1 /* 2 * Linux IPv6 multicast routing support for BSD pim6sd 3 * Based on net/ipv4/ipmr.c. 4 * 5 * (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr> 6 * LSIIT Laboratory, Strasbourg, France 7 * (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com> 8 * 6WIND, Paris, France 9 * Copyright (C)2007,2008 USAGI/WIDE Project 10 * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 * 17 */ 18 19 #include <asm/uaccess.h> 20 #include <linux/types.h> 21 #include <linux/sched.h> 22 #include <linux/errno.h> 23 #include <linux/timer.h> 24 #include <linux/mm.h> 25 #include <linux/kernel.h> 26 #include <linux/fcntl.h> 27 #include <linux/stat.h> 28 #include <linux/socket.h> 29 #include <linux/inet.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/proc_fs.h> 33 #include <linux/seq_file.h> 34 #include <linux/init.h> 35 #include <linux/slab.h> 36 #include <linux/compat.h> 37 #include <net/protocol.h> 38 #include <linux/skbuff.h> 39 #include <net/sock.h> 40 #include <net/raw.h> 41 #include <linux/notifier.h> 42 #include <linux/if_arp.h> 43 #include <net/checksum.h> 44 #include <net/netlink.h> 45 #include <net/fib_rules.h> 46 47 #include <net/ipv6.h> 48 #include <net/ip6_route.h> 49 #include <linux/mroute6.h> 50 #include <linux/pim.h> 51 #include <net/addrconf.h> 52 #include <linux/netfilter_ipv6.h> 53 #include <linux/export.h> 54 #include <net/ip6_checksum.h> 55 #include <linux/netconf.h> 56 57 struct mr6_table { 58 struct list_head list; 59 #ifdef CONFIG_NET_NS 60 struct net *net; 61 #endif 62 u32 id; 63 struct sock *mroute6_sk; 64 struct timer_list ipmr_expire_timer; 65 struct list_head mfc6_unres_queue; 66 struct list_head mfc6_cache_array[MFC6_LINES]; 67 struct mif_device vif6_table[MAXMIFS]; 68 int maxvif; 69 atomic_t cache_resolve_queue_len; 70 bool mroute_do_assert; 71 bool mroute_do_pim; 72 #ifdef CONFIG_IPV6_PIMSM_V2 73 int mroute_reg_vif_num; 74 #endif 75 }; 76 77 struct ip6mr_rule { 78 struct fib_rule common; 79 }; 80 81 struct ip6mr_result { 82 struct mr6_table *mrt; 83 }; 84 85 /* Big lock, protecting vif table, mrt cache and mroute socket state. 86 Note that the changes are semaphored via rtnl_lock. 87 */ 88 89 static DEFINE_RWLOCK(mrt_lock); 90 91 /* 92 * Multicast router control variables 93 */ 94 95 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL) 96 97 /* Special spinlock for queue of unresolved entries */ 98 static DEFINE_SPINLOCK(mfc_unres_lock); 99 100 /* We return to original Alan's scheme. Hash table of resolved 101 entries is changed only in process context and protected 102 with weak lock mrt_lock. Queue of unresolved entries is protected 103 with strong spinlock mfc_unres_lock. 104 105 In this case data path is free of exclusive locks at all. 106 */ 107 108 static struct kmem_cache *mrt_cachep __read_mostly; 109 110 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id); 111 static void ip6mr_free_table(struct mr6_table *mrt); 112 113 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt, 114 struct sk_buff *skb, struct mfc6_cache *cache); 115 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt, 116 mifi_t mifi, int assert); 117 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 118 struct mfc6_cache *c, struct rtmsg *rtm); 119 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc, 120 int cmd); 121 static int ip6mr_rtm_dumproute(struct sk_buff *skb, 122 struct netlink_callback *cb); 123 static void mroute_clean_tables(struct mr6_table *mrt); 124 static void ipmr_expire_process(unsigned long arg); 125 126 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 127 #define ip6mr_for_each_table(mrt, net) \ 128 list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list) 129 130 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id) 131 { 132 struct mr6_table *mrt; 133 134 ip6mr_for_each_table(mrt, net) { 135 if (mrt->id == id) 136 return mrt; 137 } 138 return NULL; 139 } 140 141 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 142 struct mr6_table **mrt) 143 { 144 int err; 145 struct ip6mr_result res; 146 struct fib_lookup_arg arg = { 147 .result = &res, 148 .flags = FIB_LOOKUP_NOREF, 149 }; 150 151 err = fib_rules_lookup(net->ipv6.mr6_rules_ops, 152 flowi6_to_flowi(flp6), 0, &arg); 153 if (err < 0) 154 return err; 155 *mrt = res.mrt; 156 return 0; 157 } 158 159 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp, 160 int flags, struct fib_lookup_arg *arg) 161 { 162 struct ip6mr_result *res = arg->result; 163 struct mr6_table *mrt; 164 165 switch (rule->action) { 166 case FR_ACT_TO_TBL: 167 break; 168 case FR_ACT_UNREACHABLE: 169 return -ENETUNREACH; 170 case FR_ACT_PROHIBIT: 171 return -EACCES; 172 case FR_ACT_BLACKHOLE: 173 default: 174 return -EINVAL; 175 } 176 177 mrt = ip6mr_get_table(rule->fr_net, rule->table); 178 if (mrt == NULL) 179 return -EAGAIN; 180 res->mrt = mrt; 181 return 0; 182 } 183 184 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags) 185 { 186 return 1; 187 } 188 189 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = { 190 FRA_GENERIC_POLICY, 191 }; 192 193 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 194 struct fib_rule_hdr *frh, struct nlattr **tb) 195 { 196 return 0; 197 } 198 199 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 200 struct nlattr **tb) 201 { 202 return 1; 203 } 204 205 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 206 struct fib_rule_hdr *frh) 207 { 208 frh->dst_len = 0; 209 frh->src_len = 0; 210 frh->tos = 0; 211 return 0; 212 } 213 214 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = { 215 .family = RTNL_FAMILY_IP6MR, 216 .rule_size = sizeof(struct ip6mr_rule), 217 .addr_size = sizeof(struct in6_addr), 218 .action = ip6mr_rule_action, 219 .match = ip6mr_rule_match, 220 .configure = ip6mr_rule_configure, 221 .compare = ip6mr_rule_compare, 222 .default_pref = fib_default_rule_pref, 223 .fill = ip6mr_rule_fill, 224 .nlgroup = RTNLGRP_IPV6_RULE, 225 .policy = ip6mr_rule_policy, 226 .owner = THIS_MODULE, 227 }; 228 229 static int __net_init ip6mr_rules_init(struct net *net) 230 { 231 struct fib_rules_ops *ops; 232 struct mr6_table *mrt; 233 int err; 234 235 ops = fib_rules_register(&ip6mr_rules_ops_template, net); 236 if (IS_ERR(ops)) 237 return PTR_ERR(ops); 238 239 INIT_LIST_HEAD(&net->ipv6.mr6_tables); 240 241 mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); 242 if (mrt == NULL) { 243 err = -ENOMEM; 244 goto err1; 245 } 246 247 err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0); 248 if (err < 0) 249 goto err2; 250 251 net->ipv6.mr6_rules_ops = ops; 252 return 0; 253 254 err2: 255 kfree(mrt); 256 err1: 257 fib_rules_unregister(ops); 258 return err; 259 } 260 261 static void __net_exit ip6mr_rules_exit(struct net *net) 262 { 263 struct mr6_table *mrt, *next; 264 265 rtnl_lock(); 266 list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) { 267 list_del(&mrt->list); 268 ip6mr_free_table(mrt); 269 } 270 rtnl_unlock(); 271 fib_rules_unregister(net->ipv6.mr6_rules_ops); 272 } 273 #else 274 #define ip6mr_for_each_table(mrt, net) \ 275 for (mrt = net->ipv6.mrt6; mrt; mrt = NULL) 276 277 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id) 278 { 279 return net->ipv6.mrt6; 280 } 281 282 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 283 struct mr6_table **mrt) 284 { 285 *mrt = net->ipv6.mrt6; 286 return 0; 287 } 288 289 static int __net_init ip6mr_rules_init(struct net *net) 290 { 291 net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT); 292 return net->ipv6.mrt6 ? 0 : -ENOMEM; 293 } 294 295 static void __net_exit ip6mr_rules_exit(struct net *net) 296 { 297 rtnl_lock(); 298 ip6mr_free_table(net->ipv6.mrt6); 299 net->ipv6.mrt6 = NULL; 300 rtnl_unlock(); 301 } 302 #endif 303 304 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id) 305 { 306 struct mr6_table *mrt; 307 unsigned int i; 308 309 mrt = ip6mr_get_table(net, id); 310 if (mrt != NULL) 311 return mrt; 312 313 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 314 if (mrt == NULL) 315 return NULL; 316 mrt->id = id; 317 write_pnet(&mrt->net, net); 318 319 /* Forwarding cache */ 320 for (i = 0; i < MFC6_LINES; i++) 321 INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]); 322 323 INIT_LIST_HEAD(&mrt->mfc6_unres_queue); 324 325 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 326 (unsigned long)mrt); 327 328 #ifdef CONFIG_IPV6_PIMSM_V2 329 mrt->mroute_reg_vif_num = -1; 330 #endif 331 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 332 list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables); 333 #endif 334 return mrt; 335 } 336 337 static void ip6mr_free_table(struct mr6_table *mrt) 338 { 339 del_timer(&mrt->ipmr_expire_timer); 340 mroute_clean_tables(mrt); 341 kfree(mrt); 342 } 343 344 #ifdef CONFIG_PROC_FS 345 346 struct ipmr_mfc_iter { 347 struct seq_net_private p; 348 struct mr6_table *mrt; 349 struct list_head *cache; 350 int ct; 351 }; 352 353 354 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net, 355 struct ipmr_mfc_iter *it, loff_t pos) 356 { 357 struct mr6_table *mrt = it->mrt; 358 struct mfc6_cache *mfc; 359 360 read_lock(&mrt_lock); 361 for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) { 362 it->cache = &mrt->mfc6_cache_array[it->ct]; 363 list_for_each_entry(mfc, it->cache, list) 364 if (pos-- == 0) 365 return mfc; 366 } 367 read_unlock(&mrt_lock); 368 369 spin_lock_bh(&mfc_unres_lock); 370 it->cache = &mrt->mfc6_unres_queue; 371 list_for_each_entry(mfc, it->cache, list) 372 if (pos-- == 0) 373 return mfc; 374 spin_unlock_bh(&mfc_unres_lock); 375 376 it->cache = NULL; 377 return NULL; 378 } 379 380 /* 381 * The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif 382 */ 383 384 struct ipmr_vif_iter { 385 struct seq_net_private p; 386 struct mr6_table *mrt; 387 int ct; 388 }; 389 390 static struct mif_device *ip6mr_vif_seq_idx(struct net *net, 391 struct ipmr_vif_iter *iter, 392 loff_t pos) 393 { 394 struct mr6_table *mrt = iter->mrt; 395 396 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 397 if (!MIF_EXISTS(mrt, iter->ct)) 398 continue; 399 if (pos-- == 0) 400 return &mrt->vif6_table[iter->ct]; 401 } 402 return NULL; 403 } 404 405 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos) 406 __acquires(mrt_lock) 407 { 408 struct ipmr_vif_iter *iter = seq->private; 409 struct net *net = seq_file_net(seq); 410 struct mr6_table *mrt; 411 412 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 413 if (mrt == NULL) 414 return ERR_PTR(-ENOENT); 415 416 iter->mrt = mrt; 417 418 read_lock(&mrt_lock); 419 return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1) 420 : SEQ_START_TOKEN; 421 } 422 423 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 424 { 425 struct ipmr_vif_iter *iter = seq->private; 426 struct net *net = seq_file_net(seq); 427 struct mr6_table *mrt = iter->mrt; 428 429 ++*pos; 430 if (v == SEQ_START_TOKEN) 431 return ip6mr_vif_seq_idx(net, iter, 0); 432 433 while (++iter->ct < mrt->maxvif) { 434 if (!MIF_EXISTS(mrt, iter->ct)) 435 continue; 436 return &mrt->vif6_table[iter->ct]; 437 } 438 return NULL; 439 } 440 441 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v) 442 __releases(mrt_lock) 443 { 444 read_unlock(&mrt_lock); 445 } 446 447 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v) 448 { 449 struct ipmr_vif_iter *iter = seq->private; 450 struct mr6_table *mrt = iter->mrt; 451 452 if (v == SEQ_START_TOKEN) { 453 seq_puts(seq, 454 "Interface BytesIn PktsIn BytesOut PktsOut Flags\n"); 455 } else { 456 const struct mif_device *vif = v; 457 const char *name = vif->dev ? vif->dev->name : "none"; 458 459 seq_printf(seq, 460 "%2td %-10s %8ld %7ld %8ld %7ld %05X\n", 461 vif - mrt->vif6_table, 462 name, vif->bytes_in, vif->pkt_in, 463 vif->bytes_out, vif->pkt_out, 464 vif->flags); 465 } 466 return 0; 467 } 468 469 static const struct seq_operations ip6mr_vif_seq_ops = { 470 .start = ip6mr_vif_seq_start, 471 .next = ip6mr_vif_seq_next, 472 .stop = ip6mr_vif_seq_stop, 473 .show = ip6mr_vif_seq_show, 474 }; 475 476 static int ip6mr_vif_open(struct inode *inode, struct file *file) 477 { 478 return seq_open_net(inode, file, &ip6mr_vif_seq_ops, 479 sizeof(struct ipmr_vif_iter)); 480 } 481 482 static const struct file_operations ip6mr_vif_fops = { 483 .owner = THIS_MODULE, 484 .open = ip6mr_vif_open, 485 .read = seq_read, 486 .llseek = seq_lseek, 487 .release = seq_release_net, 488 }; 489 490 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 491 { 492 struct ipmr_mfc_iter *it = seq->private; 493 struct net *net = seq_file_net(seq); 494 struct mr6_table *mrt; 495 496 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 497 if (mrt == NULL) 498 return ERR_PTR(-ENOENT); 499 500 it->mrt = mrt; 501 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 502 : SEQ_START_TOKEN; 503 } 504 505 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 506 { 507 struct mfc6_cache *mfc = v; 508 struct ipmr_mfc_iter *it = seq->private; 509 struct net *net = seq_file_net(seq); 510 struct mr6_table *mrt = it->mrt; 511 512 ++*pos; 513 514 if (v == SEQ_START_TOKEN) 515 return ipmr_mfc_seq_idx(net, seq->private, 0); 516 517 if (mfc->list.next != it->cache) 518 return list_entry(mfc->list.next, struct mfc6_cache, list); 519 520 if (it->cache == &mrt->mfc6_unres_queue) 521 goto end_of_list; 522 523 BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]); 524 525 while (++it->ct < MFC6_LINES) { 526 it->cache = &mrt->mfc6_cache_array[it->ct]; 527 if (list_empty(it->cache)) 528 continue; 529 return list_first_entry(it->cache, struct mfc6_cache, list); 530 } 531 532 /* exhausted cache_array, show unresolved */ 533 read_unlock(&mrt_lock); 534 it->cache = &mrt->mfc6_unres_queue; 535 it->ct = 0; 536 537 spin_lock_bh(&mfc_unres_lock); 538 if (!list_empty(it->cache)) 539 return list_first_entry(it->cache, struct mfc6_cache, list); 540 541 end_of_list: 542 spin_unlock_bh(&mfc_unres_lock); 543 it->cache = NULL; 544 545 return NULL; 546 } 547 548 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 549 { 550 struct ipmr_mfc_iter *it = seq->private; 551 struct mr6_table *mrt = it->mrt; 552 553 if (it->cache == &mrt->mfc6_unres_queue) 554 spin_unlock_bh(&mfc_unres_lock); 555 else if (it->cache == mrt->mfc6_cache_array) 556 read_unlock(&mrt_lock); 557 } 558 559 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 560 { 561 int n; 562 563 if (v == SEQ_START_TOKEN) { 564 seq_puts(seq, 565 "Group " 566 "Origin " 567 "Iif Pkts Bytes Wrong Oifs\n"); 568 } else { 569 const struct mfc6_cache *mfc = v; 570 const struct ipmr_mfc_iter *it = seq->private; 571 struct mr6_table *mrt = it->mrt; 572 573 seq_printf(seq, "%pI6 %pI6 %-3hd", 574 &mfc->mf6c_mcastgrp, &mfc->mf6c_origin, 575 mfc->mf6c_parent); 576 577 if (it->cache != &mrt->mfc6_unres_queue) { 578 seq_printf(seq, " %8lu %8lu %8lu", 579 mfc->mfc_un.res.pkt, 580 mfc->mfc_un.res.bytes, 581 mfc->mfc_un.res.wrong_if); 582 for (n = mfc->mfc_un.res.minvif; 583 n < mfc->mfc_un.res.maxvif; n++) { 584 if (MIF_EXISTS(mrt, n) && 585 mfc->mfc_un.res.ttls[n] < 255) 586 seq_printf(seq, 587 " %2d:%-3d", 588 n, mfc->mfc_un.res.ttls[n]); 589 } 590 } else { 591 /* unresolved mfc_caches don't contain 592 * pkt, bytes and wrong_if values 593 */ 594 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 595 } 596 seq_putc(seq, '\n'); 597 } 598 return 0; 599 } 600 601 static const struct seq_operations ipmr_mfc_seq_ops = { 602 .start = ipmr_mfc_seq_start, 603 .next = ipmr_mfc_seq_next, 604 .stop = ipmr_mfc_seq_stop, 605 .show = ipmr_mfc_seq_show, 606 }; 607 608 static int ipmr_mfc_open(struct inode *inode, struct file *file) 609 { 610 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 611 sizeof(struct ipmr_mfc_iter)); 612 } 613 614 static const struct file_operations ip6mr_mfc_fops = { 615 .owner = THIS_MODULE, 616 .open = ipmr_mfc_open, 617 .read = seq_read, 618 .llseek = seq_lseek, 619 .release = seq_release_net, 620 }; 621 #endif 622 623 #ifdef CONFIG_IPV6_PIMSM_V2 624 625 static int pim6_rcv(struct sk_buff *skb) 626 { 627 struct pimreghdr *pim; 628 struct ipv6hdr *encap; 629 struct net_device *reg_dev = NULL; 630 struct net *net = dev_net(skb->dev); 631 struct mr6_table *mrt; 632 struct flowi6 fl6 = { 633 .flowi6_iif = skb->dev->ifindex, 634 .flowi6_mark = skb->mark, 635 }; 636 int reg_vif_num; 637 638 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap))) 639 goto drop; 640 641 pim = (struct pimreghdr *)skb_transport_header(skb); 642 if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) || 643 (pim->flags & PIM_NULL_REGISTER) || 644 (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 645 sizeof(*pim), IPPROTO_PIM, 646 csum_partial((void *)pim, sizeof(*pim), 0)) && 647 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 648 goto drop; 649 650 /* check if the inner packet is destined to mcast group */ 651 encap = (struct ipv6hdr *)(skb_transport_header(skb) + 652 sizeof(*pim)); 653 654 if (!ipv6_addr_is_multicast(&encap->daddr) || 655 encap->payload_len == 0 || 656 ntohs(encap->payload_len) + sizeof(*pim) > skb->len) 657 goto drop; 658 659 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 660 goto drop; 661 reg_vif_num = mrt->mroute_reg_vif_num; 662 663 read_lock(&mrt_lock); 664 if (reg_vif_num >= 0) 665 reg_dev = mrt->vif6_table[reg_vif_num].dev; 666 if (reg_dev) 667 dev_hold(reg_dev); 668 read_unlock(&mrt_lock); 669 670 if (reg_dev == NULL) 671 goto drop; 672 673 skb->mac_header = skb->network_header; 674 skb_pull(skb, (u8 *)encap - skb->data); 675 skb_reset_network_header(skb); 676 skb->protocol = htons(ETH_P_IPV6); 677 skb->ip_summed = CHECKSUM_NONE; 678 679 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 680 681 netif_rx(skb); 682 683 dev_put(reg_dev); 684 return 0; 685 drop: 686 kfree_skb(skb); 687 return 0; 688 } 689 690 static const struct inet6_protocol pim6_protocol = { 691 .handler = pim6_rcv, 692 }; 693 694 /* Service routines creating virtual interfaces: PIMREG */ 695 696 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, 697 struct net_device *dev) 698 { 699 struct net *net = dev_net(dev); 700 struct mr6_table *mrt; 701 struct flowi6 fl6 = { 702 .flowi6_oif = dev->ifindex, 703 .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 704 .flowi6_mark = skb->mark, 705 }; 706 int err; 707 708 err = ip6mr_fib_lookup(net, &fl6, &mrt); 709 if (err < 0) { 710 kfree_skb(skb); 711 return err; 712 } 713 714 read_lock(&mrt_lock); 715 dev->stats.tx_bytes += skb->len; 716 dev->stats.tx_packets++; 717 ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT); 718 read_unlock(&mrt_lock); 719 kfree_skb(skb); 720 return NETDEV_TX_OK; 721 } 722 723 static const struct net_device_ops reg_vif_netdev_ops = { 724 .ndo_start_xmit = reg_vif_xmit, 725 }; 726 727 static void reg_vif_setup(struct net_device *dev) 728 { 729 dev->type = ARPHRD_PIMREG; 730 dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8; 731 dev->flags = IFF_NOARP; 732 dev->netdev_ops = ®_vif_netdev_ops; 733 dev->destructor = free_netdev; 734 dev->features |= NETIF_F_NETNS_LOCAL; 735 } 736 737 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt) 738 { 739 struct net_device *dev; 740 char name[IFNAMSIZ]; 741 742 if (mrt->id == RT6_TABLE_DFLT) 743 sprintf(name, "pim6reg"); 744 else 745 sprintf(name, "pim6reg%u", mrt->id); 746 747 dev = alloc_netdev(0, name, reg_vif_setup); 748 if (dev == NULL) 749 return NULL; 750 751 dev_net_set(dev, net); 752 753 if (register_netdevice(dev)) { 754 free_netdev(dev); 755 return NULL; 756 } 757 dev->iflink = 0; 758 759 if (dev_open(dev)) 760 goto failure; 761 762 dev_hold(dev); 763 return dev; 764 765 failure: 766 /* allow the register to be completed before unregistering. */ 767 rtnl_unlock(); 768 rtnl_lock(); 769 770 unregister_netdevice(dev); 771 return NULL; 772 } 773 #endif 774 775 /* 776 * Delete a VIF entry 777 */ 778 779 static int mif6_delete(struct mr6_table *mrt, int vifi, struct list_head *head) 780 { 781 struct mif_device *v; 782 struct net_device *dev; 783 struct inet6_dev *in6_dev; 784 785 if (vifi < 0 || vifi >= mrt->maxvif) 786 return -EADDRNOTAVAIL; 787 788 v = &mrt->vif6_table[vifi]; 789 790 write_lock_bh(&mrt_lock); 791 dev = v->dev; 792 v->dev = NULL; 793 794 if (!dev) { 795 write_unlock_bh(&mrt_lock); 796 return -EADDRNOTAVAIL; 797 } 798 799 #ifdef CONFIG_IPV6_PIMSM_V2 800 if (vifi == mrt->mroute_reg_vif_num) 801 mrt->mroute_reg_vif_num = -1; 802 #endif 803 804 if (vifi + 1 == mrt->maxvif) { 805 int tmp; 806 for (tmp = vifi - 1; tmp >= 0; tmp--) { 807 if (MIF_EXISTS(mrt, tmp)) 808 break; 809 } 810 mrt->maxvif = tmp + 1; 811 } 812 813 write_unlock_bh(&mrt_lock); 814 815 dev_set_allmulti(dev, -1); 816 817 in6_dev = __in6_dev_get(dev); 818 if (in6_dev) { 819 in6_dev->cnf.mc_forwarding--; 820 inet6_netconf_notify_devconf(dev_net(dev), 821 NETCONFA_MC_FORWARDING, 822 dev->ifindex, &in6_dev->cnf); 823 } 824 825 if (v->flags & MIFF_REGISTER) 826 unregister_netdevice_queue(dev, head); 827 828 dev_put(dev); 829 return 0; 830 } 831 832 static inline void ip6mr_cache_free(struct mfc6_cache *c) 833 { 834 kmem_cache_free(mrt_cachep, c); 835 } 836 837 /* Destroy an unresolved cache entry, killing queued skbs 838 and reporting error to netlink readers. 839 */ 840 841 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c) 842 { 843 struct net *net = read_pnet(&mrt->net); 844 struct sk_buff *skb; 845 846 atomic_dec(&mrt->cache_resolve_queue_len); 847 848 while((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) { 849 if (ipv6_hdr(skb)->version == 0) { 850 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr)); 851 nlh->nlmsg_type = NLMSG_ERROR; 852 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 853 skb_trim(skb, nlh->nlmsg_len); 854 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT; 855 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 856 } else 857 kfree_skb(skb); 858 } 859 860 ip6mr_cache_free(c); 861 } 862 863 864 /* Timer process for all the unresolved queue. */ 865 866 static void ipmr_do_expire_process(struct mr6_table *mrt) 867 { 868 unsigned long now = jiffies; 869 unsigned long expires = 10 * HZ; 870 struct mfc6_cache *c, *next; 871 872 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) { 873 if (time_after(c->mfc_un.unres.expires, now)) { 874 /* not yet... */ 875 unsigned long interval = c->mfc_un.unres.expires - now; 876 if (interval < expires) 877 expires = interval; 878 continue; 879 } 880 881 list_del(&c->list); 882 mr6_netlink_event(mrt, c, RTM_DELROUTE); 883 ip6mr_destroy_unres(mrt, c); 884 } 885 886 if (!list_empty(&mrt->mfc6_unres_queue)) 887 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 888 } 889 890 static void ipmr_expire_process(unsigned long arg) 891 { 892 struct mr6_table *mrt = (struct mr6_table *)arg; 893 894 if (!spin_trylock(&mfc_unres_lock)) { 895 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1); 896 return; 897 } 898 899 if (!list_empty(&mrt->mfc6_unres_queue)) 900 ipmr_do_expire_process(mrt); 901 902 spin_unlock(&mfc_unres_lock); 903 } 904 905 /* Fill oifs list. It is called under write locked mrt_lock. */ 906 907 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache, 908 unsigned char *ttls) 909 { 910 int vifi; 911 912 cache->mfc_un.res.minvif = MAXMIFS; 913 cache->mfc_un.res.maxvif = 0; 914 memset(cache->mfc_un.res.ttls, 255, MAXMIFS); 915 916 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 917 if (MIF_EXISTS(mrt, vifi) && 918 ttls[vifi] && ttls[vifi] < 255) { 919 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 920 if (cache->mfc_un.res.minvif > vifi) 921 cache->mfc_un.res.minvif = vifi; 922 if (cache->mfc_un.res.maxvif <= vifi) 923 cache->mfc_un.res.maxvif = vifi + 1; 924 } 925 } 926 } 927 928 static int mif6_add(struct net *net, struct mr6_table *mrt, 929 struct mif6ctl *vifc, int mrtsock) 930 { 931 int vifi = vifc->mif6c_mifi; 932 struct mif_device *v = &mrt->vif6_table[vifi]; 933 struct net_device *dev; 934 struct inet6_dev *in6_dev; 935 int err; 936 937 /* Is vif busy ? */ 938 if (MIF_EXISTS(mrt, vifi)) 939 return -EADDRINUSE; 940 941 switch (vifc->mif6c_flags) { 942 #ifdef CONFIG_IPV6_PIMSM_V2 943 case MIFF_REGISTER: 944 /* 945 * Special Purpose VIF in PIM 946 * All the packets will be sent to the daemon 947 */ 948 if (mrt->mroute_reg_vif_num >= 0) 949 return -EADDRINUSE; 950 dev = ip6mr_reg_vif(net, mrt); 951 if (!dev) 952 return -ENOBUFS; 953 err = dev_set_allmulti(dev, 1); 954 if (err) { 955 unregister_netdevice(dev); 956 dev_put(dev); 957 return err; 958 } 959 break; 960 #endif 961 case 0: 962 dev = dev_get_by_index(net, vifc->mif6c_pifi); 963 if (!dev) 964 return -EADDRNOTAVAIL; 965 err = dev_set_allmulti(dev, 1); 966 if (err) { 967 dev_put(dev); 968 return err; 969 } 970 break; 971 default: 972 return -EINVAL; 973 } 974 975 in6_dev = __in6_dev_get(dev); 976 if (in6_dev) { 977 in6_dev->cnf.mc_forwarding++; 978 inet6_netconf_notify_devconf(dev_net(dev), 979 NETCONFA_MC_FORWARDING, 980 dev->ifindex, &in6_dev->cnf); 981 } 982 983 /* 984 * Fill in the VIF structures 985 */ 986 v->rate_limit = vifc->vifc_rate_limit; 987 v->flags = vifc->mif6c_flags; 988 if (!mrtsock) 989 v->flags |= VIFF_STATIC; 990 v->threshold = vifc->vifc_threshold; 991 v->bytes_in = 0; 992 v->bytes_out = 0; 993 v->pkt_in = 0; 994 v->pkt_out = 0; 995 v->link = dev->ifindex; 996 if (v->flags & MIFF_REGISTER) 997 v->link = dev->iflink; 998 999 /* And finish update writing critical data */ 1000 write_lock_bh(&mrt_lock); 1001 v->dev = dev; 1002 #ifdef CONFIG_IPV6_PIMSM_V2 1003 if (v->flags & MIFF_REGISTER) 1004 mrt->mroute_reg_vif_num = vifi; 1005 #endif 1006 if (vifi + 1 > mrt->maxvif) 1007 mrt->maxvif = vifi + 1; 1008 write_unlock_bh(&mrt_lock); 1009 return 0; 1010 } 1011 1012 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt, 1013 const struct in6_addr *origin, 1014 const struct in6_addr *mcastgrp) 1015 { 1016 int line = MFC6_HASH(mcastgrp, origin); 1017 struct mfc6_cache *c; 1018 1019 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) { 1020 if (ipv6_addr_equal(&c->mf6c_origin, origin) && 1021 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) 1022 return c; 1023 } 1024 return NULL; 1025 } 1026 1027 /* Look for a (*,*,oif) entry */ 1028 static struct mfc6_cache *ip6mr_cache_find_any_parent(struct mr6_table *mrt, 1029 mifi_t mifi) 1030 { 1031 int line = MFC6_HASH(&in6addr_any, &in6addr_any); 1032 struct mfc6_cache *c; 1033 1034 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) 1035 if (ipv6_addr_any(&c->mf6c_origin) && 1036 ipv6_addr_any(&c->mf6c_mcastgrp) && 1037 (c->mfc_un.res.ttls[mifi] < 255)) 1038 return c; 1039 1040 return NULL; 1041 } 1042 1043 /* Look for a (*,G) entry */ 1044 static struct mfc6_cache *ip6mr_cache_find_any(struct mr6_table *mrt, 1045 struct in6_addr *mcastgrp, 1046 mifi_t mifi) 1047 { 1048 int line = MFC6_HASH(mcastgrp, &in6addr_any); 1049 struct mfc6_cache *c, *proxy; 1050 1051 if (ipv6_addr_any(mcastgrp)) 1052 goto skip; 1053 1054 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) 1055 if (ipv6_addr_any(&c->mf6c_origin) && 1056 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) { 1057 if (c->mfc_un.res.ttls[mifi] < 255) 1058 return c; 1059 1060 /* It's ok if the mifi is part of the static tree */ 1061 proxy = ip6mr_cache_find_any_parent(mrt, 1062 c->mf6c_parent); 1063 if (proxy && proxy->mfc_un.res.ttls[mifi] < 255) 1064 return c; 1065 } 1066 1067 skip: 1068 return ip6mr_cache_find_any_parent(mrt, mifi); 1069 } 1070 1071 /* 1072 * Allocate a multicast cache entry 1073 */ 1074 static struct mfc6_cache *ip6mr_cache_alloc(void) 1075 { 1076 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 1077 if (c == NULL) 1078 return NULL; 1079 c->mfc_un.res.minvif = MAXMIFS; 1080 return c; 1081 } 1082 1083 static struct mfc6_cache *ip6mr_cache_alloc_unres(void) 1084 { 1085 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 1086 if (c == NULL) 1087 return NULL; 1088 skb_queue_head_init(&c->mfc_un.unres.unresolved); 1089 c->mfc_un.unres.expires = jiffies + 10 * HZ; 1090 return c; 1091 } 1092 1093 /* 1094 * A cache entry has gone into a resolved state from queued 1095 */ 1096 1097 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt, 1098 struct mfc6_cache *uc, struct mfc6_cache *c) 1099 { 1100 struct sk_buff *skb; 1101 1102 /* 1103 * Play the pending entries through our router 1104 */ 1105 1106 while((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 1107 if (ipv6_hdr(skb)->version == 0) { 1108 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr)); 1109 1110 if (__ip6mr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 1111 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh; 1112 } else { 1113 nlh->nlmsg_type = NLMSG_ERROR; 1114 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1115 skb_trim(skb, nlh->nlmsg_len); 1116 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE; 1117 } 1118 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1119 } else 1120 ip6_mr_forward(net, mrt, skb, c); 1121 } 1122 } 1123 1124 /* 1125 * Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd 1126 * expects the following bizarre scheme. 1127 * 1128 * Called under mrt_lock. 1129 */ 1130 1131 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt, 1132 mifi_t mifi, int assert) 1133 { 1134 struct sk_buff *skb; 1135 struct mrt6msg *msg; 1136 int ret; 1137 1138 #ifdef CONFIG_IPV6_PIMSM_V2 1139 if (assert == MRT6MSG_WHOLEPKT) 1140 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt) 1141 +sizeof(*msg)); 1142 else 1143 #endif 1144 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC); 1145 1146 if (!skb) 1147 return -ENOBUFS; 1148 1149 /* I suppose that internal messages 1150 * do not require checksums */ 1151 1152 skb->ip_summed = CHECKSUM_UNNECESSARY; 1153 1154 #ifdef CONFIG_IPV6_PIMSM_V2 1155 if (assert == MRT6MSG_WHOLEPKT) { 1156 /* Ugly, but we have no choice with this interface. 1157 Duplicate old header, fix length etc. 1158 And all this only to mangle msg->im6_msgtype and 1159 to set msg->im6_mbz to "mbz" :-) 1160 */ 1161 skb_push(skb, -skb_network_offset(pkt)); 1162 1163 skb_push(skb, sizeof(*msg)); 1164 skb_reset_transport_header(skb); 1165 msg = (struct mrt6msg *)skb_transport_header(skb); 1166 msg->im6_mbz = 0; 1167 msg->im6_msgtype = MRT6MSG_WHOLEPKT; 1168 msg->im6_mif = mrt->mroute_reg_vif_num; 1169 msg->im6_pad = 0; 1170 msg->im6_src = ipv6_hdr(pkt)->saddr; 1171 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1172 1173 skb->ip_summed = CHECKSUM_UNNECESSARY; 1174 } else 1175 #endif 1176 { 1177 /* 1178 * Copy the IP header 1179 */ 1180 1181 skb_put(skb, sizeof(struct ipv6hdr)); 1182 skb_reset_network_header(skb); 1183 skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr)); 1184 1185 /* 1186 * Add our header 1187 */ 1188 skb_put(skb, sizeof(*msg)); 1189 skb_reset_transport_header(skb); 1190 msg = (struct mrt6msg *)skb_transport_header(skb); 1191 1192 msg->im6_mbz = 0; 1193 msg->im6_msgtype = assert; 1194 msg->im6_mif = mifi; 1195 msg->im6_pad = 0; 1196 msg->im6_src = ipv6_hdr(pkt)->saddr; 1197 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1198 1199 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1200 skb->ip_summed = CHECKSUM_UNNECESSARY; 1201 } 1202 1203 if (mrt->mroute6_sk == NULL) { 1204 kfree_skb(skb); 1205 return -EINVAL; 1206 } 1207 1208 /* 1209 * Deliver to user space multicast routing algorithms 1210 */ 1211 ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb); 1212 if (ret < 0) { 1213 net_warn_ratelimited("mroute6: pending queue full, dropping entries\n"); 1214 kfree_skb(skb); 1215 } 1216 1217 return ret; 1218 } 1219 1220 /* 1221 * Queue a packet for resolution. It gets locked cache entry! 1222 */ 1223 1224 static int 1225 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb) 1226 { 1227 bool found = false; 1228 int err; 1229 struct mfc6_cache *c; 1230 1231 spin_lock_bh(&mfc_unres_lock); 1232 list_for_each_entry(c, &mrt->mfc6_unres_queue, list) { 1233 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) && 1234 ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) { 1235 found = true; 1236 break; 1237 } 1238 } 1239 1240 if (!found) { 1241 /* 1242 * Create a new entry if allowable 1243 */ 1244 1245 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1246 (c = ip6mr_cache_alloc_unres()) == NULL) { 1247 spin_unlock_bh(&mfc_unres_lock); 1248 1249 kfree_skb(skb); 1250 return -ENOBUFS; 1251 } 1252 1253 /* 1254 * Fill in the new cache entry 1255 */ 1256 c->mf6c_parent = -1; 1257 c->mf6c_origin = ipv6_hdr(skb)->saddr; 1258 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr; 1259 1260 /* 1261 * Reflect first query at pim6sd 1262 */ 1263 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE); 1264 if (err < 0) { 1265 /* If the report failed throw the cache entry 1266 out - Brad Parker 1267 */ 1268 spin_unlock_bh(&mfc_unres_lock); 1269 1270 ip6mr_cache_free(c); 1271 kfree_skb(skb); 1272 return err; 1273 } 1274 1275 atomic_inc(&mrt->cache_resolve_queue_len); 1276 list_add(&c->list, &mrt->mfc6_unres_queue); 1277 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1278 1279 ipmr_do_expire_process(mrt); 1280 } 1281 1282 /* 1283 * See if we can append the packet 1284 */ 1285 if (c->mfc_un.unres.unresolved.qlen > 3) { 1286 kfree_skb(skb); 1287 err = -ENOBUFS; 1288 } else { 1289 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1290 err = 0; 1291 } 1292 1293 spin_unlock_bh(&mfc_unres_lock); 1294 return err; 1295 } 1296 1297 /* 1298 * MFC6 cache manipulation by user space 1299 */ 1300 1301 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc, 1302 int parent) 1303 { 1304 int line; 1305 struct mfc6_cache *c, *next; 1306 1307 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); 1308 1309 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) { 1310 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && 1311 ipv6_addr_equal(&c->mf6c_mcastgrp, 1312 &mfc->mf6cc_mcastgrp.sin6_addr) && 1313 (parent == -1 || parent == c->mf6c_parent)) { 1314 write_lock_bh(&mrt_lock); 1315 list_del(&c->list); 1316 write_unlock_bh(&mrt_lock); 1317 1318 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1319 ip6mr_cache_free(c); 1320 return 0; 1321 } 1322 } 1323 return -ENOENT; 1324 } 1325 1326 static int ip6mr_device_event(struct notifier_block *this, 1327 unsigned long event, void *ptr) 1328 { 1329 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1330 struct net *net = dev_net(dev); 1331 struct mr6_table *mrt; 1332 struct mif_device *v; 1333 int ct; 1334 LIST_HEAD(list); 1335 1336 if (event != NETDEV_UNREGISTER) 1337 return NOTIFY_DONE; 1338 1339 ip6mr_for_each_table(mrt, net) { 1340 v = &mrt->vif6_table[0]; 1341 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1342 if (v->dev == dev) 1343 mif6_delete(mrt, ct, &list); 1344 } 1345 } 1346 unregister_netdevice_many(&list); 1347 1348 return NOTIFY_DONE; 1349 } 1350 1351 static struct notifier_block ip6_mr_notifier = { 1352 .notifier_call = ip6mr_device_event 1353 }; 1354 1355 /* 1356 * Setup for IP multicast routing 1357 */ 1358 1359 static int __net_init ip6mr_net_init(struct net *net) 1360 { 1361 int err; 1362 1363 err = ip6mr_rules_init(net); 1364 if (err < 0) 1365 goto fail; 1366 1367 #ifdef CONFIG_PROC_FS 1368 err = -ENOMEM; 1369 if (!proc_create("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_fops)) 1370 goto proc_vif_fail; 1371 if (!proc_create("ip6_mr_cache", 0, net->proc_net, &ip6mr_mfc_fops)) 1372 goto proc_cache_fail; 1373 #endif 1374 1375 return 0; 1376 1377 #ifdef CONFIG_PROC_FS 1378 proc_cache_fail: 1379 remove_proc_entry("ip6_mr_vif", net->proc_net); 1380 proc_vif_fail: 1381 ip6mr_rules_exit(net); 1382 #endif 1383 fail: 1384 return err; 1385 } 1386 1387 static void __net_exit ip6mr_net_exit(struct net *net) 1388 { 1389 #ifdef CONFIG_PROC_FS 1390 remove_proc_entry("ip6_mr_cache", net->proc_net); 1391 remove_proc_entry("ip6_mr_vif", net->proc_net); 1392 #endif 1393 ip6mr_rules_exit(net); 1394 } 1395 1396 static struct pernet_operations ip6mr_net_ops = { 1397 .init = ip6mr_net_init, 1398 .exit = ip6mr_net_exit, 1399 }; 1400 1401 int __init ip6_mr_init(void) 1402 { 1403 int err; 1404 1405 mrt_cachep = kmem_cache_create("ip6_mrt_cache", 1406 sizeof(struct mfc6_cache), 1407 0, SLAB_HWCACHE_ALIGN, 1408 NULL); 1409 if (!mrt_cachep) 1410 return -ENOMEM; 1411 1412 err = register_pernet_subsys(&ip6mr_net_ops); 1413 if (err) 1414 goto reg_pernet_fail; 1415 1416 err = register_netdevice_notifier(&ip6_mr_notifier); 1417 if (err) 1418 goto reg_notif_fail; 1419 #ifdef CONFIG_IPV6_PIMSM_V2 1420 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) { 1421 pr_err("%s: can't add PIM protocol\n", __func__); 1422 err = -EAGAIN; 1423 goto add_proto_fail; 1424 } 1425 #endif 1426 rtnl_register(RTNL_FAMILY_IP6MR, RTM_GETROUTE, NULL, 1427 ip6mr_rtm_dumproute, NULL); 1428 return 0; 1429 #ifdef CONFIG_IPV6_PIMSM_V2 1430 add_proto_fail: 1431 unregister_netdevice_notifier(&ip6_mr_notifier); 1432 #endif 1433 reg_notif_fail: 1434 unregister_pernet_subsys(&ip6mr_net_ops); 1435 reg_pernet_fail: 1436 kmem_cache_destroy(mrt_cachep); 1437 return err; 1438 } 1439 1440 void ip6_mr_cleanup(void) 1441 { 1442 unregister_netdevice_notifier(&ip6_mr_notifier); 1443 unregister_pernet_subsys(&ip6mr_net_ops); 1444 kmem_cache_destroy(mrt_cachep); 1445 } 1446 1447 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt, 1448 struct mf6cctl *mfc, int mrtsock, int parent) 1449 { 1450 bool found = false; 1451 int line; 1452 struct mfc6_cache *uc, *c; 1453 unsigned char ttls[MAXMIFS]; 1454 int i; 1455 1456 if (mfc->mf6cc_parent >= MAXMIFS) 1457 return -ENFILE; 1458 1459 memset(ttls, 255, MAXMIFS); 1460 for (i = 0; i < MAXMIFS; i++) { 1461 if (IF_ISSET(i, &mfc->mf6cc_ifset)) 1462 ttls[i] = 1; 1463 1464 } 1465 1466 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); 1467 1468 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) { 1469 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && 1470 ipv6_addr_equal(&c->mf6c_mcastgrp, 1471 &mfc->mf6cc_mcastgrp.sin6_addr) && 1472 (parent == -1 || parent == mfc->mf6cc_parent)) { 1473 found = true; 1474 break; 1475 } 1476 } 1477 1478 if (found) { 1479 write_lock_bh(&mrt_lock); 1480 c->mf6c_parent = mfc->mf6cc_parent; 1481 ip6mr_update_thresholds(mrt, c, ttls); 1482 if (!mrtsock) 1483 c->mfc_flags |= MFC_STATIC; 1484 write_unlock_bh(&mrt_lock); 1485 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1486 return 0; 1487 } 1488 1489 if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) && 1490 !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr)) 1491 return -EINVAL; 1492 1493 c = ip6mr_cache_alloc(); 1494 if (c == NULL) 1495 return -ENOMEM; 1496 1497 c->mf6c_origin = mfc->mf6cc_origin.sin6_addr; 1498 c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr; 1499 c->mf6c_parent = mfc->mf6cc_parent; 1500 ip6mr_update_thresholds(mrt, c, ttls); 1501 if (!mrtsock) 1502 c->mfc_flags |= MFC_STATIC; 1503 1504 write_lock_bh(&mrt_lock); 1505 list_add(&c->list, &mrt->mfc6_cache_array[line]); 1506 write_unlock_bh(&mrt_lock); 1507 1508 /* 1509 * Check to see if we resolved a queued list. If so we 1510 * need to send on the frames and tidy up. 1511 */ 1512 found = false; 1513 spin_lock_bh(&mfc_unres_lock); 1514 list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) { 1515 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) && 1516 ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) { 1517 list_del(&uc->list); 1518 atomic_dec(&mrt->cache_resolve_queue_len); 1519 found = true; 1520 break; 1521 } 1522 } 1523 if (list_empty(&mrt->mfc6_unres_queue)) 1524 del_timer(&mrt->ipmr_expire_timer); 1525 spin_unlock_bh(&mfc_unres_lock); 1526 1527 if (found) { 1528 ip6mr_cache_resolve(net, mrt, uc, c); 1529 ip6mr_cache_free(uc); 1530 } 1531 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1532 return 0; 1533 } 1534 1535 /* 1536 * Close the multicast socket, and clear the vif tables etc 1537 */ 1538 1539 static void mroute_clean_tables(struct mr6_table *mrt) 1540 { 1541 int i; 1542 LIST_HEAD(list); 1543 struct mfc6_cache *c, *next; 1544 1545 /* 1546 * Shut down all active vif entries 1547 */ 1548 for (i = 0; i < mrt->maxvif; i++) { 1549 if (!(mrt->vif6_table[i].flags & VIFF_STATIC)) 1550 mif6_delete(mrt, i, &list); 1551 } 1552 unregister_netdevice_many(&list); 1553 1554 /* 1555 * Wipe the cache 1556 */ 1557 for (i = 0; i < MFC6_LINES; i++) { 1558 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) { 1559 if (c->mfc_flags & MFC_STATIC) 1560 continue; 1561 write_lock_bh(&mrt_lock); 1562 list_del(&c->list); 1563 write_unlock_bh(&mrt_lock); 1564 1565 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1566 ip6mr_cache_free(c); 1567 } 1568 } 1569 1570 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1571 spin_lock_bh(&mfc_unres_lock); 1572 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) { 1573 list_del(&c->list); 1574 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1575 ip6mr_destroy_unres(mrt, c); 1576 } 1577 spin_unlock_bh(&mfc_unres_lock); 1578 } 1579 } 1580 1581 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk) 1582 { 1583 int err = 0; 1584 struct net *net = sock_net(sk); 1585 1586 rtnl_lock(); 1587 write_lock_bh(&mrt_lock); 1588 if (likely(mrt->mroute6_sk == NULL)) { 1589 mrt->mroute6_sk = sk; 1590 net->ipv6.devconf_all->mc_forwarding++; 1591 inet6_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1592 NETCONFA_IFINDEX_ALL, 1593 net->ipv6.devconf_all); 1594 } 1595 else 1596 err = -EADDRINUSE; 1597 write_unlock_bh(&mrt_lock); 1598 1599 rtnl_unlock(); 1600 1601 return err; 1602 } 1603 1604 int ip6mr_sk_done(struct sock *sk) 1605 { 1606 int err = -EACCES; 1607 struct net *net = sock_net(sk); 1608 struct mr6_table *mrt; 1609 1610 rtnl_lock(); 1611 ip6mr_for_each_table(mrt, net) { 1612 if (sk == mrt->mroute6_sk) { 1613 write_lock_bh(&mrt_lock); 1614 mrt->mroute6_sk = NULL; 1615 net->ipv6.devconf_all->mc_forwarding--; 1616 inet6_netconf_notify_devconf(net, 1617 NETCONFA_MC_FORWARDING, 1618 NETCONFA_IFINDEX_ALL, 1619 net->ipv6.devconf_all); 1620 write_unlock_bh(&mrt_lock); 1621 1622 mroute_clean_tables(mrt); 1623 err = 0; 1624 break; 1625 } 1626 } 1627 rtnl_unlock(); 1628 1629 return err; 1630 } 1631 1632 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb) 1633 { 1634 struct mr6_table *mrt; 1635 struct flowi6 fl6 = { 1636 .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 1637 .flowi6_oif = skb->dev->ifindex, 1638 .flowi6_mark = skb->mark, 1639 }; 1640 1641 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 1642 return NULL; 1643 1644 return mrt->mroute6_sk; 1645 } 1646 1647 /* 1648 * Socket options and virtual interface manipulation. The whole 1649 * virtual interface system is a complete heap, but unfortunately 1650 * that's how BSD mrouted happens to think. Maybe one day with a proper 1651 * MOSPF/PIM router set up we can clean this up. 1652 */ 1653 1654 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1655 { 1656 int ret, parent = 0; 1657 struct mif6ctl vif; 1658 struct mf6cctl mfc; 1659 mifi_t mifi; 1660 struct net *net = sock_net(sk); 1661 struct mr6_table *mrt; 1662 1663 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1664 if (mrt == NULL) 1665 return -ENOENT; 1666 1667 if (optname != MRT6_INIT) { 1668 if (sk != mrt->mroute6_sk && !ns_capable(net->user_ns, CAP_NET_ADMIN)) 1669 return -EACCES; 1670 } 1671 1672 switch (optname) { 1673 case MRT6_INIT: 1674 if (sk->sk_type != SOCK_RAW || 1675 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1676 return -EOPNOTSUPP; 1677 if (optlen < sizeof(int)) 1678 return -EINVAL; 1679 1680 return ip6mr_sk_init(mrt, sk); 1681 1682 case MRT6_DONE: 1683 return ip6mr_sk_done(sk); 1684 1685 case MRT6_ADD_MIF: 1686 if (optlen < sizeof(vif)) 1687 return -EINVAL; 1688 if (copy_from_user(&vif, optval, sizeof(vif))) 1689 return -EFAULT; 1690 if (vif.mif6c_mifi >= MAXMIFS) 1691 return -ENFILE; 1692 rtnl_lock(); 1693 ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk); 1694 rtnl_unlock(); 1695 return ret; 1696 1697 case MRT6_DEL_MIF: 1698 if (optlen < sizeof(mifi_t)) 1699 return -EINVAL; 1700 if (copy_from_user(&mifi, optval, sizeof(mifi_t))) 1701 return -EFAULT; 1702 rtnl_lock(); 1703 ret = mif6_delete(mrt, mifi, NULL); 1704 rtnl_unlock(); 1705 return ret; 1706 1707 /* 1708 * Manipulate the forwarding caches. These live 1709 * in a sort of kernel/user symbiosis. 1710 */ 1711 case MRT6_ADD_MFC: 1712 case MRT6_DEL_MFC: 1713 parent = -1; 1714 case MRT6_ADD_MFC_PROXY: 1715 case MRT6_DEL_MFC_PROXY: 1716 if (optlen < sizeof(mfc)) 1717 return -EINVAL; 1718 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1719 return -EFAULT; 1720 if (parent == 0) 1721 parent = mfc.mf6cc_parent; 1722 rtnl_lock(); 1723 if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY) 1724 ret = ip6mr_mfc_delete(mrt, &mfc, parent); 1725 else 1726 ret = ip6mr_mfc_add(net, mrt, &mfc, 1727 sk == mrt->mroute6_sk, parent); 1728 rtnl_unlock(); 1729 return ret; 1730 1731 /* 1732 * Control PIM assert (to activate pim will activate assert) 1733 */ 1734 case MRT6_ASSERT: 1735 { 1736 int v; 1737 1738 if (optlen != sizeof(v)) 1739 return -EINVAL; 1740 if (get_user(v, (int __user *)optval)) 1741 return -EFAULT; 1742 mrt->mroute_do_assert = v; 1743 return 0; 1744 } 1745 1746 #ifdef CONFIG_IPV6_PIMSM_V2 1747 case MRT6_PIM: 1748 { 1749 int v; 1750 1751 if (optlen != sizeof(v)) 1752 return -EINVAL; 1753 if (get_user(v, (int __user *)optval)) 1754 return -EFAULT; 1755 v = !!v; 1756 rtnl_lock(); 1757 ret = 0; 1758 if (v != mrt->mroute_do_pim) { 1759 mrt->mroute_do_pim = v; 1760 mrt->mroute_do_assert = v; 1761 } 1762 rtnl_unlock(); 1763 return ret; 1764 } 1765 1766 #endif 1767 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 1768 case MRT6_TABLE: 1769 { 1770 u32 v; 1771 1772 if (optlen != sizeof(u32)) 1773 return -EINVAL; 1774 if (get_user(v, (u32 __user *)optval)) 1775 return -EFAULT; 1776 /* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */ 1777 if (v != RT_TABLE_DEFAULT && v >= 100000000) 1778 return -EINVAL; 1779 if (sk == mrt->mroute6_sk) 1780 return -EBUSY; 1781 1782 rtnl_lock(); 1783 ret = 0; 1784 if (!ip6mr_new_table(net, v)) 1785 ret = -ENOMEM; 1786 raw6_sk(sk)->ip6mr_table = v; 1787 rtnl_unlock(); 1788 return ret; 1789 } 1790 #endif 1791 /* 1792 * Spurious command, or MRT6_VERSION which you cannot 1793 * set. 1794 */ 1795 default: 1796 return -ENOPROTOOPT; 1797 } 1798 } 1799 1800 /* 1801 * Getsock opt support for the multicast routing system. 1802 */ 1803 1804 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, 1805 int __user *optlen) 1806 { 1807 int olr; 1808 int val; 1809 struct net *net = sock_net(sk); 1810 struct mr6_table *mrt; 1811 1812 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1813 if (mrt == NULL) 1814 return -ENOENT; 1815 1816 switch (optname) { 1817 case MRT6_VERSION: 1818 val = 0x0305; 1819 break; 1820 #ifdef CONFIG_IPV6_PIMSM_V2 1821 case MRT6_PIM: 1822 val = mrt->mroute_do_pim; 1823 break; 1824 #endif 1825 case MRT6_ASSERT: 1826 val = mrt->mroute_do_assert; 1827 break; 1828 default: 1829 return -ENOPROTOOPT; 1830 } 1831 1832 if (get_user(olr, optlen)) 1833 return -EFAULT; 1834 1835 olr = min_t(int, olr, sizeof(int)); 1836 if (olr < 0) 1837 return -EINVAL; 1838 1839 if (put_user(olr, optlen)) 1840 return -EFAULT; 1841 if (copy_to_user(optval, &val, olr)) 1842 return -EFAULT; 1843 return 0; 1844 } 1845 1846 /* 1847 * The IP multicast ioctl support routines. 1848 */ 1849 1850 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg) 1851 { 1852 struct sioc_sg_req6 sr; 1853 struct sioc_mif_req6 vr; 1854 struct mif_device *vif; 1855 struct mfc6_cache *c; 1856 struct net *net = sock_net(sk); 1857 struct mr6_table *mrt; 1858 1859 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1860 if (mrt == NULL) 1861 return -ENOENT; 1862 1863 switch (cmd) { 1864 case SIOCGETMIFCNT_IN6: 1865 if (copy_from_user(&vr, arg, sizeof(vr))) 1866 return -EFAULT; 1867 if (vr.mifi >= mrt->maxvif) 1868 return -EINVAL; 1869 read_lock(&mrt_lock); 1870 vif = &mrt->vif6_table[vr.mifi]; 1871 if (MIF_EXISTS(mrt, vr.mifi)) { 1872 vr.icount = vif->pkt_in; 1873 vr.ocount = vif->pkt_out; 1874 vr.ibytes = vif->bytes_in; 1875 vr.obytes = vif->bytes_out; 1876 read_unlock(&mrt_lock); 1877 1878 if (copy_to_user(arg, &vr, sizeof(vr))) 1879 return -EFAULT; 1880 return 0; 1881 } 1882 read_unlock(&mrt_lock); 1883 return -EADDRNOTAVAIL; 1884 case SIOCGETSGCNT_IN6: 1885 if (copy_from_user(&sr, arg, sizeof(sr))) 1886 return -EFAULT; 1887 1888 read_lock(&mrt_lock); 1889 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1890 if (c) { 1891 sr.pktcnt = c->mfc_un.res.pkt; 1892 sr.bytecnt = c->mfc_un.res.bytes; 1893 sr.wrong_if = c->mfc_un.res.wrong_if; 1894 read_unlock(&mrt_lock); 1895 1896 if (copy_to_user(arg, &sr, sizeof(sr))) 1897 return -EFAULT; 1898 return 0; 1899 } 1900 read_unlock(&mrt_lock); 1901 return -EADDRNOTAVAIL; 1902 default: 1903 return -ENOIOCTLCMD; 1904 } 1905 } 1906 1907 #ifdef CONFIG_COMPAT 1908 struct compat_sioc_sg_req6 { 1909 struct sockaddr_in6 src; 1910 struct sockaddr_in6 grp; 1911 compat_ulong_t pktcnt; 1912 compat_ulong_t bytecnt; 1913 compat_ulong_t wrong_if; 1914 }; 1915 1916 struct compat_sioc_mif_req6 { 1917 mifi_t mifi; 1918 compat_ulong_t icount; 1919 compat_ulong_t ocount; 1920 compat_ulong_t ibytes; 1921 compat_ulong_t obytes; 1922 }; 1923 1924 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1925 { 1926 struct compat_sioc_sg_req6 sr; 1927 struct compat_sioc_mif_req6 vr; 1928 struct mif_device *vif; 1929 struct mfc6_cache *c; 1930 struct net *net = sock_net(sk); 1931 struct mr6_table *mrt; 1932 1933 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1934 if (mrt == NULL) 1935 return -ENOENT; 1936 1937 switch (cmd) { 1938 case SIOCGETMIFCNT_IN6: 1939 if (copy_from_user(&vr, arg, sizeof(vr))) 1940 return -EFAULT; 1941 if (vr.mifi >= mrt->maxvif) 1942 return -EINVAL; 1943 read_lock(&mrt_lock); 1944 vif = &mrt->vif6_table[vr.mifi]; 1945 if (MIF_EXISTS(mrt, vr.mifi)) { 1946 vr.icount = vif->pkt_in; 1947 vr.ocount = vif->pkt_out; 1948 vr.ibytes = vif->bytes_in; 1949 vr.obytes = vif->bytes_out; 1950 read_unlock(&mrt_lock); 1951 1952 if (copy_to_user(arg, &vr, sizeof(vr))) 1953 return -EFAULT; 1954 return 0; 1955 } 1956 read_unlock(&mrt_lock); 1957 return -EADDRNOTAVAIL; 1958 case SIOCGETSGCNT_IN6: 1959 if (copy_from_user(&sr, arg, sizeof(sr))) 1960 return -EFAULT; 1961 1962 read_lock(&mrt_lock); 1963 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1964 if (c) { 1965 sr.pktcnt = c->mfc_un.res.pkt; 1966 sr.bytecnt = c->mfc_un.res.bytes; 1967 sr.wrong_if = c->mfc_un.res.wrong_if; 1968 read_unlock(&mrt_lock); 1969 1970 if (copy_to_user(arg, &sr, sizeof(sr))) 1971 return -EFAULT; 1972 return 0; 1973 } 1974 read_unlock(&mrt_lock); 1975 return -EADDRNOTAVAIL; 1976 default: 1977 return -ENOIOCTLCMD; 1978 } 1979 } 1980 #endif 1981 1982 static inline int ip6mr_forward2_finish(struct sk_buff *skb) 1983 { 1984 IP6_INC_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)), 1985 IPSTATS_MIB_OUTFORWDATAGRAMS); 1986 IP6_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)), 1987 IPSTATS_MIB_OUTOCTETS, skb->len); 1988 return dst_output(skb); 1989 } 1990 1991 /* 1992 * Processing handlers for ip6mr_forward 1993 */ 1994 1995 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt, 1996 struct sk_buff *skb, struct mfc6_cache *c, int vifi) 1997 { 1998 struct ipv6hdr *ipv6h; 1999 struct mif_device *vif = &mrt->vif6_table[vifi]; 2000 struct net_device *dev; 2001 struct dst_entry *dst; 2002 struct flowi6 fl6; 2003 2004 if (vif->dev == NULL) 2005 goto out_free; 2006 2007 #ifdef CONFIG_IPV6_PIMSM_V2 2008 if (vif->flags & MIFF_REGISTER) { 2009 vif->pkt_out++; 2010 vif->bytes_out += skb->len; 2011 vif->dev->stats.tx_bytes += skb->len; 2012 vif->dev->stats.tx_packets++; 2013 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT); 2014 goto out_free; 2015 } 2016 #endif 2017 2018 ipv6h = ipv6_hdr(skb); 2019 2020 fl6 = (struct flowi6) { 2021 .flowi6_oif = vif->link, 2022 .daddr = ipv6h->daddr, 2023 }; 2024 2025 dst = ip6_route_output(net, NULL, &fl6); 2026 if (dst->error) { 2027 dst_release(dst); 2028 goto out_free; 2029 } 2030 2031 skb_dst_drop(skb); 2032 skb_dst_set(skb, dst); 2033 2034 /* 2035 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 2036 * not only before forwarding, but after forwarding on all output 2037 * interfaces. It is clear, if mrouter runs a multicasting 2038 * program, it should receive packets not depending to what interface 2039 * program is joined. 2040 * If we will not make it, the program will have to join on all 2041 * interfaces. On the other hand, multihoming host (or router, but 2042 * not mrouter) cannot join to more than one interface - it will 2043 * result in receiving multiple packets. 2044 */ 2045 dev = vif->dev; 2046 skb->dev = dev; 2047 vif->pkt_out++; 2048 vif->bytes_out += skb->len; 2049 2050 /* We are about to write */ 2051 /* XXX: extension headers? */ 2052 if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev))) 2053 goto out_free; 2054 2055 ipv6h = ipv6_hdr(skb); 2056 ipv6h->hop_limit--; 2057 2058 IP6CB(skb)->flags |= IP6SKB_FORWARDED; 2059 2060 return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, skb, skb->dev, dev, 2061 ip6mr_forward2_finish); 2062 2063 out_free: 2064 kfree_skb(skb); 2065 return 0; 2066 } 2067 2068 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev) 2069 { 2070 int ct; 2071 2072 for (ct = mrt->maxvif - 1; ct >= 0; ct--) { 2073 if (mrt->vif6_table[ct].dev == dev) 2074 break; 2075 } 2076 return ct; 2077 } 2078 2079 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt, 2080 struct sk_buff *skb, struct mfc6_cache *cache) 2081 { 2082 int psend = -1; 2083 int vif, ct; 2084 int true_vifi = ip6mr_find_vif(mrt, skb->dev); 2085 2086 vif = cache->mf6c_parent; 2087 cache->mfc_un.res.pkt++; 2088 cache->mfc_un.res.bytes += skb->len; 2089 2090 if (ipv6_addr_any(&cache->mf6c_origin) && true_vifi >= 0) { 2091 struct mfc6_cache *cache_proxy; 2092 2093 /* For an (*,G) entry, we only check that the incomming 2094 * interface is part of the static tree. 2095 */ 2096 cache_proxy = ip6mr_cache_find_any_parent(mrt, vif); 2097 if (cache_proxy && 2098 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 2099 goto forward; 2100 } 2101 2102 /* 2103 * Wrong interface: drop packet and (maybe) send PIM assert. 2104 */ 2105 if (mrt->vif6_table[vif].dev != skb->dev) { 2106 cache->mfc_un.res.wrong_if++; 2107 2108 if (true_vifi >= 0 && mrt->mroute_do_assert && 2109 /* pimsm uses asserts, when switching from RPT to SPT, 2110 so that we cannot check that packet arrived on an oif. 2111 It is bad, but otherwise we would need to move pretty 2112 large chunk of pimd to kernel. Ough... --ANK 2113 */ 2114 (mrt->mroute_do_pim || 2115 cache->mfc_un.res.ttls[true_vifi] < 255) && 2116 time_after(jiffies, 2117 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 2118 cache->mfc_un.res.last_assert = jiffies; 2119 ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF); 2120 } 2121 goto dont_forward; 2122 } 2123 2124 forward: 2125 mrt->vif6_table[vif].pkt_in++; 2126 mrt->vif6_table[vif].bytes_in += skb->len; 2127 2128 /* 2129 * Forward the frame 2130 */ 2131 if (ipv6_addr_any(&cache->mf6c_origin) && 2132 ipv6_addr_any(&cache->mf6c_mcastgrp)) { 2133 if (true_vifi >= 0 && 2134 true_vifi != cache->mf6c_parent && 2135 ipv6_hdr(skb)->hop_limit > 2136 cache->mfc_un.res.ttls[cache->mf6c_parent]) { 2137 /* It's an (*,*) entry and the packet is not coming from 2138 * the upstream: forward the packet to the upstream 2139 * only. 2140 */ 2141 psend = cache->mf6c_parent; 2142 goto last_forward; 2143 } 2144 goto dont_forward; 2145 } 2146 for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) { 2147 /* For (*,G) entry, don't forward to the incoming interface */ 2148 if ((!ipv6_addr_any(&cache->mf6c_origin) || ct != true_vifi) && 2149 ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) { 2150 if (psend != -1) { 2151 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2152 if (skb2) 2153 ip6mr_forward2(net, mrt, skb2, cache, psend); 2154 } 2155 psend = ct; 2156 } 2157 } 2158 last_forward: 2159 if (psend != -1) { 2160 ip6mr_forward2(net, mrt, skb, cache, psend); 2161 return; 2162 } 2163 2164 dont_forward: 2165 kfree_skb(skb); 2166 } 2167 2168 2169 /* 2170 * Multicast packets for forwarding arrive here 2171 */ 2172 2173 int ip6_mr_input(struct sk_buff *skb) 2174 { 2175 struct mfc6_cache *cache; 2176 struct net *net = dev_net(skb->dev); 2177 struct mr6_table *mrt; 2178 struct flowi6 fl6 = { 2179 .flowi6_iif = skb->dev->ifindex, 2180 .flowi6_mark = skb->mark, 2181 }; 2182 int err; 2183 2184 err = ip6mr_fib_lookup(net, &fl6, &mrt); 2185 if (err < 0) { 2186 kfree_skb(skb); 2187 return err; 2188 } 2189 2190 read_lock(&mrt_lock); 2191 cache = ip6mr_cache_find(mrt, 2192 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr); 2193 if (cache == NULL) { 2194 int vif = ip6mr_find_vif(mrt, skb->dev); 2195 2196 if (vif >= 0) 2197 cache = ip6mr_cache_find_any(mrt, 2198 &ipv6_hdr(skb)->daddr, 2199 vif); 2200 } 2201 2202 /* 2203 * No usable cache entry 2204 */ 2205 if (cache == NULL) { 2206 int vif; 2207 2208 vif = ip6mr_find_vif(mrt, skb->dev); 2209 if (vif >= 0) { 2210 int err = ip6mr_cache_unresolved(mrt, vif, skb); 2211 read_unlock(&mrt_lock); 2212 2213 return err; 2214 } 2215 read_unlock(&mrt_lock); 2216 kfree_skb(skb); 2217 return -ENODEV; 2218 } 2219 2220 ip6_mr_forward(net, mrt, skb, cache); 2221 2222 read_unlock(&mrt_lock); 2223 2224 return 0; 2225 } 2226 2227 2228 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 2229 struct mfc6_cache *c, struct rtmsg *rtm) 2230 { 2231 int ct; 2232 struct rtnexthop *nhp; 2233 struct nlattr *mp_attr; 2234 struct rta_mfc_stats mfcs; 2235 2236 /* If cache is unresolved, don't try to parse IIF and OIF */ 2237 if (c->mf6c_parent >= MAXMIFS) 2238 return -ENOENT; 2239 2240 if (MIF_EXISTS(mrt, c->mf6c_parent) && 2241 nla_put_u32(skb, RTA_IIF, mrt->vif6_table[c->mf6c_parent].dev->ifindex) < 0) 2242 return -EMSGSIZE; 2243 mp_attr = nla_nest_start(skb, RTA_MULTIPATH); 2244 if (mp_attr == NULL) 2245 return -EMSGSIZE; 2246 2247 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2248 if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2249 nhp = nla_reserve_nohdr(skb, sizeof(*nhp)); 2250 if (nhp == NULL) { 2251 nla_nest_cancel(skb, mp_attr); 2252 return -EMSGSIZE; 2253 } 2254 2255 nhp->rtnh_flags = 0; 2256 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2257 nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex; 2258 nhp->rtnh_len = sizeof(*nhp); 2259 } 2260 } 2261 2262 nla_nest_end(skb, mp_attr); 2263 2264 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2265 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2266 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2267 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0) 2268 return -EMSGSIZE; 2269 2270 rtm->rtm_type = RTN_MULTICAST; 2271 return 1; 2272 } 2273 2274 int ip6mr_get_route(struct net *net, 2275 struct sk_buff *skb, struct rtmsg *rtm, int nowait) 2276 { 2277 int err; 2278 struct mr6_table *mrt; 2279 struct mfc6_cache *cache; 2280 struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); 2281 2282 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 2283 if (mrt == NULL) 2284 return -ENOENT; 2285 2286 read_lock(&mrt_lock); 2287 cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr); 2288 if (!cache && skb->dev) { 2289 int vif = ip6mr_find_vif(mrt, skb->dev); 2290 2291 if (vif >= 0) 2292 cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr, 2293 vif); 2294 } 2295 2296 if (!cache) { 2297 struct sk_buff *skb2; 2298 struct ipv6hdr *iph; 2299 struct net_device *dev; 2300 int vif; 2301 2302 if (nowait) { 2303 read_unlock(&mrt_lock); 2304 return -EAGAIN; 2305 } 2306 2307 dev = skb->dev; 2308 if (dev == NULL || (vif = ip6mr_find_vif(mrt, dev)) < 0) { 2309 read_unlock(&mrt_lock); 2310 return -ENODEV; 2311 } 2312 2313 /* really correct? */ 2314 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); 2315 if (!skb2) { 2316 read_unlock(&mrt_lock); 2317 return -ENOMEM; 2318 } 2319 2320 skb_reset_transport_header(skb2); 2321 2322 skb_put(skb2, sizeof(struct ipv6hdr)); 2323 skb_reset_network_header(skb2); 2324 2325 iph = ipv6_hdr(skb2); 2326 iph->version = 0; 2327 iph->priority = 0; 2328 iph->flow_lbl[0] = 0; 2329 iph->flow_lbl[1] = 0; 2330 iph->flow_lbl[2] = 0; 2331 iph->payload_len = 0; 2332 iph->nexthdr = IPPROTO_NONE; 2333 iph->hop_limit = 0; 2334 iph->saddr = rt->rt6i_src.addr; 2335 iph->daddr = rt->rt6i_dst.addr; 2336 2337 err = ip6mr_cache_unresolved(mrt, vif, skb2); 2338 read_unlock(&mrt_lock); 2339 2340 return err; 2341 } 2342 2343 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY)) 2344 cache->mfc_flags |= MFC_NOTIFY; 2345 2346 err = __ip6mr_fill_mroute(mrt, skb, cache, rtm); 2347 read_unlock(&mrt_lock); 2348 return err; 2349 } 2350 2351 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 2352 u32 portid, u32 seq, struct mfc6_cache *c, int cmd, 2353 int flags) 2354 { 2355 struct nlmsghdr *nlh; 2356 struct rtmsg *rtm; 2357 int err; 2358 2359 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2360 if (nlh == NULL) 2361 return -EMSGSIZE; 2362 2363 rtm = nlmsg_data(nlh); 2364 rtm->rtm_family = RTNL_FAMILY_IP6MR; 2365 rtm->rtm_dst_len = 128; 2366 rtm->rtm_src_len = 128; 2367 rtm->rtm_tos = 0; 2368 rtm->rtm_table = mrt->id; 2369 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2370 goto nla_put_failure; 2371 rtm->rtm_type = RTN_MULTICAST; 2372 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2373 if (c->mfc_flags & MFC_STATIC) 2374 rtm->rtm_protocol = RTPROT_STATIC; 2375 else 2376 rtm->rtm_protocol = RTPROT_MROUTED; 2377 rtm->rtm_flags = 0; 2378 2379 if (nla_put(skb, RTA_SRC, 16, &c->mf6c_origin) || 2380 nla_put(skb, RTA_DST, 16, &c->mf6c_mcastgrp)) 2381 goto nla_put_failure; 2382 err = __ip6mr_fill_mroute(mrt, skb, c, rtm); 2383 /* do not break the dump if cache is unresolved */ 2384 if (err < 0 && err != -ENOENT) 2385 goto nla_put_failure; 2386 2387 return nlmsg_end(skb, nlh); 2388 2389 nla_put_failure: 2390 nlmsg_cancel(skb, nlh); 2391 return -EMSGSIZE; 2392 } 2393 2394 static int mr6_msgsize(bool unresolved, int maxvif) 2395 { 2396 size_t len = 2397 NLMSG_ALIGN(sizeof(struct rtmsg)) 2398 + nla_total_size(4) /* RTA_TABLE */ 2399 + nla_total_size(sizeof(struct in6_addr)) /* RTA_SRC */ 2400 + nla_total_size(sizeof(struct in6_addr)) /* RTA_DST */ 2401 ; 2402 2403 if (!unresolved) 2404 len = len 2405 + nla_total_size(4) /* RTA_IIF */ 2406 + nla_total_size(0) /* RTA_MULTIPATH */ 2407 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2408 /* RTA_MFC_STATS */ 2409 + nla_total_size(sizeof(struct rta_mfc_stats)) 2410 ; 2411 2412 return len; 2413 } 2414 2415 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc, 2416 int cmd) 2417 { 2418 struct net *net = read_pnet(&mrt->net); 2419 struct sk_buff *skb; 2420 int err = -ENOBUFS; 2421 2422 skb = nlmsg_new(mr6_msgsize(mfc->mf6c_parent >= MAXMIFS, mrt->maxvif), 2423 GFP_ATOMIC); 2424 if (skb == NULL) 2425 goto errout; 2426 2427 err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2428 if (err < 0) 2429 goto errout; 2430 2431 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC); 2432 return; 2433 2434 errout: 2435 kfree_skb(skb); 2436 if (err < 0) 2437 rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err); 2438 } 2439 2440 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2441 { 2442 struct net *net = sock_net(skb->sk); 2443 struct mr6_table *mrt; 2444 struct mfc6_cache *mfc; 2445 unsigned int t = 0, s_t; 2446 unsigned int h = 0, s_h; 2447 unsigned int e = 0, s_e; 2448 2449 s_t = cb->args[0]; 2450 s_h = cb->args[1]; 2451 s_e = cb->args[2]; 2452 2453 read_lock(&mrt_lock); 2454 ip6mr_for_each_table(mrt, net) { 2455 if (t < s_t) 2456 goto next_table; 2457 if (t > s_t) 2458 s_h = 0; 2459 for (h = s_h; h < MFC6_LINES; h++) { 2460 list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) { 2461 if (e < s_e) 2462 goto next_entry; 2463 if (ip6mr_fill_mroute(mrt, skb, 2464 NETLINK_CB(cb->skb).portid, 2465 cb->nlh->nlmsg_seq, 2466 mfc, RTM_NEWROUTE, 2467 NLM_F_MULTI) < 0) 2468 goto done; 2469 next_entry: 2470 e++; 2471 } 2472 e = s_e = 0; 2473 } 2474 spin_lock_bh(&mfc_unres_lock); 2475 list_for_each_entry(mfc, &mrt->mfc6_unres_queue, list) { 2476 if (e < s_e) 2477 goto next_entry2; 2478 if (ip6mr_fill_mroute(mrt, skb, 2479 NETLINK_CB(cb->skb).portid, 2480 cb->nlh->nlmsg_seq, 2481 mfc, RTM_NEWROUTE, 2482 NLM_F_MULTI) < 0) { 2483 spin_unlock_bh(&mfc_unres_lock); 2484 goto done; 2485 } 2486 next_entry2: 2487 e++; 2488 } 2489 spin_unlock_bh(&mfc_unres_lock); 2490 e = s_e = 0; 2491 s_h = 0; 2492 next_table: 2493 t++; 2494 } 2495 done: 2496 read_unlock(&mrt_lock); 2497 2498 cb->args[2] = e; 2499 cb->args[1] = h; 2500 cb->args[0] = t; 2501 2502 return skb->len; 2503 } 2504