1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * FIB front-end. 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 */ 9 10 /* Changes: 11 * 12 * YOSHIFUJI Hideaki @USAGI 13 * reworked default router selection. 14 * - respect outgoing interface 15 * - select from (probably) reachable routers (i.e. 16 * routers in REACHABLE, STALE, DELAY or PROBE states). 17 * - always select the same router if it is (probably) 18 * reachable. otherwise, round-robin the list. 19 * Ville Nuorvala 20 * Fixed routing subtrees. 21 */ 22 23 #define pr_fmt(fmt) "IPv6: " fmt 24 25 #include <linux/capability.h> 26 #include <linux/errno.h> 27 #include <linux/export.h> 28 #include <linux/types.h> 29 #include <linux/times.h> 30 #include <linux/socket.h> 31 #include <linux/sockios.h> 32 #include <linux/net.h> 33 #include <linux/route.h> 34 #include <linux/netdevice.h> 35 #include <linux/in6.h> 36 #include <linux/mroute6.h> 37 #include <linux/init.h> 38 #include <linux/if_arp.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <linux/nsproxy.h> 42 #include <linux/slab.h> 43 #include <linux/jhash.h> 44 #include <linux/siphash.h> 45 #include <net/net_namespace.h> 46 #include <net/snmp.h> 47 #include <net/ipv6.h> 48 #include <net/ip6_fib.h> 49 #include <net/ip6_route.h> 50 #include <net/ndisc.h> 51 #include <net/addrconf.h> 52 #include <net/tcp.h> 53 #include <linux/rtnetlink.h> 54 #include <net/dst.h> 55 #include <net/dst_metadata.h> 56 #include <net/xfrm.h> 57 #include <net/netevent.h> 58 #include <net/netlink.h> 59 #include <net/rtnh.h> 60 #include <net/lwtunnel.h> 61 #include <net/ip_tunnels.h> 62 #include <net/l3mdev.h> 63 #include <net/ip.h> 64 #include <linux/uaccess.h> 65 #include <linux/btf_ids.h> 66 67 #ifdef CONFIG_SYSCTL 68 #include <linux/sysctl.h> 69 #endif 70 71 static int ip6_rt_type_to_error(u8 fib6_type); 72 73 #define CREATE_TRACE_POINTS 74 #include <trace/events/fib6.h> 75 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); 76 #undef CREATE_TRACE_POINTS 77 78 enum rt6_nud_state { 79 RT6_NUD_FAIL_HARD = -3, 80 RT6_NUD_FAIL_PROBE = -2, 81 RT6_NUD_FAIL_DO_RR = -1, 82 RT6_NUD_SUCCEED = 1 83 }; 84 85 INDIRECT_CALLABLE_SCOPE 86 struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); 87 static unsigned int ip6_default_advmss(const struct dst_entry *dst); 88 INDIRECT_CALLABLE_SCOPE 89 unsigned int ip6_mtu(const struct dst_entry *dst); 90 static struct dst_entry *ip6_negative_advice(struct dst_entry *); 91 static void ip6_dst_destroy(struct dst_entry *); 92 static void ip6_dst_ifdown(struct dst_entry *, 93 struct net_device *dev, int how); 94 static void ip6_dst_gc(struct dst_ops *ops); 95 96 static int ip6_pkt_discard(struct sk_buff *skb); 97 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); 98 static int ip6_pkt_prohibit(struct sk_buff *skb); 99 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); 100 static void ip6_link_failure(struct sk_buff *skb); 101 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 102 struct sk_buff *skb, u32 mtu, 103 bool confirm_neigh); 104 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, 105 struct sk_buff *skb); 106 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 107 int strict); 108 static size_t rt6_nlmsg_size(struct fib6_info *f6i); 109 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 110 struct fib6_info *rt, struct dst_entry *dst, 111 struct in6_addr *dest, struct in6_addr *src, 112 int iif, int type, u32 portid, u32 seq, 113 unsigned int flags); 114 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 115 const struct in6_addr *daddr, 116 const struct in6_addr *saddr); 117 118 #ifdef CONFIG_IPV6_ROUTE_INFO 119 static struct fib6_info *rt6_add_route_info(struct net *net, 120 const struct in6_addr *prefix, int prefixlen, 121 const struct in6_addr *gwaddr, 122 struct net_device *dev, 123 unsigned int pref); 124 static struct fib6_info *rt6_get_route_info(struct net *net, 125 const struct in6_addr *prefix, int prefixlen, 126 const struct in6_addr *gwaddr, 127 struct net_device *dev); 128 #endif 129 130 struct uncached_list { 131 spinlock_t lock; 132 struct list_head head; 133 struct list_head quarantine; 134 }; 135 136 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); 137 138 void rt6_uncached_list_add(struct rt6_info *rt) 139 { 140 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); 141 142 rt->dst.rt_uncached_list = ul; 143 144 spin_lock_bh(&ul->lock); 145 list_add_tail(&rt->dst.rt_uncached, &ul->head); 146 spin_unlock_bh(&ul->lock); 147 } 148 149 void rt6_uncached_list_del(struct rt6_info *rt) 150 { 151 if (!list_empty(&rt->dst.rt_uncached)) { 152 struct uncached_list *ul = rt->dst.rt_uncached_list; 153 154 spin_lock_bh(&ul->lock); 155 list_del_init(&rt->dst.rt_uncached); 156 spin_unlock_bh(&ul->lock); 157 } 158 } 159 160 static void rt6_uncached_list_flush_dev(struct net_device *dev) 161 { 162 int cpu; 163 164 for_each_possible_cpu(cpu) { 165 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 166 struct rt6_info *rt, *safe; 167 168 if (list_empty(&ul->head)) 169 continue; 170 171 spin_lock_bh(&ul->lock); 172 list_for_each_entry_safe(rt, safe, &ul->head, dst.rt_uncached) { 173 struct inet6_dev *rt_idev = rt->rt6i_idev; 174 struct net_device *rt_dev = rt->dst.dev; 175 bool handled = false; 176 177 if (rt_idev->dev == dev) { 178 rt->rt6i_idev = in6_dev_get(blackhole_netdev); 179 in6_dev_put(rt_idev); 180 handled = true; 181 } 182 183 if (rt_dev == dev) { 184 rt->dst.dev = blackhole_netdev; 185 netdev_ref_replace(rt_dev, blackhole_netdev, 186 &rt->dst.dev_tracker, 187 GFP_ATOMIC); 188 handled = true; 189 } 190 if (handled) 191 list_move(&rt->dst.rt_uncached, 192 &ul->quarantine); 193 } 194 spin_unlock_bh(&ul->lock); 195 } 196 } 197 198 static inline const void *choose_neigh_daddr(const struct in6_addr *p, 199 struct sk_buff *skb, 200 const void *daddr) 201 { 202 if (!ipv6_addr_any(p)) 203 return (const void *) p; 204 else if (skb) 205 return &ipv6_hdr(skb)->daddr; 206 return daddr; 207 } 208 209 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, 210 struct net_device *dev, 211 struct sk_buff *skb, 212 const void *daddr) 213 { 214 struct neighbour *n; 215 216 daddr = choose_neigh_daddr(gw, skb, daddr); 217 n = __ipv6_neigh_lookup(dev, daddr); 218 if (n) 219 return n; 220 221 n = neigh_create(&nd_tbl, daddr, dev); 222 return IS_ERR(n) ? NULL : n; 223 } 224 225 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, 226 struct sk_buff *skb, 227 const void *daddr) 228 { 229 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst); 230 231 return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any), 232 dst->dev, skb, daddr); 233 } 234 235 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) 236 { 237 struct net_device *dev = dst->dev; 238 struct rt6_info *rt = (struct rt6_info *)dst; 239 240 daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr); 241 if (!daddr) 242 return; 243 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) 244 return; 245 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) 246 return; 247 __ipv6_confirm_neigh(dev, daddr); 248 } 249 250 static struct dst_ops ip6_dst_ops_template = { 251 .family = AF_INET6, 252 .gc = ip6_dst_gc, 253 .gc_thresh = 1024, 254 .check = ip6_dst_check, 255 .default_advmss = ip6_default_advmss, 256 .mtu = ip6_mtu, 257 .cow_metrics = dst_cow_metrics_generic, 258 .destroy = ip6_dst_destroy, 259 .ifdown = ip6_dst_ifdown, 260 .negative_advice = ip6_negative_advice, 261 .link_failure = ip6_link_failure, 262 .update_pmtu = ip6_rt_update_pmtu, 263 .redirect = rt6_do_redirect, 264 .local_out = __ip6_local_out, 265 .neigh_lookup = ip6_dst_neigh_lookup, 266 .confirm_neigh = ip6_confirm_neigh, 267 }; 268 269 static struct dst_ops ip6_dst_blackhole_ops = { 270 .family = AF_INET6, 271 .default_advmss = ip6_default_advmss, 272 .neigh_lookup = ip6_dst_neigh_lookup, 273 .check = ip6_dst_check, 274 .destroy = ip6_dst_destroy, 275 .cow_metrics = dst_cow_metrics_generic, 276 .update_pmtu = dst_blackhole_update_pmtu, 277 .redirect = dst_blackhole_redirect, 278 .mtu = dst_blackhole_mtu, 279 }; 280 281 static const u32 ip6_template_metrics[RTAX_MAX] = { 282 [RTAX_HOPLIMIT - 1] = 0, 283 }; 284 285 static const struct fib6_info fib6_null_entry_template = { 286 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), 287 .fib6_protocol = RTPROT_KERNEL, 288 .fib6_metric = ~(u32)0, 289 .fib6_ref = REFCOUNT_INIT(1), 290 .fib6_type = RTN_UNREACHABLE, 291 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, 292 }; 293 294 static const struct rt6_info ip6_null_entry_template = { 295 .dst = { 296 .__rcuref = RCUREF_INIT(1), 297 .__use = 1, 298 .obsolete = DST_OBSOLETE_FORCE_CHK, 299 .error = -ENETUNREACH, 300 .input = ip6_pkt_discard, 301 .output = ip6_pkt_discard_out, 302 }, 303 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 304 }; 305 306 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 307 308 static const struct rt6_info ip6_prohibit_entry_template = { 309 .dst = { 310 .__rcuref = RCUREF_INIT(1), 311 .__use = 1, 312 .obsolete = DST_OBSOLETE_FORCE_CHK, 313 .error = -EACCES, 314 .input = ip6_pkt_prohibit, 315 .output = ip6_pkt_prohibit_out, 316 }, 317 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 318 }; 319 320 static const struct rt6_info ip6_blk_hole_entry_template = { 321 .dst = { 322 .__rcuref = RCUREF_INIT(1), 323 .__use = 1, 324 .obsolete = DST_OBSOLETE_FORCE_CHK, 325 .error = -EINVAL, 326 .input = dst_discard, 327 .output = dst_discard_out, 328 }, 329 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), 330 }; 331 332 #endif 333 334 static void rt6_info_init(struct rt6_info *rt) 335 { 336 memset_after(rt, 0, dst); 337 } 338 339 /* allocate dst with ip6_dst_ops */ 340 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, 341 int flags) 342 { 343 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, 344 1, DST_OBSOLETE_FORCE_CHK, flags); 345 346 if (rt) { 347 rt6_info_init(rt); 348 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 349 } 350 351 return rt; 352 } 353 EXPORT_SYMBOL(ip6_dst_alloc); 354 355 static void ip6_dst_destroy(struct dst_entry *dst) 356 { 357 struct rt6_info *rt = (struct rt6_info *)dst; 358 struct fib6_info *from; 359 struct inet6_dev *idev; 360 361 ip_dst_metrics_put(dst); 362 rt6_uncached_list_del(rt); 363 364 idev = rt->rt6i_idev; 365 if (idev) { 366 rt->rt6i_idev = NULL; 367 in6_dev_put(idev); 368 } 369 370 from = xchg((__force struct fib6_info **)&rt->from, NULL); 371 fib6_info_release(from); 372 } 373 374 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev, 375 int how) 376 { 377 struct rt6_info *rt = (struct rt6_info *)dst; 378 struct inet6_dev *idev = rt->rt6i_idev; 379 380 if (idev && idev->dev != blackhole_netdev) { 381 struct inet6_dev *blackhole_idev = in6_dev_get(blackhole_netdev); 382 383 if (blackhole_idev) { 384 rt->rt6i_idev = blackhole_idev; 385 in6_dev_put(idev); 386 } 387 } 388 } 389 390 static bool __rt6_check_expired(const struct rt6_info *rt) 391 { 392 if (rt->rt6i_flags & RTF_EXPIRES) 393 return time_after(jiffies, rt->dst.expires); 394 else 395 return false; 396 } 397 398 static bool rt6_check_expired(const struct rt6_info *rt) 399 { 400 struct fib6_info *from; 401 402 from = rcu_dereference(rt->from); 403 404 if (rt->rt6i_flags & RTF_EXPIRES) { 405 if (time_after(jiffies, rt->dst.expires)) 406 return true; 407 } else if (from) { 408 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || 409 fib6_check_expired(from); 410 } 411 return false; 412 } 413 414 void fib6_select_path(const struct net *net, struct fib6_result *res, 415 struct flowi6 *fl6, int oif, bool have_oif_match, 416 const struct sk_buff *skb, int strict) 417 { 418 struct fib6_info *sibling, *next_sibling; 419 struct fib6_info *match = res->f6i; 420 421 if (!match->nh && (!match->fib6_nsiblings || have_oif_match)) 422 goto out; 423 424 if (match->nh && have_oif_match && res->nh) 425 return; 426 427 /* We might have already computed the hash for ICMPv6 errors. In such 428 * case it will always be non-zero. Otherwise now is the time to do it. 429 */ 430 if (!fl6->mp_hash && 431 (!match->nh || nexthop_is_multipath(match->nh))) 432 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); 433 434 if (unlikely(match->nh)) { 435 nexthop_path_fib6_result(res, fl6->mp_hash); 436 return; 437 } 438 439 if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound)) 440 goto out; 441 442 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, 443 fib6_siblings) { 444 const struct fib6_nh *nh = sibling->fib6_nh; 445 int nh_upper_bound; 446 447 nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); 448 if (fl6->mp_hash > nh_upper_bound) 449 continue; 450 if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) 451 break; 452 match = sibling; 453 break; 454 } 455 456 out: 457 res->f6i = match; 458 res->nh = match->fib6_nh; 459 } 460 461 /* 462 * Route lookup. rcu_read_lock() should be held. 463 */ 464 465 static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, 466 const struct in6_addr *saddr, int oif, int flags) 467 { 468 const struct net_device *dev; 469 470 if (nh->fib_nh_flags & RTNH_F_DEAD) 471 return false; 472 473 dev = nh->fib_nh_dev; 474 if (oif) { 475 if (dev->ifindex == oif) 476 return true; 477 } else { 478 if (ipv6_chk_addr(net, saddr, dev, 479 flags & RT6_LOOKUP_F_IFACE)) 480 return true; 481 } 482 483 return false; 484 } 485 486 struct fib6_nh_dm_arg { 487 struct net *net; 488 const struct in6_addr *saddr; 489 int oif; 490 int flags; 491 struct fib6_nh *nh; 492 }; 493 494 static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) 495 { 496 struct fib6_nh_dm_arg *arg = _arg; 497 498 arg->nh = nh; 499 return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, 500 arg->flags); 501 } 502 503 /* returns fib6_nh from nexthop or NULL */ 504 static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, 505 struct fib6_result *res, 506 const struct in6_addr *saddr, 507 int oif, int flags) 508 { 509 struct fib6_nh_dm_arg arg = { 510 .net = net, 511 .saddr = saddr, 512 .oif = oif, 513 .flags = flags, 514 }; 515 516 if (nexthop_is_blackhole(nh)) 517 return NULL; 518 519 if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) 520 return arg.nh; 521 522 return NULL; 523 } 524 525 static void rt6_device_match(struct net *net, struct fib6_result *res, 526 const struct in6_addr *saddr, int oif, int flags) 527 { 528 struct fib6_info *f6i = res->f6i; 529 struct fib6_info *spf6i; 530 struct fib6_nh *nh; 531 532 if (!oif && ipv6_addr_any(saddr)) { 533 if (unlikely(f6i->nh)) { 534 nh = nexthop_fib6_nh(f6i->nh); 535 if (nexthop_is_blackhole(f6i->nh)) 536 goto out_blackhole; 537 } else { 538 nh = f6i->fib6_nh; 539 } 540 if (!(nh->fib_nh_flags & RTNH_F_DEAD)) 541 goto out; 542 } 543 544 for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { 545 bool matched = false; 546 547 if (unlikely(spf6i->nh)) { 548 nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, 549 oif, flags); 550 if (nh) 551 matched = true; 552 } else { 553 nh = spf6i->fib6_nh; 554 if (__rt6_device_match(net, nh, saddr, oif, flags)) 555 matched = true; 556 } 557 if (matched) { 558 res->f6i = spf6i; 559 goto out; 560 } 561 } 562 563 if (oif && flags & RT6_LOOKUP_F_IFACE) { 564 res->f6i = net->ipv6.fib6_null_entry; 565 nh = res->f6i->fib6_nh; 566 goto out; 567 } 568 569 if (unlikely(f6i->nh)) { 570 nh = nexthop_fib6_nh(f6i->nh); 571 if (nexthop_is_blackhole(f6i->nh)) 572 goto out_blackhole; 573 } else { 574 nh = f6i->fib6_nh; 575 } 576 577 if (nh->fib_nh_flags & RTNH_F_DEAD) { 578 res->f6i = net->ipv6.fib6_null_entry; 579 nh = res->f6i->fib6_nh; 580 } 581 out: 582 res->nh = nh; 583 res->fib6_type = res->f6i->fib6_type; 584 res->fib6_flags = res->f6i->fib6_flags; 585 return; 586 587 out_blackhole: 588 res->fib6_flags |= RTF_REJECT; 589 res->fib6_type = RTN_BLACKHOLE; 590 res->nh = nh; 591 } 592 593 #ifdef CONFIG_IPV6_ROUTER_PREF 594 struct __rt6_probe_work { 595 struct work_struct work; 596 struct in6_addr target; 597 struct net_device *dev; 598 netdevice_tracker dev_tracker; 599 }; 600 601 static void rt6_probe_deferred(struct work_struct *w) 602 { 603 struct in6_addr mcaddr; 604 struct __rt6_probe_work *work = 605 container_of(w, struct __rt6_probe_work, work); 606 607 addrconf_addr_solict_mult(&work->target, &mcaddr); 608 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); 609 netdev_put(work->dev, &work->dev_tracker); 610 kfree(work); 611 } 612 613 static void rt6_probe(struct fib6_nh *fib6_nh) 614 { 615 struct __rt6_probe_work *work = NULL; 616 const struct in6_addr *nh_gw; 617 unsigned long last_probe; 618 struct neighbour *neigh; 619 struct net_device *dev; 620 struct inet6_dev *idev; 621 622 /* 623 * Okay, this does not seem to be appropriate 624 * for now, however, we need to check if it 625 * is really so; aka Router Reachability Probing. 626 * 627 * Router Reachability Probe MUST be rate-limited 628 * to no more than one per minute. 629 */ 630 if (!fib6_nh->fib_nh_gw_family) 631 return; 632 633 nh_gw = &fib6_nh->fib_nh_gw6; 634 dev = fib6_nh->fib_nh_dev; 635 rcu_read_lock(); 636 last_probe = READ_ONCE(fib6_nh->last_probe); 637 idev = __in6_dev_get(dev); 638 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); 639 if (neigh) { 640 if (READ_ONCE(neigh->nud_state) & NUD_VALID) 641 goto out; 642 643 write_lock_bh(&neigh->lock); 644 if (!(neigh->nud_state & NUD_VALID) && 645 time_after(jiffies, 646 neigh->updated + idev->cnf.rtr_probe_interval)) { 647 work = kmalloc(sizeof(*work), GFP_ATOMIC); 648 if (work) 649 __neigh_set_probe_once(neigh); 650 } 651 write_unlock_bh(&neigh->lock); 652 } else if (time_after(jiffies, last_probe + 653 idev->cnf.rtr_probe_interval)) { 654 work = kmalloc(sizeof(*work), GFP_ATOMIC); 655 } 656 657 if (!work || cmpxchg(&fib6_nh->last_probe, 658 last_probe, jiffies) != last_probe) { 659 kfree(work); 660 } else { 661 INIT_WORK(&work->work, rt6_probe_deferred); 662 work->target = *nh_gw; 663 netdev_hold(dev, &work->dev_tracker, GFP_ATOMIC); 664 work->dev = dev; 665 schedule_work(&work->work); 666 } 667 668 out: 669 rcu_read_unlock(); 670 } 671 #else 672 static inline void rt6_probe(struct fib6_nh *fib6_nh) 673 { 674 } 675 #endif 676 677 /* 678 * Default Router Selection (RFC 2461 6.3.6) 679 */ 680 static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) 681 { 682 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; 683 struct neighbour *neigh; 684 685 rcu_read_lock(); 686 neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, 687 &fib6_nh->fib_nh_gw6); 688 if (neigh) { 689 u8 nud_state = READ_ONCE(neigh->nud_state); 690 691 if (nud_state & NUD_VALID) 692 ret = RT6_NUD_SUCCEED; 693 #ifdef CONFIG_IPV6_ROUTER_PREF 694 else if (!(nud_state & NUD_FAILED)) 695 ret = RT6_NUD_SUCCEED; 696 else 697 ret = RT6_NUD_FAIL_PROBE; 698 #endif 699 } else { 700 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? 701 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; 702 } 703 rcu_read_unlock(); 704 705 return ret; 706 } 707 708 static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, 709 int strict) 710 { 711 int m = 0; 712 713 if (!oif || nh->fib_nh_dev->ifindex == oif) 714 m = 2; 715 716 if (!m && (strict & RT6_LOOKUP_F_IFACE)) 717 return RT6_NUD_FAIL_HARD; 718 #ifdef CONFIG_IPV6_ROUTER_PREF 719 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; 720 #endif 721 if ((strict & RT6_LOOKUP_F_REACHABLE) && 722 !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { 723 int n = rt6_check_neigh(nh); 724 if (n < 0) 725 return n; 726 } 727 return m; 728 } 729 730 static bool find_match(struct fib6_nh *nh, u32 fib6_flags, 731 int oif, int strict, int *mpri, bool *do_rr) 732 { 733 bool match_do_rr = false; 734 bool rc = false; 735 int m; 736 737 if (nh->fib_nh_flags & RTNH_F_DEAD) 738 goto out; 739 740 if (ip6_ignore_linkdown(nh->fib_nh_dev) && 741 nh->fib_nh_flags & RTNH_F_LINKDOWN && 742 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) 743 goto out; 744 745 m = rt6_score_route(nh, fib6_flags, oif, strict); 746 if (m == RT6_NUD_FAIL_DO_RR) { 747 match_do_rr = true; 748 m = 0; /* lowest valid score */ 749 } else if (m == RT6_NUD_FAIL_HARD) { 750 goto out; 751 } 752 753 if (strict & RT6_LOOKUP_F_REACHABLE) 754 rt6_probe(nh); 755 756 /* note that m can be RT6_NUD_FAIL_PROBE at this point */ 757 if (m > *mpri) { 758 *do_rr = match_do_rr; 759 *mpri = m; 760 rc = true; 761 } 762 out: 763 return rc; 764 } 765 766 struct fib6_nh_frl_arg { 767 u32 flags; 768 int oif; 769 int strict; 770 int *mpri; 771 bool *do_rr; 772 struct fib6_nh *nh; 773 }; 774 775 static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) 776 { 777 struct fib6_nh_frl_arg *arg = _arg; 778 779 arg->nh = nh; 780 return find_match(nh, arg->flags, arg->oif, arg->strict, 781 arg->mpri, arg->do_rr); 782 } 783 784 static void __find_rr_leaf(struct fib6_info *f6i_start, 785 struct fib6_info *nomatch, u32 metric, 786 struct fib6_result *res, struct fib6_info **cont, 787 int oif, int strict, bool *do_rr, int *mpri) 788 { 789 struct fib6_info *f6i; 790 791 for (f6i = f6i_start; 792 f6i && f6i != nomatch; 793 f6i = rcu_dereference(f6i->fib6_next)) { 794 bool matched = false; 795 struct fib6_nh *nh; 796 797 if (cont && f6i->fib6_metric != metric) { 798 *cont = f6i; 799 return; 800 } 801 802 if (fib6_check_expired(f6i)) 803 continue; 804 805 if (unlikely(f6i->nh)) { 806 struct fib6_nh_frl_arg arg = { 807 .flags = f6i->fib6_flags, 808 .oif = oif, 809 .strict = strict, 810 .mpri = mpri, 811 .do_rr = do_rr 812 }; 813 814 if (nexthop_is_blackhole(f6i->nh)) { 815 res->fib6_flags = RTF_REJECT; 816 res->fib6_type = RTN_BLACKHOLE; 817 res->f6i = f6i; 818 res->nh = nexthop_fib6_nh(f6i->nh); 819 return; 820 } 821 if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, 822 &arg)) { 823 matched = true; 824 nh = arg.nh; 825 } 826 } else { 827 nh = f6i->fib6_nh; 828 if (find_match(nh, f6i->fib6_flags, oif, strict, 829 mpri, do_rr)) 830 matched = true; 831 } 832 if (matched) { 833 res->f6i = f6i; 834 res->nh = nh; 835 res->fib6_flags = f6i->fib6_flags; 836 res->fib6_type = f6i->fib6_type; 837 } 838 } 839 } 840 841 static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, 842 struct fib6_info *rr_head, int oif, int strict, 843 bool *do_rr, struct fib6_result *res) 844 { 845 u32 metric = rr_head->fib6_metric; 846 struct fib6_info *cont = NULL; 847 int mpri = -1; 848 849 __find_rr_leaf(rr_head, NULL, metric, res, &cont, 850 oif, strict, do_rr, &mpri); 851 852 __find_rr_leaf(leaf, rr_head, metric, res, &cont, 853 oif, strict, do_rr, &mpri); 854 855 if (res->f6i || !cont) 856 return; 857 858 __find_rr_leaf(cont, NULL, metric, res, NULL, 859 oif, strict, do_rr, &mpri); 860 } 861 862 static void rt6_select(struct net *net, struct fib6_node *fn, int oif, 863 struct fib6_result *res, int strict) 864 { 865 struct fib6_info *leaf = rcu_dereference(fn->leaf); 866 struct fib6_info *rt0; 867 bool do_rr = false; 868 int key_plen; 869 870 /* make sure this function or its helpers sets f6i */ 871 res->f6i = NULL; 872 873 if (!leaf || leaf == net->ipv6.fib6_null_entry) 874 goto out; 875 876 rt0 = rcu_dereference(fn->rr_ptr); 877 if (!rt0) 878 rt0 = leaf; 879 880 /* Double check to make sure fn is not an intermediate node 881 * and fn->leaf does not points to its child's leaf 882 * (This might happen if all routes under fn are deleted from 883 * the tree and fib6_repair_tree() is called on the node.) 884 */ 885 key_plen = rt0->fib6_dst.plen; 886 #ifdef CONFIG_IPV6_SUBTREES 887 if (rt0->fib6_src.plen) 888 key_plen = rt0->fib6_src.plen; 889 #endif 890 if (fn->fn_bit != key_plen) 891 goto out; 892 893 find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); 894 if (do_rr) { 895 struct fib6_info *next = rcu_dereference(rt0->fib6_next); 896 897 /* no entries matched; do round-robin */ 898 if (!next || next->fib6_metric != rt0->fib6_metric) 899 next = leaf; 900 901 if (next != rt0) { 902 spin_lock_bh(&leaf->fib6_table->tb6_lock); 903 /* make sure next is not being deleted from the tree */ 904 if (next->fib6_node) 905 rcu_assign_pointer(fn->rr_ptr, next); 906 spin_unlock_bh(&leaf->fib6_table->tb6_lock); 907 } 908 } 909 910 out: 911 if (!res->f6i) { 912 res->f6i = net->ipv6.fib6_null_entry; 913 res->nh = res->f6i->fib6_nh; 914 res->fib6_flags = res->f6i->fib6_flags; 915 res->fib6_type = res->f6i->fib6_type; 916 } 917 } 918 919 static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) 920 { 921 return (res->f6i->fib6_flags & RTF_NONEXTHOP) || 922 res->nh->fib_nh_gw_family; 923 } 924 925 #ifdef CONFIG_IPV6_ROUTE_INFO 926 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, 927 const struct in6_addr *gwaddr) 928 { 929 struct net *net = dev_net(dev); 930 struct route_info *rinfo = (struct route_info *) opt; 931 struct in6_addr prefix_buf, *prefix; 932 unsigned int pref; 933 unsigned long lifetime; 934 struct fib6_info *rt; 935 936 if (len < sizeof(struct route_info)) { 937 return -EINVAL; 938 } 939 940 /* Sanity check for prefix_len and length */ 941 if (rinfo->length > 3) { 942 return -EINVAL; 943 } else if (rinfo->prefix_len > 128) { 944 return -EINVAL; 945 } else if (rinfo->prefix_len > 64) { 946 if (rinfo->length < 2) { 947 return -EINVAL; 948 } 949 } else if (rinfo->prefix_len > 0) { 950 if (rinfo->length < 1) { 951 return -EINVAL; 952 } 953 } 954 955 pref = rinfo->route_pref; 956 if (pref == ICMPV6_ROUTER_PREF_INVALID) 957 return -EINVAL; 958 959 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); 960 961 if (rinfo->length == 3) 962 prefix = (struct in6_addr *)rinfo->prefix; 963 else { 964 /* this function is safe */ 965 ipv6_addr_prefix(&prefix_buf, 966 (struct in6_addr *)rinfo->prefix, 967 rinfo->prefix_len); 968 prefix = &prefix_buf; 969 } 970 971 if (rinfo->prefix_len == 0) 972 rt = rt6_get_dflt_router(net, gwaddr, dev); 973 else 974 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, 975 gwaddr, dev); 976 977 if (rt && !lifetime) { 978 ip6_del_rt(net, rt, false); 979 rt = NULL; 980 } 981 982 if (!rt && lifetime) 983 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, 984 dev, pref); 985 else if (rt) 986 rt->fib6_flags = RTF_ROUTEINFO | 987 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); 988 989 if (rt) { 990 if (!addrconf_finite_timeout(lifetime)) 991 fib6_clean_expires(rt); 992 else 993 fib6_set_expires(rt, jiffies + HZ * lifetime); 994 995 fib6_info_release(rt); 996 } 997 return 0; 998 } 999 #endif 1000 1001 /* 1002 * Misc support functions 1003 */ 1004 1005 /* called with rcu_lock held */ 1006 static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) 1007 { 1008 struct net_device *dev = res->nh->fib_nh_dev; 1009 1010 if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { 1011 /* for copies of local routes, dst->dev needs to be the 1012 * device if it is a master device, the master device if 1013 * device is enslaved, and the loopback as the default 1014 */ 1015 if (netif_is_l3_slave(dev) && 1016 !rt6_need_strict(&res->f6i->fib6_dst.addr)) 1017 dev = l3mdev_master_dev_rcu(dev); 1018 else if (!netif_is_l3_master(dev)) 1019 dev = dev_net(dev)->loopback_dev; 1020 /* last case is netif_is_l3_master(dev) is true in which 1021 * case we want dev returned to be dev 1022 */ 1023 } 1024 1025 return dev; 1026 } 1027 1028 static const int fib6_prop[RTN_MAX + 1] = { 1029 [RTN_UNSPEC] = 0, 1030 [RTN_UNICAST] = 0, 1031 [RTN_LOCAL] = 0, 1032 [RTN_BROADCAST] = 0, 1033 [RTN_ANYCAST] = 0, 1034 [RTN_MULTICAST] = 0, 1035 [RTN_BLACKHOLE] = -EINVAL, 1036 [RTN_UNREACHABLE] = -EHOSTUNREACH, 1037 [RTN_PROHIBIT] = -EACCES, 1038 [RTN_THROW] = -EAGAIN, 1039 [RTN_NAT] = -EINVAL, 1040 [RTN_XRESOLVE] = -EINVAL, 1041 }; 1042 1043 static int ip6_rt_type_to_error(u8 fib6_type) 1044 { 1045 return fib6_prop[fib6_type]; 1046 } 1047 1048 static unsigned short fib6_info_dst_flags(struct fib6_info *rt) 1049 { 1050 unsigned short flags = 0; 1051 1052 if (rt->dst_nocount) 1053 flags |= DST_NOCOUNT; 1054 if (rt->dst_nopolicy) 1055 flags |= DST_NOPOLICY; 1056 1057 return flags; 1058 } 1059 1060 static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) 1061 { 1062 rt->dst.error = ip6_rt_type_to_error(fib6_type); 1063 1064 switch (fib6_type) { 1065 case RTN_BLACKHOLE: 1066 rt->dst.output = dst_discard_out; 1067 rt->dst.input = dst_discard; 1068 break; 1069 case RTN_PROHIBIT: 1070 rt->dst.output = ip6_pkt_prohibit_out; 1071 rt->dst.input = ip6_pkt_prohibit; 1072 break; 1073 case RTN_THROW: 1074 case RTN_UNREACHABLE: 1075 default: 1076 rt->dst.output = ip6_pkt_discard_out; 1077 rt->dst.input = ip6_pkt_discard; 1078 break; 1079 } 1080 } 1081 1082 static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) 1083 { 1084 struct fib6_info *f6i = res->f6i; 1085 1086 if (res->fib6_flags & RTF_REJECT) { 1087 ip6_rt_init_dst_reject(rt, res->fib6_type); 1088 return; 1089 } 1090 1091 rt->dst.error = 0; 1092 rt->dst.output = ip6_output; 1093 1094 if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { 1095 rt->dst.input = ip6_input; 1096 } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { 1097 rt->dst.input = ip6_mc_input; 1098 } else { 1099 rt->dst.input = ip6_forward; 1100 } 1101 1102 if (res->nh->fib_nh_lws) { 1103 rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); 1104 lwtunnel_set_redirect(&rt->dst); 1105 } 1106 1107 rt->dst.lastuse = jiffies; 1108 } 1109 1110 /* Caller must already hold reference to @from */ 1111 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) 1112 { 1113 rt->rt6i_flags &= ~RTF_EXPIRES; 1114 rcu_assign_pointer(rt->from, from); 1115 ip_dst_init_metrics(&rt->dst, from->fib6_metrics); 1116 } 1117 1118 /* Caller must already hold reference to f6i in result */ 1119 static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) 1120 { 1121 const struct fib6_nh *nh = res->nh; 1122 const struct net_device *dev = nh->fib_nh_dev; 1123 struct fib6_info *f6i = res->f6i; 1124 1125 ip6_rt_init_dst(rt, res); 1126 1127 rt->rt6i_dst = f6i->fib6_dst; 1128 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; 1129 rt->rt6i_flags = res->fib6_flags; 1130 if (nh->fib_nh_gw_family) { 1131 rt->rt6i_gateway = nh->fib_nh_gw6; 1132 rt->rt6i_flags |= RTF_GATEWAY; 1133 } 1134 rt6_set_from(rt, f6i); 1135 #ifdef CONFIG_IPV6_SUBTREES 1136 rt->rt6i_src = f6i->fib6_src; 1137 #endif 1138 } 1139 1140 static struct fib6_node* fib6_backtrack(struct fib6_node *fn, 1141 struct in6_addr *saddr) 1142 { 1143 struct fib6_node *pn, *sn; 1144 while (1) { 1145 if (fn->fn_flags & RTN_TL_ROOT) 1146 return NULL; 1147 pn = rcu_dereference(fn->parent); 1148 sn = FIB6_SUBTREE(pn); 1149 if (sn && sn != fn) 1150 fn = fib6_node_lookup(sn, NULL, saddr); 1151 else 1152 fn = pn; 1153 if (fn->fn_flags & RTN_RTINFO) 1154 return fn; 1155 } 1156 } 1157 1158 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) 1159 { 1160 struct rt6_info *rt = *prt; 1161 1162 if (dst_hold_safe(&rt->dst)) 1163 return true; 1164 if (net) { 1165 rt = net->ipv6.ip6_null_entry; 1166 dst_hold(&rt->dst); 1167 } else { 1168 rt = NULL; 1169 } 1170 *prt = rt; 1171 return false; 1172 } 1173 1174 /* called with rcu_lock held */ 1175 static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) 1176 { 1177 struct net_device *dev = res->nh->fib_nh_dev; 1178 struct fib6_info *f6i = res->f6i; 1179 unsigned short flags; 1180 struct rt6_info *nrt; 1181 1182 if (!fib6_info_hold_safe(f6i)) 1183 goto fallback; 1184 1185 flags = fib6_info_dst_flags(f6i); 1186 nrt = ip6_dst_alloc(dev_net(dev), dev, flags); 1187 if (!nrt) { 1188 fib6_info_release(f6i); 1189 goto fallback; 1190 } 1191 1192 ip6_rt_copy_init(nrt, res); 1193 return nrt; 1194 1195 fallback: 1196 nrt = dev_net(dev)->ipv6.ip6_null_entry; 1197 dst_hold(&nrt->dst); 1198 return nrt; 1199 } 1200 1201 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net, 1202 struct fib6_table *table, 1203 struct flowi6 *fl6, 1204 const struct sk_buff *skb, 1205 int flags) 1206 { 1207 struct fib6_result res = {}; 1208 struct fib6_node *fn; 1209 struct rt6_info *rt; 1210 1211 rcu_read_lock(); 1212 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 1213 restart: 1214 res.f6i = rcu_dereference(fn->leaf); 1215 if (!res.f6i) 1216 res.f6i = net->ipv6.fib6_null_entry; 1217 else 1218 rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, 1219 flags); 1220 1221 if (res.f6i == net->ipv6.fib6_null_entry) { 1222 fn = fib6_backtrack(fn, &fl6->saddr); 1223 if (fn) 1224 goto restart; 1225 1226 rt = net->ipv6.ip6_null_entry; 1227 dst_hold(&rt->dst); 1228 goto out; 1229 } else if (res.fib6_flags & RTF_REJECT) { 1230 goto do_create; 1231 } 1232 1233 fib6_select_path(net, &res, fl6, fl6->flowi6_oif, 1234 fl6->flowi6_oif != 0, skb, flags); 1235 1236 /* Search through exception table */ 1237 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 1238 if (rt) { 1239 if (ip6_hold_safe(net, &rt)) 1240 dst_use_noref(&rt->dst, jiffies); 1241 } else { 1242 do_create: 1243 rt = ip6_create_rt_rcu(&res); 1244 } 1245 1246 out: 1247 trace_fib6_table_lookup(net, &res, table, fl6); 1248 1249 rcu_read_unlock(); 1250 1251 return rt; 1252 } 1253 1254 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, 1255 const struct sk_buff *skb, int flags) 1256 { 1257 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); 1258 } 1259 EXPORT_SYMBOL_GPL(ip6_route_lookup); 1260 1261 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, 1262 const struct in6_addr *saddr, int oif, 1263 const struct sk_buff *skb, int strict) 1264 { 1265 struct flowi6 fl6 = { 1266 .flowi6_oif = oif, 1267 .daddr = *daddr, 1268 }; 1269 struct dst_entry *dst; 1270 int flags = strict ? RT6_LOOKUP_F_IFACE : 0; 1271 1272 if (saddr) { 1273 memcpy(&fl6.saddr, saddr, sizeof(*saddr)); 1274 flags |= RT6_LOOKUP_F_HAS_SADDR; 1275 } 1276 1277 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); 1278 if (dst->error == 0) 1279 return (struct rt6_info *) dst; 1280 1281 dst_release(dst); 1282 1283 return NULL; 1284 } 1285 EXPORT_SYMBOL(rt6_lookup); 1286 1287 /* ip6_ins_rt is called with FREE table->tb6_lock. 1288 * It takes new route entry, the addition fails by any reason the 1289 * route is released. 1290 * Caller must hold dst before calling it. 1291 */ 1292 1293 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, 1294 struct netlink_ext_ack *extack) 1295 { 1296 int err; 1297 struct fib6_table *table; 1298 1299 table = rt->fib6_table; 1300 spin_lock_bh(&table->tb6_lock); 1301 err = fib6_add(&table->tb6_root, rt, info, extack); 1302 spin_unlock_bh(&table->tb6_lock); 1303 1304 return err; 1305 } 1306 1307 int ip6_ins_rt(struct net *net, struct fib6_info *rt) 1308 { 1309 struct nl_info info = { .nl_net = net, }; 1310 1311 return __ip6_ins_rt(rt, &info, NULL); 1312 } 1313 1314 static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, 1315 const struct in6_addr *daddr, 1316 const struct in6_addr *saddr) 1317 { 1318 struct fib6_info *f6i = res->f6i; 1319 struct net_device *dev; 1320 struct rt6_info *rt; 1321 1322 /* 1323 * Clone the route. 1324 */ 1325 1326 if (!fib6_info_hold_safe(f6i)) 1327 return NULL; 1328 1329 dev = ip6_rt_get_dev_rcu(res); 1330 rt = ip6_dst_alloc(dev_net(dev), dev, 0); 1331 if (!rt) { 1332 fib6_info_release(f6i); 1333 return NULL; 1334 } 1335 1336 ip6_rt_copy_init(rt, res); 1337 rt->rt6i_flags |= RTF_CACHE; 1338 rt->rt6i_dst.addr = *daddr; 1339 rt->rt6i_dst.plen = 128; 1340 1341 if (!rt6_is_gw_or_nonexthop(res)) { 1342 if (f6i->fib6_dst.plen != 128 && 1343 ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) 1344 rt->rt6i_flags |= RTF_ANYCAST; 1345 #ifdef CONFIG_IPV6_SUBTREES 1346 if (rt->rt6i_src.plen && saddr) { 1347 rt->rt6i_src.addr = *saddr; 1348 rt->rt6i_src.plen = 128; 1349 } 1350 #endif 1351 } 1352 1353 return rt; 1354 } 1355 1356 static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) 1357 { 1358 struct fib6_info *f6i = res->f6i; 1359 unsigned short flags = fib6_info_dst_flags(f6i); 1360 struct net_device *dev; 1361 struct rt6_info *pcpu_rt; 1362 1363 if (!fib6_info_hold_safe(f6i)) 1364 return NULL; 1365 1366 rcu_read_lock(); 1367 dev = ip6_rt_get_dev_rcu(res); 1368 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT); 1369 rcu_read_unlock(); 1370 if (!pcpu_rt) { 1371 fib6_info_release(f6i); 1372 return NULL; 1373 } 1374 ip6_rt_copy_init(pcpu_rt, res); 1375 pcpu_rt->rt6i_flags |= RTF_PCPU; 1376 1377 if (f6i->nh) 1378 pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev)); 1379 1380 return pcpu_rt; 1381 } 1382 1383 static bool rt6_is_valid(const struct rt6_info *rt6) 1384 { 1385 return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev)); 1386 } 1387 1388 /* It should be called with rcu_read_lock() acquired */ 1389 static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) 1390 { 1391 struct rt6_info *pcpu_rt; 1392 1393 pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); 1394 1395 if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) { 1396 struct rt6_info *prev, **p; 1397 1398 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1399 prev = xchg(p, NULL); 1400 if (prev) { 1401 dst_dev_put(&prev->dst); 1402 dst_release(&prev->dst); 1403 } 1404 1405 pcpu_rt = NULL; 1406 } 1407 1408 return pcpu_rt; 1409 } 1410 1411 static struct rt6_info *rt6_make_pcpu_route(struct net *net, 1412 const struct fib6_result *res) 1413 { 1414 struct rt6_info *pcpu_rt, *prev, **p; 1415 1416 pcpu_rt = ip6_rt_pcpu_alloc(res); 1417 if (!pcpu_rt) 1418 return NULL; 1419 1420 p = this_cpu_ptr(res->nh->rt6i_pcpu); 1421 prev = cmpxchg(p, NULL, pcpu_rt); 1422 BUG_ON(prev); 1423 1424 if (res->f6i->fib6_destroying) { 1425 struct fib6_info *from; 1426 1427 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 1428 fib6_info_release(from); 1429 } 1430 1431 return pcpu_rt; 1432 } 1433 1434 /* exception hash table implementation 1435 */ 1436 static DEFINE_SPINLOCK(rt6_exception_lock); 1437 1438 /* Remove rt6_ex from hash table and free the memory 1439 * Caller must hold rt6_exception_lock 1440 */ 1441 static void rt6_remove_exception(struct rt6_exception_bucket *bucket, 1442 struct rt6_exception *rt6_ex) 1443 { 1444 struct fib6_info *from; 1445 struct net *net; 1446 1447 if (!bucket || !rt6_ex) 1448 return; 1449 1450 net = dev_net(rt6_ex->rt6i->dst.dev); 1451 net->ipv6.rt6_stats->fib_rt_cache--; 1452 1453 /* purge completely the exception to allow releasing the held resources: 1454 * some [sk] cache may keep the dst around for unlimited time 1455 */ 1456 from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL); 1457 fib6_info_release(from); 1458 dst_dev_put(&rt6_ex->rt6i->dst); 1459 1460 hlist_del_rcu(&rt6_ex->hlist); 1461 dst_release(&rt6_ex->rt6i->dst); 1462 kfree_rcu(rt6_ex, rcu); 1463 WARN_ON_ONCE(!bucket->depth); 1464 bucket->depth--; 1465 } 1466 1467 /* Remove oldest rt6_ex in bucket and free the memory 1468 * Caller must hold rt6_exception_lock 1469 */ 1470 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) 1471 { 1472 struct rt6_exception *rt6_ex, *oldest = NULL; 1473 1474 if (!bucket) 1475 return; 1476 1477 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 1478 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) 1479 oldest = rt6_ex; 1480 } 1481 rt6_remove_exception(bucket, oldest); 1482 } 1483 1484 static u32 rt6_exception_hash(const struct in6_addr *dst, 1485 const struct in6_addr *src) 1486 { 1487 static siphash_aligned_key_t rt6_exception_key; 1488 struct { 1489 struct in6_addr dst; 1490 struct in6_addr src; 1491 } __aligned(SIPHASH_ALIGNMENT) combined = { 1492 .dst = *dst, 1493 }; 1494 u64 val; 1495 1496 net_get_random_once(&rt6_exception_key, sizeof(rt6_exception_key)); 1497 1498 #ifdef CONFIG_IPV6_SUBTREES 1499 if (src) 1500 combined.src = *src; 1501 #endif 1502 val = siphash(&combined, sizeof(combined), &rt6_exception_key); 1503 1504 return hash_64(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); 1505 } 1506 1507 /* Helper function to find the cached rt in the hash table 1508 * and update bucket pointer to point to the bucket for this 1509 * (daddr, saddr) pair 1510 * Caller must hold rt6_exception_lock 1511 */ 1512 static struct rt6_exception * 1513 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, 1514 const struct in6_addr *daddr, 1515 const struct in6_addr *saddr) 1516 { 1517 struct rt6_exception *rt6_ex; 1518 u32 hval; 1519 1520 if (!(*bucket) || !daddr) 1521 return NULL; 1522 1523 hval = rt6_exception_hash(daddr, saddr); 1524 *bucket += hval; 1525 1526 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { 1527 struct rt6_info *rt6 = rt6_ex->rt6i; 1528 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1529 1530 #ifdef CONFIG_IPV6_SUBTREES 1531 if (matched && saddr) 1532 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1533 #endif 1534 if (matched) 1535 return rt6_ex; 1536 } 1537 return NULL; 1538 } 1539 1540 /* Helper function to find the cached rt in the hash table 1541 * and update bucket pointer to point to the bucket for this 1542 * (daddr, saddr) pair 1543 * Caller must hold rcu_read_lock() 1544 */ 1545 static struct rt6_exception * 1546 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, 1547 const struct in6_addr *daddr, 1548 const struct in6_addr *saddr) 1549 { 1550 struct rt6_exception *rt6_ex; 1551 u32 hval; 1552 1553 WARN_ON_ONCE(!rcu_read_lock_held()); 1554 1555 if (!(*bucket) || !daddr) 1556 return NULL; 1557 1558 hval = rt6_exception_hash(daddr, saddr); 1559 *bucket += hval; 1560 1561 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { 1562 struct rt6_info *rt6 = rt6_ex->rt6i; 1563 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); 1564 1565 #ifdef CONFIG_IPV6_SUBTREES 1566 if (matched && saddr) 1567 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); 1568 #endif 1569 if (matched) 1570 return rt6_ex; 1571 } 1572 return NULL; 1573 } 1574 1575 static unsigned int fib6_mtu(const struct fib6_result *res) 1576 { 1577 const struct fib6_nh *nh = res->nh; 1578 unsigned int mtu; 1579 1580 if (res->f6i->fib6_pmtu) { 1581 mtu = res->f6i->fib6_pmtu; 1582 } else { 1583 struct net_device *dev = nh->fib_nh_dev; 1584 struct inet6_dev *idev; 1585 1586 rcu_read_lock(); 1587 idev = __in6_dev_get(dev); 1588 mtu = idev->cnf.mtu6; 1589 rcu_read_unlock(); 1590 } 1591 1592 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 1593 1594 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 1595 } 1596 1597 #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL 1598 1599 /* used when the flushed bit is not relevant, only access to the bucket 1600 * (ie., all bucket users except rt6_insert_exception); 1601 * 1602 * called under rcu lock; sometimes called with rt6_exception_lock held 1603 */ 1604 static 1605 struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, 1606 spinlock_t *lock) 1607 { 1608 struct rt6_exception_bucket *bucket; 1609 1610 if (lock) 1611 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1612 lockdep_is_held(lock)); 1613 else 1614 bucket = rcu_dereference(nh->rt6i_exception_bucket); 1615 1616 /* remove bucket flushed bit if set */ 1617 if (bucket) { 1618 unsigned long p = (unsigned long)bucket; 1619 1620 p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; 1621 bucket = (struct rt6_exception_bucket *)p; 1622 } 1623 1624 return bucket; 1625 } 1626 1627 static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) 1628 { 1629 unsigned long p = (unsigned long)bucket; 1630 1631 return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); 1632 } 1633 1634 /* called with rt6_exception_lock held */ 1635 static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, 1636 spinlock_t *lock) 1637 { 1638 struct rt6_exception_bucket *bucket; 1639 unsigned long p; 1640 1641 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1642 lockdep_is_held(lock)); 1643 1644 p = (unsigned long)bucket; 1645 p |= FIB6_EXCEPTION_BUCKET_FLUSHED; 1646 bucket = (struct rt6_exception_bucket *)p; 1647 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1648 } 1649 1650 static int rt6_insert_exception(struct rt6_info *nrt, 1651 const struct fib6_result *res) 1652 { 1653 struct net *net = dev_net(nrt->dst.dev); 1654 struct rt6_exception_bucket *bucket; 1655 struct fib6_info *f6i = res->f6i; 1656 struct in6_addr *src_key = NULL; 1657 struct rt6_exception *rt6_ex; 1658 struct fib6_nh *nh = res->nh; 1659 int max_depth; 1660 int err = 0; 1661 1662 spin_lock_bh(&rt6_exception_lock); 1663 1664 bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, 1665 lockdep_is_held(&rt6_exception_lock)); 1666 if (!bucket) { 1667 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), 1668 GFP_ATOMIC); 1669 if (!bucket) { 1670 err = -ENOMEM; 1671 goto out; 1672 } 1673 rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); 1674 } else if (fib6_nh_excptn_bucket_flushed(bucket)) { 1675 err = -EINVAL; 1676 goto out; 1677 } 1678 1679 #ifdef CONFIG_IPV6_SUBTREES 1680 /* fib6_src.plen != 0 indicates f6i is in subtree 1681 * and exception table is indexed by a hash of 1682 * both fib6_dst and fib6_src. 1683 * Otherwise, the exception table is indexed by 1684 * a hash of only fib6_dst. 1685 */ 1686 if (f6i->fib6_src.plen) 1687 src_key = &nrt->rt6i_src.addr; 1688 #endif 1689 /* rt6_mtu_change() might lower mtu on f6i. 1690 * Only insert this exception route if its mtu 1691 * is less than f6i's mtu value. 1692 */ 1693 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { 1694 err = -EINVAL; 1695 goto out; 1696 } 1697 1698 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, 1699 src_key); 1700 if (rt6_ex) 1701 rt6_remove_exception(bucket, rt6_ex); 1702 1703 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); 1704 if (!rt6_ex) { 1705 err = -ENOMEM; 1706 goto out; 1707 } 1708 rt6_ex->rt6i = nrt; 1709 rt6_ex->stamp = jiffies; 1710 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); 1711 bucket->depth++; 1712 net->ipv6.rt6_stats->fib_rt_cache++; 1713 1714 /* Randomize max depth to avoid some side channels attacks. */ 1715 max_depth = FIB6_MAX_DEPTH + get_random_u32_below(FIB6_MAX_DEPTH); 1716 while (bucket->depth > max_depth) 1717 rt6_exception_remove_oldest(bucket); 1718 1719 out: 1720 spin_unlock_bh(&rt6_exception_lock); 1721 1722 /* Update fn->fn_sernum to invalidate all cached dst */ 1723 if (!err) { 1724 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1725 fib6_update_sernum(net, f6i); 1726 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1727 fib6_force_start_gc(net); 1728 } 1729 1730 return err; 1731 } 1732 1733 static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) 1734 { 1735 struct rt6_exception_bucket *bucket; 1736 struct rt6_exception *rt6_ex; 1737 struct hlist_node *tmp; 1738 int i; 1739 1740 spin_lock_bh(&rt6_exception_lock); 1741 1742 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1743 if (!bucket) 1744 goto out; 1745 1746 /* Prevent rt6_insert_exception() to recreate the bucket list */ 1747 if (!from) 1748 fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); 1749 1750 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 1751 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { 1752 if (!from || 1753 rcu_access_pointer(rt6_ex->rt6i->from) == from) 1754 rt6_remove_exception(bucket, rt6_ex); 1755 } 1756 WARN_ON_ONCE(!from && bucket->depth); 1757 bucket++; 1758 } 1759 out: 1760 spin_unlock_bh(&rt6_exception_lock); 1761 } 1762 1763 static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) 1764 { 1765 struct fib6_info *f6i = arg; 1766 1767 fib6_nh_flush_exceptions(nh, f6i); 1768 1769 return 0; 1770 } 1771 1772 void rt6_flush_exceptions(struct fib6_info *f6i) 1773 { 1774 if (f6i->nh) 1775 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, 1776 f6i); 1777 else 1778 fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); 1779 } 1780 1781 /* Find cached rt in the hash table inside passed in rt 1782 * Caller has to hold rcu_read_lock() 1783 */ 1784 static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, 1785 const struct in6_addr *daddr, 1786 const struct in6_addr *saddr) 1787 { 1788 const struct in6_addr *src_key = NULL; 1789 struct rt6_exception_bucket *bucket; 1790 struct rt6_exception *rt6_ex; 1791 struct rt6_info *ret = NULL; 1792 1793 #ifdef CONFIG_IPV6_SUBTREES 1794 /* fib6i_src.plen != 0 indicates f6i is in subtree 1795 * and exception table is indexed by a hash of 1796 * both fib6_dst and fib6_src. 1797 * However, the src addr used to create the hash 1798 * might not be exactly the passed in saddr which 1799 * is a /128 addr from the flow. 1800 * So we need to use f6i->fib6_src to redo lookup 1801 * if the passed in saddr does not find anything. 1802 * (See the logic in ip6_rt_cache_alloc() on how 1803 * rt->rt6i_src is updated.) 1804 */ 1805 if (res->f6i->fib6_src.plen) 1806 src_key = saddr; 1807 find_ex: 1808 #endif 1809 bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); 1810 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); 1811 1812 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) 1813 ret = rt6_ex->rt6i; 1814 1815 #ifdef CONFIG_IPV6_SUBTREES 1816 /* Use fib6_src as src_key and redo lookup */ 1817 if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { 1818 src_key = &res->f6i->fib6_src.addr; 1819 goto find_ex; 1820 } 1821 #endif 1822 1823 return ret; 1824 } 1825 1826 /* Remove the passed in cached rt from the hash table that contains it */ 1827 static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, 1828 const struct rt6_info *rt) 1829 { 1830 const struct in6_addr *src_key = NULL; 1831 struct rt6_exception_bucket *bucket; 1832 struct rt6_exception *rt6_ex; 1833 int err; 1834 1835 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 1836 return -ENOENT; 1837 1838 spin_lock_bh(&rt6_exception_lock); 1839 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 1840 1841 #ifdef CONFIG_IPV6_SUBTREES 1842 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1843 * and exception table is indexed by a hash of 1844 * both rt6i_dst and rt6i_src. 1845 * Otherwise, the exception table is indexed by 1846 * a hash of only rt6i_dst. 1847 */ 1848 if (plen) 1849 src_key = &rt->rt6i_src.addr; 1850 #endif 1851 rt6_ex = __rt6_find_exception_spinlock(&bucket, 1852 &rt->rt6i_dst.addr, 1853 src_key); 1854 if (rt6_ex) { 1855 rt6_remove_exception(bucket, rt6_ex); 1856 err = 0; 1857 } else { 1858 err = -ENOENT; 1859 } 1860 1861 spin_unlock_bh(&rt6_exception_lock); 1862 return err; 1863 } 1864 1865 struct fib6_nh_excptn_arg { 1866 struct rt6_info *rt; 1867 int plen; 1868 }; 1869 1870 static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) 1871 { 1872 struct fib6_nh_excptn_arg *arg = _arg; 1873 int err; 1874 1875 err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); 1876 if (err == 0) 1877 return 1; 1878 1879 return 0; 1880 } 1881 1882 static int rt6_remove_exception_rt(struct rt6_info *rt) 1883 { 1884 struct fib6_info *from; 1885 1886 from = rcu_dereference(rt->from); 1887 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1888 return -EINVAL; 1889 1890 if (from->nh) { 1891 struct fib6_nh_excptn_arg arg = { 1892 .rt = rt, 1893 .plen = from->fib6_src.plen 1894 }; 1895 int rc; 1896 1897 /* rc = 1 means an entry was found */ 1898 rc = nexthop_for_each_fib6_nh(from->nh, 1899 rt6_nh_remove_exception_rt, 1900 &arg); 1901 return rc ? 0 : -ENOENT; 1902 } 1903 1904 return fib6_nh_remove_exception(from->fib6_nh, 1905 from->fib6_src.plen, rt); 1906 } 1907 1908 /* Find rt6_ex which contains the passed in rt cache and 1909 * refresh its stamp 1910 */ 1911 static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, 1912 const struct rt6_info *rt) 1913 { 1914 const struct in6_addr *src_key = NULL; 1915 struct rt6_exception_bucket *bucket; 1916 struct rt6_exception *rt6_ex; 1917 1918 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 1919 #ifdef CONFIG_IPV6_SUBTREES 1920 /* rt6i_src.plen != 0 indicates 'from' is in subtree 1921 * and exception table is indexed by a hash of 1922 * both rt6i_dst and rt6i_src. 1923 * Otherwise, the exception table is indexed by 1924 * a hash of only rt6i_dst. 1925 */ 1926 if (plen) 1927 src_key = &rt->rt6i_src.addr; 1928 #endif 1929 rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); 1930 if (rt6_ex) 1931 rt6_ex->stamp = jiffies; 1932 } 1933 1934 struct fib6_nh_match_arg { 1935 const struct net_device *dev; 1936 const struct in6_addr *gw; 1937 struct fib6_nh *match; 1938 }; 1939 1940 /* determine if fib6_nh has given device and gateway */ 1941 static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) 1942 { 1943 struct fib6_nh_match_arg *arg = _arg; 1944 1945 if (arg->dev != nh->fib_nh_dev || 1946 (arg->gw && !nh->fib_nh_gw_family) || 1947 (!arg->gw && nh->fib_nh_gw_family) || 1948 (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) 1949 return 0; 1950 1951 arg->match = nh; 1952 1953 /* found a match, break the loop */ 1954 return 1; 1955 } 1956 1957 static void rt6_update_exception_stamp_rt(struct rt6_info *rt) 1958 { 1959 struct fib6_info *from; 1960 struct fib6_nh *fib6_nh; 1961 1962 rcu_read_lock(); 1963 1964 from = rcu_dereference(rt->from); 1965 if (!from || !(rt->rt6i_flags & RTF_CACHE)) 1966 goto unlock; 1967 1968 if (from->nh) { 1969 struct fib6_nh_match_arg arg = { 1970 .dev = rt->dst.dev, 1971 .gw = &rt->rt6i_gateway, 1972 }; 1973 1974 nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); 1975 1976 if (!arg.match) 1977 goto unlock; 1978 fib6_nh = arg.match; 1979 } else { 1980 fib6_nh = from->fib6_nh; 1981 } 1982 fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); 1983 unlock: 1984 rcu_read_unlock(); 1985 } 1986 1987 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, 1988 struct rt6_info *rt, int mtu) 1989 { 1990 /* If the new MTU is lower than the route PMTU, this new MTU will be the 1991 * lowest MTU in the path: always allow updating the route PMTU to 1992 * reflect PMTU decreases. 1993 * 1994 * If the new MTU is higher, and the route PMTU is equal to the local 1995 * MTU, this means the old MTU is the lowest in the path, so allow 1996 * updating it: if other nodes now have lower MTUs, PMTU discovery will 1997 * handle this. 1998 */ 1999 2000 if (dst_mtu(&rt->dst) >= mtu) 2001 return true; 2002 2003 if (dst_mtu(&rt->dst) == idev->cnf.mtu6) 2004 return true; 2005 2006 return false; 2007 } 2008 2009 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, 2010 const struct fib6_nh *nh, int mtu) 2011 { 2012 struct rt6_exception_bucket *bucket; 2013 struct rt6_exception *rt6_ex; 2014 int i; 2015 2016 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2017 if (!bucket) 2018 return; 2019 2020 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2021 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 2022 struct rt6_info *entry = rt6_ex->rt6i; 2023 2024 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected 2025 * route), the metrics of its rt->from have already 2026 * been updated. 2027 */ 2028 if (dst_metric_raw(&entry->dst, RTAX_MTU) && 2029 rt6_mtu_change_route_allowed(idev, entry, mtu)) 2030 dst_metric_set(&entry->dst, RTAX_MTU, mtu); 2031 } 2032 bucket++; 2033 } 2034 } 2035 2036 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) 2037 2038 static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, 2039 const struct in6_addr *gateway) 2040 { 2041 struct rt6_exception_bucket *bucket; 2042 struct rt6_exception *rt6_ex; 2043 struct hlist_node *tmp; 2044 int i; 2045 2046 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2047 return; 2048 2049 spin_lock_bh(&rt6_exception_lock); 2050 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2051 if (bucket) { 2052 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2053 hlist_for_each_entry_safe(rt6_ex, tmp, 2054 &bucket->chain, hlist) { 2055 struct rt6_info *entry = rt6_ex->rt6i; 2056 2057 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == 2058 RTF_CACHE_GATEWAY && 2059 ipv6_addr_equal(gateway, 2060 &entry->rt6i_gateway)) { 2061 rt6_remove_exception(bucket, rt6_ex); 2062 } 2063 } 2064 bucket++; 2065 } 2066 } 2067 2068 spin_unlock_bh(&rt6_exception_lock); 2069 } 2070 2071 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, 2072 struct rt6_exception *rt6_ex, 2073 struct fib6_gc_args *gc_args, 2074 unsigned long now) 2075 { 2076 struct rt6_info *rt = rt6_ex->rt6i; 2077 2078 /* we are pruning and obsoleting aged-out and non gateway exceptions 2079 * even if others have still references to them, so that on next 2080 * dst_check() such references can be dropped. 2081 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when 2082 * expired, independently from their aging, as per RFC 8201 section 4 2083 */ 2084 if (!(rt->rt6i_flags & RTF_EXPIRES)) { 2085 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { 2086 RT6_TRACE("aging clone %p\n", rt); 2087 rt6_remove_exception(bucket, rt6_ex); 2088 return; 2089 } 2090 } else if (time_after(jiffies, rt->dst.expires)) { 2091 RT6_TRACE("purging expired route %p\n", rt); 2092 rt6_remove_exception(bucket, rt6_ex); 2093 return; 2094 } 2095 2096 if (rt->rt6i_flags & RTF_GATEWAY) { 2097 struct neighbour *neigh; 2098 2099 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); 2100 2101 if (!(neigh && (neigh->flags & NTF_ROUTER))) { 2102 RT6_TRACE("purging route %p via non-router but gateway\n", 2103 rt); 2104 rt6_remove_exception(bucket, rt6_ex); 2105 return; 2106 } 2107 } 2108 2109 gc_args->more++; 2110 } 2111 2112 static void fib6_nh_age_exceptions(const struct fib6_nh *nh, 2113 struct fib6_gc_args *gc_args, 2114 unsigned long now) 2115 { 2116 struct rt6_exception_bucket *bucket; 2117 struct rt6_exception *rt6_ex; 2118 struct hlist_node *tmp; 2119 int i; 2120 2121 if (!rcu_access_pointer(nh->rt6i_exception_bucket)) 2122 return; 2123 2124 rcu_read_lock_bh(); 2125 spin_lock(&rt6_exception_lock); 2126 bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); 2127 if (bucket) { 2128 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 2129 hlist_for_each_entry_safe(rt6_ex, tmp, 2130 &bucket->chain, hlist) { 2131 rt6_age_examine_exception(bucket, rt6_ex, 2132 gc_args, now); 2133 } 2134 bucket++; 2135 } 2136 } 2137 spin_unlock(&rt6_exception_lock); 2138 rcu_read_unlock_bh(); 2139 } 2140 2141 struct fib6_nh_age_excptn_arg { 2142 struct fib6_gc_args *gc_args; 2143 unsigned long now; 2144 }; 2145 2146 static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) 2147 { 2148 struct fib6_nh_age_excptn_arg *arg = _arg; 2149 2150 fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); 2151 return 0; 2152 } 2153 2154 void rt6_age_exceptions(struct fib6_info *f6i, 2155 struct fib6_gc_args *gc_args, 2156 unsigned long now) 2157 { 2158 if (f6i->nh) { 2159 struct fib6_nh_age_excptn_arg arg = { 2160 .gc_args = gc_args, 2161 .now = now 2162 }; 2163 2164 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, 2165 &arg); 2166 } else { 2167 fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); 2168 } 2169 } 2170 2171 /* must be called with rcu lock held */ 2172 int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, 2173 struct flowi6 *fl6, struct fib6_result *res, int strict) 2174 { 2175 struct fib6_node *fn, *saved_fn; 2176 2177 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 2178 saved_fn = fn; 2179 2180 redo_rt6_select: 2181 rt6_select(net, fn, oif, res, strict); 2182 if (res->f6i == net->ipv6.fib6_null_entry) { 2183 fn = fib6_backtrack(fn, &fl6->saddr); 2184 if (fn) 2185 goto redo_rt6_select; 2186 else if (strict & RT6_LOOKUP_F_REACHABLE) { 2187 /* also consider unreachable route */ 2188 strict &= ~RT6_LOOKUP_F_REACHABLE; 2189 fn = saved_fn; 2190 goto redo_rt6_select; 2191 } 2192 } 2193 2194 trace_fib6_table_lookup(net, res, table, fl6); 2195 2196 return 0; 2197 } 2198 2199 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, 2200 int oif, struct flowi6 *fl6, 2201 const struct sk_buff *skb, int flags) 2202 { 2203 struct fib6_result res = {}; 2204 struct rt6_info *rt = NULL; 2205 int strict = 0; 2206 2207 WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && 2208 !rcu_read_lock_held()); 2209 2210 strict |= flags & RT6_LOOKUP_F_IFACE; 2211 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; 2212 if (net->ipv6.devconf_all->forwarding == 0) 2213 strict |= RT6_LOOKUP_F_REACHABLE; 2214 2215 rcu_read_lock(); 2216 2217 fib6_table_lookup(net, table, oif, fl6, &res, strict); 2218 if (res.f6i == net->ipv6.fib6_null_entry) 2219 goto out; 2220 2221 fib6_select_path(net, &res, fl6, oif, false, skb, strict); 2222 2223 /*Search through exception table */ 2224 rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); 2225 if (rt) { 2226 goto out; 2227 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && 2228 !res.nh->fib_nh_gw_family)) { 2229 /* Create a RTF_CACHE clone which will not be 2230 * owned by the fib6 tree. It is for the special case where 2231 * the daddr in the skb during the neighbor look-up is different 2232 * from the fl6->daddr used to look-up route here. 2233 */ 2234 rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); 2235 2236 if (rt) { 2237 /* 1 refcnt is taken during ip6_rt_cache_alloc(). 2238 * As rt6_uncached_list_add() does not consume refcnt, 2239 * this refcnt is always returned to the caller even 2240 * if caller sets RT6_LOOKUP_F_DST_NOREF flag. 2241 */ 2242 rt6_uncached_list_add(rt); 2243 rcu_read_unlock(); 2244 2245 return rt; 2246 } 2247 } else { 2248 /* Get a percpu copy */ 2249 local_bh_disable(); 2250 rt = rt6_get_pcpu_route(&res); 2251 2252 if (!rt) 2253 rt = rt6_make_pcpu_route(net, &res); 2254 2255 local_bh_enable(); 2256 } 2257 out: 2258 if (!rt) 2259 rt = net->ipv6.ip6_null_entry; 2260 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 2261 ip6_hold_safe(net, &rt); 2262 rcu_read_unlock(); 2263 2264 return rt; 2265 } 2266 EXPORT_SYMBOL_GPL(ip6_pol_route); 2267 2268 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net, 2269 struct fib6_table *table, 2270 struct flowi6 *fl6, 2271 const struct sk_buff *skb, 2272 int flags) 2273 { 2274 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); 2275 } 2276 2277 struct dst_entry *ip6_route_input_lookup(struct net *net, 2278 struct net_device *dev, 2279 struct flowi6 *fl6, 2280 const struct sk_buff *skb, 2281 int flags) 2282 { 2283 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) 2284 flags |= RT6_LOOKUP_F_IFACE; 2285 2286 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); 2287 } 2288 EXPORT_SYMBOL_GPL(ip6_route_input_lookup); 2289 2290 static void ip6_multipath_l3_keys(const struct sk_buff *skb, 2291 struct flow_keys *keys, 2292 struct flow_keys *flkeys) 2293 { 2294 const struct ipv6hdr *outer_iph = ipv6_hdr(skb); 2295 const struct ipv6hdr *key_iph = outer_iph; 2296 struct flow_keys *_flkeys = flkeys; 2297 const struct ipv6hdr *inner_iph; 2298 const struct icmp6hdr *icmph; 2299 struct ipv6hdr _inner_iph; 2300 struct icmp6hdr _icmph; 2301 2302 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) 2303 goto out; 2304 2305 icmph = skb_header_pointer(skb, skb_transport_offset(skb), 2306 sizeof(_icmph), &_icmph); 2307 if (!icmph) 2308 goto out; 2309 2310 if (!icmpv6_is_err(icmph->icmp6_type)) 2311 goto out; 2312 2313 inner_iph = skb_header_pointer(skb, 2314 skb_transport_offset(skb) + sizeof(*icmph), 2315 sizeof(_inner_iph), &_inner_iph); 2316 if (!inner_iph) 2317 goto out; 2318 2319 key_iph = inner_iph; 2320 _flkeys = NULL; 2321 out: 2322 if (_flkeys) { 2323 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; 2324 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; 2325 keys->tags.flow_label = _flkeys->tags.flow_label; 2326 keys->basic.ip_proto = _flkeys->basic.ip_proto; 2327 } else { 2328 keys->addrs.v6addrs.src = key_iph->saddr; 2329 keys->addrs.v6addrs.dst = key_iph->daddr; 2330 keys->tags.flow_label = ip6_flowlabel(key_iph); 2331 keys->basic.ip_proto = key_iph->nexthdr; 2332 } 2333 } 2334 2335 static u32 rt6_multipath_custom_hash_outer(const struct net *net, 2336 const struct sk_buff *skb, 2337 bool *p_has_inner) 2338 { 2339 u32 hash_fields = ip6_multipath_hash_fields(net); 2340 struct flow_keys keys, hash_keys; 2341 2342 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) 2343 return 0; 2344 2345 memset(&hash_keys, 0, sizeof(hash_keys)); 2346 skb_flow_dissect_flow_keys(skb, &keys, FLOW_DISSECTOR_F_STOP_AT_ENCAP); 2347 2348 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2349 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) 2350 hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 2351 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) 2352 hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; 2353 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) 2354 hash_keys.basic.ip_proto = keys.basic.ip_proto; 2355 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) 2356 hash_keys.tags.flow_label = keys.tags.flow_label; 2357 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) 2358 hash_keys.ports.src = keys.ports.src; 2359 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) 2360 hash_keys.ports.dst = keys.ports.dst; 2361 2362 *p_has_inner = !!(keys.control.flags & FLOW_DIS_ENCAPSULATION); 2363 return flow_hash_from_keys(&hash_keys); 2364 } 2365 2366 static u32 rt6_multipath_custom_hash_inner(const struct net *net, 2367 const struct sk_buff *skb, 2368 bool has_inner) 2369 { 2370 u32 hash_fields = ip6_multipath_hash_fields(net); 2371 struct flow_keys keys, hash_keys; 2372 2373 /* We assume the packet carries an encapsulation, but if none was 2374 * encountered during dissection of the outer flow, then there is no 2375 * point in calling the flow dissector again. 2376 */ 2377 if (!has_inner) 2378 return 0; 2379 2380 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_MASK)) 2381 return 0; 2382 2383 memset(&hash_keys, 0, sizeof(hash_keys)); 2384 skb_flow_dissect_flow_keys(skb, &keys, 0); 2385 2386 if (!(keys.control.flags & FLOW_DIS_ENCAPSULATION)) 2387 return 0; 2388 2389 if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2390 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2391 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) 2392 hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; 2393 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) 2394 hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst; 2395 } else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2396 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2397 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) 2398 hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; 2399 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) 2400 hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; 2401 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_FLOWLABEL) 2402 hash_keys.tags.flow_label = keys.tags.flow_label; 2403 } 2404 2405 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_IP_PROTO) 2406 hash_keys.basic.ip_proto = keys.basic.ip_proto; 2407 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_PORT) 2408 hash_keys.ports.src = keys.ports.src; 2409 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_PORT) 2410 hash_keys.ports.dst = keys.ports.dst; 2411 2412 return flow_hash_from_keys(&hash_keys); 2413 } 2414 2415 static u32 rt6_multipath_custom_hash_skb(const struct net *net, 2416 const struct sk_buff *skb) 2417 { 2418 u32 mhash, mhash_inner; 2419 bool has_inner = true; 2420 2421 mhash = rt6_multipath_custom_hash_outer(net, skb, &has_inner); 2422 mhash_inner = rt6_multipath_custom_hash_inner(net, skb, has_inner); 2423 2424 return jhash_2words(mhash, mhash_inner, 0); 2425 } 2426 2427 static u32 rt6_multipath_custom_hash_fl6(const struct net *net, 2428 const struct flowi6 *fl6) 2429 { 2430 u32 hash_fields = ip6_multipath_hash_fields(net); 2431 struct flow_keys hash_keys; 2432 2433 if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) 2434 return 0; 2435 2436 memset(&hash_keys, 0, sizeof(hash_keys)); 2437 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2438 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) 2439 hash_keys.addrs.v6addrs.src = fl6->saddr; 2440 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) 2441 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2442 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) 2443 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2444 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) 2445 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2446 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) 2447 hash_keys.ports.src = fl6->fl6_sport; 2448 if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) 2449 hash_keys.ports.dst = fl6->fl6_dport; 2450 2451 return flow_hash_from_keys(&hash_keys); 2452 } 2453 2454 /* if skb is set it will be used and fl6 can be NULL */ 2455 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, 2456 const struct sk_buff *skb, struct flow_keys *flkeys) 2457 { 2458 struct flow_keys hash_keys; 2459 u32 mhash = 0; 2460 2461 switch (ip6_multipath_hash_policy(net)) { 2462 case 0: 2463 memset(&hash_keys, 0, sizeof(hash_keys)); 2464 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2465 if (skb) { 2466 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2467 } else { 2468 hash_keys.addrs.v6addrs.src = fl6->saddr; 2469 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2470 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2471 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2472 } 2473 mhash = flow_hash_from_keys(&hash_keys); 2474 break; 2475 case 1: 2476 if (skb) { 2477 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; 2478 struct flow_keys keys; 2479 2480 /* short-circuit if we already have L4 hash present */ 2481 if (skb->l4_hash) 2482 return skb_get_hash_raw(skb) >> 1; 2483 2484 memset(&hash_keys, 0, sizeof(hash_keys)); 2485 2486 if (!flkeys) { 2487 skb_flow_dissect_flow_keys(skb, &keys, flag); 2488 flkeys = &keys; 2489 } 2490 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2491 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2492 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2493 hash_keys.ports.src = flkeys->ports.src; 2494 hash_keys.ports.dst = flkeys->ports.dst; 2495 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2496 } else { 2497 memset(&hash_keys, 0, sizeof(hash_keys)); 2498 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2499 hash_keys.addrs.v6addrs.src = fl6->saddr; 2500 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2501 hash_keys.ports.src = fl6->fl6_sport; 2502 hash_keys.ports.dst = fl6->fl6_dport; 2503 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2504 } 2505 mhash = flow_hash_from_keys(&hash_keys); 2506 break; 2507 case 2: 2508 memset(&hash_keys, 0, sizeof(hash_keys)); 2509 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2510 if (skb) { 2511 struct flow_keys keys; 2512 2513 if (!flkeys) { 2514 skb_flow_dissect_flow_keys(skb, &keys, 0); 2515 flkeys = &keys; 2516 } 2517 2518 /* Inner can be v4 or v6 */ 2519 if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 2520 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; 2521 hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; 2522 hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; 2523 } else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 2524 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2525 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; 2526 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; 2527 hash_keys.tags.flow_label = flkeys->tags.flow_label; 2528 hash_keys.basic.ip_proto = flkeys->basic.ip_proto; 2529 } else { 2530 /* Same as case 0 */ 2531 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2532 ip6_multipath_l3_keys(skb, &hash_keys, flkeys); 2533 } 2534 } else { 2535 /* Same as case 0 */ 2536 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; 2537 hash_keys.addrs.v6addrs.src = fl6->saddr; 2538 hash_keys.addrs.v6addrs.dst = fl6->daddr; 2539 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); 2540 hash_keys.basic.ip_proto = fl6->flowi6_proto; 2541 } 2542 mhash = flow_hash_from_keys(&hash_keys); 2543 break; 2544 case 3: 2545 if (skb) 2546 mhash = rt6_multipath_custom_hash_skb(net, skb); 2547 else 2548 mhash = rt6_multipath_custom_hash_fl6(net, fl6); 2549 break; 2550 } 2551 2552 return mhash >> 1; 2553 } 2554 2555 /* Called with rcu held */ 2556 void ip6_route_input(struct sk_buff *skb) 2557 { 2558 const struct ipv6hdr *iph = ipv6_hdr(skb); 2559 struct net *net = dev_net(skb->dev); 2560 int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; 2561 struct ip_tunnel_info *tun_info; 2562 struct flowi6 fl6 = { 2563 .flowi6_iif = skb->dev->ifindex, 2564 .daddr = iph->daddr, 2565 .saddr = iph->saddr, 2566 .flowlabel = ip6_flowinfo(iph), 2567 .flowi6_mark = skb->mark, 2568 .flowi6_proto = iph->nexthdr, 2569 }; 2570 struct flow_keys *flkeys = NULL, _flkeys; 2571 2572 tun_info = skb_tunnel_info(skb); 2573 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) 2574 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; 2575 2576 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) 2577 flkeys = &_flkeys; 2578 2579 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) 2580 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); 2581 skb_dst_drop(skb); 2582 skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, 2583 &fl6, skb, flags)); 2584 } 2585 2586 INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net, 2587 struct fib6_table *table, 2588 struct flowi6 *fl6, 2589 const struct sk_buff *skb, 2590 int flags) 2591 { 2592 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); 2593 } 2594 2595 static struct dst_entry *ip6_route_output_flags_noref(struct net *net, 2596 const struct sock *sk, 2597 struct flowi6 *fl6, 2598 int flags) 2599 { 2600 bool any_src; 2601 2602 if (ipv6_addr_type(&fl6->daddr) & 2603 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { 2604 struct dst_entry *dst; 2605 2606 /* This function does not take refcnt on the dst */ 2607 dst = l3mdev_link_scope_lookup(net, fl6); 2608 if (dst) 2609 return dst; 2610 } 2611 2612 fl6->flowi6_iif = LOOPBACK_IFINDEX; 2613 2614 flags |= RT6_LOOKUP_F_DST_NOREF; 2615 any_src = ipv6_addr_any(&fl6->saddr); 2616 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || 2617 (fl6->flowi6_oif && any_src)) 2618 flags |= RT6_LOOKUP_F_IFACE; 2619 2620 if (!any_src) 2621 flags |= RT6_LOOKUP_F_HAS_SADDR; 2622 else if (sk) 2623 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs); 2624 2625 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); 2626 } 2627 2628 struct dst_entry *ip6_route_output_flags(struct net *net, 2629 const struct sock *sk, 2630 struct flowi6 *fl6, 2631 int flags) 2632 { 2633 struct dst_entry *dst; 2634 struct rt6_info *rt6; 2635 2636 rcu_read_lock(); 2637 dst = ip6_route_output_flags_noref(net, sk, fl6, flags); 2638 rt6 = (struct rt6_info *)dst; 2639 /* For dst cached in uncached_list, refcnt is already taken. */ 2640 if (list_empty(&rt6->dst.rt_uncached) && !dst_hold_safe(dst)) { 2641 dst = &net->ipv6.ip6_null_entry->dst; 2642 dst_hold(dst); 2643 } 2644 rcu_read_unlock(); 2645 2646 return dst; 2647 } 2648 EXPORT_SYMBOL_GPL(ip6_route_output_flags); 2649 2650 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) 2651 { 2652 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig; 2653 struct net_device *loopback_dev = net->loopback_dev; 2654 struct dst_entry *new = NULL; 2655 2656 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1, 2657 DST_OBSOLETE_DEAD, 0); 2658 if (rt) { 2659 rt6_info_init(rt); 2660 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); 2661 2662 new = &rt->dst; 2663 new->__use = 1; 2664 new->input = dst_discard; 2665 new->output = dst_discard_out; 2666 2667 dst_copy_metrics(new, &ort->dst); 2668 2669 rt->rt6i_idev = in6_dev_get(loopback_dev); 2670 rt->rt6i_gateway = ort->rt6i_gateway; 2671 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; 2672 2673 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); 2674 #ifdef CONFIG_IPV6_SUBTREES 2675 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); 2676 #endif 2677 } 2678 2679 dst_release(dst_orig); 2680 return new ? new : ERR_PTR(-ENOMEM); 2681 } 2682 2683 /* 2684 * Destination cache support functions 2685 */ 2686 2687 static bool fib6_check(struct fib6_info *f6i, u32 cookie) 2688 { 2689 u32 rt_cookie = 0; 2690 2691 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) 2692 return false; 2693 2694 if (fib6_check_expired(f6i)) 2695 return false; 2696 2697 return true; 2698 } 2699 2700 static struct dst_entry *rt6_check(struct rt6_info *rt, 2701 struct fib6_info *from, 2702 u32 cookie) 2703 { 2704 u32 rt_cookie = 0; 2705 2706 if (!from || !fib6_get_cookie_safe(from, &rt_cookie) || 2707 rt_cookie != cookie) 2708 return NULL; 2709 2710 if (rt6_check_expired(rt)) 2711 return NULL; 2712 2713 return &rt->dst; 2714 } 2715 2716 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, 2717 struct fib6_info *from, 2718 u32 cookie) 2719 { 2720 if (!__rt6_check_expired(rt) && 2721 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && 2722 fib6_check(from, cookie)) 2723 return &rt->dst; 2724 else 2725 return NULL; 2726 } 2727 2728 INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, 2729 u32 cookie) 2730 { 2731 struct dst_entry *dst_ret; 2732 struct fib6_info *from; 2733 struct rt6_info *rt; 2734 2735 rt = container_of(dst, struct rt6_info, dst); 2736 2737 if (rt->sernum) 2738 return rt6_is_valid(rt) ? dst : NULL; 2739 2740 rcu_read_lock(); 2741 2742 /* All IPV6 dsts are created with ->obsolete set to the value 2743 * DST_OBSOLETE_FORCE_CHK which forces validation calls down 2744 * into this function always. 2745 */ 2746 2747 from = rcu_dereference(rt->from); 2748 2749 if (from && (rt->rt6i_flags & RTF_PCPU || 2750 unlikely(!list_empty(&rt->dst.rt_uncached)))) 2751 dst_ret = rt6_dst_from_check(rt, from, cookie); 2752 else 2753 dst_ret = rt6_check(rt, from, cookie); 2754 2755 rcu_read_unlock(); 2756 2757 return dst_ret; 2758 } 2759 EXPORT_INDIRECT_CALLABLE(ip6_dst_check); 2760 2761 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst) 2762 { 2763 struct rt6_info *rt = (struct rt6_info *) dst; 2764 2765 if (rt) { 2766 if (rt->rt6i_flags & RTF_CACHE) { 2767 rcu_read_lock(); 2768 if (rt6_check_expired(rt)) { 2769 rt6_remove_exception_rt(rt); 2770 dst = NULL; 2771 } 2772 rcu_read_unlock(); 2773 } else { 2774 dst_release(dst); 2775 dst = NULL; 2776 } 2777 } 2778 return dst; 2779 } 2780 2781 static void ip6_link_failure(struct sk_buff *skb) 2782 { 2783 struct rt6_info *rt; 2784 2785 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); 2786 2787 rt = (struct rt6_info *) skb_dst(skb); 2788 if (rt) { 2789 rcu_read_lock(); 2790 if (rt->rt6i_flags & RTF_CACHE) { 2791 rt6_remove_exception_rt(rt); 2792 } else { 2793 struct fib6_info *from; 2794 struct fib6_node *fn; 2795 2796 from = rcu_dereference(rt->from); 2797 if (from) { 2798 fn = rcu_dereference(from->fib6_node); 2799 if (fn && (rt->rt6i_flags & RTF_DEFAULT)) 2800 WRITE_ONCE(fn->fn_sernum, -1); 2801 } 2802 } 2803 rcu_read_unlock(); 2804 } 2805 } 2806 2807 static void rt6_update_expires(struct rt6_info *rt0, int timeout) 2808 { 2809 if (!(rt0->rt6i_flags & RTF_EXPIRES)) { 2810 struct fib6_info *from; 2811 2812 rcu_read_lock(); 2813 from = rcu_dereference(rt0->from); 2814 if (from) 2815 rt0->dst.expires = from->expires; 2816 rcu_read_unlock(); 2817 } 2818 2819 dst_set_expires(&rt0->dst, timeout); 2820 rt0->rt6i_flags |= RTF_EXPIRES; 2821 } 2822 2823 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) 2824 { 2825 struct net *net = dev_net(rt->dst.dev); 2826 2827 dst_metric_set(&rt->dst, RTAX_MTU, mtu); 2828 rt->rt6i_flags |= RTF_MODIFIED; 2829 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); 2830 } 2831 2832 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) 2833 { 2834 return !(rt->rt6i_flags & RTF_CACHE) && 2835 (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); 2836 } 2837 2838 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, 2839 const struct ipv6hdr *iph, u32 mtu, 2840 bool confirm_neigh) 2841 { 2842 const struct in6_addr *daddr, *saddr; 2843 struct rt6_info *rt6 = (struct rt6_info *)dst; 2844 2845 /* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU) 2846 * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it. 2847 * [see also comment in rt6_mtu_change_route()] 2848 */ 2849 2850 if (iph) { 2851 daddr = &iph->daddr; 2852 saddr = &iph->saddr; 2853 } else if (sk) { 2854 daddr = &sk->sk_v6_daddr; 2855 saddr = &inet6_sk(sk)->saddr; 2856 } else { 2857 daddr = NULL; 2858 saddr = NULL; 2859 } 2860 2861 if (confirm_neigh) 2862 dst_confirm_neigh(dst, daddr); 2863 2864 if (mtu < IPV6_MIN_MTU) 2865 return; 2866 if (mtu >= dst_mtu(dst)) 2867 return; 2868 2869 if (!rt6_cache_allowed_for_pmtu(rt6)) { 2870 rt6_do_update_pmtu(rt6, mtu); 2871 /* update rt6_ex->stamp for cache */ 2872 if (rt6->rt6i_flags & RTF_CACHE) 2873 rt6_update_exception_stamp_rt(rt6); 2874 } else if (daddr) { 2875 struct fib6_result res = {}; 2876 struct rt6_info *nrt6; 2877 2878 rcu_read_lock(); 2879 res.f6i = rcu_dereference(rt6->from); 2880 if (!res.f6i) 2881 goto out_unlock; 2882 2883 res.fib6_flags = res.f6i->fib6_flags; 2884 res.fib6_type = res.f6i->fib6_type; 2885 2886 if (res.f6i->nh) { 2887 struct fib6_nh_match_arg arg = { 2888 .dev = dst->dev, 2889 .gw = &rt6->rt6i_gateway, 2890 }; 2891 2892 nexthop_for_each_fib6_nh(res.f6i->nh, 2893 fib6_nh_find_match, &arg); 2894 2895 /* fib6_info uses a nexthop that does not have fib6_nh 2896 * using the dst->dev + gw. Should be impossible. 2897 */ 2898 if (!arg.match) 2899 goto out_unlock; 2900 2901 res.nh = arg.match; 2902 } else { 2903 res.nh = res.f6i->fib6_nh; 2904 } 2905 2906 nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); 2907 if (nrt6) { 2908 rt6_do_update_pmtu(nrt6, mtu); 2909 if (rt6_insert_exception(nrt6, &res)) 2910 dst_release_immediate(&nrt6->dst); 2911 } 2912 out_unlock: 2913 rcu_read_unlock(); 2914 } 2915 } 2916 2917 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, 2918 struct sk_buff *skb, u32 mtu, 2919 bool confirm_neigh) 2920 { 2921 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu, 2922 confirm_neigh); 2923 } 2924 2925 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, 2926 int oif, u32 mark, kuid_t uid) 2927 { 2928 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 2929 struct dst_entry *dst; 2930 struct flowi6 fl6 = { 2931 .flowi6_oif = oif, 2932 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), 2933 .daddr = iph->daddr, 2934 .saddr = iph->saddr, 2935 .flowlabel = ip6_flowinfo(iph), 2936 .flowi6_uid = uid, 2937 }; 2938 2939 dst = ip6_route_output(net, NULL, &fl6); 2940 if (!dst->error) 2941 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true); 2942 dst_release(dst); 2943 } 2944 EXPORT_SYMBOL_GPL(ip6_update_pmtu); 2945 2946 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) 2947 { 2948 int oif = sk->sk_bound_dev_if; 2949 struct dst_entry *dst; 2950 2951 if (!oif && skb->dev) 2952 oif = l3mdev_master_ifindex(skb->dev); 2953 2954 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid); 2955 2956 dst = __sk_dst_get(sk); 2957 if (!dst || !dst->obsolete || 2958 dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) 2959 return; 2960 2961 bh_lock_sock(sk); 2962 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) 2963 ip6_datagram_dst_update(sk, false); 2964 bh_unlock_sock(sk); 2965 } 2966 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); 2967 2968 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, 2969 const struct flowi6 *fl6) 2970 { 2971 #ifdef CONFIG_IPV6_SUBTREES 2972 struct ipv6_pinfo *np = inet6_sk(sk); 2973 #endif 2974 2975 ip6_dst_store(sk, dst, 2976 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? 2977 &sk->sk_v6_daddr : NULL, 2978 #ifdef CONFIG_IPV6_SUBTREES 2979 ipv6_addr_equal(&fl6->saddr, &np->saddr) ? 2980 &np->saddr : 2981 #endif 2982 NULL); 2983 } 2984 2985 static bool ip6_redirect_nh_match(const struct fib6_result *res, 2986 struct flowi6 *fl6, 2987 const struct in6_addr *gw, 2988 struct rt6_info **ret) 2989 { 2990 const struct fib6_nh *nh = res->nh; 2991 2992 if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || 2993 fl6->flowi6_oif != nh->fib_nh_dev->ifindex) 2994 return false; 2995 2996 /* rt_cache's gateway might be different from its 'parent' 2997 * in the case of an ip redirect. 2998 * So we keep searching in the exception table if the gateway 2999 * is different. 3000 */ 3001 if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { 3002 struct rt6_info *rt_cache; 3003 3004 rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); 3005 if (rt_cache && 3006 ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { 3007 *ret = rt_cache; 3008 return true; 3009 } 3010 return false; 3011 } 3012 return true; 3013 } 3014 3015 struct fib6_nh_rd_arg { 3016 struct fib6_result *res; 3017 struct flowi6 *fl6; 3018 const struct in6_addr *gw; 3019 struct rt6_info **ret; 3020 }; 3021 3022 static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) 3023 { 3024 struct fib6_nh_rd_arg *arg = _arg; 3025 3026 arg->res->nh = nh; 3027 return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); 3028 } 3029 3030 /* Handle redirects */ 3031 struct ip6rd_flowi { 3032 struct flowi6 fl6; 3033 struct in6_addr gateway; 3034 }; 3035 3036 INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net, 3037 struct fib6_table *table, 3038 struct flowi6 *fl6, 3039 const struct sk_buff *skb, 3040 int flags) 3041 { 3042 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; 3043 struct rt6_info *ret = NULL; 3044 struct fib6_result res = {}; 3045 struct fib6_nh_rd_arg arg = { 3046 .res = &res, 3047 .fl6 = fl6, 3048 .gw = &rdfl->gateway, 3049 .ret = &ret 3050 }; 3051 struct fib6_info *rt; 3052 struct fib6_node *fn; 3053 3054 /* Get the "current" route for this destination and 3055 * check if the redirect has come from appropriate router. 3056 * 3057 * RFC 4861 specifies that redirects should only be 3058 * accepted if they come from the nexthop to the target. 3059 * Due to the way the routes are chosen, this notion 3060 * is a bit fuzzy and one might need to check all possible 3061 * routes. 3062 */ 3063 3064 rcu_read_lock(); 3065 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); 3066 restart: 3067 for_each_fib6_node_rt_rcu(fn) { 3068 res.f6i = rt; 3069 if (fib6_check_expired(rt)) 3070 continue; 3071 if (rt->fib6_flags & RTF_REJECT) 3072 break; 3073 if (unlikely(rt->nh)) { 3074 if (nexthop_is_blackhole(rt->nh)) 3075 continue; 3076 /* on match, res->nh is filled in and potentially ret */ 3077 if (nexthop_for_each_fib6_nh(rt->nh, 3078 fib6_nh_redirect_match, 3079 &arg)) 3080 goto out; 3081 } else { 3082 res.nh = rt->fib6_nh; 3083 if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, 3084 &ret)) 3085 goto out; 3086 } 3087 } 3088 3089 if (!rt) 3090 rt = net->ipv6.fib6_null_entry; 3091 else if (rt->fib6_flags & RTF_REJECT) { 3092 ret = net->ipv6.ip6_null_entry; 3093 goto out; 3094 } 3095 3096 if (rt == net->ipv6.fib6_null_entry) { 3097 fn = fib6_backtrack(fn, &fl6->saddr); 3098 if (fn) 3099 goto restart; 3100 } 3101 3102 res.f6i = rt; 3103 res.nh = rt->fib6_nh; 3104 out: 3105 if (ret) { 3106 ip6_hold_safe(net, &ret); 3107 } else { 3108 res.fib6_flags = res.f6i->fib6_flags; 3109 res.fib6_type = res.f6i->fib6_type; 3110 ret = ip6_create_rt_rcu(&res); 3111 } 3112 3113 rcu_read_unlock(); 3114 3115 trace_fib6_table_lookup(net, &res, table, fl6); 3116 return ret; 3117 }; 3118 3119 static struct dst_entry *ip6_route_redirect(struct net *net, 3120 const struct flowi6 *fl6, 3121 const struct sk_buff *skb, 3122 const struct in6_addr *gateway) 3123 { 3124 int flags = RT6_LOOKUP_F_HAS_SADDR; 3125 struct ip6rd_flowi rdfl; 3126 3127 rdfl.fl6 = *fl6; 3128 rdfl.gateway = *gateway; 3129 3130 return fib6_rule_lookup(net, &rdfl.fl6, skb, 3131 flags, __ip6_route_redirect); 3132 } 3133 3134 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, 3135 kuid_t uid) 3136 { 3137 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; 3138 struct dst_entry *dst; 3139 struct flowi6 fl6 = { 3140 .flowi6_iif = LOOPBACK_IFINDEX, 3141 .flowi6_oif = oif, 3142 .flowi6_mark = mark, 3143 .daddr = iph->daddr, 3144 .saddr = iph->saddr, 3145 .flowlabel = ip6_flowinfo(iph), 3146 .flowi6_uid = uid, 3147 }; 3148 3149 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); 3150 rt6_do_redirect(dst, NULL, skb); 3151 dst_release(dst); 3152 } 3153 EXPORT_SYMBOL_GPL(ip6_redirect); 3154 3155 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) 3156 { 3157 const struct ipv6hdr *iph = ipv6_hdr(skb); 3158 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); 3159 struct dst_entry *dst; 3160 struct flowi6 fl6 = { 3161 .flowi6_iif = LOOPBACK_IFINDEX, 3162 .flowi6_oif = oif, 3163 .daddr = msg->dest, 3164 .saddr = iph->daddr, 3165 .flowi6_uid = sock_net_uid(net, NULL), 3166 }; 3167 3168 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); 3169 rt6_do_redirect(dst, NULL, skb); 3170 dst_release(dst); 3171 } 3172 3173 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) 3174 { 3175 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark, 3176 sk->sk_uid); 3177 } 3178 EXPORT_SYMBOL_GPL(ip6_sk_redirect); 3179 3180 static unsigned int ip6_default_advmss(const struct dst_entry *dst) 3181 { 3182 struct net_device *dev = dst->dev; 3183 unsigned int mtu = dst_mtu(dst); 3184 struct net *net = dev_net(dev); 3185 3186 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); 3187 3188 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) 3189 mtu = net->ipv6.sysctl.ip6_rt_min_advmss; 3190 3191 /* 3192 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and 3193 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. 3194 * IPV6_MAXPLEN is also valid and means: "any MSS, 3195 * rely only on pmtu discovery" 3196 */ 3197 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) 3198 mtu = IPV6_MAXPLEN; 3199 return mtu; 3200 } 3201 3202 INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst) 3203 { 3204 return ip6_dst_mtu_maybe_forward(dst, false); 3205 } 3206 EXPORT_INDIRECT_CALLABLE(ip6_mtu); 3207 3208 /* MTU selection: 3209 * 1. mtu on route is locked - use it 3210 * 2. mtu from nexthop exception 3211 * 3. mtu from egress device 3212 * 3213 * based on ip6_dst_mtu_forward and exception logic of 3214 * rt6_find_cached_rt; called with rcu_read_lock 3215 */ 3216 u32 ip6_mtu_from_fib6(const struct fib6_result *res, 3217 const struct in6_addr *daddr, 3218 const struct in6_addr *saddr) 3219 { 3220 const struct fib6_nh *nh = res->nh; 3221 struct fib6_info *f6i = res->f6i; 3222 struct inet6_dev *idev; 3223 struct rt6_info *rt; 3224 u32 mtu = 0; 3225 3226 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { 3227 mtu = f6i->fib6_pmtu; 3228 if (mtu) 3229 goto out; 3230 } 3231 3232 rt = rt6_find_cached_rt(res, daddr, saddr); 3233 if (unlikely(rt)) { 3234 mtu = dst_metric_raw(&rt->dst, RTAX_MTU); 3235 } else { 3236 struct net_device *dev = nh->fib_nh_dev; 3237 3238 mtu = IPV6_MIN_MTU; 3239 idev = __in6_dev_get(dev); 3240 if (idev && idev->cnf.mtu6 > mtu) 3241 mtu = idev->cnf.mtu6; 3242 } 3243 3244 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); 3245 out: 3246 return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); 3247 } 3248 3249 struct dst_entry *icmp6_dst_alloc(struct net_device *dev, 3250 struct flowi6 *fl6) 3251 { 3252 struct dst_entry *dst; 3253 struct rt6_info *rt; 3254 struct inet6_dev *idev = in6_dev_get(dev); 3255 struct net *net = dev_net(dev); 3256 3257 if (unlikely(!idev)) 3258 return ERR_PTR(-ENODEV); 3259 3260 rt = ip6_dst_alloc(net, dev, 0); 3261 if (unlikely(!rt)) { 3262 in6_dev_put(idev); 3263 dst = ERR_PTR(-ENOMEM); 3264 goto out; 3265 } 3266 3267 rt->dst.input = ip6_input; 3268 rt->dst.output = ip6_output; 3269 rt->rt6i_gateway = fl6->daddr; 3270 rt->rt6i_dst.addr = fl6->daddr; 3271 rt->rt6i_dst.plen = 128; 3272 rt->rt6i_idev = idev; 3273 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); 3274 3275 /* Add this dst into uncached_list so that rt6_disable_ip() can 3276 * do proper release of the net_device 3277 */ 3278 rt6_uncached_list_add(rt); 3279 3280 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); 3281 3282 out: 3283 return dst; 3284 } 3285 3286 static void ip6_dst_gc(struct dst_ops *ops) 3287 { 3288 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); 3289 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; 3290 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; 3291 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; 3292 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; 3293 unsigned int val; 3294 int entries; 3295 3296 if (time_after(rt_last_gc + rt_min_interval, jiffies)) 3297 goto out; 3298 3299 fib6_run_gc(atomic_inc_return(&net->ipv6.ip6_rt_gc_expire), net, true); 3300 entries = dst_entries_get_slow(ops); 3301 if (entries < ops->gc_thresh) 3302 atomic_set(&net->ipv6.ip6_rt_gc_expire, rt_gc_timeout >> 1); 3303 out: 3304 val = atomic_read(&net->ipv6.ip6_rt_gc_expire); 3305 atomic_set(&net->ipv6.ip6_rt_gc_expire, val - (val >> rt_elasticity)); 3306 } 3307 3308 static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg, 3309 const struct in6_addr *gw_addr, u32 tbid, 3310 int flags, struct fib6_result *res) 3311 { 3312 struct flowi6 fl6 = { 3313 .flowi6_oif = cfg->fc_ifindex, 3314 .daddr = *gw_addr, 3315 .saddr = cfg->fc_prefsrc, 3316 }; 3317 struct fib6_table *table; 3318 int err; 3319 3320 table = fib6_get_table(net, tbid); 3321 if (!table) 3322 return -EINVAL; 3323 3324 if (!ipv6_addr_any(&cfg->fc_prefsrc)) 3325 flags |= RT6_LOOKUP_F_HAS_SADDR; 3326 3327 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; 3328 3329 err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags); 3330 if (!err && res->f6i != net->ipv6.fib6_null_entry) 3331 fib6_select_path(net, res, &fl6, cfg->fc_ifindex, 3332 cfg->fc_ifindex != 0, NULL, flags); 3333 3334 return err; 3335 } 3336 3337 static int ip6_route_check_nh_onlink(struct net *net, 3338 struct fib6_config *cfg, 3339 const struct net_device *dev, 3340 struct netlink_ext_ack *extack) 3341 { 3342 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; 3343 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3344 struct fib6_result res = {}; 3345 int err; 3346 3347 err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res); 3348 if (!err && !(res.fib6_flags & RTF_REJECT) && 3349 /* ignore match if it is the default route */ 3350 !ipv6_addr_any(&res.f6i->fib6_dst.addr) && 3351 (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) { 3352 NL_SET_ERR_MSG(extack, 3353 "Nexthop has invalid gateway or device mismatch"); 3354 err = -EINVAL; 3355 } 3356 3357 return err; 3358 } 3359 3360 static int ip6_route_check_nh(struct net *net, 3361 struct fib6_config *cfg, 3362 struct net_device **_dev, 3363 struct inet6_dev **idev) 3364 { 3365 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3366 struct net_device *dev = _dev ? *_dev : NULL; 3367 int flags = RT6_LOOKUP_F_IFACE; 3368 struct fib6_result res = {}; 3369 int err = -EHOSTUNREACH; 3370 3371 if (cfg->fc_table) { 3372 err = ip6_nh_lookup_table(net, cfg, gw_addr, 3373 cfg->fc_table, flags, &res); 3374 /* gw_addr can not require a gateway or resolve to a reject 3375 * route. If a device is given, it must match the result. 3376 */ 3377 if (err || res.fib6_flags & RTF_REJECT || 3378 res.nh->fib_nh_gw_family || 3379 (dev && dev != res.nh->fib_nh_dev)) 3380 err = -EHOSTUNREACH; 3381 } 3382 3383 if (err < 0) { 3384 struct flowi6 fl6 = { 3385 .flowi6_oif = cfg->fc_ifindex, 3386 .daddr = *gw_addr, 3387 }; 3388 3389 err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags); 3390 if (err || res.fib6_flags & RTF_REJECT || 3391 res.nh->fib_nh_gw_family) 3392 err = -EHOSTUNREACH; 3393 3394 if (err) 3395 return err; 3396 3397 fib6_select_path(net, &res, &fl6, cfg->fc_ifindex, 3398 cfg->fc_ifindex != 0, NULL, flags); 3399 } 3400 3401 err = 0; 3402 if (dev) { 3403 if (dev != res.nh->fib_nh_dev) 3404 err = -EHOSTUNREACH; 3405 } else { 3406 *_dev = dev = res.nh->fib_nh_dev; 3407 dev_hold(dev); 3408 *idev = in6_dev_get(dev); 3409 } 3410 3411 return err; 3412 } 3413 3414 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, 3415 struct net_device **_dev, struct inet6_dev **idev, 3416 struct netlink_ext_ack *extack) 3417 { 3418 const struct in6_addr *gw_addr = &cfg->fc_gateway; 3419 int gwa_type = ipv6_addr_type(gw_addr); 3420 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; 3421 const struct net_device *dev = *_dev; 3422 bool need_addr_check = !dev; 3423 int err = -EINVAL; 3424 3425 /* if gw_addr is local we will fail to detect this in case 3426 * address is still TENTATIVE (DAD in progress). rt6_lookup() 3427 * will return already-added prefix route via interface that 3428 * prefix route was assigned to, which might be non-loopback. 3429 */ 3430 if (dev && 3431 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3432 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3433 goto out; 3434 } 3435 3436 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { 3437 /* IPv6 strictly inhibits using not link-local 3438 * addresses as nexthop address. 3439 * Otherwise, router will not able to send redirects. 3440 * It is very good, but in some (rare!) circumstances 3441 * (SIT, PtP, NBMA NOARP links) it is handy to allow 3442 * some exceptions. --ANK 3443 * We allow IPv4-mapped nexthops to support RFC4798-type 3444 * addressing 3445 */ 3446 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { 3447 NL_SET_ERR_MSG(extack, "Invalid gateway address"); 3448 goto out; 3449 } 3450 3451 rcu_read_lock(); 3452 3453 if (cfg->fc_flags & RTNH_F_ONLINK) 3454 err = ip6_route_check_nh_onlink(net, cfg, dev, extack); 3455 else 3456 err = ip6_route_check_nh(net, cfg, _dev, idev); 3457 3458 rcu_read_unlock(); 3459 3460 if (err) 3461 goto out; 3462 } 3463 3464 /* reload in case device was changed */ 3465 dev = *_dev; 3466 3467 err = -EINVAL; 3468 if (!dev) { 3469 NL_SET_ERR_MSG(extack, "Egress device not specified"); 3470 goto out; 3471 } else if (dev->flags & IFF_LOOPBACK) { 3472 NL_SET_ERR_MSG(extack, 3473 "Egress device can not be loopback device for this route"); 3474 goto out; 3475 } 3476 3477 /* if we did not check gw_addr above, do so now that the 3478 * egress device has been resolved. 3479 */ 3480 if (need_addr_check && 3481 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { 3482 NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); 3483 goto out; 3484 } 3485 3486 err = 0; 3487 out: 3488 return err; 3489 } 3490 3491 static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) 3492 { 3493 if ((flags & RTF_REJECT) || 3494 (dev && (dev->flags & IFF_LOOPBACK) && 3495 !(addr_type & IPV6_ADDR_LOOPBACK) && 3496 !(flags & (RTF_ANYCAST | RTF_LOCAL)))) 3497 return true; 3498 3499 return false; 3500 } 3501 3502 int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, 3503 struct fib6_config *cfg, gfp_t gfp_flags, 3504 struct netlink_ext_ack *extack) 3505 { 3506 netdevice_tracker *dev_tracker = &fib6_nh->fib_nh_dev_tracker; 3507 struct net_device *dev = NULL; 3508 struct inet6_dev *idev = NULL; 3509 int addr_type; 3510 int err; 3511 3512 fib6_nh->fib_nh_family = AF_INET6; 3513 #ifdef CONFIG_IPV6_ROUTER_PREF 3514 fib6_nh->last_probe = jiffies; 3515 #endif 3516 if (cfg->fc_is_fdb) { 3517 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3518 fib6_nh->fib_nh_gw_family = AF_INET6; 3519 return 0; 3520 } 3521 3522 err = -ENODEV; 3523 if (cfg->fc_ifindex) { 3524 dev = netdev_get_by_index(net, cfg->fc_ifindex, 3525 dev_tracker, gfp_flags); 3526 if (!dev) 3527 goto out; 3528 idev = in6_dev_get(dev); 3529 if (!idev) 3530 goto out; 3531 } 3532 3533 if (cfg->fc_flags & RTNH_F_ONLINK) { 3534 if (!dev) { 3535 NL_SET_ERR_MSG(extack, 3536 "Nexthop device required for onlink"); 3537 goto out; 3538 } 3539 3540 if (!(dev->flags & IFF_UP)) { 3541 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3542 err = -ENETDOWN; 3543 goto out; 3544 } 3545 3546 fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; 3547 } 3548 3549 fib6_nh->fib_nh_weight = 1; 3550 3551 /* We cannot add true routes via loopback here, 3552 * they would result in kernel looping; promote them to reject routes 3553 */ 3554 addr_type = ipv6_addr_type(&cfg->fc_dst); 3555 if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { 3556 /* hold loopback dev/idev if we haven't done so. */ 3557 if (dev != net->loopback_dev) { 3558 if (dev) { 3559 netdev_put(dev, dev_tracker); 3560 in6_dev_put(idev); 3561 } 3562 dev = net->loopback_dev; 3563 netdev_hold(dev, dev_tracker, gfp_flags); 3564 idev = in6_dev_get(dev); 3565 if (!idev) { 3566 err = -ENODEV; 3567 goto out; 3568 } 3569 } 3570 goto pcpu_alloc; 3571 } 3572 3573 if (cfg->fc_flags & RTF_GATEWAY) { 3574 err = ip6_validate_gw(net, cfg, &dev, &idev, extack); 3575 if (err) 3576 goto out; 3577 3578 fib6_nh->fib_nh_gw6 = cfg->fc_gateway; 3579 fib6_nh->fib_nh_gw_family = AF_INET6; 3580 } 3581 3582 err = -ENODEV; 3583 if (!dev) 3584 goto out; 3585 3586 if (idev->cnf.disable_ipv6) { 3587 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); 3588 err = -EACCES; 3589 goto out; 3590 } 3591 3592 if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { 3593 NL_SET_ERR_MSG(extack, "Nexthop device is not up"); 3594 err = -ENETDOWN; 3595 goto out; 3596 } 3597 3598 if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && 3599 !netif_carrier_ok(dev)) 3600 fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 3601 3602 err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap, 3603 cfg->fc_encap_type, cfg, gfp_flags, extack); 3604 if (err) 3605 goto out; 3606 3607 pcpu_alloc: 3608 fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); 3609 if (!fib6_nh->rt6i_pcpu) { 3610 err = -ENOMEM; 3611 goto out; 3612 } 3613 3614 fib6_nh->fib_nh_dev = dev; 3615 fib6_nh->fib_nh_oif = dev->ifindex; 3616 err = 0; 3617 out: 3618 if (idev) 3619 in6_dev_put(idev); 3620 3621 if (err) { 3622 lwtstate_put(fib6_nh->fib_nh_lws); 3623 fib6_nh->fib_nh_lws = NULL; 3624 netdev_put(dev, dev_tracker); 3625 } 3626 3627 return err; 3628 } 3629 3630 void fib6_nh_release(struct fib6_nh *fib6_nh) 3631 { 3632 struct rt6_exception_bucket *bucket; 3633 3634 rcu_read_lock(); 3635 3636 fib6_nh_flush_exceptions(fib6_nh, NULL); 3637 bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); 3638 if (bucket) { 3639 rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); 3640 kfree(bucket); 3641 } 3642 3643 rcu_read_unlock(); 3644 3645 fib6_nh_release_dsts(fib6_nh); 3646 free_percpu(fib6_nh->rt6i_pcpu); 3647 3648 fib_nh_common_release(&fib6_nh->nh_common); 3649 } 3650 3651 void fib6_nh_release_dsts(struct fib6_nh *fib6_nh) 3652 { 3653 int cpu; 3654 3655 if (!fib6_nh->rt6i_pcpu) 3656 return; 3657 3658 for_each_possible_cpu(cpu) { 3659 struct rt6_info *pcpu_rt, **ppcpu_rt; 3660 3661 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 3662 pcpu_rt = xchg(ppcpu_rt, NULL); 3663 if (pcpu_rt) { 3664 dst_dev_put(&pcpu_rt->dst); 3665 dst_release(&pcpu_rt->dst); 3666 } 3667 } 3668 } 3669 3670 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, 3671 gfp_t gfp_flags, 3672 struct netlink_ext_ack *extack) 3673 { 3674 struct net *net = cfg->fc_nlinfo.nl_net; 3675 struct fib6_info *rt = NULL; 3676 struct nexthop *nh = NULL; 3677 struct fib6_table *table; 3678 struct fib6_nh *fib6_nh; 3679 int err = -EINVAL; 3680 int addr_type; 3681 3682 /* RTF_PCPU is an internal flag; can not be set by userspace */ 3683 if (cfg->fc_flags & RTF_PCPU) { 3684 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); 3685 goto out; 3686 } 3687 3688 /* RTF_CACHE is an internal flag; can not be set by userspace */ 3689 if (cfg->fc_flags & RTF_CACHE) { 3690 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); 3691 goto out; 3692 } 3693 3694 if (cfg->fc_type > RTN_MAX) { 3695 NL_SET_ERR_MSG(extack, "Invalid route type"); 3696 goto out; 3697 } 3698 3699 if (cfg->fc_dst_len > 128) { 3700 NL_SET_ERR_MSG(extack, "Invalid prefix length"); 3701 goto out; 3702 } 3703 if (cfg->fc_src_len > 128) { 3704 NL_SET_ERR_MSG(extack, "Invalid source address length"); 3705 goto out; 3706 } 3707 #ifndef CONFIG_IPV6_SUBTREES 3708 if (cfg->fc_src_len) { 3709 NL_SET_ERR_MSG(extack, 3710 "Specifying source address requires IPV6_SUBTREES to be enabled"); 3711 goto out; 3712 } 3713 #endif 3714 if (cfg->fc_nh_id) { 3715 nh = nexthop_find_by_id(net, cfg->fc_nh_id); 3716 if (!nh) { 3717 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 3718 goto out; 3719 } 3720 err = fib6_check_nexthop(nh, cfg, extack); 3721 if (err) 3722 goto out; 3723 } 3724 3725 err = -ENOBUFS; 3726 if (cfg->fc_nlinfo.nlh && 3727 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { 3728 table = fib6_get_table(net, cfg->fc_table); 3729 if (!table) { 3730 pr_warn("NLM_F_CREATE should be specified when creating new route\n"); 3731 table = fib6_new_table(net, cfg->fc_table); 3732 } 3733 } else { 3734 table = fib6_new_table(net, cfg->fc_table); 3735 } 3736 3737 if (!table) 3738 goto out; 3739 3740 err = -ENOMEM; 3741 rt = fib6_info_alloc(gfp_flags, !nh); 3742 if (!rt) 3743 goto out; 3744 3745 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len, 3746 extack); 3747 if (IS_ERR(rt->fib6_metrics)) { 3748 err = PTR_ERR(rt->fib6_metrics); 3749 /* Do not leave garbage there. */ 3750 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; 3751 goto out_free; 3752 } 3753 3754 if (cfg->fc_flags & RTF_ADDRCONF) 3755 rt->dst_nocount = true; 3756 3757 if (cfg->fc_flags & RTF_EXPIRES) 3758 fib6_set_expires(rt, jiffies + 3759 clock_t_to_jiffies(cfg->fc_expires)); 3760 else 3761 fib6_clean_expires(rt); 3762 3763 if (cfg->fc_protocol == RTPROT_UNSPEC) 3764 cfg->fc_protocol = RTPROT_BOOT; 3765 rt->fib6_protocol = cfg->fc_protocol; 3766 3767 rt->fib6_table = table; 3768 rt->fib6_metric = cfg->fc_metric; 3769 rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; 3770 rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; 3771 3772 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); 3773 rt->fib6_dst.plen = cfg->fc_dst_len; 3774 3775 #ifdef CONFIG_IPV6_SUBTREES 3776 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); 3777 rt->fib6_src.plen = cfg->fc_src_len; 3778 #endif 3779 if (nh) { 3780 if (rt->fib6_src.plen) { 3781 NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); 3782 goto out_free; 3783 } 3784 if (!nexthop_get(nh)) { 3785 NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); 3786 goto out_free; 3787 } 3788 rt->nh = nh; 3789 fib6_nh = nexthop_fib6_nh(rt->nh); 3790 } else { 3791 err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); 3792 if (err) 3793 goto out; 3794 3795 fib6_nh = rt->fib6_nh; 3796 3797 /* We cannot add true routes via loopback here, they would 3798 * result in kernel looping; promote them to reject routes 3799 */ 3800 addr_type = ipv6_addr_type(&cfg->fc_dst); 3801 if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, 3802 addr_type)) 3803 rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; 3804 } 3805 3806 if (!ipv6_addr_any(&cfg->fc_prefsrc)) { 3807 struct net_device *dev = fib6_nh->fib_nh_dev; 3808 3809 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { 3810 NL_SET_ERR_MSG(extack, "Invalid source address"); 3811 err = -EINVAL; 3812 goto out; 3813 } 3814 rt->fib6_prefsrc.addr = cfg->fc_prefsrc; 3815 rt->fib6_prefsrc.plen = 128; 3816 } else 3817 rt->fib6_prefsrc.plen = 0; 3818 3819 return rt; 3820 out: 3821 fib6_info_release(rt); 3822 return ERR_PTR(err); 3823 out_free: 3824 ip_fib_metrics_put(rt->fib6_metrics); 3825 kfree(rt); 3826 return ERR_PTR(err); 3827 } 3828 3829 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, 3830 struct netlink_ext_ack *extack) 3831 { 3832 struct fib6_info *rt; 3833 int err; 3834 3835 rt = ip6_route_info_create(cfg, gfp_flags, extack); 3836 if (IS_ERR(rt)) 3837 return PTR_ERR(rt); 3838 3839 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); 3840 fib6_info_release(rt); 3841 3842 return err; 3843 } 3844 3845 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) 3846 { 3847 struct net *net = info->nl_net; 3848 struct fib6_table *table; 3849 int err; 3850 3851 if (rt == net->ipv6.fib6_null_entry) { 3852 err = -ENOENT; 3853 goto out; 3854 } 3855 3856 table = rt->fib6_table; 3857 spin_lock_bh(&table->tb6_lock); 3858 err = fib6_del(rt, info); 3859 spin_unlock_bh(&table->tb6_lock); 3860 3861 out: 3862 fib6_info_release(rt); 3863 return err; 3864 } 3865 3866 int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) 3867 { 3868 struct nl_info info = { 3869 .nl_net = net, 3870 .skip_notify = skip_notify 3871 }; 3872 3873 return __ip6_del_rt(rt, &info); 3874 } 3875 3876 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) 3877 { 3878 struct nl_info *info = &cfg->fc_nlinfo; 3879 struct net *net = info->nl_net; 3880 struct sk_buff *skb = NULL; 3881 struct fib6_table *table; 3882 int err = -ENOENT; 3883 3884 if (rt == net->ipv6.fib6_null_entry) 3885 goto out_put; 3886 table = rt->fib6_table; 3887 spin_lock_bh(&table->tb6_lock); 3888 3889 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { 3890 struct fib6_info *sibling, *next_sibling; 3891 struct fib6_node *fn; 3892 3893 /* prefer to send a single notification with all hops */ 3894 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 3895 if (skb) { 3896 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 3897 3898 if (rt6_fill_node(net, skb, rt, NULL, 3899 NULL, NULL, 0, RTM_DELROUTE, 3900 info->portid, seq, 0) < 0) { 3901 kfree_skb(skb); 3902 skb = NULL; 3903 } else 3904 info->skip_notify = 1; 3905 } 3906 3907 /* 'rt' points to the first sibling route. If it is not the 3908 * leaf, then we do not need to send a notification. Otherwise, 3909 * we need to check if the last sibling has a next route or not 3910 * and emit a replace or delete notification, respectively. 3911 */ 3912 info->skip_notify_kernel = 1; 3913 fn = rcu_dereference_protected(rt->fib6_node, 3914 lockdep_is_held(&table->tb6_lock)); 3915 if (rcu_access_pointer(fn->leaf) == rt) { 3916 struct fib6_info *last_sibling, *replace_rt; 3917 3918 last_sibling = list_last_entry(&rt->fib6_siblings, 3919 struct fib6_info, 3920 fib6_siblings); 3921 replace_rt = rcu_dereference_protected( 3922 last_sibling->fib6_next, 3923 lockdep_is_held(&table->tb6_lock)); 3924 if (replace_rt) 3925 call_fib6_entry_notifiers_replace(net, 3926 replace_rt); 3927 else 3928 call_fib6_multipath_entry_notifiers(net, 3929 FIB_EVENT_ENTRY_DEL, 3930 rt, rt->fib6_nsiblings, 3931 NULL); 3932 } 3933 list_for_each_entry_safe(sibling, next_sibling, 3934 &rt->fib6_siblings, 3935 fib6_siblings) { 3936 err = fib6_del(sibling, info); 3937 if (err) 3938 goto out_unlock; 3939 } 3940 } 3941 3942 err = fib6_del(rt, info); 3943 out_unlock: 3944 spin_unlock_bh(&table->tb6_lock); 3945 out_put: 3946 fib6_info_release(rt); 3947 3948 if (skb) { 3949 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 3950 info->nlh, gfp_any()); 3951 } 3952 return err; 3953 } 3954 3955 static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) 3956 { 3957 int rc = -ESRCH; 3958 3959 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) 3960 goto out; 3961 3962 if (cfg->fc_flags & RTF_GATEWAY && 3963 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) 3964 goto out; 3965 3966 rc = rt6_remove_exception_rt(rt); 3967 out: 3968 return rc; 3969 } 3970 3971 static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, 3972 struct fib6_nh *nh) 3973 { 3974 struct fib6_result res = { 3975 .f6i = rt, 3976 .nh = nh, 3977 }; 3978 struct rt6_info *rt_cache; 3979 3980 rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); 3981 if (rt_cache) 3982 return __ip6_del_cached_rt(rt_cache, cfg); 3983 3984 return 0; 3985 } 3986 3987 struct fib6_nh_del_cached_rt_arg { 3988 struct fib6_config *cfg; 3989 struct fib6_info *f6i; 3990 }; 3991 3992 static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) 3993 { 3994 struct fib6_nh_del_cached_rt_arg *arg = _arg; 3995 int rc; 3996 3997 rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); 3998 return rc != -ESRCH ? rc : 0; 3999 } 4000 4001 static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) 4002 { 4003 struct fib6_nh_del_cached_rt_arg arg = { 4004 .cfg = cfg, 4005 .f6i = f6i 4006 }; 4007 4008 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); 4009 } 4010 4011 static int ip6_route_del(struct fib6_config *cfg, 4012 struct netlink_ext_ack *extack) 4013 { 4014 struct fib6_table *table; 4015 struct fib6_info *rt; 4016 struct fib6_node *fn; 4017 int err = -ESRCH; 4018 4019 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); 4020 if (!table) { 4021 NL_SET_ERR_MSG(extack, "FIB table does not exist"); 4022 return err; 4023 } 4024 4025 rcu_read_lock(); 4026 4027 fn = fib6_locate(&table->tb6_root, 4028 &cfg->fc_dst, cfg->fc_dst_len, 4029 &cfg->fc_src, cfg->fc_src_len, 4030 !(cfg->fc_flags & RTF_CACHE)); 4031 4032 if (fn) { 4033 for_each_fib6_node_rt_rcu(fn) { 4034 struct fib6_nh *nh; 4035 4036 if (rt->nh && cfg->fc_nh_id && 4037 rt->nh->id != cfg->fc_nh_id) 4038 continue; 4039 4040 if (cfg->fc_flags & RTF_CACHE) { 4041 int rc = 0; 4042 4043 if (rt->nh) { 4044 rc = ip6_del_cached_rt_nh(cfg, rt); 4045 } else if (cfg->fc_nh_id) { 4046 continue; 4047 } else { 4048 nh = rt->fib6_nh; 4049 rc = ip6_del_cached_rt(cfg, rt, nh); 4050 } 4051 if (rc != -ESRCH) { 4052 rcu_read_unlock(); 4053 return rc; 4054 } 4055 continue; 4056 } 4057 4058 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) 4059 continue; 4060 if (cfg->fc_protocol && 4061 cfg->fc_protocol != rt->fib6_protocol) 4062 continue; 4063 4064 if (rt->nh) { 4065 if (!fib6_info_hold_safe(rt)) 4066 continue; 4067 rcu_read_unlock(); 4068 4069 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 4070 } 4071 if (cfg->fc_nh_id) 4072 continue; 4073 4074 nh = rt->fib6_nh; 4075 if (cfg->fc_ifindex && 4076 (!nh->fib_nh_dev || 4077 nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) 4078 continue; 4079 if (cfg->fc_flags & RTF_GATEWAY && 4080 !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) 4081 continue; 4082 if (!fib6_info_hold_safe(rt)) 4083 continue; 4084 rcu_read_unlock(); 4085 4086 /* if gateway was specified only delete the one hop */ 4087 if (cfg->fc_flags & RTF_GATEWAY) 4088 return __ip6_del_rt(rt, &cfg->fc_nlinfo); 4089 4090 return __ip6_del_rt_siblings(rt, cfg); 4091 } 4092 } 4093 rcu_read_unlock(); 4094 4095 return err; 4096 } 4097 4098 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) 4099 { 4100 struct netevent_redirect netevent; 4101 struct rt6_info *rt, *nrt = NULL; 4102 struct fib6_result res = {}; 4103 struct ndisc_options ndopts; 4104 struct inet6_dev *in6_dev; 4105 struct neighbour *neigh; 4106 struct rd_msg *msg; 4107 int optlen, on_link; 4108 u8 *lladdr; 4109 4110 optlen = skb_tail_pointer(skb) - skb_transport_header(skb); 4111 optlen -= sizeof(*msg); 4112 4113 if (optlen < 0) { 4114 net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); 4115 return; 4116 } 4117 4118 msg = (struct rd_msg *)icmp6_hdr(skb); 4119 4120 if (ipv6_addr_is_multicast(&msg->dest)) { 4121 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); 4122 return; 4123 } 4124 4125 on_link = 0; 4126 if (ipv6_addr_equal(&msg->dest, &msg->target)) { 4127 on_link = 1; 4128 } else if (ipv6_addr_type(&msg->target) != 4129 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { 4130 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); 4131 return; 4132 } 4133 4134 in6_dev = __in6_dev_get(skb->dev); 4135 if (!in6_dev) 4136 return; 4137 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects) 4138 return; 4139 4140 /* RFC2461 8.1: 4141 * The IP source address of the Redirect MUST be the same as the current 4142 * first-hop router for the specified ICMP Destination Address. 4143 */ 4144 4145 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { 4146 net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); 4147 return; 4148 } 4149 4150 lladdr = NULL; 4151 if (ndopts.nd_opts_tgt_lladdr) { 4152 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, 4153 skb->dev); 4154 if (!lladdr) { 4155 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); 4156 return; 4157 } 4158 } 4159 4160 rt = (struct rt6_info *) dst; 4161 if (rt->rt6i_flags & RTF_REJECT) { 4162 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); 4163 return; 4164 } 4165 4166 /* Redirect received -> path was valid. 4167 * Look, redirects are sent only in response to data packets, 4168 * so that this nexthop apparently is reachable. --ANK 4169 */ 4170 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); 4171 4172 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); 4173 if (!neigh) 4174 return; 4175 4176 /* 4177 * We have finally decided to accept it. 4178 */ 4179 4180 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, 4181 NEIGH_UPDATE_F_WEAK_OVERRIDE| 4182 NEIGH_UPDATE_F_OVERRIDE| 4183 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| 4184 NEIGH_UPDATE_F_ISROUTER)), 4185 NDISC_REDIRECT, &ndopts); 4186 4187 rcu_read_lock(); 4188 res.f6i = rcu_dereference(rt->from); 4189 if (!res.f6i) 4190 goto out; 4191 4192 if (res.f6i->nh) { 4193 struct fib6_nh_match_arg arg = { 4194 .dev = dst->dev, 4195 .gw = &rt->rt6i_gateway, 4196 }; 4197 4198 nexthop_for_each_fib6_nh(res.f6i->nh, 4199 fib6_nh_find_match, &arg); 4200 4201 /* fib6_info uses a nexthop that does not have fib6_nh 4202 * using the dst->dev. Should be impossible 4203 */ 4204 if (!arg.match) 4205 goto out; 4206 res.nh = arg.match; 4207 } else { 4208 res.nh = res.f6i->fib6_nh; 4209 } 4210 4211 res.fib6_flags = res.f6i->fib6_flags; 4212 res.fib6_type = res.f6i->fib6_type; 4213 nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); 4214 if (!nrt) 4215 goto out; 4216 4217 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; 4218 if (on_link) 4219 nrt->rt6i_flags &= ~RTF_GATEWAY; 4220 4221 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; 4222 4223 /* rt6_insert_exception() will take care of duplicated exceptions */ 4224 if (rt6_insert_exception(nrt, &res)) { 4225 dst_release_immediate(&nrt->dst); 4226 goto out; 4227 } 4228 4229 netevent.old = &rt->dst; 4230 netevent.new = &nrt->dst; 4231 netevent.daddr = &msg->dest; 4232 netevent.neigh = neigh; 4233 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); 4234 4235 out: 4236 rcu_read_unlock(); 4237 neigh_release(neigh); 4238 } 4239 4240 #ifdef CONFIG_IPV6_ROUTE_INFO 4241 static struct fib6_info *rt6_get_route_info(struct net *net, 4242 const struct in6_addr *prefix, int prefixlen, 4243 const struct in6_addr *gwaddr, 4244 struct net_device *dev) 4245 { 4246 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4247 int ifindex = dev->ifindex; 4248 struct fib6_node *fn; 4249 struct fib6_info *rt = NULL; 4250 struct fib6_table *table; 4251 4252 table = fib6_get_table(net, tb_id); 4253 if (!table) 4254 return NULL; 4255 4256 rcu_read_lock(); 4257 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); 4258 if (!fn) 4259 goto out; 4260 4261 for_each_fib6_node_rt_rcu(fn) { 4262 /* these routes do not use nexthops */ 4263 if (rt->nh) 4264 continue; 4265 if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) 4266 continue; 4267 if (!(rt->fib6_flags & RTF_ROUTEINFO) || 4268 !rt->fib6_nh->fib_nh_gw_family) 4269 continue; 4270 if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) 4271 continue; 4272 if (!fib6_info_hold_safe(rt)) 4273 continue; 4274 break; 4275 } 4276 out: 4277 rcu_read_unlock(); 4278 return rt; 4279 } 4280 4281 static struct fib6_info *rt6_add_route_info(struct net *net, 4282 const struct in6_addr *prefix, int prefixlen, 4283 const struct in6_addr *gwaddr, 4284 struct net_device *dev, 4285 unsigned int pref) 4286 { 4287 struct fib6_config cfg = { 4288 .fc_metric = IP6_RT_PRIO_USER, 4289 .fc_ifindex = dev->ifindex, 4290 .fc_dst_len = prefixlen, 4291 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | 4292 RTF_UP | RTF_PREF(pref), 4293 .fc_protocol = RTPROT_RA, 4294 .fc_type = RTN_UNICAST, 4295 .fc_nlinfo.portid = 0, 4296 .fc_nlinfo.nlh = NULL, 4297 .fc_nlinfo.nl_net = net, 4298 }; 4299 4300 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; 4301 cfg.fc_dst = *prefix; 4302 cfg.fc_gateway = *gwaddr; 4303 4304 /* We should treat it as a default route if prefix length is 0. */ 4305 if (!prefixlen) 4306 cfg.fc_flags |= RTF_DEFAULT; 4307 4308 ip6_route_add(&cfg, GFP_ATOMIC, NULL); 4309 4310 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); 4311 } 4312 #endif 4313 4314 struct fib6_info *rt6_get_dflt_router(struct net *net, 4315 const struct in6_addr *addr, 4316 struct net_device *dev) 4317 { 4318 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; 4319 struct fib6_info *rt; 4320 struct fib6_table *table; 4321 4322 table = fib6_get_table(net, tb_id); 4323 if (!table) 4324 return NULL; 4325 4326 rcu_read_lock(); 4327 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4328 struct fib6_nh *nh; 4329 4330 /* RA routes do not use nexthops */ 4331 if (rt->nh) 4332 continue; 4333 4334 nh = rt->fib6_nh; 4335 if (dev == nh->fib_nh_dev && 4336 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && 4337 ipv6_addr_equal(&nh->fib_nh_gw6, addr)) 4338 break; 4339 } 4340 if (rt && !fib6_info_hold_safe(rt)) 4341 rt = NULL; 4342 rcu_read_unlock(); 4343 return rt; 4344 } 4345 4346 struct fib6_info *rt6_add_dflt_router(struct net *net, 4347 const struct in6_addr *gwaddr, 4348 struct net_device *dev, 4349 unsigned int pref, 4350 u32 defrtr_usr_metric) 4351 { 4352 struct fib6_config cfg = { 4353 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, 4354 .fc_metric = defrtr_usr_metric, 4355 .fc_ifindex = dev->ifindex, 4356 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | 4357 RTF_UP | RTF_EXPIRES | RTF_PREF(pref), 4358 .fc_protocol = RTPROT_RA, 4359 .fc_type = RTN_UNICAST, 4360 .fc_nlinfo.portid = 0, 4361 .fc_nlinfo.nlh = NULL, 4362 .fc_nlinfo.nl_net = net, 4363 }; 4364 4365 cfg.fc_gateway = *gwaddr; 4366 4367 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { 4368 struct fib6_table *table; 4369 4370 table = fib6_get_table(dev_net(dev), cfg.fc_table); 4371 if (table) 4372 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; 4373 } 4374 4375 return rt6_get_dflt_router(net, gwaddr, dev); 4376 } 4377 4378 static void __rt6_purge_dflt_routers(struct net *net, 4379 struct fib6_table *table) 4380 { 4381 struct fib6_info *rt; 4382 4383 restart: 4384 rcu_read_lock(); 4385 for_each_fib6_node_rt_rcu(&table->tb6_root) { 4386 struct net_device *dev = fib6_info_nh_dev(rt); 4387 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; 4388 4389 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && 4390 (!idev || idev->cnf.accept_ra != 2) && 4391 fib6_info_hold_safe(rt)) { 4392 rcu_read_unlock(); 4393 ip6_del_rt(net, rt, false); 4394 goto restart; 4395 } 4396 } 4397 rcu_read_unlock(); 4398 4399 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; 4400 } 4401 4402 void rt6_purge_dflt_routers(struct net *net) 4403 { 4404 struct fib6_table *table; 4405 struct hlist_head *head; 4406 unsigned int h; 4407 4408 rcu_read_lock(); 4409 4410 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 4411 head = &net->ipv6.fib_table_hash[h]; 4412 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 4413 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) 4414 __rt6_purge_dflt_routers(net, table); 4415 } 4416 } 4417 4418 rcu_read_unlock(); 4419 } 4420 4421 static void rtmsg_to_fib6_config(struct net *net, 4422 struct in6_rtmsg *rtmsg, 4423 struct fib6_config *cfg) 4424 { 4425 *cfg = (struct fib6_config){ 4426 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? 4427 : RT6_TABLE_MAIN, 4428 .fc_ifindex = rtmsg->rtmsg_ifindex, 4429 .fc_metric = rtmsg->rtmsg_metric ? : IP6_RT_PRIO_USER, 4430 .fc_expires = rtmsg->rtmsg_info, 4431 .fc_dst_len = rtmsg->rtmsg_dst_len, 4432 .fc_src_len = rtmsg->rtmsg_src_len, 4433 .fc_flags = rtmsg->rtmsg_flags, 4434 .fc_type = rtmsg->rtmsg_type, 4435 4436 .fc_nlinfo.nl_net = net, 4437 4438 .fc_dst = rtmsg->rtmsg_dst, 4439 .fc_src = rtmsg->rtmsg_src, 4440 .fc_gateway = rtmsg->rtmsg_gateway, 4441 }; 4442 } 4443 4444 int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg) 4445 { 4446 struct fib6_config cfg; 4447 int err; 4448 4449 if (cmd != SIOCADDRT && cmd != SIOCDELRT) 4450 return -EINVAL; 4451 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 4452 return -EPERM; 4453 4454 rtmsg_to_fib6_config(net, rtmsg, &cfg); 4455 4456 rtnl_lock(); 4457 switch (cmd) { 4458 case SIOCADDRT: 4459 err = ip6_route_add(&cfg, GFP_KERNEL, NULL); 4460 break; 4461 case SIOCDELRT: 4462 err = ip6_route_del(&cfg, NULL); 4463 break; 4464 } 4465 rtnl_unlock(); 4466 return err; 4467 } 4468 4469 /* 4470 * Drop the packet on the floor 4471 */ 4472 4473 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) 4474 { 4475 struct dst_entry *dst = skb_dst(skb); 4476 struct net *net = dev_net(dst->dev); 4477 struct inet6_dev *idev; 4478 SKB_DR(reason); 4479 int type; 4480 4481 if (netif_is_l3_master(skb->dev) || 4482 dst->dev == net->loopback_dev) 4483 idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); 4484 else 4485 idev = ip6_dst_idev(dst); 4486 4487 switch (ipstats_mib_noroutes) { 4488 case IPSTATS_MIB_INNOROUTES: 4489 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); 4490 if (type == IPV6_ADDR_ANY) { 4491 SKB_DR_SET(reason, IP_INADDRERRORS); 4492 IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); 4493 break; 4494 } 4495 SKB_DR_SET(reason, IP_INNOROUTES); 4496 fallthrough; 4497 case IPSTATS_MIB_OUTNOROUTES: 4498 SKB_DR_OR(reason, IP_OUTNOROUTES); 4499 IP6_INC_STATS(net, idev, ipstats_mib_noroutes); 4500 break; 4501 } 4502 4503 /* Start over by dropping the dst for l3mdev case */ 4504 if (netif_is_l3_master(skb->dev)) 4505 skb_dst_drop(skb); 4506 4507 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); 4508 kfree_skb_reason(skb, reason); 4509 return 0; 4510 } 4511 4512 static int ip6_pkt_discard(struct sk_buff *skb) 4513 { 4514 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); 4515 } 4516 4517 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4518 { 4519 skb->dev = skb_dst(skb)->dev; 4520 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); 4521 } 4522 4523 static int ip6_pkt_prohibit(struct sk_buff *skb) 4524 { 4525 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); 4526 } 4527 4528 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) 4529 { 4530 skb->dev = skb_dst(skb)->dev; 4531 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); 4532 } 4533 4534 /* 4535 * Allocate a dst for local (unicast / anycast) address. 4536 */ 4537 4538 struct fib6_info *addrconf_f6i_alloc(struct net *net, 4539 struct inet6_dev *idev, 4540 const struct in6_addr *addr, 4541 bool anycast, gfp_t gfp_flags) 4542 { 4543 struct fib6_config cfg = { 4544 .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, 4545 .fc_ifindex = idev->dev->ifindex, 4546 .fc_flags = RTF_UP | RTF_NONEXTHOP, 4547 .fc_dst = *addr, 4548 .fc_dst_len = 128, 4549 .fc_protocol = RTPROT_KERNEL, 4550 .fc_nlinfo.nl_net = net, 4551 .fc_ignore_dev_down = true, 4552 }; 4553 struct fib6_info *f6i; 4554 4555 if (anycast) { 4556 cfg.fc_type = RTN_ANYCAST; 4557 cfg.fc_flags |= RTF_ANYCAST; 4558 } else { 4559 cfg.fc_type = RTN_LOCAL; 4560 cfg.fc_flags |= RTF_LOCAL; 4561 } 4562 4563 f6i = ip6_route_info_create(&cfg, gfp_flags, NULL); 4564 if (!IS_ERR(f6i)) { 4565 f6i->dst_nocount = true; 4566 4567 if (!anycast && 4568 (net->ipv6.devconf_all->disable_policy || 4569 idev->cnf.disable_policy)) 4570 f6i->dst_nopolicy = true; 4571 } 4572 4573 return f6i; 4574 } 4575 4576 /* remove deleted ip from prefsrc entries */ 4577 struct arg_dev_net_ip { 4578 struct net_device *dev; 4579 struct net *net; 4580 struct in6_addr *addr; 4581 }; 4582 4583 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) 4584 { 4585 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev; 4586 struct net *net = ((struct arg_dev_net_ip *)arg)->net; 4587 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; 4588 4589 if (!rt->nh && 4590 ((void *)rt->fib6_nh->fib_nh_dev == dev || !dev) && 4591 rt != net->ipv6.fib6_null_entry && 4592 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) { 4593 spin_lock_bh(&rt6_exception_lock); 4594 /* remove prefsrc entry */ 4595 rt->fib6_prefsrc.plen = 0; 4596 spin_unlock_bh(&rt6_exception_lock); 4597 } 4598 return 0; 4599 } 4600 4601 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) 4602 { 4603 struct net *net = dev_net(ifp->idev->dev); 4604 struct arg_dev_net_ip adni = { 4605 .dev = ifp->idev->dev, 4606 .net = net, 4607 .addr = &ifp->addr, 4608 }; 4609 fib6_clean_all(net, fib6_remove_prefsrc, &adni); 4610 } 4611 4612 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) 4613 4614 /* Remove routers and update dst entries when gateway turn into host. */ 4615 static int fib6_clean_tohost(struct fib6_info *rt, void *arg) 4616 { 4617 struct in6_addr *gateway = (struct in6_addr *)arg; 4618 struct fib6_nh *nh; 4619 4620 /* RA routes do not use nexthops */ 4621 if (rt->nh) 4622 return 0; 4623 4624 nh = rt->fib6_nh; 4625 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && 4626 nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) 4627 return -1; 4628 4629 /* Further clean up cached routes in exception table. 4630 * This is needed because cached route may have a different 4631 * gateway than its 'parent' in the case of an ip redirect. 4632 */ 4633 fib6_nh_exceptions_clean_tohost(nh, gateway); 4634 4635 return 0; 4636 } 4637 4638 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) 4639 { 4640 fib6_clean_all(net, fib6_clean_tohost, gateway); 4641 } 4642 4643 struct arg_netdev_event { 4644 const struct net_device *dev; 4645 union { 4646 unsigned char nh_flags; 4647 unsigned long event; 4648 }; 4649 }; 4650 4651 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) 4652 { 4653 struct fib6_info *iter; 4654 struct fib6_node *fn; 4655 4656 fn = rcu_dereference_protected(rt->fib6_node, 4657 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4658 iter = rcu_dereference_protected(fn->leaf, 4659 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4660 while (iter) { 4661 if (iter->fib6_metric == rt->fib6_metric && 4662 rt6_qualify_for_ecmp(iter)) 4663 return iter; 4664 iter = rcu_dereference_protected(iter->fib6_next, 4665 lockdep_is_held(&rt->fib6_table->tb6_lock)); 4666 } 4667 4668 return NULL; 4669 } 4670 4671 /* only called for fib entries with builtin fib6_nh */ 4672 static bool rt6_is_dead(const struct fib6_info *rt) 4673 { 4674 if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || 4675 (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && 4676 ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) 4677 return true; 4678 4679 return false; 4680 } 4681 4682 static int rt6_multipath_total_weight(const struct fib6_info *rt) 4683 { 4684 struct fib6_info *iter; 4685 int total = 0; 4686 4687 if (!rt6_is_dead(rt)) 4688 total += rt->fib6_nh->fib_nh_weight; 4689 4690 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { 4691 if (!rt6_is_dead(iter)) 4692 total += iter->fib6_nh->fib_nh_weight; 4693 } 4694 4695 return total; 4696 } 4697 4698 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) 4699 { 4700 int upper_bound = -1; 4701 4702 if (!rt6_is_dead(rt)) { 4703 *weight += rt->fib6_nh->fib_nh_weight; 4704 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, 4705 total) - 1; 4706 } 4707 atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); 4708 } 4709 4710 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) 4711 { 4712 struct fib6_info *iter; 4713 int weight = 0; 4714 4715 rt6_upper_bound_set(rt, &weight, total); 4716 4717 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4718 rt6_upper_bound_set(iter, &weight, total); 4719 } 4720 4721 void rt6_multipath_rebalance(struct fib6_info *rt) 4722 { 4723 struct fib6_info *first; 4724 int total; 4725 4726 /* In case the entire multipath route was marked for flushing, 4727 * then there is no need to rebalance upon the removal of every 4728 * sibling route. 4729 */ 4730 if (!rt->fib6_nsiblings || rt->should_flush) 4731 return; 4732 4733 /* During lookup routes are evaluated in order, so we need to 4734 * make sure upper bounds are assigned from the first sibling 4735 * onwards. 4736 */ 4737 first = rt6_multipath_first_sibling(rt); 4738 if (WARN_ON_ONCE(!first)) 4739 return; 4740 4741 total = rt6_multipath_total_weight(first); 4742 rt6_multipath_upper_bound_set(first, total); 4743 } 4744 4745 static int fib6_ifup(struct fib6_info *rt, void *p_arg) 4746 { 4747 const struct arg_netdev_event *arg = p_arg; 4748 struct net *net = dev_net(arg->dev); 4749 4750 if (rt != net->ipv6.fib6_null_entry && !rt->nh && 4751 rt->fib6_nh->fib_nh_dev == arg->dev) { 4752 rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; 4753 fib6_update_sernum_upto_root(net, rt); 4754 rt6_multipath_rebalance(rt); 4755 } 4756 4757 return 0; 4758 } 4759 4760 void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) 4761 { 4762 struct arg_netdev_event arg = { 4763 .dev = dev, 4764 { 4765 .nh_flags = nh_flags, 4766 }, 4767 }; 4768 4769 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) 4770 arg.nh_flags |= RTNH_F_LINKDOWN; 4771 4772 fib6_clean_all(dev_net(dev), fib6_ifup, &arg); 4773 } 4774 4775 /* only called for fib entries with inline fib6_nh */ 4776 static bool rt6_multipath_uses_dev(const struct fib6_info *rt, 4777 const struct net_device *dev) 4778 { 4779 struct fib6_info *iter; 4780 4781 if (rt->fib6_nh->fib_nh_dev == dev) 4782 return true; 4783 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4784 if (iter->fib6_nh->fib_nh_dev == dev) 4785 return true; 4786 4787 return false; 4788 } 4789 4790 static void rt6_multipath_flush(struct fib6_info *rt) 4791 { 4792 struct fib6_info *iter; 4793 4794 rt->should_flush = 1; 4795 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4796 iter->should_flush = 1; 4797 } 4798 4799 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, 4800 const struct net_device *down_dev) 4801 { 4802 struct fib6_info *iter; 4803 unsigned int dead = 0; 4804 4805 if (rt->fib6_nh->fib_nh_dev == down_dev || 4806 rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4807 dead++; 4808 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4809 if (iter->fib6_nh->fib_nh_dev == down_dev || 4810 iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) 4811 dead++; 4812 4813 return dead; 4814 } 4815 4816 static void rt6_multipath_nh_flags_set(struct fib6_info *rt, 4817 const struct net_device *dev, 4818 unsigned char nh_flags) 4819 { 4820 struct fib6_info *iter; 4821 4822 if (rt->fib6_nh->fib_nh_dev == dev) 4823 rt->fib6_nh->fib_nh_flags |= nh_flags; 4824 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) 4825 if (iter->fib6_nh->fib_nh_dev == dev) 4826 iter->fib6_nh->fib_nh_flags |= nh_flags; 4827 } 4828 4829 /* called with write lock held for table with rt */ 4830 static int fib6_ifdown(struct fib6_info *rt, void *p_arg) 4831 { 4832 const struct arg_netdev_event *arg = p_arg; 4833 const struct net_device *dev = arg->dev; 4834 struct net *net = dev_net(dev); 4835 4836 if (rt == net->ipv6.fib6_null_entry || rt->nh) 4837 return 0; 4838 4839 switch (arg->event) { 4840 case NETDEV_UNREGISTER: 4841 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4842 case NETDEV_DOWN: 4843 if (rt->should_flush) 4844 return -1; 4845 if (!rt->fib6_nsiblings) 4846 return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; 4847 if (rt6_multipath_uses_dev(rt, dev)) { 4848 unsigned int count; 4849 4850 count = rt6_multipath_dead_count(rt, dev); 4851 if (rt->fib6_nsiblings + 1 == count) { 4852 rt6_multipath_flush(rt); 4853 return -1; 4854 } 4855 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | 4856 RTNH_F_LINKDOWN); 4857 fib6_update_sernum(net, rt); 4858 rt6_multipath_rebalance(rt); 4859 } 4860 return -2; 4861 case NETDEV_CHANGE: 4862 if (rt->fib6_nh->fib_nh_dev != dev || 4863 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) 4864 break; 4865 rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; 4866 rt6_multipath_rebalance(rt); 4867 break; 4868 } 4869 4870 return 0; 4871 } 4872 4873 void rt6_sync_down_dev(struct net_device *dev, unsigned long event) 4874 { 4875 struct arg_netdev_event arg = { 4876 .dev = dev, 4877 { 4878 .event = event, 4879 }, 4880 }; 4881 struct net *net = dev_net(dev); 4882 4883 if (net->ipv6.sysctl.skip_notify_on_dev_down) 4884 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); 4885 else 4886 fib6_clean_all(net, fib6_ifdown, &arg); 4887 } 4888 4889 void rt6_disable_ip(struct net_device *dev, unsigned long event) 4890 { 4891 rt6_sync_down_dev(dev, event); 4892 rt6_uncached_list_flush_dev(dev); 4893 neigh_ifdown(&nd_tbl, dev); 4894 } 4895 4896 struct rt6_mtu_change_arg { 4897 struct net_device *dev; 4898 unsigned int mtu; 4899 struct fib6_info *f6i; 4900 }; 4901 4902 static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) 4903 { 4904 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; 4905 struct fib6_info *f6i = arg->f6i; 4906 4907 /* For administrative MTU increase, there is no way to discover 4908 * IPv6 PMTU increase, so PMTU increase should be updated here. 4909 * Since RFC 1981 doesn't include administrative MTU increase 4910 * update PMTU increase is a MUST. (i.e. jumbo frame) 4911 */ 4912 if (nh->fib_nh_dev == arg->dev) { 4913 struct inet6_dev *idev = __in6_dev_get(arg->dev); 4914 u32 mtu = f6i->fib6_pmtu; 4915 4916 if (mtu >= arg->mtu || 4917 (mtu < arg->mtu && mtu == idev->cnf.mtu6)) 4918 fib6_metric_set(f6i, RTAX_MTU, arg->mtu); 4919 4920 spin_lock_bh(&rt6_exception_lock); 4921 rt6_exceptions_update_pmtu(idev, nh, arg->mtu); 4922 spin_unlock_bh(&rt6_exception_lock); 4923 } 4924 4925 return 0; 4926 } 4927 4928 static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) 4929 { 4930 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; 4931 struct inet6_dev *idev; 4932 4933 /* In IPv6 pmtu discovery is not optional, 4934 so that RTAX_MTU lock cannot disable it. 4935 We still use this lock to block changes 4936 caused by addrconf/ndisc. 4937 */ 4938 4939 idev = __in6_dev_get(arg->dev); 4940 if (!idev) 4941 return 0; 4942 4943 if (fib6_metric_locked(f6i, RTAX_MTU)) 4944 return 0; 4945 4946 arg->f6i = f6i; 4947 if (f6i->nh) { 4948 /* fib6_nh_mtu_change only returns 0, so this is safe */ 4949 return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, 4950 arg); 4951 } 4952 4953 return fib6_nh_mtu_change(f6i->fib6_nh, arg); 4954 } 4955 4956 void rt6_mtu_change(struct net_device *dev, unsigned int mtu) 4957 { 4958 struct rt6_mtu_change_arg arg = { 4959 .dev = dev, 4960 .mtu = mtu, 4961 }; 4962 4963 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); 4964 } 4965 4966 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { 4967 [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, 4968 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, 4969 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, 4970 [RTA_OIF] = { .type = NLA_U32 }, 4971 [RTA_IIF] = { .type = NLA_U32 }, 4972 [RTA_PRIORITY] = { .type = NLA_U32 }, 4973 [RTA_METRICS] = { .type = NLA_NESTED }, 4974 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, 4975 [RTA_PREF] = { .type = NLA_U8 }, 4976 [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, 4977 [RTA_ENCAP] = { .type = NLA_NESTED }, 4978 [RTA_EXPIRES] = { .type = NLA_U32 }, 4979 [RTA_UID] = { .type = NLA_U32 }, 4980 [RTA_MARK] = { .type = NLA_U32 }, 4981 [RTA_TABLE] = { .type = NLA_U32 }, 4982 [RTA_IP_PROTO] = { .type = NLA_U8 }, 4983 [RTA_SPORT] = { .type = NLA_U16 }, 4984 [RTA_DPORT] = { .type = NLA_U16 }, 4985 [RTA_NH_ID] = { .type = NLA_U32 }, 4986 }; 4987 4988 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, 4989 struct fib6_config *cfg, 4990 struct netlink_ext_ack *extack) 4991 { 4992 struct rtmsg *rtm; 4993 struct nlattr *tb[RTA_MAX+1]; 4994 unsigned int pref; 4995 int err; 4996 4997 err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 4998 rtm_ipv6_policy, extack); 4999 if (err < 0) 5000 goto errout; 5001 5002 err = -EINVAL; 5003 rtm = nlmsg_data(nlh); 5004 5005 if (rtm->rtm_tos) { 5006 NL_SET_ERR_MSG(extack, 5007 "Invalid dsfield (tos): option not available for IPv6"); 5008 goto errout; 5009 } 5010 5011 *cfg = (struct fib6_config){ 5012 .fc_table = rtm->rtm_table, 5013 .fc_dst_len = rtm->rtm_dst_len, 5014 .fc_src_len = rtm->rtm_src_len, 5015 .fc_flags = RTF_UP, 5016 .fc_protocol = rtm->rtm_protocol, 5017 .fc_type = rtm->rtm_type, 5018 5019 .fc_nlinfo.portid = NETLINK_CB(skb).portid, 5020 .fc_nlinfo.nlh = nlh, 5021 .fc_nlinfo.nl_net = sock_net(skb->sk), 5022 }; 5023 5024 if (rtm->rtm_type == RTN_UNREACHABLE || 5025 rtm->rtm_type == RTN_BLACKHOLE || 5026 rtm->rtm_type == RTN_PROHIBIT || 5027 rtm->rtm_type == RTN_THROW) 5028 cfg->fc_flags |= RTF_REJECT; 5029 5030 if (rtm->rtm_type == RTN_LOCAL) 5031 cfg->fc_flags |= RTF_LOCAL; 5032 5033 if (rtm->rtm_flags & RTM_F_CLONED) 5034 cfg->fc_flags |= RTF_CACHE; 5035 5036 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); 5037 5038 if (tb[RTA_NH_ID]) { 5039 if (tb[RTA_GATEWAY] || tb[RTA_OIF] || 5040 tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { 5041 NL_SET_ERR_MSG(extack, 5042 "Nexthop specification and nexthop id are mutually exclusive"); 5043 goto errout; 5044 } 5045 cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); 5046 } 5047 5048 if (tb[RTA_GATEWAY]) { 5049 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); 5050 cfg->fc_flags |= RTF_GATEWAY; 5051 } 5052 if (tb[RTA_VIA]) { 5053 NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); 5054 goto errout; 5055 } 5056 5057 if (tb[RTA_DST]) { 5058 int plen = (rtm->rtm_dst_len + 7) >> 3; 5059 5060 if (nla_len(tb[RTA_DST]) < plen) 5061 goto errout; 5062 5063 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); 5064 } 5065 5066 if (tb[RTA_SRC]) { 5067 int plen = (rtm->rtm_src_len + 7) >> 3; 5068 5069 if (nla_len(tb[RTA_SRC]) < plen) 5070 goto errout; 5071 5072 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); 5073 } 5074 5075 if (tb[RTA_PREFSRC]) 5076 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); 5077 5078 if (tb[RTA_OIF]) 5079 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); 5080 5081 if (tb[RTA_PRIORITY]) 5082 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); 5083 5084 if (tb[RTA_METRICS]) { 5085 cfg->fc_mx = nla_data(tb[RTA_METRICS]); 5086 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); 5087 } 5088 5089 if (tb[RTA_TABLE]) 5090 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); 5091 5092 if (tb[RTA_MULTIPATH]) { 5093 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); 5094 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); 5095 5096 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, 5097 cfg->fc_mp_len, extack); 5098 if (err < 0) 5099 goto errout; 5100 } 5101 5102 if (tb[RTA_PREF]) { 5103 pref = nla_get_u8(tb[RTA_PREF]); 5104 if (pref != ICMPV6_ROUTER_PREF_LOW && 5105 pref != ICMPV6_ROUTER_PREF_HIGH) 5106 pref = ICMPV6_ROUTER_PREF_MEDIUM; 5107 cfg->fc_flags |= RTF_PREF(pref); 5108 } 5109 5110 if (tb[RTA_ENCAP]) 5111 cfg->fc_encap = tb[RTA_ENCAP]; 5112 5113 if (tb[RTA_ENCAP_TYPE]) { 5114 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); 5115 5116 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); 5117 if (err < 0) 5118 goto errout; 5119 } 5120 5121 if (tb[RTA_EXPIRES]) { 5122 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); 5123 5124 if (addrconf_finite_timeout(timeout)) { 5125 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); 5126 cfg->fc_flags |= RTF_EXPIRES; 5127 } 5128 } 5129 5130 err = 0; 5131 errout: 5132 return err; 5133 } 5134 5135 struct rt6_nh { 5136 struct fib6_info *fib6_info; 5137 struct fib6_config r_cfg; 5138 struct list_head next; 5139 }; 5140 5141 static int ip6_route_info_append(struct net *net, 5142 struct list_head *rt6_nh_list, 5143 struct fib6_info *rt, 5144 struct fib6_config *r_cfg) 5145 { 5146 struct rt6_nh *nh; 5147 int err = -EEXIST; 5148 5149 list_for_each_entry(nh, rt6_nh_list, next) { 5150 /* check if fib6_info already exists */ 5151 if (rt6_duplicate_nexthop(nh->fib6_info, rt)) 5152 return err; 5153 } 5154 5155 nh = kzalloc(sizeof(*nh), GFP_KERNEL); 5156 if (!nh) 5157 return -ENOMEM; 5158 nh->fib6_info = rt; 5159 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); 5160 list_add_tail(&nh->next, rt6_nh_list); 5161 5162 return 0; 5163 } 5164 5165 static void ip6_route_mpath_notify(struct fib6_info *rt, 5166 struct fib6_info *rt_last, 5167 struct nl_info *info, 5168 __u16 nlflags) 5169 { 5170 /* if this is an APPEND route, then rt points to the first route 5171 * inserted and rt_last points to last route inserted. Userspace 5172 * wants a consistent dump of the route which starts at the first 5173 * nexthop. Since sibling routes are always added at the end of 5174 * the list, find the first sibling of the last route appended 5175 */ 5176 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { 5177 rt = list_first_entry(&rt_last->fib6_siblings, 5178 struct fib6_info, 5179 fib6_siblings); 5180 } 5181 5182 if (rt) 5183 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 5184 } 5185 5186 static bool ip6_route_mpath_should_notify(const struct fib6_info *rt) 5187 { 5188 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 5189 bool should_notify = false; 5190 struct fib6_info *leaf; 5191 struct fib6_node *fn; 5192 5193 rcu_read_lock(); 5194 fn = rcu_dereference(rt->fib6_node); 5195 if (!fn) 5196 goto out; 5197 5198 leaf = rcu_dereference(fn->leaf); 5199 if (!leaf) 5200 goto out; 5201 5202 if (rt == leaf || 5203 (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric && 5204 rt6_qualify_for_ecmp(leaf))) 5205 should_notify = true; 5206 out: 5207 rcu_read_unlock(); 5208 5209 return should_notify; 5210 } 5211 5212 static int fib6_gw_from_attr(struct in6_addr *gw, struct nlattr *nla, 5213 struct netlink_ext_ack *extack) 5214 { 5215 if (nla_len(nla) < sizeof(*gw)) { 5216 NL_SET_ERR_MSG(extack, "Invalid IPv6 address in RTA_GATEWAY"); 5217 return -EINVAL; 5218 } 5219 5220 *gw = nla_get_in6_addr(nla); 5221 5222 return 0; 5223 } 5224 5225 static int ip6_route_multipath_add(struct fib6_config *cfg, 5226 struct netlink_ext_ack *extack) 5227 { 5228 struct fib6_info *rt_notif = NULL, *rt_last = NULL; 5229 struct nl_info *info = &cfg->fc_nlinfo; 5230 struct fib6_config r_cfg; 5231 struct rtnexthop *rtnh; 5232 struct fib6_info *rt; 5233 struct rt6_nh *err_nh; 5234 struct rt6_nh *nh, *nh_safe; 5235 __u16 nlflags; 5236 int remaining; 5237 int attrlen; 5238 int err = 1; 5239 int nhn = 0; 5240 int replace = (cfg->fc_nlinfo.nlh && 5241 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); 5242 LIST_HEAD(rt6_nh_list); 5243 5244 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; 5245 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) 5246 nlflags |= NLM_F_APPEND; 5247 5248 remaining = cfg->fc_mp_len; 5249 rtnh = (struct rtnexthop *)cfg->fc_mp; 5250 5251 /* Parse a Multipath Entry and build a list (rt6_nh_list) of 5252 * fib6_info structs per nexthop 5253 */ 5254 while (rtnh_ok(rtnh, remaining)) { 5255 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5256 if (rtnh->rtnh_ifindex) 5257 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5258 5259 attrlen = rtnh_attrlen(rtnh); 5260 if (attrlen > 0) { 5261 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5262 5263 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5264 if (nla) { 5265 err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla, 5266 extack); 5267 if (err) 5268 goto cleanup; 5269 5270 r_cfg.fc_flags |= RTF_GATEWAY; 5271 } 5272 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); 5273 5274 /* RTA_ENCAP_TYPE length checked in 5275 * lwtunnel_valid_encap_type_attr 5276 */ 5277 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); 5278 if (nla) 5279 r_cfg.fc_encap_type = nla_get_u16(nla); 5280 } 5281 5282 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); 5283 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); 5284 if (IS_ERR(rt)) { 5285 err = PTR_ERR(rt); 5286 rt = NULL; 5287 goto cleanup; 5288 } 5289 if (!rt6_qualify_for_ecmp(rt)) { 5290 err = -EINVAL; 5291 NL_SET_ERR_MSG(extack, 5292 "Device only routes can not be added for IPv6 using the multipath API."); 5293 fib6_info_release(rt); 5294 goto cleanup; 5295 } 5296 5297 rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; 5298 5299 err = ip6_route_info_append(info->nl_net, &rt6_nh_list, 5300 rt, &r_cfg); 5301 if (err) { 5302 fib6_info_release(rt); 5303 goto cleanup; 5304 } 5305 5306 rtnh = rtnh_next(rtnh, &remaining); 5307 } 5308 5309 if (list_empty(&rt6_nh_list)) { 5310 NL_SET_ERR_MSG(extack, 5311 "Invalid nexthop configuration - no valid nexthops"); 5312 return -EINVAL; 5313 } 5314 5315 /* for add and replace send one notification with all nexthops. 5316 * Skip the notification in fib6_add_rt2node and send one with 5317 * the full route when done 5318 */ 5319 info->skip_notify = 1; 5320 5321 /* For add and replace, send one notification with all nexthops. For 5322 * append, send one notification with all appended nexthops. 5323 */ 5324 info->skip_notify_kernel = 1; 5325 5326 err_nh = NULL; 5327 list_for_each_entry(nh, &rt6_nh_list, next) { 5328 err = __ip6_ins_rt(nh->fib6_info, info, extack); 5329 fib6_info_release(nh->fib6_info); 5330 5331 if (!err) { 5332 /* save reference to last route successfully inserted */ 5333 rt_last = nh->fib6_info; 5334 5335 /* save reference to first route for notification */ 5336 if (!rt_notif) 5337 rt_notif = nh->fib6_info; 5338 } 5339 5340 /* nh->fib6_info is used or freed at this point, reset to NULL*/ 5341 nh->fib6_info = NULL; 5342 if (err) { 5343 if (replace && nhn) 5344 NL_SET_ERR_MSG_MOD(extack, 5345 "multipath route replace failed (check consistency of installed routes)"); 5346 err_nh = nh; 5347 goto add_errout; 5348 } 5349 5350 /* Because each route is added like a single route we remove 5351 * these flags after the first nexthop: if there is a collision, 5352 * we have already failed to add the first nexthop: 5353 * fib6_add_rt2node() has rejected it; when replacing, old 5354 * nexthops have been replaced by first new, the rest should 5355 * be added to it. 5356 */ 5357 if (cfg->fc_nlinfo.nlh) { 5358 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | 5359 NLM_F_REPLACE); 5360 cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE; 5361 } 5362 nhn++; 5363 } 5364 5365 /* An in-kernel notification should only be sent in case the new 5366 * multipath route is added as the first route in the node, or if 5367 * it was appended to it. We pass 'rt_notif' since it is the first 5368 * sibling and might allow us to skip some checks in the replace case. 5369 */ 5370 if (ip6_route_mpath_should_notify(rt_notif)) { 5371 enum fib_event_type fib_event; 5372 5373 if (rt_notif->fib6_nsiblings != nhn - 1) 5374 fib_event = FIB_EVENT_ENTRY_APPEND; 5375 else 5376 fib_event = FIB_EVENT_ENTRY_REPLACE; 5377 5378 err = call_fib6_multipath_entry_notifiers(info->nl_net, 5379 fib_event, rt_notif, 5380 nhn - 1, extack); 5381 if (err) { 5382 /* Delete all the siblings that were just added */ 5383 err_nh = NULL; 5384 goto add_errout; 5385 } 5386 } 5387 5388 /* success ... tell user about new route */ 5389 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5390 goto cleanup; 5391 5392 add_errout: 5393 /* send notification for routes that were added so that 5394 * the delete notifications sent by ip6_route_del are 5395 * coherent 5396 */ 5397 if (rt_notif) 5398 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); 5399 5400 /* Delete routes that were already added */ 5401 list_for_each_entry(nh, &rt6_nh_list, next) { 5402 if (err_nh == nh) 5403 break; 5404 ip6_route_del(&nh->r_cfg, extack); 5405 } 5406 5407 cleanup: 5408 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { 5409 if (nh->fib6_info) 5410 fib6_info_release(nh->fib6_info); 5411 list_del(&nh->next); 5412 kfree(nh); 5413 } 5414 5415 return err; 5416 } 5417 5418 static int ip6_route_multipath_del(struct fib6_config *cfg, 5419 struct netlink_ext_ack *extack) 5420 { 5421 struct fib6_config r_cfg; 5422 struct rtnexthop *rtnh; 5423 int last_err = 0; 5424 int remaining; 5425 int attrlen; 5426 int err; 5427 5428 remaining = cfg->fc_mp_len; 5429 rtnh = (struct rtnexthop *)cfg->fc_mp; 5430 5431 /* Parse a Multipath Entry */ 5432 while (rtnh_ok(rtnh, remaining)) { 5433 memcpy(&r_cfg, cfg, sizeof(*cfg)); 5434 if (rtnh->rtnh_ifindex) 5435 r_cfg.fc_ifindex = rtnh->rtnh_ifindex; 5436 5437 attrlen = rtnh_attrlen(rtnh); 5438 if (attrlen > 0) { 5439 struct nlattr *nla, *attrs = rtnh_attrs(rtnh); 5440 5441 nla = nla_find(attrs, attrlen, RTA_GATEWAY); 5442 if (nla) { 5443 err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla, 5444 extack); 5445 if (err) { 5446 last_err = err; 5447 goto next_rtnh; 5448 } 5449 5450 r_cfg.fc_flags |= RTF_GATEWAY; 5451 } 5452 } 5453 err = ip6_route_del(&r_cfg, extack); 5454 if (err) 5455 last_err = err; 5456 5457 next_rtnh: 5458 rtnh = rtnh_next(rtnh, &remaining); 5459 } 5460 5461 return last_err; 5462 } 5463 5464 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5465 struct netlink_ext_ack *extack) 5466 { 5467 struct fib6_config cfg; 5468 int err; 5469 5470 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5471 if (err < 0) 5472 return err; 5473 5474 if (cfg.fc_nh_id && 5475 !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) { 5476 NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); 5477 return -EINVAL; 5478 } 5479 5480 if (cfg.fc_mp) 5481 return ip6_route_multipath_del(&cfg, extack); 5482 else { 5483 cfg.fc_delete_all_nh = 1; 5484 return ip6_route_del(&cfg, extack); 5485 } 5486 } 5487 5488 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 5489 struct netlink_ext_ack *extack) 5490 { 5491 struct fib6_config cfg; 5492 int err; 5493 5494 err = rtm_to_fib6_config(skb, nlh, &cfg, extack); 5495 if (err < 0) 5496 return err; 5497 5498 if (cfg.fc_metric == 0) 5499 cfg.fc_metric = IP6_RT_PRIO_USER; 5500 5501 if (cfg.fc_mp) 5502 return ip6_route_multipath_add(&cfg, extack); 5503 else 5504 return ip6_route_add(&cfg, GFP_KERNEL, extack); 5505 } 5506 5507 /* add the overhead of this fib6_nh to nexthop_len */ 5508 static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) 5509 { 5510 int *nexthop_len = arg; 5511 5512 *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ 5513 + NLA_ALIGN(sizeof(struct rtnexthop)) 5514 + nla_total_size(16); /* RTA_GATEWAY */ 5515 5516 if (nh->fib_nh_lws) { 5517 /* RTA_ENCAP_TYPE */ 5518 *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5519 /* RTA_ENCAP */ 5520 *nexthop_len += nla_total_size(2); 5521 } 5522 5523 return 0; 5524 } 5525 5526 static size_t rt6_nlmsg_size(struct fib6_info *f6i) 5527 { 5528 int nexthop_len; 5529 5530 if (f6i->nh) { 5531 nexthop_len = nla_total_size(4); /* RTA_NH_ID */ 5532 nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, 5533 &nexthop_len); 5534 } else { 5535 struct fib6_info *sibling, *next_sibling; 5536 struct fib6_nh *nh = f6i->fib6_nh; 5537 5538 nexthop_len = 0; 5539 if (f6i->fib6_nsiblings) { 5540 rt6_nh_nlmsg_size(nh, &nexthop_len); 5541 5542 list_for_each_entry_safe(sibling, next_sibling, 5543 &f6i->fib6_siblings, fib6_siblings) { 5544 rt6_nh_nlmsg_size(sibling->fib6_nh, &nexthop_len); 5545 } 5546 } 5547 nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); 5548 } 5549 5550 return NLMSG_ALIGN(sizeof(struct rtmsg)) 5551 + nla_total_size(16) /* RTA_SRC */ 5552 + nla_total_size(16) /* RTA_DST */ 5553 + nla_total_size(16) /* RTA_GATEWAY */ 5554 + nla_total_size(16) /* RTA_PREFSRC */ 5555 + nla_total_size(4) /* RTA_TABLE */ 5556 + nla_total_size(4) /* RTA_IIF */ 5557 + nla_total_size(4) /* RTA_OIF */ 5558 + nla_total_size(4) /* RTA_PRIORITY */ 5559 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ 5560 + nla_total_size(sizeof(struct rta_cacheinfo)) 5561 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ 5562 + nla_total_size(1) /* RTA_PREF */ 5563 + nexthop_len; 5564 } 5565 5566 static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, 5567 unsigned char *flags) 5568 { 5569 if (nexthop_is_multipath(nh)) { 5570 struct nlattr *mp; 5571 5572 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5573 if (!mp) 5574 goto nla_put_failure; 5575 5576 if (nexthop_mpath_fill_node(skb, nh, AF_INET6)) 5577 goto nla_put_failure; 5578 5579 nla_nest_end(skb, mp); 5580 } else { 5581 struct fib6_nh *fib6_nh; 5582 5583 fib6_nh = nexthop_fib6_nh(nh); 5584 if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6, 5585 flags, false) < 0) 5586 goto nla_put_failure; 5587 } 5588 5589 return 0; 5590 5591 nla_put_failure: 5592 return -EMSGSIZE; 5593 } 5594 5595 static int rt6_fill_node(struct net *net, struct sk_buff *skb, 5596 struct fib6_info *rt, struct dst_entry *dst, 5597 struct in6_addr *dest, struct in6_addr *src, 5598 int iif, int type, u32 portid, u32 seq, 5599 unsigned int flags) 5600 { 5601 struct rt6_info *rt6 = (struct rt6_info *)dst; 5602 struct rt6key *rt6_dst, *rt6_src; 5603 u32 *pmetrics, table, rt6_flags; 5604 unsigned char nh_flags = 0; 5605 struct nlmsghdr *nlh; 5606 struct rtmsg *rtm; 5607 long expires = 0; 5608 5609 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); 5610 if (!nlh) 5611 return -EMSGSIZE; 5612 5613 if (rt6) { 5614 rt6_dst = &rt6->rt6i_dst; 5615 rt6_src = &rt6->rt6i_src; 5616 rt6_flags = rt6->rt6i_flags; 5617 } else { 5618 rt6_dst = &rt->fib6_dst; 5619 rt6_src = &rt->fib6_src; 5620 rt6_flags = rt->fib6_flags; 5621 } 5622 5623 rtm = nlmsg_data(nlh); 5624 rtm->rtm_family = AF_INET6; 5625 rtm->rtm_dst_len = rt6_dst->plen; 5626 rtm->rtm_src_len = rt6_src->plen; 5627 rtm->rtm_tos = 0; 5628 if (rt->fib6_table) 5629 table = rt->fib6_table->tb6_id; 5630 else 5631 table = RT6_TABLE_UNSPEC; 5632 rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; 5633 if (nla_put_u32(skb, RTA_TABLE, table)) 5634 goto nla_put_failure; 5635 5636 rtm->rtm_type = rt->fib6_type; 5637 rtm->rtm_flags = 0; 5638 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 5639 rtm->rtm_protocol = rt->fib6_protocol; 5640 5641 if (rt6_flags & RTF_CACHE) 5642 rtm->rtm_flags |= RTM_F_CLONED; 5643 5644 if (dest) { 5645 if (nla_put_in6_addr(skb, RTA_DST, dest)) 5646 goto nla_put_failure; 5647 rtm->rtm_dst_len = 128; 5648 } else if (rtm->rtm_dst_len) 5649 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) 5650 goto nla_put_failure; 5651 #ifdef CONFIG_IPV6_SUBTREES 5652 if (src) { 5653 if (nla_put_in6_addr(skb, RTA_SRC, src)) 5654 goto nla_put_failure; 5655 rtm->rtm_src_len = 128; 5656 } else if (rtm->rtm_src_len && 5657 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) 5658 goto nla_put_failure; 5659 #endif 5660 if (iif) { 5661 #ifdef CONFIG_IPV6_MROUTE 5662 if (ipv6_addr_is_multicast(&rt6_dst->addr)) { 5663 int err = ip6mr_get_route(net, skb, rtm, portid); 5664 5665 if (err == 0) 5666 return 0; 5667 if (err < 0) 5668 goto nla_put_failure; 5669 } else 5670 #endif 5671 if (nla_put_u32(skb, RTA_IIF, iif)) 5672 goto nla_put_failure; 5673 } else if (dest) { 5674 struct in6_addr saddr_buf; 5675 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && 5676 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5677 goto nla_put_failure; 5678 } 5679 5680 if (rt->fib6_prefsrc.plen) { 5681 struct in6_addr saddr_buf; 5682 saddr_buf = rt->fib6_prefsrc.addr; 5683 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) 5684 goto nla_put_failure; 5685 } 5686 5687 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; 5688 if (rtnetlink_put_metrics(skb, pmetrics) < 0) 5689 goto nla_put_failure; 5690 5691 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) 5692 goto nla_put_failure; 5693 5694 /* For multipath routes, walk the siblings list and add 5695 * each as a nexthop within RTA_MULTIPATH. 5696 */ 5697 if (rt6) { 5698 if (rt6_flags & RTF_GATEWAY && 5699 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) 5700 goto nla_put_failure; 5701 5702 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) 5703 goto nla_put_failure; 5704 5705 if (dst->lwtstate && 5706 lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0) 5707 goto nla_put_failure; 5708 } else if (rt->fib6_nsiblings) { 5709 struct fib6_info *sibling, *next_sibling; 5710 struct nlattr *mp; 5711 5712 mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); 5713 if (!mp) 5714 goto nla_put_failure; 5715 5716 if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, 5717 rt->fib6_nh->fib_nh_weight, AF_INET6, 5718 0) < 0) 5719 goto nla_put_failure; 5720 5721 list_for_each_entry_safe(sibling, next_sibling, 5722 &rt->fib6_siblings, fib6_siblings) { 5723 if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, 5724 sibling->fib6_nh->fib_nh_weight, 5725 AF_INET6, 0) < 0) 5726 goto nla_put_failure; 5727 } 5728 5729 nla_nest_end(skb, mp); 5730 } else if (rt->nh) { 5731 if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) 5732 goto nla_put_failure; 5733 5734 if (nexthop_is_blackhole(rt->nh)) 5735 rtm->rtm_type = RTN_BLACKHOLE; 5736 5737 if (READ_ONCE(net->ipv4.sysctl_nexthop_compat_mode) && 5738 rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) 5739 goto nla_put_failure; 5740 5741 rtm->rtm_flags |= nh_flags; 5742 } else { 5743 if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6, 5744 &nh_flags, false) < 0) 5745 goto nla_put_failure; 5746 5747 rtm->rtm_flags |= nh_flags; 5748 } 5749 5750 if (rt6_flags & RTF_EXPIRES) { 5751 expires = dst ? dst->expires : rt->expires; 5752 expires -= jiffies; 5753 } 5754 5755 if (!dst) { 5756 if (READ_ONCE(rt->offload)) 5757 rtm->rtm_flags |= RTM_F_OFFLOAD; 5758 if (READ_ONCE(rt->trap)) 5759 rtm->rtm_flags |= RTM_F_TRAP; 5760 if (READ_ONCE(rt->offload_failed)) 5761 rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED; 5762 } 5763 5764 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) 5765 goto nla_put_failure; 5766 5767 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) 5768 goto nla_put_failure; 5769 5770 5771 nlmsg_end(skb, nlh); 5772 return 0; 5773 5774 nla_put_failure: 5775 nlmsg_cancel(skb, nlh); 5776 return -EMSGSIZE; 5777 } 5778 5779 static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) 5780 { 5781 const struct net_device *dev = arg; 5782 5783 if (nh->fib_nh_dev == dev) 5784 return 1; 5785 5786 return 0; 5787 } 5788 5789 static bool fib6_info_uses_dev(const struct fib6_info *f6i, 5790 const struct net_device *dev) 5791 { 5792 if (f6i->nh) { 5793 struct net_device *_dev = (struct net_device *)dev; 5794 5795 return !!nexthop_for_each_fib6_nh(f6i->nh, 5796 fib6_info_nh_uses_dev, 5797 _dev); 5798 } 5799 5800 if (f6i->fib6_nh->fib_nh_dev == dev) 5801 return true; 5802 5803 if (f6i->fib6_nsiblings) { 5804 struct fib6_info *sibling, *next_sibling; 5805 5806 list_for_each_entry_safe(sibling, next_sibling, 5807 &f6i->fib6_siblings, fib6_siblings) { 5808 if (sibling->fib6_nh->fib_nh_dev == dev) 5809 return true; 5810 } 5811 } 5812 5813 return false; 5814 } 5815 5816 struct fib6_nh_exception_dump_walker { 5817 struct rt6_rtnl_dump_arg *dump; 5818 struct fib6_info *rt; 5819 unsigned int flags; 5820 unsigned int skip; 5821 unsigned int count; 5822 }; 5823 5824 static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg) 5825 { 5826 struct fib6_nh_exception_dump_walker *w = arg; 5827 struct rt6_rtnl_dump_arg *dump = w->dump; 5828 struct rt6_exception_bucket *bucket; 5829 struct rt6_exception *rt6_ex; 5830 int i, err; 5831 5832 bucket = fib6_nh_get_excptn_bucket(nh, NULL); 5833 if (!bucket) 5834 return 0; 5835 5836 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { 5837 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { 5838 if (w->skip) { 5839 w->skip--; 5840 continue; 5841 } 5842 5843 /* Expiration of entries doesn't bump sernum, insertion 5844 * does. Removal is triggered by insertion, so we can 5845 * rely on the fact that if entries change between two 5846 * partial dumps, this node is scanned again completely, 5847 * see rt6_insert_exception() and fib6_dump_table(). 5848 * 5849 * Count expired entries we go through as handled 5850 * entries that we'll skip next time, in case of partial 5851 * node dump. Otherwise, if entries expire meanwhile, 5852 * we'll skip the wrong amount. 5853 */ 5854 if (rt6_check_expired(rt6_ex->rt6i)) { 5855 w->count++; 5856 continue; 5857 } 5858 5859 err = rt6_fill_node(dump->net, dump->skb, w->rt, 5860 &rt6_ex->rt6i->dst, NULL, NULL, 0, 5861 RTM_NEWROUTE, 5862 NETLINK_CB(dump->cb->skb).portid, 5863 dump->cb->nlh->nlmsg_seq, w->flags); 5864 if (err) 5865 return err; 5866 5867 w->count++; 5868 } 5869 bucket++; 5870 } 5871 5872 return 0; 5873 } 5874 5875 /* Return -1 if done with node, number of handled routes on partial dump */ 5876 int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip) 5877 { 5878 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; 5879 struct fib_dump_filter *filter = &arg->filter; 5880 unsigned int flags = NLM_F_MULTI; 5881 struct net *net = arg->net; 5882 int count = 0; 5883 5884 if (rt == net->ipv6.fib6_null_entry) 5885 return -1; 5886 5887 if ((filter->flags & RTM_F_PREFIX) && 5888 !(rt->fib6_flags & RTF_PREFIX_RT)) { 5889 /* success since this is not a prefix route */ 5890 return -1; 5891 } 5892 if (filter->filter_set && 5893 ((filter->rt_type && rt->fib6_type != filter->rt_type) || 5894 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || 5895 (filter->protocol && rt->fib6_protocol != filter->protocol))) { 5896 return -1; 5897 } 5898 5899 if (filter->filter_set || 5900 !filter->dump_routes || !filter->dump_exceptions) { 5901 flags |= NLM_F_DUMP_FILTERED; 5902 } 5903 5904 if (filter->dump_routes) { 5905 if (skip) { 5906 skip--; 5907 } else { 5908 if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 5909 0, RTM_NEWROUTE, 5910 NETLINK_CB(arg->cb->skb).portid, 5911 arg->cb->nlh->nlmsg_seq, flags)) { 5912 return 0; 5913 } 5914 count++; 5915 } 5916 } 5917 5918 if (filter->dump_exceptions) { 5919 struct fib6_nh_exception_dump_walker w = { .dump = arg, 5920 .rt = rt, 5921 .flags = flags, 5922 .skip = skip, 5923 .count = 0 }; 5924 int err; 5925 5926 rcu_read_lock(); 5927 if (rt->nh) { 5928 err = nexthop_for_each_fib6_nh(rt->nh, 5929 rt6_nh_dump_exceptions, 5930 &w); 5931 } else { 5932 err = rt6_nh_dump_exceptions(rt->fib6_nh, &w); 5933 } 5934 rcu_read_unlock(); 5935 5936 if (err) 5937 return count + w.count; 5938 } 5939 5940 return -1; 5941 } 5942 5943 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, 5944 const struct nlmsghdr *nlh, 5945 struct nlattr **tb, 5946 struct netlink_ext_ack *extack) 5947 { 5948 struct rtmsg *rtm; 5949 int i, err; 5950 5951 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { 5952 NL_SET_ERR_MSG_MOD(extack, 5953 "Invalid header for get route request"); 5954 return -EINVAL; 5955 } 5956 5957 if (!netlink_strict_get_check(skb)) 5958 return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, 5959 rtm_ipv6_policy, extack); 5960 5961 rtm = nlmsg_data(nlh); 5962 if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || 5963 (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || 5964 rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || 5965 rtm->rtm_type) { 5966 NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); 5967 return -EINVAL; 5968 } 5969 if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { 5970 NL_SET_ERR_MSG_MOD(extack, 5971 "Invalid flags for get route request"); 5972 return -EINVAL; 5973 } 5974 5975 err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, 5976 rtm_ipv6_policy, extack); 5977 if (err) 5978 return err; 5979 5980 if ((tb[RTA_SRC] && !rtm->rtm_src_len) || 5981 (tb[RTA_DST] && !rtm->rtm_dst_len)) { 5982 NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); 5983 return -EINVAL; 5984 } 5985 5986 for (i = 0; i <= RTA_MAX; i++) { 5987 if (!tb[i]) 5988 continue; 5989 5990 switch (i) { 5991 case RTA_SRC: 5992 case RTA_DST: 5993 case RTA_IIF: 5994 case RTA_OIF: 5995 case RTA_MARK: 5996 case RTA_UID: 5997 case RTA_SPORT: 5998 case RTA_DPORT: 5999 case RTA_IP_PROTO: 6000 break; 6001 default: 6002 NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); 6003 return -EINVAL; 6004 } 6005 } 6006 6007 return 0; 6008 } 6009 6010 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, 6011 struct netlink_ext_ack *extack) 6012 { 6013 struct net *net = sock_net(in_skb->sk); 6014 struct nlattr *tb[RTA_MAX+1]; 6015 int err, iif = 0, oif = 0; 6016 struct fib6_info *from; 6017 struct dst_entry *dst; 6018 struct rt6_info *rt; 6019 struct sk_buff *skb; 6020 struct rtmsg *rtm; 6021 struct flowi6 fl6 = {}; 6022 bool fibmatch; 6023 6024 err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); 6025 if (err < 0) 6026 goto errout; 6027 6028 err = -EINVAL; 6029 rtm = nlmsg_data(nlh); 6030 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); 6031 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); 6032 6033 if (tb[RTA_SRC]) { 6034 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) 6035 goto errout; 6036 6037 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); 6038 } 6039 6040 if (tb[RTA_DST]) { 6041 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) 6042 goto errout; 6043 6044 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); 6045 } 6046 6047 if (tb[RTA_IIF]) 6048 iif = nla_get_u32(tb[RTA_IIF]); 6049 6050 if (tb[RTA_OIF]) 6051 oif = nla_get_u32(tb[RTA_OIF]); 6052 6053 if (tb[RTA_MARK]) 6054 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); 6055 6056 if (tb[RTA_UID]) 6057 fl6.flowi6_uid = make_kuid(current_user_ns(), 6058 nla_get_u32(tb[RTA_UID])); 6059 else 6060 fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); 6061 6062 if (tb[RTA_SPORT]) 6063 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); 6064 6065 if (tb[RTA_DPORT]) 6066 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); 6067 6068 if (tb[RTA_IP_PROTO]) { 6069 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], 6070 &fl6.flowi6_proto, AF_INET6, 6071 extack); 6072 if (err) 6073 goto errout; 6074 } 6075 6076 if (iif) { 6077 struct net_device *dev; 6078 int flags = 0; 6079 6080 rcu_read_lock(); 6081 6082 dev = dev_get_by_index_rcu(net, iif); 6083 if (!dev) { 6084 rcu_read_unlock(); 6085 err = -ENODEV; 6086 goto errout; 6087 } 6088 6089 fl6.flowi6_iif = iif; 6090 6091 if (!ipv6_addr_any(&fl6.saddr)) 6092 flags |= RT6_LOOKUP_F_HAS_SADDR; 6093 6094 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); 6095 6096 rcu_read_unlock(); 6097 } else { 6098 fl6.flowi6_oif = oif; 6099 6100 dst = ip6_route_output(net, NULL, &fl6); 6101 } 6102 6103 6104 rt = container_of(dst, struct rt6_info, dst); 6105 if (rt->dst.error) { 6106 err = rt->dst.error; 6107 ip6_rt_put(rt); 6108 goto errout; 6109 } 6110 6111 if (rt == net->ipv6.ip6_null_entry) { 6112 err = rt->dst.error; 6113 ip6_rt_put(rt); 6114 goto errout; 6115 } 6116 6117 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); 6118 if (!skb) { 6119 ip6_rt_put(rt); 6120 err = -ENOBUFS; 6121 goto errout; 6122 } 6123 6124 skb_dst_set(skb, &rt->dst); 6125 6126 rcu_read_lock(); 6127 from = rcu_dereference(rt->from); 6128 if (from) { 6129 if (fibmatch) 6130 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, 6131 iif, RTM_NEWROUTE, 6132 NETLINK_CB(in_skb).portid, 6133 nlh->nlmsg_seq, 0); 6134 else 6135 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, 6136 &fl6.saddr, iif, RTM_NEWROUTE, 6137 NETLINK_CB(in_skb).portid, 6138 nlh->nlmsg_seq, 0); 6139 } else { 6140 err = -ENETUNREACH; 6141 } 6142 rcu_read_unlock(); 6143 6144 if (err < 0) { 6145 kfree_skb(skb); 6146 goto errout; 6147 } 6148 6149 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); 6150 errout: 6151 return err; 6152 } 6153 6154 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, 6155 unsigned int nlm_flags) 6156 { 6157 struct sk_buff *skb; 6158 struct net *net = info->nl_net; 6159 u32 seq; 6160 int err; 6161 6162 err = -ENOBUFS; 6163 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6164 6165 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6166 if (!skb) 6167 goto errout; 6168 6169 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6170 event, info->portid, seq, nlm_flags); 6171 if (err < 0) { 6172 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6173 WARN_ON(err == -EMSGSIZE); 6174 kfree_skb(skb); 6175 goto errout; 6176 } 6177 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6178 info->nlh, gfp_any()); 6179 return; 6180 errout: 6181 if (err < 0) 6182 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6183 } 6184 6185 void fib6_rt_update(struct net *net, struct fib6_info *rt, 6186 struct nl_info *info) 6187 { 6188 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; 6189 struct sk_buff *skb; 6190 int err = -ENOBUFS; 6191 6192 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); 6193 if (!skb) 6194 goto errout; 6195 6196 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, 6197 RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); 6198 if (err < 0) { 6199 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6200 WARN_ON(err == -EMSGSIZE); 6201 kfree_skb(skb); 6202 goto errout; 6203 } 6204 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, 6205 info->nlh, gfp_any()); 6206 return; 6207 errout: 6208 if (err < 0) 6209 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6210 } 6211 6212 void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, 6213 bool offload, bool trap, bool offload_failed) 6214 { 6215 struct sk_buff *skb; 6216 int err; 6217 6218 if (READ_ONCE(f6i->offload) == offload && 6219 READ_ONCE(f6i->trap) == trap && 6220 READ_ONCE(f6i->offload_failed) == offload_failed) 6221 return; 6222 6223 WRITE_ONCE(f6i->offload, offload); 6224 WRITE_ONCE(f6i->trap, trap); 6225 6226 /* 2 means send notifications only if offload_failed was changed. */ 6227 if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 && 6228 READ_ONCE(f6i->offload_failed) == offload_failed) 6229 return; 6230 6231 WRITE_ONCE(f6i->offload_failed, offload_failed); 6232 6233 if (!rcu_access_pointer(f6i->fib6_node)) 6234 /* The route was removed from the tree, do not send 6235 * notification. 6236 */ 6237 return; 6238 6239 if (!net->ipv6.sysctl.fib_notify_on_flag_change) 6240 return; 6241 6242 skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL); 6243 if (!skb) { 6244 err = -ENOBUFS; 6245 goto errout; 6246 } 6247 6248 err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0, 6249 0, 0); 6250 if (err < 0) { 6251 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ 6252 WARN_ON(err == -EMSGSIZE); 6253 kfree_skb(skb); 6254 goto errout; 6255 } 6256 6257 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL); 6258 return; 6259 6260 errout: 6261 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); 6262 } 6263 EXPORT_SYMBOL(fib6_info_hw_flags_set); 6264 6265 static int ip6_route_dev_notify(struct notifier_block *this, 6266 unsigned long event, void *ptr) 6267 { 6268 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6269 struct net *net = dev_net(dev); 6270 6271 if (!(dev->flags & IFF_LOOPBACK)) 6272 return NOTIFY_OK; 6273 6274 if (event == NETDEV_REGISTER) { 6275 net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; 6276 net->ipv6.ip6_null_entry->dst.dev = dev; 6277 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); 6278 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6279 net->ipv6.ip6_prohibit_entry->dst.dev = dev; 6280 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); 6281 net->ipv6.ip6_blk_hole_entry->dst.dev = dev; 6282 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); 6283 #endif 6284 } else if (event == NETDEV_UNREGISTER && 6285 dev->reg_state != NETREG_UNREGISTERED) { 6286 /* NETDEV_UNREGISTER could be fired for multiple times by 6287 * netdev_wait_allrefs(). Make sure we only call this once. 6288 */ 6289 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); 6290 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6291 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); 6292 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); 6293 #endif 6294 } 6295 6296 return NOTIFY_OK; 6297 } 6298 6299 /* 6300 * /proc 6301 */ 6302 6303 #ifdef CONFIG_PROC_FS 6304 static int rt6_stats_seq_show(struct seq_file *seq, void *v) 6305 { 6306 struct net *net = (struct net *)seq->private; 6307 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", 6308 net->ipv6.rt6_stats->fib_nodes, 6309 net->ipv6.rt6_stats->fib_route_nodes, 6310 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), 6311 net->ipv6.rt6_stats->fib_rt_entries, 6312 net->ipv6.rt6_stats->fib_rt_cache, 6313 dst_entries_get_slow(&net->ipv6.ip6_dst_ops), 6314 net->ipv6.rt6_stats->fib_discarded_routes); 6315 6316 return 0; 6317 } 6318 #endif /* CONFIG_PROC_FS */ 6319 6320 #ifdef CONFIG_SYSCTL 6321 6322 static int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, 6323 void *buffer, size_t *lenp, loff_t *ppos) 6324 { 6325 struct net *net; 6326 int delay; 6327 int ret; 6328 if (!write) 6329 return -EINVAL; 6330 6331 net = (struct net *)ctl->extra1; 6332 delay = net->ipv6.sysctl.flush_delay; 6333 ret = proc_dointvec(ctl, write, buffer, lenp, ppos); 6334 if (ret) 6335 return ret; 6336 6337 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); 6338 return 0; 6339 } 6340 6341 static struct ctl_table ipv6_route_table_template[] = { 6342 { 6343 .procname = "max_size", 6344 .data = &init_net.ipv6.sysctl.ip6_rt_max_size, 6345 .maxlen = sizeof(int), 6346 .mode = 0644, 6347 .proc_handler = proc_dointvec, 6348 }, 6349 { 6350 .procname = "gc_thresh", 6351 .data = &ip6_dst_ops_template.gc_thresh, 6352 .maxlen = sizeof(int), 6353 .mode = 0644, 6354 .proc_handler = proc_dointvec, 6355 }, 6356 { 6357 .procname = "flush", 6358 .data = &init_net.ipv6.sysctl.flush_delay, 6359 .maxlen = sizeof(int), 6360 .mode = 0200, 6361 .proc_handler = ipv6_sysctl_rtcache_flush 6362 }, 6363 { 6364 .procname = "gc_min_interval", 6365 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6366 .maxlen = sizeof(int), 6367 .mode = 0644, 6368 .proc_handler = proc_dointvec_jiffies, 6369 }, 6370 { 6371 .procname = "gc_timeout", 6372 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, 6373 .maxlen = sizeof(int), 6374 .mode = 0644, 6375 .proc_handler = proc_dointvec_jiffies, 6376 }, 6377 { 6378 .procname = "gc_interval", 6379 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, 6380 .maxlen = sizeof(int), 6381 .mode = 0644, 6382 .proc_handler = proc_dointvec_jiffies, 6383 }, 6384 { 6385 .procname = "gc_elasticity", 6386 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, 6387 .maxlen = sizeof(int), 6388 .mode = 0644, 6389 .proc_handler = proc_dointvec, 6390 }, 6391 { 6392 .procname = "mtu_expires", 6393 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, 6394 .maxlen = sizeof(int), 6395 .mode = 0644, 6396 .proc_handler = proc_dointvec_jiffies, 6397 }, 6398 { 6399 .procname = "min_adv_mss", 6400 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, 6401 .maxlen = sizeof(int), 6402 .mode = 0644, 6403 .proc_handler = proc_dointvec, 6404 }, 6405 { 6406 .procname = "gc_min_interval_ms", 6407 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, 6408 .maxlen = sizeof(int), 6409 .mode = 0644, 6410 .proc_handler = proc_dointvec_ms_jiffies, 6411 }, 6412 { 6413 .procname = "skip_notify_on_dev_down", 6414 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, 6415 .maxlen = sizeof(u8), 6416 .mode = 0644, 6417 .proc_handler = proc_dou8vec_minmax, 6418 .extra1 = SYSCTL_ZERO, 6419 .extra2 = SYSCTL_ONE, 6420 }, 6421 { } 6422 }; 6423 6424 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) 6425 { 6426 struct ctl_table *table; 6427 6428 table = kmemdup(ipv6_route_table_template, 6429 sizeof(ipv6_route_table_template), 6430 GFP_KERNEL); 6431 6432 if (table) { 6433 table[0].data = &net->ipv6.sysctl.ip6_rt_max_size; 6434 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; 6435 table[2].data = &net->ipv6.sysctl.flush_delay; 6436 table[2].extra1 = net; 6437 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6438 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; 6439 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; 6440 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; 6441 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; 6442 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; 6443 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; 6444 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; 6445 6446 /* Don't export sysctls to unprivileged users */ 6447 if (net->user_ns != &init_user_ns) 6448 table[1].procname = NULL; 6449 } 6450 6451 return table; 6452 } 6453 #endif 6454 6455 static int __net_init ip6_route_net_init(struct net *net) 6456 { 6457 int ret = -ENOMEM; 6458 6459 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, 6460 sizeof(net->ipv6.ip6_dst_ops)); 6461 6462 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) 6463 goto out_ip6_dst_ops; 6464 6465 net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); 6466 if (!net->ipv6.fib6_null_entry) 6467 goto out_ip6_dst_entries; 6468 memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, 6469 sizeof(*net->ipv6.fib6_null_entry)); 6470 6471 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, 6472 sizeof(*net->ipv6.ip6_null_entry), 6473 GFP_KERNEL); 6474 if (!net->ipv6.ip6_null_entry) 6475 goto out_fib6_null_entry; 6476 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6477 dst_init_metrics(&net->ipv6.ip6_null_entry->dst, 6478 ip6_template_metrics, true); 6479 INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->dst.rt_uncached); 6480 6481 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6482 net->ipv6.fib6_has_custom_rules = false; 6483 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, 6484 sizeof(*net->ipv6.ip6_prohibit_entry), 6485 GFP_KERNEL); 6486 if (!net->ipv6.ip6_prohibit_entry) 6487 goto out_ip6_null_entry; 6488 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6489 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, 6490 ip6_template_metrics, true); 6491 INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->dst.rt_uncached); 6492 6493 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, 6494 sizeof(*net->ipv6.ip6_blk_hole_entry), 6495 GFP_KERNEL); 6496 if (!net->ipv6.ip6_blk_hole_entry) 6497 goto out_ip6_prohibit_entry; 6498 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; 6499 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, 6500 ip6_template_metrics, true); 6501 INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->dst.rt_uncached); 6502 #ifdef CONFIG_IPV6_SUBTREES 6503 net->ipv6.fib6_routes_require_src = 0; 6504 #endif 6505 #endif 6506 6507 net->ipv6.sysctl.flush_delay = 0; 6508 net->ipv6.sysctl.ip6_rt_max_size = INT_MAX; 6509 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; 6510 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; 6511 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; 6512 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; 6513 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; 6514 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; 6515 net->ipv6.sysctl.skip_notify_on_dev_down = 0; 6516 6517 atomic_set(&net->ipv6.ip6_rt_gc_expire, 30*HZ); 6518 6519 ret = 0; 6520 out: 6521 return ret; 6522 6523 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6524 out_ip6_prohibit_entry: 6525 kfree(net->ipv6.ip6_prohibit_entry); 6526 out_ip6_null_entry: 6527 kfree(net->ipv6.ip6_null_entry); 6528 #endif 6529 out_fib6_null_entry: 6530 kfree(net->ipv6.fib6_null_entry); 6531 out_ip6_dst_entries: 6532 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6533 out_ip6_dst_ops: 6534 goto out; 6535 } 6536 6537 static void __net_exit ip6_route_net_exit(struct net *net) 6538 { 6539 kfree(net->ipv6.fib6_null_entry); 6540 kfree(net->ipv6.ip6_null_entry); 6541 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6542 kfree(net->ipv6.ip6_prohibit_entry); 6543 kfree(net->ipv6.ip6_blk_hole_entry); 6544 #endif 6545 dst_entries_destroy(&net->ipv6.ip6_dst_ops); 6546 } 6547 6548 static int __net_init ip6_route_net_init_late(struct net *net) 6549 { 6550 #ifdef CONFIG_PROC_FS 6551 if (!proc_create_net("ipv6_route", 0, net->proc_net, 6552 &ipv6_route_seq_ops, 6553 sizeof(struct ipv6_route_iter))) 6554 return -ENOMEM; 6555 6556 if (!proc_create_net_single("rt6_stats", 0444, net->proc_net, 6557 rt6_stats_seq_show, NULL)) { 6558 remove_proc_entry("ipv6_route", net->proc_net); 6559 return -ENOMEM; 6560 } 6561 #endif 6562 return 0; 6563 } 6564 6565 static void __net_exit ip6_route_net_exit_late(struct net *net) 6566 { 6567 #ifdef CONFIG_PROC_FS 6568 remove_proc_entry("ipv6_route", net->proc_net); 6569 remove_proc_entry("rt6_stats", net->proc_net); 6570 #endif 6571 } 6572 6573 static struct pernet_operations ip6_route_net_ops = { 6574 .init = ip6_route_net_init, 6575 .exit = ip6_route_net_exit, 6576 }; 6577 6578 static int __net_init ipv6_inetpeer_init(struct net *net) 6579 { 6580 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); 6581 6582 if (!bp) 6583 return -ENOMEM; 6584 inet_peer_base_init(bp); 6585 net->ipv6.peers = bp; 6586 return 0; 6587 } 6588 6589 static void __net_exit ipv6_inetpeer_exit(struct net *net) 6590 { 6591 struct inet_peer_base *bp = net->ipv6.peers; 6592 6593 net->ipv6.peers = NULL; 6594 inetpeer_invalidate_tree(bp); 6595 kfree(bp); 6596 } 6597 6598 static struct pernet_operations ipv6_inetpeer_ops = { 6599 .init = ipv6_inetpeer_init, 6600 .exit = ipv6_inetpeer_exit, 6601 }; 6602 6603 static struct pernet_operations ip6_route_net_late_ops = { 6604 .init = ip6_route_net_init_late, 6605 .exit = ip6_route_net_exit_late, 6606 }; 6607 6608 static struct notifier_block ip6_route_dev_notifier = { 6609 .notifier_call = ip6_route_dev_notify, 6610 .priority = ADDRCONF_NOTIFY_PRIORITY - 10, 6611 }; 6612 6613 void __init ip6_route_init_special_entries(void) 6614 { 6615 /* Registering of the loopback is done before this portion of code, 6616 * the loopback reference in rt6_info will not be taken, do it 6617 * manually for init_net */ 6618 init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; 6619 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; 6620 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6621 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 6622 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; 6623 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6624 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; 6625 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); 6626 #endif 6627 } 6628 6629 #if IS_BUILTIN(CONFIG_IPV6) 6630 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6631 DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt) 6632 6633 BTF_ID_LIST(btf_fib6_info_id) 6634 BTF_ID(struct, fib6_info) 6635 6636 static const struct bpf_iter_seq_info ipv6_route_seq_info = { 6637 .seq_ops = &ipv6_route_seq_ops, 6638 .init_seq_private = bpf_iter_init_seq_net, 6639 .fini_seq_private = bpf_iter_fini_seq_net, 6640 .seq_priv_size = sizeof(struct ipv6_route_iter), 6641 }; 6642 6643 static struct bpf_iter_reg ipv6_route_reg_info = { 6644 .target = "ipv6_route", 6645 .ctx_arg_info_size = 1, 6646 .ctx_arg_info = { 6647 { offsetof(struct bpf_iter__ipv6_route, rt), 6648 PTR_TO_BTF_ID_OR_NULL }, 6649 }, 6650 .seq_info = &ipv6_route_seq_info, 6651 }; 6652 6653 static int __init bpf_iter_register(void) 6654 { 6655 ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id; 6656 return bpf_iter_reg_target(&ipv6_route_reg_info); 6657 } 6658 6659 static void bpf_iter_unregister(void) 6660 { 6661 bpf_iter_unreg_target(&ipv6_route_reg_info); 6662 } 6663 #endif 6664 #endif 6665 6666 int __init ip6_route_init(void) 6667 { 6668 int ret; 6669 int cpu; 6670 6671 ret = -ENOMEM; 6672 ip6_dst_ops_template.kmem_cachep = 6673 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, 6674 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); 6675 if (!ip6_dst_ops_template.kmem_cachep) 6676 goto out; 6677 6678 ret = dst_entries_init(&ip6_dst_blackhole_ops); 6679 if (ret) 6680 goto out_kmem_cache; 6681 6682 ret = register_pernet_subsys(&ipv6_inetpeer_ops); 6683 if (ret) 6684 goto out_dst_entries; 6685 6686 ret = register_pernet_subsys(&ip6_route_net_ops); 6687 if (ret) 6688 goto out_register_inetpeer; 6689 6690 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; 6691 6692 ret = fib6_init(); 6693 if (ret) 6694 goto out_register_subsys; 6695 6696 ret = xfrm6_init(); 6697 if (ret) 6698 goto out_fib6_init; 6699 6700 ret = fib6_rules_init(); 6701 if (ret) 6702 goto xfrm6_init; 6703 6704 ret = register_pernet_subsys(&ip6_route_net_late_ops); 6705 if (ret) 6706 goto fib6_rules_init; 6707 6708 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, 6709 inet6_rtm_newroute, NULL, 0); 6710 if (ret < 0) 6711 goto out_register_late_subsys; 6712 6713 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, 6714 inet6_rtm_delroute, NULL, 0); 6715 if (ret < 0) 6716 goto out_register_late_subsys; 6717 6718 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, 6719 inet6_rtm_getroute, NULL, 6720 RTNL_FLAG_DOIT_UNLOCKED); 6721 if (ret < 0) 6722 goto out_register_late_subsys; 6723 6724 ret = register_netdevice_notifier(&ip6_route_dev_notifier); 6725 if (ret) 6726 goto out_register_late_subsys; 6727 6728 #if IS_BUILTIN(CONFIG_IPV6) 6729 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6730 ret = bpf_iter_register(); 6731 if (ret) 6732 goto out_register_late_subsys; 6733 #endif 6734 #endif 6735 6736 for_each_possible_cpu(cpu) { 6737 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); 6738 6739 INIT_LIST_HEAD(&ul->head); 6740 INIT_LIST_HEAD(&ul->quarantine); 6741 spin_lock_init(&ul->lock); 6742 } 6743 6744 out: 6745 return ret; 6746 6747 out_register_late_subsys: 6748 rtnl_unregister_all(PF_INET6); 6749 unregister_pernet_subsys(&ip6_route_net_late_ops); 6750 fib6_rules_init: 6751 fib6_rules_cleanup(); 6752 xfrm6_init: 6753 xfrm6_fini(); 6754 out_fib6_init: 6755 fib6_gc_cleanup(); 6756 out_register_subsys: 6757 unregister_pernet_subsys(&ip6_route_net_ops); 6758 out_register_inetpeer: 6759 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6760 out_dst_entries: 6761 dst_entries_destroy(&ip6_dst_blackhole_ops); 6762 out_kmem_cache: 6763 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6764 goto out; 6765 } 6766 6767 void ip6_route_cleanup(void) 6768 { 6769 #if IS_BUILTIN(CONFIG_IPV6) 6770 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 6771 bpf_iter_unregister(); 6772 #endif 6773 #endif 6774 unregister_netdevice_notifier(&ip6_route_dev_notifier); 6775 unregister_pernet_subsys(&ip6_route_net_late_ops); 6776 fib6_rules_cleanup(); 6777 xfrm6_fini(); 6778 fib6_gc_cleanup(); 6779 unregister_pernet_subsys(&ipv6_inetpeer_ops); 6780 unregister_pernet_subsys(&ip6_route_net_ops); 6781 dst_entries_destroy(&ip6_dst_blackhole_ops); 6782 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); 6783 } 6784