xref: /openbmc/linux/net/ipv6/route.c (revision 242cdad8)
1 /*
2  *	Linux INET6 implementation
3  *	FIB front-end.
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*	Changes:
15  *
16  *	YOSHIFUJI Hideaki @USAGI
17  *		reworked default router selection.
18  *		- respect outgoing interface
19  *		- select from (probably) reachable routers (i.e.
20  *		routers in REACHABLE, STALE, DELAY or PROBE states).
21  *		- always select the same router if it is (probably)
22  *		reachable.  otherwise, round-robin the list.
23  *	Ville Nuorvala
24  *		Fixed routing subtrees.
25  */
26 
27 #define pr_fmt(fmt) "IPv6: " fmt
28 
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/types.h>
33 #include <linux/times.h>
34 #include <linux/socket.h>
35 #include <linux/sockios.h>
36 #include <linux/net.h>
37 #include <linux/route.h>
38 #include <linux/netdevice.h>
39 #include <linux/in6.h>
40 #include <linux/mroute6.h>
41 #include <linux/init.h>
42 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/nsproxy.h>
46 #include <linux/slab.h>
47 #include <linux/jhash.h>
48 #include <net/net_namespace.h>
49 #include <net/snmp.h>
50 #include <net/ipv6.h>
51 #include <net/ip6_fib.h>
52 #include <net/ip6_route.h>
53 #include <net/ndisc.h>
54 #include <net/addrconf.h>
55 #include <net/tcp.h>
56 #include <linux/rtnetlink.h>
57 #include <net/dst.h>
58 #include <net/dst_metadata.h>
59 #include <net/xfrm.h>
60 #include <net/netevent.h>
61 #include <net/netlink.h>
62 #include <net/nexthop.h>
63 #include <net/lwtunnel.h>
64 #include <net/ip_tunnels.h>
65 #include <net/l3mdev.h>
66 #include <net/ip.h>
67 #include <linux/uaccess.h>
68 
69 #ifdef CONFIG_SYSCTL
70 #include <linux/sysctl.h>
71 #endif
72 
73 static int ip6_rt_type_to_error(u8 fib6_type);
74 
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/fib6.h>
77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
78 #undef CREATE_TRACE_POINTS
79 
80 enum rt6_nud_state {
81 	RT6_NUD_FAIL_HARD = -3,
82 	RT6_NUD_FAIL_PROBE = -2,
83 	RT6_NUD_FAIL_DO_RR = -1,
84 	RT6_NUD_SUCCEED = 1
85 };
86 
87 static struct dst_entry	*ip6_dst_check(struct dst_entry *dst, u32 cookie);
88 static unsigned int	 ip6_default_advmss(const struct dst_entry *dst);
89 static unsigned int	 ip6_mtu(const struct dst_entry *dst);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void		ip6_dst_destroy(struct dst_entry *);
92 static void		ip6_dst_ifdown(struct dst_entry *,
93 				       struct net_device *dev, int how);
94 static int		 ip6_dst_gc(struct dst_ops *ops);
95 
96 static int		ip6_pkt_discard(struct sk_buff *skb);
97 static int		ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
98 static int		ip6_pkt_prohibit(struct sk_buff *skb);
99 static int		ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
100 static void		ip6_link_failure(struct sk_buff *skb);
101 static void		ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
102 					   struct sk_buff *skb, u32 mtu);
103 static void		rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
104 					struct sk_buff *skb);
105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict);
106 static size_t rt6_nlmsg_size(struct fib6_info *rt);
107 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
108 			 struct fib6_info *rt, struct dst_entry *dst,
109 			 struct in6_addr *dest, struct in6_addr *src,
110 			 int iif, int type, u32 portid, u32 seq,
111 			 unsigned int flags);
112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
113 					   struct in6_addr *daddr,
114 					   struct in6_addr *saddr);
115 
116 #ifdef CONFIG_IPV6_ROUTE_INFO
117 static struct fib6_info *rt6_add_route_info(struct net *net,
118 					   const struct in6_addr *prefix, int prefixlen,
119 					   const struct in6_addr *gwaddr,
120 					   struct net_device *dev,
121 					   unsigned int pref);
122 static struct fib6_info *rt6_get_route_info(struct net *net,
123 					   const struct in6_addr *prefix, int prefixlen,
124 					   const struct in6_addr *gwaddr,
125 					   struct net_device *dev);
126 #endif
127 
128 struct uncached_list {
129 	spinlock_t		lock;
130 	struct list_head	head;
131 };
132 
133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
134 
135 void rt6_uncached_list_add(struct rt6_info *rt)
136 {
137 	struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
138 
139 	rt->rt6i_uncached_list = ul;
140 
141 	spin_lock_bh(&ul->lock);
142 	list_add_tail(&rt->rt6i_uncached, &ul->head);
143 	spin_unlock_bh(&ul->lock);
144 }
145 
146 void rt6_uncached_list_del(struct rt6_info *rt)
147 {
148 	if (!list_empty(&rt->rt6i_uncached)) {
149 		struct uncached_list *ul = rt->rt6i_uncached_list;
150 		struct net *net = dev_net(rt->dst.dev);
151 
152 		spin_lock_bh(&ul->lock);
153 		list_del(&rt->rt6i_uncached);
154 		atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache);
155 		spin_unlock_bh(&ul->lock);
156 	}
157 }
158 
159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev)
160 {
161 	struct net_device *loopback_dev = net->loopback_dev;
162 	int cpu;
163 
164 	if (dev == loopback_dev)
165 		return;
166 
167 	for_each_possible_cpu(cpu) {
168 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
169 		struct rt6_info *rt;
170 
171 		spin_lock_bh(&ul->lock);
172 		list_for_each_entry(rt, &ul->head, rt6i_uncached) {
173 			struct inet6_dev *rt_idev = rt->rt6i_idev;
174 			struct net_device *rt_dev = rt->dst.dev;
175 
176 			if (rt_idev->dev == dev) {
177 				rt->rt6i_idev = in6_dev_get(loopback_dev);
178 				in6_dev_put(rt_idev);
179 			}
180 
181 			if (rt_dev == dev) {
182 				rt->dst.dev = loopback_dev;
183 				dev_hold(rt->dst.dev);
184 				dev_put(rt_dev);
185 			}
186 		}
187 		spin_unlock_bh(&ul->lock);
188 	}
189 }
190 
191 static inline const void *choose_neigh_daddr(const struct in6_addr *p,
192 					     struct sk_buff *skb,
193 					     const void *daddr)
194 {
195 	if (!ipv6_addr_any(p))
196 		return (const void *) p;
197 	else if (skb)
198 		return &ipv6_hdr(skb)->daddr;
199 	return daddr;
200 }
201 
202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
203 				   struct net_device *dev,
204 				   struct sk_buff *skb,
205 				   const void *daddr)
206 {
207 	struct neighbour *n;
208 
209 	daddr = choose_neigh_daddr(gw, skb, daddr);
210 	n = __ipv6_neigh_lookup(dev, daddr);
211 	if (n)
212 		return n;
213 	return neigh_create(&nd_tbl, daddr, dev);
214 }
215 
216 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
217 					      struct sk_buff *skb,
218 					      const void *daddr)
219 {
220 	const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
221 
222 	return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr);
223 }
224 
225 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
226 {
227 	struct net_device *dev = dst->dev;
228 	struct rt6_info *rt = (struct rt6_info *)dst;
229 
230 	daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr);
231 	if (!daddr)
232 		return;
233 	if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
234 		return;
235 	if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
236 		return;
237 	__ipv6_confirm_neigh(dev, daddr);
238 }
239 
240 static struct dst_ops ip6_dst_ops_template = {
241 	.family			=	AF_INET6,
242 	.gc			=	ip6_dst_gc,
243 	.gc_thresh		=	1024,
244 	.check			=	ip6_dst_check,
245 	.default_advmss		=	ip6_default_advmss,
246 	.mtu			=	ip6_mtu,
247 	.cow_metrics		=	dst_cow_metrics_generic,
248 	.destroy		=	ip6_dst_destroy,
249 	.ifdown			=	ip6_dst_ifdown,
250 	.negative_advice	=	ip6_negative_advice,
251 	.link_failure		=	ip6_link_failure,
252 	.update_pmtu		=	ip6_rt_update_pmtu,
253 	.redirect		=	rt6_do_redirect,
254 	.local_out		=	__ip6_local_out,
255 	.neigh_lookup		=	ip6_dst_neigh_lookup,
256 	.confirm_neigh		=	ip6_confirm_neigh,
257 };
258 
259 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst)
260 {
261 	unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
262 
263 	return mtu ? : dst->dev->mtu;
264 }
265 
266 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk,
267 					 struct sk_buff *skb, u32 mtu)
268 {
269 }
270 
271 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk,
272 				      struct sk_buff *skb)
273 {
274 }
275 
276 static struct dst_ops ip6_dst_blackhole_ops = {
277 	.family			=	AF_INET6,
278 	.destroy		=	ip6_dst_destroy,
279 	.check			=	ip6_dst_check,
280 	.mtu			=	ip6_blackhole_mtu,
281 	.default_advmss		=	ip6_default_advmss,
282 	.update_pmtu		=	ip6_rt_blackhole_update_pmtu,
283 	.redirect		=	ip6_rt_blackhole_redirect,
284 	.cow_metrics		=	dst_cow_metrics_generic,
285 	.neigh_lookup		=	ip6_dst_neigh_lookup,
286 };
287 
288 static const u32 ip6_template_metrics[RTAX_MAX] = {
289 	[RTAX_HOPLIMIT - 1] = 0,
290 };
291 
292 static const struct fib6_info fib6_null_entry_template = {
293 	.fib6_flags	= (RTF_REJECT | RTF_NONEXTHOP),
294 	.fib6_protocol  = RTPROT_KERNEL,
295 	.fib6_metric	= ~(u32)0,
296 	.fib6_ref	= ATOMIC_INIT(1),
297 	.fib6_type	= RTN_UNREACHABLE,
298 	.fib6_metrics	= (struct dst_metrics *)&dst_default_metrics,
299 };
300 
301 static const struct rt6_info ip6_null_entry_template = {
302 	.dst = {
303 		.__refcnt	= ATOMIC_INIT(1),
304 		.__use		= 1,
305 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
306 		.error		= -ENETUNREACH,
307 		.input		= ip6_pkt_discard,
308 		.output		= ip6_pkt_discard_out,
309 	},
310 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
311 };
312 
313 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
314 
315 static const struct rt6_info ip6_prohibit_entry_template = {
316 	.dst = {
317 		.__refcnt	= ATOMIC_INIT(1),
318 		.__use		= 1,
319 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
320 		.error		= -EACCES,
321 		.input		= ip6_pkt_prohibit,
322 		.output		= ip6_pkt_prohibit_out,
323 	},
324 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
325 };
326 
327 static const struct rt6_info ip6_blk_hole_entry_template = {
328 	.dst = {
329 		.__refcnt	= ATOMIC_INIT(1),
330 		.__use		= 1,
331 		.obsolete	= DST_OBSOLETE_FORCE_CHK,
332 		.error		= -EINVAL,
333 		.input		= dst_discard,
334 		.output		= dst_discard_out,
335 	},
336 	.rt6i_flags	= (RTF_REJECT | RTF_NONEXTHOP),
337 };
338 
339 #endif
340 
341 static void rt6_info_init(struct rt6_info *rt)
342 {
343 	struct dst_entry *dst = &rt->dst;
344 
345 	memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst));
346 	INIT_LIST_HEAD(&rt->rt6i_uncached);
347 }
348 
349 /* allocate dst with ip6_dst_ops */
350 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
351 			       int flags)
352 {
353 	struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
354 					1, DST_OBSOLETE_FORCE_CHK, flags);
355 
356 	if (rt) {
357 		rt6_info_init(rt);
358 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
359 	}
360 
361 	return rt;
362 }
363 EXPORT_SYMBOL(ip6_dst_alloc);
364 
365 static void ip6_dst_destroy(struct dst_entry *dst)
366 {
367 	struct rt6_info *rt = (struct rt6_info *)dst;
368 	struct fib6_info *from;
369 	struct inet6_dev *idev;
370 
371 	dst_destroy_metrics_generic(dst);
372 	rt6_uncached_list_del(rt);
373 
374 	idev = rt->rt6i_idev;
375 	if (idev) {
376 		rt->rt6i_idev = NULL;
377 		in6_dev_put(idev);
378 	}
379 
380 	rcu_read_lock();
381 	from = rcu_dereference(rt->from);
382 	rcu_assign_pointer(rt->from, NULL);
383 	fib6_info_release(from);
384 	rcu_read_unlock();
385 }
386 
387 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
388 			   int how)
389 {
390 	struct rt6_info *rt = (struct rt6_info *)dst;
391 	struct inet6_dev *idev = rt->rt6i_idev;
392 	struct net_device *loopback_dev =
393 		dev_net(dev)->loopback_dev;
394 
395 	if (idev && idev->dev != loopback_dev) {
396 		struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev);
397 		if (loopback_idev) {
398 			rt->rt6i_idev = loopback_idev;
399 			in6_dev_put(idev);
400 		}
401 	}
402 }
403 
404 static bool __rt6_check_expired(const struct rt6_info *rt)
405 {
406 	if (rt->rt6i_flags & RTF_EXPIRES)
407 		return time_after(jiffies, rt->dst.expires);
408 	else
409 		return false;
410 }
411 
412 static bool rt6_check_expired(const struct rt6_info *rt)
413 {
414 	struct fib6_info *from;
415 
416 	from = rcu_dereference(rt->from);
417 
418 	if (rt->rt6i_flags & RTF_EXPIRES) {
419 		if (time_after(jiffies, rt->dst.expires))
420 			return true;
421 	} else if (from) {
422 		return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
423 			fib6_check_expired(from);
424 	}
425 	return false;
426 }
427 
428 struct fib6_info *fib6_multipath_select(const struct net *net,
429 					struct fib6_info *match,
430 					struct flowi6 *fl6, int oif,
431 					const struct sk_buff *skb,
432 					int strict)
433 {
434 	struct fib6_info *sibling, *next_sibling;
435 
436 	/* We might have already computed the hash for ICMPv6 errors. In such
437 	 * case it will always be non-zero. Otherwise now is the time to do it.
438 	 */
439 	if (!fl6->mp_hash)
440 		fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
441 
442 	if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound))
443 		return match;
444 
445 	list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
446 				 fib6_siblings) {
447 		int nh_upper_bound;
448 
449 		nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound);
450 		if (fl6->mp_hash > nh_upper_bound)
451 			continue;
452 		if (rt6_score_route(sibling, oif, strict) < 0)
453 			break;
454 		match = sibling;
455 		break;
456 	}
457 
458 	return match;
459 }
460 
461 /*
462  *	Route lookup. rcu_read_lock() should be held.
463  */
464 
465 static inline struct fib6_info *rt6_device_match(struct net *net,
466 						 struct fib6_info *rt,
467 						    const struct in6_addr *saddr,
468 						    int oif,
469 						    int flags)
470 {
471 	struct fib6_info *sprt;
472 
473 	if (!oif && ipv6_addr_any(saddr) &&
474 	    !(rt->fib6_nh.nh_flags & RTNH_F_DEAD))
475 		return rt;
476 
477 	for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) {
478 		const struct net_device *dev = sprt->fib6_nh.nh_dev;
479 
480 		if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD)
481 			continue;
482 
483 		if (oif) {
484 			if (dev->ifindex == oif)
485 				return sprt;
486 		} else {
487 			if (ipv6_chk_addr(net, saddr, dev,
488 					  flags & RT6_LOOKUP_F_IFACE))
489 				return sprt;
490 		}
491 	}
492 
493 	if (oif && flags & RT6_LOOKUP_F_IFACE)
494 		return net->ipv6.fib6_null_entry;
495 
496 	return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt;
497 }
498 
499 #ifdef CONFIG_IPV6_ROUTER_PREF
500 struct __rt6_probe_work {
501 	struct work_struct work;
502 	struct in6_addr target;
503 	struct net_device *dev;
504 };
505 
506 static void rt6_probe_deferred(struct work_struct *w)
507 {
508 	struct in6_addr mcaddr;
509 	struct __rt6_probe_work *work =
510 		container_of(w, struct __rt6_probe_work, work);
511 
512 	addrconf_addr_solict_mult(&work->target, &mcaddr);
513 	ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
514 	dev_put(work->dev);
515 	kfree(work);
516 }
517 
518 static void rt6_probe(struct fib6_info *rt)
519 {
520 	struct __rt6_probe_work *work;
521 	const struct in6_addr *nh_gw;
522 	struct neighbour *neigh;
523 	struct net_device *dev;
524 
525 	/*
526 	 * Okay, this does not seem to be appropriate
527 	 * for now, however, we need to check if it
528 	 * is really so; aka Router Reachability Probing.
529 	 *
530 	 * Router Reachability Probe MUST be rate-limited
531 	 * to no more than one per minute.
532 	 */
533 	if (!rt || !(rt->fib6_flags & RTF_GATEWAY))
534 		return;
535 
536 	nh_gw = &rt->fib6_nh.nh_gw;
537 	dev = rt->fib6_nh.nh_dev;
538 	rcu_read_lock_bh();
539 	neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
540 	if (neigh) {
541 		struct inet6_dev *idev;
542 
543 		if (neigh->nud_state & NUD_VALID)
544 			goto out;
545 
546 		idev = __in6_dev_get(dev);
547 		work = NULL;
548 		write_lock(&neigh->lock);
549 		if (!(neigh->nud_state & NUD_VALID) &&
550 		    time_after(jiffies,
551 			       neigh->updated + idev->cnf.rtr_probe_interval)) {
552 			work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 			if (work)
554 				__neigh_set_probe_once(neigh);
555 		}
556 		write_unlock(&neigh->lock);
557 	} else {
558 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
559 	}
560 
561 	if (work) {
562 		INIT_WORK(&work->work, rt6_probe_deferred);
563 		work->target = *nh_gw;
564 		dev_hold(dev);
565 		work->dev = dev;
566 		schedule_work(&work->work);
567 	}
568 
569 out:
570 	rcu_read_unlock_bh();
571 }
572 #else
573 static inline void rt6_probe(struct fib6_info *rt)
574 {
575 }
576 #endif
577 
578 /*
579  * Default Router Selection (RFC 2461 6.3.6)
580  */
581 static inline int rt6_check_dev(struct fib6_info *rt, int oif)
582 {
583 	const struct net_device *dev = rt->fib6_nh.nh_dev;
584 
585 	if (!oif || dev->ifindex == oif)
586 		return 2;
587 	return 0;
588 }
589 
590 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt)
591 {
592 	enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
593 	struct neighbour *neigh;
594 
595 	if (rt->fib6_flags & RTF_NONEXTHOP ||
596 	    !(rt->fib6_flags & RTF_GATEWAY))
597 		return RT6_NUD_SUCCEED;
598 
599 	rcu_read_lock_bh();
600 	neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev,
601 					  &rt->fib6_nh.nh_gw);
602 	if (neigh) {
603 		read_lock(&neigh->lock);
604 		if (neigh->nud_state & NUD_VALID)
605 			ret = RT6_NUD_SUCCEED;
606 #ifdef CONFIG_IPV6_ROUTER_PREF
607 		else if (!(neigh->nud_state & NUD_FAILED))
608 			ret = RT6_NUD_SUCCEED;
609 		else
610 			ret = RT6_NUD_FAIL_PROBE;
611 #endif
612 		read_unlock(&neigh->lock);
613 	} else {
614 		ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
615 		      RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
616 	}
617 	rcu_read_unlock_bh();
618 
619 	return ret;
620 }
621 
622 static int rt6_score_route(struct fib6_info *rt, int oif, int strict)
623 {
624 	int m;
625 
626 	m = rt6_check_dev(rt, oif);
627 	if (!m && (strict & RT6_LOOKUP_F_IFACE))
628 		return RT6_NUD_FAIL_HARD;
629 #ifdef CONFIG_IPV6_ROUTER_PREF
630 	m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2;
631 #endif
632 	if (strict & RT6_LOOKUP_F_REACHABLE) {
633 		int n = rt6_check_neigh(rt);
634 		if (n < 0)
635 			return n;
636 	}
637 	return m;
638 }
639 
640 /* called with rc_read_lock held */
641 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i)
642 {
643 	const struct net_device *dev = fib6_info_nh_dev(f6i);
644 	bool rc = false;
645 
646 	if (dev) {
647 		const struct inet6_dev *idev = __in6_dev_get(dev);
648 
649 		rc = !!idev->cnf.ignore_routes_with_linkdown;
650 	}
651 
652 	return rc;
653 }
654 
655 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict,
656 				   int *mpri, struct fib6_info *match,
657 				   bool *do_rr)
658 {
659 	int m;
660 	bool match_do_rr = false;
661 
662 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
663 		goto out;
664 
665 	if (fib6_ignore_linkdown(rt) &&
666 	    rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
667 	    !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
668 		goto out;
669 
670 	if (fib6_check_expired(rt))
671 		goto out;
672 
673 	m = rt6_score_route(rt, oif, strict);
674 	if (m == RT6_NUD_FAIL_DO_RR) {
675 		match_do_rr = true;
676 		m = 0; /* lowest valid score */
677 	} else if (m == RT6_NUD_FAIL_HARD) {
678 		goto out;
679 	}
680 
681 	if (strict & RT6_LOOKUP_F_REACHABLE)
682 		rt6_probe(rt);
683 
684 	/* note that m can be RT6_NUD_FAIL_PROBE at this point */
685 	if (m > *mpri) {
686 		*do_rr = match_do_rr;
687 		*mpri = m;
688 		match = rt;
689 	}
690 out:
691 	return match;
692 }
693 
694 static struct fib6_info *find_rr_leaf(struct fib6_node *fn,
695 				     struct fib6_info *leaf,
696 				     struct fib6_info *rr_head,
697 				     u32 metric, int oif, int strict,
698 				     bool *do_rr)
699 {
700 	struct fib6_info *rt, *match, *cont;
701 	int mpri = -1;
702 
703 	match = NULL;
704 	cont = NULL;
705 	for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) {
706 		if (rt->fib6_metric != metric) {
707 			cont = rt;
708 			break;
709 		}
710 
711 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
712 	}
713 
714 	for (rt = leaf; rt && rt != rr_head;
715 	     rt = rcu_dereference(rt->fib6_next)) {
716 		if (rt->fib6_metric != metric) {
717 			cont = rt;
718 			break;
719 		}
720 
721 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
722 	}
723 
724 	if (match || !cont)
725 		return match;
726 
727 	for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next))
728 		match = find_match(rt, oif, strict, &mpri, match, do_rr);
729 
730 	return match;
731 }
732 
733 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn,
734 				   int oif, int strict)
735 {
736 	struct fib6_info *leaf = rcu_dereference(fn->leaf);
737 	struct fib6_info *match, *rt0;
738 	bool do_rr = false;
739 	int key_plen;
740 
741 	if (!leaf || leaf == net->ipv6.fib6_null_entry)
742 		return net->ipv6.fib6_null_entry;
743 
744 	rt0 = rcu_dereference(fn->rr_ptr);
745 	if (!rt0)
746 		rt0 = leaf;
747 
748 	/* Double check to make sure fn is not an intermediate node
749 	 * and fn->leaf does not points to its child's leaf
750 	 * (This might happen if all routes under fn are deleted from
751 	 * the tree and fib6_repair_tree() is called on the node.)
752 	 */
753 	key_plen = rt0->fib6_dst.plen;
754 #ifdef CONFIG_IPV6_SUBTREES
755 	if (rt0->fib6_src.plen)
756 		key_plen = rt0->fib6_src.plen;
757 #endif
758 	if (fn->fn_bit != key_plen)
759 		return net->ipv6.fib6_null_entry;
760 
761 	match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict,
762 			     &do_rr);
763 
764 	if (do_rr) {
765 		struct fib6_info *next = rcu_dereference(rt0->fib6_next);
766 
767 		/* no entries matched; do round-robin */
768 		if (!next || next->fib6_metric != rt0->fib6_metric)
769 			next = leaf;
770 
771 		if (next != rt0) {
772 			spin_lock_bh(&leaf->fib6_table->tb6_lock);
773 			/* make sure next is not being deleted from the tree */
774 			if (next->fib6_node)
775 				rcu_assign_pointer(fn->rr_ptr, next);
776 			spin_unlock_bh(&leaf->fib6_table->tb6_lock);
777 		}
778 	}
779 
780 	return match ? match : net->ipv6.fib6_null_entry;
781 }
782 
783 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt)
784 {
785 	return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY));
786 }
787 
788 #ifdef CONFIG_IPV6_ROUTE_INFO
789 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
790 		  const struct in6_addr *gwaddr)
791 {
792 	struct net *net = dev_net(dev);
793 	struct route_info *rinfo = (struct route_info *) opt;
794 	struct in6_addr prefix_buf, *prefix;
795 	unsigned int pref;
796 	unsigned long lifetime;
797 	struct fib6_info *rt;
798 
799 	if (len < sizeof(struct route_info)) {
800 		return -EINVAL;
801 	}
802 
803 	/* Sanity check for prefix_len and length */
804 	if (rinfo->length > 3) {
805 		return -EINVAL;
806 	} else if (rinfo->prefix_len > 128) {
807 		return -EINVAL;
808 	} else if (rinfo->prefix_len > 64) {
809 		if (rinfo->length < 2) {
810 			return -EINVAL;
811 		}
812 	} else if (rinfo->prefix_len > 0) {
813 		if (rinfo->length < 1) {
814 			return -EINVAL;
815 		}
816 	}
817 
818 	pref = rinfo->route_pref;
819 	if (pref == ICMPV6_ROUTER_PREF_INVALID)
820 		return -EINVAL;
821 
822 	lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
823 
824 	if (rinfo->length == 3)
825 		prefix = (struct in6_addr *)rinfo->prefix;
826 	else {
827 		/* this function is safe */
828 		ipv6_addr_prefix(&prefix_buf,
829 				 (struct in6_addr *)rinfo->prefix,
830 				 rinfo->prefix_len);
831 		prefix = &prefix_buf;
832 	}
833 
834 	if (rinfo->prefix_len == 0)
835 		rt = rt6_get_dflt_router(net, gwaddr, dev);
836 	else
837 		rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
838 					gwaddr, dev);
839 
840 	if (rt && !lifetime) {
841 		ip6_del_rt(net, rt);
842 		rt = NULL;
843 	}
844 
845 	if (!rt && lifetime)
846 		rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
847 					dev, pref);
848 	else if (rt)
849 		rt->fib6_flags = RTF_ROUTEINFO |
850 				 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
851 
852 	if (rt) {
853 		if (!addrconf_finite_timeout(lifetime))
854 			fib6_clean_expires(rt);
855 		else
856 			fib6_set_expires(rt, jiffies + HZ * lifetime);
857 
858 		fib6_info_release(rt);
859 	}
860 	return 0;
861 }
862 #endif
863 
864 /*
865  *	Misc support functions
866  */
867 
868 /* called with rcu_lock held */
869 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt)
870 {
871 	struct net_device *dev = rt->fib6_nh.nh_dev;
872 
873 	if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
874 		/* for copies of local routes, dst->dev needs to be the
875 		 * device if it is a master device, the master device if
876 		 * device is enslaved, and the loopback as the default
877 		 */
878 		if (netif_is_l3_slave(dev) &&
879 		    !rt6_need_strict(&rt->fib6_dst.addr))
880 			dev = l3mdev_master_dev_rcu(dev);
881 		else if (!netif_is_l3_master(dev))
882 			dev = dev_net(dev)->loopback_dev;
883 		/* last case is netif_is_l3_master(dev) is true in which
884 		 * case we want dev returned to be dev
885 		 */
886 	}
887 
888 	return dev;
889 }
890 
891 static const int fib6_prop[RTN_MAX + 1] = {
892 	[RTN_UNSPEC]	= 0,
893 	[RTN_UNICAST]	= 0,
894 	[RTN_LOCAL]	= 0,
895 	[RTN_BROADCAST]	= 0,
896 	[RTN_ANYCAST]	= 0,
897 	[RTN_MULTICAST]	= 0,
898 	[RTN_BLACKHOLE]	= -EINVAL,
899 	[RTN_UNREACHABLE] = -EHOSTUNREACH,
900 	[RTN_PROHIBIT]	= -EACCES,
901 	[RTN_THROW]	= -EAGAIN,
902 	[RTN_NAT]	= -EINVAL,
903 	[RTN_XRESOLVE]	= -EINVAL,
904 };
905 
906 static int ip6_rt_type_to_error(u8 fib6_type)
907 {
908 	return fib6_prop[fib6_type];
909 }
910 
911 static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
912 {
913 	unsigned short flags = 0;
914 
915 	if (rt->dst_nocount)
916 		flags |= DST_NOCOUNT;
917 	if (rt->dst_nopolicy)
918 		flags |= DST_NOPOLICY;
919 	if (rt->dst_host)
920 		flags |= DST_HOST;
921 
922 	return flags;
923 }
924 
925 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort)
926 {
927 	rt->dst.error = ip6_rt_type_to_error(ort->fib6_type);
928 
929 	switch (ort->fib6_type) {
930 	case RTN_BLACKHOLE:
931 		rt->dst.output = dst_discard_out;
932 		rt->dst.input = dst_discard;
933 		break;
934 	case RTN_PROHIBIT:
935 		rt->dst.output = ip6_pkt_prohibit_out;
936 		rt->dst.input = ip6_pkt_prohibit;
937 		break;
938 	case RTN_THROW:
939 	case RTN_UNREACHABLE:
940 	default:
941 		rt->dst.output = ip6_pkt_discard_out;
942 		rt->dst.input = ip6_pkt_discard;
943 		break;
944 	}
945 }
946 
947 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort)
948 {
949 	rt->dst.flags |= fib6_info_dst_flags(ort);
950 
951 	if (ort->fib6_flags & RTF_REJECT) {
952 		ip6_rt_init_dst_reject(rt, ort);
953 		return;
954 	}
955 
956 	rt->dst.error = 0;
957 	rt->dst.output = ip6_output;
958 
959 	if (ort->fib6_type == RTN_LOCAL || ort->fib6_type == RTN_ANYCAST) {
960 		rt->dst.input = ip6_input;
961 	} else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
962 		rt->dst.input = ip6_mc_input;
963 	} else {
964 		rt->dst.input = ip6_forward;
965 	}
966 
967 	if (ort->fib6_nh.nh_lwtstate) {
968 		rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
969 		lwtunnel_set_redirect(&rt->dst);
970 	}
971 
972 	rt->dst.lastuse = jiffies;
973 }
974 
975 /* Caller must already hold reference to @from */
976 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
977 {
978 	rt->rt6i_flags &= ~RTF_EXPIRES;
979 	rcu_assign_pointer(rt->from, from);
980 	dst_init_metrics(&rt->dst, from->fib6_metrics->metrics, true);
981 }
982 
983 /* Caller must already hold reference to @ort */
984 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort)
985 {
986 	struct net_device *dev = fib6_info_nh_dev(ort);
987 
988 	ip6_rt_init_dst(rt, ort);
989 
990 	rt->rt6i_dst = ort->fib6_dst;
991 	rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
992 	rt->rt6i_gateway = ort->fib6_nh.nh_gw;
993 	rt->rt6i_flags = ort->fib6_flags;
994 	rt6_set_from(rt, ort);
995 #ifdef CONFIG_IPV6_SUBTREES
996 	rt->rt6i_src = ort->fib6_src;
997 #endif
998 	rt->rt6i_prefsrc = ort->fib6_prefsrc;
999 }
1000 
1001 static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
1002 					struct in6_addr *saddr)
1003 {
1004 	struct fib6_node *pn, *sn;
1005 	while (1) {
1006 		if (fn->fn_flags & RTN_TL_ROOT)
1007 			return NULL;
1008 		pn = rcu_dereference(fn->parent);
1009 		sn = FIB6_SUBTREE(pn);
1010 		if (sn && sn != fn)
1011 			fn = fib6_node_lookup(sn, NULL, saddr);
1012 		else
1013 			fn = pn;
1014 		if (fn->fn_flags & RTN_RTINFO)
1015 			return fn;
1016 	}
1017 }
1018 
1019 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt,
1020 			  bool null_fallback)
1021 {
1022 	struct rt6_info *rt = *prt;
1023 
1024 	if (dst_hold_safe(&rt->dst))
1025 		return true;
1026 	if (null_fallback) {
1027 		rt = net->ipv6.ip6_null_entry;
1028 		dst_hold(&rt->dst);
1029 	} else {
1030 		rt = NULL;
1031 	}
1032 	*prt = rt;
1033 	return false;
1034 }
1035 
1036 /* called with rcu_lock held */
1037 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt)
1038 {
1039 	unsigned short flags = fib6_info_dst_flags(rt);
1040 	struct net_device *dev = rt->fib6_nh.nh_dev;
1041 	struct rt6_info *nrt;
1042 
1043 	if (!fib6_info_hold_safe(rt))
1044 		return NULL;
1045 
1046 	nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
1047 	if (nrt)
1048 		ip6_rt_copy_init(nrt, rt);
1049 	else
1050 		fib6_info_release(rt);
1051 
1052 	return nrt;
1053 }
1054 
1055 static struct rt6_info *ip6_pol_route_lookup(struct net *net,
1056 					     struct fib6_table *table,
1057 					     struct flowi6 *fl6,
1058 					     const struct sk_buff *skb,
1059 					     int flags)
1060 {
1061 	struct fib6_info *f6i;
1062 	struct fib6_node *fn;
1063 	struct rt6_info *rt;
1064 
1065 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1066 		flags &= ~RT6_LOOKUP_F_IFACE;
1067 
1068 	rcu_read_lock();
1069 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1070 restart:
1071 	f6i = rcu_dereference(fn->leaf);
1072 	if (!f6i) {
1073 		f6i = net->ipv6.fib6_null_entry;
1074 	} else {
1075 		f6i = rt6_device_match(net, f6i, &fl6->saddr,
1076 				      fl6->flowi6_oif, flags);
1077 		if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0)
1078 			f6i = fib6_multipath_select(net, f6i, fl6,
1079 						    fl6->flowi6_oif, skb,
1080 						    flags);
1081 	}
1082 	if (f6i == net->ipv6.fib6_null_entry) {
1083 		fn = fib6_backtrack(fn, &fl6->saddr);
1084 		if (fn)
1085 			goto restart;
1086 	}
1087 
1088 	trace_fib6_table_lookup(net, f6i, table, fl6);
1089 
1090 	/* Search through exception table */
1091 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1092 	if (rt) {
1093 		if (ip6_hold_safe(net, &rt, true))
1094 			dst_use_noref(&rt->dst, jiffies);
1095 	} else if (f6i == net->ipv6.fib6_null_entry) {
1096 		rt = net->ipv6.ip6_null_entry;
1097 		dst_hold(&rt->dst);
1098 	} else {
1099 		rt = ip6_create_rt_rcu(f6i);
1100 		if (!rt) {
1101 			rt = net->ipv6.ip6_null_entry;
1102 			dst_hold(&rt->dst);
1103 		}
1104 	}
1105 
1106 	rcu_read_unlock();
1107 
1108 	return rt;
1109 }
1110 
1111 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
1112 				   const struct sk_buff *skb, int flags)
1113 {
1114 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
1115 }
1116 EXPORT_SYMBOL_GPL(ip6_route_lookup);
1117 
1118 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
1119 			    const struct in6_addr *saddr, int oif,
1120 			    const struct sk_buff *skb, int strict)
1121 {
1122 	struct flowi6 fl6 = {
1123 		.flowi6_oif = oif,
1124 		.daddr = *daddr,
1125 	};
1126 	struct dst_entry *dst;
1127 	int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
1128 
1129 	if (saddr) {
1130 		memcpy(&fl6.saddr, saddr, sizeof(*saddr));
1131 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1132 	}
1133 
1134 	dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
1135 	if (dst->error == 0)
1136 		return (struct rt6_info *) dst;
1137 
1138 	dst_release(dst);
1139 
1140 	return NULL;
1141 }
1142 EXPORT_SYMBOL(rt6_lookup);
1143 
1144 /* ip6_ins_rt is called with FREE table->tb6_lock.
1145  * It takes new route entry, the addition fails by any reason the
1146  * route is released.
1147  * Caller must hold dst before calling it.
1148  */
1149 
1150 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
1151 			struct netlink_ext_ack *extack)
1152 {
1153 	int err;
1154 	struct fib6_table *table;
1155 
1156 	table = rt->fib6_table;
1157 	spin_lock_bh(&table->tb6_lock);
1158 	err = fib6_add(&table->tb6_root, rt, info, extack);
1159 	spin_unlock_bh(&table->tb6_lock);
1160 
1161 	return err;
1162 }
1163 
1164 int ip6_ins_rt(struct net *net, struct fib6_info *rt)
1165 {
1166 	struct nl_info info = {	.nl_net = net, };
1167 
1168 	return __ip6_ins_rt(rt, &info, NULL);
1169 }
1170 
1171 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort,
1172 					   const struct in6_addr *daddr,
1173 					   const struct in6_addr *saddr)
1174 {
1175 	struct net_device *dev;
1176 	struct rt6_info *rt;
1177 
1178 	/*
1179 	 *	Clone the route.
1180 	 */
1181 
1182 	if (!fib6_info_hold_safe(ort))
1183 		return NULL;
1184 
1185 	dev = ip6_rt_get_dev_rcu(ort);
1186 	rt = ip6_dst_alloc(dev_net(dev), dev, 0);
1187 	if (!rt) {
1188 		fib6_info_release(ort);
1189 		return NULL;
1190 	}
1191 
1192 	ip6_rt_copy_init(rt, ort);
1193 	rt->rt6i_flags |= RTF_CACHE;
1194 	rt->dst.flags |= DST_HOST;
1195 	rt->rt6i_dst.addr = *daddr;
1196 	rt->rt6i_dst.plen = 128;
1197 
1198 	if (!rt6_is_gw_or_nonexthop(ort)) {
1199 		if (ort->fib6_dst.plen != 128 &&
1200 		    ipv6_addr_equal(&ort->fib6_dst.addr, daddr))
1201 			rt->rt6i_flags |= RTF_ANYCAST;
1202 #ifdef CONFIG_IPV6_SUBTREES
1203 		if (rt->rt6i_src.plen && saddr) {
1204 			rt->rt6i_src.addr = *saddr;
1205 			rt->rt6i_src.plen = 128;
1206 		}
1207 #endif
1208 	}
1209 
1210 	return rt;
1211 }
1212 
1213 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt)
1214 {
1215 	unsigned short flags = fib6_info_dst_flags(rt);
1216 	struct net_device *dev;
1217 	struct rt6_info *pcpu_rt;
1218 
1219 	if (!fib6_info_hold_safe(rt))
1220 		return NULL;
1221 
1222 	rcu_read_lock();
1223 	dev = ip6_rt_get_dev_rcu(rt);
1224 	pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags);
1225 	rcu_read_unlock();
1226 	if (!pcpu_rt) {
1227 		fib6_info_release(rt);
1228 		return NULL;
1229 	}
1230 	ip6_rt_copy_init(pcpu_rt, rt);
1231 	pcpu_rt->rt6i_flags |= RTF_PCPU;
1232 	return pcpu_rt;
1233 }
1234 
1235 /* It should be called with rcu_read_lock() acquired */
1236 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt)
1237 {
1238 	struct rt6_info *pcpu_rt, **p;
1239 
1240 	p = this_cpu_ptr(rt->rt6i_pcpu);
1241 	pcpu_rt = *p;
1242 
1243 	if (pcpu_rt)
1244 		ip6_hold_safe(NULL, &pcpu_rt, false);
1245 
1246 	return pcpu_rt;
1247 }
1248 
1249 static struct rt6_info *rt6_make_pcpu_route(struct net *net,
1250 					    struct fib6_info *rt)
1251 {
1252 	struct rt6_info *pcpu_rt, *prev, **p;
1253 
1254 	pcpu_rt = ip6_rt_pcpu_alloc(rt);
1255 	if (!pcpu_rt) {
1256 		dst_hold(&net->ipv6.ip6_null_entry->dst);
1257 		return net->ipv6.ip6_null_entry;
1258 	}
1259 
1260 	dst_hold(&pcpu_rt->dst);
1261 	p = this_cpu_ptr(rt->rt6i_pcpu);
1262 	prev = cmpxchg(p, NULL, pcpu_rt);
1263 	BUG_ON(prev);
1264 
1265 	return pcpu_rt;
1266 }
1267 
1268 /* exception hash table implementation
1269  */
1270 static DEFINE_SPINLOCK(rt6_exception_lock);
1271 
1272 /* Remove rt6_ex from hash table and free the memory
1273  * Caller must hold rt6_exception_lock
1274  */
1275 static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
1276 				 struct rt6_exception *rt6_ex)
1277 {
1278 	struct net *net;
1279 
1280 	if (!bucket || !rt6_ex)
1281 		return;
1282 
1283 	net = dev_net(rt6_ex->rt6i->dst.dev);
1284 	hlist_del_rcu(&rt6_ex->hlist);
1285 	dst_release(&rt6_ex->rt6i->dst);
1286 	kfree_rcu(rt6_ex, rcu);
1287 	WARN_ON_ONCE(!bucket->depth);
1288 	bucket->depth--;
1289 	net->ipv6.rt6_stats->fib_rt_cache--;
1290 }
1291 
1292 /* Remove oldest rt6_ex in bucket and free the memory
1293  * Caller must hold rt6_exception_lock
1294  */
1295 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
1296 {
1297 	struct rt6_exception *rt6_ex, *oldest = NULL;
1298 
1299 	if (!bucket)
1300 		return;
1301 
1302 	hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1303 		if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
1304 			oldest = rt6_ex;
1305 	}
1306 	rt6_remove_exception(bucket, oldest);
1307 }
1308 
1309 static u32 rt6_exception_hash(const struct in6_addr *dst,
1310 			      const struct in6_addr *src)
1311 {
1312 	static u32 seed __read_mostly;
1313 	u32 val;
1314 
1315 	net_get_random_once(&seed, sizeof(seed));
1316 	val = jhash(dst, sizeof(*dst), seed);
1317 
1318 #ifdef CONFIG_IPV6_SUBTREES
1319 	if (src)
1320 		val = jhash(src, sizeof(*src), val);
1321 #endif
1322 	return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
1323 }
1324 
1325 /* Helper function to find the cached rt in the hash table
1326  * and update bucket pointer to point to the bucket for this
1327  * (daddr, saddr) pair
1328  * Caller must hold rt6_exception_lock
1329  */
1330 static struct rt6_exception *
1331 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
1332 			      const struct in6_addr *daddr,
1333 			      const struct in6_addr *saddr)
1334 {
1335 	struct rt6_exception *rt6_ex;
1336 	u32 hval;
1337 
1338 	if (!(*bucket) || !daddr)
1339 		return NULL;
1340 
1341 	hval = rt6_exception_hash(daddr, saddr);
1342 	*bucket += hval;
1343 
1344 	hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
1345 		struct rt6_info *rt6 = rt6_ex->rt6i;
1346 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1347 
1348 #ifdef CONFIG_IPV6_SUBTREES
1349 		if (matched && saddr)
1350 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1351 #endif
1352 		if (matched)
1353 			return rt6_ex;
1354 	}
1355 	return NULL;
1356 }
1357 
1358 /* Helper function to find the cached rt in the hash table
1359  * and update bucket pointer to point to the bucket for this
1360  * (daddr, saddr) pair
1361  * Caller must hold rcu_read_lock()
1362  */
1363 static struct rt6_exception *
1364 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
1365 			 const struct in6_addr *daddr,
1366 			 const struct in6_addr *saddr)
1367 {
1368 	struct rt6_exception *rt6_ex;
1369 	u32 hval;
1370 
1371 	WARN_ON_ONCE(!rcu_read_lock_held());
1372 
1373 	if (!(*bucket) || !daddr)
1374 		return NULL;
1375 
1376 	hval = rt6_exception_hash(daddr, saddr);
1377 	*bucket += hval;
1378 
1379 	hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
1380 		struct rt6_info *rt6 = rt6_ex->rt6i;
1381 		bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1382 
1383 #ifdef CONFIG_IPV6_SUBTREES
1384 		if (matched && saddr)
1385 			matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1386 #endif
1387 		if (matched)
1388 			return rt6_ex;
1389 	}
1390 	return NULL;
1391 }
1392 
1393 static unsigned int fib6_mtu(const struct fib6_info *rt)
1394 {
1395 	unsigned int mtu;
1396 
1397 	if (rt->fib6_pmtu) {
1398 		mtu = rt->fib6_pmtu;
1399 	} else {
1400 		struct net_device *dev = fib6_info_nh_dev(rt);
1401 		struct inet6_dev *idev;
1402 
1403 		rcu_read_lock();
1404 		idev = __in6_dev_get(dev);
1405 		mtu = idev->cnf.mtu6;
1406 		rcu_read_unlock();
1407 	}
1408 
1409 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
1410 
1411 	return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu);
1412 }
1413 
1414 static int rt6_insert_exception(struct rt6_info *nrt,
1415 				struct fib6_info *ort)
1416 {
1417 	struct net *net = dev_net(nrt->dst.dev);
1418 	struct rt6_exception_bucket *bucket;
1419 	struct in6_addr *src_key = NULL;
1420 	struct rt6_exception *rt6_ex;
1421 	int err = 0;
1422 
1423 	spin_lock_bh(&rt6_exception_lock);
1424 
1425 	if (ort->exception_bucket_flushed) {
1426 		err = -EINVAL;
1427 		goto out;
1428 	}
1429 
1430 	bucket = rcu_dereference_protected(ort->rt6i_exception_bucket,
1431 					lockdep_is_held(&rt6_exception_lock));
1432 	if (!bucket) {
1433 		bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
1434 				 GFP_ATOMIC);
1435 		if (!bucket) {
1436 			err = -ENOMEM;
1437 			goto out;
1438 		}
1439 		rcu_assign_pointer(ort->rt6i_exception_bucket, bucket);
1440 	}
1441 
1442 #ifdef CONFIG_IPV6_SUBTREES
1443 	/* rt6i_src.plen != 0 indicates ort is in subtree
1444 	 * and exception table is indexed by a hash of
1445 	 * both rt6i_dst and rt6i_src.
1446 	 * Otherwise, the exception table is indexed by
1447 	 * a hash of only rt6i_dst.
1448 	 */
1449 	if (ort->fib6_src.plen)
1450 		src_key = &nrt->rt6i_src.addr;
1451 #endif
1452 
1453 	/* Update rt6i_prefsrc as it could be changed
1454 	 * in rt6_remove_prefsrc()
1455 	 */
1456 	nrt->rt6i_prefsrc = ort->fib6_prefsrc;
1457 	/* rt6_mtu_change() might lower mtu on ort.
1458 	 * Only insert this exception route if its mtu
1459 	 * is less than ort's mtu value.
1460 	 */
1461 	if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) {
1462 		err = -EINVAL;
1463 		goto out;
1464 	}
1465 
1466 	rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
1467 					       src_key);
1468 	if (rt6_ex)
1469 		rt6_remove_exception(bucket, rt6_ex);
1470 
1471 	rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
1472 	if (!rt6_ex) {
1473 		err = -ENOMEM;
1474 		goto out;
1475 	}
1476 	rt6_ex->rt6i = nrt;
1477 	rt6_ex->stamp = jiffies;
1478 	hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
1479 	bucket->depth++;
1480 	net->ipv6.rt6_stats->fib_rt_cache++;
1481 
1482 	if (bucket->depth > FIB6_MAX_DEPTH)
1483 		rt6_exception_remove_oldest(bucket);
1484 
1485 out:
1486 	spin_unlock_bh(&rt6_exception_lock);
1487 
1488 	/* Update fn->fn_sernum to invalidate all cached dst */
1489 	if (!err) {
1490 		spin_lock_bh(&ort->fib6_table->tb6_lock);
1491 		fib6_update_sernum(net, ort);
1492 		spin_unlock_bh(&ort->fib6_table->tb6_lock);
1493 		fib6_force_start_gc(net);
1494 	}
1495 
1496 	return err;
1497 }
1498 
1499 void rt6_flush_exceptions(struct fib6_info *rt)
1500 {
1501 	struct rt6_exception_bucket *bucket;
1502 	struct rt6_exception *rt6_ex;
1503 	struct hlist_node *tmp;
1504 	int i;
1505 
1506 	spin_lock_bh(&rt6_exception_lock);
1507 	/* Prevent rt6_insert_exception() to recreate the bucket list */
1508 	rt->exception_bucket_flushed = 1;
1509 
1510 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1511 				    lockdep_is_held(&rt6_exception_lock));
1512 	if (!bucket)
1513 		goto out;
1514 
1515 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1516 		hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist)
1517 			rt6_remove_exception(bucket, rt6_ex);
1518 		WARN_ON_ONCE(bucket->depth);
1519 		bucket++;
1520 	}
1521 
1522 out:
1523 	spin_unlock_bh(&rt6_exception_lock);
1524 }
1525 
1526 /* Find cached rt in the hash table inside passed in rt
1527  * Caller has to hold rcu_read_lock()
1528  */
1529 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
1530 					   struct in6_addr *daddr,
1531 					   struct in6_addr *saddr)
1532 {
1533 	struct rt6_exception_bucket *bucket;
1534 	struct in6_addr *src_key = NULL;
1535 	struct rt6_exception *rt6_ex;
1536 	struct rt6_info *res = NULL;
1537 
1538 	bucket = rcu_dereference(rt->rt6i_exception_bucket);
1539 
1540 #ifdef CONFIG_IPV6_SUBTREES
1541 	/* rt6i_src.plen != 0 indicates rt is in subtree
1542 	 * and exception table is indexed by a hash of
1543 	 * both rt6i_dst and rt6i_src.
1544 	 * Otherwise, the exception table is indexed by
1545 	 * a hash of only rt6i_dst.
1546 	 */
1547 	if (rt->fib6_src.plen)
1548 		src_key = saddr;
1549 #endif
1550 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
1551 
1552 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
1553 		res = rt6_ex->rt6i;
1554 
1555 	return res;
1556 }
1557 
1558 /* Remove the passed in cached rt from the hash table that contains it */
1559 static int rt6_remove_exception_rt(struct rt6_info *rt)
1560 {
1561 	struct rt6_exception_bucket *bucket;
1562 	struct in6_addr *src_key = NULL;
1563 	struct rt6_exception *rt6_ex;
1564 	struct fib6_info *from;
1565 	int err;
1566 
1567 	from = rcu_dereference(rt->from);
1568 	if (!from ||
1569 	    !(rt->rt6i_flags & RTF_CACHE))
1570 		return -EINVAL;
1571 
1572 	if (!rcu_access_pointer(from->rt6i_exception_bucket))
1573 		return -ENOENT;
1574 
1575 	spin_lock_bh(&rt6_exception_lock);
1576 	bucket = rcu_dereference_protected(from->rt6i_exception_bucket,
1577 				    lockdep_is_held(&rt6_exception_lock));
1578 #ifdef CONFIG_IPV6_SUBTREES
1579 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1580 	 * and exception table is indexed by a hash of
1581 	 * both rt6i_dst and rt6i_src.
1582 	 * Otherwise, the exception table is indexed by
1583 	 * a hash of only rt6i_dst.
1584 	 */
1585 	if (from->fib6_src.plen)
1586 		src_key = &rt->rt6i_src.addr;
1587 #endif
1588 	rt6_ex = __rt6_find_exception_spinlock(&bucket,
1589 					       &rt->rt6i_dst.addr,
1590 					       src_key);
1591 	if (rt6_ex) {
1592 		rt6_remove_exception(bucket, rt6_ex);
1593 		err = 0;
1594 	} else {
1595 		err = -ENOENT;
1596 	}
1597 
1598 	spin_unlock_bh(&rt6_exception_lock);
1599 	return err;
1600 }
1601 
1602 /* Find rt6_ex which contains the passed in rt cache and
1603  * refresh its stamp
1604  */
1605 static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
1606 {
1607 	struct rt6_exception_bucket *bucket;
1608 	struct fib6_info *from = rt->from;
1609 	struct in6_addr *src_key = NULL;
1610 	struct rt6_exception *rt6_ex;
1611 
1612 	if (!from ||
1613 	    !(rt->rt6i_flags & RTF_CACHE))
1614 		return;
1615 
1616 	rcu_read_lock();
1617 	bucket = rcu_dereference(from->rt6i_exception_bucket);
1618 
1619 #ifdef CONFIG_IPV6_SUBTREES
1620 	/* rt6i_src.plen != 0 indicates 'from' is in subtree
1621 	 * and exception table is indexed by a hash of
1622 	 * both rt6i_dst and rt6i_src.
1623 	 * Otherwise, the exception table is indexed by
1624 	 * a hash of only rt6i_dst.
1625 	 */
1626 	if (from->fib6_src.plen)
1627 		src_key = &rt->rt6i_src.addr;
1628 #endif
1629 	rt6_ex = __rt6_find_exception_rcu(&bucket,
1630 					  &rt->rt6i_dst.addr,
1631 					  src_key);
1632 	if (rt6_ex)
1633 		rt6_ex->stamp = jiffies;
1634 
1635 	rcu_read_unlock();
1636 }
1637 
1638 static void rt6_exceptions_remove_prefsrc(struct fib6_info *rt)
1639 {
1640 	struct rt6_exception_bucket *bucket;
1641 	struct rt6_exception *rt6_ex;
1642 	int i;
1643 
1644 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1645 					lockdep_is_held(&rt6_exception_lock));
1646 
1647 	if (bucket) {
1648 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1649 			hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1650 				rt6_ex->rt6i->rt6i_prefsrc.plen = 0;
1651 			}
1652 			bucket++;
1653 		}
1654 	}
1655 }
1656 
1657 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
1658 					 struct rt6_info *rt, int mtu)
1659 {
1660 	/* If the new MTU is lower than the route PMTU, this new MTU will be the
1661 	 * lowest MTU in the path: always allow updating the route PMTU to
1662 	 * reflect PMTU decreases.
1663 	 *
1664 	 * If the new MTU is higher, and the route PMTU is equal to the local
1665 	 * MTU, this means the old MTU is the lowest in the path, so allow
1666 	 * updating it: if other nodes now have lower MTUs, PMTU discovery will
1667 	 * handle this.
1668 	 */
1669 
1670 	if (dst_mtu(&rt->dst) >= mtu)
1671 		return true;
1672 
1673 	if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
1674 		return true;
1675 
1676 	return false;
1677 }
1678 
1679 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
1680 				       struct fib6_info *rt, int mtu)
1681 {
1682 	struct rt6_exception_bucket *bucket;
1683 	struct rt6_exception *rt6_ex;
1684 	int i;
1685 
1686 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1687 					lockdep_is_held(&rt6_exception_lock));
1688 
1689 	if (!bucket)
1690 		return;
1691 
1692 	for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1693 		hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1694 			struct rt6_info *entry = rt6_ex->rt6i;
1695 
1696 			/* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
1697 			 * route), the metrics of its rt->from have already
1698 			 * been updated.
1699 			 */
1700 			if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
1701 			    rt6_mtu_change_route_allowed(idev, entry, mtu))
1702 				dst_metric_set(&entry->dst, RTAX_MTU, mtu);
1703 		}
1704 		bucket++;
1705 	}
1706 }
1707 
1708 #define RTF_CACHE_GATEWAY	(RTF_GATEWAY | RTF_CACHE)
1709 
1710 static void rt6_exceptions_clean_tohost(struct fib6_info *rt,
1711 					struct in6_addr *gateway)
1712 {
1713 	struct rt6_exception_bucket *bucket;
1714 	struct rt6_exception *rt6_ex;
1715 	struct hlist_node *tmp;
1716 	int i;
1717 
1718 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1719 		return;
1720 
1721 	spin_lock_bh(&rt6_exception_lock);
1722 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1723 				     lockdep_is_held(&rt6_exception_lock));
1724 
1725 	if (bucket) {
1726 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1727 			hlist_for_each_entry_safe(rt6_ex, tmp,
1728 						  &bucket->chain, hlist) {
1729 				struct rt6_info *entry = rt6_ex->rt6i;
1730 
1731 				if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
1732 				    RTF_CACHE_GATEWAY &&
1733 				    ipv6_addr_equal(gateway,
1734 						    &entry->rt6i_gateway)) {
1735 					rt6_remove_exception(bucket, rt6_ex);
1736 				}
1737 			}
1738 			bucket++;
1739 		}
1740 	}
1741 
1742 	spin_unlock_bh(&rt6_exception_lock);
1743 }
1744 
1745 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
1746 				      struct rt6_exception *rt6_ex,
1747 				      struct fib6_gc_args *gc_args,
1748 				      unsigned long now)
1749 {
1750 	struct rt6_info *rt = rt6_ex->rt6i;
1751 
1752 	/* we are pruning and obsoleting aged-out and non gateway exceptions
1753 	 * even if others have still references to them, so that on next
1754 	 * dst_check() such references can be dropped.
1755 	 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
1756 	 * expired, independently from their aging, as per RFC 8201 section 4
1757 	 */
1758 	if (!(rt->rt6i_flags & RTF_EXPIRES)) {
1759 		if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1760 			RT6_TRACE("aging clone %p\n", rt);
1761 			rt6_remove_exception(bucket, rt6_ex);
1762 			return;
1763 		}
1764 	} else if (time_after(jiffies, rt->dst.expires)) {
1765 		RT6_TRACE("purging expired route %p\n", rt);
1766 		rt6_remove_exception(bucket, rt6_ex);
1767 		return;
1768 	}
1769 
1770 	if (rt->rt6i_flags & RTF_GATEWAY) {
1771 		struct neighbour *neigh;
1772 		__u8 neigh_flags = 0;
1773 
1774 		neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
1775 		if (neigh)
1776 			neigh_flags = neigh->flags;
1777 
1778 		if (!(neigh_flags & NTF_ROUTER)) {
1779 			RT6_TRACE("purging route %p via non-router but gateway\n",
1780 				  rt);
1781 			rt6_remove_exception(bucket, rt6_ex);
1782 			return;
1783 		}
1784 	}
1785 
1786 	gc_args->more++;
1787 }
1788 
1789 void rt6_age_exceptions(struct fib6_info *rt,
1790 			struct fib6_gc_args *gc_args,
1791 			unsigned long now)
1792 {
1793 	struct rt6_exception_bucket *bucket;
1794 	struct rt6_exception *rt6_ex;
1795 	struct hlist_node *tmp;
1796 	int i;
1797 
1798 	if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1799 		return;
1800 
1801 	rcu_read_lock_bh();
1802 	spin_lock(&rt6_exception_lock);
1803 	bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1804 				    lockdep_is_held(&rt6_exception_lock));
1805 
1806 	if (bucket) {
1807 		for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1808 			hlist_for_each_entry_safe(rt6_ex, tmp,
1809 						  &bucket->chain, hlist) {
1810 				rt6_age_examine_exception(bucket, rt6_ex,
1811 							  gc_args, now);
1812 			}
1813 			bucket++;
1814 		}
1815 	}
1816 	spin_unlock(&rt6_exception_lock);
1817 	rcu_read_unlock_bh();
1818 }
1819 
1820 /* must be called with rcu lock held */
1821 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table,
1822 				    int oif, struct flowi6 *fl6, int strict)
1823 {
1824 	struct fib6_node *fn, *saved_fn;
1825 	struct fib6_info *f6i;
1826 
1827 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1828 	saved_fn = fn;
1829 
1830 	if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1831 		oif = 0;
1832 
1833 redo_rt6_select:
1834 	f6i = rt6_select(net, fn, oif, strict);
1835 	if (f6i == net->ipv6.fib6_null_entry) {
1836 		fn = fib6_backtrack(fn, &fl6->saddr);
1837 		if (fn)
1838 			goto redo_rt6_select;
1839 		else if (strict & RT6_LOOKUP_F_REACHABLE) {
1840 			/* also consider unreachable route */
1841 			strict &= ~RT6_LOOKUP_F_REACHABLE;
1842 			fn = saved_fn;
1843 			goto redo_rt6_select;
1844 		}
1845 	}
1846 
1847 	trace_fib6_table_lookup(net, f6i, table, fl6);
1848 
1849 	return f6i;
1850 }
1851 
1852 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
1853 			       int oif, struct flowi6 *fl6,
1854 			       const struct sk_buff *skb, int flags)
1855 {
1856 	struct fib6_info *f6i;
1857 	struct rt6_info *rt;
1858 	int strict = 0;
1859 
1860 	strict |= flags & RT6_LOOKUP_F_IFACE;
1861 	strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
1862 	if (net->ipv6.devconf_all->forwarding == 0)
1863 		strict |= RT6_LOOKUP_F_REACHABLE;
1864 
1865 	rcu_read_lock();
1866 
1867 	f6i = fib6_table_lookup(net, table, oif, fl6, strict);
1868 	if (f6i->fib6_nsiblings)
1869 		f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict);
1870 
1871 	if (f6i == net->ipv6.fib6_null_entry) {
1872 		rt = net->ipv6.ip6_null_entry;
1873 		rcu_read_unlock();
1874 		dst_hold(&rt->dst);
1875 		return rt;
1876 	}
1877 
1878 	/*Search through exception table */
1879 	rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1880 	if (rt) {
1881 		if (ip6_hold_safe(net, &rt, true))
1882 			dst_use_noref(&rt->dst, jiffies);
1883 
1884 		rcu_read_unlock();
1885 		return rt;
1886 	} else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
1887 			    !(f6i->fib6_flags & RTF_GATEWAY))) {
1888 		/* Create a RTF_CACHE clone which will not be
1889 		 * owned by the fib6 tree.  It is for the special case where
1890 		 * the daddr in the skb during the neighbor look-up is different
1891 		 * from the fl6->daddr used to look-up route here.
1892 		 */
1893 		struct rt6_info *uncached_rt;
1894 
1895 		uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL);
1896 
1897 		rcu_read_unlock();
1898 
1899 		if (uncached_rt) {
1900 			/* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc()
1901 			 * No need for another dst_hold()
1902 			 */
1903 			rt6_uncached_list_add(uncached_rt);
1904 			atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
1905 		} else {
1906 			uncached_rt = net->ipv6.ip6_null_entry;
1907 			dst_hold(&uncached_rt->dst);
1908 		}
1909 
1910 		return uncached_rt;
1911 	} else {
1912 		/* Get a percpu copy */
1913 
1914 		struct rt6_info *pcpu_rt;
1915 
1916 		local_bh_disable();
1917 		pcpu_rt = rt6_get_pcpu_route(f6i);
1918 
1919 		if (!pcpu_rt)
1920 			pcpu_rt = rt6_make_pcpu_route(net, f6i);
1921 
1922 		local_bh_enable();
1923 		rcu_read_unlock();
1924 
1925 		return pcpu_rt;
1926 	}
1927 }
1928 EXPORT_SYMBOL_GPL(ip6_pol_route);
1929 
1930 static struct rt6_info *ip6_pol_route_input(struct net *net,
1931 					    struct fib6_table *table,
1932 					    struct flowi6 *fl6,
1933 					    const struct sk_buff *skb,
1934 					    int flags)
1935 {
1936 	return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
1937 }
1938 
1939 struct dst_entry *ip6_route_input_lookup(struct net *net,
1940 					 struct net_device *dev,
1941 					 struct flowi6 *fl6,
1942 					 const struct sk_buff *skb,
1943 					 int flags)
1944 {
1945 	if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
1946 		flags |= RT6_LOOKUP_F_IFACE;
1947 
1948 	return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
1949 }
1950 EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
1951 
1952 static void ip6_multipath_l3_keys(const struct sk_buff *skb,
1953 				  struct flow_keys *keys,
1954 				  struct flow_keys *flkeys)
1955 {
1956 	const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
1957 	const struct ipv6hdr *key_iph = outer_iph;
1958 	struct flow_keys *_flkeys = flkeys;
1959 	const struct ipv6hdr *inner_iph;
1960 	const struct icmp6hdr *icmph;
1961 	struct ipv6hdr _inner_iph;
1962 	struct icmp6hdr _icmph;
1963 
1964 	if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
1965 		goto out;
1966 
1967 	icmph = skb_header_pointer(skb, skb_transport_offset(skb),
1968 				   sizeof(_icmph), &_icmph);
1969 	if (!icmph)
1970 		goto out;
1971 
1972 	if (icmph->icmp6_type != ICMPV6_DEST_UNREACH &&
1973 	    icmph->icmp6_type != ICMPV6_PKT_TOOBIG &&
1974 	    icmph->icmp6_type != ICMPV6_TIME_EXCEED &&
1975 	    icmph->icmp6_type != ICMPV6_PARAMPROB)
1976 		goto out;
1977 
1978 	inner_iph = skb_header_pointer(skb,
1979 				       skb_transport_offset(skb) + sizeof(*icmph),
1980 				       sizeof(_inner_iph), &_inner_iph);
1981 	if (!inner_iph)
1982 		goto out;
1983 
1984 	key_iph = inner_iph;
1985 	_flkeys = NULL;
1986 out:
1987 	if (_flkeys) {
1988 		keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
1989 		keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
1990 		keys->tags.flow_label = _flkeys->tags.flow_label;
1991 		keys->basic.ip_proto = _flkeys->basic.ip_proto;
1992 	} else {
1993 		keys->addrs.v6addrs.src = key_iph->saddr;
1994 		keys->addrs.v6addrs.dst = key_iph->daddr;
1995 		keys->tags.flow_label = ip6_flowlabel(key_iph);
1996 		keys->basic.ip_proto = key_iph->nexthdr;
1997 	}
1998 }
1999 
2000 /* if skb is set it will be used and fl6 can be NULL */
2001 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
2002 		       const struct sk_buff *skb, struct flow_keys *flkeys)
2003 {
2004 	struct flow_keys hash_keys;
2005 	u32 mhash;
2006 
2007 	switch (ip6_multipath_hash_policy(net)) {
2008 	case 0:
2009 		memset(&hash_keys, 0, sizeof(hash_keys));
2010 		hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2011 		if (skb) {
2012 			ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
2013 		} else {
2014 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2015 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2016 			hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
2017 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2018 		}
2019 		break;
2020 	case 1:
2021 		if (skb) {
2022 			unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
2023 			struct flow_keys keys;
2024 
2025 			/* short-circuit if we already have L4 hash present */
2026 			if (skb->l4_hash)
2027 				return skb_get_hash_raw(skb) >> 1;
2028 
2029 			memset(&hash_keys, 0, sizeof(hash_keys));
2030 
2031                         if (!flkeys) {
2032 				skb_flow_dissect_flow_keys(skb, &keys, flag);
2033 				flkeys = &keys;
2034 			}
2035 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2036 			hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2037 			hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2038 			hash_keys.ports.src = flkeys->ports.src;
2039 			hash_keys.ports.dst = flkeys->ports.dst;
2040 			hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2041 		} else {
2042 			memset(&hash_keys, 0, sizeof(hash_keys));
2043 			hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2044 			hash_keys.addrs.v6addrs.src = fl6->saddr;
2045 			hash_keys.addrs.v6addrs.dst = fl6->daddr;
2046 			hash_keys.ports.src = fl6->fl6_sport;
2047 			hash_keys.ports.dst = fl6->fl6_dport;
2048 			hash_keys.basic.ip_proto = fl6->flowi6_proto;
2049 		}
2050 		break;
2051 	}
2052 	mhash = flow_hash_from_keys(&hash_keys);
2053 
2054 	return mhash >> 1;
2055 }
2056 
2057 void ip6_route_input(struct sk_buff *skb)
2058 {
2059 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2060 	struct net *net = dev_net(skb->dev);
2061 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2062 	struct ip_tunnel_info *tun_info;
2063 	struct flowi6 fl6 = {
2064 		.flowi6_iif = skb->dev->ifindex,
2065 		.daddr = iph->daddr,
2066 		.saddr = iph->saddr,
2067 		.flowlabel = ip6_flowinfo(iph),
2068 		.flowi6_mark = skb->mark,
2069 		.flowi6_proto = iph->nexthdr,
2070 	};
2071 	struct flow_keys *flkeys = NULL, _flkeys;
2072 
2073 	tun_info = skb_tunnel_info(skb);
2074 	if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
2075 		fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
2076 
2077 	if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
2078 		flkeys = &_flkeys;
2079 
2080 	if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
2081 		fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
2082 	skb_dst_drop(skb);
2083 	skb_dst_set(skb,
2084 		    ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags));
2085 }
2086 
2087 static struct rt6_info *ip6_pol_route_output(struct net *net,
2088 					     struct fib6_table *table,
2089 					     struct flowi6 *fl6,
2090 					     const struct sk_buff *skb,
2091 					     int flags)
2092 {
2093 	return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
2094 }
2095 
2096 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk,
2097 					 struct flowi6 *fl6, int flags)
2098 {
2099 	bool any_src;
2100 
2101 	if (rt6_need_strict(&fl6->daddr)) {
2102 		struct dst_entry *dst;
2103 
2104 		dst = l3mdev_link_scope_lookup(net, fl6);
2105 		if (dst)
2106 			return dst;
2107 	}
2108 
2109 	fl6->flowi6_iif = LOOPBACK_IFINDEX;
2110 
2111 	any_src = ipv6_addr_any(&fl6->saddr);
2112 	if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
2113 	    (fl6->flowi6_oif && any_src))
2114 		flags |= RT6_LOOKUP_F_IFACE;
2115 
2116 	if (!any_src)
2117 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2118 	else if (sk)
2119 		flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
2120 
2121 	return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
2122 }
2123 EXPORT_SYMBOL_GPL(ip6_route_output_flags);
2124 
2125 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2126 {
2127 	struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
2128 	struct net_device *loopback_dev = net->loopback_dev;
2129 	struct dst_entry *new = NULL;
2130 
2131 	rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
2132 		       DST_OBSOLETE_DEAD, 0);
2133 	if (rt) {
2134 		rt6_info_init(rt);
2135 		atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
2136 
2137 		new = &rt->dst;
2138 		new->__use = 1;
2139 		new->input = dst_discard;
2140 		new->output = dst_discard_out;
2141 
2142 		dst_copy_metrics(new, &ort->dst);
2143 
2144 		rt->rt6i_idev = in6_dev_get(loopback_dev);
2145 		rt->rt6i_gateway = ort->rt6i_gateway;
2146 		rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
2147 
2148 		memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
2149 #ifdef CONFIG_IPV6_SUBTREES
2150 		memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
2151 #endif
2152 	}
2153 
2154 	dst_release(dst_orig);
2155 	return new ? new : ERR_PTR(-ENOMEM);
2156 }
2157 
2158 /*
2159  *	Destination cache support functions
2160  */
2161 
2162 static bool fib6_check(struct fib6_info *f6i, u32 cookie)
2163 {
2164 	u32 rt_cookie = 0;
2165 
2166 	if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
2167 		return false;
2168 
2169 	if (fib6_check_expired(f6i))
2170 		return false;
2171 
2172 	return true;
2173 }
2174 
2175 static struct dst_entry *rt6_check(struct rt6_info *rt,
2176 				   struct fib6_info *from,
2177 				   u32 cookie)
2178 {
2179 	u32 rt_cookie = 0;
2180 
2181 	if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) ||
2182 	    rt_cookie != cookie)
2183 		return NULL;
2184 
2185 	if (rt6_check_expired(rt))
2186 		return NULL;
2187 
2188 	return &rt->dst;
2189 }
2190 
2191 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
2192 					    struct fib6_info *from,
2193 					    u32 cookie)
2194 {
2195 	if (!__rt6_check_expired(rt) &&
2196 	    rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
2197 	    fib6_check(from, cookie))
2198 		return &rt->dst;
2199 	else
2200 		return NULL;
2201 }
2202 
2203 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
2204 {
2205 	struct dst_entry *dst_ret;
2206 	struct fib6_info *from;
2207 	struct rt6_info *rt;
2208 
2209 	rt = container_of(dst, struct rt6_info, dst);
2210 
2211 	rcu_read_lock();
2212 
2213 	/* All IPV6 dsts are created with ->obsolete set to the value
2214 	 * DST_OBSOLETE_FORCE_CHK which forces validation calls down
2215 	 * into this function always.
2216 	 */
2217 
2218 	from = rcu_dereference(rt->from);
2219 
2220 	if (from && (rt->rt6i_flags & RTF_PCPU ||
2221 	    unlikely(!list_empty(&rt->rt6i_uncached))))
2222 		dst_ret = rt6_dst_from_check(rt, from, cookie);
2223 	else
2224 		dst_ret = rt6_check(rt, from, cookie);
2225 
2226 	rcu_read_unlock();
2227 
2228 	return dst_ret;
2229 }
2230 
2231 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
2232 {
2233 	struct rt6_info *rt = (struct rt6_info *) dst;
2234 
2235 	if (rt) {
2236 		if (rt->rt6i_flags & RTF_CACHE) {
2237 			rcu_read_lock();
2238 			if (rt6_check_expired(rt)) {
2239 				rt6_remove_exception_rt(rt);
2240 				dst = NULL;
2241 			}
2242 			rcu_read_unlock();
2243 		} else {
2244 			dst_release(dst);
2245 			dst = NULL;
2246 		}
2247 	}
2248 	return dst;
2249 }
2250 
2251 static void ip6_link_failure(struct sk_buff *skb)
2252 {
2253 	struct rt6_info *rt;
2254 
2255 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
2256 
2257 	rt = (struct rt6_info *) skb_dst(skb);
2258 	if (rt) {
2259 		rcu_read_lock();
2260 		if (rt->rt6i_flags & RTF_CACHE) {
2261 			if (dst_hold_safe(&rt->dst))
2262 				rt6_remove_exception_rt(rt);
2263 		} else {
2264 			struct fib6_info *from;
2265 			struct fib6_node *fn;
2266 
2267 			from = rcu_dereference(rt->from);
2268 			if (from) {
2269 				fn = rcu_dereference(from->fib6_node);
2270 				if (fn && (rt->rt6i_flags & RTF_DEFAULT))
2271 					fn->fn_sernum = -1;
2272 			}
2273 		}
2274 		rcu_read_unlock();
2275 	}
2276 }
2277 
2278 static void rt6_update_expires(struct rt6_info *rt0, int timeout)
2279 {
2280 	if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
2281 		struct fib6_info *from;
2282 
2283 		rcu_read_lock();
2284 		from = rcu_dereference(rt0->from);
2285 		if (from)
2286 			rt0->dst.expires = from->expires;
2287 		rcu_read_unlock();
2288 	}
2289 
2290 	dst_set_expires(&rt0->dst, timeout);
2291 	rt0->rt6i_flags |= RTF_EXPIRES;
2292 }
2293 
2294 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
2295 {
2296 	struct net *net = dev_net(rt->dst.dev);
2297 
2298 	dst_metric_set(&rt->dst, RTAX_MTU, mtu);
2299 	rt->rt6i_flags |= RTF_MODIFIED;
2300 	rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
2301 }
2302 
2303 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
2304 {
2305 	bool from_set;
2306 
2307 	rcu_read_lock();
2308 	from_set = !!rcu_dereference(rt->from);
2309 	rcu_read_unlock();
2310 
2311 	return !(rt->rt6i_flags & RTF_CACHE) &&
2312 		(rt->rt6i_flags & RTF_PCPU || from_set);
2313 }
2314 
2315 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
2316 				 const struct ipv6hdr *iph, u32 mtu)
2317 {
2318 	const struct in6_addr *daddr, *saddr;
2319 	struct rt6_info *rt6 = (struct rt6_info *)dst;
2320 
2321 	if (dst_metric_locked(dst, RTAX_MTU))
2322 		return;
2323 
2324 	if (iph) {
2325 		daddr = &iph->daddr;
2326 		saddr = &iph->saddr;
2327 	} else if (sk) {
2328 		daddr = &sk->sk_v6_daddr;
2329 		saddr = &inet6_sk(sk)->saddr;
2330 	} else {
2331 		daddr = NULL;
2332 		saddr = NULL;
2333 	}
2334 	dst_confirm_neigh(dst, daddr);
2335 	mtu = max_t(u32, mtu, IPV6_MIN_MTU);
2336 	if (mtu >= dst_mtu(dst))
2337 		return;
2338 
2339 	if (!rt6_cache_allowed_for_pmtu(rt6)) {
2340 		rt6_do_update_pmtu(rt6, mtu);
2341 		/* update rt6_ex->stamp for cache */
2342 		if (rt6->rt6i_flags & RTF_CACHE)
2343 			rt6_update_exception_stamp_rt(rt6);
2344 	} else if (daddr) {
2345 		struct fib6_info *from;
2346 		struct rt6_info *nrt6;
2347 
2348 		rcu_read_lock();
2349 		from = rcu_dereference(rt6->from);
2350 		nrt6 = ip6_rt_cache_alloc(from, daddr, saddr);
2351 		if (nrt6) {
2352 			rt6_do_update_pmtu(nrt6, mtu);
2353 			if (rt6_insert_exception(nrt6, from))
2354 				dst_release_immediate(&nrt6->dst);
2355 		}
2356 		rcu_read_unlock();
2357 	}
2358 }
2359 
2360 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
2361 			       struct sk_buff *skb, u32 mtu)
2362 {
2363 	__ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu);
2364 }
2365 
2366 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
2367 		     int oif, u32 mark, kuid_t uid)
2368 {
2369 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2370 	struct dst_entry *dst;
2371 	struct flowi6 fl6;
2372 
2373 	memset(&fl6, 0, sizeof(fl6));
2374 	fl6.flowi6_oif = oif;
2375 	fl6.flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark);
2376 	fl6.daddr = iph->daddr;
2377 	fl6.saddr = iph->saddr;
2378 	fl6.flowlabel = ip6_flowinfo(iph);
2379 	fl6.flowi6_uid = uid;
2380 
2381 	dst = ip6_route_output(net, NULL, &fl6);
2382 	if (!dst->error)
2383 		__ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu));
2384 	dst_release(dst);
2385 }
2386 EXPORT_SYMBOL_GPL(ip6_update_pmtu);
2387 
2388 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
2389 {
2390 	struct dst_entry *dst;
2391 
2392 	ip6_update_pmtu(skb, sock_net(sk), mtu,
2393 			sk->sk_bound_dev_if, sk->sk_mark, sk->sk_uid);
2394 
2395 	dst = __sk_dst_get(sk);
2396 	if (!dst || !dst->obsolete ||
2397 	    dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
2398 		return;
2399 
2400 	bh_lock_sock(sk);
2401 	if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
2402 		ip6_datagram_dst_update(sk, false);
2403 	bh_unlock_sock(sk);
2404 }
2405 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
2406 
2407 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
2408 			   const struct flowi6 *fl6)
2409 {
2410 #ifdef CONFIG_IPV6_SUBTREES
2411 	struct ipv6_pinfo *np = inet6_sk(sk);
2412 #endif
2413 
2414 	ip6_dst_store(sk, dst,
2415 		      ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
2416 		      &sk->sk_v6_daddr : NULL,
2417 #ifdef CONFIG_IPV6_SUBTREES
2418 		      ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
2419 		      &np->saddr :
2420 #endif
2421 		      NULL);
2422 }
2423 
2424 /* Handle redirects */
2425 struct ip6rd_flowi {
2426 	struct flowi6 fl6;
2427 	struct in6_addr gateway;
2428 };
2429 
2430 static struct rt6_info *__ip6_route_redirect(struct net *net,
2431 					     struct fib6_table *table,
2432 					     struct flowi6 *fl6,
2433 					     const struct sk_buff *skb,
2434 					     int flags)
2435 {
2436 	struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
2437 	struct rt6_info *ret = NULL, *rt_cache;
2438 	struct fib6_info *rt;
2439 	struct fib6_node *fn;
2440 
2441 	/* Get the "current" route for this destination and
2442 	 * check if the redirect has come from appropriate router.
2443 	 *
2444 	 * RFC 4861 specifies that redirects should only be
2445 	 * accepted if they come from the nexthop to the target.
2446 	 * Due to the way the routes are chosen, this notion
2447 	 * is a bit fuzzy and one might need to check all possible
2448 	 * routes.
2449 	 */
2450 
2451 	rcu_read_lock();
2452 	fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
2453 restart:
2454 	for_each_fib6_node_rt_rcu(fn) {
2455 		if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
2456 			continue;
2457 		if (fib6_check_expired(rt))
2458 			continue;
2459 		if (rt->fib6_flags & RTF_REJECT)
2460 			break;
2461 		if (!(rt->fib6_flags & RTF_GATEWAY))
2462 			continue;
2463 		if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex)
2464 			continue;
2465 		/* rt_cache's gateway might be different from its 'parent'
2466 		 * in the case of an ip redirect.
2467 		 * So we keep searching in the exception table if the gateway
2468 		 * is different.
2469 		 */
2470 		if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) {
2471 			rt_cache = rt6_find_cached_rt(rt,
2472 						      &fl6->daddr,
2473 						      &fl6->saddr);
2474 			if (rt_cache &&
2475 			    ipv6_addr_equal(&rdfl->gateway,
2476 					    &rt_cache->rt6i_gateway)) {
2477 				ret = rt_cache;
2478 				break;
2479 			}
2480 			continue;
2481 		}
2482 		break;
2483 	}
2484 
2485 	if (!rt)
2486 		rt = net->ipv6.fib6_null_entry;
2487 	else if (rt->fib6_flags & RTF_REJECT) {
2488 		ret = net->ipv6.ip6_null_entry;
2489 		goto out;
2490 	}
2491 
2492 	if (rt == net->ipv6.fib6_null_entry) {
2493 		fn = fib6_backtrack(fn, &fl6->saddr);
2494 		if (fn)
2495 			goto restart;
2496 	}
2497 
2498 out:
2499 	if (ret)
2500 		ip6_hold_safe(net, &ret, true);
2501 	else
2502 		ret = ip6_create_rt_rcu(rt);
2503 
2504 	rcu_read_unlock();
2505 
2506 	trace_fib6_table_lookup(net, rt, table, fl6);
2507 	return ret;
2508 };
2509 
2510 static struct dst_entry *ip6_route_redirect(struct net *net,
2511 					    const struct flowi6 *fl6,
2512 					    const struct sk_buff *skb,
2513 					    const struct in6_addr *gateway)
2514 {
2515 	int flags = RT6_LOOKUP_F_HAS_SADDR;
2516 	struct ip6rd_flowi rdfl;
2517 
2518 	rdfl.fl6 = *fl6;
2519 	rdfl.gateway = *gateway;
2520 
2521 	return fib6_rule_lookup(net, &rdfl.fl6, skb,
2522 				flags, __ip6_route_redirect);
2523 }
2524 
2525 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
2526 		  kuid_t uid)
2527 {
2528 	const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2529 	struct dst_entry *dst;
2530 	struct flowi6 fl6;
2531 
2532 	memset(&fl6, 0, sizeof(fl6));
2533 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
2534 	fl6.flowi6_oif = oif;
2535 	fl6.flowi6_mark = mark;
2536 	fl6.daddr = iph->daddr;
2537 	fl6.saddr = iph->saddr;
2538 	fl6.flowlabel = ip6_flowinfo(iph);
2539 	fl6.flowi6_uid = uid;
2540 
2541 	dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
2542 	rt6_do_redirect(dst, NULL, skb);
2543 	dst_release(dst);
2544 }
2545 EXPORT_SYMBOL_GPL(ip6_redirect);
2546 
2547 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif,
2548 			    u32 mark)
2549 {
2550 	const struct ipv6hdr *iph = ipv6_hdr(skb);
2551 	const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
2552 	struct dst_entry *dst;
2553 	struct flowi6 fl6;
2554 
2555 	memset(&fl6, 0, sizeof(fl6));
2556 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
2557 	fl6.flowi6_oif = oif;
2558 	fl6.flowi6_mark = mark;
2559 	fl6.daddr = msg->dest;
2560 	fl6.saddr = iph->daddr;
2561 	fl6.flowi6_uid = sock_net_uid(net, NULL);
2562 
2563 	dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
2564 	rt6_do_redirect(dst, NULL, skb);
2565 	dst_release(dst);
2566 }
2567 
2568 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
2569 {
2570 	ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
2571 		     sk->sk_uid);
2572 }
2573 EXPORT_SYMBOL_GPL(ip6_sk_redirect);
2574 
2575 static unsigned int ip6_default_advmss(const struct dst_entry *dst)
2576 {
2577 	struct net_device *dev = dst->dev;
2578 	unsigned int mtu = dst_mtu(dst);
2579 	struct net *net = dev_net(dev);
2580 
2581 	mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
2582 
2583 	if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
2584 		mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
2585 
2586 	/*
2587 	 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
2588 	 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
2589 	 * IPV6_MAXPLEN is also valid and means: "any MSS,
2590 	 * rely only on pmtu discovery"
2591 	 */
2592 	if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
2593 		mtu = IPV6_MAXPLEN;
2594 	return mtu;
2595 }
2596 
2597 static unsigned int ip6_mtu(const struct dst_entry *dst)
2598 {
2599 	struct inet6_dev *idev;
2600 	unsigned int mtu;
2601 
2602 	mtu = dst_metric_raw(dst, RTAX_MTU);
2603 	if (mtu)
2604 		goto out;
2605 
2606 	mtu = IPV6_MIN_MTU;
2607 
2608 	rcu_read_lock();
2609 	idev = __in6_dev_get(dst->dev);
2610 	if (idev)
2611 		mtu = idev->cnf.mtu6;
2612 	rcu_read_unlock();
2613 
2614 out:
2615 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2616 
2617 	return mtu - lwtunnel_headroom(dst->lwtstate, mtu);
2618 }
2619 
2620 /* MTU selection:
2621  * 1. mtu on route is locked - use it
2622  * 2. mtu from nexthop exception
2623  * 3. mtu from egress device
2624  *
2625  * based on ip6_dst_mtu_forward and exception logic of
2626  * rt6_find_cached_rt; called with rcu_read_lock
2627  */
2628 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr,
2629 		      struct in6_addr *saddr)
2630 {
2631 	struct rt6_exception_bucket *bucket;
2632 	struct rt6_exception *rt6_ex;
2633 	struct in6_addr *src_key;
2634 	struct inet6_dev *idev;
2635 	u32 mtu = 0;
2636 
2637 	if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
2638 		mtu = f6i->fib6_pmtu;
2639 		if (mtu)
2640 			goto out;
2641 	}
2642 
2643 	src_key = NULL;
2644 #ifdef CONFIG_IPV6_SUBTREES
2645 	if (f6i->fib6_src.plen)
2646 		src_key = saddr;
2647 #endif
2648 
2649 	bucket = rcu_dereference(f6i->rt6i_exception_bucket);
2650 	rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
2651 	if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
2652 		mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU);
2653 
2654 	if (likely(!mtu)) {
2655 		struct net_device *dev = fib6_info_nh_dev(f6i);
2656 
2657 		mtu = IPV6_MIN_MTU;
2658 		idev = __in6_dev_get(dev);
2659 		if (idev && idev->cnf.mtu6 > mtu)
2660 			mtu = idev->cnf.mtu6;
2661 	}
2662 
2663 	mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2664 out:
2665 	return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu);
2666 }
2667 
2668 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
2669 				  struct flowi6 *fl6)
2670 {
2671 	struct dst_entry *dst;
2672 	struct rt6_info *rt;
2673 	struct inet6_dev *idev = in6_dev_get(dev);
2674 	struct net *net = dev_net(dev);
2675 
2676 	if (unlikely(!idev))
2677 		return ERR_PTR(-ENODEV);
2678 
2679 	rt = ip6_dst_alloc(net, dev, 0);
2680 	if (unlikely(!rt)) {
2681 		in6_dev_put(idev);
2682 		dst = ERR_PTR(-ENOMEM);
2683 		goto out;
2684 	}
2685 
2686 	rt->dst.flags |= DST_HOST;
2687 	rt->dst.input = ip6_input;
2688 	rt->dst.output  = ip6_output;
2689 	rt->rt6i_gateway  = fl6->daddr;
2690 	rt->rt6i_dst.addr = fl6->daddr;
2691 	rt->rt6i_dst.plen = 128;
2692 	rt->rt6i_idev     = idev;
2693 	dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
2694 
2695 	/* Add this dst into uncached_list so that rt6_disable_ip() can
2696 	 * do proper release of the net_device
2697 	 */
2698 	rt6_uncached_list_add(rt);
2699 	atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
2700 
2701 	dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
2702 
2703 out:
2704 	return dst;
2705 }
2706 
2707 static int ip6_dst_gc(struct dst_ops *ops)
2708 {
2709 	struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
2710 	int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
2711 	int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
2712 	int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
2713 	int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
2714 	unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
2715 	int entries;
2716 
2717 	entries = dst_entries_get_fast(ops);
2718 	if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
2719 	    entries <= rt_max_size)
2720 		goto out;
2721 
2722 	net->ipv6.ip6_rt_gc_expire++;
2723 	fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true);
2724 	entries = dst_entries_get_slow(ops);
2725 	if (entries < ops->gc_thresh)
2726 		net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
2727 out:
2728 	net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
2729 	return entries > rt_max_size;
2730 }
2731 
2732 static int ip6_convert_metrics(struct net *net, struct fib6_info *rt,
2733 			       struct fib6_config *cfg)
2734 {
2735 	struct dst_metrics *p;
2736 
2737 	if (!cfg->fc_mx)
2738 		return 0;
2739 
2740 	p = kzalloc(sizeof(*rt->fib6_metrics), GFP_KERNEL);
2741 	if (unlikely(!p))
2742 		return -ENOMEM;
2743 
2744 	refcount_set(&p->refcnt, 1);
2745 	rt->fib6_metrics = p;
2746 
2747 	return ip_metrics_convert(net, cfg->fc_mx, cfg->fc_mx_len, p->metrics);
2748 }
2749 
2750 static struct rt6_info *ip6_nh_lookup_table(struct net *net,
2751 					    struct fib6_config *cfg,
2752 					    const struct in6_addr *gw_addr,
2753 					    u32 tbid, int flags)
2754 {
2755 	struct flowi6 fl6 = {
2756 		.flowi6_oif = cfg->fc_ifindex,
2757 		.daddr = *gw_addr,
2758 		.saddr = cfg->fc_prefsrc,
2759 	};
2760 	struct fib6_table *table;
2761 	struct rt6_info *rt;
2762 
2763 	table = fib6_get_table(net, tbid);
2764 	if (!table)
2765 		return NULL;
2766 
2767 	if (!ipv6_addr_any(&cfg->fc_prefsrc))
2768 		flags |= RT6_LOOKUP_F_HAS_SADDR;
2769 
2770 	flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
2771 	rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags);
2772 
2773 	/* if table lookup failed, fall back to full lookup */
2774 	if (rt == net->ipv6.ip6_null_entry) {
2775 		ip6_rt_put(rt);
2776 		rt = NULL;
2777 	}
2778 
2779 	return rt;
2780 }
2781 
2782 static int ip6_route_check_nh_onlink(struct net *net,
2783 				     struct fib6_config *cfg,
2784 				     const struct net_device *dev,
2785 				     struct netlink_ext_ack *extack)
2786 {
2787 	u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN;
2788 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2789 	u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT;
2790 	struct rt6_info *grt;
2791 	int err;
2792 
2793 	err = 0;
2794 	grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0);
2795 	if (grt) {
2796 		if (!grt->dst.error &&
2797 		    (grt->rt6i_flags & flags || dev != grt->dst.dev)) {
2798 			NL_SET_ERR_MSG(extack,
2799 				       "Nexthop has invalid gateway or device mismatch");
2800 			err = -EINVAL;
2801 		}
2802 
2803 		ip6_rt_put(grt);
2804 	}
2805 
2806 	return err;
2807 }
2808 
2809 static int ip6_route_check_nh(struct net *net,
2810 			      struct fib6_config *cfg,
2811 			      struct net_device **_dev,
2812 			      struct inet6_dev **idev)
2813 {
2814 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2815 	struct net_device *dev = _dev ? *_dev : NULL;
2816 	struct rt6_info *grt = NULL;
2817 	int err = -EHOSTUNREACH;
2818 
2819 	if (cfg->fc_table) {
2820 		int flags = RT6_LOOKUP_F_IFACE;
2821 
2822 		grt = ip6_nh_lookup_table(net, cfg, gw_addr,
2823 					  cfg->fc_table, flags);
2824 		if (grt) {
2825 			if (grt->rt6i_flags & RTF_GATEWAY ||
2826 			    (dev && dev != grt->dst.dev)) {
2827 				ip6_rt_put(grt);
2828 				grt = NULL;
2829 			}
2830 		}
2831 	}
2832 
2833 	if (!grt)
2834 		grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1);
2835 
2836 	if (!grt)
2837 		goto out;
2838 
2839 	if (dev) {
2840 		if (dev != grt->dst.dev) {
2841 			ip6_rt_put(grt);
2842 			goto out;
2843 		}
2844 	} else {
2845 		*_dev = dev = grt->dst.dev;
2846 		*idev = grt->rt6i_idev;
2847 		dev_hold(dev);
2848 		in6_dev_hold(grt->rt6i_idev);
2849 	}
2850 
2851 	if (!(grt->rt6i_flags & RTF_GATEWAY))
2852 		err = 0;
2853 
2854 	ip6_rt_put(grt);
2855 
2856 out:
2857 	return err;
2858 }
2859 
2860 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
2861 			   struct net_device **_dev, struct inet6_dev **idev,
2862 			   struct netlink_ext_ack *extack)
2863 {
2864 	const struct in6_addr *gw_addr = &cfg->fc_gateway;
2865 	int gwa_type = ipv6_addr_type(gw_addr);
2866 	bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
2867 	const struct net_device *dev = *_dev;
2868 	bool need_addr_check = !dev;
2869 	int err = -EINVAL;
2870 
2871 	/* if gw_addr is local we will fail to detect this in case
2872 	 * address is still TENTATIVE (DAD in progress). rt6_lookup()
2873 	 * will return already-added prefix route via interface that
2874 	 * prefix route was assigned to, which might be non-loopback.
2875 	 */
2876 	if (dev &&
2877 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2878 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2879 		goto out;
2880 	}
2881 
2882 	if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
2883 		/* IPv6 strictly inhibits using not link-local
2884 		 * addresses as nexthop address.
2885 		 * Otherwise, router will not able to send redirects.
2886 		 * It is very good, but in some (rare!) circumstances
2887 		 * (SIT, PtP, NBMA NOARP links) it is handy to allow
2888 		 * some exceptions. --ANK
2889 		 * We allow IPv4-mapped nexthops to support RFC4798-type
2890 		 * addressing
2891 		 */
2892 		if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
2893 			NL_SET_ERR_MSG(extack, "Invalid gateway address");
2894 			goto out;
2895 		}
2896 
2897 		if (cfg->fc_flags & RTNH_F_ONLINK)
2898 			err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
2899 		else
2900 			err = ip6_route_check_nh(net, cfg, _dev, idev);
2901 
2902 		if (err)
2903 			goto out;
2904 	}
2905 
2906 	/* reload in case device was changed */
2907 	dev = *_dev;
2908 
2909 	err = -EINVAL;
2910 	if (!dev) {
2911 		NL_SET_ERR_MSG(extack, "Egress device not specified");
2912 		goto out;
2913 	} else if (dev->flags & IFF_LOOPBACK) {
2914 		NL_SET_ERR_MSG(extack,
2915 			       "Egress device can not be loopback device for this route");
2916 		goto out;
2917 	}
2918 
2919 	/* if we did not check gw_addr above, do so now that the
2920 	 * egress device has been resolved.
2921 	 */
2922 	if (need_addr_check &&
2923 	    ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2924 		NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2925 		goto out;
2926 	}
2927 
2928 	err = 0;
2929 out:
2930 	return err;
2931 }
2932 
2933 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
2934 					      gfp_t gfp_flags,
2935 					      struct netlink_ext_ack *extack)
2936 {
2937 	struct net *net = cfg->fc_nlinfo.nl_net;
2938 	struct fib6_info *rt = NULL;
2939 	struct net_device *dev = NULL;
2940 	struct inet6_dev *idev = NULL;
2941 	struct fib6_table *table;
2942 	int addr_type;
2943 	int err = -EINVAL;
2944 
2945 	/* RTF_PCPU is an internal flag; can not be set by userspace */
2946 	if (cfg->fc_flags & RTF_PCPU) {
2947 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
2948 		goto out;
2949 	}
2950 
2951 	/* RTF_CACHE is an internal flag; can not be set by userspace */
2952 	if (cfg->fc_flags & RTF_CACHE) {
2953 		NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
2954 		goto out;
2955 	}
2956 
2957 	if (cfg->fc_type > RTN_MAX) {
2958 		NL_SET_ERR_MSG(extack, "Invalid route type");
2959 		goto out;
2960 	}
2961 
2962 	if (cfg->fc_dst_len > 128) {
2963 		NL_SET_ERR_MSG(extack, "Invalid prefix length");
2964 		goto out;
2965 	}
2966 	if (cfg->fc_src_len > 128) {
2967 		NL_SET_ERR_MSG(extack, "Invalid source address length");
2968 		goto out;
2969 	}
2970 #ifndef CONFIG_IPV6_SUBTREES
2971 	if (cfg->fc_src_len) {
2972 		NL_SET_ERR_MSG(extack,
2973 			       "Specifying source address requires IPV6_SUBTREES to be enabled");
2974 		goto out;
2975 	}
2976 #endif
2977 	if (cfg->fc_ifindex) {
2978 		err = -ENODEV;
2979 		dev = dev_get_by_index(net, cfg->fc_ifindex);
2980 		if (!dev)
2981 			goto out;
2982 		idev = in6_dev_get(dev);
2983 		if (!idev)
2984 			goto out;
2985 	}
2986 
2987 	if (cfg->fc_metric == 0)
2988 		cfg->fc_metric = IP6_RT_PRIO_USER;
2989 
2990 	if (cfg->fc_flags & RTNH_F_ONLINK) {
2991 		if (!dev) {
2992 			NL_SET_ERR_MSG(extack,
2993 				       "Nexthop device required for onlink");
2994 			err = -ENODEV;
2995 			goto out;
2996 		}
2997 
2998 		if (!(dev->flags & IFF_UP)) {
2999 			NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3000 			err = -ENETDOWN;
3001 			goto out;
3002 		}
3003 	}
3004 
3005 	err = -ENOBUFS;
3006 	if (cfg->fc_nlinfo.nlh &&
3007 	    !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
3008 		table = fib6_get_table(net, cfg->fc_table);
3009 		if (!table) {
3010 			pr_warn("NLM_F_CREATE should be specified when creating new route\n");
3011 			table = fib6_new_table(net, cfg->fc_table);
3012 		}
3013 	} else {
3014 		table = fib6_new_table(net, cfg->fc_table);
3015 	}
3016 
3017 	if (!table)
3018 		goto out;
3019 
3020 	err = -ENOMEM;
3021 	rt = fib6_info_alloc(gfp_flags);
3022 	if (!rt)
3023 		goto out;
3024 
3025 	if (cfg->fc_flags & RTF_ADDRCONF)
3026 		rt->dst_nocount = true;
3027 
3028 	err = ip6_convert_metrics(net, rt, cfg);
3029 	if (err < 0)
3030 		goto out;
3031 
3032 	if (cfg->fc_flags & RTF_EXPIRES)
3033 		fib6_set_expires(rt, jiffies +
3034 				clock_t_to_jiffies(cfg->fc_expires));
3035 	else
3036 		fib6_clean_expires(rt);
3037 
3038 	if (cfg->fc_protocol == RTPROT_UNSPEC)
3039 		cfg->fc_protocol = RTPROT_BOOT;
3040 	rt->fib6_protocol = cfg->fc_protocol;
3041 
3042 	addr_type = ipv6_addr_type(&cfg->fc_dst);
3043 
3044 	if (cfg->fc_encap) {
3045 		struct lwtunnel_state *lwtstate;
3046 
3047 		err = lwtunnel_build_state(cfg->fc_encap_type,
3048 					   cfg->fc_encap, AF_INET6, cfg,
3049 					   &lwtstate, extack);
3050 		if (err)
3051 			goto out;
3052 		rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate);
3053 	}
3054 
3055 	ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
3056 	rt->fib6_dst.plen = cfg->fc_dst_len;
3057 	if (rt->fib6_dst.plen == 128)
3058 		rt->dst_host = true;
3059 
3060 #ifdef CONFIG_IPV6_SUBTREES
3061 	ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
3062 	rt->fib6_src.plen = cfg->fc_src_len;
3063 #endif
3064 
3065 	rt->fib6_metric = cfg->fc_metric;
3066 	rt->fib6_nh.nh_weight = 1;
3067 
3068 	rt->fib6_type = cfg->fc_type;
3069 
3070 	/* We cannot add true routes via loopback here,
3071 	   they would result in kernel looping; promote them to reject routes
3072 	 */
3073 	if ((cfg->fc_flags & RTF_REJECT) ||
3074 	    (dev && (dev->flags & IFF_LOOPBACK) &&
3075 	     !(addr_type & IPV6_ADDR_LOOPBACK) &&
3076 	     !(cfg->fc_flags & RTF_LOCAL))) {
3077 		/* hold loopback dev/idev if we haven't done so. */
3078 		if (dev != net->loopback_dev) {
3079 			if (dev) {
3080 				dev_put(dev);
3081 				in6_dev_put(idev);
3082 			}
3083 			dev = net->loopback_dev;
3084 			dev_hold(dev);
3085 			idev = in6_dev_get(dev);
3086 			if (!idev) {
3087 				err = -ENODEV;
3088 				goto out;
3089 			}
3090 		}
3091 		rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP;
3092 		goto install_route;
3093 	}
3094 
3095 	if (cfg->fc_flags & RTF_GATEWAY) {
3096 		err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
3097 		if (err)
3098 			goto out;
3099 
3100 		rt->fib6_nh.nh_gw = cfg->fc_gateway;
3101 	}
3102 
3103 	err = -ENODEV;
3104 	if (!dev)
3105 		goto out;
3106 
3107 	if (idev->cnf.disable_ipv6) {
3108 		NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
3109 		err = -EACCES;
3110 		goto out;
3111 	}
3112 
3113 	if (!(dev->flags & IFF_UP)) {
3114 		NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3115 		err = -ENETDOWN;
3116 		goto out;
3117 	}
3118 
3119 	if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
3120 		if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
3121 			NL_SET_ERR_MSG(extack, "Invalid source address");
3122 			err = -EINVAL;
3123 			goto out;
3124 		}
3125 		rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
3126 		rt->fib6_prefsrc.plen = 128;
3127 	} else
3128 		rt->fib6_prefsrc.plen = 0;
3129 
3130 	rt->fib6_flags = cfg->fc_flags;
3131 
3132 install_route:
3133 	if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
3134 	    !netif_carrier_ok(dev))
3135 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
3136 	rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK);
3137 	rt->fib6_nh.nh_dev = dev;
3138 	rt->fib6_table = table;
3139 
3140 	cfg->fc_nlinfo.nl_net = dev_net(dev);
3141 
3142 	if (idev)
3143 		in6_dev_put(idev);
3144 
3145 	return rt;
3146 out:
3147 	if (dev)
3148 		dev_put(dev);
3149 	if (idev)
3150 		in6_dev_put(idev);
3151 
3152 	fib6_info_release(rt);
3153 	return ERR_PTR(err);
3154 }
3155 
3156 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
3157 		  struct netlink_ext_ack *extack)
3158 {
3159 	struct fib6_info *rt;
3160 	int err;
3161 
3162 	rt = ip6_route_info_create(cfg, gfp_flags, extack);
3163 	if (IS_ERR(rt))
3164 		return PTR_ERR(rt);
3165 
3166 	err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
3167 	fib6_info_release(rt);
3168 
3169 	return err;
3170 }
3171 
3172 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
3173 {
3174 	struct net *net = info->nl_net;
3175 	struct fib6_table *table;
3176 	int err;
3177 
3178 	if (rt == net->ipv6.fib6_null_entry) {
3179 		err = -ENOENT;
3180 		goto out;
3181 	}
3182 
3183 	table = rt->fib6_table;
3184 	spin_lock_bh(&table->tb6_lock);
3185 	err = fib6_del(rt, info);
3186 	spin_unlock_bh(&table->tb6_lock);
3187 
3188 out:
3189 	fib6_info_release(rt);
3190 	return err;
3191 }
3192 
3193 int ip6_del_rt(struct net *net, struct fib6_info *rt)
3194 {
3195 	struct nl_info info = { .nl_net = net };
3196 
3197 	return __ip6_del_rt(rt, &info);
3198 }
3199 
3200 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
3201 {
3202 	struct nl_info *info = &cfg->fc_nlinfo;
3203 	struct net *net = info->nl_net;
3204 	struct sk_buff *skb = NULL;
3205 	struct fib6_table *table;
3206 	int err = -ENOENT;
3207 
3208 	if (rt == net->ipv6.fib6_null_entry)
3209 		goto out_put;
3210 	table = rt->fib6_table;
3211 	spin_lock_bh(&table->tb6_lock);
3212 
3213 	if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
3214 		struct fib6_info *sibling, *next_sibling;
3215 
3216 		/* prefer to send a single notification with all hops */
3217 		skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
3218 		if (skb) {
3219 			u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
3220 
3221 			if (rt6_fill_node(net, skb, rt, NULL,
3222 					  NULL, NULL, 0, RTM_DELROUTE,
3223 					  info->portid, seq, 0) < 0) {
3224 				kfree_skb(skb);
3225 				skb = NULL;
3226 			} else
3227 				info->skip_notify = 1;
3228 		}
3229 
3230 		list_for_each_entry_safe(sibling, next_sibling,
3231 					 &rt->fib6_siblings,
3232 					 fib6_siblings) {
3233 			err = fib6_del(sibling, info);
3234 			if (err)
3235 				goto out_unlock;
3236 		}
3237 	}
3238 
3239 	err = fib6_del(rt, info);
3240 out_unlock:
3241 	spin_unlock_bh(&table->tb6_lock);
3242 out_put:
3243 	fib6_info_release(rt);
3244 
3245 	if (skb) {
3246 		rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
3247 			    info->nlh, gfp_any());
3248 	}
3249 	return err;
3250 }
3251 
3252 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
3253 {
3254 	int rc = -ESRCH;
3255 
3256 	if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
3257 		goto out;
3258 
3259 	if (cfg->fc_flags & RTF_GATEWAY &&
3260 	    !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
3261 		goto out;
3262 	if (dst_hold_safe(&rt->dst))
3263 		rc = rt6_remove_exception_rt(rt);
3264 out:
3265 	return rc;
3266 }
3267 
3268 static int ip6_route_del(struct fib6_config *cfg,
3269 			 struct netlink_ext_ack *extack)
3270 {
3271 	struct rt6_info *rt_cache;
3272 	struct fib6_table *table;
3273 	struct fib6_info *rt;
3274 	struct fib6_node *fn;
3275 	int err = -ESRCH;
3276 
3277 	table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
3278 	if (!table) {
3279 		NL_SET_ERR_MSG(extack, "FIB table does not exist");
3280 		return err;
3281 	}
3282 
3283 	rcu_read_lock();
3284 
3285 	fn = fib6_locate(&table->tb6_root,
3286 			 &cfg->fc_dst, cfg->fc_dst_len,
3287 			 &cfg->fc_src, cfg->fc_src_len,
3288 			 !(cfg->fc_flags & RTF_CACHE));
3289 
3290 	if (fn) {
3291 		for_each_fib6_node_rt_rcu(fn) {
3292 			if (cfg->fc_flags & RTF_CACHE) {
3293 				int rc;
3294 
3295 				rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst,
3296 							      &cfg->fc_src);
3297 				if (rt_cache) {
3298 					rc = ip6_del_cached_rt(rt_cache, cfg);
3299 					if (rc != -ESRCH) {
3300 						rcu_read_unlock();
3301 						return rc;
3302 					}
3303 				}
3304 				continue;
3305 			}
3306 			if (cfg->fc_ifindex &&
3307 			    (!rt->fib6_nh.nh_dev ||
3308 			     rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex))
3309 				continue;
3310 			if (cfg->fc_flags & RTF_GATEWAY &&
3311 			    !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw))
3312 				continue;
3313 			if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
3314 				continue;
3315 			if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol)
3316 				continue;
3317 			if (!fib6_info_hold_safe(rt))
3318 				continue;
3319 			rcu_read_unlock();
3320 
3321 			/* if gateway was specified only delete the one hop */
3322 			if (cfg->fc_flags & RTF_GATEWAY)
3323 				return __ip6_del_rt(rt, &cfg->fc_nlinfo);
3324 
3325 			return __ip6_del_rt_siblings(rt, cfg);
3326 		}
3327 	}
3328 	rcu_read_unlock();
3329 
3330 	return err;
3331 }
3332 
3333 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
3334 {
3335 	struct netevent_redirect netevent;
3336 	struct rt6_info *rt, *nrt = NULL;
3337 	struct ndisc_options ndopts;
3338 	struct inet6_dev *in6_dev;
3339 	struct neighbour *neigh;
3340 	struct fib6_info *from;
3341 	struct rd_msg *msg;
3342 	int optlen, on_link;
3343 	u8 *lladdr;
3344 
3345 	optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
3346 	optlen -= sizeof(*msg);
3347 
3348 	if (optlen < 0) {
3349 		net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
3350 		return;
3351 	}
3352 
3353 	msg = (struct rd_msg *)icmp6_hdr(skb);
3354 
3355 	if (ipv6_addr_is_multicast(&msg->dest)) {
3356 		net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
3357 		return;
3358 	}
3359 
3360 	on_link = 0;
3361 	if (ipv6_addr_equal(&msg->dest, &msg->target)) {
3362 		on_link = 1;
3363 	} else if (ipv6_addr_type(&msg->target) !=
3364 		   (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
3365 		net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
3366 		return;
3367 	}
3368 
3369 	in6_dev = __in6_dev_get(skb->dev);
3370 	if (!in6_dev)
3371 		return;
3372 	if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
3373 		return;
3374 
3375 	/* RFC2461 8.1:
3376 	 *	The IP source address of the Redirect MUST be the same as the current
3377 	 *	first-hop router for the specified ICMP Destination Address.
3378 	 */
3379 
3380 	if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
3381 		net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
3382 		return;
3383 	}
3384 
3385 	lladdr = NULL;
3386 	if (ndopts.nd_opts_tgt_lladdr) {
3387 		lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
3388 					     skb->dev);
3389 		if (!lladdr) {
3390 			net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
3391 			return;
3392 		}
3393 	}
3394 
3395 	rt = (struct rt6_info *) dst;
3396 	if (rt->rt6i_flags & RTF_REJECT) {
3397 		net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
3398 		return;
3399 	}
3400 
3401 	/* Redirect received -> path was valid.
3402 	 * Look, redirects are sent only in response to data packets,
3403 	 * so that this nexthop apparently is reachable. --ANK
3404 	 */
3405 	dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
3406 
3407 	neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
3408 	if (!neigh)
3409 		return;
3410 
3411 	/*
3412 	 *	We have finally decided to accept it.
3413 	 */
3414 
3415 	ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
3416 		     NEIGH_UPDATE_F_WEAK_OVERRIDE|
3417 		     NEIGH_UPDATE_F_OVERRIDE|
3418 		     (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
3419 				     NEIGH_UPDATE_F_ISROUTER)),
3420 		     NDISC_REDIRECT, &ndopts);
3421 
3422 	rcu_read_lock();
3423 	from = rcu_dereference(rt->from);
3424 	/* This fib6_info_hold() is safe here because we hold reference to rt
3425 	 * and rt already holds reference to fib6_info.
3426 	 */
3427 	fib6_info_hold(from);
3428 	rcu_read_unlock();
3429 
3430 	nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL);
3431 	if (!nrt)
3432 		goto out;
3433 
3434 	nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
3435 	if (on_link)
3436 		nrt->rt6i_flags &= ~RTF_GATEWAY;
3437 
3438 	nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
3439 
3440 	/* No need to remove rt from the exception table if rt is
3441 	 * a cached route because rt6_insert_exception() will
3442 	 * takes care of it
3443 	 */
3444 	if (rt6_insert_exception(nrt, from)) {
3445 		dst_release_immediate(&nrt->dst);
3446 		goto out;
3447 	}
3448 
3449 	netevent.old = &rt->dst;
3450 	netevent.new = &nrt->dst;
3451 	netevent.daddr = &msg->dest;
3452 	netevent.neigh = neigh;
3453 	call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
3454 
3455 out:
3456 	fib6_info_release(from);
3457 	neigh_release(neigh);
3458 }
3459 
3460 #ifdef CONFIG_IPV6_ROUTE_INFO
3461 static struct fib6_info *rt6_get_route_info(struct net *net,
3462 					   const struct in6_addr *prefix, int prefixlen,
3463 					   const struct in6_addr *gwaddr,
3464 					   struct net_device *dev)
3465 {
3466 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
3467 	int ifindex = dev->ifindex;
3468 	struct fib6_node *fn;
3469 	struct fib6_info *rt = NULL;
3470 	struct fib6_table *table;
3471 
3472 	table = fib6_get_table(net, tb_id);
3473 	if (!table)
3474 		return NULL;
3475 
3476 	rcu_read_lock();
3477 	fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
3478 	if (!fn)
3479 		goto out;
3480 
3481 	for_each_fib6_node_rt_rcu(fn) {
3482 		if (rt->fib6_nh.nh_dev->ifindex != ifindex)
3483 			continue;
3484 		if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
3485 			continue;
3486 		if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr))
3487 			continue;
3488 		if (!fib6_info_hold_safe(rt))
3489 			continue;
3490 		break;
3491 	}
3492 out:
3493 	rcu_read_unlock();
3494 	return rt;
3495 }
3496 
3497 static struct fib6_info *rt6_add_route_info(struct net *net,
3498 					   const struct in6_addr *prefix, int prefixlen,
3499 					   const struct in6_addr *gwaddr,
3500 					   struct net_device *dev,
3501 					   unsigned int pref)
3502 {
3503 	struct fib6_config cfg = {
3504 		.fc_metric	= IP6_RT_PRIO_USER,
3505 		.fc_ifindex	= dev->ifindex,
3506 		.fc_dst_len	= prefixlen,
3507 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
3508 				  RTF_UP | RTF_PREF(pref),
3509 		.fc_protocol = RTPROT_RA,
3510 		.fc_type = RTN_UNICAST,
3511 		.fc_nlinfo.portid = 0,
3512 		.fc_nlinfo.nlh = NULL,
3513 		.fc_nlinfo.nl_net = net,
3514 	};
3515 
3516 	cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO,
3517 	cfg.fc_dst = *prefix;
3518 	cfg.fc_gateway = *gwaddr;
3519 
3520 	/* We should treat it as a default route if prefix length is 0. */
3521 	if (!prefixlen)
3522 		cfg.fc_flags |= RTF_DEFAULT;
3523 
3524 	ip6_route_add(&cfg, GFP_ATOMIC, NULL);
3525 
3526 	return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
3527 }
3528 #endif
3529 
3530 struct fib6_info *rt6_get_dflt_router(struct net *net,
3531 				     const struct in6_addr *addr,
3532 				     struct net_device *dev)
3533 {
3534 	u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
3535 	struct fib6_info *rt;
3536 	struct fib6_table *table;
3537 
3538 	table = fib6_get_table(net, tb_id);
3539 	if (!table)
3540 		return NULL;
3541 
3542 	rcu_read_lock();
3543 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3544 		if (dev == rt->fib6_nh.nh_dev &&
3545 		    ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
3546 		    ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr))
3547 			break;
3548 	}
3549 	if (rt && !fib6_info_hold_safe(rt))
3550 		rt = NULL;
3551 	rcu_read_unlock();
3552 	return rt;
3553 }
3554 
3555 struct fib6_info *rt6_add_dflt_router(struct net *net,
3556 				     const struct in6_addr *gwaddr,
3557 				     struct net_device *dev,
3558 				     unsigned int pref)
3559 {
3560 	struct fib6_config cfg = {
3561 		.fc_table	= l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
3562 		.fc_metric	= IP6_RT_PRIO_USER,
3563 		.fc_ifindex	= dev->ifindex,
3564 		.fc_flags	= RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
3565 				  RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
3566 		.fc_protocol = RTPROT_RA,
3567 		.fc_type = RTN_UNICAST,
3568 		.fc_nlinfo.portid = 0,
3569 		.fc_nlinfo.nlh = NULL,
3570 		.fc_nlinfo.nl_net = net,
3571 	};
3572 
3573 	cfg.fc_gateway = *gwaddr;
3574 
3575 	if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
3576 		struct fib6_table *table;
3577 
3578 		table = fib6_get_table(dev_net(dev), cfg.fc_table);
3579 		if (table)
3580 			table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
3581 	}
3582 
3583 	return rt6_get_dflt_router(net, gwaddr, dev);
3584 }
3585 
3586 static void __rt6_purge_dflt_routers(struct net *net,
3587 				     struct fib6_table *table)
3588 {
3589 	struct fib6_info *rt;
3590 
3591 restart:
3592 	rcu_read_lock();
3593 	for_each_fib6_node_rt_rcu(&table->tb6_root) {
3594 		struct net_device *dev = fib6_info_nh_dev(rt);
3595 		struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
3596 
3597 		if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
3598 		    (!idev || idev->cnf.accept_ra != 2) &&
3599 		    fib6_info_hold_safe(rt)) {
3600 			rcu_read_unlock();
3601 			ip6_del_rt(net, rt);
3602 			goto restart;
3603 		}
3604 	}
3605 	rcu_read_unlock();
3606 
3607 	table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
3608 }
3609 
3610 void rt6_purge_dflt_routers(struct net *net)
3611 {
3612 	struct fib6_table *table;
3613 	struct hlist_head *head;
3614 	unsigned int h;
3615 
3616 	rcu_read_lock();
3617 
3618 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
3619 		head = &net->ipv6.fib_table_hash[h];
3620 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
3621 			if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
3622 				__rt6_purge_dflt_routers(net, table);
3623 		}
3624 	}
3625 
3626 	rcu_read_unlock();
3627 }
3628 
3629 static void rtmsg_to_fib6_config(struct net *net,
3630 				 struct in6_rtmsg *rtmsg,
3631 				 struct fib6_config *cfg)
3632 {
3633 	memset(cfg, 0, sizeof(*cfg));
3634 
3635 	cfg->fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
3636 			 : RT6_TABLE_MAIN;
3637 	cfg->fc_ifindex = rtmsg->rtmsg_ifindex;
3638 	cfg->fc_metric = rtmsg->rtmsg_metric;
3639 	cfg->fc_expires = rtmsg->rtmsg_info;
3640 	cfg->fc_dst_len = rtmsg->rtmsg_dst_len;
3641 	cfg->fc_src_len = rtmsg->rtmsg_src_len;
3642 	cfg->fc_flags = rtmsg->rtmsg_flags;
3643 	cfg->fc_type = rtmsg->rtmsg_type;
3644 
3645 	cfg->fc_nlinfo.nl_net = net;
3646 
3647 	cfg->fc_dst = rtmsg->rtmsg_dst;
3648 	cfg->fc_src = rtmsg->rtmsg_src;
3649 	cfg->fc_gateway = rtmsg->rtmsg_gateway;
3650 }
3651 
3652 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3653 {
3654 	struct fib6_config cfg;
3655 	struct in6_rtmsg rtmsg;
3656 	int err;
3657 
3658 	switch (cmd) {
3659 	case SIOCADDRT:		/* Add a route */
3660 	case SIOCDELRT:		/* Delete a route */
3661 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3662 			return -EPERM;
3663 		err = copy_from_user(&rtmsg, arg,
3664 				     sizeof(struct in6_rtmsg));
3665 		if (err)
3666 			return -EFAULT;
3667 
3668 		rtmsg_to_fib6_config(net, &rtmsg, &cfg);
3669 
3670 		rtnl_lock();
3671 		switch (cmd) {
3672 		case SIOCADDRT:
3673 			err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
3674 			break;
3675 		case SIOCDELRT:
3676 			err = ip6_route_del(&cfg, NULL);
3677 			break;
3678 		default:
3679 			err = -EINVAL;
3680 		}
3681 		rtnl_unlock();
3682 
3683 		return err;
3684 	}
3685 
3686 	return -EINVAL;
3687 }
3688 
3689 /*
3690  *	Drop the packet on the floor
3691  */
3692 
3693 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
3694 {
3695 	int type;
3696 	struct dst_entry *dst = skb_dst(skb);
3697 	switch (ipstats_mib_noroutes) {
3698 	case IPSTATS_MIB_INNOROUTES:
3699 		type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
3700 		if (type == IPV6_ADDR_ANY) {
3701 			IP6_INC_STATS(dev_net(dst->dev),
3702 				      __in6_dev_get_safely(skb->dev),
3703 				      IPSTATS_MIB_INADDRERRORS);
3704 			break;
3705 		}
3706 		/* FALLTHROUGH */
3707 	case IPSTATS_MIB_OUTNOROUTES:
3708 		IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
3709 			      ipstats_mib_noroutes);
3710 		break;
3711 	}
3712 	icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
3713 	kfree_skb(skb);
3714 	return 0;
3715 }
3716 
3717 static int ip6_pkt_discard(struct sk_buff *skb)
3718 {
3719 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
3720 }
3721 
3722 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3723 {
3724 	skb->dev = skb_dst(skb)->dev;
3725 	return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
3726 }
3727 
3728 static int ip6_pkt_prohibit(struct sk_buff *skb)
3729 {
3730 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
3731 }
3732 
3733 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3734 {
3735 	skb->dev = skb_dst(skb)->dev;
3736 	return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
3737 }
3738 
3739 /*
3740  *	Allocate a dst for local (unicast / anycast) address.
3741  */
3742 
3743 struct fib6_info *addrconf_f6i_alloc(struct net *net,
3744 				     struct inet6_dev *idev,
3745 				     const struct in6_addr *addr,
3746 				     bool anycast, gfp_t gfp_flags)
3747 {
3748 	u32 tb_id;
3749 	struct net_device *dev = idev->dev;
3750 	struct fib6_info *f6i;
3751 
3752 	f6i = fib6_info_alloc(gfp_flags);
3753 	if (!f6i)
3754 		return ERR_PTR(-ENOMEM);
3755 
3756 	f6i->dst_nocount = true;
3757 	f6i->dst_host = true;
3758 	f6i->fib6_protocol = RTPROT_KERNEL;
3759 	f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP;
3760 	if (anycast) {
3761 		f6i->fib6_type = RTN_ANYCAST;
3762 		f6i->fib6_flags |= RTF_ANYCAST;
3763 	} else {
3764 		f6i->fib6_type = RTN_LOCAL;
3765 		f6i->fib6_flags |= RTF_LOCAL;
3766 	}
3767 
3768 	f6i->fib6_nh.nh_gw = *addr;
3769 	dev_hold(dev);
3770 	f6i->fib6_nh.nh_dev = dev;
3771 	f6i->fib6_dst.addr = *addr;
3772 	f6i->fib6_dst.plen = 128;
3773 	tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL;
3774 	f6i->fib6_table = fib6_get_table(net, tb_id);
3775 
3776 	return f6i;
3777 }
3778 
3779 /* remove deleted ip from prefsrc entries */
3780 struct arg_dev_net_ip {
3781 	struct net_device *dev;
3782 	struct net *net;
3783 	struct in6_addr *addr;
3784 };
3785 
3786 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
3787 {
3788 	struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
3789 	struct net *net = ((struct arg_dev_net_ip *)arg)->net;
3790 	struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
3791 
3792 	if (((void *)rt->fib6_nh.nh_dev == dev || !dev) &&
3793 	    rt != net->ipv6.fib6_null_entry &&
3794 	    ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
3795 		spin_lock_bh(&rt6_exception_lock);
3796 		/* remove prefsrc entry */
3797 		rt->fib6_prefsrc.plen = 0;
3798 		/* need to update cache as well */
3799 		rt6_exceptions_remove_prefsrc(rt);
3800 		spin_unlock_bh(&rt6_exception_lock);
3801 	}
3802 	return 0;
3803 }
3804 
3805 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
3806 {
3807 	struct net *net = dev_net(ifp->idev->dev);
3808 	struct arg_dev_net_ip adni = {
3809 		.dev = ifp->idev->dev,
3810 		.net = net,
3811 		.addr = &ifp->addr,
3812 	};
3813 	fib6_clean_all(net, fib6_remove_prefsrc, &adni);
3814 }
3815 
3816 #define RTF_RA_ROUTER		(RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY)
3817 
3818 /* Remove routers and update dst entries when gateway turn into host. */
3819 static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
3820 {
3821 	struct in6_addr *gateway = (struct in6_addr *)arg;
3822 
3823 	if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
3824 	    ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) {
3825 		return -1;
3826 	}
3827 
3828 	/* Further clean up cached routes in exception table.
3829 	 * This is needed because cached route may have a different
3830 	 * gateway than its 'parent' in the case of an ip redirect.
3831 	 */
3832 	rt6_exceptions_clean_tohost(rt, gateway);
3833 
3834 	return 0;
3835 }
3836 
3837 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
3838 {
3839 	fib6_clean_all(net, fib6_clean_tohost, gateway);
3840 }
3841 
3842 struct arg_netdev_event {
3843 	const struct net_device *dev;
3844 	union {
3845 		unsigned int nh_flags;
3846 		unsigned long event;
3847 	};
3848 };
3849 
3850 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
3851 {
3852 	struct fib6_info *iter;
3853 	struct fib6_node *fn;
3854 
3855 	fn = rcu_dereference_protected(rt->fib6_node,
3856 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3857 	iter = rcu_dereference_protected(fn->leaf,
3858 			lockdep_is_held(&rt->fib6_table->tb6_lock));
3859 	while (iter) {
3860 		if (iter->fib6_metric == rt->fib6_metric &&
3861 		    rt6_qualify_for_ecmp(iter))
3862 			return iter;
3863 		iter = rcu_dereference_protected(iter->fib6_next,
3864 				lockdep_is_held(&rt->fib6_table->tb6_lock));
3865 	}
3866 
3867 	return NULL;
3868 }
3869 
3870 static bool rt6_is_dead(const struct fib6_info *rt)
3871 {
3872 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD ||
3873 	    (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
3874 	     fib6_ignore_linkdown(rt)))
3875 		return true;
3876 
3877 	return false;
3878 }
3879 
3880 static int rt6_multipath_total_weight(const struct fib6_info *rt)
3881 {
3882 	struct fib6_info *iter;
3883 	int total = 0;
3884 
3885 	if (!rt6_is_dead(rt))
3886 		total += rt->fib6_nh.nh_weight;
3887 
3888 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
3889 		if (!rt6_is_dead(iter))
3890 			total += iter->fib6_nh.nh_weight;
3891 	}
3892 
3893 	return total;
3894 }
3895 
3896 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
3897 {
3898 	int upper_bound = -1;
3899 
3900 	if (!rt6_is_dead(rt)) {
3901 		*weight += rt->fib6_nh.nh_weight;
3902 		upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
3903 						    total) - 1;
3904 	}
3905 	atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound);
3906 }
3907 
3908 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
3909 {
3910 	struct fib6_info *iter;
3911 	int weight = 0;
3912 
3913 	rt6_upper_bound_set(rt, &weight, total);
3914 
3915 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3916 		rt6_upper_bound_set(iter, &weight, total);
3917 }
3918 
3919 void rt6_multipath_rebalance(struct fib6_info *rt)
3920 {
3921 	struct fib6_info *first;
3922 	int total;
3923 
3924 	/* In case the entire multipath route was marked for flushing,
3925 	 * then there is no need to rebalance upon the removal of every
3926 	 * sibling route.
3927 	 */
3928 	if (!rt->fib6_nsiblings || rt->should_flush)
3929 		return;
3930 
3931 	/* During lookup routes are evaluated in order, so we need to
3932 	 * make sure upper bounds are assigned from the first sibling
3933 	 * onwards.
3934 	 */
3935 	first = rt6_multipath_first_sibling(rt);
3936 	if (WARN_ON_ONCE(!first))
3937 		return;
3938 
3939 	total = rt6_multipath_total_weight(first);
3940 	rt6_multipath_upper_bound_set(first, total);
3941 }
3942 
3943 static int fib6_ifup(struct fib6_info *rt, void *p_arg)
3944 {
3945 	const struct arg_netdev_event *arg = p_arg;
3946 	struct net *net = dev_net(arg->dev);
3947 
3948 	if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) {
3949 		rt->fib6_nh.nh_flags &= ~arg->nh_flags;
3950 		fib6_update_sernum_upto_root(net, rt);
3951 		rt6_multipath_rebalance(rt);
3952 	}
3953 
3954 	return 0;
3955 }
3956 
3957 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags)
3958 {
3959 	struct arg_netdev_event arg = {
3960 		.dev = dev,
3961 		{
3962 			.nh_flags = nh_flags,
3963 		},
3964 	};
3965 
3966 	if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
3967 		arg.nh_flags |= RTNH_F_LINKDOWN;
3968 
3969 	fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
3970 }
3971 
3972 static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
3973 				   const struct net_device *dev)
3974 {
3975 	struct fib6_info *iter;
3976 
3977 	if (rt->fib6_nh.nh_dev == dev)
3978 		return true;
3979 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3980 		if (iter->fib6_nh.nh_dev == dev)
3981 			return true;
3982 
3983 	return false;
3984 }
3985 
3986 static void rt6_multipath_flush(struct fib6_info *rt)
3987 {
3988 	struct fib6_info *iter;
3989 
3990 	rt->should_flush = 1;
3991 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3992 		iter->should_flush = 1;
3993 }
3994 
3995 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
3996 					     const struct net_device *down_dev)
3997 {
3998 	struct fib6_info *iter;
3999 	unsigned int dead = 0;
4000 
4001 	if (rt->fib6_nh.nh_dev == down_dev ||
4002 	    rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4003 		dead++;
4004 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4005 		if (iter->fib6_nh.nh_dev == down_dev ||
4006 		    iter->fib6_nh.nh_flags & RTNH_F_DEAD)
4007 			dead++;
4008 
4009 	return dead;
4010 }
4011 
4012 static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
4013 				       const struct net_device *dev,
4014 				       unsigned int nh_flags)
4015 {
4016 	struct fib6_info *iter;
4017 
4018 	if (rt->fib6_nh.nh_dev == dev)
4019 		rt->fib6_nh.nh_flags |= nh_flags;
4020 	list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
4021 		if (iter->fib6_nh.nh_dev == dev)
4022 			iter->fib6_nh.nh_flags |= nh_flags;
4023 }
4024 
4025 /* called with write lock held for table with rt */
4026 static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
4027 {
4028 	const struct arg_netdev_event *arg = p_arg;
4029 	const struct net_device *dev = arg->dev;
4030 	struct net *net = dev_net(dev);
4031 
4032 	if (rt == net->ipv6.fib6_null_entry)
4033 		return 0;
4034 
4035 	switch (arg->event) {
4036 	case NETDEV_UNREGISTER:
4037 		return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4038 	case NETDEV_DOWN:
4039 		if (rt->should_flush)
4040 			return -1;
4041 		if (!rt->fib6_nsiblings)
4042 			return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4043 		if (rt6_multipath_uses_dev(rt, dev)) {
4044 			unsigned int count;
4045 
4046 			count = rt6_multipath_dead_count(rt, dev);
4047 			if (rt->fib6_nsiblings + 1 == count) {
4048 				rt6_multipath_flush(rt);
4049 				return -1;
4050 			}
4051 			rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
4052 						   RTNH_F_LINKDOWN);
4053 			fib6_update_sernum(net, rt);
4054 			rt6_multipath_rebalance(rt);
4055 		}
4056 		return -2;
4057 	case NETDEV_CHANGE:
4058 		if (rt->fib6_nh.nh_dev != dev ||
4059 		    rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
4060 			break;
4061 		rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
4062 		rt6_multipath_rebalance(rt);
4063 		break;
4064 	}
4065 
4066 	return 0;
4067 }
4068 
4069 void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
4070 {
4071 	struct arg_netdev_event arg = {
4072 		.dev = dev,
4073 		{
4074 			.event = event,
4075 		},
4076 	};
4077 
4078 	fib6_clean_all(dev_net(dev), fib6_ifdown, &arg);
4079 }
4080 
4081 void rt6_disable_ip(struct net_device *dev, unsigned long event)
4082 {
4083 	rt6_sync_down_dev(dev, event);
4084 	rt6_uncached_list_flush_dev(dev_net(dev), dev);
4085 	neigh_ifdown(&nd_tbl, dev);
4086 }
4087 
4088 struct rt6_mtu_change_arg {
4089 	struct net_device *dev;
4090 	unsigned int mtu;
4091 };
4092 
4093 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg)
4094 {
4095 	struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
4096 	struct inet6_dev *idev;
4097 
4098 	/* In IPv6 pmtu discovery is not optional,
4099 	   so that RTAX_MTU lock cannot disable it.
4100 	   We still use this lock to block changes
4101 	   caused by addrconf/ndisc.
4102 	*/
4103 
4104 	idev = __in6_dev_get(arg->dev);
4105 	if (!idev)
4106 		return 0;
4107 
4108 	/* For administrative MTU increase, there is no way to discover
4109 	   IPv6 PMTU increase, so PMTU increase should be updated here.
4110 	   Since RFC 1981 doesn't include administrative MTU increase
4111 	   update PMTU increase is a MUST. (i.e. jumbo frame)
4112 	 */
4113 	if (rt->fib6_nh.nh_dev == arg->dev &&
4114 	    !fib6_metric_locked(rt, RTAX_MTU)) {
4115 		u32 mtu = rt->fib6_pmtu;
4116 
4117 		if (mtu >= arg->mtu ||
4118 		    (mtu < arg->mtu && mtu == idev->cnf.mtu6))
4119 			fib6_metric_set(rt, RTAX_MTU, arg->mtu);
4120 
4121 		spin_lock_bh(&rt6_exception_lock);
4122 		rt6_exceptions_update_pmtu(idev, rt, arg->mtu);
4123 		spin_unlock_bh(&rt6_exception_lock);
4124 	}
4125 	return 0;
4126 }
4127 
4128 void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
4129 {
4130 	struct rt6_mtu_change_arg arg = {
4131 		.dev = dev,
4132 		.mtu = mtu,
4133 	};
4134 
4135 	fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
4136 }
4137 
4138 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
4139 	[RTA_GATEWAY]           = { .len = sizeof(struct in6_addr) },
4140 	[RTA_PREFSRC]		= { .len = sizeof(struct in6_addr) },
4141 	[RTA_OIF]               = { .type = NLA_U32 },
4142 	[RTA_IIF]		= { .type = NLA_U32 },
4143 	[RTA_PRIORITY]          = { .type = NLA_U32 },
4144 	[RTA_METRICS]           = { .type = NLA_NESTED },
4145 	[RTA_MULTIPATH]		= { .len = sizeof(struct rtnexthop) },
4146 	[RTA_PREF]              = { .type = NLA_U8 },
4147 	[RTA_ENCAP_TYPE]	= { .type = NLA_U16 },
4148 	[RTA_ENCAP]		= { .type = NLA_NESTED },
4149 	[RTA_EXPIRES]		= { .type = NLA_U32 },
4150 	[RTA_UID]		= { .type = NLA_U32 },
4151 	[RTA_MARK]		= { .type = NLA_U32 },
4152 	[RTA_TABLE]		= { .type = NLA_U32 },
4153 	[RTA_IP_PROTO]		= { .type = NLA_U8 },
4154 	[RTA_SPORT]		= { .type = NLA_U16 },
4155 	[RTA_DPORT]		= { .type = NLA_U16 },
4156 };
4157 
4158 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
4159 			      struct fib6_config *cfg,
4160 			      struct netlink_ext_ack *extack)
4161 {
4162 	struct rtmsg *rtm;
4163 	struct nlattr *tb[RTA_MAX+1];
4164 	unsigned int pref;
4165 	int err;
4166 
4167 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4168 			  NULL);
4169 	if (err < 0)
4170 		goto errout;
4171 
4172 	err = -EINVAL;
4173 	rtm = nlmsg_data(nlh);
4174 	memset(cfg, 0, sizeof(*cfg));
4175 
4176 	cfg->fc_table = rtm->rtm_table;
4177 	cfg->fc_dst_len = rtm->rtm_dst_len;
4178 	cfg->fc_src_len = rtm->rtm_src_len;
4179 	cfg->fc_flags = RTF_UP;
4180 	cfg->fc_protocol = rtm->rtm_protocol;
4181 	cfg->fc_type = rtm->rtm_type;
4182 
4183 	if (rtm->rtm_type == RTN_UNREACHABLE ||
4184 	    rtm->rtm_type == RTN_BLACKHOLE ||
4185 	    rtm->rtm_type == RTN_PROHIBIT ||
4186 	    rtm->rtm_type == RTN_THROW)
4187 		cfg->fc_flags |= RTF_REJECT;
4188 
4189 	if (rtm->rtm_type == RTN_LOCAL)
4190 		cfg->fc_flags |= RTF_LOCAL;
4191 
4192 	if (rtm->rtm_flags & RTM_F_CLONED)
4193 		cfg->fc_flags |= RTF_CACHE;
4194 
4195 	cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
4196 
4197 	cfg->fc_nlinfo.portid = NETLINK_CB(skb).portid;
4198 	cfg->fc_nlinfo.nlh = nlh;
4199 	cfg->fc_nlinfo.nl_net = sock_net(skb->sk);
4200 
4201 	if (tb[RTA_GATEWAY]) {
4202 		cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
4203 		cfg->fc_flags |= RTF_GATEWAY;
4204 	}
4205 
4206 	if (tb[RTA_DST]) {
4207 		int plen = (rtm->rtm_dst_len + 7) >> 3;
4208 
4209 		if (nla_len(tb[RTA_DST]) < plen)
4210 			goto errout;
4211 
4212 		nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
4213 	}
4214 
4215 	if (tb[RTA_SRC]) {
4216 		int plen = (rtm->rtm_src_len + 7) >> 3;
4217 
4218 		if (nla_len(tb[RTA_SRC]) < plen)
4219 			goto errout;
4220 
4221 		nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
4222 	}
4223 
4224 	if (tb[RTA_PREFSRC])
4225 		cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
4226 
4227 	if (tb[RTA_OIF])
4228 		cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
4229 
4230 	if (tb[RTA_PRIORITY])
4231 		cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
4232 
4233 	if (tb[RTA_METRICS]) {
4234 		cfg->fc_mx = nla_data(tb[RTA_METRICS]);
4235 		cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
4236 	}
4237 
4238 	if (tb[RTA_TABLE])
4239 		cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
4240 
4241 	if (tb[RTA_MULTIPATH]) {
4242 		cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
4243 		cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
4244 
4245 		err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
4246 						     cfg->fc_mp_len, extack);
4247 		if (err < 0)
4248 			goto errout;
4249 	}
4250 
4251 	if (tb[RTA_PREF]) {
4252 		pref = nla_get_u8(tb[RTA_PREF]);
4253 		if (pref != ICMPV6_ROUTER_PREF_LOW &&
4254 		    pref != ICMPV6_ROUTER_PREF_HIGH)
4255 			pref = ICMPV6_ROUTER_PREF_MEDIUM;
4256 		cfg->fc_flags |= RTF_PREF(pref);
4257 	}
4258 
4259 	if (tb[RTA_ENCAP])
4260 		cfg->fc_encap = tb[RTA_ENCAP];
4261 
4262 	if (tb[RTA_ENCAP_TYPE]) {
4263 		cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
4264 
4265 		err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
4266 		if (err < 0)
4267 			goto errout;
4268 	}
4269 
4270 	if (tb[RTA_EXPIRES]) {
4271 		unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
4272 
4273 		if (addrconf_finite_timeout(timeout)) {
4274 			cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
4275 			cfg->fc_flags |= RTF_EXPIRES;
4276 		}
4277 	}
4278 
4279 	err = 0;
4280 errout:
4281 	return err;
4282 }
4283 
4284 struct rt6_nh {
4285 	struct fib6_info *fib6_info;
4286 	struct fib6_config r_cfg;
4287 	struct list_head next;
4288 };
4289 
4290 static void ip6_print_replace_route_err(struct list_head *rt6_nh_list)
4291 {
4292 	struct rt6_nh *nh;
4293 
4294 	list_for_each_entry(nh, rt6_nh_list, next) {
4295 		pr_warn("IPV6: multipath route replace failed (check consistency of installed routes): %pI6c nexthop %pI6c ifi %d\n",
4296 		        &nh->r_cfg.fc_dst, &nh->r_cfg.fc_gateway,
4297 		        nh->r_cfg.fc_ifindex);
4298 	}
4299 }
4300 
4301 static int ip6_route_info_append(struct net *net,
4302 				 struct list_head *rt6_nh_list,
4303 				 struct fib6_info *rt,
4304 				 struct fib6_config *r_cfg)
4305 {
4306 	struct rt6_nh *nh;
4307 	int err = -EEXIST;
4308 
4309 	list_for_each_entry(nh, rt6_nh_list, next) {
4310 		/* check if fib6_info already exists */
4311 		if (rt6_duplicate_nexthop(nh->fib6_info, rt))
4312 			return err;
4313 	}
4314 
4315 	nh = kzalloc(sizeof(*nh), GFP_KERNEL);
4316 	if (!nh)
4317 		return -ENOMEM;
4318 	nh->fib6_info = rt;
4319 	err = ip6_convert_metrics(net, rt, r_cfg);
4320 	if (err) {
4321 		kfree(nh);
4322 		return err;
4323 	}
4324 	memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
4325 	list_add_tail(&nh->next, rt6_nh_list);
4326 
4327 	return 0;
4328 }
4329 
4330 static void ip6_route_mpath_notify(struct fib6_info *rt,
4331 				   struct fib6_info *rt_last,
4332 				   struct nl_info *info,
4333 				   __u16 nlflags)
4334 {
4335 	/* if this is an APPEND route, then rt points to the first route
4336 	 * inserted and rt_last points to last route inserted. Userspace
4337 	 * wants a consistent dump of the route which starts at the first
4338 	 * nexthop. Since sibling routes are always added at the end of
4339 	 * the list, find the first sibling of the last route appended
4340 	 */
4341 	if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
4342 		rt = list_first_entry(&rt_last->fib6_siblings,
4343 				      struct fib6_info,
4344 				      fib6_siblings);
4345 	}
4346 
4347 	if (rt)
4348 		inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
4349 }
4350 
4351 static int ip6_route_multipath_add(struct fib6_config *cfg,
4352 				   struct netlink_ext_ack *extack)
4353 {
4354 	struct fib6_info *rt_notif = NULL, *rt_last = NULL;
4355 	struct nl_info *info = &cfg->fc_nlinfo;
4356 	struct fib6_config r_cfg;
4357 	struct rtnexthop *rtnh;
4358 	struct fib6_info *rt;
4359 	struct rt6_nh *err_nh;
4360 	struct rt6_nh *nh, *nh_safe;
4361 	__u16 nlflags;
4362 	int remaining;
4363 	int attrlen;
4364 	int err = 1;
4365 	int nhn = 0;
4366 	int replace = (cfg->fc_nlinfo.nlh &&
4367 		       (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
4368 	LIST_HEAD(rt6_nh_list);
4369 
4370 	nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
4371 	if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
4372 		nlflags |= NLM_F_APPEND;
4373 
4374 	remaining = cfg->fc_mp_len;
4375 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4376 
4377 	/* Parse a Multipath Entry and build a list (rt6_nh_list) of
4378 	 * fib6_info structs per nexthop
4379 	 */
4380 	while (rtnh_ok(rtnh, remaining)) {
4381 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4382 		if (rtnh->rtnh_ifindex)
4383 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4384 
4385 		attrlen = rtnh_attrlen(rtnh);
4386 		if (attrlen > 0) {
4387 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4388 
4389 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4390 			if (nla) {
4391 				r_cfg.fc_gateway = nla_get_in6_addr(nla);
4392 				r_cfg.fc_flags |= RTF_GATEWAY;
4393 			}
4394 			r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
4395 			nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
4396 			if (nla)
4397 				r_cfg.fc_encap_type = nla_get_u16(nla);
4398 		}
4399 
4400 		r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
4401 		rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
4402 		if (IS_ERR(rt)) {
4403 			err = PTR_ERR(rt);
4404 			rt = NULL;
4405 			goto cleanup;
4406 		}
4407 		if (!rt6_qualify_for_ecmp(rt)) {
4408 			err = -EINVAL;
4409 			NL_SET_ERR_MSG(extack,
4410 				       "Device only routes can not be added for IPv6 using the multipath API.");
4411 			fib6_info_release(rt);
4412 			goto cleanup;
4413 		}
4414 
4415 		rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1;
4416 
4417 		err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
4418 					    rt, &r_cfg);
4419 		if (err) {
4420 			fib6_info_release(rt);
4421 			goto cleanup;
4422 		}
4423 
4424 		rtnh = rtnh_next(rtnh, &remaining);
4425 	}
4426 
4427 	/* for add and replace send one notification with all nexthops.
4428 	 * Skip the notification in fib6_add_rt2node and send one with
4429 	 * the full route when done
4430 	 */
4431 	info->skip_notify = 1;
4432 
4433 	err_nh = NULL;
4434 	list_for_each_entry(nh, &rt6_nh_list, next) {
4435 		err = __ip6_ins_rt(nh->fib6_info, info, extack);
4436 		fib6_info_release(nh->fib6_info);
4437 
4438 		if (!err) {
4439 			/* save reference to last route successfully inserted */
4440 			rt_last = nh->fib6_info;
4441 
4442 			/* save reference to first route for notification */
4443 			if (!rt_notif)
4444 				rt_notif = nh->fib6_info;
4445 		}
4446 
4447 		/* nh->fib6_info is used or freed at this point, reset to NULL*/
4448 		nh->fib6_info = NULL;
4449 		if (err) {
4450 			if (replace && nhn)
4451 				ip6_print_replace_route_err(&rt6_nh_list);
4452 			err_nh = nh;
4453 			goto add_errout;
4454 		}
4455 
4456 		/* Because each route is added like a single route we remove
4457 		 * these flags after the first nexthop: if there is a collision,
4458 		 * we have already failed to add the first nexthop:
4459 		 * fib6_add_rt2node() has rejected it; when replacing, old
4460 		 * nexthops have been replaced by first new, the rest should
4461 		 * be added to it.
4462 		 */
4463 		cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
4464 						     NLM_F_REPLACE);
4465 		nhn++;
4466 	}
4467 
4468 	/* success ... tell user about new route */
4469 	ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4470 	goto cleanup;
4471 
4472 add_errout:
4473 	/* send notification for routes that were added so that
4474 	 * the delete notifications sent by ip6_route_del are
4475 	 * coherent
4476 	 */
4477 	if (rt_notif)
4478 		ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4479 
4480 	/* Delete routes that were already added */
4481 	list_for_each_entry(nh, &rt6_nh_list, next) {
4482 		if (err_nh == nh)
4483 			break;
4484 		ip6_route_del(&nh->r_cfg, extack);
4485 	}
4486 
4487 cleanup:
4488 	list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
4489 		if (nh->fib6_info)
4490 			fib6_info_release(nh->fib6_info);
4491 		list_del(&nh->next);
4492 		kfree(nh);
4493 	}
4494 
4495 	return err;
4496 }
4497 
4498 static int ip6_route_multipath_del(struct fib6_config *cfg,
4499 				   struct netlink_ext_ack *extack)
4500 {
4501 	struct fib6_config r_cfg;
4502 	struct rtnexthop *rtnh;
4503 	int remaining;
4504 	int attrlen;
4505 	int err = 1, last_err = 0;
4506 
4507 	remaining = cfg->fc_mp_len;
4508 	rtnh = (struct rtnexthop *)cfg->fc_mp;
4509 
4510 	/* Parse a Multipath Entry */
4511 	while (rtnh_ok(rtnh, remaining)) {
4512 		memcpy(&r_cfg, cfg, sizeof(*cfg));
4513 		if (rtnh->rtnh_ifindex)
4514 			r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4515 
4516 		attrlen = rtnh_attrlen(rtnh);
4517 		if (attrlen > 0) {
4518 			struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4519 
4520 			nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4521 			if (nla) {
4522 				nla_memcpy(&r_cfg.fc_gateway, nla, 16);
4523 				r_cfg.fc_flags |= RTF_GATEWAY;
4524 			}
4525 		}
4526 		err = ip6_route_del(&r_cfg, extack);
4527 		if (err)
4528 			last_err = err;
4529 
4530 		rtnh = rtnh_next(rtnh, &remaining);
4531 	}
4532 
4533 	return last_err;
4534 }
4535 
4536 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4537 			      struct netlink_ext_ack *extack)
4538 {
4539 	struct fib6_config cfg;
4540 	int err;
4541 
4542 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4543 	if (err < 0)
4544 		return err;
4545 
4546 	if (cfg.fc_mp)
4547 		return ip6_route_multipath_del(&cfg, extack);
4548 	else {
4549 		cfg.fc_delete_all_nh = 1;
4550 		return ip6_route_del(&cfg, extack);
4551 	}
4552 }
4553 
4554 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4555 			      struct netlink_ext_ack *extack)
4556 {
4557 	struct fib6_config cfg;
4558 	int err;
4559 
4560 	err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4561 	if (err < 0)
4562 		return err;
4563 
4564 	if (cfg.fc_mp)
4565 		return ip6_route_multipath_add(&cfg, extack);
4566 	else
4567 		return ip6_route_add(&cfg, GFP_KERNEL, extack);
4568 }
4569 
4570 static size_t rt6_nlmsg_size(struct fib6_info *rt)
4571 {
4572 	int nexthop_len = 0;
4573 
4574 	if (rt->fib6_nsiblings) {
4575 		nexthop_len = nla_total_size(0)	 /* RTA_MULTIPATH */
4576 			    + NLA_ALIGN(sizeof(struct rtnexthop))
4577 			    + nla_total_size(16) /* RTA_GATEWAY */
4578 			    + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate);
4579 
4580 		nexthop_len *= rt->fib6_nsiblings;
4581 	}
4582 
4583 	return NLMSG_ALIGN(sizeof(struct rtmsg))
4584 	       + nla_total_size(16) /* RTA_SRC */
4585 	       + nla_total_size(16) /* RTA_DST */
4586 	       + nla_total_size(16) /* RTA_GATEWAY */
4587 	       + nla_total_size(16) /* RTA_PREFSRC */
4588 	       + nla_total_size(4) /* RTA_TABLE */
4589 	       + nla_total_size(4) /* RTA_IIF */
4590 	       + nla_total_size(4) /* RTA_OIF */
4591 	       + nla_total_size(4) /* RTA_PRIORITY */
4592 	       + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
4593 	       + nla_total_size(sizeof(struct rta_cacheinfo))
4594 	       + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
4595 	       + nla_total_size(1) /* RTA_PREF */
4596 	       + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate)
4597 	       + nexthop_len;
4598 }
4599 
4600 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt,
4601 			    unsigned int *flags, bool skip_oif)
4602 {
4603 	if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4604 		*flags |= RTNH_F_DEAD;
4605 
4606 	if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) {
4607 		*flags |= RTNH_F_LINKDOWN;
4608 
4609 		rcu_read_lock();
4610 		if (fib6_ignore_linkdown(rt))
4611 			*flags |= RTNH_F_DEAD;
4612 		rcu_read_unlock();
4613 	}
4614 
4615 	if (rt->fib6_flags & RTF_GATEWAY) {
4616 		if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0)
4617 			goto nla_put_failure;
4618 	}
4619 
4620 	*flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK);
4621 	if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD)
4622 		*flags |= RTNH_F_OFFLOAD;
4623 
4624 	/* not needed for multipath encoding b/c it has a rtnexthop struct */
4625 	if (!skip_oif && rt->fib6_nh.nh_dev &&
4626 	    nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex))
4627 		goto nla_put_failure;
4628 
4629 	if (rt->fib6_nh.nh_lwtstate &&
4630 	    lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0)
4631 		goto nla_put_failure;
4632 
4633 	return 0;
4634 
4635 nla_put_failure:
4636 	return -EMSGSIZE;
4637 }
4638 
4639 /* add multipath next hop */
4640 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt)
4641 {
4642 	const struct net_device *dev = rt->fib6_nh.nh_dev;
4643 	struct rtnexthop *rtnh;
4644 	unsigned int flags = 0;
4645 
4646 	rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh));
4647 	if (!rtnh)
4648 		goto nla_put_failure;
4649 
4650 	rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1;
4651 	rtnh->rtnh_ifindex = dev ? dev->ifindex : 0;
4652 
4653 	if (rt6_nexthop_info(skb, rt, &flags, true) < 0)
4654 		goto nla_put_failure;
4655 
4656 	rtnh->rtnh_flags = flags;
4657 
4658 	/* length of rtnetlink header + attributes */
4659 	rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh;
4660 
4661 	return 0;
4662 
4663 nla_put_failure:
4664 	return -EMSGSIZE;
4665 }
4666 
4667 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
4668 			 struct fib6_info *rt, struct dst_entry *dst,
4669 			 struct in6_addr *dest, struct in6_addr *src,
4670 			 int iif, int type, u32 portid, u32 seq,
4671 			 unsigned int flags)
4672 {
4673 	struct rtmsg *rtm;
4674 	struct nlmsghdr *nlh;
4675 	long expires = 0;
4676 	u32 *pmetrics;
4677 	u32 table;
4678 
4679 	nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
4680 	if (!nlh)
4681 		return -EMSGSIZE;
4682 
4683 	rtm = nlmsg_data(nlh);
4684 	rtm->rtm_family = AF_INET6;
4685 	rtm->rtm_dst_len = rt->fib6_dst.plen;
4686 	rtm->rtm_src_len = rt->fib6_src.plen;
4687 	rtm->rtm_tos = 0;
4688 	if (rt->fib6_table)
4689 		table = rt->fib6_table->tb6_id;
4690 	else
4691 		table = RT6_TABLE_UNSPEC;
4692 	rtm->rtm_table = table;
4693 	if (nla_put_u32(skb, RTA_TABLE, table))
4694 		goto nla_put_failure;
4695 
4696 	rtm->rtm_type = rt->fib6_type;
4697 	rtm->rtm_flags = 0;
4698 	rtm->rtm_scope = RT_SCOPE_UNIVERSE;
4699 	rtm->rtm_protocol = rt->fib6_protocol;
4700 
4701 	if (rt->fib6_flags & RTF_CACHE)
4702 		rtm->rtm_flags |= RTM_F_CLONED;
4703 
4704 	if (dest) {
4705 		if (nla_put_in6_addr(skb, RTA_DST, dest))
4706 			goto nla_put_failure;
4707 		rtm->rtm_dst_len = 128;
4708 	} else if (rtm->rtm_dst_len)
4709 		if (nla_put_in6_addr(skb, RTA_DST, &rt->fib6_dst.addr))
4710 			goto nla_put_failure;
4711 #ifdef CONFIG_IPV6_SUBTREES
4712 	if (src) {
4713 		if (nla_put_in6_addr(skb, RTA_SRC, src))
4714 			goto nla_put_failure;
4715 		rtm->rtm_src_len = 128;
4716 	} else if (rtm->rtm_src_len &&
4717 		   nla_put_in6_addr(skb, RTA_SRC, &rt->fib6_src.addr))
4718 		goto nla_put_failure;
4719 #endif
4720 	if (iif) {
4721 #ifdef CONFIG_IPV6_MROUTE
4722 		if (ipv6_addr_is_multicast(&rt->fib6_dst.addr)) {
4723 			int err = ip6mr_get_route(net, skb, rtm, portid);
4724 
4725 			if (err == 0)
4726 				return 0;
4727 			if (err < 0)
4728 				goto nla_put_failure;
4729 		} else
4730 #endif
4731 			if (nla_put_u32(skb, RTA_IIF, iif))
4732 				goto nla_put_failure;
4733 	} else if (dest) {
4734 		struct in6_addr saddr_buf;
4735 		if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
4736 		    nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4737 			goto nla_put_failure;
4738 	}
4739 
4740 	if (rt->fib6_prefsrc.plen) {
4741 		struct in6_addr saddr_buf;
4742 		saddr_buf = rt->fib6_prefsrc.addr;
4743 		if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4744 			goto nla_put_failure;
4745 	}
4746 
4747 	pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
4748 	if (rtnetlink_put_metrics(skb, pmetrics) < 0)
4749 		goto nla_put_failure;
4750 
4751 	if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
4752 		goto nla_put_failure;
4753 
4754 	/* For multipath routes, walk the siblings list and add
4755 	 * each as a nexthop within RTA_MULTIPATH.
4756 	 */
4757 	if (rt->fib6_nsiblings) {
4758 		struct fib6_info *sibling, *next_sibling;
4759 		struct nlattr *mp;
4760 
4761 		mp = nla_nest_start(skb, RTA_MULTIPATH);
4762 		if (!mp)
4763 			goto nla_put_failure;
4764 
4765 		if (rt6_add_nexthop(skb, rt) < 0)
4766 			goto nla_put_failure;
4767 
4768 		list_for_each_entry_safe(sibling, next_sibling,
4769 					 &rt->fib6_siblings, fib6_siblings) {
4770 			if (rt6_add_nexthop(skb, sibling) < 0)
4771 				goto nla_put_failure;
4772 		}
4773 
4774 		nla_nest_end(skb, mp);
4775 	} else {
4776 		if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0)
4777 			goto nla_put_failure;
4778 	}
4779 
4780 	if (rt->fib6_flags & RTF_EXPIRES) {
4781 		expires = dst ? dst->expires : rt->expires;
4782 		expires -= jiffies;
4783 	}
4784 
4785 	if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
4786 		goto nla_put_failure;
4787 
4788 	if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt->fib6_flags)))
4789 		goto nla_put_failure;
4790 
4791 
4792 	nlmsg_end(skb, nlh);
4793 	return 0;
4794 
4795 nla_put_failure:
4796 	nlmsg_cancel(skb, nlh);
4797 	return -EMSGSIZE;
4798 }
4799 
4800 int rt6_dump_route(struct fib6_info *rt, void *p_arg)
4801 {
4802 	struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
4803 	struct net *net = arg->net;
4804 
4805 	if (rt == net->ipv6.fib6_null_entry)
4806 		return 0;
4807 
4808 	if (nlmsg_len(arg->cb->nlh) >= sizeof(struct rtmsg)) {
4809 		struct rtmsg *rtm = nlmsg_data(arg->cb->nlh);
4810 
4811 		/* user wants prefix routes only */
4812 		if (rtm->rtm_flags & RTM_F_PREFIX &&
4813 		    !(rt->fib6_flags & RTF_PREFIX_RT)) {
4814 			/* success since this is not a prefix route */
4815 			return 1;
4816 		}
4817 	}
4818 
4819 	return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0,
4820 			     RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid,
4821 			     arg->cb->nlh->nlmsg_seq, NLM_F_MULTI);
4822 }
4823 
4824 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
4825 			      struct netlink_ext_ack *extack)
4826 {
4827 	struct net *net = sock_net(in_skb->sk);
4828 	struct nlattr *tb[RTA_MAX+1];
4829 	int err, iif = 0, oif = 0;
4830 	struct fib6_info *from;
4831 	struct dst_entry *dst;
4832 	struct rt6_info *rt;
4833 	struct sk_buff *skb;
4834 	struct rtmsg *rtm;
4835 	struct flowi6 fl6;
4836 	bool fibmatch;
4837 
4838 	err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4839 			  extack);
4840 	if (err < 0)
4841 		goto errout;
4842 
4843 	err = -EINVAL;
4844 	memset(&fl6, 0, sizeof(fl6));
4845 	rtm = nlmsg_data(nlh);
4846 	fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
4847 	fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
4848 
4849 	if (tb[RTA_SRC]) {
4850 		if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
4851 			goto errout;
4852 
4853 		fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
4854 	}
4855 
4856 	if (tb[RTA_DST]) {
4857 		if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
4858 			goto errout;
4859 
4860 		fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
4861 	}
4862 
4863 	if (tb[RTA_IIF])
4864 		iif = nla_get_u32(tb[RTA_IIF]);
4865 
4866 	if (tb[RTA_OIF])
4867 		oif = nla_get_u32(tb[RTA_OIF]);
4868 
4869 	if (tb[RTA_MARK])
4870 		fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
4871 
4872 	if (tb[RTA_UID])
4873 		fl6.flowi6_uid = make_kuid(current_user_ns(),
4874 					   nla_get_u32(tb[RTA_UID]));
4875 	else
4876 		fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
4877 
4878 	if (tb[RTA_SPORT])
4879 		fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
4880 
4881 	if (tb[RTA_DPORT])
4882 		fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
4883 
4884 	if (tb[RTA_IP_PROTO]) {
4885 		err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
4886 						  &fl6.flowi6_proto, extack);
4887 		if (err)
4888 			goto errout;
4889 	}
4890 
4891 	if (iif) {
4892 		struct net_device *dev;
4893 		int flags = 0;
4894 
4895 		rcu_read_lock();
4896 
4897 		dev = dev_get_by_index_rcu(net, iif);
4898 		if (!dev) {
4899 			rcu_read_unlock();
4900 			err = -ENODEV;
4901 			goto errout;
4902 		}
4903 
4904 		fl6.flowi6_iif = iif;
4905 
4906 		if (!ipv6_addr_any(&fl6.saddr))
4907 			flags |= RT6_LOOKUP_F_HAS_SADDR;
4908 
4909 		dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
4910 
4911 		rcu_read_unlock();
4912 	} else {
4913 		fl6.flowi6_oif = oif;
4914 
4915 		dst = ip6_route_output(net, NULL, &fl6);
4916 	}
4917 
4918 
4919 	rt = container_of(dst, struct rt6_info, dst);
4920 	if (rt->dst.error) {
4921 		err = rt->dst.error;
4922 		ip6_rt_put(rt);
4923 		goto errout;
4924 	}
4925 
4926 	if (rt == net->ipv6.ip6_null_entry) {
4927 		err = rt->dst.error;
4928 		ip6_rt_put(rt);
4929 		goto errout;
4930 	}
4931 
4932 	skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
4933 	if (!skb) {
4934 		ip6_rt_put(rt);
4935 		err = -ENOBUFS;
4936 		goto errout;
4937 	}
4938 
4939 	skb_dst_set(skb, &rt->dst);
4940 
4941 	rcu_read_lock();
4942 	from = rcu_dereference(rt->from);
4943 
4944 	if (fibmatch)
4945 		err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif,
4946 				    RTM_NEWROUTE, NETLINK_CB(in_skb).portid,
4947 				    nlh->nlmsg_seq, 0);
4948 	else
4949 		err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
4950 				    &fl6.saddr, iif, RTM_NEWROUTE,
4951 				    NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
4952 				    0);
4953 	rcu_read_unlock();
4954 
4955 	if (err < 0) {
4956 		kfree_skb(skb);
4957 		goto errout;
4958 	}
4959 
4960 	err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
4961 errout:
4962 	return err;
4963 }
4964 
4965 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
4966 		     unsigned int nlm_flags)
4967 {
4968 	struct sk_buff *skb;
4969 	struct net *net = info->nl_net;
4970 	u32 seq;
4971 	int err;
4972 
4973 	err = -ENOBUFS;
4974 	seq = info->nlh ? info->nlh->nlmsg_seq : 0;
4975 
4976 	skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
4977 	if (!skb)
4978 		goto errout;
4979 
4980 	err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
4981 			    event, info->portid, seq, nlm_flags);
4982 	if (err < 0) {
4983 		/* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
4984 		WARN_ON(err == -EMSGSIZE);
4985 		kfree_skb(skb);
4986 		goto errout;
4987 	}
4988 	rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
4989 		    info->nlh, gfp_any());
4990 	return;
4991 errout:
4992 	if (err < 0)
4993 		rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
4994 }
4995 
4996 static int ip6_route_dev_notify(struct notifier_block *this,
4997 				unsigned long event, void *ptr)
4998 {
4999 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
5000 	struct net *net = dev_net(dev);
5001 
5002 	if (!(dev->flags & IFF_LOOPBACK))
5003 		return NOTIFY_OK;
5004 
5005 	if (event == NETDEV_REGISTER) {
5006 		net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev;
5007 		net->ipv6.ip6_null_entry->dst.dev = dev;
5008 		net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
5009 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5010 		net->ipv6.ip6_prohibit_entry->dst.dev = dev;
5011 		net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
5012 		net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
5013 		net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
5014 #endif
5015 	 } else if (event == NETDEV_UNREGISTER &&
5016 		    dev->reg_state != NETREG_UNREGISTERED) {
5017 		/* NETDEV_UNREGISTER could be fired for multiple times by
5018 		 * netdev_wait_allrefs(). Make sure we only call this once.
5019 		 */
5020 		in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
5021 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5022 		in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
5023 		in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
5024 #endif
5025 	}
5026 
5027 	return NOTIFY_OK;
5028 }
5029 
5030 /*
5031  *	/proc
5032  */
5033 
5034 #ifdef CONFIG_PROC_FS
5035 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
5036 {
5037 	struct net *net = (struct net *)seq->private;
5038 	seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
5039 		   net->ipv6.rt6_stats->fib_nodes,
5040 		   net->ipv6.rt6_stats->fib_route_nodes,
5041 		   atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
5042 		   net->ipv6.rt6_stats->fib_rt_entries,
5043 		   net->ipv6.rt6_stats->fib_rt_cache,
5044 		   dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
5045 		   net->ipv6.rt6_stats->fib_discarded_routes);
5046 
5047 	return 0;
5048 }
5049 #endif	/* CONFIG_PROC_FS */
5050 
5051 #ifdef CONFIG_SYSCTL
5052 
5053 static
5054 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
5055 			      void __user *buffer, size_t *lenp, loff_t *ppos)
5056 {
5057 	struct net *net;
5058 	int delay;
5059 	if (!write)
5060 		return -EINVAL;
5061 
5062 	net = (struct net *)ctl->extra1;
5063 	delay = net->ipv6.sysctl.flush_delay;
5064 	proc_dointvec(ctl, write, buffer, lenp, ppos);
5065 	fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
5066 	return 0;
5067 }
5068 
5069 struct ctl_table ipv6_route_table_template[] = {
5070 	{
5071 		.procname	=	"flush",
5072 		.data		=	&init_net.ipv6.sysctl.flush_delay,
5073 		.maxlen		=	sizeof(int),
5074 		.mode		=	0200,
5075 		.proc_handler	=	ipv6_sysctl_rtcache_flush
5076 	},
5077 	{
5078 		.procname	=	"gc_thresh",
5079 		.data		=	&ip6_dst_ops_template.gc_thresh,
5080 		.maxlen		=	sizeof(int),
5081 		.mode		=	0644,
5082 		.proc_handler	=	proc_dointvec,
5083 	},
5084 	{
5085 		.procname	=	"max_size",
5086 		.data		=	&init_net.ipv6.sysctl.ip6_rt_max_size,
5087 		.maxlen		=	sizeof(int),
5088 		.mode		=	0644,
5089 		.proc_handler	=	proc_dointvec,
5090 	},
5091 	{
5092 		.procname	=	"gc_min_interval",
5093 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5094 		.maxlen		=	sizeof(int),
5095 		.mode		=	0644,
5096 		.proc_handler	=	proc_dointvec_jiffies,
5097 	},
5098 	{
5099 		.procname	=	"gc_timeout",
5100 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_timeout,
5101 		.maxlen		=	sizeof(int),
5102 		.mode		=	0644,
5103 		.proc_handler	=	proc_dointvec_jiffies,
5104 	},
5105 	{
5106 		.procname	=	"gc_interval",
5107 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_interval,
5108 		.maxlen		=	sizeof(int),
5109 		.mode		=	0644,
5110 		.proc_handler	=	proc_dointvec_jiffies,
5111 	},
5112 	{
5113 		.procname	=	"gc_elasticity",
5114 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
5115 		.maxlen		=	sizeof(int),
5116 		.mode		=	0644,
5117 		.proc_handler	=	proc_dointvec,
5118 	},
5119 	{
5120 		.procname	=	"mtu_expires",
5121 		.data		=	&init_net.ipv6.sysctl.ip6_rt_mtu_expires,
5122 		.maxlen		=	sizeof(int),
5123 		.mode		=	0644,
5124 		.proc_handler	=	proc_dointvec_jiffies,
5125 	},
5126 	{
5127 		.procname	=	"min_adv_mss",
5128 		.data		=	&init_net.ipv6.sysctl.ip6_rt_min_advmss,
5129 		.maxlen		=	sizeof(int),
5130 		.mode		=	0644,
5131 		.proc_handler	=	proc_dointvec,
5132 	},
5133 	{
5134 		.procname	=	"gc_min_interval_ms",
5135 		.data		=	&init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5136 		.maxlen		=	sizeof(int),
5137 		.mode		=	0644,
5138 		.proc_handler	=	proc_dointvec_ms_jiffies,
5139 	},
5140 	{ }
5141 };
5142 
5143 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
5144 {
5145 	struct ctl_table *table;
5146 
5147 	table = kmemdup(ipv6_route_table_template,
5148 			sizeof(ipv6_route_table_template),
5149 			GFP_KERNEL);
5150 
5151 	if (table) {
5152 		table[0].data = &net->ipv6.sysctl.flush_delay;
5153 		table[0].extra1 = net;
5154 		table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
5155 		table[2].data = &net->ipv6.sysctl.ip6_rt_max_size;
5156 		table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5157 		table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
5158 		table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
5159 		table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
5160 		table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
5161 		table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
5162 		table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5163 
5164 		/* Don't export sysctls to unprivileged users */
5165 		if (net->user_ns != &init_user_ns)
5166 			table[0].procname = NULL;
5167 	}
5168 
5169 	return table;
5170 }
5171 #endif
5172 
5173 static int __net_init ip6_route_net_init(struct net *net)
5174 {
5175 	int ret = -ENOMEM;
5176 
5177 	memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
5178 	       sizeof(net->ipv6.ip6_dst_ops));
5179 
5180 	if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
5181 		goto out_ip6_dst_ops;
5182 
5183 	net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template,
5184 					    sizeof(*net->ipv6.fib6_null_entry),
5185 					    GFP_KERNEL);
5186 	if (!net->ipv6.fib6_null_entry)
5187 		goto out_ip6_dst_entries;
5188 
5189 	net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
5190 					   sizeof(*net->ipv6.ip6_null_entry),
5191 					   GFP_KERNEL);
5192 	if (!net->ipv6.ip6_null_entry)
5193 		goto out_fib6_null_entry;
5194 	net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5195 	dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
5196 			 ip6_template_metrics, true);
5197 
5198 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5199 	net->ipv6.fib6_has_custom_rules = false;
5200 	net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
5201 					       sizeof(*net->ipv6.ip6_prohibit_entry),
5202 					       GFP_KERNEL);
5203 	if (!net->ipv6.ip6_prohibit_entry)
5204 		goto out_ip6_null_entry;
5205 	net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5206 	dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
5207 			 ip6_template_metrics, true);
5208 
5209 	net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
5210 					       sizeof(*net->ipv6.ip6_blk_hole_entry),
5211 					       GFP_KERNEL);
5212 	if (!net->ipv6.ip6_blk_hole_entry)
5213 		goto out_ip6_prohibit_entry;
5214 	net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5215 	dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
5216 			 ip6_template_metrics, true);
5217 #endif
5218 
5219 	net->ipv6.sysctl.flush_delay = 0;
5220 	net->ipv6.sysctl.ip6_rt_max_size = 4096;
5221 	net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
5222 	net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
5223 	net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
5224 	net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
5225 	net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
5226 	net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
5227 
5228 	net->ipv6.ip6_rt_gc_expire = 30*HZ;
5229 
5230 	ret = 0;
5231 out:
5232 	return ret;
5233 
5234 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5235 out_ip6_prohibit_entry:
5236 	kfree(net->ipv6.ip6_prohibit_entry);
5237 out_ip6_null_entry:
5238 	kfree(net->ipv6.ip6_null_entry);
5239 #endif
5240 out_fib6_null_entry:
5241 	kfree(net->ipv6.fib6_null_entry);
5242 out_ip6_dst_entries:
5243 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5244 out_ip6_dst_ops:
5245 	goto out;
5246 }
5247 
5248 static void __net_exit ip6_route_net_exit(struct net *net)
5249 {
5250 	kfree(net->ipv6.fib6_null_entry);
5251 	kfree(net->ipv6.ip6_null_entry);
5252 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5253 	kfree(net->ipv6.ip6_prohibit_entry);
5254 	kfree(net->ipv6.ip6_blk_hole_entry);
5255 #endif
5256 	dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5257 }
5258 
5259 static int __net_init ip6_route_net_init_late(struct net *net)
5260 {
5261 #ifdef CONFIG_PROC_FS
5262 	proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops,
5263 			sizeof(struct ipv6_route_iter));
5264 	proc_create_net_single("rt6_stats", 0444, net->proc_net,
5265 			rt6_stats_seq_show, NULL);
5266 #endif
5267 	return 0;
5268 }
5269 
5270 static void __net_exit ip6_route_net_exit_late(struct net *net)
5271 {
5272 #ifdef CONFIG_PROC_FS
5273 	remove_proc_entry("ipv6_route", net->proc_net);
5274 	remove_proc_entry("rt6_stats", net->proc_net);
5275 #endif
5276 }
5277 
5278 static struct pernet_operations ip6_route_net_ops = {
5279 	.init = ip6_route_net_init,
5280 	.exit = ip6_route_net_exit,
5281 };
5282 
5283 static int __net_init ipv6_inetpeer_init(struct net *net)
5284 {
5285 	struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
5286 
5287 	if (!bp)
5288 		return -ENOMEM;
5289 	inet_peer_base_init(bp);
5290 	net->ipv6.peers = bp;
5291 	return 0;
5292 }
5293 
5294 static void __net_exit ipv6_inetpeer_exit(struct net *net)
5295 {
5296 	struct inet_peer_base *bp = net->ipv6.peers;
5297 
5298 	net->ipv6.peers = NULL;
5299 	inetpeer_invalidate_tree(bp);
5300 	kfree(bp);
5301 }
5302 
5303 static struct pernet_operations ipv6_inetpeer_ops = {
5304 	.init	=	ipv6_inetpeer_init,
5305 	.exit	=	ipv6_inetpeer_exit,
5306 };
5307 
5308 static struct pernet_operations ip6_route_net_late_ops = {
5309 	.init = ip6_route_net_init_late,
5310 	.exit = ip6_route_net_exit_late,
5311 };
5312 
5313 static struct notifier_block ip6_route_dev_notifier = {
5314 	.notifier_call = ip6_route_dev_notify,
5315 	.priority = ADDRCONF_NOTIFY_PRIORITY - 10,
5316 };
5317 
5318 void __init ip6_route_init_special_entries(void)
5319 {
5320 	/* Registering of the loopback is done before this portion of code,
5321 	 * the loopback reference in rt6_info will not be taken, do it
5322 	 * manually for init_net */
5323 	init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev;
5324 	init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
5325 	init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5326   #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5327 	init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
5328 	init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5329 	init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
5330 	init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5331   #endif
5332 }
5333 
5334 int __init ip6_route_init(void)
5335 {
5336 	int ret;
5337 	int cpu;
5338 
5339 	ret = -ENOMEM;
5340 	ip6_dst_ops_template.kmem_cachep =
5341 		kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
5342 				  SLAB_HWCACHE_ALIGN, NULL);
5343 	if (!ip6_dst_ops_template.kmem_cachep)
5344 		goto out;
5345 
5346 	ret = dst_entries_init(&ip6_dst_blackhole_ops);
5347 	if (ret)
5348 		goto out_kmem_cache;
5349 
5350 	ret = register_pernet_subsys(&ipv6_inetpeer_ops);
5351 	if (ret)
5352 		goto out_dst_entries;
5353 
5354 	ret = register_pernet_subsys(&ip6_route_net_ops);
5355 	if (ret)
5356 		goto out_register_inetpeer;
5357 
5358 	ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
5359 
5360 	ret = fib6_init();
5361 	if (ret)
5362 		goto out_register_subsys;
5363 
5364 	ret = xfrm6_init();
5365 	if (ret)
5366 		goto out_fib6_init;
5367 
5368 	ret = fib6_rules_init();
5369 	if (ret)
5370 		goto xfrm6_init;
5371 
5372 	ret = register_pernet_subsys(&ip6_route_net_late_ops);
5373 	if (ret)
5374 		goto fib6_rules_init;
5375 
5376 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
5377 				   inet6_rtm_newroute, NULL, 0);
5378 	if (ret < 0)
5379 		goto out_register_late_subsys;
5380 
5381 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
5382 				   inet6_rtm_delroute, NULL, 0);
5383 	if (ret < 0)
5384 		goto out_register_late_subsys;
5385 
5386 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
5387 				   inet6_rtm_getroute, NULL,
5388 				   RTNL_FLAG_DOIT_UNLOCKED);
5389 	if (ret < 0)
5390 		goto out_register_late_subsys;
5391 
5392 	ret = register_netdevice_notifier(&ip6_route_dev_notifier);
5393 	if (ret)
5394 		goto out_register_late_subsys;
5395 
5396 	for_each_possible_cpu(cpu) {
5397 		struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
5398 
5399 		INIT_LIST_HEAD(&ul->head);
5400 		spin_lock_init(&ul->lock);
5401 	}
5402 
5403 out:
5404 	return ret;
5405 
5406 out_register_late_subsys:
5407 	rtnl_unregister_all(PF_INET6);
5408 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5409 fib6_rules_init:
5410 	fib6_rules_cleanup();
5411 xfrm6_init:
5412 	xfrm6_fini();
5413 out_fib6_init:
5414 	fib6_gc_cleanup();
5415 out_register_subsys:
5416 	unregister_pernet_subsys(&ip6_route_net_ops);
5417 out_register_inetpeer:
5418 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5419 out_dst_entries:
5420 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5421 out_kmem_cache:
5422 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5423 	goto out;
5424 }
5425 
5426 void ip6_route_cleanup(void)
5427 {
5428 	unregister_netdevice_notifier(&ip6_route_dev_notifier);
5429 	unregister_pernet_subsys(&ip6_route_net_late_ops);
5430 	fib6_rules_cleanup();
5431 	xfrm6_fini();
5432 	fib6_gc_cleanup();
5433 	unregister_pernet_subsys(&ipv6_inetpeer_ops);
5434 	unregister_pernet_subsys(&ip6_route_net_ops);
5435 	dst_entries_destroy(&ip6_dst_blackhole_ops);
5436 	kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5437 }
5438