 } 3367 3368 if (cfg->fc_flags & RTNH_F_ONLINK) { 3369 if (!dev) { 3370 NL_SET_ERR_MSG(extack, 3371 "Nexthop device required for onlink"); 3372 goto out; 3373 } 3374 3375 if (!(dev->flags & IFF_UP)) { 3376 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3377 err = -ENETDOWN; 3378 goto out; 3379 } 3380 3381 fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; 3382 } 3383 3384 fib6_nh->fib_nh_weight = 1; 3385 3386 /* We cannot add true routes via loopback here, 3387 * they would result in kernel looping; promote them to reject routes 3388 */ 3389 addr_type = ipv6_addr_type(&cfg->fc_dst); 3390 if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { 3391 /* hold loopback dev/idev if we haven't done so. */ 3392 if (dev != net->loopback_dev) { 3393 if (dev) { 3394 dev_put(dev); 3395 in6_dev_put(idev); 3396 } 3397 dev = net->loopback_dev; 3398 dev_hold(dev); 3399 idev = in6_dev_get(dev); 3400 if (!idev) { 3401 err = -ENODEV; 3402 goto out; 3403 } 3404 } 3405 goto pcpu_alloc; 3406 } 3407 3408 if (cfg->fc_flags & RTF_GATEWAY) { 3409 err = ip6_validate_gw(net, cfg, &dev, &idev, extack); 3410 if (err) 3411 goto out; 3412 3413 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3414 fib6_nh->fib_nh_gw_family = AF_INET6; 3415 } 3416 3417 err = -ENODEV; 3418 if (!dev) 3419 goto out; 3420 3421 if (idev->cnf.disable_ipv6) { 3422 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3423 err = -EACCES; 3424 goto out; 3425 } 3426 3427 if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { 3428 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3429 err = -ENETDOWN; 3430 goto out; 3431 } 3432 3433 if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3434 !netif_carrier_ok(dev)) 3435 fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 3436 3437 err = fib_nh_common_init(&fib6_nh->nh_common, cfg->fc_encap, 3438 cfg->fc_encap_type, cfg, gfp_flags, extack); 3439 if (err) 3440 goto out; 3441 3442 pcpu_alloc: 3443 fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); 3444 if (!fib6_nh->rt6i_pcpu) { 3445 err = -ENOMEM; 3446 goto out; 3447 } 3448 3449 fib6_nh->fib_nh_dev = dev; 3450 fib6_nh->fib_nh_oif = dev->ifindex; 3451 err = 0; 3452 out: 3453 if (idev) 3454 in6_dev_put(idev); 3455 3456 if (err) { 3457 lwtstate_put(fib6_nh->fib_nh_lws); 3458 fib6_nh->fib_nh_lws = NULL; 3459 if (dev) 3460 dev_put(dev); 3461 } 3462 3463 return err; 3464 } 3465 3466 void fib6_nh_release(struct fib6_nh *fib6_nh) 3467 { 3468 struct rt6_exception_bucket *bucket; 3469 3470 rcu_read_lock(); 3471 3472 fib6_nh_flush_exceptions(fib6_nh, NULL); 3473 bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); 3474 if (bucket) { 3475 rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); 3476 kfree(bucket); 3477 } 3478 3479 rcu_read_unlock(); 3480 3481 if (fib6_nh->rt6i_pcpu) { 3482 int cpu; 3483 3484 for_each_possible_cpu(cpu) { 3485 struct rt6_info **ppcpu_rt; 3486 struct rt6_info *pcpu_rt; 3487 3488 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 3489 pcpu_rt = *ppcpu_rt; 3490 if (pcpu_rt) { 3491 dst_dev_put(&pcpu_rt->dst); 3492 dst_release(&pcpu_rt->dst); 3493 *ppcpu_rt = NULL; 3494 } 3495 } 3496 3497 free_percpu(fib6_nh->rt6i_pcpu); 3498 } 3499 3500 fib_nh_common_release(&fib6_nh->nh_common); 3501 } 3502 3503 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 3504 gfp_t gfp_flags, 3505 struct netlink_ext_ack *extack) 3506 { 3507 struct net *net = cfg->fc_nlinfo.nl_net; 3508 struct fib6_info *rt = NULL; 3509 struct nexthop *nh = NULL; 3510 struct fib6_table *table; 3511 struct fib6_nh *fib6_nh; 3512 int err = -EINVAL; 3513 int addr_type; 3514 3515 /* RTF_PCPU is an internal flag; can not be set by userspace */ 3516 if (cfg->fc_flags & RTF_PCPU) { 3517 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 3518 goto out; 3519 } 3520 3521 /* RTF_CACHE is an internal flag; can not be set by userspace */ 3522 if (cfg->fc_flags & RTF_CACHE) { 3523 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 3524 goto out; 3525 } 3526 3527 if (cfg->fc_type > RTN_MAX) { 3528 NL_SET_ERR_MSG(extack, "Invalid route type"); 3529 goto out; 3530 } 3531 3532 if (cfg->fc_dst_len > 128) { 3533 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 3534 goto out; 3535 } 3536 if (cfg->fc_src_len > 128) { 3537 NL_SET_ERR_MSG(extack, "Invalid source address length"); 3538 goto out; 3539 } 3540 #ifndef CONFIG_IPV6_SUBTREES 3541 if (cfg->fc_src_len) { 3542 NL_SET_ERR_MSG(extack, 3543 "Specifying source address requires IPV6_SUBTREES to be enabled"); 3544 goto out; 3545 } 3546 #endif 3547 if (cfg->fc_nh_id) { 3548 nh = nexthop_find_by_id(net, cfg->fc_nh_id); 3549 if (!nh) { 3550 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 3551 goto out; 3552 } 3553 err = fib6_check_nexthop(nh, cfg, extack); 3554 if (err) 3555 goto out; 3556 } 3557 3558 err = -ENOBUFS; 3559 if (cfg->fc_nlinfo.nlh && 3560 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 3561 table = fib6_get_table(net, cfg->fc_table); 3562 if (!table) { 3563 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 3564 table = fib6_new_table(net, cfg->fc_table); 3565 } 3566 } else { 3567 table = fib6_new_table(net, cfg->fc_table); 3568 } 3569 3570 if (!table) 3571 goto out; 3572 3573 err = -ENOMEM; 3574 rt = fib6_info_alloc(gfp_flags, !nh); 3575 if (!rt) 3576 goto out; 3577 3578 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len, 3579 extack); 3580 if (IS_ERR(rt->fib6_metrics)) { 3581 err = PTR_ERR(rt->fib6_metrics); 3582 /* Do not leave garbage there. */ 3583 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; 3584 goto out; 3585 } 3586 3587 if (cfg->fc_flags & RTF_ADDRCONF) 3588 rt->dst_nocount = true; 3589 3590 if (cfg->fc_flags & RTF_EXPIRES) 3591 fib6_set_expires(rt, jiffies + 3592 clock_t_to_jiffies(cfg->fc_expires)); 3593 else 3594 fib6_clean_expires(rt); 3595 3596 if (cfg->fc_protocol == RTPROT_UNSPEC) 3597 cfg->fc_protocol = RTPROT_BOOT; 3598 rt->fib6_protocol = cfg->fc_protocol; 3599 3600 rt->fib6_table = table; 3601 rt->fib6_metric = cfg->fc_metric; 3602 rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; 3603 rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; 3604 3605 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3606 rt->fib6_dst.plen = cfg->fc_dst_len; 3607 if (rt->fib6_dst.plen == 128) 3608 rt->dst_host = true; 3609 3610 #ifdef CONFIG_IPV6_SUBTREES 3611 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3612 rt->fib6_src.plen = cfg->fc_src_len; 3613 #endif 3614 if (nh) { 3615 if (!nexthop_get(nh)) { 3616 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 3617 goto out; 3618 } 3619 if (rt->fib6_src.plen) { 3620 NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); 3621 goto out; 3622 } 3623 rt->nh = nh; 3624 fib6_nh = nexthop_fib6_nh(rt->nh); 3625 } else { 3626 err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); 3627 if (err) 3628 goto out; 3629 3630 fib6_nh = rt->fib6_nh; 3631 3632 /* We cannot add true routes via loopback here, they would 3633 * result in kernel looping; promote them to reject routes 3634 */ 3635 addr_type = ipv6_addr_type(&cfg->fc_dst); 3636 if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, 3637 addr_type)) 3638 rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; 3639 } 3640 3641 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3642 struct net_device *dev = fib6_nh->fib_nh_dev; 3643 3644 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3645 NL_SET_ERR_MSG(extack, "Invalid source address"); 3646 err = -EINVAL; 3647 goto out; 3648 } 3649 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3650 rt->fib6_prefsrc.plen = 128; 3651 } else 3652 rt->fib6_prefsrc.plen = 0; 3653 3654 return rt; 3655 out: 3656 fib6_info_release(rt); 3657 return ERR_PTR(err); 3658 } 3659 3660 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3661 struct netlink_ext_ack *extack) 3662 { 3663 struct fib6_info *rt; 3664 int err; 3665 3666 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3667 if (IS_ERR(rt)) 3668 return PTR_ERR(rt); 3669 3670 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3671 fib6_info_release(rt); 3672 3673 return err; 3674 } 3675 3676 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3677 { 3678 struct net *net = info->nl_net; 3679 struct fib6_table *table; 3680 int err; 3681 3682 if (rt == net->ipv6.fib6_null_entry) { 3683 err = -ENOENT; 3684 goto out; 3685 } 3686 3687 table = rt->fib6_table; 3688 spin_lock_bh(&table->tb6_lock); 3689 err = fib6_del(rt, info); 3690 spin_unlock_bh(&table->tb6_lock); 3691 3692 out: 3693 fib6_info_release(rt); 3694 return err; 3695 } 3696 3697 int ip6_del_rt(struct net *net, struct fib6_info *rt) 3698 { 3699 struct nl_info info = { .nl_net = net }; 3700 3701 return __ip6_del_rt(rt, &info); 3702 } 3703 3704 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3705 { 3706 struct nl_info *info = &cfg->fc_nlinfo; 3707 struct net *net = info->nl_net; 3708 struct sk_buff *skb = NULL; 3709 struct fib6_table *table; 3710 int err = -ENOENT; 3711 3712 if (rt == net->ipv6.fib6_null_entry) 3713 goto out_put; 3714 table = rt->fib6_table; 3715 spin_lock_bh(&table->tb6_lock); 3716 3717 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3718 struct fib6_info *sibling, *next_sibling; 3719 3720 /* prefer to send a single notification with all hops */ 3721 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 3722 if (skb) { 3723 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 3724 3725 if (rt6_fill_node(net, skb, rt, NULL, 3726 NULL, NULL, 0, RTM_DELROUTE, 3727 info->portid, seq, 0) < 0) { 3728 kfree_skb(skb); 3729 skb = NULL; 3730 } else 3731 info->skip_notify = 1; 3732 } 3733 3734 info->skip_notify_kernel = 1; 3735 call_fib6_multipath_entry_notifiers(net, 3736 FIB_EVENT_ENTRY_DEL, 3737 rt, 3738 rt->fib6_nsiblings, 3739 NULL); 3740 list_for_each_entry_safe(sibling, next_sibling, 3741 &rt->fib6_siblings, 3742 fib6_siblings) { 3743 err = fib6_del(sibling, info); 3744 if (err) 3745 goto out_unlock; 3746 } 3747 } 3748 3749 err = fib6_del(rt, info); 3750 out_unlock: 3751 spin_unlock_bh(&table->tb6_lock); 3752 out_put: 3753 fib6_info_release(rt); 3754 3755 if (skb) { 3756 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 3757 info->nlh, gfp_any()); 3758 } 3759 return err; 3760 } 3761 3762 static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 3763 { 3764 int rc = -ESRCH; 3765 3766 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 3767 goto out; 3768 3769 if (cfg->fc_flags & RTF_GATEWAY && 3770 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 3771 goto out; 3772 3773 rc = rt6_remove_exception_rt(rt); 3774 out: 3775 return rc; 3776 } 3777 3778 static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, 3779 struct fib6_nh *nh) 3780 { 3781 struct fib6_result res = { 3782 .f6i = rt, 3783 .nh = nh, 3784 }; 3785 struct rt6_info *rt_cache; 3786 3787 rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); 3788 if (rt_cache) 3789 return __ip6_del_cached_rt(rt_cache, cfg); 3790 3791 return 0; 3792 } 3793 3794 struct fib6_nh_del_cached_rt_arg { 3795 struct fib6_config *cfg; 3796 struct fib6_info *f6i; 3797 }; 3798 3799 static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) 3800 { 3801 struct fib6_nh_del_cached_rt_arg *arg = _arg; 3802 int rc; 3803 3804 rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); 3805 return rc != -ESRCH ? rc : 0; 3806 } 3807 3808 static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) 3809 { 3810 struct fib6_nh_del_cached_rt_arg arg = { 3811 .cfg = cfg, 3812 .f6i = f6i 3813 }; 3814 3815 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); 3816 } 3817 3818 static int ip6_route_del(struct fib6_config *cfg, 3819 struct netlink_ext_ack *extack) 3820 { 3821 struct fib6_table *table; 3822 struct fib6_info *rt; 3823 struct fib6_node *fn; 3824 int err = -ESRCH; 3825 3826 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 3827 if (!table) { 3828 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 3829 return err; 3830 } 3831 3832 rcu_read_lock(); 3833 3834 fn = fib6_locate(&table->tb6_root, 3835 &cfg->fc_dst, cfg->fc_dst_len, 3836 &cfg->fc_src, cfg->fc_src_len, 3837 !(cfg->fc_flags & RTF_CACHE)); 3838 3839 if (fn) { 3840 for_each_fib6_node_rt_rcu(fn) { 3841 struct fib6_nh *nh; 3842 3843 if (rt->nh && rt->nh->id != cfg->fc_nh_id) 3844 continue; 3845 3846 if (cfg->fc_flags & RTF_CACHE) { 3847 int rc = 0; 3848 3849 if (rt->nh) { 3850 rc = ip6_del_cached_rt_nh(cfg, rt); 3851 } else if (cfg->fc_nh_id) { 3852 continue; 3853 } else { 3854 nh = rt->fib6_nh; 3855 rc = ip6_del_cached_rt(cfg, rt, nh); 3856 } 3857 if (rc != -ESRCH) { 3858 rcu_read_unlock(); 3859 return rc; 3860 } 3861 continue; 3862 } 3863 3864 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 3865 continue; 3866 if (cfg->fc_protocol && 3867 cfg->fc_protocol != rt->fib6_protocol) 3868 continue; 3869 3870 if (rt->nh) { 3871 if (!fib6_info_hold_safe(rt)) 3872 continue; 3873 rcu_read_unlock(); 3874 3875 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3876 } 3877 if (cfg->fc_nh_id) 3878 continue; 3879 3880 nh = rt->fib6_nh; 3881 if (cfg->fc_ifindex && 3882 (!nh->fib_nh_dev || 3883 nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) 3884 continue; 3885 if (cfg->fc_flags & RTF_GATEWAY && 3886 !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) 3887 continue; 3888 if (!fib6_info_hold_safe(rt)) 3889 continue; 3890 rcu_read_unlock(); 3891 3892 /* if gateway was specified only delete the one hop */ 3893 if (cfg->fc_flags & RTF_GATEWAY) 3894 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 3895 3896 return __ip6_del_rt_siblings(rt, cfg); 3897 } 3898 } 3899 rcu_read_unlock(); 3900 3901 return err; 3902 } 3903 3904 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 3905 { 3906 struct netevent_redirect netevent; 3907 struct rt6_info *rt, *nrt = NULL; 3908 struct fib6_result res = {}; 3909 struct ndisc_options ndopts; 3910 struct inet6_dev *in6_dev; 3911 struct neighbour *neigh; 3912 struct rd_msg *msg; 3913 int optlen, on_link; 3914 u8 *lladdr; 3915 3916 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 3917 optlen -= sizeof(*msg); 3918 3919 if (optlen < 0) { 3920 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 3921 return; 3922 } 3923 3924 msg = (struct rd_msg *)icmp6_hdr(skb); 3925 3926 if (ipv6_addr_is_multicast(&msg->dest)) { 3927 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 3928 return; 3929 } 3930 3931 on_link = 0; 3932 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 3933 on_link = 1; 3934 } else if (ipv6_addr_type(&msg->target) != 3935 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 3936 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 3937 return; 3938 } 3939 3940 in6_dev = __in6_dev_get(skb->dev); 3941 if (!in6_dev) 3942 return; 3943 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) 3944 return; 3945 3946 /* RFC2461 8.1: 3947 * The IP source address of the Redirect MUST be the same as the current 3948 * first-hop router for the specified ICMP Destination Address. 3949 */ 3950 3951 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 3952 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 3953 return; 3954 } 3955 3956 lladdr = NULL; 3957 if (ndopts.nd_opts_tgt_lladdr) { 3958 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 3959 skb->dev); 3960 if (!lladdr) { 3961 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 3962 return; 3963 } 3964 } 3965 3966 rt = (struct rt6_info *) dst; 3967 if (rt->rt6i_flags & RTF_REJECT) { 3968 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 3969 return; 3970 } 3971 3972 /* Redirect received -> path was valid. 3973 * Look, redirects are sent only in response to data packets, 3974 * so that this nexthop apparently is reachable. --ANK 3975 */ 3976 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 3977 3978 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 3979 if (!neigh) 3980 return; 3981 3982 /* 3983 * We have finally decided to accept it. 3984 */ 3985 3986 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 3987 NEIGH_UPDATE_F_WEAK_OVERRIDE| 3988 NEIGH_UPDATE_F_OVERRIDE| 3989 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 3990 NEIGH_UPDATE_F_ISROUTER)), 3991 NDISC_REDIRECT, &ndopts); 3992 3993 rcu_read_lock(); 3994 res.f6i = rcu_dereference(rt->from); 3995 if (!res.f6i) 3996 goto out; 3997 3998 if (res.f6i->nh) { 3999 struct fib6_nh_match_arg arg = { 4000 .dev = dst->dev, 4001 .gw = &rt->rt6i_gateway, 4002 }; 4003 4004 nexthop_for_each_fib6_nh(res.f6i->nh, 4005 fib6_nh_find_match, &arg); 4006 4007 /* fib6_info uses a nexthop that does not have fib6_nh 4008 * using the dst->dev. Should be impossible 4009 */ 4010 if (!arg.match) 4011 goto out; 4012 res.nh = arg.match; 4013 } else { 4014 res.nh = res.f6i->fib6_nh; 4015 } 4016 4017 res.fib6_flags = res.f6i->fib6_flags; 4018 res.fib6_type = res.f6i->fib6_type; 4019 nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); 4020 if (!nrt) 4021 goto out; 4022 4023 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 4024 if (on_link) 4025 nrt->rt6i_flags &= ~RTF_GATEWAY; 4026 4027 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 4028 4029 /* rt6_insert_exception() will take care of duplicated exceptions */ 4030 if (rt6_insert_exception(nrt, &res)) { 4031 dst_release_immediate(&nrt->dst); 4032 goto out; 4033 } 4034 4035 netevent.old = &rt->dst; 4036 netevent.new = &nrt->dst; 4037 netevent.daddr = &msg->dest; 4038 netevent.neigh = neigh; 4039 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 4040 4041 out: 4042 rcu_read_unlock(); 4043 neigh_release(neigh); 4044 } 4045 4046 #ifdef CONFIG_IPV6_ROUTE_INFO 4047 static struct fib6_info *rt6_get_route_info(struct net *net, 4048 const struct in6_addr *prefix, int prefixlen, 4049 const struct in6_addr *gwaddr, 4050 struct net_device *dev) 4051 { 4052 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4053 int ifindex = dev->ifindex; 4054 struct fib6_node *fn; 4055 struct fib6_info *rt = NULL; 4056 struct fib6_table *table; 4057 4058 table = fib6_get_table(net, tb_id); 4059 if (!table) 4060 return NULL; 4061 4062 rcu_read_lock(); 4063 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 4064 if (!fn) 4065 goto out; 4066 4067 for_each_fib6_node_rt_rcu(fn) { 4068 /* these routes do not use nexthops */ 4069 if (rt->nh) 4070 continue; 4071 if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) 4072 continue; 4073 if (!(rt->fib6_flags & RTF_ROUTEINFO) || 4074 !rt->fib6_nh->fib_nh_gw_family) 4075 continue; 4076 if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) 4077 continue; 4078 if (!fib6_info_hold_safe(rt)) 4079 continue; 4080 break; 4081 } 4082 out: 4083 rcu_read_unlock(); 4084 return rt; 4085 } 4086 4087 static struct fib6_info *rt6_add_route_info(struct net *net, 4088 const struct in6_addr *prefix, int prefixlen, 4089 const struct in6_addr *gwaddr, 4090 struct net_device *dev, 4091 unsigned int pref) 4092 { 4093 struct fib6_config cfg = { 4094 .fc_metric = IP6_RT_PRIO_USER, 4095 .fc_ifindex = dev->ifindex, 4096 .fc_dst_len = prefixlen, 4097 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 4098 RTF_UP | RTF_PREF(pref), 4099 .fc_protocol = RTPROT_RA, 4100 .fc_type = RTN_UNICAST, 4101 .fc_nlinfo.portid = 0, 4102 .fc_nlinfo.nlh = NULL, 4103 .fc_nlinfo.nl_net = net, 4104 }; 4105 4106 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO, 4107 cfg.fc_dst = *prefix; 4108 cfg.fc_gateway = *gwaddr; 4109 4110 /* We should treat it as a default route if prefix length is 0. */ 4111 if (!prefixlen) 4112 cfg.fc_flags |= RTF_DEFAULT; 4113 4114 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 4115 4116 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 4117 } 4118 #endif 4119 4120 struct fib6_info *rt6_get_dflt_router(struct net *net, 4121 const struct in6_addr *addr, 4122 struct net_device *dev) 4123 { 4124 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 4125 struct fib6_info *rt; 4126 struct fib6_table *table; 4127 4128 table = fib6_get_table(net, tb_id); 4129 if (!table) 4130 return NULL; 4131 4132 rcu_read_lock(); 4133 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4134 struct fib6_nh *nh; 4135 4136 /* RA routes do not use nexthops */ 4137 if (rt->nh) 4138 continue; 4139 4140 nh = rt->fib6_nh; 4141 if (dev == nh->fib_nh_dev && 4142 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 4143 ipv6_addr_equal(&nh->fib_nh_gw6, addr)) 4144 break; 4145 } 4146 if (rt && !fib6_info_hold_safe(rt)) 4147 rt = NULL; 4148 rcu_read_unlock(); 4149 return rt; 4150 } 4151 4152 struct fib6_info *rt6_add_dflt_router(struct net *net, 4153 const struct in6_addr *gwaddr, 4154 struct net_device *dev, 4155 unsigned int pref) 4156 { 4157 struct fib6_config cfg = { 4158 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 4159 .fc_metric = IP6_RT_PRIO_USER, 4160 .fc_ifindex = dev->ifindex, 4161 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 4162 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 4163 .fc_protocol = RTPROT_RA, 4164 .fc_type = RTN_UNICAST, 4165 .fc_nlinfo.portid = 0, 4166 .fc_nlinfo.nlh = NULL, 4167 .fc_nlinfo.nl_net = net, 4168 }; 4169 4170 cfg.fc_gateway = *gwaddr; 4171 4172 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 4173 struct fib6_table *table; 4174 4175 table = fib6_get_table(dev_net(dev), cfg.fc_table); 4176 if (table) 4177 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 4178 } 4179 4180 return rt6_get_dflt_router(net, gwaddr, dev); 4181 } 4182 4183 static void __rt6_purge_dflt_routers(struct net *net, 4184 struct fib6_table *table) 4185 { 4186 struct fib6_info *rt; 4187 4188 restart: 4189 rcu_read_lock(); 4190 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4191 struct net_device *dev = fib6_info_nh_dev(rt); 4192 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 4193 4194 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 4195 (!idev || idev->cnf.accept_ra != 2) && 4196 fib6_info_hold_safe(rt)) { 4197 rcu_read_unlock(); 4198 ip6_del_rt(net, rt); 4199 goto restart; 4200 } 4201 } 4202 rcu_read_unlock(); 4203 4204 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 4205 } 4206 4207 void rt6_purge_dflt_routers(struct net *net) 4208 { 4209 struct fib6_table *table; 4210 struct hlist_head *head; 4211 unsigned int h; 4212 4213 rcu_read_lock(); 4214 4215 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 4216 head = &net->ipv6.fib_table_hash[h]; 4217 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 4218 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 4219 __rt6_purge_dflt_routers(net, table); 4220 } 4221 } 4222 4223 rcu_read_unlock(); 4224 } 4225 4226 static void rtmsg_to_fib6_config(struct net *net, 4227 struct in6_rtmsg *rtmsg, 4228 struct fib6_config *cfg) 4229 { 4230 *cfg = (struct fib6_config){ 4231 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 4232 : RT6_TABLE_MAIN, 4233 .fc_ifindex = rtmsg->rtmsg_ifindex, 4234 .fc_metric = rtmsg->rtmsg_metric ? : IP6_RT_PRIO_USER, 4235 .fc_expires = rtmsg->rtmsg_info, 4236 .fc_dst_len = rtmsg->rtmsg_dst_len, 4237 .fc_src_len = rtmsg->rtmsg_src_len, 4238 .fc_flags = rtmsg->rtmsg_flags, 4239 .fc_type = rtmsg->rtmsg_type, 4240 4241 .fc_nlinfo.nl_net = net, 4242 4243 .fc_dst = rtmsg->rtmsg_dst, 4244 .fc_src = rtmsg->rtmsg_src, 4245 .fc_gateway = rtmsg->rtmsg_gateway, 4246 }; 4247 } 4248 4249 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4250 { 4251 struct fib6_config cfg; 4252 struct in6_rtmsg rtmsg; 4253 int err; 4254 4255 switch (cmd) { 4256 case SIOCADDRT: /* Add a route */ 4257 case SIOCDELRT: /* Delete a route */ 4258 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 4259 return -EPERM; 4260 err = copy_from_user(&rtmsg, arg, 4261 sizeof(struct in6_rtmsg)); 4262 if (err) 4263 return -EFAULT; 4264 4265 rtmsg_to_fib6_config(net, &rtmsg, &cfg); 4266 4267 rtnl_lock(); 4268 switch (cmd) { 4269 case SIOCADDRT: 4270 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 4271 break; 4272 case SIOCDELRT: 4273 err = ip6_route_del(&cfg, NULL); 4274 break; 4275 default: 4276 err = -EINVAL; 4277 } 4278 rtnl_unlock(); 4279 4280 return err; 4281 } 4282 4283 return -EINVAL; 4284 } 4285 4286 /* 4287 * Drop the packet on the floor 4288 */ 4289 4290 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 4291 { 4292 struct dst_entry *dst = skb_dst(skb); 4293 struct net *net = dev_net(dst->dev); 4294 struct inet6_dev *idev; 4295 int type; 4296 4297 if (netif_is_l3_master(skb->dev) && 4298 dst->dev == net->loopback_dev) 4299 idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); 4300 else 4301 idev = ip6_dst_idev(dst); 4302 4303 switch (ipstats_mib_noroutes) { 4304 case IPSTATS_MIB_INNOROUTES: 4305 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 4306 if (type == IPV6_ADDR_ANY) { 4307 IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); 4308 break; 4309 } 4310 /* FALLTHROUGH */ 4311 case IPSTATS_MIB_OUTNOROUTES: 4312 IP6_INC_STATS(net, idev, ipstats_mib_noroutes); 4313 break; 4314 } 4315 4316 /* Start over by dropping the dst for l3mdev case */ 4317 if (netif_is_l3_master(skb->dev)) 4318 skb_dst_drop(skb); 4319 4320 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 4321 kfree_skb(skb); 4322 return 0; 4323 } 4324 4325 static int ip6_pkt_discard(struct sk_buff *skb) 4326 { 4327 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 4328 } 4329 4330 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4331 { 4332 skb->dev = skb_dst(skb)->dev; 4333 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 4334 } 4335 4336 static int ip6_pkt_prohibit(struct sk_buff *skb) 4337 { 4338 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 4339 } 4340 4341 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4342 { 4343 skb->dev = skb_dst(skb)->dev; 4344 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 4345 } 4346 4347 /* 4348 * Allocate a dst for local (unicast / anycast) address. 4349 */ 4350 4351 struct fib6_info *addrconf_f6i_alloc(struct net *net, 4352 struct inet6_dev *idev, 4353 const struct in6_addr *addr, 4354 bool anycast, gfp_t gfp_flags) 4355 { 4356 struct fib6_config cfg = { 4357 .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, 4358 .fc_ifindex = idev->dev->ifindex, 4359 .fc_flags = RTF_UP | RTF_ADDRCONF | RTF_NONEXTHOP, 4360 .fc_dst = *addr, 4361 .fc_dst_len = 128, 4362 .fc_protocol = RTPROT_KERNEL, 4363 .fc_nlinfo.nl_net = net, 4364 .fc_ignore_dev_down = true, 4365 }; 4366 4367 if (anycast) { 4368 cfg.fc_type = RTN_ANYCAST; 4369 cfg.fc_flags |= RTF_ANYCAST; 4370 } else { 4371 cfg.fc_type = RTN_LOCAL; 4372 cfg.fc_flags |= RTF_LOCAL; 4373 } 4374 4375 return ip6_route_info_create(&cfg, gfp_flags, NULL); 4376 } 4377 4378 /* remove deleted ip from prefsrc entries */ 4379 struct arg_dev_net_ip { 4380 struct net_device *dev; 4381 struct net *net; 4382 struct in6_addr *addr; 4383 }; 4384 4385 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 4386 { 4387 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 4388 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 4389 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 4390 4391 if (!rt->nh && 4392 ((void *)rt->fib6_nh->fib_nh_dev == dev || !dev) && 4393 rt != net->ipv6.fib6_null_entry && 4394 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) { 4395 spin_lock_bh(&rt6_exception_lock); 4396 /* remove prefsrc entry */ 4397 rt->fib6_prefsrc.plen = 0; 4398 spin_unlock_bh(&rt6_exception_lock); 4399 } 4400 return 0; 4401 } 4402 4403 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 4404 { 4405 struct net *net = dev_net(ifp->idev->dev); 4406 struct arg_dev_net_ip adni = { 4407 .dev = ifp->idev->dev, 4408 .net = net, 4409 .addr = &ifp->addr, 4410 }; 4411 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 4412 } 4413 4414 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) 4415 4416 /* Remove routers and update dst entries when gateway turn into host. */ 4417 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 4418 { 4419 struct in6_addr *gateway = (struct in6_addr *)arg; 4420 struct fib6_nh *nh; 4421 4422 /* RA routes do not use nexthops */ 4423 if (rt->nh) 4424 return 0; 4425 4426 nh = rt->fib6_nh; 4427 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 4428 nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) 4429 return -1; 4430 4431 /* Further clean up cached routes in exception table. 4432 * This is needed because cached route may have a different 4433 * gateway than its 'parent' in the case of an ip redirect. 4434 */ 4435 fib6_nh_exceptions_clean_tohost(nh, gateway); 4436 4437 return 0; 4438 } 4439 4440 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 4441 { 4442 fib6_clean_all(net, fib6_clean_tohost, gateway); 4443 } 4444 4445 struct arg_netdev_event { 4446 const struct net_device *dev; 4447 union { 4448 unsigned char nh_flags; 4449 unsigned long event; 4450 }; 4451 }; 4452 4453 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 4454 { 4455 struct fib6_info *iter; 4456 struct fib6_node *fn; 4457 4458 fn = rcu_dereference_protected(rt->fib6_node, 4459 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4460 iter = rcu_dereference_protected(fn->leaf, 4461 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4462 while (iter) { 4463 if (iter->fib6_metric == rt->fib6_metric && 4464 rt6_qualify_for_ecmp(iter)) 4465 return iter; 4466 iter = rcu_dereference_protected(iter->fib6_next, 4467 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4468 } 4469 4470 return NULL; 4471 } 4472 4473 /* only called for fib entries with builtin fib6_nh */ 4474 static bool rt6_is_dead(const struct fib6_info *rt) 4475 { 4476 if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || 4477 (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && 4478 ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) 4479 return true; 4480 4481 return false; 4482 } 4483 4484 static int rt6_multipath_total_weight(const struct fib6_info *rt) 4485 { 4486 struct fib6_info *iter; 4487 int total = 0; 4488 4489 if (!rt6_is_dead(rt)) 4490 total += rt->fib6_nh->fib_nh_weight; 4491 4492 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 4493 if (!rt6_is_dead(iter)) 4494 total += iter->fib6_nh->fib_nh_weight; 4495 } 4496 4497 return total; 4498 } 4499 4500 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 4501 { 4502 int upper_bound = -1; 4503 4504 if (!rt6_is_dead(rt)) { 4505 *weight += rt->fib6_nh->fib_nh_weight; 4506 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 4507 total) - 1; 4508 } 4509 atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); 4510 } 4511 4512 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 4513 { 4514 struct fib6_info *iter; 4515 int weight = 0; 4516 4517 rt6_upper_bound_set(rt, &weight, total); 4518 4519 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4520 rt6_upper_bound_set(iter, &weight, total); 4521 } 4522 4523 void rt6_multipath_rebalance(struct fib6_info *rt) 4524 { 4525 struct fib6_info *first; 4526 int total; 4527 4528 /* In case the entire multipath route was marked for flushing, 4529 * then there is no need to rebalance upon the removal of every 4530 * sibling route. 4531 */ 4532 if (!rt->fib6_nsiblings || rt->should_flush) 4533 return; 4534 4535 /* During lookup routes are evaluated in order, so we need to 4536 * make sure upper bounds are assigned from the first sibling 4537 * onwards. 4538 */ 4539 first = rt6_multipath_first_sibling(rt); 4540 if (WARN_ON_ONCE(!first)) 4541 return; 4542 4543 total = rt6_multipath_total_weight(first); 4544 rt6_multipath_upper_bound_set(first, total); 4545 } 4546 4547 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 4548 { 4549 const struct arg_netdev_event *arg = p_arg; 4550 struct net *net = dev_net(arg->dev); 4551 4552 if (rt != net->ipv6.fib6_null_entry && !rt->nh && 4553 rt->fib6_nh->fib_nh_dev == arg->dev) { 4554 rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; 4555 fib6_update_sernum_upto_root(net, rt); 4556 rt6_multipath_rebalance(rt); 4557 } 4558 4559 return 0; 4560 } 4561 4562 void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) 4563 { 4564 struct arg_netdev_event arg = { 4565 .dev = dev, 4566 { 4567 .nh_flags = nh_flags, 4568 }, 4569 }; 4570 4571 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 4572 arg.nh_flags |= RTNH_F_LINKDOWN; 4573 4574 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 4575 } 4576 4577 /* only called for fib entries with inline fib6_nh */ 4578 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 4579 const struct net_device *dev) 4580 { 4581 struct fib6_info *iter; 4582 4583 if (rt->fib6_nh->fib_nh_dev == dev) 4584 return true; 4585 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4586 if (iter->fib6_nh->fib_nh_dev == dev) 4587 return true; 4588 4589 return false; 4590 } 4591 4592 static void rt6_multipath_flush(struct fib6_info *rt) 4593 { 4594 struct fib6_info *iter; 4595 4596 rt->should_flush = 1; 4597 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4598 iter->should_flush = 1; 4599 } 4600 4601 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 4602 const struct net_device *down_dev) 4603 { 4604 struct fib6_info *iter; 4605 unsigned int dead = 0; 4606 4607 if (rt->fib6_nh->fib_nh_dev == down_dev || 4608 rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4609 dead++; 4610 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4611 if (iter->fib6_nh->fib_nh_dev == down_dev || 4612 iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4613 dead++; 4614 4615 return dead; 4616 } 4617 4618 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 4619 const struct net_device *dev, 4620 unsigned char nh_flags) 4621 { 4622 struct fib6_info *iter; 4623 4624 if (rt->fib6_nh->fib_nh_dev == dev) 4625 rt->fib6_nh->fib_nh_flags |= nh_flags; 4626 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4627 if (iter->fib6_nh->fib_nh_dev == dev) 4628 iter->fib6_nh->fib_nh_flags |= nh_flags; 4629 } 4630 4631 /* called with write lock held for table with rt */ 4632 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 4633 { 4634 const struct arg_netdev_event *arg = p_arg; 4635 const struct net_device *dev = arg->dev; 4636 struct net *net = dev_net(dev); 4637 4638 if (rt == net->ipv6.fib6_null_entry || rt->nh) 4639 return 0; 4640 4641 switch (arg->event) { 4642 case NETDEV_UNREGISTER: 4643 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4644 case NETDEV_DOWN: 4645 if (rt->should_flush) 4646 return -1; 4647 if (!rt->fib6_nsiblings) 4648 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4649 if (rt6_multipath_uses_dev(rt, dev)) { 4650 unsigned int count; 4651 4652 count = rt6_multipath_dead_count(rt, dev); 4653 if (rt->fib6_nsiblings + 1 == count) { 4654 rt6_multipath_flush(rt); 4655 return -1; 4656 } 4657 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4658 RTNH_F_LINKDOWN); 4659 fib6_update_sernum(net, rt); 4660 rt6_multipath_rebalance(rt); 4661 } 4662 return -2; 4663 case NETDEV_CHANGE: 4664 if (rt->fib6_nh->fib_nh_dev != dev || 4665 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4666 break; 4667 rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 4668 rt6_multipath_rebalance(rt); 4669 break; 4670 } 4671 4672 return 0; 4673 } 4674 4675 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4676 { 4677 struct arg_netdev_event arg = { 4678 .dev = dev, 4679 { 4680 .event = event, 4681 }, 4682 }; 4683 struct net *net = dev_net(dev); 4684 4685 if (net->ipv6.sysctl.skip_notify_on_dev_down) 4686 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 4687 else 4688 fib6_clean_all(net, fib6_ifdown, &arg); 4689 } 4690 4691 void rt6_disable_ip(struct net_device *dev, unsigned long event) 4692 { 4693 rt6_sync_down_dev(dev, event); 4694 rt6_uncached_list_flush_dev(dev_net(dev), dev); 4695 neigh_ifdown(&nd_tbl, dev); 4696 } 4697 4698 struct rt6_mtu_change_arg { 4699 struct net_device *dev; 4700 unsigned int mtu; 4701 struct fib6_info *f6i; 4702 }; 4703 4704 static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) 4705 { 4706 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; 4707 struct fib6_info *f6i = arg->f6i; 4708 4709 /* For administrative MTU increase, there is no way to discover 4710 * IPv6 PMTU increase, so PMTU increase should be updated here. 4711 * Since RFC 1981 doesn't include administrative MTU increase 4712 * update PMTU increase is a MUST. (i.e. jumbo frame) 4713 */ 4714 if (nh->fib_nh_dev == arg->dev) { 4715 struct inet6_dev *idev = __in6_dev_get(arg->dev); 4716 u32 mtu = f6i->fib6_pmtu; 4717 4718 if (mtu >= arg->mtu || 4719 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 4720 fib6_metric_set(f6i, RTAX_MTU, arg->mtu); 4721 4722 spin_lock_bh(&rt6_exception_lock); 4723 rt6_exceptions_update_pmtu(idev, nh, arg->mtu); 4724 spin_unlock_bh(&rt6_exception_lock); 4725 } 4726 4727 return 0; 4728 } 4729 4730 static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) 4731 { 4732 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 4733 struct inet6_dev *idev; 4734 4735 /* In IPv6 pmtu discovery is not optional, 4736 so that RTAX_MTU lock cannot disable it. 4737 We still use this lock to block changes 4738 caused by addrconf/ndisc. 4739 */ 4740 4741 idev = __in6_dev_get(arg->dev); 4742 if (!idev) 4743 return 0; 4744 4745 if (fib6_metric_locked(f6i, RTAX_MTU)) 4746 return 0; 4747 4748 arg->f6i = f6i; 4749 if (f6i->nh) { 4750 /* fib6_nh_mtu_change only returns 0, so this is safe */ 4751 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, 4752 arg); 4753 } 4754 4755 return fib6_nh_mtu_change(f6i->fib6_nh, arg); 4756 } 4757 4758 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 4759 { 4760 struct rt6_mtu_change_arg arg = { 4761 .dev = dev, 4762 .mtu = mtu, 4763 }; 4764 4765 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 4766 } 4767 4768 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 4769 [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, 4770 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 4771 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 4772 [RTA_OIF] = { .type = NLA_U32 }, 4773 [RTA_IIF] = { .type = NLA_U32 }, 4774 [RTA_PRIORITY] = { .type = NLA_U32 }, 4775 [RTA_METRICS] = { .type = NLA_NESTED }, 4776 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 4777 [RTA_PREF] = { .type = NLA_U8 }, 4778 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 4779 [RTA_ENCAP] = { .type = NLA_NESTED }, 4780 [RTA_EXPIRES] = { .type = NLA_U32 }, 4781 [RTA_UID] = { .type = NLA_U32 }, 4782 [RTA_MARK] = { .type = NLA_U32 }, 4783 [RTA_TABLE] = { .type = NLA_U32 }, 4784 [RTA_IP_PROTO] = { .type = NLA_U8 }, 4785 [RTA_SPORT] = { .type = NLA_U16 }, 4786 [RTA_DPORT] = { .type = NLA_U16 }, 4787 [RTA_NH_ID] = { .type = NLA_U32 }, 4788 }; 4789 4790 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 4791 struct fib6_config *cfg, 4792 struct netlink_ext_ack *extack) 4793 { 4794 struct rtmsg *rtm; 4795 struct nlattr *tb[RTA_MAX+1]; 4796 unsigned int pref; 4797 int err; 4798 4799 err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 4800 rtm_ipv6_policy, extack); 4801 if (err < 0) 4802 goto errout; 4803 4804 err = -EINVAL; 4805 rtm = nlmsg_data(nlh); 4806 4807 *cfg = (struct fib6_config){ 4808 .fc_table = rtm->rtm_table, 4809 .fc_dst_len = rtm->rtm_dst_len, 4810 .fc_src_len = rtm->rtm_src_len, 4811 .fc_flags = RTF_UP, 4812 .fc_protocol = rtm->rtm_protocol, 4813 .fc_type = rtm->rtm_type, 4814 4815 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 4816 .fc_nlinfo.nlh = nlh, 4817 .fc_nlinfo.nl_net = sock_net(skb->sk), 4818 }; 4819 4820 if (rtm->rtm_type == RTN_UNREACHABLE || 4821 rtm->rtm_type == RTN_BLACKHOLE || 4822 rtm->rtm_type == RTN_PROHIBIT || 4823 rtm->rtm_type == RTN_THROW) 4824 cfg->fc_flags |= RTF_REJECT; 4825 4826 if (rtm->rtm_type == RTN_LOCAL) 4827 cfg->fc_flags |= RTF_LOCAL; 4828 4829 if (rtm->rtm_flags & RTM_F_CLONED) 4830 cfg->fc_flags |= RTF_CACHE; 4831 4832 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 4833 4834 if (tb[RTA_NH_ID]) { 4835 if (tb[RTA_GATEWAY] || tb[RTA_OIF] || 4836 tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { 4837 NL_SET_ERR_MSG(extack, 4838 "Nexthop specification and nexthop id are mutually exclusive"); 4839 goto errout; 4840 } 4841 cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); 4842 } 4843 4844 if (tb[RTA_GATEWAY]) { 4845 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 4846 cfg->fc_flags |= RTF_GATEWAY; 4847 } 4848 if (tb[RTA_VIA]) { 4849 NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); 4850 goto errout; 4851 } 4852 4853 if (tb[RTA_DST]) { 4854 int plen = (rtm->rtm_dst_len + 7) >> 3; 4855 4856 if (nla_len(tb[RTA_DST]) < plen) 4857 goto errout; 4858 4859 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 4860 } 4861 4862 if (tb[RTA_SRC]) { 4863 int plen = (rtm->rtm_src_len + 7) >> 3; 4864 4865 if (nla_len(tb[RTA_SRC]) < plen) 4866 goto errout; 4867 4868 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 4869 } 4870 4871 if (tb[RTA_PREFSRC]) 4872 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 4873 4874 if (tb[RTA_OIF]) 4875 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 4876 4877 if (tb[RTA_PRIORITY]) 4878 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 4879 4880 if (tb[RTA_METRICS]) { 4881 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 4882 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 4883 } 4884 4885 if (tb[RTA_TABLE]) 4886 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 4887 4888 if (tb[RTA_MULTIPATH]) { 4889 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 4890 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 4891 4892 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, 4893 cfg->fc_mp_len, extack); 4894 if (err < 0) 4895 goto errout; 4896 } 4897 4898 if (tb[RTA_PREF]) { 4899 pref = nla_get_u8(tb[RTA_PREF]); 4900 if (pref != ICMPV6_ROUTER_PREF_LOW && 4901 pref != ICMPV6_ROUTER_PREF_HIGH) 4902 pref = ICMPV6_ROUTER_PREF_MEDIUM; 4903 cfg->fc_flags |= RTF_PREF(pref); 4904 } 4905 4906 if (tb[RTA_ENCAP]) 4907 cfg->fc_encap = tb[RTA_ENCAP]; 4908 4909 if (tb[RTA_ENCAP_TYPE]) { 4910 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 4911 4912 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 4913 if (err < 0) 4914 goto errout; 4915 } 4916 4917 if (tb[RTA_EXPIRES]) { 4918 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 4919 4920 if (addrconf_finite_timeout(timeout)) { 4921 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 4922 cfg->fc_flags |= RTF_EXPIRES; 4923 } 4924 } 4925 4926 err = 0; 4927 errout: 4928 return err; 4929 } 4930 4931 struct rt6_nh { 4932 struct fib6_info *fib6_info; 4933 struct fib6_config r_cfg; 4934 struct list_head next; 4935 }; 4936 4937 static int ip6_route_info_append(struct net *net, 4938 struct list_head *rt6_nh_list, 4939 struct fib6_info *rt, 4940 struct fib6_config *r_cfg) 4941 { 4942 struct rt6_nh *nh; 4943 int err = -EEXIST; 4944 4945 list_for_each_entry(nh, rt6_nh_list, next) { 4946 /* check if fib6_info already exists */ 4947 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 4948 return err; 4949 } 4950 4951 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 4952 if (!nh) 4953 return -ENOMEM; 4954 nh->fib6_info = rt; 4955 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 4956 list_add_tail(&nh->next, rt6_nh_list); 4957 4958 return 0; 4959 } 4960 4961 static void ip6_route_mpath_notify(struct fib6_info *rt, 4962 struct fib6_info *rt_last, 4963 struct nl_info *info, 4964 __u16 nlflags) 4965 { 4966 /* if this is an APPEND route, then rt points to the first route 4967 * inserted and rt_last points to last route inserted. Userspace 4968 * wants a consistent dump of the route which starts at the first 4969 * nexthop. Since sibling routes are always added at the end of 4970 * the list, find the first sibling of the last route appended 4971 */ 4972 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { 4973 rt = list_first_entry(&rt_last->fib6_siblings, 4974 struct fib6_info, 4975 fib6_siblings); 4976 } 4977 4978 if (rt) 4979 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 4980 } 4981 4982 static int ip6_route_multipath_add(struct fib6_config *cfg, 4983 struct netlink_ext_ack *extack) 4984 { 4985 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 4986 struct nl_info *info = &cfg->fc_nlinfo; 4987 enum fib_event_type event_type; 4988 struct fib6_config r_cfg; 4989 struct rtnexthop *rtnh; 4990 struct fib6_info *rt; 4991 struct rt6_nh *err_nh; 4992 struct rt6_nh *nh, *nh_safe; 4993 __u16 nlflags; 4994 int remaining; 4995 int attrlen; 4996 int err = 1; 4997 int nhn = 0; 4998 int replace = (cfg->fc_nlinfo.nlh && 4999 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 5000 LIST_HEAD(rt6_nh_list); 5001 5002 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 5003 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 5004 nlflags |= NLM_F_APPEND; 5005 5006 remaining = cfg->fc_mp_len; 5007 rtnh = (struct rtnexthop *)cfg->fc_mp; 5008 5009 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 5010 * fib6_info structs per nexthop 5011 */ 5012 while (rtnh_ok(rtnh, remaining)) { 5013 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5014 if (rtnh->rtnh_ifindex) 5015 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5016 5017 attrlen = rtnh_attrlen(rtnh); 5018 if (attrlen > 0) { 5019 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5020 5021 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5022 if (nla) { 5023 r_cfg.fc_gateway = nla_get_in6_addr(nla); 5024 r_cfg.fc_flags |= RTF_GATEWAY; 5025 } 5026 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 5027 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 5028 if (nla) 5029 r_cfg.fc_encap_type = nla_get_u16(nla); 5030 } 5031 5032 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 5033 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 5034 if (IS_ERR(rt)) { 5035 err = PTR_ERR(rt); 5036 rt = NULL; 5037 goto cleanup; 5038 } 5039 if (!rt6_qualify_for_ecmp(rt)) { 5040 err = -EINVAL; 5041 NL_SET_ERR_MSG(extack, 5042 "Device only routes can not be added for IPv6 using the multipath API."); 5043 fib6_info_release(rt); 5044 goto cleanup; 5045 } 5046 5047 rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; 5048 5049 err = ip6_route_info_append(info->nl_net, &rt6_nh_list, 5050 rt, &r_cfg); 5051 if (err) { 5052 fib6_info_release(rt); 5053 goto cleanup; 5054 } 5055 5056 rtnh = rtnh_next(rtnh, &remaining); 5057 } 5058 5059 if (list_empty(&rt6_nh_list)) { 5060 NL_SET_ERR_MSG(extack, 5061 "Invalid nexthop configuration - no valid nexthops"); 5062 return -EINVAL; 5063 } 5064 5065 /* for add and replace send one notification with all nexthops. 5066 * Skip the notification in fib6_add_rt2node and send one with 5067 * the full route when done 5068 */ 5069 info->skip_notify = 1; 5070 5071 /* For add and replace, send one notification with all nexthops. For 5072 * append, send one notification with all appended nexthops. 5073 */ 5074 info->skip_notify_kernel = 1; 5075 5076 err_nh = NULL; 5077 list_for_each_entry(nh, &rt6_nh_list, next) { 5078 err = __ip6_ins_rt(nh->fib6_info, info, extack); 5079 fib6_info_release(nh->fib6_info); 5080 5081 if (!err) { 5082 /* save reference to last route successfully inserted */ 5083 rt_last = nh->fib6_info; 5084 5085 /* save reference to first route for notification */ 5086 if (!rt_notif) 5087 rt_notif = nh->fib6_info; 5088 } 5089 5090 /* nh->fib6_info is used or freed at this point, reset to NULL*/ 5091 nh->fib6_info = NULL; 5092 if (err) { 5093 if (replace && nhn) 5094 NL_SET_ERR_MSG_MOD(extack, 5095 "multipath route replace failed (check consistency of installed routes)"); 5096 err_nh = nh; 5097 goto add_errout; 5098 } 5099 5100 /* Because each route is added like a single route we remove 5101 * these flags after the first nexthop: if there is a collision, 5102 * we have already failed to add the first nexthop: 5103 * fib6_add_rt2node() has rejected it; when replacing, old 5104 * nexthops have been replaced by first new, the rest should 5105 * be added to it. 5106 */ 5107 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 5108 NLM_F_REPLACE); 5109 nhn++; 5110 } 5111 5112 event_type = replace ? FIB_EVENT_ENTRY_REPLACE : FIB_EVENT_ENTRY_ADD; 5113 err = call_fib6_multipath_entry_notifiers(info->nl_net, event_type, 5114 rt_notif, nhn - 1, extack); 5115 if (err) { 5116 /* Delete all the siblings that were just added */ 5117 err_nh = NULL; 5118 goto add_errout; 5119 } 5120 5121 /* success ... tell user about new route */ 5122 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5123 goto cleanup; 5124 5125 add_errout: 5126 /* send notification for routes that were added so that 5127 * the delete notifications sent by ip6_route_del are 5128 * coherent 5129 */ 5130 if (rt_notif) 5131 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5132 5133 /* Delete routes that were already added */ 5134 list_for_each_entry(nh, &rt6_nh_list, next) { 5135 if (err_nh == nh) 5136 break; 5137 ip6_route_del(&nh->r_cfg, extack); 5138 } 5139 5140 cleanup: 5141 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { 5142 if (nh->fib6_info) 5143 fib6_info_release(nh->fib6_info); 5144 list_del(&nh->next); 5145 kfree(nh); 5146 } 5147 5148 return err; 5149 } 5150 5151 static int ip6_route_multipath_del(struct fib6_config *cfg, 5152 struct netlink_ext_ack *extack) 5153 { 5154 struct fib6_config r_cfg; 5155 struct rtnexthop *rtnh; 5156 int remaining; 5157 int attrlen; 5158 int err = 1, last_err = 0; 5159 5160 remaining = cfg->fc_mp_len; 5161 rtnh = (struct rtnexthop *)cfg->fc_mp; 5162 5163 /* Parse a Multipath Entry */ 5164 while (rtnh_ok(rtnh, remaining)) { 5165 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5166 if (rtnh->rtnh_ifindex) 5167 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5168 5169 attrlen = rtnh_attrlen(rtnh); 5170 if (attrlen > 0) { 5171 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5172 5173 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5174 if (nla) { 5175 nla_memcpy(&r_cfg.fc_gateway, nla, 16); 5176 r_cfg.fc_flags |= RTF_GATEWAY; 5177 } 5178 } 5179 err = ip6_route_del(&r_cfg, extack); 5180 if (err) 5181 last_err = err; 5182 5183 rtnh = rtnh_next(rtnh, &remaining); 5184 } 5185 5186 return last_err; 5187 } 5188 5189 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5190 struct netlink_ext_ack *extack) 5191 { 5192 struct fib6_config cfg; 5193 int err; 5194 5195 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5196 if (err < 0) 5197 return err; 5198 5199 if (cfg.fc_nh_id && 5200 !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) { 5201 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 5202 return -EINVAL; 5203 } 5204 5205 if (cfg.fc_mp) 5206 return ip6_route_multipath_del(&cfg, extack); 5207 else { 5208 cfg.fc_delete_all_nh = 1; 5209 return ip6_route_del(&cfg, extack); 5210 } 5211 } 5212 5213 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5214 struct netlink_ext_ack *extack) 5215 { 5216 struct fib6_config cfg; 5217 int err; 5218 5219 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5220 if (err < 0) 5221 return err; 5222 5223 if (cfg.fc_metric == 0) 5224 cfg.fc_metric = IP6_RT_PRIO_USER; 5225 5226 if (cfg.fc_mp) 5227 return ip6_route_multipath_add(&cfg, extack); 5228 else 5229 return ip6_route_add(&cfg, GFP_KERNEL, extack); 5230 } 5231 5232 /* add the overhead of this fib6_nh to nexthop_len */ 5233 static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) 5234 { 5235 int *nexthop_len = arg; 5236 5237 *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ 5238 + NLA_ALIGN(sizeof(struct rtnexthop)) 5239 + nla_total_size(16); /* RTA_GATEWAY */ 5240 5241 if (nh->fib_nh_lws) { 5242 /* RTA_ENCAP_TYPE */ 5243 *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5244 /* RTA_ENCAP */ 5245 *nexthop_len += nla_total_size(2); 5246 } 5247 5248 return 0; 5249 } 5250 5251 static size_t rt6_nlmsg_size(struct fib6_info *f6i) 5252 { 5253 int nexthop_len; 5254 5255 if (f6i->nh) { 5256 nexthop_len = nla_total_size(4); /* RTA_NH_ID */ 5257 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, 5258 &nexthop_len); 5259 } else { 5260 struct fib6_nh *nh = f6i->fib6_nh; 5261 5262 nexthop_len = 0; 5263 if (f6i->fib6_nsiblings) { 5264 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */ 5265 + NLA_ALIGN(sizeof(struct rtnexthop)) 5266 + nla_total_size(16) /* RTA_GATEWAY */ 5267 + lwtunnel_get_encap_size(nh->fib_nh_lws); 5268 5269 nexthop_len *= f6i->fib6_nsiblings; 5270 } 5271 nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5272 } 5273 5274 return NLMSG_ALIGN(sizeof(struct rtmsg)) 5275 + nla_total_size(16) /* RTA_SRC */ 5276 + nla_total_size(16) /* RTA_DST */ 5277 + nla_total_size(16) /* RTA_GATEWAY */ 5278 + nla_total_size(16) /* RTA_PREFSRC */ 5279 + nla_total_size(4) /* RTA_TABLE */ 5280 + nla_total_size(4) /* RTA_IIF */ 5281 + nla_total_size(4) /* RTA_OIF */ 5282 + nla_total_size(4) /* RTA_PRIORITY */ 5283 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 5284 + nla_total_size(sizeof(struct rta_cacheinfo)) 5285 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 5286 + nla_total_size(1) /* RTA_PREF */ 5287 + nexthop_len; 5288 } 5289 5290 static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, 5291 unsigned char *flags) 5292 { 5293 if (nexthop_is_multipath(nh)) { 5294 struct nlattr *mp; 5295 5296 mp = nla_nest_start(skb, RTA_MULTIPATH); 5297 if (!mp) 5298 goto nla_put_failure; 5299 5300 if (nexthop_mpath_fill_node(skb, nh)) 5301 goto nla_put_failure; 5302 5303 nla_nest_end(skb, mp); 5304 } else { 5305 struct fib6_nh *fib6_nh; 5306 5307 fib6_nh = nexthop_fib6_nh(nh); 5308 if (fib_nexthop_info(skb, &fib6_nh->nh_common, 5309 flags, false) < 0) 5310 goto nla_put_failure; 5311 } 5312 5313 return 0; 5314 5315 nla_put_failure: 5316 return -EMSGSIZE; 5317 } 5318 5319 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 5320 struct fib6_info *rt, struct dst_entry *dst, 5321 struct in6_addr *dest, struct in6_addr *src, 5322 int iif, int type, u32 portid, u32 seq, 5323 unsigned int flags) 5324 { 5325 struct rt6_info *rt6 = (struct rt6_info *)dst; 5326 struct rt6key *rt6_dst, *rt6_src; 5327 u32 *pmetrics, table, rt6_flags; 5328 unsigned char nh_flags = 0; 5329 struct nlmsghdr *nlh; 5330 struct rtmsg *rtm; 5331 long expires = 0; 5332 5333 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 5334 if (!nlh) 5335 return -EMSGSIZE; 5336 5337 if (rt6) { 5338 rt6_dst = &rt6->rt6i_dst; 5339 rt6_src = &rt6->rt6i_src; 5340 rt6_flags = rt6->rt6i_flags; 5341 } else { 5342 rt6_dst = &rt->fib6_dst; 5343 rt6_src = &rt->fib6_src; 5344 rt6_flags = rt->fib6_flags; 5345 } 5346 5347 rtm = nlmsg_data(nlh); 5348 rtm->rtm_family = AF_INET6; 5349 rtm->rtm_dst_len = rt6_dst->plen; 5350 rtm->rtm_src_len = rt6_src->plen; 5351 rtm->rtm_tos = 0; 5352 if (rt->fib6_table) 5353 table = rt->fib6_table->tb6_id; 5354 else 5355 table = RT6_TABLE_UNSPEC; 5356 rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; 5357 if (nla_put_u32(skb, RTA_TABLE, table)) 5358 goto nla_put_failure; 5359 5360 rtm->rtm_type = rt->fib6_type; 5361 rtm->rtm_flags = 0; 5362 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 5363 rtm->rtm_protocol = rt->fib6_protocol; 5364 5365 if (rt6_flags & RTF_CACHE) 5366 rtm->rtm_flags |= RTM_F_CLONED; 5367 5368 if (dest) { 5369 if (nla_put_in6_addr(skb, RTA_DST, dest)) 5370 goto nla_put_failure; 5371 rtm->rtm_dst_len = 128; 5372 } else if (rtm->rtm_dst_len) 5373 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 5374 goto nla_put_failure; 5375 #ifdef CONFIG_IPV6_SUBTREES 5376 if (src) { 5377 if (nla_put_in6_addr(skb, RTA_SRC, src)) 5378 goto nla_put_failure; 5379 rtm->rtm_src_len = 128; 5380 } else if (rtm->rtm_src_len && 5381 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 5382 goto nla_put_failure; 5383 #endif 5384 if (iif) { 5385 #ifdef CONFIG_IPV6_MROUTE 5386 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 5387 int err = ip6mr_get_route(net, skb, rtm, portid); 5388 5389 if (err == 0) 5390 return 0; 5391 if (err < 0) 5392 goto nla_put_failure; 5393 } else 5394 #endif 5395 if (nla_put_u32(skb, RTA_IIF, iif)) 5396 goto nla_put_failure; 5397 } else if (dest) { 5398 struct in6_addr saddr_buf; 5399 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && 5400 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5401 goto nla_put_failure; 5402 } 5403 5404 if (rt->fib6_prefsrc.plen) { 5405 struct in6_addr saddr_buf; 5406 saddr_buf = rt->fib6_prefsrc.addr; 5407 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5408 goto nla_put_failure; 5409 } 5410 5411 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 5412 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 5413 goto nla_put_failure; 5414 5415 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 5416 goto nla_put_failure; 5417 5418 /* For multipath routes, walk the siblings list and add 5419 * each as a nexthop within RTA_MULTIPATH. 5420 */ 5421 if (rt6) { 5422 if (rt6_flags & RTF_GATEWAY && 5423 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 5424 goto nla_put_failure; 5425 5426 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) 5427 goto nla_put_failure; 5428 } else if (rt->fib6_nsiblings) { 5429 struct fib6_info *sibling, *next_sibling; 5430 struct nlattr *mp; 5431 5432 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5433 if (!mp) 5434 goto nla_put_failure; 5435 5436 if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, 5437 rt->fib6_nh->fib_nh_weight) < 0) 5438 goto nla_put_failure; 5439 5440 list_for_each_entry_safe(sibling, next_sibling, 5441 &rt->fib6_siblings, fib6_siblings) { 5442 if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, 5443 sibling->fib6_nh->fib_nh_weight) < 0) 5444 goto nla_put_failure; 5445 } 5446 5447 nla_nest_end(skb, mp); 5448 } else if (rt->nh) { 5449 if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) 5450 goto nla_put_failure; 5451 5452 if (nexthop_is_blackhole(rt->nh)) 5453 rtm->rtm_type = RTN_BLACKHOLE; 5454 5455 if (rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) 5456 goto nla_put_failure; 5457 5458 rtm->rtm_flags |= nh_flags; 5459 } else { 5460 if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, 5461 &nh_flags, false) < 0) 5462 goto nla_put_failure; 5463 5464 rtm->rtm_flags |= nh_flags; 5465 } 5466 5467 if (rt6_flags & RTF_EXPIRES) { 5468 expires = dst ? dst->expires : rt->expires; 5469 expires -= jiffies; 5470 } 5471 5472 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 5473 goto nla_put_failure; 5474 5475 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 5476 goto nla_put_failure; 5477 5478 5479 nlmsg_end(skb, nlh); 5480 return 0; 5481 5482 nla_put_failure: 5483 nlmsg_cancel(skb, nlh); 5484 return -EMSGSIZE; 5485 } 5486 5487 static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) 5488 { 5489 const struct net_device *dev = arg; 5490 5491 if (nh->fib_nh_dev == dev) 5492 return 1; 5493 5494 return 0; 5495 } 5496 5497 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 5498 const struct net_device *dev) 5499 { 5500 if (f6i->nh) { 5501 struct net_device *_dev = (struct net_device *)dev; 5502 5503 return !!nexthop_for_each_fib6_nh(f6i->nh, 5504 fib6_info_nh_uses_dev, 5505 _dev); 5506 } 5507 5508 if (f6i->fib6_nh->fib_nh_dev == dev) 5509 return true; 5510 5511 if (f6i->fib6_nsiblings) { 5512 struct fib6_info *sibling, *next_sibling; 5513 5514 list_for_each_entry_safe(sibling, next_sibling, 5515 &f6i->fib6_siblings, fib6_siblings) { 5516 if (sibling->fib6_nh->fib_nh_dev == dev) 5517 return true; 5518 } 5519 } 5520 5521 return false; 5522 } 5523 5524 int rt6_dump_route(struct fib6_info *rt, void *p_arg) 5525 { 5526 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 5527 struct fib_dump_filter *filter = &arg->filter; 5528 unsigned int flags = NLM_F_MULTI; 5529 struct net *net = arg->net; 5530 5531 if (rt == net->ipv6.fib6_null_entry) 5532 return 0; 5533 5534 if ((filter->flags & RTM_F_PREFIX) && 5535 !(rt->fib6_flags & RTF_PREFIX_RT)) { 5536 /* success since this is not a prefix route */ 5537 return 1; 5538 } 5539 if (filter->filter_set) { 5540 if ((filter->rt_type && rt->fib6_type != filter->rt_type) || 5541 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 5542 (filter->protocol && rt->fib6_protocol != filter->protocol)) { 5543 return 1; 5544 } 5545 flags |= NLM_F_DUMP_FILTERED; 5546 } 5547 5548 return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0, 5549 RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid, 5550 arg->cb->nlh->nlmsg_seq, flags); 5551 } 5552 5553 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, 5554 const struct nlmsghdr *nlh, 5555 struct nlattr **tb, 5556 struct netlink_ext_ack *extack) 5557 { 5558 struct rtmsg *rtm; 5559 int i, err; 5560 5561 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 5562 NL_SET_ERR_MSG_MOD(extack, 5563 "Invalid header for get route request"); 5564 return -EINVAL; 5565 } 5566 5567 if (!netlink_strict_get_check(skb)) 5568 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 5569 rtm_ipv6_policy, extack); 5570 5571 rtm = nlmsg_data(nlh); 5572 if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || 5573 (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || 5574 rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || 5575 rtm->rtm_type) { 5576 NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); 5577 return -EINVAL; 5578 } 5579 if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { 5580 NL_SET_ERR_MSG_MOD(extack, 5581 "Invalid flags for get route request"); 5582 return -EINVAL; 5583 } 5584 5585 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 5586 rtm_ipv6_policy, extack); 5587 if (err) 5588 return err; 5589 5590 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 5591 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 5592 NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); 5593 return -EINVAL; 5594 } 5595 5596 for (i = 0; i <= RTA_MAX; i++) { 5597 if (!tb[i]) 5598 continue; 5599 5600 switch (i) { 5601 case RTA_SRC: 5602 case RTA_DST: 5603 case RTA_IIF: 5604 case RTA_OIF: 5605 case RTA_MARK: 5606 case RTA_UID: 5607 case RTA_SPORT: 5608 case RTA_DPORT: 5609 case RTA_IP_PROTO: 5610 break; 5611 default: 5612 NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); 5613 return -EINVAL; 5614 } 5615 } 5616 5617 return 0; 5618 } 5619 5620 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 5621 struct netlink_ext_ack *extack) 5622 { 5623 struct net *net = sock_net(in_skb->sk); 5624 struct nlattr *tb[RTA_MAX+1]; 5625 int err, iif = 0, oif = 0; 5626 struct fib6_info *from; 5627 struct dst_entry *dst; 5628 struct rt6_info *rt; 5629 struct sk_buff *skb; 5630 struct rtmsg *rtm; 5631 struct flowi6 fl6 = {}; 5632 bool fibmatch; 5633 5634 err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 5635 if (err < 0) 5636 goto errout; 5637 5638 err = -EINVAL; 5639 rtm = nlmsg_data(nlh); 5640 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); 5641 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 5642 5643 if (tb[RTA_SRC]) { 5644 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 5645 goto errout; 5646 5647 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 5648 } 5649 5650 if (tb[RTA_DST]) { 5651 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 5652 goto errout; 5653 5654 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 5655 } 5656 5657 if (tb[RTA_IIF]) 5658 iif = nla_get_u32(tb[RTA_IIF]); 5659 5660 if (tb[RTA_OIF]) 5661 oif = nla_get_u32(tb[RTA_OIF]); 5662 5663 if (tb[RTA_MARK]) 5664 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 5665 5666 if (tb[RTA_UID]) 5667 fl6.flowi6_uid = make_kuid(current_user_ns(), 5668 nla_get_u32(tb[RTA_UID])); 5669 else 5670 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 5671 5672 if (tb[RTA_SPORT]) 5673 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 5674 5675 if (tb[RTA_DPORT]) 5676 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 5677 5678 if (tb[RTA_IP_PROTO]) { 5679 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 5680 &fl6.flowi6_proto, AF_INET6, 5681 extack); 5682 if (err) 5683 goto errout; 5684 } 5685 5686 if (iif) { 5687 struct net_device *dev; 5688 int flags = 0; 5689 5690 rcu_read_lock(); 5691 5692 dev = dev_get_by_index_rcu(net, iif); 5693 if (!dev) { 5694 rcu_read_unlock(); 5695 err = -ENODEV; 5696 goto errout; 5697 } 5698 5699 fl6.flowi6_iif = iif; 5700 5701 if (!ipv6_addr_any(&fl6.saddr)) 5702 flags |= RT6_LOOKUP_F_HAS_SADDR; 5703 5704 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 5705 5706 rcu_read_unlock(); 5707 } else { 5708 fl6.flowi6_oif = oif; 5709 5710 dst = ip6_route_output(net, NULL, &fl6); 5711 } 5712 5713 5714 rt = container_of(dst, struct rt6_info, dst); 5715 if (rt->dst.error) { 5716 err = rt->dst.error; 5717 ip6_rt_put(rt); 5718 goto errout; 5719 } 5720 5721 if (rt == net->ipv6.ip6_null_entry) { 5722 err = rt->dst.error; 5723 ip6_rt_put(rt); 5724 goto errout; 5725 } 5726 5727 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 5728 if (!skb) { 5729 ip6_rt_put(rt); 5730 err = -ENOBUFS; 5731 goto errout; 5732 } 5733 5734 skb_dst_set(skb, &rt->dst); 5735 5736 rcu_read_lock(); 5737 from = rcu_dereference(rt->from); 5738 if (from) { 5739 if (fibmatch) 5740 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, 5741 iif, RTM_NEWROUTE, 5742 NETLINK_CB(in_skb).portid, 5743 nlh->nlmsg_seq, 0); 5744 else 5745 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 5746 &fl6.saddr, iif, RTM_NEWROUTE, 5747 NETLINK_CB(in_skb).portid, 5748 nlh->nlmsg_seq, 0); 5749 } else { 5750 err = -ENETUNREACH; 5751 } 5752 rcu_read_unlock(); 5753 5754 if (err < 0) { 5755 kfree_skb(skb); 5756 goto errout; 5757 } 5758 5759 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 5760 errout: 5761 return err; 5762 } 5763 5764 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 5765 unsigned int nlm_flags) 5766 { 5767 struct sk_buff *skb; 5768 struct net *net = info->nl_net; 5769 u32 seq; 5770 int err; 5771 5772 err = -ENOBUFS; 5773 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 5774 5775 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 5776 if (!skb) 5777 goto errout; 5778 5779 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 5780 event, info->portid, seq, nlm_flags); 5781 if (err < 0) { 5782 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 5783 WARN_ON(err == -EMSGSIZE); 5784 kfree_skb(skb); 5785 goto errout; 5786 } 5787 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 5788 info->nlh, gfp_any()); 5789 return; 5790 errout: 5791 if (err < 0) 5792 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 5793 } 5794 5795 void fib6_rt_update(struct net *net, struct fib6_info *rt, 5796 struct nl_info *info) 5797 { 5798 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 5799 struct sk_buff *skb; 5800 int err = -ENOBUFS; 5801 5802 /* call_fib6_entry_notifiers will be removed when in-kernel notifier 5803 * is implemented and supported for nexthop objects 5804 */ 5805 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, rt, NULL); 5806 5807 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 5808 if (!skb) 5809 goto errout; 5810 5811 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 5812 RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); 5813 if (err < 0) { 5814 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 5815 WARN_ON(err == -EMSGSIZE); 5816 kfree_skb(skb); 5817 goto errout; 5818 } 5819 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 5820 info->nlh, gfp_any()); 5821 return; 5822 errout: 5823 if (err < 0) 5824 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 5825 } 5826 5827 static int ip6_route_dev_notify(struct notifier_block *this, 5828 unsigned long event, void *ptr) 5829 { 5830 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 5831 struct net *net = dev_net(dev); 5832 5833 if (!(dev->flags & IFF_LOOPBACK)) 5834 return NOTIFY_OK; 5835 5836 if (event == NETDEV_REGISTER) { 5837 net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; 5838 net->ipv6.ip6_null_entry->dst.dev = dev; 5839 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 5840 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5841 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 5842 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 5843 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 5844 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 5845 #endif 5846 } else if (event == NETDEV_UNREGISTER && 5847 dev->reg_state != NETREG_UNREGISTERED) { 5848 /* NETDEV_UNREGISTER could be fired for multiple times by 5849 * netdev_wait_allrefs(). Make sure we only call this once. 5850 */ 5851 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 5852 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 5853 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 5854 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 5855 #endif 5856 } 5857 5858 return NOTIFY_OK; 5859 } 5860 5861 /* 5862 * /proc 5863 */ 5864 5865 #ifdef CONFIG_PROC_FS 5866 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 5867 { 5868 struct net *net = (struct net *)seq->private; 5869 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 5870 net->ipv6.rt6_stats->fib_nodes, 5871 net->ipv6.rt6_stats->fib_route_nodes, 5872 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 5873 net->ipv6.rt6_stats->fib_rt_entries, 5874 net->ipv6.rt6_stats->fib_rt_cache, 5875 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 5876 net->ipv6.rt6_stats->fib_discarded_routes); 5877 5878 return 0; 5879 } 5880 #endif /* CONFIG_PROC_FS */ 5881 5882 #ifdef CONFIG_SYSCTL 5883 5884 static 5885 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, 5886 void __user *buffer, size_t *lenp, loff_t *ppos) 5887 { 5888 struct net *net; 5889 int delay; 5890 int ret; 5891 if (!write) 5892 return -EINVAL; 5893 5894 net = (struct net *)ctl->extra1; 5895 delay = net->ipv6.sysctl.flush_delay; 5896 ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 5897 if (ret) 5898 return ret; 5899 5900 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 5901 return 0; 5902 } 5903 5904 static int zero; 5905 static int one = 1; 5906 5907 static struct ctl_table ipv6_route_table_template[] = { 5908 { 5909 .procname = "flush", 5910 .data = &init_net.ipv6.sysctl.flush_delay, 5911 .maxlen = sizeof(int), 5912 .mode = 0200, 5913 .proc_handler = ipv6_sysctl_rtcache_flush 5914 }, 5915 { 5916 .procname = "gc_thresh", 5917 .data = &ip6_dst_ops_template.gc_thresh, 5918 .maxlen = sizeof(int), 5919 .mode = 0644, 5920 .proc_handler = proc_dointvec, 5921 }, 5922 { 5923 .procname = "max_size", 5924 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 5925 .maxlen = sizeof(int), 5926 .mode = 0644, 5927 .proc_handler = proc_dointvec, 5928 }, 5929 { 5930 .procname = "gc_min_interval", 5931 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 5932 .maxlen = sizeof(int), 5933 .mode = 0644, 5934 .proc_handler = proc_dointvec_jiffies, 5935 }, 5936 { 5937 .procname = "gc_timeout", 5938 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 5939 .maxlen = sizeof(int), 5940 .mode = 0644, 5941 .proc_handler = proc_dointvec_jiffies, 5942 }, 5943 { 5944 .procname = "gc_interval", 5945 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 5946 .maxlen = sizeof(int), 5947 .mode = 0644, 5948 .proc_handler = proc_dointvec_jiffies, 5949 }, 5950 { 5951 .procname = "gc_elasticity", 5952 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 5953 .maxlen = sizeof(int), 5954 .mode = 0644, 5955 .proc_handler = proc_dointvec, 5956 }, 5957 { 5958 .procname = "mtu_expires", 5959 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 5960 .maxlen = sizeof(int), 5961 .mode = 0644, 5962 .proc_handler = proc_dointvec_jiffies, 5963 }, 5964 { 5965 .procname = "min_adv_mss", 5966 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 5967 .maxlen = sizeof(int), 5968 .mode = 0644, 5969 .proc_handler = proc_dointvec, 5970 }, 5971 { 5972 .procname = "gc_min_interval_ms", 5973 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 5974 .maxlen = sizeof(int), 5975 .mode = 0644, 5976 .proc_handler = proc_dointvec_ms_jiffies, 5977 }, 5978 { 5979 .procname = "skip_notify_on_dev_down", 5980 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 5981 .maxlen = sizeof(int), 5982 .mode = 0644, 5983 .proc_handler = proc_dointvec, 5984 .extra1 = &zero, 5985 .extra2 = &one, 5986 }, 5987 { } 5988 }; 5989 5990 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 5991 { 5992 struct ctl_table *table; 5993 5994 table = kmemdup(ipv6_route_table_template, 5995 sizeof(ipv6_route_table_template), 5996 GFP_KERNEL); 5997 5998 if (table) { 5999 table[0].data = &net->ipv6.sysctl.flush_delay; 6000 table[0].extra1 = net; 6001 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 6002 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size; 6003 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6004 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 6005 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 6006 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 6007 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 6008 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 6009 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6010 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 6011 6012 /* Don't export sysctls to unprivileged users */ 6013 if (net->user_ns != &init_user_ns) 6014 table[0].procname = NULL; 6015 } 6016 6017 return table; 6018 } 6019 #endif 6020 6021 static int __net_init ip6_route_net_init(struct net *net) 6022 { 6023 int ret = -ENOMEM; 6024 6025 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 6026 sizeof(net->ipv6.ip6_dst_ops)); 6027 6028 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 6029 goto out_ip6_dst_ops; 6030 6031 net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); 6032 if (!net->ipv6.fib6_null_entry) 6033 goto out_ip6_dst_entries; 6034 memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, 6035 sizeof(*net->ipv6.fib6_null_entry)); 6036 6037 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 6038 sizeof(*net->ipv6.ip6_null_entry), 6039 GFP_KERNEL); 6040 if (!net->ipv6.ip6_null_entry) 6041 goto out_fib6_null_entry; 6042 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6043 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 6044 ip6_template_metrics, true); 6045 INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->rt6i_uncached); 6046 6047 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6048 net->ipv6.fib6_has_custom_rules = false; 6049 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 6050 sizeof(*net->ipv6.ip6_prohibit_entry), 6051 GFP_KERNEL); 6052 if (!net->ipv6.ip6_prohibit_entry) 6053 goto out_ip6_null_entry; 6054 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6055 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 6056 ip6_template_metrics, true); 6057 INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->rt6i_uncached); 6058 6059 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 6060 sizeof(*net->ipv6.ip6_blk_hole_entry), 6061 GFP_KERNEL); 6062 if (!net->ipv6.ip6_blk_hole_entry) 6063 goto out_ip6_prohibit_entry; 6064 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6065 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 6066 ip6_template_metrics, true); 6067 INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->rt6i_uncached); 6068 #endif 6069 6070 net->ipv6.sysctl.flush_delay = 0; 6071 net->ipv6.sysctl.ip6_rt_max_size = 4096; 6072 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 6073 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 6074 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 6075 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 6076 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 6077 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 6078 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 6079 6080 net->ipv6.ip6_rt_gc_expire = 30*HZ; 6081 6082 ret = 0; 6083 out: 6084 return ret; 6085 6086 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6087 out_ip6_prohibit_entry: 6088 kfree(net->ipv6.ip6_prohibit_entry); 6089 out_ip6_null_entry: 6090 kfree(net->ipv6.ip6_null_entry); 6091 #endif 6092 out_fib6_null_entry: 6093 kfree(net->ipv6.fib6_null_entry); 6094 out_ip6_dst_entries: 6095 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6096 out_ip6_dst_ops: 6097 goto out; 6098 } 6099 6100 static void __net_exit ip6_route_net_exit(struct net *net) 6101 { 6102 kfree(net->ipv6.fib6_null_entry); 6103 kfree(net->ipv6.ip6_null_entry); 6104 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6105 kfree(net->ipv6.ip6_prohibit_entry); 6106 kfree(net->ipv6.ip6_blk_hole_entry); 6107 #endif 6108 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6109 } 6110 6111 static int __net_init ip6_route_net_init_late(struct net *net) 6112 { 6113 #ifdef CONFIG_PROC_FS 6114 proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops, 6115 sizeof(struct ipv6_route_iter)); 6116 proc_create_net_single("rt6_stats", 0444, net->proc_net, 6117 rt6_stats_seq_show, NULL); 6118 #endif 6119 return 0; 6120 } 6121 6122 static void __net_exit ip6_route_net_exit_late(struct net *net) 6123 { 6124 #ifdef CONFIG_PROC_FS 6125 remove_proc_entry("ipv6_route", net->proc_net); 6126 remove_proc_entry("rt6_stats", net->proc_net); 6127 #endif 6128 } 6129 6130 static struct pernet_operations ip6_route_net_ops = { 6131 .init = ip6_route_net_init, 6132 .exit = ip6_route_net_exit, 6133 }; 6134 6135 static int __net_init ipv6_inetpeer_init(struct net *net) 6136 { 6137 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 6138 6139 if (!bp) 6140 return -ENOMEM; 6141 inet_peer_base_init(bp); 6142 net->ipv6.peers = bp; 6143 return 0; 6144 } 6145 6146 static void __net_exit ipv6_inetpeer_exit(struct net *net) 6147 { 6148 struct inet_peer_base *bp = net->ipv6.peers; 6149 6150 net->ipv6.peers = NULL; 6151 inetpeer_invalidate_tree(bp); 6152 kfree(bp); 6153 } 6154 6155 static struct pernet_operations ipv6_inetpeer_ops = { 6156 .init = ipv6_inetpeer_init, 6157 .exit = ipv6_inetpeer_exit, 6158 }; 6159 6160 static struct pernet_operations ip6_route_net_late_ops = { 6161 .init = ip6_route_net_init_late, 6162 .exit = ip6_route_net_exit_late, 6163 }; 6164 6165 static struct notifier_block ip6_route_dev_notifier = { 6166 .notifier_call = ip6_route_dev_notify, 6167 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 6168 }; 6169 6170 void __init ip6_route_init_special_entries(void) 6171 { 6172 /* Registering of the loopback is done before this portion of code, 6173 * the loopback reference in rt6_info will not be taken, do it 6174 * manually for init_net */ 6175 init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; 6176 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 6177 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6178 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6179 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 6180 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6181 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 6182 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6183 #endif 6184 } 6185 6186 int __init ip6_route_init(void) 6187 { 6188 int ret; 6189 int cpu; 6190 6191 ret = -ENOMEM; 6192 ip6_dst_ops_template.kmem_cachep = 6193 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 6194 SLAB_HWCACHE_ALIGN, NULL); 6195 if (!ip6_dst_ops_template.kmem_cachep) 6196 goto out; 6197 6198 ret = dst_entries_init(&ip6_dst_blackhole_ops); 6199 if (ret) 6200 goto out_kmem_cache; 6201 6202 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 6203 if (ret) 6204 goto out_dst_entries; 6205 6206 ret = register_pernet_subsys(&ip6_route_net_ops); 6207 if (ret) 6208 goto out_register_inetpeer; 6209 6210 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 6211 6212 ret = fib6_init(); 6213 if (ret) 6214 goto out_register_subsys; 6215 6216 ret = xfrm6_init(); 6217 if (ret) 6218 goto out_fib6_init; 6219 6220 ret = fib6_rules_init(); 6221 if (ret) 6222 goto xfrm6_init; 6223 6224 ret = register_pernet_subsys(&ip6_route_net_late_ops); 6225 if (ret) 6226 goto fib6_rules_init; 6227 6228 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, 6229 inet6_rtm_newroute, NULL, 0); 6230 if (ret < 0) 6231 goto out_register_late_subsys; 6232 6233 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, 6234 inet6_rtm_delroute, NULL, 0); 6235 if (ret < 0) 6236 goto out_register_late_subsys; 6237 6238 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, 6239 inet6_rtm_getroute, NULL, 6240 RTNL_FLAG_DOIT_UNLOCKED); 6241 if (ret < 0) 6242 goto out_register_late_subsys; 6243 6244 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 6245 if (ret) 6246 goto out_register_late_subsys; 6247 6248 for_each_possible_cpu(cpu) { 6249 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 6250 6251 INIT_LIST_HEAD(&ul->head); 6252 spin_lock_init(&ul->lock); 6253 } 6254 6255 out: 6256 return ret; 6257 6258 out_register_late_subsys: 6259 rtnl_unregister_all(PF_INET6); 6260 unregister_pernet_subsys(&ip6_route_net_late_ops); 6261 fib6_rules_init: 6262 fib6_rules_cleanup(); 6263 xfrm6_init: 6264 xfrm6_fini(); 6265 out_fib6_init: 6266 fib6_gc_cleanup(); 6267 out_register_subsys: 6268 unregister_pernet_subsys(&ip6_route_net_ops); 6269 out_register_inetpeer: 6270 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6271 out_dst_entries: 6272 dst_entries_destroy(&ip6_dst_blackhole_ops); 6273 out_kmem_cache: 6274 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6275 goto out; 6276 } 6277 6278 void ip6_route_cleanup(void) 6279 { 6280 unregister_netdevice_notifier(&ip6_route_dev_notifier); 6281 unregister_pernet_subsys(&ip6_route_net_late_ops); 6282 fib6_rules_cleanup(); 6283 xfrm6_fini(); 6284 fib6_gc_cleanup(); 6285 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6286 unregister_pernet_subsys(&ip6_route_net_ops); 6287 dst_entries_destroy(&ip6_dst_blackhole_ops); 6288 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6289 } 6290