xref: /openbmc/linux/net/ipv6/route.c (revision 51f6b410)
1 /*
2  *	Linux INET6 implementation
3  *	FIB front-end.
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*	Changes:
15  *
16  *	YOSHIFUJI Hideaki @USAGI
17  *		reworked default router selection.
18  *		- respect outgoing interface
19  *		- select from (probably) reachable routers (i.e.
20  *		routers in REACHABLE, STALE, DELAY or PROBE states).
21  *		- always select the same router if it is (probably)
22  *		reachable.  otherwise, round-robin the list.
23  *	Ville Nuorvala
24  *		Fixed routing subtrees.
25  */
26 
27 #define pr_fmt(fmt) "IPv6: " fmt
28 
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/types.h>
33 #include <linux/times.h>
34 #include <linux/socket.h>
35 #include <linux/sockios.h>
36 #include <linux/net.h>
37 #include <linux/route.h>
38 #include <linux/netdevice.h>
39 #include <linux/in6.h>
40 #include <linux/mroute6.h>
41 #include <linux/init.h>
42 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/nsproxy.h>
46 #include <linux/slab.h>
47 #include <linux/jhash.h>
48 #include <net/net_namespace.h>
49 #include <net/snmp.h>
50 #include <net/ipv6.h>
51 #include <net/ip6_fib.h>
52 #include <net/ip6_route.h>
53 #include <net/ndisc.h>
54 #include <net/addrconf.h>
55 #include <net/tcp.h>
56 #include <linux/rtnetlink.h>
57 #include <net/dst.h>
58 #include <net/dst_metadata.h>
59 #include <net/xfrm.h>
60 #include <net/netevent.h>
61 #include <net/netlink.h>
62 #include <net/nexthop.h>
63 #include <net/lwtunnel.h>
64 #include <net/ip_tunnels.h>
65 #include <net/l3mdev.h>
66 #include <net/ip.h>
67 #include <linux/uaccess.h>
68 
69 #ifdef CONFIG_SYSCTL
70 #include <linux/sysctl.h>
71 #endif
72 
73 static int ip6_rt_type_to_error(u8 fib6_type);
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/fib6.h>
77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
78 #undef CREATE_TRACE_POINTS
79 
80 enum rt6_nud_state {
81 	RT6_NUD_FAIL_HARD = -3,
82 	RT6_NUD_FAIL_PROBE = -2,
83 	RT6_NUD_FAIL_DO_RR = -1,
84 	RT6_NUD_SUCCEED = 1
85 };
86 
87 static struct dst_entry	*ip6_dst_check(struct dst_entry *dst, u32 cookie);
88 static unsigned int	 ip6_default_advmss(const struct dst_entry *dst);
89 static unsigned int	 ip6_mtu(const struct dst_entry *dst);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void		ip6_dst_destroy(struct dst_entry *);
92 static void		ip6_dst_ifdown(struct dst_entry *,
93 				       struct net_device *dev, int how);
94 static int		 ip6_dst_gc(struct dst_ops *ops);
95 
96 static int		ip6_pkt_discard(struct sk_buff *skb);
97 static int		ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
98 static int		ip6_pkt_prohibit(struct sk_buff *skb);
99 static int		ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
100 static void		ip6_link_failure(struct sk_buff *skb);
101 static void		ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
102 					   struct sk_buff *skb, u32 mtu);
103 static void		rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
104 					struct sk_buff *skb);
105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict);
106 static size_t rt6_nlmsg_size(struct fib6_info *rt);
107 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
108 			 struct fib6_info *rt, struct dst_entry *dst,
109 			 struct in6_addr *dest, struct in6_addr *src,
110 			 int iif, int type, u32 portid, u32 seq,
111 			 unsigned int flags);
112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
113 					   struct in6_addr *daddr,
114 					   struct in6_addr *saddr);
115 
116 #ifdef CONFIG_IPV6_ROUTE_INFO
117 static struct fib6_info *rt6_add_route_info(struct net *net,
118 					   const struct in6_addr *prefix, int prefixlen,
119 					   const struct in6_addr *gwaddr,
120 					   struct net_device *dev,
121 					   unsigned int pref);
122 static struct fib6_info *rt6_get_route_info(struct net *net,
123 					   const struct in6_addr *prefix, int prefixlen,
124 					   const struct in6_addr *gwaddr,
125 					   struct net_device *dev);
126 #endif
127 
128 struct uncached_list {
129 	spinlock_t		lock;
130 	struct list_head	head;
131 };
132 
133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
134 
135 void rt6_uncached_list_add(struct rt6_info *rt)
136 {
137 	struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
138 
139 	rt->rt6i_uncached_list = ul;
140 
141 	spin_lock_bh(&ul->lock);
142 	list_add_tail(&rt->rt6i_uncached, &ul->head);
143 	spin_unlock_bh(&ul->lock);
144 }
145 
146 void rt6_uncached_list_del(struct rt6_info *rt)
147 {
148 	if (!list_empty(&rt->rt6i_uncached)) {
149 		struct uncached_list *ul = rt->rt6i_uncached_list;
150 		struct net *net = dev_net(rt->dst.dev);
151 
152 		spin_lock_bh(&ul->lock);
153 		list_del(&rt->rt6i_uncached);
154 		atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache);
155 		spin_unlock_bh(&ul->lock);
156 	}
157 }
158 
159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev)
160 {
161 	struct net_device *loopback_dev = net->loopback_dev;
162 	int cpu;
163 
164 	if (dev == loopback_dev)
165 		return;
166 
167 	for_each_possible_cpu(cpu) {
168 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
169 		struct rt6_info *rt;
170 
171 		spin_lock_bh(&ul->lock);
172 		list_for_each_entry(rt, &ul->head, rt6i_uncached) {
173 			struct inet6_dev *rt_idev = rt->rt6i_idev;
174 			struct net_device *rt_dev = rt->dst.dev;
175 
176 			if (rt_idev->dev == dev) {
177 				rt->rt6i_idev = in6_dev_get(loopback_dev);
178 				in6_dev_put(rt_idev);
179 			}
180 
181 			if (rt_dev == dev) {
182 				rt->dst.dev = loopback_dev;
183 				dev_hold(rt->dst.dev);
184 				dev_put(rt_dev);
185 			}
186 		}
187 		spin_unlock_bh(&ul->lock);
188 	}
189 }
190 
191 static inline const void *choose_neigh_daddr(const struct in6_addr *p,
192 					     struct sk_buff *skb,
193 					     const void *daddr)
194 {
195 	if (!ipv6_addr_any(p))
196 		return (const void *) p;
197 	else if (skb)
198 		return &ipv6_hdr(skb)->daddr;
199 	return daddr;
200 }
201 
202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
203 				   struct net_device *dev,
204 				   struct sk_buff *skb,
205 				   const void *daddr)
206 {
207 	struct neighbour *n;
208 
209 	daddr = choose_neigh_daddr(gw, skb, daddr);
210 	n = __ipv6_neigh_lookup(dev, daddr);
211 	if (n)
212 		return n;
213 	return neigh_create(&nd_tbl, daddr, dev);
214 }
215 
216 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
217 					      struct sk_buff *skb,
218 					      const void *daddr)
219 {
220 	const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
221 
222 	return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr);
223 }
224 
225 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
226 {
227 	struct net_device *dev = dst->dev;
228 	struct rt6_info *rt = (struct rt6_info *)dst;
229 
230 	daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr);
231 	if (!daddr)
232 		return;
233 	if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
234 		return;
235 	if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
236 		return;
237 	__ipv6_confirm_neigh(dev, daddr);
238 }
239 
240 static struct dst_ops ip6_dst_ops_template = {
241 	.family			=	AF_INET6,
242 	.gc			=	ip6_dst_gc,
243 	.gc_thresh		=	1024,
244 	.check			=	ip6_dst_check,
245 	.default_advmss		=	ip6_default_advmss,
246 	.mtu			=	ip6_mtu,
247 	.cow_metrics		=	dst_cow_metrics_generic,
248 	.destroy		=	ip6_dst_destroy,
249 	.ifdown			=	ip6_dst_ifdown,
250 	.negative_advice	=	ip6_negative_advice,
251 	.link_failure		=	ip6_link_failure,
252 	.update_pmtu		=	ip6_rt_update_pmtu,
253 	.redirect		=	rt6_do_redirect,
254 	.local_out		=	__ip6_local_out,
255 	.neigh_lookup		=	ip6_dst_neigh_lookup,
256 	.confirm_neigh		=	ip6_confirm_neigh,
257 };
258 
259 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst)
260 {
261 	unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
262 
263 	return mtu ? : dst->dev->mtu;
264 }
265 
266 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk,
267 					 struct sk_buff *skb, u32 mtu)
268 {
269 }
270 
271 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk,
272 				      struct sk_buff *skb)
273 {
274 }
275 
276 static struct dst_ops ip6_dst_blackhole_ops = {
277 	.family			=	AF_INET6,
278 	.destroy		=	ip6_dst_destroy,
279 	.check			=	ip6_dst_check,
280 	.mtu			=	ip6_blackhole_mtu,
281 	.default_advmss		=	ip6_default_advmss,
282 	.update_pmtu		=	ip6_rt_blackhole_update_pmtu,
283 	.redirect		=	ip6_rt_blackhole_redirect,
284 	.cow_metrics		=	dst_cow_metrics_generic,
285 	.neigh_lookup		=	ip6_dst_neigh_lookup,
286 };
287 
288 static const u32 ip6_template_metrics[RTAX_MAX] = {
289 	[RTAX_HOPLIMIT - 1] = 0,
290 };
291 
292 static const struct fib6_info fib6_null_entry_template = {
293 	.fib6_flags	= (RTF_REJECT | RTF_NONEXTHOP),
294 	.fib6_protocol  = RTPROT_KERNEL,
295 	.fib6_metric	= ~(u32)0,
296 	.fib6_ref	= ATOMIC_INIT(1),
297 	.fib6_type	= RTN_UNREACHABLE,
298 	.fib6_metrics	= (struct dst_metrics *)&dst_default_metrics,
299 };
300 
301 static const struct rt6_info ip6_null_entry_template = {
302 	.dst = {
303 		.__refcnt	= ATOMIC_INIT(1),
304 		.__use		= 1,
305 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
306 		.error		= -ENETUNREACH,
307 		.input		= ip6_pkt_discard,
308 		.output		= ip6_pkt_discard_out,
309 	},
310 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
311 };
312 
313 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
314 
315 static const struct rt6_info ip6_prohibit_entry_template = {
316 	.dst = {
317 		.__refcnt	= ATOMIC_INIT(1),
318 		.__use		= 1,
319 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
320 		.error		= -EACCES,
321 		.input		= ip6_pkt_prohibit,
322 		.output		= ip6_pkt_prohibit_out,
323 	},
324 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
325 };
326 
327 static const struct rt6_info ip6_blk_hole_entry_template = {
328 	.dst = {
329 		.__refcnt	= ATOMIC_INIT(1),
330 		.__use		= 1,
331 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
332 		.error		= -EINVAL,
333 		.input		= dst_discard,
334 		.output		= dst_discard_out,
335 	},
336 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
337 };
338 
339 #endif
340 
341 static void rt6_info_init(struct rt6_info *rt)
342 {
343 	struct dst_entry *dst = &rt->dst;
344 
345 	memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst));
346 	INIT_LIST_HEAD(&rt->rt6i_uncached);
347 }
348 
349 /* allocate dst with ip6_dst_ops */
350 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
351 			       int flags)
352 {
353 	struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
354 					1, DST_OBSOLETE_FORCE_CHK, flags);
355 
356 	if (rt) {
357 		rt6_info_init(rt);
358 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
359 	}
360 
361 	return rt;
362 }
363 EXPORT_SYMBOL(ip6_dst_alloc);
364 
365 static void ip6_dst_destroy(struct dst_entry *dst)
366 {
367 	struct rt6_info *rt = (struct rt6_info *)dst;
368 	struct fib6_info *from;
369 	struct inet6_dev *idev;
370 
371 	ip_dst_metrics_put(dst);
372 	rt6_uncached_list_del(rt);
373 
374 	idev = rt->rt6i_idev;
375 	if (idev) {
376 		rt->rt6i_idev = NULL;
377 		in6_dev_put(idev);
378 	}
379 
380 	rcu_read_lock();
381 	from = rcu_dereference(rt->from);
382 	rcu_assign_pointer(rt->from, NULL);
383 	fib6_info_release(from);
384 	rcu_read_unlock();
385 }
386 
387 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
388 			   int how)
389 {
390 	struct rt6_info *rt = (struct rt6_info *)dst;
391 	struct inet6_dev *idev = rt->rt6i_idev;
392 	struct net_device *loopback_dev =
393 		dev_net(dev)->loopback_dev;
394 
395 	if (idev && idev->dev != loopback_dev) {
396 		struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev);
397 		if (loopback_idev) {
398 			rt->rt6i_idev = loopback_idev;
399 			in6_dev_put(idev);
400 		}
401 	}
402 }
403 
404 static bool __rt6_check_expired(const struct rt6_info *rt)
405 {
406 	if (rt->rt6i_flags & RTF_EXPIRES)
407 		return time_after(jiffies, rt->dst.expires);
408 	else
409 		return false;
410 }
411 
412 static bool rt6_check_expired(const struct rt6_info *rt)
413 {
414 	struct fib6_info *from;
415 
416 	from = rcu_dereference(rt->from);
417 
418 	if (rt->rt6i_flags & RTF_EXPIRES) {
419 		if (time_after(jiffies, rt->dst.expires))
420 			return true;
421 	} else if (from) {
422 		return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
423 			fib6_check_expired(from);
424 	}
425 	return false;
426 }
427 
428 struct fib6_info *fib6_multipath_select(const struct net *net,
429 					struct fib6_info *match,
430 					struct flowi6 *fl6, int oif,
431 					const struct sk_buff *skb,
432 					int strict)
433 {
434 	struct fib6_info *sibling, *next_sibling;
435 
436 	/* We might have already computed the hash for ICMPv6 errors. In such
437 	 * case it will always be non-zero. Otherwise now is the time to do it.
438 	 */
439 	if (!fl6->mp_hash)
440 		fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
441 
442 	if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound))
443 		return match;
444 
445 	list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
446 				 fib6_siblings) {
447 		int nh_upper_bound;
448 
449 		nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound);
450 		if (fl6->mp_hash > nh_upper_bound)
451 			continue;
452 		if (rt6_score_route(sibling, oif, strict) < 0)
453 			break;
454 		match = sibling;
455 		break;
456 	}
457 
458 	return match;
459 }
460 
461 /*
462  *	Route lookup. rcu_read_lock() should be held.
463  */
464 
465 static inline struct fib6_info *rt6_device_match(struct net *net,
466 						 struct fib6_info *rt,
467 						    const struct in6_addr *saddr,
468 						    int oif,
469 						    int flags)
470 {
471 	struct fib6_info *sprt;
472 
473 	if (!oif && ipv6_addr_any(saddr) &&
474 	    !(rt->fib6_nh.nh_flags & RTNH_F_DEAD))
475 		return rt;
476 
477 	for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) {
478 		const struct net_device *dev = sprt->fib6_nh.nh_dev;
479 
480 		if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD)
481 			continue;
482 
483 		if (oif) {
484 			if (dev->ifindex == oif)
485 				return sprt;
486 		} else {
487 			if (ipv6_chk_addr(net, saddr, dev,
488 					  flags & RT6_LOOKUP_F_IFACE))
489 				return sprt;
490 		}
491 	}
492 
493 	if (oif && flags & RT6_LOOKUP_F_IFACE)
494 		return net->ipv6.fib6_null_entry;
495 
496 	return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt;
497 }
498 
499 #ifdef CONFIG_IPV6_ROUTER_PREF
500 struct __rt6_probe_work {
501 	struct work_struct work;
502 	struct in6_addr target;
503 	struct net_device *dev;
504 };
505 
506 static void rt6_probe_deferred(struct work_struct *w)
507 {
508 	struct in6_addr mcaddr;
509 	struct __rt6_probe_work *work =
510 		container_of(w, struct __rt6_probe_work, work);
511 
512 	addrconf_addr_solict_mult(&work->target, &mcaddr);
513 	ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
514 	dev_put(work->dev);
515 	kfree(work);
516 }
517 
518 static void rt6_probe(struct fib6_info *rt)
519 {
520 	struct __rt6_probe_work *work;
521 	const struct in6_addr *nh_gw;
522 	struct neighbour *neigh;
523 	struct net_device *dev;
524 
525 	/*
526 	 * Okay, this does not seem to be appropriate
527 	 * for now, however, we need to check if it
528 	 * is really so; aka Router Reachability Probing.
529 	 *
530 	 * Router Reachability Probe MUST be rate-limited
531 	 * to no more than one per minute.
532 	 */
533 	if (!rt || !(rt->fib6_flags & RTF_GATEWAY))
534 		return;
535 
536 	nh_gw = &rt->fib6_nh.nh_gw;
537 	dev = rt->fib6_nh.nh_dev;
538 	rcu_read_lock_bh();
539 	neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
540 	if (neigh) {
541 		struct inet6_dev *idev;
542 
543 		if (neigh->nud_state & NUD_VALID)
544 			goto out;
545 
546 		idev = __in6_dev_get(dev);
547 		work = NULL;
548 		write_lock(&neigh->lock);
549 		if (!(neigh->nud_state & NUD_VALID) &&
550 		    time_after(jiffies,
551 			       neigh->updated + idev->cnf.rtr_probe_interval)) {
552 			work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 			if (work)
554 				__neigh_set_probe_once(neigh);
555 		}
556 		write_unlock(&neigh->lock);
557 	} else {
558 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
559 	}
560 
561 	if (work) {
562 		INIT_WORK(&work->work, rt6_probe_deferred);
563 		work->target = *nh_gw;
564 		dev_hold(dev);
565 		work->dev = dev;
566 		schedule_work(&work->work);
567 	}
568 
569 out:
570 	rcu_read_unlock_bh();
571 }
572 #else
573 static inline void rt6_probe(struct fib6_info *rt)
574 {
575 }
576 #endif
577 
578 /*
579  * Default Router Selection (RFC 2461 6.3.6)
580  */
581 static inline int rt6_check_dev(struct fib6_info *rt, int oif)
582 {
583 	const struct net_device *dev = rt->fib6_nh.nh_dev;
584 
585 	if (!oif || dev->ifindex == oif)
586 		return 2;
587 	return 0;
588 }
589 
590 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt)
591 {
592 	enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
593 	struct neighbour *neigh;
594 
595 	if (rt->fib6_flags & RTF_NONEXTHOP ||
596 	    !(rt->fib6_flags & RTF_GATEWAY))
597 		return RT6_NUD_SUCCEED;
598 
599 	rcu_read_lock_bh();
600 	neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev,
601 					  &rt->fib6_nh.nh_gw);
602 	if (neigh) {
603 		read_lock(&neigh->lock);
604 		if (neigh->nud_state & NUD_VALID)
605 			ret = RT6_NUD_SUCCEED;
606 #ifdef CONFIG_IPV6_ROUTER_PREF
607 		else if (!(neigh->nud_state & NUD_FAILED))
608 			ret = RT6_NUD_SUCCEED;
609 		else
610 			ret = RT6_NUD_FAIL_PROBE;
611 #endif
612 		read_unlock(&neigh->lock);
613 	} else {
614 		ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
615 		      RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
616 	}
617 	rcu_read_unlock_bh();
618 
619 	return ret;
620 }
621 
622 static int rt6_score_route(struct fib6_info *rt, int oif, int strict)
623 {
624 	int m;
625 
626 	m = rt6_check_dev(rt, oif);
627 	if (!m && (strict & RT6_LOOKUP_F_IFACE))
628 		return RT6_NUD_FAIL_HARD;
629 #ifdef CONFIG_IPV6_ROUTER_PREF
630 	m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2;
631 #endif
632 	if (strict & RT6_LOOKUP_F_REACHABLE) {
633 		int n = rt6_check_neigh(rt);
634 		if (n < 0)
635 			return n;
636 	}
637 	return m;
638 }
639 
640 /* called with rc_read_lock held */
641 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i)
642 {
643 	const struct net_device *dev = fib6_info_nh_dev(f6i);
644 	bool rc = false;
645 
646 	if (dev) {
647 		const struct inet6_dev *idev = __in6_dev_get(dev);
648 
649 		rc = !!idev->cnf.ignore_routes_with_linkdown;
650 	}
651 
652 	return rc;
653 }
654 
655 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict,
656 				   int *mpri, struct fib6_info *match,
657 				   bool *do_rr)
658 {
659 	int m;
660 	bool match_do_rr = false;
661 
662 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
663 		goto out;
664 
665 	if (fib6_ignore_linkdown(rt) &&
666 	    rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
667 	    !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
668 		goto out;
669 
670 	if (fib6_check_expired(rt))
671 		goto out;
672 
673 	m = rt6_score_route(rt, oif, strict);
674 	if (m == RT6_NUD_FAIL_DO_RR) {
675 		match_do_rr = true;
676 		m = 0; /* lowest valid score */
677 	} else if (m == RT6_NUD_FAIL_HARD) {
678 		goto out;
679 	}
680 
681 	if (strict & RT6_LOOKUP_F_REACHABLE)
682 		rt6_probe(rt);
683 
684 	/* note that m can be RT6_NUD_FAIL_PROBE at this point */
685 	if (m > *mpri) {
686 		*do_rr = match_do_rr;
687 		*mpri = m;
688 		match = rt;
689 	}
690 out:
691 	return match;
692 }
693 
694 static struct fib6_info *find_rr_leaf(struct fib6_node *fn,
695 				     struct fib6_info *leaf,
696 				     struct fib6_info *rr_head,
697 				     u32 metric, int oif, int strict,
698 				     bool *do_rr)
699 {
700 	struct fib6_info *rt, *match, *cont;
701 	int mpri = -1;
702 
703 	match = NULL;
704 	cont = NULL;
705 	for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) {
706 		if (rt->fib6_metric != metric) {
707 			cont = rt;
708 			break;
709 		}
710 
711 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
712 	}
713 
714 	for (rt = leaf; rt && rt != rr_head;
715 	     rt = rcu_dereference(rt->fib6_next)) {
716 		if (rt->fib6_metric != metric) {
717 			cont = rt;
718 			break;
719 		}
720 
721 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
722 	}
723 
724 	if (match || !cont)
725 		return match;
726 
727 	for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next))
728 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
729 
730 	return match;
731 }
732 
733 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn,
734 				   int oif, int strict)
735 {
736 	struct fib6_info *leaf = rcu_dereference(fn->leaf);
737 	struct fib6_info *match, *rt0;
738 	bool do_rr = false;
739 	int key_plen;
740 
741 	if (!leaf || leaf == net->ipv6.fib6_null_entry)
742 		return net->ipv6.fib6_null_entry;
743 
744 	rt0 = rcu_dereference(fn->rr_ptr);
745 	if (!rt0)
746 		rt0 = leaf;
747 
748 	/* Double check to make sure fn is not an intermediate node
749 	 * and fn->leaf does not points to its child's leaf
750 	 * (This might happen if all routes under fn are deleted from
751 	 * the tree and fib6_repair_tree() is called on the node.)
752 	 */
753 	key_plen = rt0->fib6_dst.plen;
754 #ifdef CONFIG_IPV6_SUBTREES
755 	if (rt0->fib6_src.plen)
756 		key_plen = rt0->fib6_src.plen;
757 #endif
758 	if (fn->fn_bit != key_plen)
759 		return net->ipv6.fib6_null_entry;
760 
761 	match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict,
762 			     &do_rr);
763 
764 	if (do_rr) {
765 		struct fib6_info *next = rcu_dereference(rt0->fib6_next);
766 
767 		/* no entries matched; do round-robin */
768 		if (!next || next->fib6_metric != rt0->fib6_metric)
769 			next = leaf;
770 
771 		if (next != rt0) {
772 			spin_lock_bh(&leaf->fib6_table->tb6_lock);
773 			/* make sure next is not being deleted from the tree */
774 			if (next->fib6_node)
775 				rcu_assign_pointer(fn->rr_ptr, next);
776 			spin_unlock_bh(&leaf->fib6_table->tb6_lock);
777 		}
778 	}
779 
780 	return match ? match : net->ipv6.fib6_null_entry;
781 }
782 
783 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt)
784 {
785 	return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY));
786 }
787 
788 #ifdef CONFIG_IPV6_ROUTE_INFO
789 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
790 		  const struct in6_addr *gwaddr)
791 {
792 	struct net *net = dev_net(dev);
793 	struct route_info *rinfo = (struct route_info *) opt;
794 	struct in6_addr prefix_buf, *prefix;
795 	unsigned int pref;
796 	unsigned long lifetime;
797 	struct fib6_info *rt;
798 
799 	if (len < sizeof(struct route_info)) {
800 		return -EINVAL;
801 	}
802 
803 	/* Sanity check for prefix_len and length */
804 	if (rinfo->length > 3) {
805 		return -EINVAL;
806 	} else if (rinfo->prefix_len > 128) {
807 		return -EINVAL;
808 	} else if (rinfo->prefix_len > 64) {
809 		if (rinfo->length < 2) {
810 			return -EINVAL;
811 		}
812 	} else if (rinfo->prefix_len > 0) {
813 		if (rinfo->length < 1) {
814 			return -EINVAL;
815 		}
816 	}
817 
818 	pref = rinfo->route_pref;
819 	if (pref == ICMPV6_ROUTER_PREF_INVALID)
820 		return -EINVAL;
821 
822 	lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
823 
824 	if (rinfo->length == 3)
825 		prefix = (struct in6_addr *)rinfo->prefix;
826 	else {
827 		/* this function is safe */
828 		ipv6_addr_prefix(&prefix_buf,
829 				 (struct in6_addr *)rinfo->prefix,
830 				 rinfo->prefix_len);
831 		prefix = &prefix_buf;
832 	}
833 
834 	if (rinfo->prefix_len == 0)
835 		rt = rt6_get_dflt_router(net, gwaddr, dev);
836 	else
837 		rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
838 					gwaddr, dev);
839 
840 	if (rt && !lifetime) {
841 		ip6_del_rt(net, rt);
842 		rt = NULL;
843 	}
844 
845 	if (!rt && lifetime)
846 		rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
847 					dev, pref);
848 	else if (rt)
849 		rt->fib6_flags = RTF_ROUTEINFO |
850 				 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
851 
852 	if (rt) {
853 		if (!addrconf_finite_timeout(lifetime))
854 			fib6_clean_expires(rt);
855 		else
856 			fib6_set_expires(rt, jiffies + HZ * lifetime);
857 
858 		fib6_info_release(rt);
859 	}
860 	return 0;
861 }
862 #endif
863 
864 /*
865  *	Misc support functions
866  */
867 
868 /* called with rcu_lock held */
869 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt)
870 {
871 	struct net_device *dev = rt->fib6_nh.nh_dev;
872 
873 	if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
874 		/* for copies of local routes, dst->dev needs to be the
875 		 * device if it is a master device, the master device if
876 		 * device is enslaved, and the loopback as the default
877 		 */
878 		if (netif_is_l3_slave(dev) &&
879 		    !rt6_need_strict(&rt->fib6_dst.addr))
880 			dev = l3mdev_master_dev_rcu(dev);
881 		else if (!netif_is_l3_master(dev))
882 			dev = dev_net(dev)->loopback_dev;
883 		/* last case is netif_is_l3_master(dev) is true in which
884 		 * case we want dev returned to be dev
885 		 */
886 	}
887 
888 	return dev;
889 }
890 
891 static const int fib6_prop[RTN_MAX + 1] = {
892 	[RTN_UNSPEC]	= 0,
893 	[RTN_UNICAST]	= 0,
894 	[RTN_LOCAL]	= 0,
895 	[RTN_BROADCAST]	= 0,
896 	[RTN_ANYCAST]	= 0,
897 	[RTN_MULTICAST]	= 0,
898 	[RTN_BLACKHOLE]	= -EINVAL,
899 	[RTN_UNREACHABLE] = -EHOSTUNREACH,
900 	[RTN_PROHIBIT]	= -EACCES,
901 	[RTN_THROW]	= -EAGAIN,
902 	[RTN_NAT]	= -EINVAL,
903 	[RTN_XRESOLVE]	= -EINVAL,
904 };
905 
906 static int ip6_rt_type_to_error(u8 fib6_type)
907 {
908 	return fib6_prop[fib6_type];
909 }
910 
911 static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
912 {
913 	unsigned short flags = 0;
914 
915 	if (rt->dst_nocount)
916 		flags |= DST_NOCOUNT;
917 	if (rt->dst_nopolicy)
918 		flags |= DST_NOPOLICY;
919 	if (rt->dst_host)
920 		flags |= DST_HOST;
921 
922 	return flags;
923 }
924 
925 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort)
926 {
927 	rt->dst.error = ip6_rt_type_to_error(ort->fib6_type);
928 
929 	switch (ort->fib6_type) {
930 	case RTN_BLACKHOLE:
931 		rt->dst.output = dst_discard_out;
932 		rt->dst.input = dst_discard;
933 		break;
934 	case RTN_PROHIBIT:
935 		rt->dst.output = ip6_pkt_prohibit_out;
936 		rt->dst.input = ip6_pkt_prohibit;
937 		break;
938 	case RTN_THROW:
939 	case RTN_UNREACHABLE:
940 	default:
941 		rt->dst.output = ip6_pkt_discard_out;
942 		rt->dst.input = ip6_pkt_discard;
943 		break;
944 	}
945 }
946 
947 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort)
948 {
949 	if (ort->fib6_flags & RTF_REJECT) {
950 		ip6_rt_init_dst_reject(rt, ort);
951 		return;
952 	}
953 
954 	rt->dst.error = 0;
955 	rt->dst.output = ip6_output;
956 
957 	if (ort->fib6_type == RTN_LOCAL || ort->fib6_type == RTN_ANYCAST) {
958 		rt->dst.input = ip6_input;
959 	} else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
960 		rt->dst.input = ip6_mc_input;
961 	} else {
962 		rt->dst.input = ip6_forward;
963 	}
964 
965 	if (ort->fib6_nh.nh_lwtstate) {
966 		rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
967 		lwtunnel_set_redirect(&rt->dst);
968 	}
969 
970 	rt->dst.lastuse = jiffies;
971 }
972 
973 /* Caller must already hold reference to @from */
974 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
975 {
976 	rt->rt6i_flags &= ~RTF_EXPIRES;
977 	rcu_assign_pointer(rt->from, from);
978 	ip_dst_init_metrics(&rt->dst, from->fib6_metrics);
979 }
980 
981 /* Caller must already hold reference to @ort */
982 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort)
983 {
984 	struct net_device *dev = fib6_info_nh_dev(ort);
985 
986 	ip6_rt_init_dst(rt, ort);
987 
988 	rt->rt6i_dst = ort->fib6_dst;
989 	rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
990 	rt->rt6i_gateway = ort->fib6_nh.nh_gw;
991 	rt->rt6i_flags = ort->fib6_flags;
992 	rt6_set_from(rt, ort);
993 #ifdef CONFIG_IPV6_SUBTREES
994 	rt->rt6i_src = ort->fib6_src;
995 #endif
996 }
997 
998 static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
999 					struct in6_addr *saddr)
1000 {
1001 	struct fib6_node *pn, *sn;
1002 	while (1) {
1003 		if (fn->fn_flags & RTN_TL_ROOT)
1004 			return NULL;
1005 		pn = rcu_dereference(fn->parent);
1006 		sn = FIB6_SUBTREE(pn);
1007 		if (sn && sn != fn)
1008 			fn = fib6_node_lookup(sn, NULL, saddr);
1009 		else
1010 			fn = pn;
1011 		if (fn->fn_flags & RTN_RTINFO)
1012 			return fn;
1013 	}
1014 }
1015 
1016 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt,
1017 			  bool null_fallback)
1018 {
1019 	struct rt6_info *rt = *prt;
1020 
1021 	if (dst_hold_safe(&rt->dst))
1022 		return true;
1023 	if (null_fallback) {
1024 		rt = net->ipv6.ip6_null_entry;
1025 		dst_hold(&rt->dst);
1026 	} else {
1027 		rt = NULL;
1028 	}
1029 	*prt = rt;
1030 	return false;
1031 }
1032 
1033 /* called with rcu_lock held */
1034 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt)
1035 {
1036 	unsigned short flags = fib6_info_dst_flags(rt);
1037 	struct net_device *dev = rt->fib6_nh.nh_dev;
1038 	struct rt6_info *nrt;
1039 
1040 	if (!fib6_info_hold_safe(rt))
1041 		return NULL;
1042 
1043 	nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
1044 	if (nrt)
1045 		ip6_rt_copy_init(nrt, rt);
1046 	else
1047 		fib6_info_release(rt);
1048 
1049 	return nrt;
1050 }
1051 
1052 static struct rt6_info *ip6_pol_route_lookup(struct net *net,
1053 					     struct fib6_table *table,
1054 					     struct flowi6 *fl6,
1055 					     const struct sk_buff *skb,
1056 					     int flags)
1057 {
1058 	struct fib6_info *f6i;
1059 	struct fib6_node *fn;
1060 	struct rt6_info *rt;
1061 
1062 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1063 		flags &= ~RT6_LOOKUP_F_IFACE;
1064 
1065 	rcu_read_lock();
1066 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1067 restart:
1068 	f6i = rcu_dereference(fn->leaf);
1069 	if (!f6i) {
1070 		f6i = net->ipv6.fib6_null_entry;
1071 	} else {
1072 		f6i = rt6_device_match(net, f6i, &fl6->saddr,
1073 				      fl6->flowi6_oif, flags);
1074 		if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0)
1075 			f6i = fib6_multipath_select(net, f6i, fl6,
1076 						    fl6->flowi6_oif, skb,
1077 						    flags);
1078 	}
1079 	if (f6i == net->ipv6.fib6_null_entry) {
1080 		fn = fib6_backtrack(fn, &fl6->saddr);
1081 		if (fn)
1082 			goto restart;
1083 	}
1084 
1085 	trace_fib6_table_lookup(net, f6i, table, fl6);
1086 
1087 	/* Search through exception table */
1088 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1089 	if (rt) {
1090 		if (ip6_hold_safe(net, &rt, true))
1091 			dst_use_noref(&rt->dst, jiffies);
1092 	} else if (f6i == net->ipv6.fib6_null_entry) {
1093 		rt = net->ipv6.ip6_null_entry;
1094 		dst_hold(&rt->dst);
1095 	} else {
1096 		rt = ip6_create_rt_rcu(f6i);
1097 		if (!rt) {
1098 			rt = net->ipv6.ip6_null_entry;
1099 			dst_hold(&rt->dst);
1100 		}
1101 	}
1102 
1103 	rcu_read_unlock();
1104 
1105 	return rt;
1106 }
1107 
1108 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
1109 				   const struct sk_buff *skb, int flags)
1110 {
1111 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
1112 }
1113 EXPORT_SYMBOL_GPL(ip6_route_lookup);
1114 
1115 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
1116 			    const struct in6_addr *saddr, int oif,
1117 			    const struct sk_buff *skb, int strict)
1118 {
1119 	struct flowi6 fl6 = {
1120 		.flowi6_oif = oif,
1121 		.daddr = *daddr,
1122 	};
1123 	struct dst_entry *dst;
1124 	int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
1125 
1126 	if (saddr) {
1127 		memcpy(&fl6.saddr, saddr, sizeof(*saddr));
1128 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1129 	}
1130 
1131 	dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
1132 	if (dst->error == 0)
1133 		return (struct rt6_info *) dst;
1134 
1135 	dst_release(dst);
1136 
1137 	return NULL;
1138 }
1139 EXPORT_SYMBOL(rt6_lookup);
1140 
1141 /* ip6_ins_rt is called with FREE table->tb6_lock.
1142  * It takes new route entry, the addition fails by any reason the
1143  * route is released.
1144  * Caller must hold dst before calling it.
1145  */
1146 
1147 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
1148 			struct netlink_ext_ack *extack)
1149 {
1150 	int err;
1151 	struct fib6_table *table;
1152 
1153 	table = rt->fib6_table;
1154 	spin_lock_bh(&table->tb6_lock);
1155 	err = fib6_add(&table->tb6_root, rt, info, extack);
1156 	spin_unlock_bh(&table->tb6_lock);
1157 
1158 	return err;
1159 }
1160 
1161 int ip6_ins_rt(struct net *net, struct fib6_info *rt)
1162 {
1163 	struct nl_info info = {	.nl_net = net, };
1164 
1165 	return __ip6_ins_rt(rt, &info, NULL);
1166 }
1167 
1168 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort,
1169 					   const struct in6_addr *daddr,
1170 					   const struct in6_addr *saddr)
1171 {
1172 	struct net_device *dev;
1173 	struct rt6_info *rt;
1174 
1175 	/*
1176 	 *	Clone the route.
1177 	 */
1178 
1179 	if (!fib6_info_hold_safe(ort))
1180 		return NULL;
1181 
1182 	dev = ip6_rt_get_dev_rcu(ort);
1183 	rt = ip6_dst_alloc(dev_net(dev), dev, 0);
1184 	if (!rt) {
1185 		fib6_info_release(ort);
1186 		return NULL;
1187 	}
1188 
1189 	ip6_rt_copy_init(rt, ort);
1190 	rt->rt6i_flags |= RTF_CACHE;
1191 	rt->dst.flags |= DST_HOST;
1192 	rt->rt6i_dst.addr = *daddr;
1193 	rt->rt6i_dst.plen = 128;
1194 
1195 	if (!rt6_is_gw_or_nonexthop(ort)) {
1196 		if (ort->fib6_dst.plen != 128 &&
1197 		    ipv6_addr_equal(&ort->fib6_dst.addr, daddr))
1198 			rt->rt6i_flags |= RTF_ANYCAST;
1199 #ifdef CONFIG_IPV6_SUBTREES
1200 		if (rt->rt6i_src.plen && saddr) {
1201 			rt->rt6i_src.addr = *saddr;
1202 			rt->rt6i_src.plen = 128;
1203 		}
1204 #endif
1205 	}
1206 
1207 	return rt;
1208 }
1209 
1210 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt)
1211 {
1212 	unsigned short flags = fib6_info_dst_flags(rt);
1213 	struct net_device *dev;
1214 	struct rt6_info *pcpu_rt;
1215 
1216 	if (!fib6_info_hold_safe(rt))
1217 		return NULL;
1218 
1219 	rcu_read_lock();
1220 	dev = ip6_rt_get_dev_rcu(rt);
1221 	pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags);
1222 	rcu_read_unlock();
1223 	if (!pcpu_rt) {
1224 		fib6_info_release(rt);
1225 		return NULL;
1226 	}
1227 	ip6_rt_copy_init(pcpu_rt, rt);
1228 	pcpu_rt->rt6i_flags |= RTF_PCPU;
1229 	return pcpu_rt;
1230 }
1231 
1232 /* It should be called with rcu_read_lock() acquired */
1233 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt)
1234 {
1235 	struct rt6_info *pcpu_rt, **p;
1236 
1237 	p = this_cpu_ptr(rt->rt6i_pcpu);
1238 	pcpu_rt = *p;
1239 
1240 	if (pcpu_rt)
1241 		ip6_hold_safe(NULL, &pcpu_rt, false);
1242 
1243 	return pcpu_rt;
1244 }
1245 
1246 static struct rt6_info *rt6_make_pcpu_route(struct net *net,
1247 					    struct fib6_info *rt)
1248 {
1249 	struct rt6_info *pcpu_rt, *prev, **p;
1250 
1251 	pcpu_rt = ip6_rt_pcpu_alloc(rt);
1252 	if (!pcpu_rt) {
1253 		dst_hold(&net->ipv6.ip6_null_entry->dst);
1254 		return net->ipv6.ip6_null_entry;
1255 	}
1256 
1257 	dst_hold(&pcpu_rt->dst);
1258 	p = this_cpu_ptr(rt->rt6i_pcpu);
1259 	prev = cmpxchg(p, NULL, pcpu_rt);
1260 	BUG_ON(prev);
1261 
1262 	return pcpu_rt;
1263 }
1264 
1265 /* exception hash table implementation
1266  */
1267 static DEFINE_SPINLOCK(rt6_exception_lock);
1268 
1269 /* Remove rt6_ex from hash table and free the memory
1270  * Caller must hold rt6_exception_lock
1271  */
1272 static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
1273 				 struct rt6_exception *rt6_ex)
1274 {
1275 	struct net *net;
1276 
1277 	if (!bucket || !rt6_ex)
1278 		return;
1279 
1280 	net = dev_net(rt6_ex->rt6i->dst.dev);
1281 	hlist_del_rcu(&rt6_ex->hlist);
1282 	dst_release(&rt6_ex->rt6i->dst);
1283 	kfree_rcu(rt6_ex, rcu);
1284 	WARN_ON_ONCE(!bucket->depth);
1285 	bucket->depth--;
1286 	net->ipv6.rt6_stats->fib_rt_cache--;
1287 }
1288 
1289 /* Remove oldest rt6_ex in bucket and free the memory
1290  * Caller must hold rt6_exception_lock
1291  */
1292 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
1293 {
1294 	struct rt6_exception *rt6_ex, *oldest = NULL;
1295 
1296 	if (!bucket)
1297 		return;
1298 
1299 	hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1300 		if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
1301 			oldest = rt6_ex;
1302 	}
1303 	rt6_remove_exception(bucket, oldest);
1304 }
1305 
1306 static u32 rt6_exception_hash(const struct in6_addr *dst,
1307 			      const struct in6_addr *src)
1308 {
1309 	static u32 seed __read_mostly;
1310 	u32 val;
1311 
1312 	net_get_random_once(&seed, sizeof(seed));
1313 	val = jhash(dst, sizeof(*dst), seed);
1314 
1315 #ifdef CONFIG_IPV6_SUBTREES
1316 	if (src)
1317 		val = jhash(src, sizeof(*src), val);
1318 #endif
1319 	return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
1320 }
1321 
1322 /* Helper function to find the cached rt in the hash table
1323  * and update bucket pointer to point to the bucket for this
1324  * (daddr, saddr) pair
1325  * Caller must hold rt6_exception_lock
1326  */
1327 static struct rt6_exception *
1328 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
1329 			      const struct in6_addr *daddr,
1330 			      const struct in6_addr *saddr)
1331 {
1332 	struct rt6_exception *rt6_ex;
1333 	u32 hval;
1334 
1335 	if (!(*bucket) || !daddr)
1336 		return NULL;
1337 
1338 	hval = rt6_exception_hash(daddr, saddr);
1339 	*bucket += hval;
1340 
1341 	hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
1342 		struct rt6_info *rt6 = rt6_ex->rt6i;
1343 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1344 
1345 #ifdef CONFIG_IPV6_SUBTREES
1346 		if (matched && saddr)
1347 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1348 #endif
1349 		if (matched)
1350 			return rt6_ex;
1351 	}
1352 	return NULL;
1353 }
1354 
1355 /* Helper function to find the cached rt in the hash table
1356  * and update bucket pointer to point to the bucket for this
1357  * (daddr, saddr) pair
1358  * Caller must hold rcu_read_lock()
1359  */
1360 static struct rt6_exception *
1361 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
1362 			 const struct in6_addr *daddr,
1363 			 const struct in6_addr *saddr)
1364 {
1365 	struct rt6_exception *rt6_ex;
1366 	u32 hval;
1367 
1368 	WARN_ON_ONCE(!rcu_read_lock_held());
1369 
1370 	if (!(*bucket) || !daddr)
1371 		return NULL;
1372 
1373 	hval = rt6_exception_hash(daddr, saddr);
1374 	*bucket += hval;
1375 
1376 	hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
1377 		struct rt6_info *rt6 = rt6_ex->rt6i;
1378 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1379 
1380 #ifdef CONFIG_IPV6_SUBTREES
1381 		if (matched && saddr)
1382 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1383 #endif
1384 		if (matched)
1385 			return rt6_ex;
1386 	}
1387 	return NULL;
1388 }
1389 
1390 static unsigned int fib6_mtu(const struct fib6_info *rt)
1391 {
1392 	unsigned int mtu;
1393 
1394 	if (rt->fib6_pmtu) {
1395 		mtu = rt->fib6_pmtu;
1396 	} else {
1397 		struct net_device *dev = fib6_info_nh_dev(rt);
1398 		struct inet6_dev *idev;
1399 
1400 		rcu_read_lock();
1401 		idev = __in6_dev_get(dev);
1402 		mtu = idev->cnf.mtu6;
1403 		rcu_read_unlock();
1404 	}
1405 
1406 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
1407 
1408 	return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu);
1409 }
1410 
1411 static int rt6_insert_exception(struct rt6_info *nrt,
1412 				struct fib6_info *ort)
1413 {
1414 	struct net *net = dev_net(nrt->dst.dev);
1415 	struct rt6_exception_bucket *bucket;
1416 	struct in6_addr *src_key = NULL;
1417 	struct rt6_exception *rt6_ex;
1418 	int err = 0;
1419 
1420 	spin_lock_bh(&rt6_exception_lock);
1421 
1422 	if (ort->exception_bucket_flushed) {
1423 		err = -EINVAL;
1424 		goto out;
1425 	}
1426 
1427 	bucket = rcu_dereference_protected(ort->rt6i_exception_bucket,
1428 					lockdep_is_held(&rt6_exception_lock));
1429 	if (!bucket) {
1430 		bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
1431 				 GFP_ATOMIC);
1432 		if (!bucket) {
1433 			err = -ENOMEM;
1434 			goto out;
1435 		}
1436 		rcu_assign_pointer(ort->rt6i_exception_bucket, bucket);
1437 	}
1438 
1439 #ifdef CONFIG_IPV6_SUBTREES
1440 	/* rt6i_src.plen != 0 indicates ort is in subtree
1441 	 * and exception table is indexed by a hash of
1442 	 * both rt6i_dst and rt6i_src.
1443 	 * Otherwise, the exception table is indexed by
1444 	 * a hash of only rt6i_dst.
1445 	 */
1446 	if (ort->fib6_src.plen)
1447 		src_key = &nrt->rt6i_src.addr;
1448 #endif
1449 	/* rt6_mtu_change() might lower mtu on ort.
1450 	 * Only insert this exception route if its mtu
1451 	 * is less than ort's mtu value.
1452 	 */
1453 	if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) {
1454 		err = -EINVAL;
1455 		goto out;
1456 	}
1457 
1458 	rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
1459 					       src_key);
1460 	if (rt6_ex)
1461 		rt6_remove_exception(bucket, rt6_ex);
1462 
1463 	rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
1464 	if (!rt6_ex) {
1465 		err = -ENOMEM;
1466 		goto out;
1467 	}
1468 	rt6_ex->rt6i = nrt;
1469 	rt6_ex->stamp = jiffies;
1470 	hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
1471 	bucket->depth++;
1472 	net->ipv6.rt6_stats->fib_rt_cache++;
1473 
1474 	if (bucket->depth > FIB6_MAX_DEPTH)
1475 		rt6_exception_remove_oldest(bucket);
1476 
1477 out:
1478 	spin_unlock_bh(&rt6_exception_lock);
1479 
1480 	/* Update fn->fn_sernum to invalidate all cached dst */
1481 	if (!err) {
1482 		spin_lock_bh(&ort->fib6_table->tb6_lock);
1483 		fib6_update_sernum(net, ort);
1484 		spin_unlock_bh(&ort->fib6_table->tb6_lock);
1485 		fib6_force_start_gc(net);
1486 	}
1487 
1488 	return err;
1489 }
1490 
1491 void rt6_flush_exceptions(struct fib6_info *rt)
1492 {
1493 	struct rt6_exception_bucket *bucket;
1494 	struct rt6_exception *rt6_ex;
1495 	struct hlist_node *tmp;
1496 	int i;
1497 
1498 	spin_lock_bh(&rt6_exception_lock);
1499 	/* Prevent rt6_insert_exception() to recreate the bucket list */
1500 	rt->exception_bucket_flushed = 1;
1501 
1502 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1503 				    lockdep_is_held(&rt6_exception_lock));
1504 	if (!bucket)
1505 		goto out;
1506 
1507 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1508 		hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist)
1509 			rt6_remove_exception(bucket, rt6_ex);
1510 		WARN_ON_ONCE(bucket->depth);
1511 		bucket++;
1512 	}
1513 
1514 out:
1515 	spin_unlock_bh(&rt6_exception_lock);
1516 }
1517 
1518 /* Find cached rt in the hash table inside passed in rt
1519  * Caller has to hold rcu_read_lock()
1520  */
1521 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
1522 					   struct in6_addr *daddr,
1523 					   struct in6_addr *saddr)
1524 {
1525 	struct rt6_exception_bucket *bucket;
1526 	struct in6_addr *src_key = NULL;
1527 	struct rt6_exception *rt6_ex;
1528 	struct rt6_info *res = NULL;
1529 
1530 	bucket = rcu_dereference(rt->rt6i_exception_bucket);
1531 
1532 #ifdef CONFIG_IPV6_SUBTREES
1533 	/* rt6i_src.plen != 0 indicates rt is in subtree
1534 	 * and exception table is indexed by a hash of
1535 	 * both rt6i_dst and rt6i_src.
1536 	 * Otherwise, the exception table is indexed by
1537 	 * a hash of only rt6i_dst.
1538 	 */
1539 	if (rt->fib6_src.plen)
1540 		src_key = saddr;
1541 #endif
1542 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
1543 
1544 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
1545 		res = rt6_ex->rt6i;
1546 
1547 	return res;
1548 }
1549 
1550 /* Remove the passed in cached rt from the hash table that contains it */
1551 static int rt6_remove_exception_rt(struct rt6_info *rt)
1552 {
1553 	struct rt6_exception_bucket *bucket;
1554 	struct in6_addr *src_key = NULL;
1555 	struct rt6_exception *rt6_ex;
1556 	struct fib6_info *from;
1557 	int err;
1558 
1559 	from = rcu_dereference(rt->from);
1560 	if (!from ||
1561 	    !(rt->rt6i_flags & RTF_CACHE))
1562 		return -EINVAL;
1563 
1564 	if (!rcu_access_pointer(from->rt6i_exception_bucket))
1565 		return -ENOENT;
1566 
1567 	spin_lock_bh(&rt6_exception_lock);
1568 	bucket = rcu_dereference_protected(from->rt6i_exception_bucket,
1569 				    lockdep_is_held(&rt6_exception_lock));
1570 #ifdef CONFIG_IPV6_SUBTREES
1571 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1572 	 * and exception table is indexed by a hash of
1573 	 * both rt6i_dst and rt6i_src.
1574 	 * Otherwise, the exception table is indexed by
1575 	 * a hash of only rt6i_dst.
1576 	 */
1577 	if (from->fib6_src.plen)
1578 		src_key = &rt->rt6i_src.addr;
1579 #endif
1580 	rt6_ex = __rt6_find_exception_spinlock(&bucket,
1581 					       &rt->rt6i_dst.addr,
1582 					       src_key);
1583 	if (rt6_ex) {
1584 		rt6_remove_exception(bucket, rt6_ex);
1585 		err = 0;
1586 	} else {
1587 		err = -ENOENT;
1588 	}
1589 
1590 	spin_unlock_bh(&rt6_exception_lock);
1591 	return err;
1592 }
1593 
1594 /* Find rt6_ex which contains the passed in rt cache and
1595  * refresh its stamp
1596  */
1597 static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
1598 {
1599 	struct rt6_exception_bucket *bucket;
1600 	struct fib6_info *from = rt->from;
1601 	struct in6_addr *src_key = NULL;
1602 	struct rt6_exception *rt6_ex;
1603 
1604 	if (!from ||
1605 	    !(rt->rt6i_flags & RTF_CACHE))
1606 		return;
1607 
1608 	rcu_read_lock();
1609 	bucket = rcu_dereference(from->rt6i_exception_bucket);
1610 
1611 #ifdef CONFIG_IPV6_SUBTREES
1612 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1613 	 * and exception table is indexed by a hash of
1614 	 * both rt6i_dst and rt6i_src.
1615 	 * Otherwise, the exception table is indexed by
1616 	 * a hash of only rt6i_dst.
1617 	 */
1618 	if (from->fib6_src.plen)
1619 		src_key = &rt->rt6i_src.addr;
1620 #endif
1621 	rt6_ex = __rt6_find_exception_rcu(&bucket,
1622 					  &rt->rt6i_dst.addr,
1623 					  src_key);
1624 	if (rt6_ex)
1625 		rt6_ex->stamp = jiffies;
1626 
1627 	rcu_read_unlock();
1628 }
1629 
1630 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
1631 					 struct rt6_info *rt, int mtu)
1632 {
1633 	/* If the new MTU is lower than the route PMTU, this new MTU will be the
1634 	 * lowest MTU in the path: always allow updating the route PMTU to
1635 	 * reflect PMTU decreases.
1636 	 *
1637 	 * If the new MTU is higher, and the route PMTU is equal to the local
1638 	 * MTU, this means the old MTU is the lowest in the path, so allow
1639 	 * updating it: if other nodes now have lower MTUs, PMTU discovery will
1640 	 * handle this.
1641 	 */
1642 
1643 	if (dst_mtu(&rt->dst) >= mtu)
1644 		return true;
1645 
1646 	if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
1647 		return true;
1648 
1649 	return false;
1650 }
1651 
1652 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
1653 				       struct fib6_info *rt, int mtu)
1654 {
1655 	struct rt6_exception_bucket *bucket;
1656 	struct rt6_exception *rt6_ex;
1657 	int i;
1658 
1659 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1660 					lockdep_is_held(&rt6_exception_lock));
1661 
1662 	if (!bucket)
1663 		return;
1664 
1665 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1666 		hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1667 			struct rt6_info *entry = rt6_ex->rt6i;
1668 
1669 			/* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
1670 			 * route), the metrics of its rt->from have already
1671 			 * been updated.
1672 			 */
1673 			if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
1674 			    rt6_mtu_change_route_allowed(idev, entry, mtu))
1675 				dst_metric_set(&entry->dst, RTAX_MTU, mtu);
1676 		}
1677 		bucket++;
1678 	}
1679 }
1680 
1681 #define RTF_CACHE_GATEWAY	(RTF_GATEWAY | RTF_CACHE)
1682 
1683 static void rt6_exceptions_clean_tohost(struct fib6_info *rt,
1684 					struct in6_addr *gateway)
1685 {
1686 	struct rt6_exception_bucket *bucket;
1687 	struct rt6_exception *rt6_ex;
1688 	struct hlist_node *tmp;
1689 	int i;
1690 
1691 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1692 		return;
1693 
1694 	spin_lock_bh(&rt6_exception_lock);
1695 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1696 				     lockdep_is_held(&rt6_exception_lock));
1697 
1698 	if (bucket) {
1699 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1700 			hlist_for_each_entry_safe(rt6_ex, tmp,
1701 						  &bucket->chain, hlist) {
1702 				struct rt6_info *entry = rt6_ex->rt6i;
1703 
1704 				if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
1705 				    RTF_CACHE_GATEWAY &&
1706 				    ipv6_addr_equal(gateway,
1707 						    &entry->rt6i_gateway)) {
1708 					rt6_remove_exception(bucket, rt6_ex);
1709 				}
1710 			}
1711 			bucket++;
1712 		}
1713 	}
1714 
1715 	spin_unlock_bh(&rt6_exception_lock);
1716 }
1717 
1718 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
1719 				      struct rt6_exception *rt6_ex,
1720 				      struct fib6_gc_args *gc_args,
1721 				      unsigned long now)
1722 {
1723 	struct rt6_info *rt = rt6_ex->rt6i;
1724 
1725 	/* we are pruning and obsoleting aged-out and non gateway exceptions
1726 	 * even if others have still references to them, so that on next
1727 	 * dst_check() such references can be dropped.
1728 	 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
1729 	 * expired, independently from their aging, as per RFC 8201 section 4
1730 	 */
1731 	if (!(rt->rt6i_flags & RTF_EXPIRES)) {
1732 		if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1733 			RT6_TRACE("aging clone %p\n", rt);
1734 			rt6_remove_exception(bucket, rt6_ex);
1735 			return;
1736 		}
1737 	} else if (time_after(jiffies, rt->dst.expires)) {
1738 		RT6_TRACE("purging expired route %p\n", rt);
1739 		rt6_remove_exception(bucket, rt6_ex);
1740 		return;
1741 	}
1742 
1743 	if (rt->rt6i_flags & RTF_GATEWAY) {
1744 		struct neighbour *neigh;
1745 		__u8 neigh_flags = 0;
1746 
1747 		neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
1748 		if (neigh)
1749 			neigh_flags = neigh->flags;
1750 
1751 		if (!(neigh_flags & NTF_ROUTER)) {
1752 			RT6_TRACE("purging route %p via non-router but gateway\n",
1753 				  rt);
1754 			rt6_remove_exception(bucket, rt6_ex);
1755 			return;
1756 		}
1757 	}
1758 
1759 	gc_args->more++;
1760 }
1761 
1762 void rt6_age_exceptions(struct fib6_info *rt,
1763 			struct fib6_gc_args *gc_args,
1764 			unsigned long now)
1765 {
1766 	struct rt6_exception_bucket *bucket;
1767 	struct rt6_exception *rt6_ex;
1768 	struct hlist_node *tmp;
1769 	int i;
1770 
1771 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1772 		return;
1773 
1774 	rcu_read_lock_bh();
1775 	spin_lock(&rt6_exception_lock);
1776 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1777 				    lockdep_is_held(&rt6_exception_lock));
1778 
1779 	if (bucket) {
1780 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1781 			hlist_for_each_entry_safe(rt6_ex, tmp,
1782 						  &bucket->chain, hlist) {
1783 				rt6_age_examine_exception(bucket, rt6_ex,
1784 							  gc_args, now);
1785 			}
1786 			bucket++;
1787 		}
1788 	}
1789 	spin_unlock(&rt6_exception_lock);
1790 	rcu_read_unlock_bh();
1791 }
1792 
1793 /* must be called with rcu lock held */
1794 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table,
1795 				    int oif, struct flowi6 *fl6, int strict)
1796 {
1797 	struct fib6_node *fn, *saved_fn;
1798 	struct fib6_info *f6i;
1799 
1800 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1801 	saved_fn = fn;
1802 
1803 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1804 		oif = 0;
1805 
1806 redo_rt6_select:
1807 	f6i = rt6_select(net, fn, oif, strict);
1808 	if (f6i == net->ipv6.fib6_null_entry) {
1809 		fn = fib6_backtrack(fn, &fl6->saddr);
1810 		if (fn)
1811 			goto redo_rt6_select;
1812 		else if (strict & RT6_LOOKUP_F_REACHABLE) {
1813 			/* also consider unreachable route */
1814 			strict &= ~RT6_LOOKUP_F_REACHABLE;
1815 			fn = saved_fn;
1816 			goto redo_rt6_select;
1817 		}
1818 	}
1819 
1820 	trace_fib6_table_lookup(net, f6i, table, fl6);
1821 
1822 	return f6i;
1823 }
1824 
1825 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
1826 			       int oif, struct flowi6 *fl6,
1827 			       const struct sk_buff *skb, int flags)
1828 {
1829 	struct fib6_info *f6i;
1830 	struct rt6_info *rt;
1831 	int strict = 0;
1832 
1833 	strict |= flags & RT6_LOOKUP_F_IFACE;
1834 	strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
1835 	if (net->ipv6.devconf_all->forwarding == 0)
1836 		strict |= RT6_LOOKUP_F_REACHABLE;
1837 
1838 	rcu_read_lock();
1839 
1840 	f6i = fib6_table_lookup(net, table, oif, fl6, strict);
1841 	if (f6i->fib6_nsiblings)
1842 		f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict);
1843 
1844 	if (f6i == net->ipv6.fib6_null_entry) {
1845 		rt = net->ipv6.ip6_null_entry;
1846 		rcu_read_unlock();
1847 		dst_hold(&rt->dst);
1848 		return rt;
1849 	}
1850 
1851 	/*Search through exception table */
1852 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1853 	if (rt) {
1854 		if (ip6_hold_safe(net, &rt, true))
1855 			dst_use_noref(&rt->dst, jiffies);
1856 
1857 		rcu_read_unlock();
1858 		return rt;
1859 	} else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
1860 			    !(f6i->fib6_flags & RTF_GATEWAY))) {
1861 		/* Create a RTF_CACHE clone which will not be
1862 		 * owned by the fib6 tree.  It is for the special case where
1863 		 * the daddr in the skb during the neighbor look-up is different
1864 		 * from the fl6->daddr used to look-up route here.
1865 		 */
1866 		struct rt6_info *uncached_rt;
1867 
1868 		uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL);
1869 
1870 		rcu_read_unlock();
1871 
1872 		if (uncached_rt) {
1873 			/* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc()
1874 			 * No need for another dst_hold()
1875 			 */
1876 			rt6_uncached_list_add(uncached_rt);
1877 			atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
1878 		} else {
1879 			uncached_rt = net->ipv6.ip6_null_entry;
1880 			dst_hold(&uncached_rt->dst);
1881 		}
1882 
1883 		return uncached_rt;
1884 	} else {
1885 		/* Get a percpu copy */
1886 
1887 		struct rt6_info *pcpu_rt;
1888 
1889 		local_bh_disable();
1890 		pcpu_rt = rt6_get_pcpu_route(f6i);
1891 
1892 		if (!pcpu_rt)
1893 			pcpu_rt = rt6_make_pcpu_route(net, f6i);
1894 
1895 		local_bh_enable();
1896 		rcu_read_unlock();
1897 
1898 		return pcpu_rt;
1899 	}
1900 }
1901 EXPORT_SYMBOL_GPL(ip6_pol_route);
1902 
1903 static struct rt6_info *ip6_pol_route_input(struct net *net,
1904 					    struct fib6_table *table,
1905 					    struct flowi6 *fl6,
1906 					    const struct sk_buff *skb,
1907 					    int flags)
1908 {
1909 	return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
1910 }
1911 
1912 struct dst_entry *ip6_route_input_lookup(struct net *net,
1913 					 struct net_device *dev,
1914 					 struct flowi6 *fl6,
1915 					 const struct sk_buff *skb,
1916 					 int flags)
1917 {
1918 	if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
1919 		flags |= RT6_LOOKUP_F_IFACE;
1920 
1921 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
1922 }
1923 EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
1924 
1925 static void ip6_multipath_l3_keys(const struct sk_buff *skb,
1926 				  struct flow_keys *keys,
1927 				  struct flow_keys *flkeys)
1928 {
1929 	const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
1930 	const struct ipv6hdr *key_iph = outer_iph;
1931 	struct flow_keys *_flkeys = flkeys;
1932 	const struct ipv6hdr *inner_iph;
1933 	const struct icmp6hdr *icmph;
1934 	struct ipv6hdr _inner_iph;
1935 	struct icmp6hdr _icmph;
1936 
1937 	if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
1938 		goto out;
1939 
1940 	icmph = skb_header_pointer(skb, skb_transport_offset(skb),
1941 				   sizeof(_icmph), &_icmph);
1942 	if (!icmph)
1943 		goto out;
1944 
1945 	if (icmph->icmp6_type != ICMPV6_DEST_UNREACH &&
1946 	    icmph->icmp6_type != ICMPV6_PKT_TOOBIG &&
1947 	    icmph->icmp6_type != ICMPV6_TIME_EXCEED &&
1948 	    icmph->icmp6_type != ICMPV6_PARAMPROB)
1949 		goto out;
1950 
1951 	inner_iph = skb_header_pointer(skb,
1952 				       skb_transport_offset(skb) + sizeof(*icmph),
1953 				       sizeof(_inner_iph), &_inner_iph);
1954 	if (!inner_iph)
1955 		goto out;
1956 
1957 	key_iph = inner_iph;
1958 	_flkeys = NULL;
1959 out:
1960 	if (_flkeys) {
1961 		keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
1962 		keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
1963 		keys->tags.flow_label = _flkeys->tags.flow_label;
1964 		keys->basic.ip_proto = _flkeys->basic.ip_proto;
1965 	} else {
1966 		keys->addrs.v6addrs.src = key_iph->saddr;
1967 		keys->addrs.v6addrs.dst = key_iph->daddr;
1968 		keys->tags.flow_label = ip6_flowlabel(key_iph);
1969 		keys->basic.ip_proto = key_iph->nexthdr;
1970 	}
1971 }
1972 
1973 /* if skb is set it will be used and fl6 can be NULL */
1974 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
1975 		       const struct sk_buff *skb, struct flow_keys *flkeys)
1976 {
1977 	struct flow_keys hash_keys;
1978 	u32 mhash;
1979 
1980 	switch (ip6_multipath_hash_policy(net)) {
1981 	case 0:
1982 		memset(&hash_keys, 0, sizeof(hash_keys));
1983 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1984 		if (skb) {
1985 			ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
1986 		} else {
1987 			hash_keys.addrs.v6addrs.src = fl6->saddr;
1988 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
1989 			hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1990 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
1991 		}
1992 		break;
1993 	case 1:
1994 		if (skb) {
1995 			unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
1996 			struct flow_keys keys;
1997 
1998 			/* short-circuit if we already have L4 hash present */
1999 			if (skb->l4_hash)
2000 				return skb_get_hash_raw(skb) >> 1;
2001 
2002 			memset(&hash_keys, 0, sizeof(hash_keys));
2003 
2004                         if (!flkeys) {
2005 				skb_flow_dissect_flow_keys(skb, &keys, flag);
2006 				flkeys = &keys;
2007 			}
2008 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2009 			hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2010 			hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2011 			hash_keys.ports.src = flkeys->ports.src;
2012 			hash_keys.ports.dst = flkeys->ports.dst;
2013 			hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2014 		} else {
2015 			memset(&hash_keys, 0, sizeof(hash_keys));
2016 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2017 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2018 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2019 			hash_keys.ports.src = fl6->fl6_sport;
2020 			hash_keys.ports.dst = fl6->fl6_dport;
2021 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2022 		}
2023 		break;
2024 	}
2025 	mhash = flow_hash_from_keys(&hash_keys);
2026 
2027 	return mhash >> 1;
2028 }
2029 
2030 void ip6_route_input(struct sk_buff *skb)
2031 {
2032 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2033 	struct net *net = dev_net(skb->dev);
2034 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2035 	struct ip_tunnel_info *tun_info;
2036 	struct flowi6 fl6 = {
2037 		.flowi6_iif = skb->dev->ifindex,
2038 		.daddr = iph->daddr,
2039 		.saddr = iph->saddr,
2040 		.flowlabel = ip6_flowinfo(iph),
2041 		.flowi6_mark = skb->mark,
2042 		.flowi6_proto = iph->nexthdr,
2043 	};
2044 	struct flow_keys *flkeys = NULL, _flkeys;
2045 
2046 	tun_info = skb_tunnel_info(skb);
2047 	if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
2048 		fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
2049 
2050 	if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
2051 		flkeys = &_flkeys;
2052 
2053 	if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
2054 		fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
2055 	skb_dst_drop(skb);
2056 	skb_dst_set(skb,
2057 		    ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags));
2058 }
2059 
2060 static struct rt6_info *ip6_pol_route_output(struct net *net,
2061 					     struct fib6_table *table,
2062 					     struct flowi6 *fl6,
2063 					     const struct sk_buff *skb,
2064 					     int flags)
2065 {
2066 	return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
2067 }
2068 
2069 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk,
2070 					 struct flowi6 *fl6, int flags)
2071 {
2072 	bool any_src;
2073 
2074 	if (ipv6_addr_type(&fl6->daddr) &
2075 	    (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) {
2076 		struct dst_entry *dst;
2077 
2078 		dst = l3mdev_link_scope_lookup(net, fl6);
2079 		if (dst)
2080 			return dst;
2081 	}
2082 
2083 	fl6->flowi6_iif = LOOPBACK_IFINDEX;
2084 
2085 	any_src = ipv6_addr_any(&fl6->saddr);
2086 	if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
2087 	    (fl6->flowi6_oif && any_src))
2088 		flags |= RT6_LOOKUP_F_IFACE;
2089 
2090 	if (!any_src)
2091 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2092 	else if (sk)
2093 		flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
2094 
2095 	return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
2096 }
2097 EXPORT_SYMBOL_GPL(ip6_route_output_flags);
2098 
2099 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2100 {
2101 	struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
2102 	struct net_device *loopback_dev = net->loopback_dev;
2103 	struct dst_entry *new = NULL;
2104 
2105 	rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
2106 		       DST_OBSOLETE_DEAD, 0);
2107 	if (rt) {
2108 		rt6_info_init(rt);
2109 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
2110 
2111 		new = &rt->dst;
2112 		new->__use = 1;
2113 		new->input = dst_discard;
2114 		new->output = dst_discard_out;
2115 
2116 		dst_copy_metrics(new, &ort->dst);
2117 
2118 		rt->rt6i_idev = in6_dev_get(loopback_dev);
2119 		rt->rt6i_gateway = ort->rt6i_gateway;
2120 		rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
2121 
2122 		memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
2123 #ifdef CONFIG_IPV6_SUBTREES
2124 		memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
2125 #endif
2126 	}
2127 
2128 	dst_release(dst_orig);
2129 	return new ? new : ERR_PTR(-ENOMEM);
2130 }
2131 
2132 /*
2133  *	Destination cache support functions
2134  */
2135 
2136 static bool fib6_check(struct fib6_info *f6i, u32 cookie)
2137 {
2138 	u32 rt_cookie = 0;
2139 
2140 	if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
2141 		return false;
2142 
2143 	if (fib6_check_expired(f6i))
2144 		return false;
2145 
2146 	return true;
2147 }
2148 
2149 static struct dst_entry *rt6_check(struct rt6_info *rt,
2150 				   struct fib6_info *from,
2151 				   u32 cookie)
2152 {
2153 	u32 rt_cookie = 0;
2154 
2155 	if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) ||
2156 	    rt_cookie != cookie)
2157 		return NULL;
2158 
2159 	if (rt6_check_expired(rt))
2160 		return NULL;
2161 
2162 	return &rt->dst;
2163 }
2164 
2165 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
2166 					    struct fib6_info *from,
2167 					    u32 cookie)
2168 {
2169 	if (!__rt6_check_expired(rt) &&
2170 	    rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
2171 	    fib6_check(from, cookie))
2172 		return &rt->dst;
2173 	else
2174 		return NULL;
2175 }
2176 
2177 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
2178 {
2179 	struct dst_entry *dst_ret;
2180 	struct fib6_info *from;
2181 	struct rt6_info *rt;
2182 
2183 	rt = container_of(dst, struct rt6_info, dst);
2184 
2185 	rcu_read_lock();
2186 
2187 	/* All IPV6 dsts are created with ->obsolete set to the value
2188 	 * DST_OBSOLETE_FORCE_CHK which forces validation calls down
2189 	 * into this function always.
2190 	 */
2191 
2192 	from = rcu_dereference(rt->from);
2193 
2194 	if (from && (rt->rt6i_flags & RTF_PCPU ||
2195 	    unlikely(!list_empty(&rt->rt6i_uncached))))
2196 		dst_ret = rt6_dst_from_check(rt, from, cookie);
2197 	else
2198 		dst_ret = rt6_check(rt, from, cookie);
2199 
2200 	rcu_read_unlock();
2201 
2202 	return dst_ret;
2203 }
2204 
2205 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
2206 {
2207 	struct rt6_info *rt = (struct rt6_info *) dst;
2208 
2209 	if (rt) {
2210 		if (rt->rt6i_flags & RTF_CACHE) {
2211 			rcu_read_lock();
2212 			if (rt6_check_expired(rt)) {
2213 				rt6_remove_exception_rt(rt);
2214 				dst = NULL;
2215 			}
2216 			rcu_read_unlock();
2217 		} else {
2218 			dst_release(dst);
2219 			dst = NULL;
2220 		}
2221 	}
2222 	return dst;
2223 }
2224 
2225 static void ip6_link_failure(struct sk_buff *skb)
2226 {
2227 	struct rt6_info *rt;
2228 
2229 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
2230 
2231 	rt = (struct rt6_info *) skb_dst(skb);
2232 	if (rt) {
2233 		rcu_read_lock();
2234 		if (rt->rt6i_flags & RTF_CACHE) {
2235 			if (dst_hold_safe(&rt->dst))
2236 				rt6_remove_exception_rt(rt);
2237 		} else {
2238 			struct fib6_info *from;
2239 			struct fib6_node *fn;
2240 
2241 			from = rcu_dereference(rt->from);
2242 			if (from) {
2243 				fn = rcu_dereference(from->fib6_node);
2244 				if (fn && (rt->rt6i_flags & RTF_DEFAULT))
2245 					fn->fn_sernum = -1;
2246 			}
2247 		}
2248 		rcu_read_unlock();
2249 	}
2250 }
2251 
2252 static void rt6_update_expires(struct rt6_info *rt0, int timeout)
2253 {
2254 	if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
2255 		struct fib6_info *from;
2256 
2257 		rcu_read_lock();
2258 		from = rcu_dereference(rt0->from);
2259 		if (from)
2260 			rt0->dst.expires = from->expires;
2261 		rcu_read_unlock();
2262 	}
2263 
2264 	dst_set_expires(&rt0->dst, timeout);
2265 	rt0->rt6i_flags |= RTF_EXPIRES;
2266 }
2267 
2268 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
2269 {
2270 	struct net *net = dev_net(rt->dst.dev);
2271 
2272 	dst_metric_set(&rt->dst, RTAX_MTU, mtu);
2273 	rt->rt6i_flags |= RTF_MODIFIED;
2274 	rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
2275 }
2276 
2277 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
2278 {
2279 	bool from_set;
2280 
2281 	rcu_read_lock();
2282 	from_set = !!rcu_dereference(rt->from);
2283 	rcu_read_unlock();
2284 
2285 	return !(rt->rt6i_flags & RTF_CACHE) &&
2286 		(rt->rt6i_flags & RTF_PCPU || from_set);
2287 }
2288 
2289 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
2290 				 const struct ipv6hdr *iph, u32 mtu)
2291 {
2292 	const struct in6_addr *daddr, *saddr;
2293 	struct rt6_info *rt6 = (struct rt6_info *)dst;
2294 
2295 	if (dst_metric_locked(dst, RTAX_MTU))
2296 		return;
2297 
2298 	if (iph) {
2299 		daddr = &iph->daddr;
2300 		saddr = &iph->saddr;
2301 	} else if (sk) {
2302 		daddr = &sk->sk_v6_daddr;
2303 		saddr = &inet6_sk(sk)->saddr;
2304 	} else {
2305 		daddr = NULL;
2306 		saddr = NULL;
2307 	}
2308 	dst_confirm_neigh(dst, daddr);
2309 	mtu = max_t(u32, mtu, IPV6_MIN_MTU);
2310 	if (mtu >= dst_mtu(dst))
2311 		return;
2312 
2313 	if (!rt6_cache_allowed_for_pmtu(rt6)) {
2314 		rt6_do_update_pmtu(rt6, mtu);
2315 		/* update rt6_ex->stamp for cache */
2316 		if (rt6->rt6i_flags & RTF_CACHE)
2317 			rt6_update_exception_stamp_rt(rt6);
2318 	} else if (daddr) {
2319 		struct fib6_info *from;
2320 		struct rt6_info *nrt6;
2321 
2322 		rcu_read_lock();
2323 		from = rcu_dereference(rt6->from);
2324 		nrt6 = ip6_rt_cache_alloc(from, daddr, saddr);
2325 		if (nrt6) {
2326 			rt6_do_update_pmtu(nrt6, mtu);
2327 			if (rt6_insert_exception(nrt6, from))
2328 				dst_release_immediate(&nrt6->dst);
2329 		}
2330 		rcu_read_unlock();
2331 	}
2332 }
2333 
2334 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
2335 			       struct sk_buff *skb, u32 mtu)
2336 {
2337 	__ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu);
2338 }
2339 
2340 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
2341 		     int oif, u32 mark, kuid_t uid)
2342 {
2343 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2344 	struct dst_entry *dst;
2345 	struct flowi6 fl6 = {
2346 		.flowi6_oif = oif,
2347 		.flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark),
2348 		.daddr = iph->daddr,
2349 		.saddr = iph->saddr,
2350 		.flowlabel = ip6_flowinfo(iph),
2351 		.flowi6_uid = uid,
2352 	};
2353 
2354 	dst = ip6_route_output(net, NULL, &fl6);
2355 	if (!dst->error)
2356 		__ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu));
2357 	dst_release(dst);
2358 }
2359 EXPORT_SYMBOL_GPL(ip6_update_pmtu);
2360 
2361 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
2362 {
2363 	struct dst_entry *dst;
2364 
2365 	ip6_update_pmtu(skb, sock_net(sk), mtu,
2366 			sk->sk_bound_dev_if, sk->sk_mark, sk->sk_uid);
2367 
2368 	dst = __sk_dst_get(sk);
2369 	if (!dst || !dst->obsolete ||
2370 	    dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
2371 		return;
2372 
2373 	bh_lock_sock(sk);
2374 	if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
2375 		ip6_datagram_dst_update(sk, false);
2376 	bh_unlock_sock(sk);
2377 }
2378 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
2379 
2380 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
2381 			   const struct flowi6 *fl6)
2382 {
2383 #ifdef CONFIG_IPV6_SUBTREES
2384 	struct ipv6_pinfo *np = inet6_sk(sk);
2385 #endif
2386 
2387 	ip6_dst_store(sk, dst,
2388 		      ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
2389 		      &sk->sk_v6_daddr : NULL,
2390 #ifdef CONFIG_IPV6_SUBTREES
2391 		      ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
2392 		      &np->saddr :
2393 #endif
2394 		      NULL);
2395 }
2396 
2397 /* Handle redirects */
2398 struct ip6rd_flowi {
2399 	struct flowi6 fl6;
2400 	struct in6_addr gateway;
2401 };
2402 
2403 static struct rt6_info *__ip6_route_redirect(struct net *net,
2404 					     struct fib6_table *table,
2405 					     struct flowi6 *fl6,
2406 					     const struct sk_buff *skb,
2407 					     int flags)
2408 {
2409 	struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
2410 	struct rt6_info *ret = NULL, *rt_cache;
2411 	struct fib6_info *rt;
2412 	struct fib6_node *fn;
2413 
2414 	/* Get the "current" route for this destination and
2415 	 * check if the redirect has come from appropriate router.
2416 	 *
2417 	 * RFC 4861 specifies that redirects should only be
2418 	 * accepted if they come from the nexthop to the target.
2419 	 * Due to the way the routes are chosen, this notion
2420 	 * is a bit fuzzy and one might need to check all possible
2421 	 * routes.
2422 	 */
2423 
2424 	rcu_read_lock();
2425 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
2426 restart:
2427 	for_each_fib6_node_rt_rcu(fn) {
2428 		if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
2429 			continue;
2430 		if (fib6_check_expired(rt))
2431 			continue;
2432 		if (rt->fib6_flags & RTF_REJECT)
2433 			break;
2434 		if (!(rt->fib6_flags & RTF_GATEWAY))
2435 			continue;
2436 		if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex)
2437 			continue;
2438 		/* rt_cache's gateway might be different from its 'parent'
2439 		 * in the case of an ip redirect.
2440 		 * So we keep searching in the exception table if the gateway
2441 		 * is different.
2442 		 */
2443 		if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) {
2444 			rt_cache = rt6_find_cached_rt(rt,
2445 						      &fl6->daddr,
2446 						      &fl6->saddr);
2447 			if (rt_cache &&
2448 			    ipv6_addr_equal(&rdfl->gateway,
2449 					    &rt_cache->rt6i_gateway)) {
2450 				ret = rt_cache;
2451 				break;
2452 			}
2453 			continue;
2454 		}
2455 		break;
2456 	}
2457 
2458 	if (!rt)
2459 		rt = net->ipv6.fib6_null_entry;
2460 	else if (rt->fib6_flags & RTF_REJECT) {
2461 		ret = net->ipv6.ip6_null_entry;
2462 		goto out;
2463 	}
2464 
2465 	if (rt == net->ipv6.fib6_null_entry) {
2466 		fn = fib6_backtrack(fn, &fl6->saddr);
2467 		if (fn)
2468 			goto restart;
2469 	}
2470 
2471 out:
2472 	if (ret)
2473 		ip6_hold_safe(net, &ret, true);
2474 	else
2475 		ret = ip6_create_rt_rcu(rt);
2476 
2477 	rcu_read_unlock();
2478 
2479 	trace_fib6_table_lookup(net, rt, table, fl6);
2480 	return ret;
2481 };
2482 
2483 static struct dst_entry *ip6_route_redirect(struct net *net,
2484 					    const struct flowi6 *fl6,
2485 					    const struct sk_buff *skb,
2486 					    const struct in6_addr *gateway)
2487 {
2488 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2489 	struct ip6rd_flowi rdfl;
2490 
2491 	rdfl.fl6 = *fl6;
2492 	rdfl.gateway = *gateway;
2493 
2494 	return fib6_rule_lookup(net, &rdfl.fl6, skb,
2495 				flags, __ip6_route_redirect);
2496 }
2497 
2498 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
2499 		  kuid_t uid)
2500 {
2501 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2502 	struct dst_entry *dst;
2503 	struct flowi6 fl6 = {
2504 		.flowi6_iif = LOOPBACK_IFINDEX,
2505 		.flowi6_oif = oif,
2506 		.flowi6_mark = mark,
2507 		.daddr = iph->daddr,
2508 		.saddr = iph->saddr,
2509 		.flowlabel = ip6_flowinfo(iph),
2510 		.flowi6_uid = uid,
2511 	};
2512 
2513 	dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
2514 	rt6_do_redirect(dst, NULL, skb);
2515 	dst_release(dst);
2516 }
2517 EXPORT_SYMBOL_GPL(ip6_redirect);
2518 
2519 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif)
2520 {
2521 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2522 	const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
2523 	struct dst_entry *dst;
2524 	struct flowi6 fl6 = {
2525 		.flowi6_iif = LOOPBACK_IFINDEX,
2526 		.flowi6_oif = oif,
2527 		.daddr = msg->dest,
2528 		.saddr = iph->daddr,
2529 		.flowi6_uid = sock_net_uid(net, NULL),
2530 	};
2531 
2532 	dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
2533 	rt6_do_redirect(dst, NULL, skb);
2534 	dst_release(dst);
2535 }
2536 
2537 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
2538 {
2539 	ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
2540 		     sk->sk_uid);
2541 }
2542 EXPORT_SYMBOL_GPL(ip6_sk_redirect);
2543 
2544 static unsigned int ip6_default_advmss(const struct dst_entry *dst)
2545 {
2546 	struct net_device *dev = dst->dev;
2547 	unsigned int mtu = dst_mtu(dst);
2548 	struct net *net = dev_net(dev);
2549 
2550 	mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
2551 
2552 	if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
2553 		mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
2554 
2555 	/*
2556 	 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
2557 	 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
2558 	 * IPV6_MAXPLEN is also valid and means: "any MSS,
2559 	 * rely only on pmtu discovery"
2560 	 */
2561 	if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
2562 		mtu = IPV6_MAXPLEN;
2563 	return mtu;
2564 }
2565 
2566 static unsigned int ip6_mtu(const struct dst_entry *dst)
2567 {
2568 	struct inet6_dev *idev;
2569 	unsigned int mtu;
2570 
2571 	mtu = dst_metric_raw(dst, RTAX_MTU);
2572 	if (mtu)
2573 		goto out;
2574 
2575 	mtu = IPV6_MIN_MTU;
2576 
2577 	rcu_read_lock();
2578 	idev = __in6_dev_get(dst->dev);
2579 	if (idev)
2580 		mtu = idev->cnf.mtu6;
2581 	rcu_read_unlock();
2582 
2583 out:
2584 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2585 
2586 	return mtu - lwtunnel_headroom(dst->lwtstate, mtu);
2587 }
2588 
2589 /* MTU selection:
2590  * 1. mtu on route is locked - use it
2591  * 2. mtu from nexthop exception
2592  * 3. mtu from egress device
2593  *
2594  * based on ip6_dst_mtu_forward and exception logic of
2595  * rt6_find_cached_rt; called with rcu_read_lock
2596  */
2597 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr,
2598 		      struct in6_addr *saddr)
2599 {
2600 	struct rt6_exception_bucket *bucket;
2601 	struct rt6_exception *rt6_ex;
2602 	struct in6_addr *src_key;
2603 	struct inet6_dev *idev;
2604 	u32 mtu = 0;
2605 
2606 	if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
2607 		mtu = f6i->fib6_pmtu;
2608 		if (mtu)
2609 			goto out;
2610 	}
2611 
2612 	src_key = NULL;
2613 #ifdef CONFIG_IPV6_SUBTREES
2614 	if (f6i->fib6_src.plen)
2615 		src_key = saddr;
2616 #endif
2617 
2618 	bucket = rcu_dereference(f6i->rt6i_exception_bucket);
2619 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
2620 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
2621 		mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU);
2622 
2623 	if (likely(!mtu)) {
2624 		struct net_device *dev = fib6_info_nh_dev(f6i);
2625 
2626 		mtu = IPV6_MIN_MTU;
2627 		idev = __in6_dev_get(dev);
2628 		if (idev && idev->cnf.mtu6 > mtu)
2629 			mtu = idev->cnf.mtu6;
2630 	}
2631 
2632 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2633 out:
2634 	return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu);
2635 }
2636 
2637 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
2638 				  struct flowi6 *fl6)
2639 {
2640 	struct dst_entry *dst;
2641 	struct rt6_info *rt;
2642 	struct inet6_dev *idev = in6_dev_get(dev);
2643 	struct net *net = dev_net(dev);
2644 
2645 	if (unlikely(!idev))
2646 		return ERR_PTR(-ENODEV);
2647 
2648 	rt = ip6_dst_alloc(net, dev, 0);
2649 	if (unlikely(!rt)) {
2650 		in6_dev_put(idev);
2651 		dst = ERR_PTR(-ENOMEM);
2652 		goto out;
2653 	}
2654 
2655 	rt->dst.flags |= DST_HOST;
2656 	rt->dst.input = ip6_input;
2657 	rt->dst.output  = ip6_output;
2658 	rt->rt6i_gateway  = fl6->daddr;
2659 	rt->rt6i_dst.addr = fl6->daddr;
2660 	rt->rt6i_dst.plen = 128;
2661 	rt->rt6i_idev     = idev;
2662 	dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
2663 
2664 	/* Add this dst into uncached_list so that rt6_disable_ip() can
2665 	 * do proper release of the net_device
2666 	 */
2667 	rt6_uncached_list_add(rt);
2668 	atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
2669 
2670 	dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
2671 
2672 out:
2673 	return dst;
2674 }
2675 
2676 static int ip6_dst_gc(struct dst_ops *ops)
2677 {
2678 	struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
2679 	int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
2680 	int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
2681 	int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
2682 	int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
2683 	unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
2684 	int entries;
2685 
2686 	entries = dst_entries_get_fast(ops);
2687 	if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
2688 	    entries <= rt_max_size)
2689 		goto out;
2690 
2691 	net->ipv6.ip6_rt_gc_expire++;
2692 	fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true);
2693 	entries = dst_entries_get_slow(ops);
2694 	if (entries < ops->gc_thresh)
2695 		net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
2696 out:
2697 	net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
2698 	return entries > rt_max_size;
2699 }
2700 
2701 static struct rt6_info *ip6_nh_lookup_table(struct net *net,
2702 					    struct fib6_config *cfg,
2703 					    const struct in6_addr *gw_addr,
2704 					    u32 tbid, int flags)
2705 {
2706 	struct flowi6 fl6 = {
2707 		.flowi6_oif = cfg->fc_ifindex,
2708 		.daddr = *gw_addr,
2709 		.saddr = cfg->fc_prefsrc,
2710 	};
2711 	struct fib6_table *table;
2712 	struct rt6_info *rt;
2713 
2714 	table = fib6_get_table(net, tbid);
2715 	if (!table)
2716 		return NULL;
2717 
2718 	if (!ipv6_addr_any(&cfg->fc_prefsrc))
2719 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2720 
2721 	flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
2722 	rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags);
2723 
2724 	/* if table lookup failed, fall back to full lookup */
2725 	if (rt == net->ipv6.ip6_null_entry) {
2726 		ip6_rt_put(rt);
2727 		rt = NULL;
2728 	}
2729 
2730 	return rt;
2731 }
2732 
2733 static int ip6_route_check_nh_onlink(struct net *net,
2734 				     struct fib6_config *cfg,
2735 				     const struct net_device *dev,
2736 				     struct netlink_ext_ack *extack)
2737 {
2738 	u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN;
2739 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2740 	u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT;
2741 	struct rt6_info *grt;
2742 	int err;
2743 
2744 	err = 0;
2745 	grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0);
2746 	if (grt) {
2747 		if (!grt->dst.error &&
2748 		    (grt->rt6i_flags & flags || dev != grt->dst.dev)) {
2749 			NL_SET_ERR_MSG(extack,
2750 				       "Nexthop has invalid gateway or device mismatch");
2751 			err = -EINVAL;
2752 		}
2753 
2754 		ip6_rt_put(grt);
2755 	}
2756 
2757 	return err;
2758 }
2759 
2760 static int ip6_route_check_nh(struct net *net,
2761 			      struct fib6_config *cfg,
2762 			      struct net_device **_dev,
2763 			      struct inet6_dev **idev)
2764 {
2765 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2766 	struct net_device *dev = _dev ? *_dev : NULL;
2767 	struct rt6_info *grt = NULL;
2768 	int err = -EHOSTUNREACH;
2769 
2770 	if (cfg->fc_table) {
2771 		int flags = RT6_LOOKUP_F_IFACE;
2772 
2773 		grt = ip6_nh_lookup_table(net, cfg, gw_addr,
2774 					  cfg->fc_table, flags);
2775 		if (grt) {
2776 			if (grt->rt6i_flags & RTF_GATEWAY ||
2777 			    (dev && dev != grt->dst.dev)) {
2778 				ip6_rt_put(grt);
2779 				grt = NULL;
2780 			}
2781 		}
2782 	}
2783 
2784 	if (!grt)
2785 		grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1);
2786 
2787 	if (!grt)
2788 		goto out;
2789 
2790 	if (dev) {
2791 		if (dev != grt->dst.dev) {
2792 			ip6_rt_put(grt);
2793 			goto out;
2794 		}
2795 	} else {
2796 		*_dev = dev = grt->dst.dev;
2797 		*idev = grt->rt6i_idev;
2798 		dev_hold(dev);
2799 		in6_dev_hold(grt->rt6i_idev);
2800 	}
2801 
2802 	if (!(grt->rt6i_flags & RTF_GATEWAY))
2803 		err = 0;
2804 
2805 	ip6_rt_put(grt);
2806 
2807 out:
2808 	return err;
2809 }
2810 
2811 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
2812 			   struct net_device **_dev, struct inet6_dev **idev,
2813 			   struct netlink_ext_ack *extack)
2814 {
2815 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2816 	int gwa_type = ipv6_addr_type(gw_addr);
2817 	bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
2818 	const struct net_device *dev = *_dev;
2819 	bool need_addr_check = !dev;
2820 	int err = -EINVAL;
2821 
2822 	/* if gw_addr is local we will fail to detect this in case
2823 	 * address is still TENTATIVE (DAD in progress). rt6_lookup()
2824 	 * will return already-added prefix route via interface that
2825 	 * prefix route was assigned to, which might be non-loopback.
2826 	 */
2827 	if (dev &&
2828 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2829 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2830 		goto out;
2831 	}
2832 
2833 	if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
2834 		/* IPv6 strictly inhibits using not link-local
2835 		 * addresses as nexthop address.
2836 		 * Otherwise, router will not able to send redirects.
2837 		 * It is very good, but in some (rare!) circumstances
2838 		 * (SIT, PtP, NBMA NOARP links) it is handy to allow
2839 		 * some exceptions. --ANK
2840 		 * We allow IPv4-mapped nexthops to support RFC4798-type
2841 		 * addressing
2842 		 */
2843 		if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
2844 			NL_SET_ERR_MSG(extack, "Invalid gateway address");
2845 			goto out;
2846 		}
2847 
2848 		if (cfg->fc_flags & RTNH_F_ONLINK)
2849 			err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
2850 		else
2851 			err = ip6_route_check_nh(net, cfg, _dev, idev);
2852 
2853 		if (err)
2854 			goto out;
2855 	}
2856 
2857 	/* reload in case device was changed */
2858 	dev = *_dev;
2859 
2860 	err = -EINVAL;
2861 	if (!dev) {
2862 		NL_SET_ERR_MSG(extack, "Egress device not specified");
2863 		goto out;
2864 	} else if (dev->flags & IFF_LOOPBACK) {
2865 		NL_SET_ERR_MSG(extack,
2866 			       "Egress device can not be loopback device for this route");
2867 		goto out;
2868 	}
2869 
2870 	/* if we did not check gw_addr above, do so now that the
2871 	 * egress device has been resolved.
2872 	 */
2873 	if (need_addr_check &&
2874 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2875 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2876 		goto out;
2877 	}
2878 
2879 	err = 0;
2880 out:
2881 	return err;
2882 }
2883 
2884 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
2885 					      gfp_t gfp_flags,
2886 					      struct netlink_ext_ack *extack)
2887 {
2888 	struct net *net = cfg->fc_nlinfo.nl_net;
2889 	struct fib6_info *rt = NULL;
2890 	struct net_device *dev = NULL;
2891 	struct inet6_dev *idev = NULL;
2892 	struct fib6_table *table;
2893 	int addr_type;
2894 	int err = -EINVAL;
2895 
2896 	/* RTF_PCPU is an internal flag; can not be set by userspace */
2897 	if (cfg->fc_flags & RTF_PCPU) {
2898 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
2899 		goto out;
2900 	}
2901 
2902 	/* RTF_CACHE is an internal flag; can not be set by userspace */
2903 	if (cfg->fc_flags & RTF_CACHE) {
2904 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
2905 		goto out;
2906 	}
2907 
2908 	if (cfg->fc_type > RTN_MAX) {
2909 		NL_SET_ERR_MSG(extack, "Invalid route type");
2910 		goto out;
2911 	}
2912 
2913 	if (cfg->fc_dst_len > 128) {
2914 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
2915 		goto out;
2916 	}
2917 	if (cfg->fc_src_len > 128) {
2918 		NL_SET_ERR_MSG(extack, "Invalid source address length");
2919 		goto out;
2920 	}
2921 #ifndef CONFIG_IPV6_SUBTREES
2922 	if (cfg->fc_src_len) {
2923 		NL_SET_ERR_MSG(extack,
2924 			       "Specifying source address requires IPV6_SUBTREES to be enabled");
2925 		goto out;
2926 	}
2927 #endif
2928 	if (cfg->fc_ifindex) {
2929 		err = -ENODEV;
2930 		dev = dev_get_by_index(net, cfg->fc_ifindex);
2931 		if (!dev)
2932 			goto out;
2933 		idev = in6_dev_get(dev);
2934 		if (!idev)
2935 			goto out;
2936 	}
2937 
2938 	if (cfg->fc_metric == 0)
2939 		cfg->fc_metric = IP6_RT_PRIO_USER;
2940 
2941 	if (cfg->fc_flags & RTNH_F_ONLINK) {
2942 		if (!dev) {
2943 			NL_SET_ERR_MSG(extack,
2944 				       "Nexthop device required for onlink");
2945 			err = -ENODEV;
2946 			goto out;
2947 		}
2948 
2949 		if (!(dev->flags & IFF_UP)) {
2950 			NL_SET_ERR_MSG(extack, "Nexthop device is not up");
2951 			err = -ENETDOWN;
2952 			goto out;
2953 		}
2954 	}
2955 
2956 	err = -ENOBUFS;
2957 	if (cfg->fc_nlinfo.nlh &&
2958 	    !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
2959 		table = fib6_get_table(net, cfg->fc_table);
2960 		if (!table) {
2961 			pr_warn("NLM_F_CREATE should be specified when creating new route\n");
2962 			table = fib6_new_table(net, cfg->fc_table);
2963 		}
2964 	} else {
2965 		table = fib6_new_table(net, cfg->fc_table);
2966 	}
2967 
2968 	if (!table)
2969 		goto out;
2970 
2971 	err = -ENOMEM;
2972 	rt = fib6_info_alloc(gfp_flags);
2973 	if (!rt)
2974 		goto out;
2975 
2976 	rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len);
2977 	if (IS_ERR(rt->fib6_metrics)) {
2978 		err = PTR_ERR(rt->fib6_metrics);
2979 		/* Do not leave garbage there. */
2980 		rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics;
2981 		goto out;
2982 	}
2983 
2984 	if (cfg->fc_flags & RTF_ADDRCONF)
2985 		rt->dst_nocount = true;
2986 
2987 	if (cfg->fc_flags & RTF_EXPIRES)
2988 		fib6_set_expires(rt, jiffies +
2989 				clock_t_to_jiffies(cfg->fc_expires));
2990 	else
2991 		fib6_clean_expires(rt);
2992 
2993 	if (cfg->fc_protocol == RTPROT_UNSPEC)
2994 		cfg->fc_protocol = RTPROT_BOOT;
2995 	rt->fib6_protocol = cfg->fc_protocol;
2996 
2997 	addr_type = ipv6_addr_type(&cfg->fc_dst);
2998 
2999 	if (cfg->fc_encap) {
3000 		struct lwtunnel_state *lwtstate;
3001 
3002 		err = lwtunnel_build_state(cfg->fc_encap_type,
3003 					   cfg->fc_encap, AF_INET6, cfg,
3004 					   &lwtstate, extack);
3005 		if (err)
3006 			goto out;
3007 		rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate);
3008 	}
3009 
3010 	ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
3011 	rt->fib6_dst.plen = cfg->fc_dst_len;
3012 	if (rt->fib6_dst.plen == 128)
3013 		rt->dst_host = true;
3014 
3015 #ifdef CONFIG_IPV6_SUBTREES
3016 	ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
3017 	rt->fib6_src.plen = cfg->fc_src_len;
3018 #endif
3019 
3020 	rt->fib6_metric = cfg->fc_metric;
3021 	rt->fib6_nh.nh_weight = 1;
3022 
3023 	rt->fib6_type = cfg->fc_type;
3024 
3025 	/* We cannot add true routes via loopback here,
3026 	   they would result in kernel looping; promote them to reject routes
3027 	 */
3028 	if ((cfg->fc_flags & RTF_REJECT) ||
3029 	    (dev && (dev->flags & IFF_LOOPBACK) &&
3030 	     !(addr_type & IPV6_ADDR_LOOPBACK) &&
3031 	     !(cfg->fc_flags & RTF_LOCAL))) {
3032 		/* hold loopback dev/idev if we haven't done so. */
3033 		if (dev != net->loopback_dev) {
3034 			if (dev) {
3035 				dev_put(dev);
3036 				in6_dev_put(idev);
3037 			}
3038 			dev = net->loopback_dev;
3039 			dev_hold(dev);
3040 			idev = in6_dev_get(dev);
3041 			if (!idev) {
3042 				err = -ENODEV;
3043 				goto out;
3044 			}
3045 		}
3046 		rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP;
3047 		goto install_route;
3048 	}
3049 
3050 	if (cfg->fc_flags & RTF_GATEWAY) {
3051 		err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
3052 		if (err)
3053 			goto out;
3054 
3055 		rt->fib6_nh.nh_gw = cfg->fc_gateway;
3056 	}
3057 
3058 	err = -ENODEV;
3059 	if (!dev)
3060 		goto out;
3061 
3062 	if (idev->cnf.disable_ipv6) {
3063 		NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
3064 		err = -EACCES;
3065 		goto out;
3066 	}
3067 
3068 	if (!(dev->flags & IFF_UP)) {
3069 		NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3070 		err = -ENETDOWN;
3071 		goto out;
3072 	}
3073 
3074 	if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
3075 		if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
3076 			NL_SET_ERR_MSG(extack, "Invalid source address");
3077 			err = -EINVAL;
3078 			goto out;
3079 		}
3080 		rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
3081 		rt->fib6_prefsrc.plen = 128;
3082 	} else
3083 		rt->fib6_prefsrc.plen = 0;
3084 
3085 	rt->fib6_flags = cfg->fc_flags;
3086 
3087 install_route:
3088 	if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
3089 	    !netif_carrier_ok(dev))
3090 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
3091 	rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK);
3092 	rt->fib6_nh.nh_dev = dev;
3093 	rt->fib6_table = table;
3094 
3095 	if (idev)
3096 		in6_dev_put(idev);
3097 
3098 	return rt;
3099 out:
3100 	if (dev)
3101 		dev_put(dev);
3102 	if (idev)
3103 		in6_dev_put(idev);
3104 
3105 	fib6_info_release(rt);
3106 	return ERR_PTR(err);
3107 }
3108 
3109 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
3110 		  struct netlink_ext_ack *extack)
3111 {
3112 	struct fib6_info *rt;
3113 	int err;
3114 
3115 	rt = ip6_route_info_create(cfg, gfp_flags, extack);
3116 	if (IS_ERR(rt))
3117 		return PTR_ERR(rt);
3118 
3119 	err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
3120 	fib6_info_release(rt);
3121 
3122 	return err;
3123 }
3124 
3125 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
3126 {
3127 	struct net *net = info->nl_net;
3128 	struct fib6_table *table;
3129 	int err;
3130 
3131 	if (rt == net->ipv6.fib6_null_entry) {
3132 		err = -ENOENT;
3133 		goto out;
3134 	}
3135 
3136 	table = rt->fib6_table;
3137 	spin_lock_bh(&table->tb6_lock);
3138 	err = fib6_del(rt, info);
3139 	spin_unlock_bh(&table->tb6_lock);
3140 
3141 out:
3142 	fib6_info_release(rt);
3143 	return err;
3144 }
3145 
3146 int ip6_del_rt(struct net *net, struct fib6_info *rt)
3147 {
3148 	struct nl_info info = { .nl_net = net };
3149 
3150 	return __ip6_del_rt(rt, &info);
3151 }
3152 
3153 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
3154 {
3155 	struct nl_info *info = &cfg->fc_nlinfo;
3156 	struct net *net = info->nl_net;
3157 	struct sk_buff *skb = NULL;
3158 	struct fib6_table *table;
3159 	int err = -ENOENT;
3160 
3161 	if (rt == net->ipv6.fib6_null_entry)
3162 		goto out_put;
3163 	table = rt->fib6_table;
3164 	spin_lock_bh(&table->tb6_lock);
3165 
3166 	if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
3167 		struct fib6_info *sibling, *next_sibling;
3168 
3169 		/* prefer to send a single notification with all hops */
3170 		skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
3171 		if (skb) {
3172 			u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
3173 
3174 			if (rt6_fill_node(net, skb, rt, NULL,
3175 					  NULL, NULL, 0, RTM_DELROUTE,
3176 					  info->portid, seq, 0) < 0) {
3177 				kfree_skb(skb);
3178 				skb = NULL;
3179 			} else
3180 				info->skip_notify = 1;
3181 		}
3182 
3183 		list_for_each_entry_safe(sibling, next_sibling,
3184 					 &rt->fib6_siblings,
3185 					 fib6_siblings) {
3186 			err = fib6_del(sibling, info);
3187 			if (err)
3188 				goto out_unlock;
3189 		}
3190 	}
3191 
3192 	err = fib6_del(rt, info);
3193 out_unlock:
3194 	spin_unlock_bh(&table->tb6_lock);
3195 out_put:
3196 	fib6_info_release(rt);
3197 
3198 	if (skb) {
3199 		rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
3200 			    info->nlh, gfp_any());
3201 	}
3202 	return err;
3203 }
3204 
3205 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
3206 {
3207 	int rc = -ESRCH;
3208 
3209 	if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
3210 		goto out;
3211 
3212 	if (cfg->fc_flags & RTF_GATEWAY &&
3213 	    !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
3214 		goto out;
3215 	if (dst_hold_safe(&rt->dst))
3216 		rc = rt6_remove_exception_rt(rt);
3217 out:
3218 	return rc;
3219 }
3220 
3221 static int ip6_route_del(struct fib6_config *cfg,
3222 			 struct netlink_ext_ack *extack)
3223 {
3224 	struct rt6_info *rt_cache;
3225 	struct fib6_table *table;
3226 	struct fib6_info *rt;
3227 	struct fib6_node *fn;
3228 	int err = -ESRCH;
3229 
3230 	table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
3231 	if (!table) {
3232 		NL_SET_ERR_MSG(extack, "FIB table does not exist");
3233 		return err;
3234 	}
3235 
3236 	rcu_read_lock();
3237 
3238 	fn = fib6_locate(&table->tb6_root,
3239 			 &cfg->fc_dst, cfg->fc_dst_len,
3240 			 &cfg->fc_src, cfg->fc_src_len,
3241 			 !(cfg->fc_flags & RTF_CACHE));
3242 
3243 	if (fn) {
3244 		for_each_fib6_node_rt_rcu(fn) {
3245 			if (cfg->fc_flags & RTF_CACHE) {
3246 				int rc;
3247 
3248 				rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst,
3249 							      &cfg->fc_src);
3250 				if (rt_cache) {
3251 					rc = ip6_del_cached_rt(rt_cache, cfg);
3252 					if (rc != -ESRCH) {
3253 						rcu_read_unlock();
3254 						return rc;
3255 					}
3256 				}
3257 				continue;
3258 			}
3259 			if (cfg->fc_ifindex &&
3260 			    (!rt->fib6_nh.nh_dev ||
3261 			     rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex))
3262 				continue;
3263 			if (cfg->fc_flags & RTF_GATEWAY &&
3264 			    !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw))
3265 				continue;
3266 			if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
3267 				continue;
3268 			if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol)
3269 				continue;
3270 			if (!fib6_info_hold_safe(rt))
3271 				continue;
3272 			rcu_read_unlock();
3273 
3274 			/* if gateway was specified only delete the one hop */
3275 			if (cfg->fc_flags & RTF_GATEWAY)
3276 				return __ip6_del_rt(rt, &cfg->fc_nlinfo);
3277 
3278 			return __ip6_del_rt_siblings(rt, cfg);
3279 		}
3280 	}
3281 	rcu_read_unlock();
3282 
3283 	return err;
3284 }
3285 
3286 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
3287 {
3288 	struct netevent_redirect netevent;
3289 	struct rt6_info *rt, *nrt = NULL;
3290 	struct ndisc_options ndopts;
3291 	struct inet6_dev *in6_dev;
3292 	struct neighbour *neigh;
3293 	struct fib6_info *from;
3294 	struct rd_msg *msg;
3295 	int optlen, on_link;
3296 	u8 *lladdr;
3297 
3298 	optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
3299 	optlen -= sizeof(*msg);
3300 
3301 	if (optlen < 0) {
3302 		net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
3303 		return;
3304 	}
3305 
3306 	msg = (struct rd_msg *)icmp6_hdr(skb);
3307 
3308 	if (ipv6_addr_is_multicast(&msg->dest)) {
3309 		net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
3310 		return;
3311 	}
3312 
3313 	on_link = 0;
3314 	if (ipv6_addr_equal(&msg->dest, &msg->target)) {
3315 		on_link = 1;
3316 	} else if (ipv6_addr_type(&msg->target) !=
3317 		   (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
3318 		net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
3319 		return;
3320 	}
3321 
3322 	in6_dev = __in6_dev_get(skb->dev);
3323 	if (!in6_dev)
3324 		return;
3325 	if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
3326 		return;
3327 
3328 	/* RFC2461 8.1:
3329 	 *	The IP source address of the Redirect MUST be the same as the current
3330 	 *	first-hop router for the specified ICMP Destination Address.
3331 	 */
3332 
3333 	if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
3334 		net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
3335 		return;
3336 	}
3337 
3338 	lladdr = NULL;
3339 	if (ndopts.nd_opts_tgt_lladdr) {
3340 		lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
3341 					     skb->dev);
3342 		if (!lladdr) {
3343 			net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
3344 			return;
3345 		}
3346 	}
3347 
3348 	rt = (struct rt6_info *) dst;
3349 	if (rt->rt6i_flags & RTF_REJECT) {
3350 		net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
3351 		return;
3352 	}
3353 
3354 	/* Redirect received -> path was valid.
3355 	 * Look, redirects are sent only in response to data packets,
3356 	 * so that this nexthop apparently is reachable. --ANK
3357 	 */
3358 	dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
3359 
3360 	neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
3361 	if (!neigh)
3362 		return;
3363 
3364 	/*
3365 	 *	We have finally decided to accept it.
3366 	 */
3367 
3368 	ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
3369 		     NEIGH_UPDATE_F_WEAK_OVERRIDE|
3370 		     NEIGH_UPDATE_F_OVERRIDE|
3371 		     (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
3372 				     NEIGH_UPDATE_F_ISROUTER)),
3373 		     NDISC_REDIRECT, &ndopts);
3374 
3375 	rcu_read_lock();
3376 	from = rcu_dereference(rt->from);
3377 	/* This fib6_info_hold() is safe here because we hold reference to rt
3378 	 * and rt already holds reference to fib6_info.
3379 	 */
3380 	fib6_info_hold(from);
3381 	rcu_read_unlock();
3382 
3383 	nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL);
3384 	if (!nrt)
3385 		goto out;
3386 
3387 	nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
3388 	if (on_link)
3389 		nrt->rt6i_flags &= ~RTF_GATEWAY;
3390 
3391 	nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
3392 
3393 	/* No need to remove rt from the exception table if rt is
3394 	 * a cached route because rt6_insert_exception() will
3395 	 * takes care of it
3396 	 */
3397 	if (rt6_insert_exception(nrt, from)) {
3398 		dst_release_immediate(&nrt->dst);
3399 		goto out;
3400 	}
3401 
3402 	netevent.old = &rt->dst;
3403 	netevent.new = &nrt->dst;
3404 	netevent.daddr = &msg->dest;
3405 	netevent.neigh = neigh;
3406 	call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
3407 
3408 out:
3409 	fib6_info_release(from);
3410 	neigh_release(neigh);
3411 }
3412 
3413 #ifdef CONFIG_IPV6_ROUTE_INFO
3414 static struct fib6_info *rt6_get_route_info(struct net *net,
3415 					   const struct in6_addr *prefix, int prefixlen,
3416 					   const struct in6_addr *gwaddr,
3417 					   struct net_device *dev)
3418 {
3419 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
3420 	int ifindex = dev->ifindex;
3421 	struct fib6_node *fn;
3422 	struct fib6_info *rt = NULL;
3423 	struct fib6_table *table;
3424 
3425 	table = fib6_get_table(net, tb_id);
3426 	if (!table)
3427 		return NULL;
3428 
3429 	rcu_read_lock();
3430 	fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
3431 	if (!fn)
3432 		goto out;
3433 
3434 	for_each_fib6_node_rt_rcu(fn) {
3435 		if (rt->fib6_nh.nh_dev->ifindex != ifindex)
3436 			continue;
3437 		if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
3438 			continue;
3439 		if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr))
3440 			continue;
3441 		if (!fib6_info_hold_safe(rt))
3442 			continue;
3443 		break;
3444 	}
3445 out:
3446 	rcu_read_unlock();
3447 	return rt;
3448 }
3449 
3450 static struct fib6_info *rt6_add_route_info(struct net *net,
3451 					   const struct in6_addr *prefix, int prefixlen,
3452 					   const struct in6_addr *gwaddr,
3453 					   struct net_device *dev,
3454 					   unsigned int pref)
3455 {
3456 	struct fib6_config cfg = {
3457 		.fc_metric	= IP6_RT_PRIO_USER,
3458 		.fc_ifindex	= dev->ifindex,
3459 		.fc_dst_len	= prefixlen,
3460 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
3461 				  RTF_UP | RTF_PREF(pref),
3462 		.fc_protocol = RTPROT_RA,
3463 		.fc_type = RTN_UNICAST,
3464 		.fc_nlinfo.portid = 0,
3465 		.fc_nlinfo.nlh = NULL,
3466 		.fc_nlinfo.nl_net = net,
3467 	};
3468 
3469 	cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO,
3470 	cfg.fc_dst = *prefix;
3471 	cfg.fc_gateway = *gwaddr;
3472 
3473 	/* We should treat it as a default route if prefix length is 0. */
3474 	if (!prefixlen)
3475 		cfg.fc_flags |= RTF_DEFAULT;
3476 
3477 	ip6_route_add(&cfg, GFP_ATOMIC, NULL);
3478 
3479 	return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
3480 }
3481 #endif
3482 
3483 struct fib6_info *rt6_get_dflt_router(struct net *net,
3484 				     const struct in6_addr *addr,
3485 				     struct net_device *dev)
3486 {
3487 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
3488 	struct fib6_info *rt;
3489 	struct fib6_table *table;
3490 
3491 	table = fib6_get_table(net, tb_id);
3492 	if (!table)
3493 		return NULL;
3494 
3495 	rcu_read_lock();
3496 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3497 		if (dev == rt->fib6_nh.nh_dev &&
3498 		    ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
3499 		    ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr))
3500 			break;
3501 	}
3502 	if (rt && !fib6_info_hold_safe(rt))
3503 		rt = NULL;
3504 	rcu_read_unlock();
3505 	return rt;
3506 }
3507 
3508 struct fib6_info *rt6_add_dflt_router(struct net *net,
3509 				     const struct in6_addr *gwaddr,
3510 				     struct net_device *dev,
3511 				     unsigned int pref)
3512 {
3513 	struct fib6_config cfg = {
3514 		.fc_table	= l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
3515 		.fc_metric	= IP6_RT_PRIO_USER,
3516 		.fc_ifindex	= dev->ifindex,
3517 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
3518 				  RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
3519 		.fc_protocol = RTPROT_RA,
3520 		.fc_type = RTN_UNICAST,
3521 		.fc_nlinfo.portid = 0,
3522 		.fc_nlinfo.nlh = NULL,
3523 		.fc_nlinfo.nl_net = net,
3524 	};
3525 
3526 	cfg.fc_gateway = *gwaddr;
3527 
3528 	if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
3529 		struct fib6_table *table;
3530 
3531 		table = fib6_get_table(dev_net(dev), cfg.fc_table);
3532 		if (table)
3533 			table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
3534 	}
3535 
3536 	return rt6_get_dflt_router(net, gwaddr, dev);
3537 }
3538 
3539 static void __rt6_purge_dflt_routers(struct net *net,
3540 				     struct fib6_table *table)
3541 {
3542 	struct fib6_info *rt;
3543 
3544 restart:
3545 	rcu_read_lock();
3546 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3547 		struct net_device *dev = fib6_info_nh_dev(rt);
3548 		struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
3549 
3550 		if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
3551 		    (!idev || idev->cnf.accept_ra != 2) &&
3552 		    fib6_info_hold_safe(rt)) {
3553 			rcu_read_unlock();
3554 			ip6_del_rt(net, rt);
3555 			goto restart;
3556 		}
3557 	}
3558 	rcu_read_unlock();
3559 
3560 	table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
3561 }
3562 
3563 void rt6_purge_dflt_routers(struct net *net)
3564 {
3565 	struct fib6_table *table;
3566 	struct hlist_head *head;
3567 	unsigned int h;
3568 
3569 	rcu_read_lock();
3570 
3571 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
3572 		head = &net->ipv6.fib_table_hash[h];
3573 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
3574 			if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
3575 				__rt6_purge_dflt_routers(net, table);
3576 		}
3577 	}
3578 
3579 	rcu_read_unlock();
3580 }
3581 
3582 static void rtmsg_to_fib6_config(struct net *net,
3583 				 struct in6_rtmsg *rtmsg,
3584 				 struct fib6_config *cfg)
3585 {
3586 	*cfg = (struct fib6_config){
3587 		.fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
3588 			 : RT6_TABLE_MAIN,
3589 		.fc_ifindex = rtmsg->rtmsg_ifindex,
3590 		.fc_metric = rtmsg->rtmsg_metric,
3591 		.fc_expires = rtmsg->rtmsg_info,
3592 		.fc_dst_len = rtmsg->rtmsg_dst_len,
3593 		.fc_src_len = rtmsg->rtmsg_src_len,
3594 		.fc_flags = rtmsg->rtmsg_flags,
3595 		.fc_type = rtmsg->rtmsg_type,
3596 
3597 		.fc_nlinfo.nl_net = net,
3598 
3599 		.fc_dst = rtmsg->rtmsg_dst,
3600 		.fc_src = rtmsg->rtmsg_src,
3601 		.fc_gateway = rtmsg->rtmsg_gateway,
3602 	};
3603 }
3604 
3605 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3606 {
3607 	struct fib6_config cfg;
3608 	struct in6_rtmsg rtmsg;
3609 	int err;
3610 
3611 	switch (cmd) {
3612 	case SIOCADDRT:		/* Add a route */
3613 	case SIOCDELRT:		/* Delete a route */
3614 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3615 			return -EPERM;
3616 		err = copy_from_user(&rtmsg, arg,
3617 				     sizeof(struct in6_rtmsg));
3618 		if (err)
3619 			return -EFAULT;
3620 
3621 		rtmsg_to_fib6_config(net, &rtmsg, &cfg);
3622 
3623 		rtnl_lock();
3624 		switch (cmd) {
3625 		case SIOCADDRT:
3626 			err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
3627 			break;
3628 		case SIOCDELRT:
3629 			err = ip6_route_del(&cfg, NULL);
3630 			break;
3631 		default:
3632 			err = -EINVAL;
3633 		}
3634 		rtnl_unlock();
3635 
3636 		return err;
3637 	}
3638 
3639 	return -EINVAL;
3640 }
3641 
3642 /*
3643  *	Drop the packet on the floor
3644  */
3645 
3646 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
3647 {
3648 	int type;
3649 	struct dst_entry *dst = skb_dst(skb);
3650 	switch (ipstats_mib_noroutes) {
3651 	case IPSTATS_MIB_INNOROUTES:
3652 		type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
3653 		if (type == IPV6_ADDR_ANY) {
3654 			IP6_INC_STATS(dev_net(dst->dev),
3655 				      __in6_dev_get_safely(skb->dev),
3656 				      IPSTATS_MIB_INADDRERRORS);
3657 			break;
3658 		}
3659 		/* FALLTHROUGH */
3660 	case IPSTATS_MIB_OUTNOROUTES:
3661 		IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
3662 			      ipstats_mib_noroutes);
3663 		break;
3664 	}
3665 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
3666 	kfree_skb(skb);
3667 	return 0;
3668 }
3669 
3670 static int ip6_pkt_discard(struct sk_buff *skb)
3671 {
3672 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
3673 }
3674 
3675 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3676 {
3677 	skb->dev = skb_dst(skb)->dev;
3678 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
3679 }
3680 
3681 static int ip6_pkt_prohibit(struct sk_buff *skb)
3682 {
3683 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
3684 }
3685 
3686 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3687 {
3688 	skb->dev = skb_dst(skb)->dev;
3689 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
3690 }
3691 
3692 /*
3693  *	Allocate a dst for local (unicast / anycast) address.
3694  */
3695 
3696 struct fib6_info *addrconf_f6i_alloc(struct net *net,
3697 				     struct inet6_dev *idev,
3698 				     const struct in6_addr *addr,
3699 				     bool anycast, gfp_t gfp_flags)
3700 {
3701 	u32 tb_id;
3702 	struct net_device *dev = idev->dev;
3703 	struct fib6_info *f6i;
3704 
3705 	f6i = fib6_info_alloc(gfp_flags);
3706 	if (!f6i)
3707 		return ERR_PTR(-ENOMEM);
3708 
3709 	f6i->fib6_metrics = ip_fib_metrics_init(net, NULL, 0);
3710 	f6i->dst_nocount = true;
3711 	f6i->dst_host = true;
3712 	f6i->fib6_protocol = RTPROT_KERNEL;
3713 	f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP;
3714 	if (anycast) {
3715 		f6i->fib6_type = RTN_ANYCAST;
3716 		f6i->fib6_flags |= RTF_ANYCAST;
3717 	} else {
3718 		f6i->fib6_type = RTN_LOCAL;
3719 		f6i->fib6_flags |= RTF_LOCAL;
3720 	}
3721 
3722 	f6i->fib6_nh.nh_gw = *addr;
3723 	dev_hold(dev);
3724 	f6i->fib6_nh.nh_dev = dev;
3725 	f6i->fib6_dst.addr = *addr;
3726 	f6i->fib6_dst.plen = 128;
3727 	tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL;
3728 	f6i->fib6_table = fib6_get_table(net, tb_id);
3729 
3730 	return f6i;
3731 }
3732 
3733 /* remove deleted ip from prefsrc entries */
3734 struct arg_dev_net_ip {
3735 	struct net_device *dev;
3736 	struct net *net;
3737 	struct in6_addr *addr;
3738 };
3739 
3740 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
3741 {
3742 	struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
3743 	struct net *net = ((struct arg_dev_net_ip *)arg)->net;
3744 	struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
3745 
3746 	if (((void *)rt->fib6_nh.nh_dev == dev || !dev) &&
3747 	    rt != net->ipv6.fib6_null_entry &&
3748 	    ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
3749 		spin_lock_bh(&rt6_exception_lock);
3750 		/* remove prefsrc entry */
3751 		rt->fib6_prefsrc.plen = 0;
3752 		spin_unlock_bh(&rt6_exception_lock);
3753 	}
3754 	return 0;
3755 }
3756 
3757 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
3758 {
3759 	struct net *net = dev_net(ifp->idev->dev);
3760 	struct arg_dev_net_ip adni = {
3761 		.dev = ifp->idev->dev,
3762 		.net = net,
3763 		.addr = &ifp->addr,
3764 	};
3765 	fib6_clean_all(net, fib6_remove_prefsrc, &adni);
3766 }
3767 
3768 #define RTF_RA_ROUTER		(RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY)
3769 
3770 /* Remove routers and update dst entries when gateway turn into host. */
3771 static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
3772 {
3773 	struct in6_addr *gateway = (struct in6_addr *)arg;
3774 
3775 	if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
3776 	    ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) {
3777 		return -1;
3778 	}
3779 
3780 	/* Further clean up cached routes in exception table.
3781 	 * This is needed because cached route may have a different
3782 	 * gateway than its 'parent' in the case of an ip redirect.
3783 	 */
3784 	rt6_exceptions_clean_tohost(rt, gateway);
3785 
3786 	return 0;
3787 }
3788 
3789 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
3790 {
3791 	fib6_clean_all(net, fib6_clean_tohost, gateway);
3792 }
3793 
3794 struct arg_netdev_event {
3795 	const struct net_device *dev;
3796 	union {
3797 		unsigned int nh_flags;
3798 		unsigned long event;
3799 	};
3800 };
3801 
3802 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
3803 {
3804 	struct fib6_info *iter;
3805 	struct fib6_node *fn;
3806 
3807 	fn = rcu_dereference_protected(rt->fib6_node,
3808 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3809 	iter = rcu_dereference_protected(fn->leaf,
3810 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3811 	while (iter) {
3812 		if (iter->fib6_metric == rt->fib6_metric &&
3813 		    rt6_qualify_for_ecmp(iter))
3814 			return iter;
3815 		iter = rcu_dereference_protected(iter->fib6_next,
3816 				lockdep_is_held(&rt->fib6_table->tb6_lock));
3817 	}
3818 
3819 	return NULL;
3820 }
3821 
3822 static bool rt6_is_dead(const struct fib6_info *rt)
3823 {
3824 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD ||
3825 	    (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
3826 	     fib6_ignore_linkdown(rt)))
3827 		return true;
3828 
3829 	return false;
3830 }
3831 
3832 static int rt6_multipath_total_weight(const struct fib6_info *rt)
3833 {
3834 	struct fib6_info *iter;
3835 	int total = 0;
3836 
3837 	if (!rt6_is_dead(rt))
3838 		total += rt->fib6_nh.nh_weight;
3839 
3840 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
3841 		if (!rt6_is_dead(iter))
3842 			total += iter->fib6_nh.nh_weight;
3843 	}
3844 
3845 	return total;
3846 }
3847 
3848 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
3849 {
3850 	int upper_bound = -1;
3851 
3852 	if (!rt6_is_dead(rt)) {
3853 		*weight += rt->fib6_nh.nh_weight;
3854 		upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
3855 						    total) - 1;
3856 	}
3857 	atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound);
3858 }
3859 
3860 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
3861 {
3862 	struct fib6_info *iter;
3863 	int weight = 0;
3864 
3865 	rt6_upper_bound_set(rt, &weight, total);
3866 
3867 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3868 		rt6_upper_bound_set(iter, &weight, total);
3869 }
3870 
3871 void rt6_multipath_rebalance(struct fib6_info *rt)
3872 {
3873 	struct fib6_info *first;
3874 	int total;
3875 
3876 	/* In case the entire multipath route was marked for flushing,
3877 	 * then there is no need to rebalance upon the removal of every
3878 	 * sibling route.
3879 	 */
3880 	if (!rt->fib6_nsiblings || rt->should_flush)
3881 		return;
3882 
3883 	/* During lookup routes are evaluated in order, so we need to
3884 	 * make sure upper bounds are assigned from the first sibling
3885 	 * onwards.
3886 	 */
3887 	first = rt6_multipath_first_sibling(rt);
3888 	if (WARN_ON_ONCE(!first))
3889 		return;
3890 
3891 	total = rt6_multipath_total_weight(first);
3892 	rt6_multipath_upper_bound_set(first, total);
3893 }
3894 
3895 static int fib6_ifup(struct fib6_info *rt, void *p_arg)
3896 {
3897 	const struct arg_netdev_event *arg = p_arg;
3898 	struct net *net = dev_net(arg->dev);
3899 
3900 	if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) {
3901 		rt->fib6_nh.nh_flags &= ~arg->nh_flags;
3902 		fib6_update_sernum_upto_root(net, rt);
3903 		rt6_multipath_rebalance(rt);
3904 	}
3905 
3906 	return 0;
3907 }
3908 
3909 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags)
3910 {
3911 	struct arg_netdev_event arg = {
3912 		.dev = dev,
3913 		{
3914 			.nh_flags = nh_flags,
3915 		},
3916 	};
3917 
3918 	if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
3919 		arg.nh_flags |= RTNH_F_LINKDOWN;
3920 
3921 	fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
3922 }
3923 
3924 static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
3925 				   const struct net_device *dev)
3926 {
3927 	struct fib6_info *iter;
3928 
3929 	if (rt->fib6_nh.nh_dev == dev)
3930 		return true;
3931 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3932 		if (iter->fib6_nh.nh_dev == dev)
3933 			return true;
3934 
3935 	return false;
3936 }
3937 
3938 static void rt6_multipath_flush(struct fib6_info *rt)
3939 {
3940 	struct fib6_info *iter;
3941 
3942 	rt->should_flush = 1;
3943 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3944 		iter->should_flush = 1;
3945 }
3946 
3947 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
3948 					     const struct net_device *down_dev)
3949 {
3950 	struct fib6_info *iter;
3951 	unsigned int dead = 0;
3952 
3953 	if (rt->fib6_nh.nh_dev == down_dev ||
3954 	    rt->fib6_nh.nh_flags & RTNH_F_DEAD)
3955 		dead++;
3956 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3957 		if (iter->fib6_nh.nh_dev == down_dev ||
3958 		    iter->fib6_nh.nh_flags & RTNH_F_DEAD)
3959 			dead++;
3960 
3961 	return dead;
3962 }
3963 
3964 static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
3965 				       const struct net_device *dev,
3966 				       unsigned int nh_flags)
3967 {
3968 	struct fib6_info *iter;
3969 
3970 	if (rt->fib6_nh.nh_dev == dev)
3971 		rt->fib6_nh.nh_flags |= nh_flags;
3972 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3973 		if (iter->fib6_nh.nh_dev == dev)
3974 			iter->fib6_nh.nh_flags |= nh_flags;
3975 }
3976 
3977 /* called with write lock held for table with rt */
3978 static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
3979 {
3980 	const struct arg_netdev_event *arg = p_arg;
3981 	const struct net_device *dev = arg->dev;
3982 	struct net *net = dev_net(dev);
3983 
3984 	if (rt == net->ipv6.fib6_null_entry)
3985 		return 0;
3986 
3987 	switch (arg->event) {
3988 	case NETDEV_UNREGISTER:
3989 		return rt->fib6_nh.nh_dev == dev ? -1 : 0;
3990 	case NETDEV_DOWN:
3991 		if (rt->should_flush)
3992 			return -1;
3993 		if (!rt->fib6_nsiblings)
3994 			return rt->fib6_nh.nh_dev == dev ? -1 : 0;
3995 		if (rt6_multipath_uses_dev(rt, dev)) {
3996 			unsigned int count;
3997 
3998 			count = rt6_multipath_dead_count(rt, dev);
3999 			if (rt->fib6_nsiblings + 1 == count) {
4000 				rt6_multipath_flush(rt);
4001 				return -1;
4002 			}
4003 			rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
4004 						   RTNH_F_LINKDOWN);
4005 			fib6_update_sernum(net, rt);
4006 			rt6_multipath_rebalance(rt);
4007 		}
4008 		return -2;
4009 	case NETDEV_CHANGE:
4010 		if (rt->fib6_nh.nh_dev != dev ||
4011 		    rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
4012 			break;
4013 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
4014 		rt6_multipath_rebalance(rt);
4015 		break;
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
4022 {
4023 	struct arg_netdev_event arg = {
4024 		.dev = dev,
4025 		{
4026 			.event = event,
4027 		},
4028 	};
4029 
4030 	fib6_clean_all(dev_net(dev), fib6_ifdown, &arg);
4031 }
4032 
4033 void rt6_disable_ip(struct net_device *dev, unsigned long event)
4034 {
4035 	rt6_sync_down_dev(dev, event);
4036 	rt6_uncached_list_flush_dev(dev_net(dev), dev);
4037 	neigh_ifdown(&nd_tbl, dev);
4038 }
4039 
4040 struct rt6_mtu_change_arg {
4041 	struct net_device *dev;
4042 	unsigned int mtu;
4043 };
4044 
4045 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg)
4046 {
4047 	struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
4048 	struct inet6_dev *idev;
4049 
4050 	/* In IPv6 pmtu discovery is not optional,
4051 	   so that RTAX_MTU lock cannot disable it.
4052 	   We still use this lock to block changes
4053 	   caused by addrconf/ndisc.
4054 	*/
4055 
4056 	idev = __in6_dev_get(arg->dev);
4057 	if (!idev)
4058 		return 0;
4059 
4060 	/* For administrative MTU increase, there is no way to discover
4061 	   IPv6 PMTU increase, so PMTU increase should be updated here.
4062 	   Since RFC 1981 doesn't include administrative MTU increase
4063 	   update PMTU increase is a MUST. (i.e. jumbo frame)
4064 	 */
4065 	if (rt->fib6_nh.nh_dev == arg->dev &&
4066 	    !fib6_metric_locked(rt, RTAX_MTU)) {
4067 		u32 mtu = rt->fib6_pmtu;
4068 
4069 		if (mtu >= arg->mtu ||
4070 		    (mtu < arg->mtu && mtu == idev->cnf.mtu6))
4071 			fib6_metric_set(rt, RTAX_MTU, arg->mtu);
4072 
4073 		spin_lock_bh(&rt6_exception_lock);
4074 		rt6_exceptions_update_pmtu(idev, rt, arg->mtu);
4075 		spin_unlock_bh(&rt6_exception_lock);
4076 	}
4077 	return 0;
4078 }
4079 
4080 void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
4081 {
4082 	struct rt6_mtu_change_arg arg = {
4083 		.dev = dev,
4084 		.mtu = mtu,
4085 	};
4086 
4087 	fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
4088 }
4089 
4090 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
4091 	[RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
4092 	[RTA_PREFSRC]		= { .len = sizeof(struct in6_addr) },
4093 	[RTA_OIF]               = { .type = NLA_U32 },
4094 	[RTA_IIF]		= { .type = NLA_U32 },
4095 	[RTA_PRIORITY]          = { .type = NLA_U32 },
4096 	[RTA_METRICS]           = { .type = NLA_NESTED },
4097 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
4098 	[RTA_PREF]              = { .type = NLA_U8 },
4099 	[RTA_ENCAP_TYPE]	= { .type = NLA_U16 },
4100 	[RTA_ENCAP]		= { .type = NLA_NESTED },
4101 	[RTA_EXPIRES]		= { .type = NLA_U32 },
4102 	[RTA_UID]		= { .type = NLA_U32 },
4103 	[RTA_MARK]		= { .type = NLA_U32 },
4104 	[RTA_TABLE]		= { .type = NLA_U32 },
4105 	[RTA_IP_PROTO]		= { .type = NLA_U8 },
4106 	[RTA_SPORT]		= { .type = NLA_U16 },
4107 	[RTA_DPORT]		= { .type = NLA_U16 },
4108 };
4109 
4110 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
4111 			      struct fib6_config *cfg,
4112 			      struct netlink_ext_ack *extack)
4113 {
4114 	struct rtmsg *rtm;
4115 	struct nlattr *tb[RTA_MAX+1];
4116 	unsigned int pref;
4117 	int err;
4118 
4119 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4120 			  NULL);
4121 	if (err < 0)
4122 		goto errout;
4123 
4124 	err = -EINVAL;
4125 	rtm = nlmsg_data(nlh);
4126 
4127 	*cfg = (struct fib6_config){
4128 		.fc_table = rtm->rtm_table,
4129 		.fc_dst_len = rtm->rtm_dst_len,
4130 		.fc_src_len = rtm->rtm_src_len,
4131 		.fc_flags = RTF_UP,
4132 		.fc_protocol = rtm->rtm_protocol,
4133 		.fc_type = rtm->rtm_type,
4134 
4135 		.fc_nlinfo.portid = NETLINK_CB(skb).portid,
4136 		.fc_nlinfo.nlh = nlh,
4137 		.fc_nlinfo.nl_net = sock_net(skb->sk),
4138 	};
4139 
4140 	if (rtm->rtm_type == RTN_UNREACHABLE ||
4141 	    rtm->rtm_type == RTN_BLACKHOLE ||
4142 	    rtm->rtm_type == RTN_PROHIBIT ||
4143 	    rtm->rtm_type == RTN_THROW)
4144 		cfg->fc_flags |= RTF_REJECT;
4145 
4146 	if (rtm->rtm_type == RTN_LOCAL)
4147 		cfg->fc_flags |= RTF_LOCAL;
4148 
4149 	if (rtm->rtm_flags & RTM_F_CLONED)
4150 		cfg->fc_flags |= RTF_CACHE;
4151 
4152 	cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
4153 
4154 	if (tb[RTA_GATEWAY]) {
4155 		cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
4156 		cfg->fc_flags |= RTF_GATEWAY;
4157 	}
4158 
4159 	if (tb[RTA_DST]) {
4160 		int plen = (rtm->rtm_dst_len + 7) >> 3;
4161 
4162 		if (nla_len(tb[RTA_DST]) < plen)
4163 			goto errout;
4164 
4165 		nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
4166 	}
4167 
4168 	if (tb[RTA_SRC]) {
4169 		int plen = (rtm->rtm_src_len + 7) >> 3;
4170 
4171 		if (nla_len(tb[RTA_SRC]) < plen)
4172 			goto errout;
4173 
4174 		nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
4175 	}
4176 
4177 	if (tb[RTA_PREFSRC])
4178 		cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
4179 
4180 	if (tb[RTA_OIF])
4181 		cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
4182 
4183 	if (tb[RTA_PRIORITY])
4184 		cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
4185 
4186 	if (tb[RTA_METRICS]) {
4187 		cfg->fc_mx = nla_data(tb[RTA_METRICS]);
4188 		cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
4189 	}
4190 
4191 	if (tb[RTA_TABLE])
4192 		cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
4193 
4194 	if (tb[RTA_MULTIPATH]) {
4195 		cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
4196 		cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
4197 
4198 		err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
4199 						     cfg->fc_mp_len, extack);
4200 		if (err < 0)
4201 			goto errout;
4202 	}
4203 
4204 	if (tb[RTA_PREF]) {
4205 		pref = nla_get_u8(tb[RTA_PREF]);
4206 		if (pref != ICMPV6_ROUTER_PREF_LOW &&
4207 		    pref != ICMPV6_ROUTER_PREF_HIGH)
4208 			pref = ICMPV6_ROUTER_PREF_MEDIUM;
4209 		cfg->fc_flags |= RTF_PREF(pref);
4210 	}
4211 
4212 	if (tb[RTA_ENCAP])
4213 		cfg->fc_encap = tb[RTA_ENCAP];
4214 
4215 	if (tb[RTA_ENCAP_TYPE]) {
4216 		cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
4217 
4218 		err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
4219 		if (err < 0)
4220 			goto errout;
4221 	}
4222 
4223 	if (tb[RTA_EXPIRES]) {
4224 		unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
4225 
4226 		if (addrconf_finite_timeout(timeout)) {
4227 			cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
4228 			cfg->fc_flags |= RTF_EXPIRES;
4229 		}
4230 	}
4231 
4232 	err = 0;
4233 errout:
4234 	return err;
4235 }
4236 
4237 struct rt6_nh {
4238 	struct fib6_info *fib6_info;
4239 	struct fib6_config r_cfg;
4240 	struct list_head next;
4241 };
4242 
4243 static void ip6_print_replace_route_err(struct list_head *rt6_nh_list)
4244 {
4245 	struct rt6_nh *nh;
4246 
4247 	list_for_each_entry(nh, rt6_nh_list, next) {
4248 		pr_warn("IPV6: multipath route replace failed (check consistency of installed routes): %pI6c nexthop %pI6c ifi %d\n",
4249 		        &nh->r_cfg.fc_dst, &nh->r_cfg.fc_gateway,
4250 		        nh->r_cfg.fc_ifindex);
4251 	}
4252 }
4253 
4254 static int ip6_route_info_append(struct net *net,
4255 				 struct list_head *rt6_nh_list,
4256 				 struct fib6_info *rt,
4257 				 struct fib6_config *r_cfg)
4258 {
4259 	struct rt6_nh *nh;
4260 	int err = -EEXIST;
4261 
4262 	list_for_each_entry(nh, rt6_nh_list, next) {
4263 		/* check if fib6_info already exists */
4264 		if (rt6_duplicate_nexthop(nh->fib6_info, rt))
4265 			return err;
4266 	}
4267 
4268 	nh = kzalloc(sizeof(*nh), GFP_KERNEL);
4269 	if (!nh)
4270 		return -ENOMEM;
4271 	nh->fib6_info = rt;
4272 	memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
4273 	list_add_tail(&nh->next, rt6_nh_list);
4274 
4275 	return 0;
4276 }
4277 
4278 static void ip6_route_mpath_notify(struct fib6_info *rt,
4279 				   struct fib6_info *rt_last,
4280 				   struct nl_info *info,
4281 				   __u16 nlflags)
4282 {
4283 	/* if this is an APPEND route, then rt points to the first route
4284 	 * inserted and rt_last points to last route inserted. Userspace
4285 	 * wants a consistent dump of the route which starts at the first
4286 	 * nexthop. Since sibling routes are always added at the end of
4287 	 * the list, find the first sibling of the last route appended
4288 	 */
4289 	if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
4290 		rt = list_first_entry(&rt_last->fib6_siblings,
4291 				      struct fib6_info,
4292 				      fib6_siblings);
4293 	}
4294 
4295 	if (rt)
4296 		inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
4297 }
4298 
4299 static int ip6_route_multipath_add(struct fib6_config *cfg,
4300 				   struct netlink_ext_ack *extack)
4301 {
4302 	struct fib6_info *rt_notif = NULL, *rt_last = NULL;
4303 	struct nl_info *info = &cfg->fc_nlinfo;
4304 	struct fib6_config r_cfg;
4305 	struct rtnexthop *rtnh;
4306 	struct fib6_info *rt;
4307 	struct rt6_nh *err_nh;
4308 	struct rt6_nh *nh, *nh_safe;
4309 	__u16 nlflags;
4310 	int remaining;
4311 	int attrlen;
4312 	int err = 1;
4313 	int nhn = 0;
4314 	int replace = (cfg->fc_nlinfo.nlh &&
4315 		       (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
4316 	LIST_HEAD(rt6_nh_list);
4317 
4318 	nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
4319 	if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
4320 		nlflags |= NLM_F_APPEND;
4321 
4322 	remaining = cfg->fc_mp_len;
4323 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4324 
4325 	/* Parse a Multipath Entry and build a list (rt6_nh_list) of
4326 	 * fib6_info structs per nexthop
4327 	 */
4328 	while (rtnh_ok(rtnh, remaining)) {
4329 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4330 		if (rtnh->rtnh_ifindex)
4331 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4332 
4333 		attrlen = rtnh_attrlen(rtnh);
4334 		if (attrlen > 0) {
4335 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4336 
4337 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4338 			if (nla) {
4339 				r_cfg.fc_gateway = nla_get_in6_addr(nla);
4340 				r_cfg.fc_flags |= RTF_GATEWAY;
4341 			}
4342 			r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
4343 			nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
4344 			if (nla)
4345 				r_cfg.fc_encap_type = nla_get_u16(nla);
4346 		}
4347 
4348 		r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
4349 		rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
4350 		if (IS_ERR(rt)) {
4351 			err = PTR_ERR(rt);
4352 			rt = NULL;
4353 			goto cleanup;
4354 		}
4355 		if (!rt6_qualify_for_ecmp(rt)) {
4356 			err = -EINVAL;
4357 			NL_SET_ERR_MSG(extack,
4358 				       "Device only routes can not be added for IPv6 using the multipath API.");
4359 			fib6_info_release(rt);
4360 			goto cleanup;
4361 		}
4362 
4363 		rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1;
4364 
4365 		err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
4366 					    rt, &r_cfg);
4367 		if (err) {
4368 			fib6_info_release(rt);
4369 			goto cleanup;
4370 		}
4371 
4372 		rtnh = rtnh_next(rtnh, &remaining);
4373 	}
4374 
4375 	/* for add and replace send one notification with all nexthops.
4376 	 * Skip the notification in fib6_add_rt2node and send one with
4377 	 * the full route when done
4378 	 */
4379 	info->skip_notify = 1;
4380 
4381 	err_nh = NULL;
4382 	list_for_each_entry(nh, &rt6_nh_list, next) {
4383 		err = __ip6_ins_rt(nh->fib6_info, info, extack);
4384 		fib6_info_release(nh->fib6_info);
4385 
4386 		if (!err) {
4387 			/* save reference to last route successfully inserted */
4388 			rt_last = nh->fib6_info;
4389 
4390 			/* save reference to first route for notification */
4391 			if (!rt_notif)
4392 				rt_notif = nh->fib6_info;
4393 		}
4394 
4395 		/* nh->fib6_info is used or freed at this point, reset to NULL*/
4396 		nh->fib6_info = NULL;
4397 		if (err) {
4398 			if (replace && nhn)
4399 				ip6_print_replace_route_err(&rt6_nh_list);
4400 			err_nh = nh;
4401 			goto add_errout;
4402 		}
4403 
4404 		/* Because each route is added like a single route we remove
4405 		 * these flags after the first nexthop: if there is a collision,
4406 		 * we have already failed to add the first nexthop:
4407 		 * fib6_add_rt2node() has rejected it; when replacing, old
4408 		 * nexthops have been replaced by first new, the rest should
4409 		 * be added to it.
4410 		 */
4411 		cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
4412 						     NLM_F_REPLACE);
4413 		nhn++;
4414 	}
4415 
4416 	/* success ... tell user about new route */
4417 	ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4418 	goto cleanup;
4419 
4420 add_errout:
4421 	/* send notification for routes that were added so that
4422 	 * the delete notifications sent by ip6_route_del are
4423 	 * coherent
4424 	 */
4425 	if (rt_notif)
4426 		ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4427 
4428 	/* Delete routes that were already added */
4429 	list_for_each_entry(nh, &rt6_nh_list, next) {
4430 		if (err_nh == nh)
4431 			break;
4432 		ip6_route_del(&nh->r_cfg, extack);
4433 	}
4434 
4435 cleanup:
4436 	list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
4437 		if (nh->fib6_info)
4438 			fib6_info_release(nh->fib6_info);
4439 		list_del(&nh->next);
4440 		kfree(nh);
4441 	}
4442 
4443 	return err;
4444 }
4445 
4446 static int ip6_route_multipath_del(struct fib6_config *cfg,
4447 				   struct netlink_ext_ack *extack)
4448 {
4449 	struct fib6_config r_cfg;
4450 	struct rtnexthop *rtnh;
4451 	int remaining;
4452 	int attrlen;
4453 	int err = 1, last_err = 0;
4454 
4455 	remaining = cfg->fc_mp_len;
4456 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4457 
4458 	/* Parse a Multipath Entry */
4459 	while (rtnh_ok(rtnh, remaining)) {
4460 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4461 		if (rtnh->rtnh_ifindex)
4462 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4463 
4464 		attrlen = rtnh_attrlen(rtnh);
4465 		if (attrlen > 0) {
4466 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4467 
4468 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4469 			if (nla) {
4470 				nla_memcpy(&r_cfg.fc_gateway, nla, 16);
4471 				r_cfg.fc_flags |= RTF_GATEWAY;
4472 			}
4473 		}
4474 		err = ip6_route_del(&r_cfg, extack);
4475 		if (err)
4476 			last_err = err;
4477 
4478 		rtnh = rtnh_next(rtnh, &remaining);
4479 	}
4480 
4481 	return last_err;
4482 }
4483 
4484 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4485 			      struct netlink_ext_ack *extack)
4486 {
4487 	struct fib6_config cfg;
4488 	int err;
4489 
4490 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4491 	if (err < 0)
4492 		return err;
4493 
4494 	if (cfg.fc_mp)
4495 		return ip6_route_multipath_del(&cfg, extack);
4496 	else {
4497 		cfg.fc_delete_all_nh = 1;
4498 		return ip6_route_del(&cfg, extack);
4499 	}
4500 }
4501 
4502 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4503 			      struct netlink_ext_ack *extack)
4504 {
4505 	struct fib6_config cfg;
4506 	int err;
4507 
4508 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4509 	if (err < 0)
4510 		return err;
4511 
4512 	if (cfg.fc_mp)
4513 		return ip6_route_multipath_add(&cfg, extack);
4514 	else
4515 		return ip6_route_add(&cfg, GFP_KERNEL, extack);
4516 }
4517 
4518 static size_t rt6_nlmsg_size(struct fib6_info *rt)
4519 {
4520 	int nexthop_len = 0;
4521 
4522 	if (rt->fib6_nsiblings) {
4523 		nexthop_len = nla_total_size(0)	 /* RTA_MULTIPATH */
4524 			    + NLA_ALIGN(sizeof(struct rtnexthop))
4525 			    + nla_total_size(16) /* RTA_GATEWAY */
4526 			    + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate);
4527 
4528 		nexthop_len *= rt->fib6_nsiblings;
4529 	}
4530 
4531 	return NLMSG_ALIGN(sizeof(struct rtmsg))
4532 	       + nla_total_size(16) /* RTA_SRC */
4533 	       + nla_total_size(16) /* RTA_DST */
4534 	       + nla_total_size(16) /* RTA_GATEWAY */
4535 	       + nla_total_size(16) /* RTA_PREFSRC */
4536 	       + nla_total_size(4) /* RTA_TABLE */
4537 	       + nla_total_size(4) /* RTA_IIF */
4538 	       + nla_total_size(4) /* RTA_OIF */
4539 	       + nla_total_size(4) /* RTA_PRIORITY */
4540 	       + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
4541 	       + nla_total_size(sizeof(struct rta_cacheinfo))
4542 	       + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
4543 	       + nla_total_size(1) /* RTA_PREF */
4544 	       + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate)
4545 	       + nexthop_len;
4546 }
4547 
4548 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt,
4549 			    unsigned int *flags, bool skip_oif)
4550 {
4551 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4552 		*flags |= RTNH_F_DEAD;
4553 
4554 	if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) {
4555 		*flags |= RTNH_F_LINKDOWN;
4556 
4557 		rcu_read_lock();
4558 		if (fib6_ignore_linkdown(rt))
4559 			*flags |= RTNH_F_DEAD;
4560 		rcu_read_unlock();
4561 	}
4562 
4563 	if (rt->fib6_flags & RTF_GATEWAY) {
4564 		if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0)
4565 			goto nla_put_failure;
4566 	}
4567 
4568 	*flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK);
4569 	if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD)
4570 		*flags |= RTNH_F_OFFLOAD;
4571 
4572 	/* not needed for multipath encoding b/c it has a rtnexthop struct */
4573 	if (!skip_oif && rt->fib6_nh.nh_dev &&
4574 	    nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex))
4575 		goto nla_put_failure;
4576 
4577 	if (rt->fib6_nh.nh_lwtstate &&
4578 	    lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0)
4579 		goto nla_put_failure;
4580 
4581 	return 0;
4582 
4583 nla_put_failure:
4584 	return -EMSGSIZE;
4585 }
4586 
4587 /* add multipath next hop */
4588 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt)
4589 {
4590 	const struct net_device *dev = rt->fib6_nh.nh_dev;
4591 	struct rtnexthop *rtnh;
4592 	unsigned int flags = 0;
4593 
4594 	rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh));
4595 	if (!rtnh)
4596 		goto nla_put_failure;
4597 
4598 	rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1;
4599 	rtnh->rtnh_ifindex = dev ? dev->ifindex : 0;
4600 
4601 	if (rt6_nexthop_info(skb, rt, &flags, true) < 0)
4602 		goto nla_put_failure;
4603 
4604 	rtnh->rtnh_flags = flags;
4605 
4606 	/* length of rtnetlink header + attributes */
4607 	rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh;
4608 
4609 	return 0;
4610 
4611 nla_put_failure:
4612 	return -EMSGSIZE;
4613 }
4614 
4615 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
4616 			 struct fib6_info *rt, struct dst_entry *dst,
4617 			 struct in6_addr *dest, struct in6_addr *src,
4618 			 int iif, int type, u32 portid, u32 seq,
4619 			 unsigned int flags)
4620 {
4621 	struct rt6_info *rt6 = (struct rt6_info *)dst;
4622 	struct rt6key *rt6_dst, *rt6_src;
4623 	u32 *pmetrics, table, rt6_flags;
4624 	struct nlmsghdr *nlh;
4625 	struct rtmsg *rtm;
4626 	long expires = 0;
4627 
4628 	nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
4629 	if (!nlh)
4630 		return -EMSGSIZE;
4631 
4632 	if (rt6) {
4633 		rt6_dst = &rt6->rt6i_dst;
4634 		rt6_src = &rt6->rt6i_src;
4635 		rt6_flags = rt6->rt6i_flags;
4636 	} else {
4637 		rt6_dst = &rt->fib6_dst;
4638 		rt6_src = &rt->fib6_src;
4639 		rt6_flags = rt->fib6_flags;
4640 	}
4641 
4642 	rtm = nlmsg_data(nlh);
4643 	rtm->rtm_family = AF_INET6;
4644 	rtm->rtm_dst_len = rt6_dst->plen;
4645 	rtm->rtm_src_len = rt6_src->plen;
4646 	rtm->rtm_tos = 0;
4647 	if (rt->fib6_table)
4648 		table = rt->fib6_table->tb6_id;
4649 	else
4650 		table = RT6_TABLE_UNSPEC;
4651 	rtm->rtm_table = table;
4652 	if (nla_put_u32(skb, RTA_TABLE, table))
4653 		goto nla_put_failure;
4654 
4655 	rtm->rtm_type = rt->fib6_type;
4656 	rtm->rtm_flags = 0;
4657 	rtm->rtm_scope = RT_SCOPE_UNIVERSE;
4658 	rtm->rtm_protocol = rt->fib6_protocol;
4659 
4660 	if (rt6_flags & RTF_CACHE)
4661 		rtm->rtm_flags |= RTM_F_CLONED;
4662 
4663 	if (dest) {
4664 		if (nla_put_in6_addr(skb, RTA_DST, dest))
4665 			goto nla_put_failure;
4666 		rtm->rtm_dst_len = 128;
4667 	} else if (rtm->rtm_dst_len)
4668 		if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr))
4669 			goto nla_put_failure;
4670 #ifdef CONFIG_IPV6_SUBTREES
4671 	if (src) {
4672 		if (nla_put_in6_addr(skb, RTA_SRC, src))
4673 			goto nla_put_failure;
4674 		rtm->rtm_src_len = 128;
4675 	} else if (rtm->rtm_src_len &&
4676 		   nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr))
4677 		goto nla_put_failure;
4678 #endif
4679 	if (iif) {
4680 #ifdef CONFIG_IPV6_MROUTE
4681 		if (ipv6_addr_is_multicast(&rt6_dst->addr)) {
4682 			int err = ip6mr_get_route(net, skb, rtm, portid);
4683 
4684 			if (err == 0)
4685 				return 0;
4686 			if (err < 0)
4687 				goto nla_put_failure;
4688 		} else
4689 #endif
4690 			if (nla_put_u32(skb, RTA_IIF, iif))
4691 				goto nla_put_failure;
4692 	} else if (dest) {
4693 		struct in6_addr saddr_buf;
4694 		if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
4695 		    nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4696 			goto nla_put_failure;
4697 	}
4698 
4699 	if (rt->fib6_prefsrc.plen) {
4700 		struct in6_addr saddr_buf;
4701 		saddr_buf = rt->fib6_prefsrc.addr;
4702 		if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4703 			goto nla_put_failure;
4704 	}
4705 
4706 	pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
4707 	if (rtnetlink_put_metrics(skb, pmetrics) < 0)
4708 		goto nla_put_failure;
4709 
4710 	if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
4711 		goto nla_put_failure;
4712 
4713 	/* For multipath routes, walk the siblings list and add
4714 	 * each as a nexthop within RTA_MULTIPATH.
4715 	 */
4716 	if (rt6) {
4717 		if (rt6_flags & RTF_GATEWAY &&
4718 		    nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway))
4719 			goto nla_put_failure;
4720 
4721 		if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex))
4722 			goto nla_put_failure;
4723 	} else if (rt->fib6_nsiblings) {
4724 		struct fib6_info *sibling, *next_sibling;
4725 		struct nlattr *mp;
4726 
4727 		mp = nla_nest_start(skb, RTA_MULTIPATH);
4728 		if (!mp)
4729 			goto nla_put_failure;
4730 
4731 		if (rt6_add_nexthop(skb, rt) < 0)
4732 			goto nla_put_failure;
4733 
4734 		list_for_each_entry_safe(sibling, next_sibling,
4735 					 &rt->fib6_siblings, fib6_siblings) {
4736 			if (rt6_add_nexthop(skb, sibling) < 0)
4737 				goto nla_put_failure;
4738 		}
4739 
4740 		nla_nest_end(skb, mp);
4741 	} else {
4742 		if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0)
4743 			goto nla_put_failure;
4744 	}
4745 
4746 	if (rt6_flags & RTF_EXPIRES) {
4747 		expires = dst ? dst->expires : rt->expires;
4748 		expires -= jiffies;
4749 	}
4750 
4751 	if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
4752 		goto nla_put_failure;
4753 
4754 	if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags)))
4755 		goto nla_put_failure;
4756 
4757 
4758 	nlmsg_end(skb, nlh);
4759 	return 0;
4760 
4761 nla_put_failure:
4762 	nlmsg_cancel(skb, nlh);
4763 	return -EMSGSIZE;
4764 }
4765 
4766 int rt6_dump_route(struct fib6_info *rt, void *p_arg)
4767 {
4768 	struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
4769 	struct net *net = arg->net;
4770 
4771 	if (rt == net->ipv6.fib6_null_entry)
4772 		return 0;
4773 
4774 	if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
4775 		struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
4776 
4777 		/* user wants prefix routes only */
4778 		if (rtm->rtm_flags & RTM_F_PREFIX &&
4779 		    !(rt->fib6_flags & RTF_PREFIX_RT)) {
4780 			/* success since this is not a prefix route */
4781 			return 1;
4782 		}
4783 	}
4784 
4785 	return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0,
4786 			     RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid,
4787 			     arg->cb->nlh->nlmsg_seq, NLM_F_MULTI);
4788 }
4789 
4790 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
4791 			      struct netlink_ext_ack *extack)
4792 {
4793 	struct net *net = sock_net(in_skb->sk);
4794 	struct nlattr *tb[RTA_MAX+1];
4795 	int err, iif = 0, oif = 0;
4796 	struct fib6_info *from;
4797 	struct dst_entry *dst;
4798 	struct rt6_info *rt;
4799 	struct sk_buff *skb;
4800 	struct rtmsg *rtm;
4801 	struct flowi6 fl6 = {};
4802 	bool fibmatch;
4803 
4804 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4805 			  extack);
4806 	if (err < 0)
4807 		goto errout;
4808 
4809 	err = -EINVAL;
4810 	rtm = nlmsg_data(nlh);
4811 	fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
4812 	fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
4813 
4814 	if (tb[RTA_SRC]) {
4815 		if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
4816 			goto errout;
4817 
4818 		fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
4819 	}
4820 
4821 	if (tb[RTA_DST]) {
4822 		if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
4823 			goto errout;
4824 
4825 		fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
4826 	}
4827 
4828 	if (tb[RTA_IIF])
4829 		iif = nla_get_u32(tb[RTA_IIF]);
4830 
4831 	if (tb[RTA_OIF])
4832 		oif = nla_get_u32(tb[RTA_OIF]);
4833 
4834 	if (tb[RTA_MARK])
4835 		fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
4836 
4837 	if (tb[RTA_UID])
4838 		fl6.flowi6_uid = make_kuid(current_user_ns(),
4839 					   nla_get_u32(tb[RTA_UID]));
4840 	else
4841 		fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
4842 
4843 	if (tb[RTA_SPORT])
4844 		fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
4845 
4846 	if (tb[RTA_DPORT])
4847 		fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
4848 
4849 	if (tb[RTA_IP_PROTO]) {
4850 		err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
4851 						  &fl6.flowi6_proto, extack);
4852 		if (err)
4853 			goto errout;
4854 	}
4855 
4856 	if (iif) {
4857 		struct net_device *dev;
4858 		int flags = 0;
4859 
4860 		rcu_read_lock();
4861 
4862 		dev = dev_get_by_index_rcu(net, iif);
4863 		if (!dev) {
4864 			rcu_read_unlock();
4865 			err = -ENODEV;
4866 			goto errout;
4867 		}
4868 
4869 		fl6.flowi6_iif = iif;
4870 
4871 		if (!ipv6_addr_any(&fl6.saddr))
4872 			flags |= RT6_LOOKUP_F_HAS_SADDR;
4873 
4874 		dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
4875 
4876 		rcu_read_unlock();
4877 	} else {
4878 		fl6.flowi6_oif = oif;
4879 
4880 		dst = ip6_route_output(net, NULL, &fl6);
4881 	}
4882 
4883 
4884 	rt = container_of(dst, struct rt6_info, dst);
4885 	if (rt->dst.error) {
4886 		err = rt->dst.error;
4887 		ip6_rt_put(rt);
4888 		goto errout;
4889 	}
4890 
4891 	if (rt == net->ipv6.ip6_null_entry) {
4892 		err = rt->dst.error;
4893 		ip6_rt_put(rt);
4894 		goto errout;
4895 	}
4896 
4897 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
4898 	if (!skb) {
4899 		ip6_rt_put(rt);
4900 		err = -ENOBUFS;
4901 		goto errout;
4902 	}
4903 
4904 	skb_dst_set(skb, &rt->dst);
4905 
4906 	rcu_read_lock();
4907 	from = rcu_dereference(rt->from);
4908 
4909 	if (fibmatch)
4910 		err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif,
4911 				    RTM_NEWROUTE, NETLINK_CB(in_skb).portid,
4912 				    nlh->nlmsg_seq, 0);
4913 	else
4914 		err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
4915 				    &fl6.saddr, iif, RTM_NEWROUTE,
4916 				    NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
4917 				    0);
4918 	rcu_read_unlock();
4919 
4920 	if (err < 0) {
4921 		kfree_skb(skb);
4922 		goto errout;
4923 	}
4924 
4925 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
4926 errout:
4927 	return err;
4928 }
4929 
4930 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
4931 		     unsigned int nlm_flags)
4932 {
4933 	struct sk_buff *skb;
4934 	struct net *net = info->nl_net;
4935 	u32 seq;
4936 	int err;
4937 
4938 	err = -ENOBUFS;
4939 	seq = info->nlh ? info->nlh->nlmsg_seq : 0;
4940 
4941 	skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
4942 	if (!skb)
4943 		goto errout;
4944 
4945 	err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
4946 			    event, info->portid, seq, nlm_flags);
4947 	if (err < 0) {
4948 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
4949 		WARN_ON(err == -EMSGSIZE);
4950 		kfree_skb(skb);
4951 		goto errout;
4952 	}
4953 	rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
4954 		    info->nlh, gfp_any());
4955 	return;
4956 errout:
4957 	if (err < 0)
4958 		rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
4959 }
4960 
4961 static int ip6_route_dev_notify(struct notifier_block *this,
4962 				unsigned long event, void *ptr)
4963 {
4964 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4965 	struct net *net = dev_net(dev);
4966 
4967 	if (!(dev->flags & IFF_LOOPBACK))
4968 		return NOTIFY_OK;
4969 
4970 	if (event == NETDEV_REGISTER) {
4971 		net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev;
4972 		net->ipv6.ip6_null_entry->dst.dev = dev;
4973 		net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
4974 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
4975 		net->ipv6.ip6_prohibit_entry->dst.dev = dev;
4976 		net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
4977 		net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
4978 		net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
4979 #endif
4980 	 } else if (event == NETDEV_UNREGISTER &&
4981 		    dev->reg_state != NETREG_UNREGISTERED) {
4982 		/* NETDEV_UNREGISTER could be fired for multiple times by
4983 		 * netdev_wait_allrefs(). Make sure we only call this once.
4984 		 */
4985 		in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
4986 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
4987 		in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
4988 		in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
4989 #endif
4990 	}
4991 
4992 	return NOTIFY_OK;
4993 }
4994 
4995 /*
4996  *	/proc
4997  */
4998 
4999 #ifdef CONFIG_PROC_FS
5000 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
5001 {
5002 	struct net *net = (struct net *)seq->private;
5003 	seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
5004 		   net->ipv6.rt6_stats->fib_nodes,
5005 		   net->ipv6.rt6_stats->fib_route_nodes,
5006 		   atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
5007 		   net->ipv6.rt6_stats->fib_rt_entries,
5008 		   net->ipv6.rt6_stats->fib_rt_cache,
5009 		   dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
5010 		   net->ipv6.rt6_stats->fib_discarded_routes);
5011 
5012 	return 0;
5013 }
5014 #endif	/* CONFIG_PROC_FS */
5015 
5016 #ifdef CONFIG_SYSCTL
5017 
5018 static
5019 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
5020 			      void __user *buffer, size_t *lenp, loff_t *ppos)
5021 {
5022 	struct net *net;
5023 	int delay;
5024 	if (!write)
5025 		return -EINVAL;
5026 
5027 	net = (struct net *)ctl->extra1;
5028 	delay = net->ipv6.sysctl.flush_delay;
5029 	proc_dointvec(ctl, write, buffer, lenp, ppos);
5030 	fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
5031 	return 0;
5032 }
5033 
5034 struct ctl_table ipv6_route_table_template[] = {
5035 	{
5036 		.procname	=	"flush",
5037 		.data		=	&init_net.ipv6.sysctl.flush_delay,
5038 		.maxlen		=	sizeof(int),
5039 		.mode		=	0200,
5040 		.proc_handler	=	ipv6_sysctl_rtcache_flush
5041 	},
5042 	{
5043 		.procname	=	"gc_thresh",
5044 		.data		=	&ip6_dst_ops_template.gc_thresh,
5045 		.maxlen		=	sizeof(int),
5046 		.mode		=	0644,
5047 		.proc_handler	=	proc_dointvec,
5048 	},
5049 	{
5050 		.procname	=	"max_size",
5051 		.data		=	&init_net.ipv6.sysctl.ip6_rt_max_size,
5052 		.maxlen		=	sizeof(int),
5053 		.mode		=	0644,
5054 		.proc_handler	=	proc_dointvec,
5055 	},
5056 	{
5057 		.procname	=	"gc_min_interval",
5058 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5059 		.maxlen		=	sizeof(int),
5060 		.mode		=	0644,
5061 		.proc_handler	=	proc_dointvec_jiffies,
5062 	},
5063 	{
5064 		.procname	=	"gc_timeout",
5065 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_timeout,
5066 		.maxlen		=	sizeof(int),
5067 		.mode		=	0644,
5068 		.proc_handler	=	proc_dointvec_jiffies,
5069 	},
5070 	{
5071 		.procname	=	"gc_interval",
5072 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_interval,
5073 		.maxlen		=	sizeof(int),
5074 		.mode		=	0644,
5075 		.proc_handler	=	proc_dointvec_jiffies,
5076 	},
5077 	{
5078 		.procname	=	"gc_elasticity",
5079 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
5080 		.maxlen		=	sizeof(int),
5081 		.mode		=	0644,
5082 		.proc_handler	=	proc_dointvec,
5083 	},
5084 	{
5085 		.procname	=	"mtu_expires",
5086 		.data		=	&init_net.ipv6.sysctl.ip6_rt_mtu_expires,
5087 		.maxlen		=	sizeof(int),
5088 		.mode		=	0644,
5089 		.proc_handler	=	proc_dointvec_jiffies,
5090 	},
5091 	{
5092 		.procname	=	"min_adv_mss",
5093 		.data		=	&init_net.ipv6.sysctl.ip6_rt_min_advmss,
5094 		.maxlen		=	sizeof(int),
5095 		.mode		=	0644,
5096 		.proc_handler	=	proc_dointvec,
5097 	},
5098 	{
5099 		.procname	=	"gc_min_interval_ms",
5100 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5101 		.maxlen		=	sizeof(int),
5102 		.mode		=	0644,
5103 		.proc_handler	=	proc_dointvec_ms_jiffies,
5104 	},
5105 	{ }
5106 };
5107 
5108 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
5109 {
5110 	struct ctl_table *table;
5111 
5112 	table = kmemdup(ipv6_route_table_template,
5113 			sizeof(ipv6_route_table_template),
5114 			GFP_KERNEL);
5115 
5116 	if (table) {
5117 		table[0].data = &net->ipv6.sysctl.flush_delay;
5118 		table[0].extra1 = net;
5119 		table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
5120 		table[2].data = &net->ipv6.sysctl.ip6_rt_max_size;
5121 		table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5122 		table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
5123 		table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
5124 		table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
5125 		table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
5126 		table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
5127 		table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5128 
5129 		/* Don't export sysctls to unprivileged users */
5130 		if (net->user_ns != &init_user_ns)
5131 			table[0].procname = NULL;
5132 	}
5133 
5134 	return table;
5135 }
5136 #endif
5137 
5138 static int __net_init ip6_route_net_init(struct net *net)
5139 {
5140 	int ret = -ENOMEM;
5141 
5142 	memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
5143 	       sizeof(net->ipv6.ip6_dst_ops));
5144 
5145 	if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
5146 		goto out_ip6_dst_ops;
5147 
5148 	net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template,
5149 					    sizeof(*net->ipv6.fib6_null_entry),
5150 					    GFP_KERNEL);
5151 	if (!net->ipv6.fib6_null_entry)
5152 		goto out_ip6_dst_entries;
5153 
5154 	net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
5155 					   sizeof(*net->ipv6.ip6_null_entry),
5156 					   GFP_KERNEL);
5157 	if (!net->ipv6.ip6_null_entry)
5158 		goto out_fib6_null_entry;
5159 	net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5160 	dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
5161 			 ip6_template_metrics, true);
5162 
5163 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5164 	net->ipv6.fib6_has_custom_rules = false;
5165 	net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
5166 					       sizeof(*net->ipv6.ip6_prohibit_entry),
5167 					       GFP_KERNEL);
5168 	if (!net->ipv6.ip6_prohibit_entry)
5169 		goto out_ip6_null_entry;
5170 	net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5171 	dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
5172 			 ip6_template_metrics, true);
5173 
5174 	net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
5175 					       sizeof(*net->ipv6.ip6_blk_hole_entry),
5176 					       GFP_KERNEL);
5177 	if (!net->ipv6.ip6_blk_hole_entry)
5178 		goto out_ip6_prohibit_entry;
5179 	net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5180 	dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
5181 			 ip6_template_metrics, true);
5182 #endif
5183 
5184 	net->ipv6.sysctl.flush_delay = 0;
5185 	net->ipv6.sysctl.ip6_rt_max_size = 4096;
5186 	net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
5187 	net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
5188 	net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
5189 	net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
5190 	net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
5191 	net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
5192 
5193 	net->ipv6.ip6_rt_gc_expire = 30*HZ;
5194 
5195 	ret = 0;
5196 out:
5197 	return ret;
5198 
5199 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5200 out_ip6_prohibit_entry:
5201 	kfree(net->ipv6.ip6_prohibit_entry);
5202 out_ip6_null_entry:
5203 	kfree(net->ipv6.ip6_null_entry);
5204 #endif
5205 out_fib6_null_entry:
5206 	kfree(net->ipv6.fib6_null_entry);
5207 out_ip6_dst_entries:
5208 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5209 out_ip6_dst_ops:
5210 	goto out;
5211 }
5212 
5213 static void __net_exit ip6_route_net_exit(struct net *net)
5214 {
5215 	kfree(net->ipv6.fib6_null_entry);
5216 	kfree(net->ipv6.ip6_null_entry);
5217 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5218 	kfree(net->ipv6.ip6_prohibit_entry);
5219 	kfree(net->ipv6.ip6_blk_hole_entry);
5220 #endif
5221 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5222 }
5223 
5224 static int __net_init ip6_route_net_init_late(struct net *net)
5225 {
5226 #ifdef CONFIG_PROC_FS
5227 	proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops,
5228 			sizeof(struct ipv6_route_iter));
5229 	proc_create_net_single("rt6_stats", 0444, net->proc_net,
5230 			rt6_stats_seq_show, NULL);
5231 #endif
5232 	return 0;
5233 }
5234 
5235 static void __net_exit ip6_route_net_exit_late(struct net *net)
5236 {
5237 #ifdef CONFIG_PROC_FS
5238 	remove_proc_entry("ipv6_route", net->proc_net);
5239 	remove_proc_entry("rt6_stats", net->proc_net);
5240 #endif
5241 }
5242 
5243 static struct pernet_operations ip6_route_net_ops = {
5244 	.init = ip6_route_net_init,
5245 	.exit = ip6_route_net_exit,
5246 };
5247 
5248 static int __net_init ipv6_inetpeer_init(struct net *net)
5249 {
5250 	struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
5251 
5252 	if (!bp)
5253 		return -ENOMEM;
5254 	inet_peer_base_init(bp);
5255 	net->ipv6.peers = bp;
5256 	return 0;
5257 }
5258 
5259 static void __net_exit ipv6_inetpeer_exit(struct net *net)
5260 {
5261 	struct inet_peer_base *bp = net->ipv6.peers;
5262 
5263 	net->ipv6.peers = NULL;
5264 	inetpeer_invalidate_tree(bp);
5265 	kfree(bp);
5266 }
5267 
5268 static struct pernet_operations ipv6_inetpeer_ops = {
5269 	.init	=	ipv6_inetpeer_init,
5270 	.exit	=	ipv6_inetpeer_exit,
5271 };
5272 
5273 static struct pernet_operations ip6_route_net_late_ops = {
5274 	.init = ip6_route_net_init_late,
5275 	.exit = ip6_route_net_exit_late,
5276 };
5277 
5278 static struct notifier_block ip6_route_dev_notifier = {
5279 	.notifier_call = ip6_route_dev_notify,
5280 	.priority = ADDRCONF_NOTIFY_PRIORITY - 10,
5281 };
5282 
5283 void __init ip6_route_init_special_entries(void)
5284 {
5285 	/* Registering of the loopback is done before this portion of code,
5286 	 * the loopback reference in rt6_info will not be taken, do it
5287 	 * manually for init_net */
5288 	init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev;
5289 	init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
5290 	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5291   #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5292 	init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
5293 	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5294 	init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
5295 	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5296   #endif
5297 }
5298 
5299 int __init ip6_route_init(void)
5300 {
5301 	int ret;
5302 	int cpu;
5303 
5304 	ret = -ENOMEM;
5305 	ip6_dst_ops_template.kmem_cachep =
5306 		kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
5307 				  SLAB_HWCACHE_ALIGN, NULL);
5308 	if (!ip6_dst_ops_template.kmem_cachep)
5309 		goto out;
5310 
5311 	ret = dst_entries_init(&ip6_dst_blackhole_ops);
5312 	if (ret)
5313 		goto out_kmem_cache;
5314 
5315 	ret = register_pernet_subsys(&ipv6_inetpeer_ops);
5316 	if (ret)
5317 		goto out_dst_entries;
5318 
5319 	ret = register_pernet_subsys(&ip6_route_net_ops);
5320 	if (ret)
5321 		goto out_register_inetpeer;
5322 
5323 	ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
5324 
5325 	ret = fib6_init();
5326 	if (ret)
5327 		goto out_register_subsys;
5328 
5329 	ret = xfrm6_init();
5330 	if (ret)
5331 		goto out_fib6_init;
5332 
5333 	ret = fib6_rules_init();
5334 	if (ret)
5335 		goto xfrm6_init;
5336 
5337 	ret = register_pernet_subsys(&ip6_route_net_late_ops);
5338 	if (ret)
5339 		goto fib6_rules_init;
5340 
5341 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
5342 				   inet6_rtm_newroute, NULL, 0);
5343 	if (ret < 0)
5344 		goto out_register_late_subsys;
5345 
5346 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
5347 				   inet6_rtm_delroute, NULL, 0);
5348 	if (ret < 0)
5349 		goto out_register_late_subsys;
5350 
5351 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
5352 				   inet6_rtm_getroute, NULL,
5353 				   RTNL_FLAG_DOIT_UNLOCKED);
5354 	if (ret < 0)
5355 		goto out_register_late_subsys;
5356 
5357 	ret = register_netdevice_notifier(&ip6_route_dev_notifier);
5358 	if (ret)
5359 		goto out_register_late_subsys;
5360 
5361 	for_each_possible_cpu(cpu) {
5362 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
5363 
5364 		INIT_LIST_HEAD(&ul->head);
5365 		spin_lock_init(&ul->lock);
5366 	}
5367 
5368 out:
5369 	return ret;
5370 
5371 out_register_late_subsys:
5372 	rtnl_unregister_all(PF_INET6);
5373 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5374 fib6_rules_init:
5375 	fib6_rules_cleanup();
5376 xfrm6_init:
5377 	xfrm6_fini();
5378 out_fib6_init:
5379 	fib6_gc_cleanup();
5380 out_register_subsys:
5381 	unregister_pernet_subsys(&ip6_route_net_ops);
5382 out_register_inetpeer:
5383 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5384 out_dst_entries:
5385 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5386 out_kmem_cache:
5387 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5388 	goto out;
5389 }
5390 
5391 void ip6_route_cleanup(void)
5392 {
5393 	unregister_netdevice_notifier(&ip6_route_dev_notifier);
5394 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5395 	fib6_rules_cleanup();
5396 	xfrm6_fini();
5397 	fib6_gc_cleanup();
5398 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5399 	unregister_pernet_subsys(&ip6_route_net_ops);
5400 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5401 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5402 }
5403