1 /* 2 * Linux IPv6 multicast routing support for BSD pim6sd 3 * Based on net/ipv4/ipmr.c. 4 * 5 * (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr> 6 * LSIIT Laboratory, Strasbourg, France 7 * (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com> 8 * 6WIND, Paris, France 9 * Copyright (C)2007,2008 USAGI/WIDE Project 10 * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 * 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/types.h> 21 #include <linux/sched.h> 22 #include <linux/errno.h> 23 #include <linux/mm.h> 24 #include <linux/kernel.h> 25 #include <linux/fcntl.h> 26 #include <linux/stat.h> 27 #include <linux/socket.h> 28 #include <linux/inet.h> 29 #include <linux/netdevice.h> 30 #include <linux/inetdevice.h> 31 #include <linux/proc_fs.h> 32 #include <linux/seq_file.h> 33 #include <linux/init.h> 34 #include <linux/compat.h> 35 #include <linux/rhashtable.h> 36 #include <net/protocol.h> 37 #include <linux/skbuff.h> 38 #include <net/raw.h> 39 #include <linux/notifier.h> 40 #include <linux/if_arp.h> 41 #include <net/checksum.h> 42 #include <net/netlink.h> 43 #include <net/fib_rules.h> 44 45 #include <net/ipv6.h> 46 #include <net/ip6_route.h> 47 #include <linux/mroute6.h> 48 #include <linux/pim.h> 49 #include <net/addrconf.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/export.h> 52 #include <net/ip6_checksum.h> 53 #include <linux/netconf.h> 54 #include <net/ip_tunnels.h> 55 56 #include <linux/nospec.h> 57 58 struct ip6mr_rule { 59 struct fib_rule common; 60 }; 61 62 struct ip6mr_result { 63 struct mr_table *mrt; 64 }; 65 66 /* Big lock, protecting vif table, mrt cache and mroute socket state. 67 Note that the changes are semaphored via rtnl_lock. 68 */ 69 70 static DEFINE_RWLOCK(mrt_lock); 71 72 /* Multicast router control variables */ 73 74 /* Special spinlock for queue of unresolved entries */ 75 static DEFINE_SPINLOCK(mfc_unres_lock); 76 77 /* We return to original Alan's scheme. Hash table of resolved 78 entries is changed only in process context and protected 79 with weak lock mrt_lock. Queue of unresolved entries is protected 80 with strong spinlock mfc_unres_lock. 81 82 In this case data path is free of exclusive locks at all. 83 */ 84 85 static struct kmem_cache *mrt_cachep __read_mostly; 86 87 static struct mr_table *ip6mr_new_table(struct net *net, u32 id); 88 static void ip6mr_free_table(struct mr_table *mrt); 89 90 static void ip6_mr_forward(struct net *net, struct mr_table *mrt, 91 struct net_device *dev, struct sk_buff *skb, 92 struct mfc6_cache *cache); 93 static int ip6mr_cache_report(struct mr_table *mrt, struct sk_buff *pkt, 94 mifi_t mifi, int assert); 95 static void mr6_netlink_event(struct mr_table *mrt, struct mfc6_cache *mfc, 96 int cmd); 97 static void mrt6msg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt); 98 static int ip6mr_rtm_dumproute(struct sk_buff *skb, 99 struct netlink_callback *cb); 100 static void mroute_clean_tables(struct mr_table *mrt, int flags); 101 static void ipmr_expire_process(struct timer_list *t); 102 103 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 104 #define ip6mr_for_each_table(mrt, net) \ 105 list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list) 106 107 static struct mr_table *ip6mr_mr_table_iter(struct net *net, 108 struct mr_table *mrt) 109 { 110 struct mr_table *ret; 111 112 if (!mrt) 113 ret = list_entry_rcu(net->ipv6.mr6_tables.next, 114 struct mr_table, list); 115 else 116 ret = list_entry_rcu(mrt->list.next, 117 struct mr_table, list); 118 119 if (&ret->list == &net->ipv6.mr6_tables) 120 return NULL; 121 return ret; 122 } 123 124 static struct mr_table *ip6mr_get_table(struct net *net, u32 id) 125 { 126 struct mr_table *mrt; 127 128 ip6mr_for_each_table(mrt, net) { 129 if (mrt->id == id) 130 return mrt; 131 } 132 return NULL; 133 } 134 135 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 136 struct mr_table **mrt) 137 { 138 int err; 139 struct ip6mr_result res; 140 struct fib_lookup_arg arg = { 141 .result = &res, 142 .flags = FIB_LOOKUP_NOREF, 143 }; 144 145 /* update flow if oif or iif point to device enslaved to l3mdev */ 146 l3mdev_update_flow(net, flowi6_to_flowi(flp6)); 147 148 err = fib_rules_lookup(net->ipv6.mr6_rules_ops, 149 flowi6_to_flowi(flp6), 0, &arg); 150 if (err < 0) 151 return err; 152 *mrt = res.mrt; 153 return 0; 154 } 155 156 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp, 157 int flags, struct fib_lookup_arg *arg) 158 { 159 struct ip6mr_result *res = arg->result; 160 struct mr_table *mrt; 161 162 switch (rule->action) { 163 case FR_ACT_TO_TBL: 164 break; 165 case FR_ACT_UNREACHABLE: 166 return -ENETUNREACH; 167 case FR_ACT_PROHIBIT: 168 return -EACCES; 169 case FR_ACT_BLACKHOLE: 170 default: 171 return -EINVAL; 172 } 173 174 arg->table = fib_rule_get_table(rule, arg); 175 176 mrt = ip6mr_get_table(rule->fr_net, arg->table); 177 if (!mrt) 178 return -EAGAIN; 179 res->mrt = mrt; 180 return 0; 181 } 182 183 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags) 184 { 185 return 1; 186 } 187 188 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = { 189 FRA_GENERIC_POLICY, 190 }; 191 192 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 193 struct fib_rule_hdr *frh, struct nlattr **tb, 194 struct netlink_ext_ack *extack) 195 { 196 return 0; 197 } 198 199 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 200 struct nlattr **tb) 201 { 202 return 1; 203 } 204 205 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 206 struct fib_rule_hdr *frh) 207 { 208 frh->dst_len = 0; 209 frh->src_len = 0; 210 frh->tos = 0; 211 return 0; 212 } 213 214 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = { 215 .family = RTNL_FAMILY_IP6MR, 216 .rule_size = sizeof(struct ip6mr_rule), 217 .addr_size = sizeof(struct in6_addr), 218 .action = ip6mr_rule_action, 219 .match = ip6mr_rule_match, 220 .configure = ip6mr_rule_configure, 221 .compare = ip6mr_rule_compare, 222 .fill = ip6mr_rule_fill, 223 .nlgroup = RTNLGRP_IPV6_RULE, 224 .policy = ip6mr_rule_policy, 225 .owner = THIS_MODULE, 226 }; 227 228 static int __net_init ip6mr_rules_init(struct net *net) 229 { 230 struct fib_rules_ops *ops; 231 struct mr_table *mrt; 232 int err; 233 234 ops = fib_rules_register(&ip6mr_rules_ops_template, net); 235 if (IS_ERR(ops)) 236 return PTR_ERR(ops); 237 238 INIT_LIST_HEAD(&net->ipv6.mr6_tables); 239 240 mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); 241 if (IS_ERR(mrt)) { 242 err = PTR_ERR(mrt); 243 goto err1; 244 } 245 246 err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0); 247 if (err < 0) 248 goto err2; 249 250 net->ipv6.mr6_rules_ops = ops; 251 return 0; 252 253 err2: 254 ip6mr_free_table(mrt); 255 err1: 256 fib_rules_unregister(ops); 257 return err; 258 } 259 260 static void __net_exit ip6mr_rules_exit(struct net *net) 261 { 262 struct mr_table *mrt, *next; 263 264 rtnl_lock(); 265 list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) { 266 list_del(&mrt->list); 267 ip6mr_free_table(mrt); 268 } 269 fib_rules_unregister(net->ipv6.mr6_rules_ops); 270 rtnl_unlock(); 271 } 272 273 static int ip6mr_rules_dump(struct net *net, struct notifier_block *nb) 274 { 275 return fib_rules_dump(net, nb, RTNL_FAMILY_IP6MR); 276 } 277 278 static unsigned int ip6mr_rules_seq_read(struct net *net) 279 { 280 return fib_rules_seq_read(net, RTNL_FAMILY_IP6MR); 281 } 282 283 bool ip6mr_rule_default(const struct fib_rule *rule) 284 { 285 return fib_rule_matchall(rule) && rule->action == FR_ACT_TO_TBL && 286 rule->table == RT6_TABLE_DFLT && !rule->l3mdev; 287 } 288 EXPORT_SYMBOL(ip6mr_rule_default); 289 #else 290 #define ip6mr_for_each_table(mrt, net) \ 291 for (mrt = net->ipv6.mrt6; mrt; mrt = NULL) 292 293 static struct mr_table *ip6mr_mr_table_iter(struct net *net, 294 struct mr_table *mrt) 295 { 296 if (!mrt) 297 return net->ipv6.mrt6; 298 return NULL; 299 } 300 301 static struct mr_table *ip6mr_get_table(struct net *net, u32 id) 302 { 303 return net->ipv6.mrt6; 304 } 305 306 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 307 struct mr_table **mrt) 308 { 309 *mrt = net->ipv6.mrt6; 310 return 0; 311 } 312 313 static int __net_init ip6mr_rules_init(struct net *net) 314 { 315 struct mr_table *mrt; 316 317 mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); 318 if (IS_ERR(mrt)) 319 return PTR_ERR(mrt); 320 net->ipv6.mrt6 = mrt; 321 return 0; 322 } 323 324 static void __net_exit ip6mr_rules_exit(struct net *net) 325 { 326 rtnl_lock(); 327 ip6mr_free_table(net->ipv6.mrt6); 328 net->ipv6.mrt6 = NULL; 329 rtnl_unlock(); 330 } 331 332 static int ip6mr_rules_dump(struct net *net, struct notifier_block *nb) 333 { 334 return 0; 335 } 336 337 static unsigned int ip6mr_rules_seq_read(struct net *net) 338 { 339 return 0; 340 } 341 #endif 342 343 static int ip6mr_hash_cmp(struct rhashtable_compare_arg *arg, 344 const void *ptr) 345 { 346 const struct mfc6_cache_cmp_arg *cmparg = arg->key; 347 struct mfc6_cache *c = (struct mfc6_cache *)ptr; 348 349 return !ipv6_addr_equal(&c->mf6c_mcastgrp, &cmparg->mf6c_mcastgrp) || 350 !ipv6_addr_equal(&c->mf6c_origin, &cmparg->mf6c_origin); 351 } 352 353 static const struct rhashtable_params ip6mr_rht_params = { 354 .head_offset = offsetof(struct mr_mfc, mnode), 355 .key_offset = offsetof(struct mfc6_cache, cmparg), 356 .key_len = sizeof(struct mfc6_cache_cmp_arg), 357 .nelem_hint = 3, 358 .obj_cmpfn = ip6mr_hash_cmp, 359 .automatic_shrinking = true, 360 }; 361 362 static void ip6mr_new_table_set(struct mr_table *mrt, 363 struct net *net) 364 { 365 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 366 list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables); 367 #endif 368 } 369 370 static struct mfc6_cache_cmp_arg ip6mr_mr_table_ops_cmparg_any = { 371 .mf6c_origin = IN6ADDR_ANY_INIT, 372 .mf6c_mcastgrp = IN6ADDR_ANY_INIT, 373 }; 374 375 static struct mr_table_ops ip6mr_mr_table_ops = { 376 .rht_params = &ip6mr_rht_params, 377 .cmparg_any = &ip6mr_mr_table_ops_cmparg_any, 378 }; 379 380 static struct mr_table *ip6mr_new_table(struct net *net, u32 id) 381 { 382 struct mr_table *mrt; 383 384 mrt = ip6mr_get_table(net, id); 385 if (mrt) 386 return mrt; 387 388 return mr_table_alloc(net, id, &ip6mr_mr_table_ops, 389 ipmr_expire_process, ip6mr_new_table_set); 390 } 391 392 static void ip6mr_free_table(struct mr_table *mrt) 393 { 394 del_timer_sync(&mrt->ipmr_expire_timer); 395 mroute_clean_tables(mrt, MRT6_FLUSH_MIFS | MRT6_FLUSH_MIFS_STATIC | 396 MRT6_FLUSH_MFC | MRT6_FLUSH_MFC_STATIC); 397 rhltable_destroy(&mrt->mfc_hash); 398 kfree(mrt); 399 } 400 401 #ifdef CONFIG_PROC_FS 402 /* The /proc interfaces to multicast routing 403 * /proc/ip6_mr_cache /proc/ip6_mr_vif 404 */ 405 406 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos) 407 __acquires(mrt_lock) 408 { 409 struct mr_vif_iter *iter = seq->private; 410 struct net *net = seq_file_net(seq); 411 struct mr_table *mrt; 412 413 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 414 if (!mrt) 415 return ERR_PTR(-ENOENT); 416 417 iter->mrt = mrt; 418 419 read_lock(&mrt_lock); 420 return mr_vif_seq_start(seq, pos); 421 } 422 423 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v) 424 __releases(mrt_lock) 425 { 426 read_unlock(&mrt_lock); 427 } 428 429 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v) 430 { 431 struct mr_vif_iter *iter = seq->private; 432 struct mr_table *mrt = iter->mrt; 433 434 if (v == SEQ_START_TOKEN) { 435 seq_puts(seq, 436 "Interface BytesIn PktsIn BytesOut PktsOut Flags\n"); 437 } else { 438 const struct vif_device *vif = v; 439 const char *name = vif->dev ? vif->dev->name : "none"; 440 441 seq_printf(seq, 442 "%2td %-10s %8ld %7ld %8ld %7ld %05X\n", 443 vif - mrt->vif_table, 444 name, vif->bytes_in, vif->pkt_in, 445 vif->bytes_out, vif->pkt_out, 446 vif->flags); 447 } 448 return 0; 449 } 450 451 static const struct seq_operations ip6mr_vif_seq_ops = { 452 .start = ip6mr_vif_seq_start, 453 .next = mr_vif_seq_next, 454 .stop = ip6mr_vif_seq_stop, 455 .show = ip6mr_vif_seq_show, 456 }; 457 458 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 459 { 460 struct net *net = seq_file_net(seq); 461 struct mr_table *mrt; 462 463 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 464 if (!mrt) 465 return ERR_PTR(-ENOENT); 466 467 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock); 468 } 469 470 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 471 { 472 int n; 473 474 if (v == SEQ_START_TOKEN) { 475 seq_puts(seq, 476 "Group " 477 "Origin " 478 "Iif Pkts Bytes Wrong Oifs\n"); 479 } else { 480 const struct mfc6_cache *mfc = v; 481 const struct mr_mfc_iter *it = seq->private; 482 struct mr_table *mrt = it->mrt; 483 484 seq_printf(seq, "%pI6 %pI6 %-3hd", 485 &mfc->mf6c_mcastgrp, &mfc->mf6c_origin, 486 mfc->_c.mfc_parent); 487 488 if (it->cache != &mrt->mfc_unres_queue) { 489 seq_printf(seq, " %8lu %8lu %8lu", 490 mfc->_c.mfc_un.res.pkt, 491 mfc->_c.mfc_un.res.bytes, 492 mfc->_c.mfc_un.res.wrong_if); 493 for (n = mfc->_c.mfc_un.res.minvif; 494 n < mfc->_c.mfc_un.res.maxvif; n++) { 495 if (VIF_EXISTS(mrt, n) && 496 mfc->_c.mfc_un.res.ttls[n] < 255) 497 seq_printf(seq, 498 " %2d:%-3d", n, 499 mfc->_c.mfc_un.res.ttls[n]); 500 } 501 } else { 502 /* unresolved mfc_caches don't contain 503 * pkt, bytes and wrong_if values 504 */ 505 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 506 } 507 seq_putc(seq, '\n'); 508 } 509 return 0; 510 } 511 512 static const struct seq_operations ipmr_mfc_seq_ops = { 513 .start = ipmr_mfc_seq_start, 514 .next = mr_mfc_seq_next, 515 .stop = mr_mfc_seq_stop, 516 .show = ipmr_mfc_seq_show, 517 }; 518 #endif 519 520 #ifdef CONFIG_IPV6_PIMSM_V2 521 522 static int pim6_rcv(struct sk_buff *skb) 523 { 524 struct pimreghdr *pim; 525 struct ipv6hdr *encap; 526 struct net_device *reg_dev = NULL; 527 struct net *net = dev_net(skb->dev); 528 struct mr_table *mrt; 529 struct flowi6 fl6 = { 530 .flowi6_iif = skb->dev->ifindex, 531 .flowi6_mark = skb->mark, 532 }; 533 int reg_vif_num; 534 535 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap))) 536 goto drop; 537 538 pim = (struct pimreghdr *)skb_transport_header(skb); 539 if (pim->type != ((PIM_VERSION << 4) | PIM_TYPE_REGISTER) || 540 (pim->flags & PIM_NULL_REGISTER) || 541 (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 542 sizeof(*pim), IPPROTO_PIM, 543 csum_partial((void *)pim, sizeof(*pim), 0)) && 544 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 545 goto drop; 546 547 /* check if the inner packet is destined to mcast group */ 548 encap = (struct ipv6hdr *)(skb_transport_header(skb) + 549 sizeof(*pim)); 550 551 if (!ipv6_addr_is_multicast(&encap->daddr) || 552 encap->payload_len == 0 || 553 ntohs(encap->payload_len) + sizeof(*pim) > skb->len) 554 goto drop; 555 556 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 557 goto drop; 558 reg_vif_num = mrt->mroute_reg_vif_num; 559 560 read_lock(&mrt_lock); 561 if (reg_vif_num >= 0) 562 reg_dev = mrt->vif_table[reg_vif_num].dev; 563 if (reg_dev) 564 dev_hold(reg_dev); 565 read_unlock(&mrt_lock); 566 567 if (!reg_dev) 568 goto drop; 569 570 skb->mac_header = skb->network_header; 571 skb_pull(skb, (u8 *)encap - skb->data); 572 skb_reset_network_header(skb); 573 skb->protocol = htons(ETH_P_IPV6); 574 skb->ip_summed = CHECKSUM_NONE; 575 576 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 577 578 netif_rx(skb); 579 580 dev_put(reg_dev); 581 return 0; 582 drop: 583 kfree_skb(skb); 584 return 0; 585 } 586 587 static const struct inet6_protocol pim6_protocol = { 588 .handler = pim6_rcv, 589 }; 590 591 /* Service routines creating virtual interfaces: PIMREG */ 592 593 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, 594 struct net_device *dev) 595 { 596 struct net *net = dev_net(dev); 597 struct mr_table *mrt; 598 struct flowi6 fl6 = { 599 .flowi6_oif = dev->ifindex, 600 .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 601 .flowi6_mark = skb->mark, 602 }; 603 604 if (!pskb_inet_may_pull(skb)) 605 goto tx_err; 606 607 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 608 goto tx_err; 609 610 read_lock(&mrt_lock); 611 dev->stats.tx_bytes += skb->len; 612 dev->stats.tx_packets++; 613 ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT); 614 read_unlock(&mrt_lock); 615 kfree_skb(skb); 616 return NETDEV_TX_OK; 617 618 tx_err: 619 dev->stats.tx_errors++; 620 kfree_skb(skb); 621 return NETDEV_TX_OK; 622 } 623 624 static int reg_vif_get_iflink(const struct net_device *dev) 625 { 626 return 0; 627 } 628 629 static const struct net_device_ops reg_vif_netdev_ops = { 630 .ndo_start_xmit = reg_vif_xmit, 631 .ndo_get_iflink = reg_vif_get_iflink, 632 }; 633 634 static void reg_vif_setup(struct net_device *dev) 635 { 636 dev->type = ARPHRD_PIMREG; 637 dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8; 638 dev->flags = IFF_NOARP; 639 dev->netdev_ops = ®_vif_netdev_ops; 640 dev->needs_free_netdev = true; 641 dev->features |= NETIF_F_NETNS_LOCAL; 642 } 643 644 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr_table *mrt) 645 { 646 struct net_device *dev; 647 char name[IFNAMSIZ]; 648 649 if (mrt->id == RT6_TABLE_DFLT) 650 sprintf(name, "pim6reg"); 651 else 652 sprintf(name, "pim6reg%u", mrt->id); 653 654 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 655 if (!dev) 656 return NULL; 657 658 dev_net_set(dev, net); 659 660 if (register_netdevice(dev)) { 661 free_netdev(dev); 662 return NULL; 663 } 664 665 if (dev_open(dev, NULL)) 666 goto failure; 667 668 dev_hold(dev); 669 return dev; 670 671 failure: 672 unregister_netdevice(dev); 673 return NULL; 674 } 675 #endif 676 677 static int call_ip6mr_vif_entry_notifiers(struct net *net, 678 enum fib_event_type event_type, 679 struct vif_device *vif, 680 mifi_t vif_index, u32 tb_id) 681 { 682 return mr_call_vif_notifiers(net, RTNL_FAMILY_IP6MR, event_type, 683 vif, vif_index, tb_id, 684 &net->ipv6.ipmr_seq); 685 } 686 687 static int call_ip6mr_mfc_entry_notifiers(struct net *net, 688 enum fib_event_type event_type, 689 struct mfc6_cache *mfc, u32 tb_id) 690 { 691 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IP6MR, event_type, 692 &mfc->_c, tb_id, &net->ipv6.ipmr_seq); 693 } 694 695 /* Delete a VIF entry */ 696 static int mif6_delete(struct mr_table *mrt, int vifi, int notify, 697 struct list_head *head) 698 { 699 struct vif_device *v; 700 struct net_device *dev; 701 struct inet6_dev *in6_dev; 702 703 if (vifi < 0 || vifi >= mrt->maxvif) 704 return -EADDRNOTAVAIL; 705 706 v = &mrt->vif_table[vifi]; 707 708 if (VIF_EXISTS(mrt, vifi)) 709 call_ip6mr_vif_entry_notifiers(read_pnet(&mrt->net), 710 FIB_EVENT_VIF_DEL, v, vifi, 711 mrt->id); 712 713 write_lock_bh(&mrt_lock); 714 dev = v->dev; 715 v->dev = NULL; 716 717 if (!dev) { 718 write_unlock_bh(&mrt_lock); 719 return -EADDRNOTAVAIL; 720 } 721 722 #ifdef CONFIG_IPV6_PIMSM_V2 723 if (vifi == mrt->mroute_reg_vif_num) 724 mrt->mroute_reg_vif_num = -1; 725 #endif 726 727 if (vifi + 1 == mrt->maxvif) { 728 int tmp; 729 for (tmp = vifi - 1; tmp >= 0; tmp--) { 730 if (VIF_EXISTS(mrt, tmp)) 731 break; 732 } 733 mrt->maxvif = tmp + 1; 734 } 735 736 write_unlock_bh(&mrt_lock); 737 738 dev_set_allmulti(dev, -1); 739 740 in6_dev = __in6_dev_get(dev); 741 if (in6_dev) { 742 in6_dev->cnf.mc_forwarding--; 743 inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 744 NETCONFA_MC_FORWARDING, 745 dev->ifindex, &in6_dev->cnf); 746 } 747 748 if ((v->flags & MIFF_REGISTER) && !notify) 749 unregister_netdevice_queue(dev, head); 750 751 dev_put(dev); 752 return 0; 753 } 754 755 static inline void ip6mr_cache_free_rcu(struct rcu_head *head) 756 { 757 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu); 758 759 kmem_cache_free(mrt_cachep, (struct mfc6_cache *)c); 760 } 761 762 static inline void ip6mr_cache_free(struct mfc6_cache *c) 763 { 764 call_rcu(&c->_c.rcu, ip6mr_cache_free_rcu); 765 } 766 767 /* Destroy an unresolved cache entry, killing queued skbs 768 and reporting error to netlink readers. 769 */ 770 771 static void ip6mr_destroy_unres(struct mr_table *mrt, struct mfc6_cache *c) 772 { 773 struct net *net = read_pnet(&mrt->net); 774 struct sk_buff *skb; 775 776 atomic_dec(&mrt->cache_resolve_queue_len); 777 778 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved)) != NULL) { 779 if (ipv6_hdr(skb)->version == 0) { 780 struct nlmsghdr *nlh = skb_pull(skb, 781 sizeof(struct ipv6hdr)); 782 nlh->nlmsg_type = NLMSG_ERROR; 783 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 784 skb_trim(skb, nlh->nlmsg_len); 785 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT; 786 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 787 } else 788 kfree_skb(skb); 789 } 790 791 ip6mr_cache_free(c); 792 } 793 794 795 /* Timer process for all the unresolved queue. */ 796 797 static void ipmr_do_expire_process(struct mr_table *mrt) 798 { 799 unsigned long now = jiffies; 800 unsigned long expires = 10 * HZ; 801 struct mr_mfc *c, *next; 802 803 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) { 804 if (time_after(c->mfc_un.unres.expires, now)) { 805 /* not yet... */ 806 unsigned long interval = c->mfc_un.unres.expires - now; 807 if (interval < expires) 808 expires = interval; 809 continue; 810 } 811 812 list_del(&c->list); 813 mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE); 814 ip6mr_destroy_unres(mrt, (struct mfc6_cache *)c); 815 } 816 817 if (!list_empty(&mrt->mfc_unres_queue)) 818 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 819 } 820 821 static void ipmr_expire_process(struct timer_list *t) 822 { 823 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 824 825 if (!spin_trylock(&mfc_unres_lock)) { 826 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1); 827 return; 828 } 829 830 if (!list_empty(&mrt->mfc_unres_queue)) 831 ipmr_do_expire_process(mrt); 832 833 spin_unlock(&mfc_unres_lock); 834 } 835 836 /* Fill oifs list. It is called under write locked mrt_lock. */ 837 838 static void ip6mr_update_thresholds(struct mr_table *mrt, 839 struct mr_mfc *cache, 840 unsigned char *ttls) 841 { 842 int vifi; 843 844 cache->mfc_un.res.minvif = MAXMIFS; 845 cache->mfc_un.res.maxvif = 0; 846 memset(cache->mfc_un.res.ttls, 255, MAXMIFS); 847 848 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 849 if (VIF_EXISTS(mrt, vifi) && 850 ttls[vifi] && ttls[vifi] < 255) { 851 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 852 if (cache->mfc_un.res.minvif > vifi) 853 cache->mfc_un.res.minvif = vifi; 854 if (cache->mfc_un.res.maxvif <= vifi) 855 cache->mfc_un.res.maxvif = vifi + 1; 856 } 857 } 858 cache->mfc_un.res.lastuse = jiffies; 859 } 860 861 static int mif6_add(struct net *net, struct mr_table *mrt, 862 struct mif6ctl *vifc, int mrtsock) 863 { 864 int vifi = vifc->mif6c_mifi; 865 struct vif_device *v = &mrt->vif_table[vifi]; 866 struct net_device *dev; 867 struct inet6_dev *in6_dev; 868 int err; 869 870 /* Is vif busy ? */ 871 if (VIF_EXISTS(mrt, vifi)) 872 return -EADDRINUSE; 873 874 switch (vifc->mif6c_flags) { 875 #ifdef CONFIG_IPV6_PIMSM_V2 876 case MIFF_REGISTER: 877 /* 878 * Special Purpose VIF in PIM 879 * All the packets will be sent to the daemon 880 */ 881 if (mrt->mroute_reg_vif_num >= 0) 882 return -EADDRINUSE; 883 dev = ip6mr_reg_vif(net, mrt); 884 if (!dev) 885 return -ENOBUFS; 886 err = dev_set_allmulti(dev, 1); 887 if (err) { 888 unregister_netdevice(dev); 889 dev_put(dev); 890 return err; 891 } 892 break; 893 #endif 894 case 0: 895 dev = dev_get_by_index(net, vifc->mif6c_pifi); 896 if (!dev) 897 return -EADDRNOTAVAIL; 898 err = dev_set_allmulti(dev, 1); 899 if (err) { 900 dev_put(dev); 901 return err; 902 } 903 break; 904 default: 905 return -EINVAL; 906 } 907 908 in6_dev = __in6_dev_get(dev); 909 if (in6_dev) { 910 in6_dev->cnf.mc_forwarding++; 911 inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 912 NETCONFA_MC_FORWARDING, 913 dev->ifindex, &in6_dev->cnf); 914 } 915 916 /* Fill in the VIF structures */ 917 vif_device_init(v, dev, vifc->vifc_rate_limit, vifc->vifc_threshold, 918 vifc->mif6c_flags | (!mrtsock ? VIFF_STATIC : 0), 919 MIFF_REGISTER); 920 921 /* And finish update writing critical data */ 922 write_lock_bh(&mrt_lock); 923 v->dev = dev; 924 #ifdef CONFIG_IPV6_PIMSM_V2 925 if (v->flags & MIFF_REGISTER) 926 mrt->mroute_reg_vif_num = vifi; 927 #endif 928 if (vifi + 1 > mrt->maxvif) 929 mrt->maxvif = vifi + 1; 930 write_unlock_bh(&mrt_lock); 931 call_ip6mr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, 932 v, vifi, mrt->id); 933 return 0; 934 } 935 936 static struct mfc6_cache *ip6mr_cache_find(struct mr_table *mrt, 937 const struct in6_addr *origin, 938 const struct in6_addr *mcastgrp) 939 { 940 struct mfc6_cache_cmp_arg arg = { 941 .mf6c_origin = *origin, 942 .mf6c_mcastgrp = *mcastgrp, 943 }; 944 945 return mr_mfc_find(mrt, &arg); 946 } 947 948 /* Look for a (*,G) entry */ 949 static struct mfc6_cache *ip6mr_cache_find_any(struct mr_table *mrt, 950 struct in6_addr *mcastgrp, 951 mifi_t mifi) 952 { 953 struct mfc6_cache_cmp_arg arg = { 954 .mf6c_origin = in6addr_any, 955 .mf6c_mcastgrp = *mcastgrp, 956 }; 957 958 if (ipv6_addr_any(mcastgrp)) 959 return mr_mfc_find_any_parent(mrt, mifi); 960 return mr_mfc_find_any(mrt, mifi, &arg); 961 } 962 963 /* Look for a (S,G,iif) entry if parent != -1 */ 964 static struct mfc6_cache * 965 ip6mr_cache_find_parent(struct mr_table *mrt, 966 const struct in6_addr *origin, 967 const struct in6_addr *mcastgrp, 968 int parent) 969 { 970 struct mfc6_cache_cmp_arg arg = { 971 .mf6c_origin = *origin, 972 .mf6c_mcastgrp = *mcastgrp, 973 }; 974 975 return mr_mfc_find_parent(mrt, &arg, parent); 976 } 977 978 /* Allocate a multicast cache entry */ 979 static struct mfc6_cache *ip6mr_cache_alloc(void) 980 { 981 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 982 if (!c) 983 return NULL; 984 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 985 c->_c.mfc_un.res.minvif = MAXMIFS; 986 c->_c.free = ip6mr_cache_free_rcu; 987 refcount_set(&c->_c.mfc_un.res.refcount, 1); 988 return c; 989 } 990 991 static struct mfc6_cache *ip6mr_cache_alloc_unres(void) 992 { 993 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 994 if (!c) 995 return NULL; 996 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved); 997 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ; 998 return c; 999 } 1000 1001 /* 1002 * A cache entry has gone into a resolved state from queued 1003 */ 1004 1005 static void ip6mr_cache_resolve(struct net *net, struct mr_table *mrt, 1006 struct mfc6_cache *uc, struct mfc6_cache *c) 1007 { 1008 struct sk_buff *skb; 1009 1010 /* 1011 * Play the pending entries through our router 1012 */ 1013 1014 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) { 1015 if (ipv6_hdr(skb)->version == 0) { 1016 struct nlmsghdr *nlh = skb_pull(skb, 1017 sizeof(struct ipv6hdr)); 1018 1019 if (mr_fill_mroute(mrt, skb, &c->_c, 1020 nlmsg_data(nlh)) > 0) { 1021 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh; 1022 } else { 1023 nlh->nlmsg_type = NLMSG_ERROR; 1024 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1025 skb_trim(skb, nlh->nlmsg_len); 1026 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE; 1027 } 1028 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1029 } else 1030 ip6_mr_forward(net, mrt, skb->dev, skb, c); 1031 } 1032 } 1033 1034 /* 1035 * Bounce a cache query up to pim6sd and netlink. 1036 * 1037 * Called under mrt_lock. 1038 */ 1039 1040 static int ip6mr_cache_report(struct mr_table *mrt, struct sk_buff *pkt, 1041 mifi_t mifi, int assert) 1042 { 1043 struct sock *mroute6_sk; 1044 struct sk_buff *skb; 1045 struct mrt6msg *msg; 1046 int ret; 1047 1048 #ifdef CONFIG_IPV6_PIMSM_V2 1049 if (assert == MRT6MSG_WHOLEPKT) 1050 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt) 1051 +sizeof(*msg)); 1052 else 1053 #endif 1054 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC); 1055 1056 if (!skb) 1057 return -ENOBUFS; 1058 1059 /* I suppose that internal messages 1060 * do not require checksums */ 1061 1062 skb->ip_summed = CHECKSUM_UNNECESSARY; 1063 1064 #ifdef CONFIG_IPV6_PIMSM_V2 1065 if (assert == MRT6MSG_WHOLEPKT) { 1066 /* Ugly, but we have no choice with this interface. 1067 Duplicate old header, fix length etc. 1068 And all this only to mangle msg->im6_msgtype and 1069 to set msg->im6_mbz to "mbz" :-) 1070 */ 1071 skb_push(skb, -skb_network_offset(pkt)); 1072 1073 skb_push(skb, sizeof(*msg)); 1074 skb_reset_transport_header(skb); 1075 msg = (struct mrt6msg *)skb_transport_header(skb); 1076 msg->im6_mbz = 0; 1077 msg->im6_msgtype = MRT6MSG_WHOLEPKT; 1078 msg->im6_mif = mrt->mroute_reg_vif_num; 1079 msg->im6_pad = 0; 1080 msg->im6_src = ipv6_hdr(pkt)->saddr; 1081 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1082 1083 skb->ip_summed = CHECKSUM_UNNECESSARY; 1084 } else 1085 #endif 1086 { 1087 /* 1088 * Copy the IP header 1089 */ 1090 1091 skb_put(skb, sizeof(struct ipv6hdr)); 1092 skb_reset_network_header(skb); 1093 skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr)); 1094 1095 /* 1096 * Add our header 1097 */ 1098 skb_put(skb, sizeof(*msg)); 1099 skb_reset_transport_header(skb); 1100 msg = (struct mrt6msg *)skb_transport_header(skb); 1101 1102 msg->im6_mbz = 0; 1103 msg->im6_msgtype = assert; 1104 msg->im6_mif = mifi; 1105 msg->im6_pad = 0; 1106 msg->im6_src = ipv6_hdr(pkt)->saddr; 1107 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1108 1109 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1110 skb->ip_summed = CHECKSUM_UNNECESSARY; 1111 } 1112 1113 rcu_read_lock(); 1114 mroute6_sk = rcu_dereference(mrt->mroute_sk); 1115 if (!mroute6_sk) { 1116 rcu_read_unlock(); 1117 kfree_skb(skb); 1118 return -EINVAL; 1119 } 1120 1121 mrt6msg_netlink_event(mrt, skb); 1122 1123 /* Deliver to user space multicast routing algorithms */ 1124 ret = sock_queue_rcv_skb(mroute6_sk, skb); 1125 rcu_read_unlock(); 1126 if (ret < 0) { 1127 net_warn_ratelimited("mroute6: pending queue full, dropping entries\n"); 1128 kfree_skb(skb); 1129 } 1130 1131 return ret; 1132 } 1133 1134 /* Queue a packet for resolution. It gets locked cache entry! */ 1135 static int ip6mr_cache_unresolved(struct mr_table *mrt, mifi_t mifi, 1136 struct sk_buff *skb, struct net_device *dev) 1137 { 1138 struct mfc6_cache *c; 1139 bool found = false; 1140 int err; 1141 1142 spin_lock_bh(&mfc_unres_lock); 1143 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) { 1144 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) && 1145 ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) { 1146 found = true; 1147 break; 1148 } 1149 } 1150 1151 if (!found) { 1152 /* 1153 * Create a new entry if allowable 1154 */ 1155 1156 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1157 (c = ip6mr_cache_alloc_unres()) == NULL) { 1158 spin_unlock_bh(&mfc_unres_lock); 1159 1160 kfree_skb(skb); 1161 return -ENOBUFS; 1162 } 1163 1164 /* Fill in the new cache entry */ 1165 c->_c.mfc_parent = -1; 1166 c->mf6c_origin = ipv6_hdr(skb)->saddr; 1167 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr; 1168 1169 /* 1170 * Reflect first query at pim6sd 1171 */ 1172 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE); 1173 if (err < 0) { 1174 /* If the report failed throw the cache entry 1175 out - Brad Parker 1176 */ 1177 spin_unlock_bh(&mfc_unres_lock); 1178 1179 ip6mr_cache_free(c); 1180 kfree_skb(skb); 1181 return err; 1182 } 1183 1184 atomic_inc(&mrt->cache_resolve_queue_len); 1185 list_add(&c->_c.list, &mrt->mfc_unres_queue); 1186 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1187 1188 ipmr_do_expire_process(mrt); 1189 } 1190 1191 /* See if we can append the packet */ 1192 if (c->_c.mfc_un.unres.unresolved.qlen > 3) { 1193 kfree_skb(skb); 1194 err = -ENOBUFS; 1195 } else { 1196 if (dev) { 1197 skb->dev = dev; 1198 skb->skb_iif = dev->ifindex; 1199 } 1200 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb); 1201 err = 0; 1202 } 1203 1204 spin_unlock_bh(&mfc_unres_lock); 1205 return err; 1206 } 1207 1208 /* 1209 * MFC6 cache manipulation by user space 1210 */ 1211 1212 static int ip6mr_mfc_delete(struct mr_table *mrt, struct mf6cctl *mfc, 1213 int parent) 1214 { 1215 struct mfc6_cache *c; 1216 1217 /* The entries are added/deleted only under RTNL */ 1218 rcu_read_lock(); 1219 c = ip6mr_cache_find_parent(mrt, &mfc->mf6cc_origin.sin6_addr, 1220 &mfc->mf6cc_mcastgrp.sin6_addr, parent); 1221 rcu_read_unlock(); 1222 if (!c) 1223 return -ENOENT; 1224 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ip6mr_rht_params); 1225 list_del_rcu(&c->_c.list); 1226 1227 call_ip6mr_mfc_entry_notifiers(read_pnet(&mrt->net), 1228 FIB_EVENT_ENTRY_DEL, c, mrt->id); 1229 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1230 mr_cache_put(&c->_c); 1231 return 0; 1232 } 1233 1234 static int ip6mr_device_event(struct notifier_block *this, 1235 unsigned long event, void *ptr) 1236 { 1237 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1238 struct net *net = dev_net(dev); 1239 struct mr_table *mrt; 1240 struct vif_device *v; 1241 int ct; 1242 1243 if (event != NETDEV_UNREGISTER) 1244 return NOTIFY_DONE; 1245 1246 ip6mr_for_each_table(mrt, net) { 1247 v = &mrt->vif_table[0]; 1248 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1249 if (v->dev == dev) 1250 mif6_delete(mrt, ct, 1, NULL); 1251 } 1252 } 1253 1254 return NOTIFY_DONE; 1255 } 1256 1257 static unsigned int ip6mr_seq_read(struct net *net) 1258 { 1259 ASSERT_RTNL(); 1260 1261 return net->ipv6.ipmr_seq + ip6mr_rules_seq_read(net); 1262 } 1263 1264 static int ip6mr_dump(struct net *net, struct notifier_block *nb) 1265 { 1266 return mr_dump(net, nb, RTNL_FAMILY_IP6MR, ip6mr_rules_dump, 1267 ip6mr_mr_table_iter, &mrt_lock); 1268 } 1269 1270 static struct notifier_block ip6_mr_notifier = { 1271 .notifier_call = ip6mr_device_event 1272 }; 1273 1274 static const struct fib_notifier_ops ip6mr_notifier_ops_template = { 1275 .family = RTNL_FAMILY_IP6MR, 1276 .fib_seq_read = ip6mr_seq_read, 1277 .fib_dump = ip6mr_dump, 1278 .owner = THIS_MODULE, 1279 }; 1280 1281 static int __net_init ip6mr_notifier_init(struct net *net) 1282 { 1283 struct fib_notifier_ops *ops; 1284 1285 net->ipv6.ipmr_seq = 0; 1286 1287 ops = fib_notifier_ops_register(&ip6mr_notifier_ops_template, net); 1288 if (IS_ERR(ops)) 1289 return PTR_ERR(ops); 1290 1291 net->ipv6.ip6mr_notifier_ops = ops; 1292 1293 return 0; 1294 } 1295 1296 static void __net_exit ip6mr_notifier_exit(struct net *net) 1297 { 1298 fib_notifier_ops_unregister(net->ipv6.ip6mr_notifier_ops); 1299 net->ipv6.ip6mr_notifier_ops = NULL; 1300 } 1301 1302 /* Setup for IP multicast routing */ 1303 static int __net_init ip6mr_net_init(struct net *net) 1304 { 1305 int err; 1306 1307 err = ip6mr_notifier_init(net); 1308 if (err) 1309 return err; 1310 1311 err = ip6mr_rules_init(net); 1312 if (err < 0) 1313 goto ip6mr_rules_fail; 1314 1315 #ifdef CONFIG_PROC_FS 1316 err = -ENOMEM; 1317 if (!proc_create_net("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_seq_ops, 1318 sizeof(struct mr_vif_iter))) 1319 goto proc_vif_fail; 1320 if (!proc_create_net("ip6_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops, 1321 sizeof(struct mr_mfc_iter))) 1322 goto proc_cache_fail; 1323 #endif 1324 1325 return 0; 1326 1327 #ifdef CONFIG_PROC_FS 1328 proc_cache_fail: 1329 remove_proc_entry("ip6_mr_vif", net->proc_net); 1330 proc_vif_fail: 1331 ip6mr_rules_exit(net); 1332 #endif 1333 ip6mr_rules_fail: 1334 ip6mr_notifier_exit(net); 1335 return err; 1336 } 1337 1338 static void __net_exit ip6mr_net_exit(struct net *net) 1339 { 1340 #ifdef CONFIG_PROC_FS 1341 remove_proc_entry("ip6_mr_cache", net->proc_net); 1342 remove_proc_entry("ip6_mr_vif", net->proc_net); 1343 #endif 1344 ip6mr_rules_exit(net); 1345 ip6mr_notifier_exit(net); 1346 } 1347 1348 static struct pernet_operations ip6mr_net_ops = { 1349 .init = ip6mr_net_init, 1350 .exit = ip6mr_net_exit, 1351 }; 1352 1353 int __init ip6_mr_init(void) 1354 { 1355 int err; 1356 1357 mrt_cachep = kmem_cache_create("ip6_mrt_cache", 1358 sizeof(struct mfc6_cache), 1359 0, SLAB_HWCACHE_ALIGN, 1360 NULL); 1361 if (!mrt_cachep) 1362 return -ENOMEM; 1363 1364 err = register_pernet_subsys(&ip6mr_net_ops); 1365 if (err) 1366 goto reg_pernet_fail; 1367 1368 err = register_netdevice_notifier(&ip6_mr_notifier); 1369 if (err) 1370 goto reg_notif_fail; 1371 #ifdef CONFIG_IPV6_PIMSM_V2 1372 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) { 1373 pr_err("%s: can't add PIM protocol\n", __func__); 1374 err = -EAGAIN; 1375 goto add_proto_fail; 1376 } 1377 #endif 1378 err = rtnl_register_module(THIS_MODULE, RTNL_FAMILY_IP6MR, RTM_GETROUTE, 1379 NULL, ip6mr_rtm_dumproute, 0); 1380 if (err == 0) 1381 return 0; 1382 1383 #ifdef CONFIG_IPV6_PIMSM_V2 1384 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); 1385 add_proto_fail: 1386 unregister_netdevice_notifier(&ip6_mr_notifier); 1387 #endif 1388 reg_notif_fail: 1389 unregister_pernet_subsys(&ip6mr_net_ops); 1390 reg_pernet_fail: 1391 kmem_cache_destroy(mrt_cachep); 1392 return err; 1393 } 1394 1395 void ip6_mr_cleanup(void) 1396 { 1397 rtnl_unregister(RTNL_FAMILY_IP6MR, RTM_GETROUTE); 1398 #ifdef CONFIG_IPV6_PIMSM_V2 1399 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); 1400 #endif 1401 unregister_netdevice_notifier(&ip6_mr_notifier); 1402 unregister_pernet_subsys(&ip6mr_net_ops); 1403 kmem_cache_destroy(mrt_cachep); 1404 } 1405 1406 static int ip6mr_mfc_add(struct net *net, struct mr_table *mrt, 1407 struct mf6cctl *mfc, int mrtsock, int parent) 1408 { 1409 unsigned char ttls[MAXMIFS]; 1410 struct mfc6_cache *uc, *c; 1411 struct mr_mfc *_uc; 1412 bool found; 1413 int i, err; 1414 1415 if (mfc->mf6cc_parent >= MAXMIFS) 1416 return -ENFILE; 1417 1418 memset(ttls, 255, MAXMIFS); 1419 for (i = 0; i < MAXMIFS; i++) { 1420 if (IF_ISSET(i, &mfc->mf6cc_ifset)) 1421 ttls[i] = 1; 1422 } 1423 1424 /* The entries are added/deleted only under RTNL */ 1425 rcu_read_lock(); 1426 c = ip6mr_cache_find_parent(mrt, &mfc->mf6cc_origin.sin6_addr, 1427 &mfc->mf6cc_mcastgrp.sin6_addr, parent); 1428 rcu_read_unlock(); 1429 if (c) { 1430 write_lock_bh(&mrt_lock); 1431 c->_c.mfc_parent = mfc->mf6cc_parent; 1432 ip6mr_update_thresholds(mrt, &c->_c, ttls); 1433 if (!mrtsock) 1434 c->_c.mfc_flags |= MFC_STATIC; 1435 write_unlock_bh(&mrt_lock); 1436 call_ip6mr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, 1437 c, mrt->id); 1438 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1439 return 0; 1440 } 1441 1442 if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) && 1443 !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr)) 1444 return -EINVAL; 1445 1446 c = ip6mr_cache_alloc(); 1447 if (!c) 1448 return -ENOMEM; 1449 1450 c->mf6c_origin = mfc->mf6cc_origin.sin6_addr; 1451 c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr; 1452 c->_c.mfc_parent = mfc->mf6cc_parent; 1453 ip6mr_update_thresholds(mrt, &c->_c, ttls); 1454 if (!mrtsock) 1455 c->_c.mfc_flags |= MFC_STATIC; 1456 1457 err = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode, 1458 ip6mr_rht_params); 1459 if (err) { 1460 pr_err("ip6mr: rhtable insert error %d\n", err); 1461 ip6mr_cache_free(c); 1462 return err; 1463 } 1464 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list); 1465 1466 /* Check to see if we resolved a queued list. If so we 1467 * need to send on the frames and tidy up. 1468 */ 1469 found = false; 1470 spin_lock_bh(&mfc_unres_lock); 1471 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) { 1472 uc = (struct mfc6_cache *)_uc; 1473 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) && 1474 ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) { 1475 list_del(&_uc->list); 1476 atomic_dec(&mrt->cache_resolve_queue_len); 1477 found = true; 1478 break; 1479 } 1480 } 1481 if (list_empty(&mrt->mfc_unres_queue)) 1482 del_timer(&mrt->ipmr_expire_timer); 1483 spin_unlock_bh(&mfc_unres_lock); 1484 1485 if (found) { 1486 ip6mr_cache_resolve(net, mrt, uc, c); 1487 ip6mr_cache_free(uc); 1488 } 1489 call_ip6mr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, 1490 c, mrt->id); 1491 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1492 return 0; 1493 } 1494 1495 /* 1496 * Close the multicast socket, and clear the vif tables etc 1497 */ 1498 1499 static void mroute_clean_tables(struct mr_table *mrt, int flags) 1500 { 1501 struct mr_mfc *c, *tmp; 1502 LIST_HEAD(list); 1503 int i; 1504 1505 /* Shut down all active vif entries */ 1506 if (flags & (MRT6_FLUSH_MIFS | MRT6_FLUSH_MIFS_STATIC)) { 1507 for (i = 0; i < mrt->maxvif; i++) { 1508 if (((mrt->vif_table[i].flags & VIFF_STATIC) && 1509 !(flags & MRT6_FLUSH_MIFS_STATIC)) || 1510 (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT6_FLUSH_MIFS))) 1511 continue; 1512 mif6_delete(mrt, i, 0, &list); 1513 } 1514 unregister_netdevice_many(&list); 1515 } 1516 1517 /* Wipe the cache */ 1518 if (flags & (MRT6_FLUSH_MFC | MRT6_FLUSH_MFC_STATIC)) { 1519 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) { 1520 if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT6_FLUSH_MFC_STATIC)) || 1521 (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT6_FLUSH_MFC))) 1522 continue; 1523 rhltable_remove(&mrt->mfc_hash, &c->mnode, ip6mr_rht_params); 1524 list_del_rcu(&c->list); 1525 call_ip6mr_mfc_entry_notifiers(read_pnet(&mrt->net), 1526 FIB_EVENT_ENTRY_DEL, 1527 (struct mfc6_cache *)c, mrt->id); 1528 mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE); 1529 mr_cache_put(c); 1530 } 1531 } 1532 1533 if (flags & MRT6_FLUSH_MFC) { 1534 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1535 spin_lock_bh(&mfc_unres_lock); 1536 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) { 1537 list_del(&c->list); 1538 mr6_netlink_event(mrt, (struct mfc6_cache *)c, 1539 RTM_DELROUTE); 1540 ip6mr_destroy_unres(mrt, (struct mfc6_cache *)c); 1541 } 1542 spin_unlock_bh(&mfc_unres_lock); 1543 } 1544 } 1545 } 1546 1547 static int ip6mr_sk_init(struct mr_table *mrt, struct sock *sk) 1548 { 1549 int err = 0; 1550 struct net *net = sock_net(sk); 1551 1552 rtnl_lock(); 1553 write_lock_bh(&mrt_lock); 1554 if (rtnl_dereference(mrt->mroute_sk)) { 1555 err = -EADDRINUSE; 1556 } else { 1557 rcu_assign_pointer(mrt->mroute_sk, sk); 1558 sock_set_flag(sk, SOCK_RCU_FREE); 1559 net->ipv6.devconf_all->mc_forwarding++; 1560 } 1561 write_unlock_bh(&mrt_lock); 1562 1563 if (!err) 1564 inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, 1565 NETCONFA_MC_FORWARDING, 1566 NETCONFA_IFINDEX_ALL, 1567 net->ipv6.devconf_all); 1568 rtnl_unlock(); 1569 1570 return err; 1571 } 1572 1573 int ip6mr_sk_done(struct sock *sk) 1574 { 1575 int err = -EACCES; 1576 struct net *net = sock_net(sk); 1577 struct mr_table *mrt; 1578 1579 if (sk->sk_type != SOCK_RAW || 1580 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1581 return err; 1582 1583 rtnl_lock(); 1584 ip6mr_for_each_table(mrt, net) { 1585 if (sk == rtnl_dereference(mrt->mroute_sk)) { 1586 write_lock_bh(&mrt_lock); 1587 RCU_INIT_POINTER(mrt->mroute_sk, NULL); 1588 /* Note that mroute_sk had SOCK_RCU_FREE set, 1589 * so the RCU grace period before sk freeing 1590 * is guaranteed by sk_destruct() 1591 */ 1592 net->ipv6.devconf_all->mc_forwarding--; 1593 write_unlock_bh(&mrt_lock); 1594 inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, 1595 NETCONFA_MC_FORWARDING, 1596 NETCONFA_IFINDEX_ALL, 1597 net->ipv6.devconf_all); 1598 1599 mroute_clean_tables(mrt, MRT6_FLUSH_MIFS | MRT6_FLUSH_MFC); 1600 err = 0; 1601 break; 1602 } 1603 } 1604 rtnl_unlock(); 1605 1606 return err; 1607 } 1608 1609 bool mroute6_is_socket(struct net *net, struct sk_buff *skb) 1610 { 1611 struct mr_table *mrt; 1612 struct flowi6 fl6 = { 1613 .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 1614 .flowi6_oif = skb->dev->ifindex, 1615 .flowi6_mark = skb->mark, 1616 }; 1617 1618 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 1619 return NULL; 1620 1621 return rcu_access_pointer(mrt->mroute_sk); 1622 } 1623 EXPORT_SYMBOL(mroute6_is_socket); 1624 1625 /* 1626 * Socket options and virtual interface manipulation. The whole 1627 * virtual interface system is a complete heap, but unfortunately 1628 * that's how BSD mrouted happens to think. Maybe one day with a proper 1629 * MOSPF/PIM router set up we can clean this up. 1630 */ 1631 1632 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1633 { 1634 int ret, parent = 0; 1635 struct mif6ctl vif; 1636 struct mf6cctl mfc; 1637 mifi_t mifi; 1638 struct net *net = sock_net(sk); 1639 struct mr_table *mrt; 1640 1641 if (sk->sk_type != SOCK_RAW || 1642 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1643 return -EOPNOTSUPP; 1644 1645 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1646 if (!mrt) 1647 return -ENOENT; 1648 1649 if (optname != MRT6_INIT) { 1650 if (sk != rcu_access_pointer(mrt->mroute_sk) && 1651 !ns_capable(net->user_ns, CAP_NET_ADMIN)) 1652 return -EACCES; 1653 } 1654 1655 switch (optname) { 1656 case MRT6_INIT: 1657 if (optlen < sizeof(int)) 1658 return -EINVAL; 1659 1660 return ip6mr_sk_init(mrt, sk); 1661 1662 case MRT6_DONE: 1663 return ip6mr_sk_done(sk); 1664 1665 case MRT6_ADD_MIF: 1666 if (optlen < sizeof(vif)) 1667 return -EINVAL; 1668 if (copy_from_user(&vif, optval, sizeof(vif))) 1669 return -EFAULT; 1670 if (vif.mif6c_mifi >= MAXMIFS) 1671 return -ENFILE; 1672 rtnl_lock(); 1673 ret = mif6_add(net, mrt, &vif, 1674 sk == rtnl_dereference(mrt->mroute_sk)); 1675 rtnl_unlock(); 1676 return ret; 1677 1678 case MRT6_DEL_MIF: 1679 if (optlen < sizeof(mifi_t)) 1680 return -EINVAL; 1681 if (copy_from_user(&mifi, optval, sizeof(mifi_t))) 1682 return -EFAULT; 1683 rtnl_lock(); 1684 ret = mif6_delete(mrt, mifi, 0, NULL); 1685 rtnl_unlock(); 1686 return ret; 1687 1688 /* 1689 * Manipulate the forwarding caches. These live 1690 * in a sort of kernel/user symbiosis. 1691 */ 1692 case MRT6_ADD_MFC: 1693 case MRT6_DEL_MFC: 1694 parent = -1; 1695 /* fall through */ 1696 case MRT6_ADD_MFC_PROXY: 1697 case MRT6_DEL_MFC_PROXY: 1698 if (optlen < sizeof(mfc)) 1699 return -EINVAL; 1700 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1701 return -EFAULT; 1702 if (parent == 0) 1703 parent = mfc.mf6cc_parent; 1704 rtnl_lock(); 1705 if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY) 1706 ret = ip6mr_mfc_delete(mrt, &mfc, parent); 1707 else 1708 ret = ip6mr_mfc_add(net, mrt, &mfc, 1709 sk == 1710 rtnl_dereference(mrt->mroute_sk), 1711 parent); 1712 rtnl_unlock(); 1713 return ret; 1714 1715 case MRT6_FLUSH: 1716 { 1717 int flags; 1718 1719 if (optlen != sizeof(flags)) 1720 return -EINVAL; 1721 if (get_user(flags, (int __user *)optval)) 1722 return -EFAULT; 1723 rtnl_lock(); 1724 mroute_clean_tables(mrt, flags); 1725 rtnl_unlock(); 1726 return 0; 1727 } 1728 1729 /* 1730 * Control PIM assert (to activate pim will activate assert) 1731 */ 1732 case MRT6_ASSERT: 1733 { 1734 int v; 1735 1736 if (optlen != sizeof(v)) 1737 return -EINVAL; 1738 if (get_user(v, (int __user *)optval)) 1739 return -EFAULT; 1740 mrt->mroute_do_assert = v; 1741 return 0; 1742 } 1743 1744 #ifdef CONFIG_IPV6_PIMSM_V2 1745 case MRT6_PIM: 1746 { 1747 int v; 1748 1749 if (optlen != sizeof(v)) 1750 return -EINVAL; 1751 if (get_user(v, (int __user *)optval)) 1752 return -EFAULT; 1753 v = !!v; 1754 rtnl_lock(); 1755 ret = 0; 1756 if (v != mrt->mroute_do_pim) { 1757 mrt->mroute_do_pim = v; 1758 mrt->mroute_do_assert = v; 1759 } 1760 rtnl_unlock(); 1761 return ret; 1762 } 1763 1764 #endif 1765 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 1766 case MRT6_TABLE: 1767 { 1768 u32 v; 1769 1770 if (optlen != sizeof(u32)) 1771 return -EINVAL; 1772 if (get_user(v, (u32 __user *)optval)) 1773 return -EFAULT; 1774 /* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */ 1775 if (v != RT_TABLE_DEFAULT && v >= 100000000) 1776 return -EINVAL; 1777 if (sk == rcu_access_pointer(mrt->mroute_sk)) 1778 return -EBUSY; 1779 1780 rtnl_lock(); 1781 ret = 0; 1782 mrt = ip6mr_new_table(net, v); 1783 if (IS_ERR(mrt)) 1784 ret = PTR_ERR(mrt); 1785 else 1786 raw6_sk(sk)->ip6mr_table = v; 1787 rtnl_unlock(); 1788 return ret; 1789 } 1790 #endif 1791 /* 1792 * Spurious command, or MRT6_VERSION which you cannot 1793 * set. 1794 */ 1795 default: 1796 return -ENOPROTOOPT; 1797 } 1798 } 1799 1800 /* 1801 * Getsock opt support for the multicast routing system. 1802 */ 1803 1804 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, 1805 int __user *optlen) 1806 { 1807 int olr; 1808 int val; 1809 struct net *net = sock_net(sk); 1810 struct mr_table *mrt; 1811 1812 if (sk->sk_type != SOCK_RAW || 1813 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1814 return -EOPNOTSUPP; 1815 1816 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1817 if (!mrt) 1818 return -ENOENT; 1819 1820 switch (optname) { 1821 case MRT6_VERSION: 1822 val = 0x0305; 1823 break; 1824 #ifdef CONFIG_IPV6_PIMSM_V2 1825 case MRT6_PIM: 1826 val = mrt->mroute_do_pim; 1827 break; 1828 #endif 1829 case MRT6_ASSERT: 1830 val = mrt->mroute_do_assert; 1831 break; 1832 default: 1833 return -ENOPROTOOPT; 1834 } 1835 1836 if (get_user(olr, optlen)) 1837 return -EFAULT; 1838 1839 olr = min_t(int, olr, sizeof(int)); 1840 if (olr < 0) 1841 return -EINVAL; 1842 1843 if (put_user(olr, optlen)) 1844 return -EFAULT; 1845 if (copy_to_user(optval, &val, olr)) 1846 return -EFAULT; 1847 return 0; 1848 } 1849 1850 /* 1851 * The IP multicast ioctl support routines. 1852 */ 1853 1854 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg) 1855 { 1856 struct sioc_sg_req6 sr; 1857 struct sioc_mif_req6 vr; 1858 struct vif_device *vif; 1859 struct mfc6_cache *c; 1860 struct net *net = sock_net(sk); 1861 struct mr_table *mrt; 1862 1863 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1864 if (!mrt) 1865 return -ENOENT; 1866 1867 switch (cmd) { 1868 case SIOCGETMIFCNT_IN6: 1869 if (copy_from_user(&vr, arg, sizeof(vr))) 1870 return -EFAULT; 1871 if (vr.mifi >= mrt->maxvif) 1872 return -EINVAL; 1873 vr.mifi = array_index_nospec(vr.mifi, mrt->maxvif); 1874 read_lock(&mrt_lock); 1875 vif = &mrt->vif_table[vr.mifi]; 1876 if (VIF_EXISTS(mrt, vr.mifi)) { 1877 vr.icount = vif->pkt_in; 1878 vr.ocount = vif->pkt_out; 1879 vr.ibytes = vif->bytes_in; 1880 vr.obytes = vif->bytes_out; 1881 read_unlock(&mrt_lock); 1882 1883 if (copy_to_user(arg, &vr, sizeof(vr))) 1884 return -EFAULT; 1885 return 0; 1886 } 1887 read_unlock(&mrt_lock); 1888 return -EADDRNOTAVAIL; 1889 case SIOCGETSGCNT_IN6: 1890 if (copy_from_user(&sr, arg, sizeof(sr))) 1891 return -EFAULT; 1892 1893 rcu_read_lock(); 1894 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1895 if (c) { 1896 sr.pktcnt = c->_c.mfc_un.res.pkt; 1897 sr.bytecnt = c->_c.mfc_un.res.bytes; 1898 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1899 rcu_read_unlock(); 1900 1901 if (copy_to_user(arg, &sr, sizeof(sr))) 1902 return -EFAULT; 1903 return 0; 1904 } 1905 rcu_read_unlock(); 1906 return -EADDRNOTAVAIL; 1907 default: 1908 return -ENOIOCTLCMD; 1909 } 1910 } 1911 1912 #ifdef CONFIG_COMPAT 1913 struct compat_sioc_sg_req6 { 1914 struct sockaddr_in6 src; 1915 struct sockaddr_in6 grp; 1916 compat_ulong_t pktcnt; 1917 compat_ulong_t bytecnt; 1918 compat_ulong_t wrong_if; 1919 }; 1920 1921 struct compat_sioc_mif_req6 { 1922 mifi_t mifi; 1923 compat_ulong_t icount; 1924 compat_ulong_t ocount; 1925 compat_ulong_t ibytes; 1926 compat_ulong_t obytes; 1927 }; 1928 1929 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1930 { 1931 struct compat_sioc_sg_req6 sr; 1932 struct compat_sioc_mif_req6 vr; 1933 struct vif_device *vif; 1934 struct mfc6_cache *c; 1935 struct net *net = sock_net(sk); 1936 struct mr_table *mrt; 1937 1938 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1939 if (!mrt) 1940 return -ENOENT; 1941 1942 switch (cmd) { 1943 case SIOCGETMIFCNT_IN6: 1944 if (copy_from_user(&vr, arg, sizeof(vr))) 1945 return -EFAULT; 1946 if (vr.mifi >= mrt->maxvif) 1947 return -EINVAL; 1948 vr.mifi = array_index_nospec(vr.mifi, mrt->maxvif); 1949 read_lock(&mrt_lock); 1950 vif = &mrt->vif_table[vr.mifi]; 1951 if (VIF_EXISTS(mrt, vr.mifi)) { 1952 vr.icount = vif->pkt_in; 1953 vr.ocount = vif->pkt_out; 1954 vr.ibytes = vif->bytes_in; 1955 vr.obytes = vif->bytes_out; 1956 read_unlock(&mrt_lock); 1957 1958 if (copy_to_user(arg, &vr, sizeof(vr))) 1959 return -EFAULT; 1960 return 0; 1961 } 1962 read_unlock(&mrt_lock); 1963 return -EADDRNOTAVAIL; 1964 case SIOCGETSGCNT_IN6: 1965 if (copy_from_user(&sr, arg, sizeof(sr))) 1966 return -EFAULT; 1967 1968 rcu_read_lock(); 1969 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1970 if (c) { 1971 sr.pktcnt = c->_c.mfc_un.res.pkt; 1972 sr.bytecnt = c->_c.mfc_un.res.bytes; 1973 sr.wrong_if = c->_c.mfc_un.res.wrong_if; 1974 rcu_read_unlock(); 1975 1976 if (copy_to_user(arg, &sr, sizeof(sr))) 1977 return -EFAULT; 1978 return 0; 1979 } 1980 rcu_read_unlock(); 1981 return -EADDRNOTAVAIL; 1982 default: 1983 return -ENOIOCTLCMD; 1984 } 1985 } 1986 #endif 1987 1988 static inline int ip6mr_forward2_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 1989 { 1990 IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), 1991 IPSTATS_MIB_OUTFORWDATAGRAMS); 1992 IP6_ADD_STATS(net, ip6_dst_idev(skb_dst(skb)), 1993 IPSTATS_MIB_OUTOCTETS, skb->len); 1994 return dst_output(net, sk, skb); 1995 } 1996 1997 /* 1998 * Processing handlers for ip6mr_forward 1999 */ 2000 2001 static int ip6mr_forward2(struct net *net, struct mr_table *mrt, 2002 struct sk_buff *skb, int vifi) 2003 { 2004 struct ipv6hdr *ipv6h; 2005 struct vif_device *vif = &mrt->vif_table[vifi]; 2006 struct net_device *dev; 2007 struct dst_entry *dst; 2008 struct flowi6 fl6; 2009 2010 if (!vif->dev) 2011 goto out_free; 2012 2013 #ifdef CONFIG_IPV6_PIMSM_V2 2014 if (vif->flags & MIFF_REGISTER) { 2015 vif->pkt_out++; 2016 vif->bytes_out += skb->len; 2017 vif->dev->stats.tx_bytes += skb->len; 2018 vif->dev->stats.tx_packets++; 2019 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT); 2020 goto out_free; 2021 } 2022 #endif 2023 2024 ipv6h = ipv6_hdr(skb); 2025 2026 fl6 = (struct flowi6) { 2027 .flowi6_oif = vif->link, 2028 .daddr = ipv6h->daddr, 2029 }; 2030 2031 dst = ip6_route_output(net, NULL, &fl6); 2032 if (dst->error) { 2033 dst_release(dst); 2034 goto out_free; 2035 } 2036 2037 skb_dst_drop(skb); 2038 skb_dst_set(skb, dst); 2039 2040 /* 2041 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 2042 * not only before forwarding, but after forwarding on all output 2043 * interfaces. It is clear, if mrouter runs a multicasting 2044 * program, it should receive packets not depending to what interface 2045 * program is joined. 2046 * If we will not make it, the program will have to join on all 2047 * interfaces. On the other hand, multihoming host (or router, but 2048 * not mrouter) cannot join to more than one interface - it will 2049 * result in receiving multiple packets. 2050 */ 2051 dev = vif->dev; 2052 skb->dev = dev; 2053 vif->pkt_out++; 2054 vif->bytes_out += skb->len; 2055 2056 /* We are about to write */ 2057 /* XXX: extension headers? */ 2058 if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev))) 2059 goto out_free; 2060 2061 ipv6h = ipv6_hdr(skb); 2062 ipv6h->hop_limit--; 2063 2064 IP6CB(skb)->flags |= IP6SKB_FORWARDED; 2065 2066 return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, 2067 net, NULL, skb, skb->dev, dev, 2068 ip6mr_forward2_finish); 2069 2070 out_free: 2071 kfree_skb(skb); 2072 return 0; 2073 } 2074 2075 static int ip6mr_find_vif(struct mr_table *mrt, struct net_device *dev) 2076 { 2077 int ct; 2078 2079 for (ct = mrt->maxvif - 1; ct >= 0; ct--) { 2080 if (mrt->vif_table[ct].dev == dev) 2081 break; 2082 } 2083 return ct; 2084 } 2085 2086 static void ip6_mr_forward(struct net *net, struct mr_table *mrt, 2087 struct net_device *dev, struct sk_buff *skb, 2088 struct mfc6_cache *c) 2089 { 2090 int psend = -1; 2091 int vif, ct; 2092 int true_vifi = ip6mr_find_vif(mrt, dev); 2093 2094 vif = c->_c.mfc_parent; 2095 c->_c.mfc_un.res.pkt++; 2096 c->_c.mfc_un.res.bytes += skb->len; 2097 c->_c.mfc_un.res.lastuse = jiffies; 2098 2099 if (ipv6_addr_any(&c->mf6c_origin) && true_vifi >= 0) { 2100 struct mfc6_cache *cache_proxy; 2101 2102 /* For an (*,G) entry, we only check that the incoming 2103 * interface is part of the static tree. 2104 */ 2105 rcu_read_lock(); 2106 cache_proxy = mr_mfc_find_any_parent(mrt, vif); 2107 if (cache_proxy && 2108 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) { 2109 rcu_read_unlock(); 2110 goto forward; 2111 } 2112 rcu_read_unlock(); 2113 } 2114 2115 /* 2116 * Wrong interface: drop packet and (maybe) send PIM assert. 2117 */ 2118 if (mrt->vif_table[vif].dev != dev) { 2119 c->_c.mfc_un.res.wrong_if++; 2120 2121 if (true_vifi >= 0 && mrt->mroute_do_assert && 2122 /* pimsm uses asserts, when switching from RPT to SPT, 2123 so that we cannot check that packet arrived on an oif. 2124 It is bad, but otherwise we would need to move pretty 2125 large chunk of pimd to kernel. Ough... --ANK 2126 */ 2127 (mrt->mroute_do_pim || 2128 c->_c.mfc_un.res.ttls[true_vifi] < 255) && 2129 time_after(jiffies, 2130 c->_c.mfc_un.res.last_assert + 2131 MFC_ASSERT_THRESH)) { 2132 c->_c.mfc_un.res.last_assert = jiffies; 2133 ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF); 2134 } 2135 goto dont_forward; 2136 } 2137 2138 forward: 2139 mrt->vif_table[vif].pkt_in++; 2140 mrt->vif_table[vif].bytes_in += skb->len; 2141 2142 /* 2143 * Forward the frame 2144 */ 2145 if (ipv6_addr_any(&c->mf6c_origin) && 2146 ipv6_addr_any(&c->mf6c_mcastgrp)) { 2147 if (true_vifi >= 0 && 2148 true_vifi != c->_c.mfc_parent && 2149 ipv6_hdr(skb)->hop_limit > 2150 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) { 2151 /* It's an (*,*) entry and the packet is not coming from 2152 * the upstream: forward the packet to the upstream 2153 * only. 2154 */ 2155 psend = c->_c.mfc_parent; 2156 goto last_forward; 2157 } 2158 goto dont_forward; 2159 } 2160 for (ct = c->_c.mfc_un.res.maxvif - 1; 2161 ct >= c->_c.mfc_un.res.minvif; ct--) { 2162 /* For (*,G) entry, don't forward to the incoming interface */ 2163 if ((!ipv6_addr_any(&c->mf6c_origin) || ct != true_vifi) && 2164 ipv6_hdr(skb)->hop_limit > c->_c.mfc_un.res.ttls[ct]) { 2165 if (psend != -1) { 2166 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2167 if (skb2) 2168 ip6mr_forward2(net, mrt, skb2, psend); 2169 } 2170 psend = ct; 2171 } 2172 } 2173 last_forward: 2174 if (psend != -1) { 2175 ip6mr_forward2(net, mrt, skb, psend); 2176 return; 2177 } 2178 2179 dont_forward: 2180 kfree_skb(skb); 2181 } 2182 2183 2184 /* 2185 * Multicast packets for forwarding arrive here 2186 */ 2187 2188 int ip6_mr_input(struct sk_buff *skb) 2189 { 2190 struct mfc6_cache *cache; 2191 struct net *net = dev_net(skb->dev); 2192 struct mr_table *mrt; 2193 struct flowi6 fl6 = { 2194 .flowi6_iif = skb->dev->ifindex, 2195 .flowi6_mark = skb->mark, 2196 }; 2197 int err; 2198 struct net_device *dev; 2199 2200 /* skb->dev passed in is the master dev for vrfs. 2201 * Get the proper interface that does have a vif associated with it. 2202 */ 2203 dev = skb->dev; 2204 if (netif_is_l3_master(skb->dev)) { 2205 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif); 2206 if (!dev) { 2207 kfree_skb(skb); 2208 return -ENODEV; 2209 } 2210 } 2211 2212 err = ip6mr_fib_lookup(net, &fl6, &mrt); 2213 if (err < 0) { 2214 kfree_skb(skb); 2215 return err; 2216 } 2217 2218 read_lock(&mrt_lock); 2219 cache = ip6mr_cache_find(mrt, 2220 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr); 2221 if (!cache) { 2222 int vif = ip6mr_find_vif(mrt, dev); 2223 2224 if (vif >= 0) 2225 cache = ip6mr_cache_find_any(mrt, 2226 &ipv6_hdr(skb)->daddr, 2227 vif); 2228 } 2229 2230 /* 2231 * No usable cache entry 2232 */ 2233 if (!cache) { 2234 int vif; 2235 2236 vif = ip6mr_find_vif(mrt, dev); 2237 if (vif >= 0) { 2238 int err = ip6mr_cache_unresolved(mrt, vif, skb, dev); 2239 read_unlock(&mrt_lock); 2240 2241 return err; 2242 } 2243 read_unlock(&mrt_lock); 2244 kfree_skb(skb); 2245 return -ENODEV; 2246 } 2247 2248 ip6_mr_forward(net, mrt, dev, skb, cache); 2249 2250 read_unlock(&mrt_lock); 2251 2252 return 0; 2253 } 2254 2255 int ip6mr_get_route(struct net *net, struct sk_buff *skb, struct rtmsg *rtm, 2256 u32 portid) 2257 { 2258 int err; 2259 struct mr_table *mrt; 2260 struct mfc6_cache *cache; 2261 struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); 2262 2263 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 2264 if (!mrt) 2265 return -ENOENT; 2266 2267 read_lock(&mrt_lock); 2268 cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr); 2269 if (!cache && skb->dev) { 2270 int vif = ip6mr_find_vif(mrt, skb->dev); 2271 2272 if (vif >= 0) 2273 cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr, 2274 vif); 2275 } 2276 2277 if (!cache) { 2278 struct sk_buff *skb2; 2279 struct ipv6hdr *iph; 2280 struct net_device *dev; 2281 int vif; 2282 2283 dev = skb->dev; 2284 if (!dev || (vif = ip6mr_find_vif(mrt, dev)) < 0) { 2285 read_unlock(&mrt_lock); 2286 return -ENODEV; 2287 } 2288 2289 /* really correct? */ 2290 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); 2291 if (!skb2) { 2292 read_unlock(&mrt_lock); 2293 return -ENOMEM; 2294 } 2295 2296 NETLINK_CB(skb2).portid = portid; 2297 skb_reset_transport_header(skb2); 2298 2299 skb_put(skb2, sizeof(struct ipv6hdr)); 2300 skb_reset_network_header(skb2); 2301 2302 iph = ipv6_hdr(skb2); 2303 iph->version = 0; 2304 iph->priority = 0; 2305 iph->flow_lbl[0] = 0; 2306 iph->flow_lbl[1] = 0; 2307 iph->flow_lbl[2] = 0; 2308 iph->payload_len = 0; 2309 iph->nexthdr = IPPROTO_NONE; 2310 iph->hop_limit = 0; 2311 iph->saddr = rt->rt6i_src.addr; 2312 iph->daddr = rt->rt6i_dst.addr; 2313 2314 err = ip6mr_cache_unresolved(mrt, vif, skb2, dev); 2315 read_unlock(&mrt_lock); 2316 2317 return err; 2318 } 2319 2320 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm); 2321 read_unlock(&mrt_lock); 2322 return err; 2323 } 2324 2325 static int ip6mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2326 u32 portid, u32 seq, struct mfc6_cache *c, int cmd, 2327 int flags) 2328 { 2329 struct nlmsghdr *nlh; 2330 struct rtmsg *rtm; 2331 int err; 2332 2333 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2334 if (!nlh) 2335 return -EMSGSIZE; 2336 2337 rtm = nlmsg_data(nlh); 2338 rtm->rtm_family = RTNL_FAMILY_IP6MR; 2339 rtm->rtm_dst_len = 128; 2340 rtm->rtm_src_len = 128; 2341 rtm->rtm_tos = 0; 2342 rtm->rtm_table = mrt->id; 2343 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2344 goto nla_put_failure; 2345 rtm->rtm_type = RTN_MULTICAST; 2346 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2347 if (c->_c.mfc_flags & MFC_STATIC) 2348 rtm->rtm_protocol = RTPROT_STATIC; 2349 else 2350 rtm->rtm_protocol = RTPROT_MROUTED; 2351 rtm->rtm_flags = 0; 2352 2353 if (nla_put_in6_addr(skb, RTA_SRC, &c->mf6c_origin) || 2354 nla_put_in6_addr(skb, RTA_DST, &c->mf6c_mcastgrp)) 2355 goto nla_put_failure; 2356 err = mr_fill_mroute(mrt, skb, &c->_c, rtm); 2357 /* do not break the dump if cache is unresolved */ 2358 if (err < 0 && err != -ENOENT) 2359 goto nla_put_failure; 2360 2361 nlmsg_end(skb, nlh); 2362 return 0; 2363 2364 nla_put_failure: 2365 nlmsg_cancel(skb, nlh); 2366 return -EMSGSIZE; 2367 } 2368 2369 static int _ip6mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb, 2370 u32 portid, u32 seq, struct mr_mfc *c, 2371 int cmd, int flags) 2372 { 2373 return ip6mr_fill_mroute(mrt, skb, portid, seq, (struct mfc6_cache *)c, 2374 cmd, flags); 2375 } 2376 2377 static int mr6_msgsize(bool unresolved, int maxvif) 2378 { 2379 size_t len = 2380 NLMSG_ALIGN(sizeof(struct rtmsg)) 2381 + nla_total_size(4) /* RTA_TABLE */ 2382 + nla_total_size(sizeof(struct in6_addr)) /* RTA_SRC */ 2383 + nla_total_size(sizeof(struct in6_addr)) /* RTA_DST */ 2384 ; 2385 2386 if (!unresolved) 2387 len = len 2388 + nla_total_size(4) /* RTA_IIF */ 2389 + nla_total_size(0) /* RTA_MULTIPATH */ 2390 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2391 /* RTA_MFC_STATS */ 2392 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2393 ; 2394 2395 return len; 2396 } 2397 2398 static void mr6_netlink_event(struct mr_table *mrt, struct mfc6_cache *mfc, 2399 int cmd) 2400 { 2401 struct net *net = read_pnet(&mrt->net); 2402 struct sk_buff *skb; 2403 int err = -ENOBUFS; 2404 2405 skb = nlmsg_new(mr6_msgsize(mfc->_c.mfc_parent >= MAXMIFS, mrt->maxvif), 2406 GFP_ATOMIC); 2407 if (!skb) 2408 goto errout; 2409 2410 err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2411 if (err < 0) 2412 goto errout; 2413 2414 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC); 2415 return; 2416 2417 errout: 2418 kfree_skb(skb); 2419 if (err < 0) 2420 rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err); 2421 } 2422 2423 static size_t mrt6msg_netlink_msgsize(size_t payloadlen) 2424 { 2425 size_t len = 2426 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2427 + nla_total_size(1) /* IP6MRA_CREPORT_MSGTYPE */ 2428 + nla_total_size(4) /* IP6MRA_CREPORT_MIF_ID */ 2429 /* IP6MRA_CREPORT_SRC_ADDR */ 2430 + nla_total_size(sizeof(struct in6_addr)) 2431 /* IP6MRA_CREPORT_DST_ADDR */ 2432 + nla_total_size(sizeof(struct in6_addr)) 2433 /* IP6MRA_CREPORT_PKT */ 2434 + nla_total_size(payloadlen) 2435 ; 2436 2437 return len; 2438 } 2439 2440 static void mrt6msg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt) 2441 { 2442 struct net *net = read_pnet(&mrt->net); 2443 struct nlmsghdr *nlh; 2444 struct rtgenmsg *rtgenm; 2445 struct mrt6msg *msg; 2446 struct sk_buff *skb; 2447 struct nlattr *nla; 2448 int payloadlen; 2449 2450 payloadlen = pkt->len - sizeof(struct mrt6msg); 2451 msg = (struct mrt6msg *)skb_transport_header(pkt); 2452 2453 skb = nlmsg_new(mrt6msg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2454 if (!skb) 2455 goto errout; 2456 2457 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2458 sizeof(struct rtgenmsg), 0); 2459 if (!nlh) 2460 goto errout; 2461 rtgenm = nlmsg_data(nlh); 2462 rtgenm->rtgen_family = RTNL_FAMILY_IP6MR; 2463 if (nla_put_u8(skb, IP6MRA_CREPORT_MSGTYPE, msg->im6_msgtype) || 2464 nla_put_u32(skb, IP6MRA_CREPORT_MIF_ID, msg->im6_mif) || 2465 nla_put_in6_addr(skb, IP6MRA_CREPORT_SRC_ADDR, 2466 &msg->im6_src) || 2467 nla_put_in6_addr(skb, IP6MRA_CREPORT_DST_ADDR, 2468 &msg->im6_dst)) 2469 goto nla_put_failure; 2470 2471 nla = nla_reserve(skb, IP6MRA_CREPORT_PKT, payloadlen); 2472 if (!nla || skb_copy_bits(pkt, sizeof(struct mrt6msg), 2473 nla_data(nla), payloadlen)) 2474 goto nla_put_failure; 2475 2476 nlmsg_end(skb, nlh); 2477 2478 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE_R, NULL, GFP_ATOMIC); 2479 return; 2480 2481 nla_put_failure: 2482 nlmsg_cancel(skb, nlh); 2483 errout: 2484 kfree_skb(skb); 2485 rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE_R, -ENOBUFS); 2486 } 2487 2488 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2489 { 2490 const struct nlmsghdr *nlh = cb->nlh; 2491 struct fib_dump_filter filter = {}; 2492 int err; 2493 2494 if (cb->strict_check) { 2495 err = ip_valid_fib_dump_req(sock_net(skb->sk), nlh, 2496 &filter, cb); 2497 if (err < 0) 2498 return err; 2499 } 2500 2501 if (filter.table_id) { 2502 struct mr_table *mrt; 2503 2504 mrt = ip6mr_get_table(sock_net(skb->sk), filter.table_id); 2505 if (!mrt) { 2506 if (filter.dump_all_families) 2507 return skb->len; 2508 2509 NL_SET_ERR_MSG_MOD(cb->extack, "MR table does not exist"); 2510 return -ENOENT; 2511 } 2512 err = mr_table_dump(mrt, skb, cb, _ip6mr_fill_mroute, 2513 &mfc_unres_lock, &filter); 2514 return skb->len ? : err; 2515 } 2516 2517 return mr_rtm_dumproute(skb, cb, ip6mr_mr_table_iter, 2518 _ip6mr_fill_mroute, &mfc_unres_lock, &filter); 2519 } 2520