1 /* 2 * Linux IPv6 multicast routing support for BSD pim6sd 3 * Based on net/ipv4/ipmr.c. 4 * 5 * (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr> 6 * LSIIT Laboratory, Strasbourg, France 7 * (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com> 8 * 6WIND, Paris, France 9 * Copyright (C)2007,2008 USAGI/WIDE Project 10 * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 * 17 */ 18 19 #include <asm/uaccess.h> 20 #include <linux/types.h> 21 #include <linux/sched.h> 22 #include <linux/errno.h> 23 #include <linux/timer.h> 24 #include <linux/mm.h> 25 #include <linux/kernel.h> 26 #include <linux/fcntl.h> 27 #include <linux/stat.h> 28 #include <linux/socket.h> 29 #include <linux/inet.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/proc_fs.h> 33 #include <linux/seq_file.h> 34 #include <linux/init.h> 35 #include <linux/slab.h> 36 #include <linux/compat.h> 37 #include <net/protocol.h> 38 #include <linux/skbuff.h> 39 #include <net/sock.h> 40 #include <net/raw.h> 41 #include <linux/notifier.h> 42 #include <linux/if_arp.h> 43 #include <net/checksum.h> 44 #include <net/netlink.h> 45 #include <net/fib_rules.h> 46 47 #include <net/ipv6.h> 48 #include <net/ip6_route.h> 49 #include <linux/mroute6.h> 50 #include <linux/pim.h> 51 #include <net/addrconf.h> 52 #include <linux/netfilter_ipv6.h> 53 #include <linux/export.h> 54 #include <net/ip6_checksum.h> 55 56 struct mr6_table { 57 struct list_head list; 58 #ifdef CONFIG_NET_NS 59 struct net *net; 60 #endif 61 u32 id; 62 struct sock *mroute6_sk; 63 struct timer_list ipmr_expire_timer; 64 struct list_head mfc6_unres_queue; 65 struct list_head mfc6_cache_array[MFC6_LINES]; 66 struct mif_device vif6_table[MAXMIFS]; 67 int maxvif; 68 atomic_t cache_resolve_queue_len; 69 int mroute_do_assert; 70 int mroute_do_pim; 71 #ifdef CONFIG_IPV6_PIMSM_V2 72 int mroute_reg_vif_num; 73 #endif 74 }; 75 76 struct ip6mr_rule { 77 struct fib_rule common; 78 }; 79 80 struct ip6mr_result { 81 struct mr6_table *mrt; 82 }; 83 84 /* Big lock, protecting vif table, mrt cache and mroute socket state. 85 Note that the changes are semaphored via rtnl_lock. 86 */ 87 88 static DEFINE_RWLOCK(mrt_lock); 89 90 /* 91 * Multicast router control variables 92 */ 93 94 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL) 95 96 /* Special spinlock for queue of unresolved entries */ 97 static DEFINE_SPINLOCK(mfc_unres_lock); 98 99 /* We return to original Alan's scheme. Hash table of resolved 100 entries is changed only in process context and protected 101 with weak lock mrt_lock. Queue of unresolved entries is protected 102 with strong spinlock mfc_unres_lock. 103 104 In this case data path is free of exclusive locks at all. 105 */ 106 107 static struct kmem_cache *mrt_cachep __read_mostly; 108 109 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id); 110 static void ip6mr_free_table(struct mr6_table *mrt); 111 112 static int ip6_mr_forward(struct net *net, struct mr6_table *mrt, 113 struct sk_buff *skb, struct mfc6_cache *cache); 114 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt, 115 mifi_t mifi, int assert); 116 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 117 struct mfc6_cache *c, struct rtmsg *rtm); 118 static int ip6mr_rtm_dumproute(struct sk_buff *skb, 119 struct netlink_callback *cb); 120 static void mroute_clean_tables(struct mr6_table *mrt); 121 static void ipmr_expire_process(unsigned long arg); 122 123 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 124 #define ip6mr_for_each_table(mrt, net) \ 125 list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list) 126 127 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id) 128 { 129 struct mr6_table *mrt; 130 131 ip6mr_for_each_table(mrt, net) { 132 if (mrt->id == id) 133 return mrt; 134 } 135 return NULL; 136 } 137 138 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 139 struct mr6_table **mrt) 140 { 141 struct ip6mr_result res; 142 struct fib_lookup_arg arg = { .result = &res, }; 143 int err; 144 145 err = fib_rules_lookup(net->ipv6.mr6_rules_ops, 146 flowi6_to_flowi(flp6), 0, &arg); 147 if (err < 0) 148 return err; 149 *mrt = res.mrt; 150 return 0; 151 } 152 153 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp, 154 int flags, struct fib_lookup_arg *arg) 155 { 156 struct ip6mr_result *res = arg->result; 157 struct mr6_table *mrt; 158 159 switch (rule->action) { 160 case FR_ACT_TO_TBL: 161 break; 162 case FR_ACT_UNREACHABLE: 163 return -ENETUNREACH; 164 case FR_ACT_PROHIBIT: 165 return -EACCES; 166 case FR_ACT_BLACKHOLE: 167 default: 168 return -EINVAL; 169 } 170 171 mrt = ip6mr_get_table(rule->fr_net, rule->table); 172 if (mrt == NULL) 173 return -EAGAIN; 174 res->mrt = mrt; 175 return 0; 176 } 177 178 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags) 179 { 180 return 1; 181 } 182 183 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = { 184 FRA_GENERIC_POLICY, 185 }; 186 187 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 188 struct fib_rule_hdr *frh, struct nlattr **tb) 189 { 190 return 0; 191 } 192 193 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 194 struct nlattr **tb) 195 { 196 return 1; 197 } 198 199 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 200 struct fib_rule_hdr *frh) 201 { 202 frh->dst_len = 0; 203 frh->src_len = 0; 204 frh->tos = 0; 205 return 0; 206 } 207 208 static const struct fib_rules_ops __net_initdata ip6mr_rules_ops_template = { 209 .family = RTNL_FAMILY_IP6MR, 210 .rule_size = sizeof(struct ip6mr_rule), 211 .addr_size = sizeof(struct in6_addr), 212 .action = ip6mr_rule_action, 213 .match = ip6mr_rule_match, 214 .configure = ip6mr_rule_configure, 215 .compare = ip6mr_rule_compare, 216 .default_pref = fib_default_rule_pref, 217 .fill = ip6mr_rule_fill, 218 .nlgroup = RTNLGRP_IPV6_RULE, 219 .policy = ip6mr_rule_policy, 220 .owner = THIS_MODULE, 221 }; 222 223 static int __net_init ip6mr_rules_init(struct net *net) 224 { 225 struct fib_rules_ops *ops; 226 struct mr6_table *mrt; 227 int err; 228 229 ops = fib_rules_register(&ip6mr_rules_ops_template, net); 230 if (IS_ERR(ops)) 231 return PTR_ERR(ops); 232 233 INIT_LIST_HEAD(&net->ipv6.mr6_tables); 234 235 mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); 236 if (mrt == NULL) { 237 err = -ENOMEM; 238 goto err1; 239 } 240 241 err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0); 242 if (err < 0) 243 goto err2; 244 245 net->ipv6.mr6_rules_ops = ops; 246 return 0; 247 248 err2: 249 kfree(mrt); 250 err1: 251 fib_rules_unregister(ops); 252 return err; 253 } 254 255 static void __net_exit ip6mr_rules_exit(struct net *net) 256 { 257 struct mr6_table *mrt, *next; 258 259 list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) { 260 list_del(&mrt->list); 261 ip6mr_free_table(mrt); 262 } 263 fib_rules_unregister(net->ipv6.mr6_rules_ops); 264 } 265 #else 266 #define ip6mr_for_each_table(mrt, net) \ 267 for (mrt = net->ipv6.mrt6; mrt; mrt = NULL) 268 269 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id) 270 { 271 return net->ipv6.mrt6; 272 } 273 274 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 275 struct mr6_table **mrt) 276 { 277 *mrt = net->ipv6.mrt6; 278 return 0; 279 } 280 281 static int __net_init ip6mr_rules_init(struct net *net) 282 { 283 net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT); 284 return net->ipv6.mrt6 ? 0 : -ENOMEM; 285 } 286 287 static void __net_exit ip6mr_rules_exit(struct net *net) 288 { 289 ip6mr_free_table(net->ipv6.mrt6); 290 } 291 #endif 292 293 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id) 294 { 295 struct mr6_table *mrt; 296 unsigned int i; 297 298 mrt = ip6mr_get_table(net, id); 299 if (mrt != NULL) 300 return mrt; 301 302 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 303 if (mrt == NULL) 304 return NULL; 305 mrt->id = id; 306 write_pnet(&mrt->net, net); 307 308 /* Forwarding cache */ 309 for (i = 0; i < MFC6_LINES; i++) 310 INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]); 311 312 INIT_LIST_HEAD(&mrt->mfc6_unres_queue); 313 314 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 315 (unsigned long)mrt); 316 317 #ifdef CONFIG_IPV6_PIMSM_V2 318 mrt->mroute_reg_vif_num = -1; 319 #endif 320 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 321 list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables); 322 #endif 323 return mrt; 324 } 325 326 static void ip6mr_free_table(struct mr6_table *mrt) 327 { 328 del_timer(&mrt->ipmr_expire_timer); 329 mroute_clean_tables(mrt); 330 kfree(mrt); 331 } 332 333 #ifdef CONFIG_PROC_FS 334 335 struct ipmr_mfc_iter { 336 struct seq_net_private p; 337 struct mr6_table *mrt; 338 struct list_head *cache; 339 int ct; 340 }; 341 342 343 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net, 344 struct ipmr_mfc_iter *it, loff_t pos) 345 { 346 struct mr6_table *mrt = it->mrt; 347 struct mfc6_cache *mfc; 348 349 read_lock(&mrt_lock); 350 for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) { 351 it->cache = &mrt->mfc6_cache_array[it->ct]; 352 list_for_each_entry(mfc, it->cache, list) 353 if (pos-- == 0) 354 return mfc; 355 } 356 read_unlock(&mrt_lock); 357 358 spin_lock_bh(&mfc_unres_lock); 359 it->cache = &mrt->mfc6_unres_queue; 360 list_for_each_entry(mfc, it->cache, list) 361 if (pos-- == 0) 362 return mfc; 363 spin_unlock_bh(&mfc_unres_lock); 364 365 it->cache = NULL; 366 return NULL; 367 } 368 369 /* 370 * The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif 371 */ 372 373 struct ipmr_vif_iter { 374 struct seq_net_private p; 375 struct mr6_table *mrt; 376 int ct; 377 }; 378 379 static struct mif_device *ip6mr_vif_seq_idx(struct net *net, 380 struct ipmr_vif_iter *iter, 381 loff_t pos) 382 { 383 struct mr6_table *mrt = iter->mrt; 384 385 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 386 if (!MIF_EXISTS(mrt, iter->ct)) 387 continue; 388 if (pos-- == 0) 389 return &mrt->vif6_table[iter->ct]; 390 } 391 return NULL; 392 } 393 394 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos) 395 __acquires(mrt_lock) 396 { 397 struct ipmr_vif_iter *iter = seq->private; 398 struct net *net = seq_file_net(seq); 399 struct mr6_table *mrt; 400 401 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 402 if (mrt == NULL) 403 return ERR_PTR(-ENOENT); 404 405 iter->mrt = mrt; 406 407 read_lock(&mrt_lock); 408 return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1) 409 : SEQ_START_TOKEN; 410 } 411 412 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 413 { 414 struct ipmr_vif_iter *iter = seq->private; 415 struct net *net = seq_file_net(seq); 416 struct mr6_table *mrt = iter->mrt; 417 418 ++*pos; 419 if (v == SEQ_START_TOKEN) 420 return ip6mr_vif_seq_idx(net, iter, 0); 421 422 while (++iter->ct < mrt->maxvif) { 423 if (!MIF_EXISTS(mrt, iter->ct)) 424 continue; 425 return &mrt->vif6_table[iter->ct]; 426 } 427 return NULL; 428 } 429 430 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v) 431 __releases(mrt_lock) 432 { 433 read_unlock(&mrt_lock); 434 } 435 436 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v) 437 { 438 struct ipmr_vif_iter *iter = seq->private; 439 struct mr6_table *mrt = iter->mrt; 440 441 if (v == SEQ_START_TOKEN) { 442 seq_puts(seq, 443 "Interface BytesIn PktsIn BytesOut PktsOut Flags\n"); 444 } else { 445 const struct mif_device *vif = v; 446 const char *name = vif->dev ? vif->dev->name : "none"; 447 448 seq_printf(seq, 449 "%2td %-10s %8ld %7ld %8ld %7ld %05X\n", 450 vif - mrt->vif6_table, 451 name, vif->bytes_in, vif->pkt_in, 452 vif->bytes_out, vif->pkt_out, 453 vif->flags); 454 } 455 return 0; 456 } 457 458 static const struct seq_operations ip6mr_vif_seq_ops = { 459 .start = ip6mr_vif_seq_start, 460 .next = ip6mr_vif_seq_next, 461 .stop = ip6mr_vif_seq_stop, 462 .show = ip6mr_vif_seq_show, 463 }; 464 465 static int ip6mr_vif_open(struct inode *inode, struct file *file) 466 { 467 return seq_open_net(inode, file, &ip6mr_vif_seq_ops, 468 sizeof(struct ipmr_vif_iter)); 469 } 470 471 static const struct file_operations ip6mr_vif_fops = { 472 .owner = THIS_MODULE, 473 .open = ip6mr_vif_open, 474 .read = seq_read, 475 .llseek = seq_lseek, 476 .release = seq_release_net, 477 }; 478 479 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 480 { 481 struct ipmr_mfc_iter *it = seq->private; 482 struct net *net = seq_file_net(seq); 483 struct mr6_table *mrt; 484 485 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 486 if (mrt == NULL) 487 return ERR_PTR(-ENOENT); 488 489 it->mrt = mrt; 490 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 491 : SEQ_START_TOKEN; 492 } 493 494 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 495 { 496 struct mfc6_cache *mfc = v; 497 struct ipmr_mfc_iter *it = seq->private; 498 struct net *net = seq_file_net(seq); 499 struct mr6_table *mrt = it->mrt; 500 501 ++*pos; 502 503 if (v == SEQ_START_TOKEN) 504 return ipmr_mfc_seq_idx(net, seq->private, 0); 505 506 if (mfc->list.next != it->cache) 507 return list_entry(mfc->list.next, struct mfc6_cache, list); 508 509 if (it->cache == &mrt->mfc6_unres_queue) 510 goto end_of_list; 511 512 BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]); 513 514 while (++it->ct < MFC6_LINES) { 515 it->cache = &mrt->mfc6_cache_array[it->ct]; 516 if (list_empty(it->cache)) 517 continue; 518 return list_first_entry(it->cache, struct mfc6_cache, list); 519 } 520 521 /* exhausted cache_array, show unresolved */ 522 read_unlock(&mrt_lock); 523 it->cache = &mrt->mfc6_unres_queue; 524 it->ct = 0; 525 526 spin_lock_bh(&mfc_unres_lock); 527 if (!list_empty(it->cache)) 528 return list_first_entry(it->cache, struct mfc6_cache, list); 529 530 end_of_list: 531 spin_unlock_bh(&mfc_unres_lock); 532 it->cache = NULL; 533 534 return NULL; 535 } 536 537 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 538 { 539 struct ipmr_mfc_iter *it = seq->private; 540 struct mr6_table *mrt = it->mrt; 541 542 if (it->cache == &mrt->mfc6_unres_queue) 543 spin_unlock_bh(&mfc_unres_lock); 544 else if (it->cache == mrt->mfc6_cache_array) 545 read_unlock(&mrt_lock); 546 } 547 548 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 549 { 550 int n; 551 552 if (v == SEQ_START_TOKEN) { 553 seq_puts(seq, 554 "Group " 555 "Origin " 556 "Iif Pkts Bytes Wrong Oifs\n"); 557 } else { 558 const struct mfc6_cache *mfc = v; 559 const struct ipmr_mfc_iter *it = seq->private; 560 struct mr6_table *mrt = it->mrt; 561 562 seq_printf(seq, "%pI6 %pI6 %-3hd", 563 &mfc->mf6c_mcastgrp, &mfc->mf6c_origin, 564 mfc->mf6c_parent); 565 566 if (it->cache != &mrt->mfc6_unres_queue) { 567 seq_printf(seq, " %8lu %8lu %8lu", 568 mfc->mfc_un.res.pkt, 569 mfc->mfc_un.res.bytes, 570 mfc->mfc_un.res.wrong_if); 571 for (n = mfc->mfc_un.res.minvif; 572 n < mfc->mfc_un.res.maxvif; n++) { 573 if (MIF_EXISTS(mrt, n) && 574 mfc->mfc_un.res.ttls[n] < 255) 575 seq_printf(seq, 576 " %2d:%-3d", 577 n, mfc->mfc_un.res.ttls[n]); 578 } 579 } else { 580 /* unresolved mfc_caches don't contain 581 * pkt, bytes and wrong_if values 582 */ 583 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 584 } 585 seq_putc(seq, '\n'); 586 } 587 return 0; 588 } 589 590 static const struct seq_operations ipmr_mfc_seq_ops = { 591 .start = ipmr_mfc_seq_start, 592 .next = ipmr_mfc_seq_next, 593 .stop = ipmr_mfc_seq_stop, 594 .show = ipmr_mfc_seq_show, 595 }; 596 597 static int ipmr_mfc_open(struct inode *inode, struct file *file) 598 { 599 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 600 sizeof(struct ipmr_mfc_iter)); 601 } 602 603 static const struct file_operations ip6mr_mfc_fops = { 604 .owner = THIS_MODULE, 605 .open = ipmr_mfc_open, 606 .read = seq_read, 607 .llseek = seq_lseek, 608 .release = seq_release_net, 609 }; 610 #endif 611 612 #ifdef CONFIG_IPV6_PIMSM_V2 613 614 static int pim6_rcv(struct sk_buff *skb) 615 { 616 struct pimreghdr *pim; 617 struct ipv6hdr *encap; 618 struct net_device *reg_dev = NULL; 619 struct net *net = dev_net(skb->dev); 620 struct mr6_table *mrt; 621 struct flowi6 fl6 = { 622 .flowi6_iif = skb->dev->ifindex, 623 .flowi6_mark = skb->mark, 624 }; 625 int reg_vif_num; 626 627 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap))) 628 goto drop; 629 630 pim = (struct pimreghdr *)skb_transport_header(skb); 631 if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) || 632 (pim->flags & PIM_NULL_REGISTER) || 633 (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 634 sizeof(*pim), IPPROTO_PIM, 635 csum_partial((void *)pim, sizeof(*pim), 0)) && 636 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 637 goto drop; 638 639 /* check if the inner packet is destined to mcast group */ 640 encap = (struct ipv6hdr *)(skb_transport_header(skb) + 641 sizeof(*pim)); 642 643 if (!ipv6_addr_is_multicast(&encap->daddr) || 644 encap->payload_len == 0 || 645 ntohs(encap->payload_len) + sizeof(*pim) > skb->len) 646 goto drop; 647 648 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 649 goto drop; 650 reg_vif_num = mrt->mroute_reg_vif_num; 651 652 read_lock(&mrt_lock); 653 if (reg_vif_num >= 0) 654 reg_dev = mrt->vif6_table[reg_vif_num].dev; 655 if (reg_dev) 656 dev_hold(reg_dev); 657 read_unlock(&mrt_lock); 658 659 if (reg_dev == NULL) 660 goto drop; 661 662 skb->mac_header = skb->network_header; 663 skb_pull(skb, (u8 *)encap - skb->data); 664 skb_reset_network_header(skb); 665 skb->protocol = htons(ETH_P_IPV6); 666 skb->ip_summed = CHECKSUM_NONE; 667 skb->pkt_type = PACKET_HOST; 668 669 skb_tunnel_rx(skb, reg_dev); 670 671 netif_rx(skb); 672 673 dev_put(reg_dev); 674 return 0; 675 drop: 676 kfree_skb(skb); 677 return 0; 678 } 679 680 static const struct inet6_protocol pim6_protocol = { 681 .handler = pim6_rcv, 682 }; 683 684 /* Service routines creating virtual interfaces: PIMREG */ 685 686 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, 687 struct net_device *dev) 688 { 689 struct net *net = dev_net(dev); 690 struct mr6_table *mrt; 691 struct flowi6 fl6 = { 692 .flowi6_oif = dev->ifindex, 693 .flowi6_iif = skb->skb_iif, 694 .flowi6_mark = skb->mark, 695 }; 696 int err; 697 698 err = ip6mr_fib_lookup(net, &fl6, &mrt); 699 if (err < 0) { 700 kfree_skb(skb); 701 return err; 702 } 703 704 read_lock(&mrt_lock); 705 dev->stats.tx_bytes += skb->len; 706 dev->stats.tx_packets++; 707 ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT); 708 read_unlock(&mrt_lock); 709 kfree_skb(skb); 710 return NETDEV_TX_OK; 711 } 712 713 static const struct net_device_ops reg_vif_netdev_ops = { 714 .ndo_start_xmit = reg_vif_xmit, 715 }; 716 717 static void reg_vif_setup(struct net_device *dev) 718 { 719 dev->type = ARPHRD_PIMREG; 720 dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8; 721 dev->flags = IFF_NOARP; 722 dev->netdev_ops = ®_vif_netdev_ops; 723 dev->destructor = free_netdev; 724 dev->features |= NETIF_F_NETNS_LOCAL; 725 } 726 727 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt) 728 { 729 struct net_device *dev; 730 char name[IFNAMSIZ]; 731 732 if (mrt->id == RT6_TABLE_DFLT) 733 sprintf(name, "pim6reg"); 734 else 735 sprintf(name, "pim6reg%u", mrt->id); 736 737 dev = alloc_netdev(0, name, reg_vif_setup); 738 if (dev == NULL) 739 return NULL; 740 741 dev_net_set(dev, net); 742 743 if (register_netdevice(dev)) { 744 free_netdev(dev); 745 return NULL; 746 } 747 dev->iflink = 0; 748 749 if (dev_open(dev)) 750 goto failure; 751 752 dev_hold(dev); 753 return dev; 754 755 failure: 756 /* allow the register to be completed before unregistering. */ 757 rtnl_unlock(); 758 rtnl_lock(); 759 760 unregister_netdevice(dev); 761 return NULL; 762 } 763 #endif 764 765 /* 766 * Delete a VIF entry 767 */ 768 769 static int mif6_delete(struct mr6_table *mrt, int vifi, struct list_head *head) 770 { 771 struct mif_device *v; 772 struct net_device *dev; 773 struct inet6_dev *in6_dev; 774 775 if (vifi < 0 || vifi >= mrt->maxvif) 776 return -EADDRNOTAVAIL; 777 778 v = &mrt->vif6_table[vifi]; 779 780 write_lock_bh(&mrt_lock); 781 dev = v->dev; 782 v->dev = NULL; 783 784 if (!dev) { 785 write_unlock_bh(&mrt_lock); 786 return -EADDRNOTAVAIL; 787 } 788 789 #ifdef CONFIG_IPV6_PIMSM_V2 790 if (vifi == mrt->mroute_reg_vif_num) 791 mrt->mroute_reg_vif_num = -1; 792 #endif 793 794 if (vifi + 1 == mrt->maxvif) { 795 int tmp; 796 for (tmp = vifi - 1; tmp >= 0; tmp--) { 797 if (MIF_EXISTS(mrt, tmp)) 798 break; 799 } 800 mrt->maxvif = tmp + 1; 801 } 802 803 write_unlock_bh(&mrt_lock); 804 805 dev_set_allmulti(dev, -1); 806 807 in6_dev = __in6_dev_get(dev); 808 if (in6_dev) 809 in6_dev->cnf.mc_forwarding--; 810 811 if (v->flags & MIFF_REGISTER) 812 unregister_netdevice_queue(dev, head); 813 814 dev_put(dev); 815 return 0; 816 } 817 818 static inline void ip6mr_cache_free(struct mfc6_cache *c) 819 { 820 kmem_cache_free(mrt_cachep, c); 821 } 822 823 /* Destroy an unresolved cache entry, killing queued skbs 824 and reporting error to netlink readers. 825 */ 826 827 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c) 828 { 829 struct net *net = read_pnet(&mrt->net); 830 struct sk_buff *skb; 831 832 atomic_dec(&mrt->cache_resolve_queue_len); 833 834 while((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) { 835 if (ipv6_hdr(skb)->version == 0) { 836 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr)); 837 nlh->nlmsg_type = NLMSG_ERROR; 838 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 839 skb_trim(skb, nlh->nlmsg_len); 840 ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -ETIMEDOUT; 841 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 842 } else 843 kfree_skb(skb); 844 } 845 846 ip6mr_cache_free(c); 847 } 848 849 850 /* Timer process for all the unresolved queue. */ 851 852 static void ipmr_do_expire_process(struct mr6_table *mrt) 853 { 854 unsigned long now = jiffies; 855 unsigned long expires = 10 * HZ; 856 struct mfc6_cache *c, *next; 857 858 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) { 859 if (time_after(c->mfc_un.unres.expires, now)) { 860 /* not yet... */ 861 unsigned long interval = c->mfc_un.unres.expires - now; 862 if (interval < expires) 863 expires = interval; 864 continue; 865 } 866 867 list_del(&c->list); 868 ip6mr_destroy_unres(mrt, c); 869 } 870 871 if (!list_empty(&mrt->mfc6_unres_queue)) 872 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 873 } 874 875 static void ipmr_expire_process(unsigned long arg) 876 { 877 struct mr6_table *mrt = (struct mr6_table *)arg; 878 879 if (!spin_trylock(&mfc_unres_lock)) { 880 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1); 881 return; 882 } 883 884 if (!list_empty(&mrt->mfc6_unres_queue)) 885 ipmr_do_expire_process(mrt); 886 887 spin_unlock(&mfc_unres_lock); 888 } 889 890 /* Fill oifs list. It is called under write locked mrt_lock. */ 891 892 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache, 893 unsigned char *ttls) 894 { 895 int vifi; 896 897 cache->mfc_un.res.minvif = MAXMIFS; 898 cache->mfc_un.res.maxvif = 0; 899 memset(cache->mfc_un.res.ttls, 255, MAXMIFS); 900 901 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 902 if (MIF_EXISTS(mrt, vifi) && 903 ttls[vifi] && ttls[vifi] < 255) { 904 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 905 if (cache->mfc_un.res.minvif > vifi) 906 cache->mfc_un.res.minvif = vifi; 907 if (cache->mfc_un.res.maxvif <= vifi) 908 cache->mfc_un.res.maxvif = vifi + 1; 909 } 910 } 911 } 912 913 static int mif6_add(struct net *net, struct mr6_table *mrt, 914 struct mif6ctl *vifc, int mrtsock) 915 { 916 int vifi = vifc->mif6c_mifi; 917 struct mif_device *v = &mrt->vif6_table[vifi]; 918 struct net_device *dev; 919 struct inet6_dev *in6_dev; 920 int err; 921 922 /* Is vif busy ? */ 923 if (MIF_EXISTS(mrt, vifi)) 924 return -EADDRINUSE; 925 926 switch (vifc->mif6c_flags) { 927 #ifdef CONFIG_IPV6_PIMSM_V2 928 case MIFF_REGISTER: 929 /* 930 * Special Purpose VIF in PIM 931 * All the packets will be sent to the daemon 932 */ 933 if (mrt->mroute_reg_vif_num >= 0) 934 return -EADDRINUSE; 935 dev = ip6mr_reg_vif(net, mrt); 936 if (!dev) 937 return -ENOBUFS; 938 err = dev_set_allmulti(dev, 1); 939 if (err) { 940 unregister_netdevice(dev); 941 dev_put(dev); 942 return err; 943 } 944 break; 945 #endif 946 case 0: 947 dev = dev_get_by_index(net, vifc->mif6c_pifi); 948 if (!dev) 949 return -EADDRNOTAVAIL; 950 err = dev_set_allmulti(dev, 1); 951 if (err) { 952 dev_put(dev); 953 return err; 954 } 955 break; 956 default: 957 return -EINVAL; 958 } 959 960 in6_dev = __in6_dev_get(dev); 961 if (in6_dev) 962 in6_dev->cnf.mc_forwarding++; 963 964 /* 965 * Fill in the VIF structures 966 */ 967 v->rate_limit = vifc->vifc_rate_limit; 968 v->flags = vifc->mif6c_flags; 969 if (!mrtsock) 970 v->flags |= VIFF_STATIC; 971 v->threshold = vifc->vifc_threshold; 972 v->bytes_in = 0; 973 v->bytes_out = 0; 974 v->pkt_in = 0; 975 v->pkt_out = 0; 976 v->link = dev->ifindex; 977 if (v->flags & MIFF_REGISTER) 978 v->link = dev->iflink; 979 980 /* And finish update writing critical data */ 981 write_lock_bh(&mrt_lock); 982 v->dev = dev; 983 #ifdef CONFIG_IPV6_PIMSM_V2 984 if (v->flags & MIFF_REGISTER) 985 mrt->mroute_reg_vif_num = vifi; 986 #endif 987 if (vifi + 1 > mrt->maxvif) 988 mrt->maxvif = vifi + 1; 989 write_unlock_bh(&mrt_lock); 990 return 0; 991 } 992 993 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt, 994 const struct in6_addr *origin, 995 const struct in6_addr *mcastgrp) 996 { 997 int line = MFC6_HASH(mcastgrp, origin); 998 struct mfc6_cache *c; 999 1000 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) { 1001 if (ipv6_addr_equal(&c->mf6c_origin, origin) && 1002 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) 1003 return c; 1004 } 1005 return NULL; 1006 } 1007 1008 /* 1009 * Allocate a multicast cache entry 1010 */ 1011 static struct mfc6_cache *ip6mr_cache_alloc(void) 1012 { 1013 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 1014 if (c == NULL) 1015 return NULL; 1016 c->mfc_un.res.minvif = MAXMIFS; 1017 return c; 1018 } 1019 1020 static struct mfc6_cache *ip6mr_cache_alloc_unres(void) 1021 { 1022 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 1023 if (c == NULL) 1024 return NULL; 1025 skb_queue_head_init(&c->mfc_un.unres.unresolved); 1026 c->mfc_un.unres.expires = jiffies + 10 * HZ; 1027 return c; 1028 } 1029 1030 /* 1031 * A cache entry has gone into a resolved state from queued 1032 */ 1033 1034 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt, 1035 struct mfc6_cache *uc, struct mfc6_cache *c) 1036 { 1037 struct sk_buff *skb; 1038 1039 /* 1040 * Play the pending entries through our router 1041 */ 1042 1043 while((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 1044 if (ipv6_hdr(skb)->version == 0) { 1045 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr)); 1046 1047 if (__ip6mr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) { 1048 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh; 1049 } else { 1050 nlh->nlmsg_type = NLMSG_ERROR; 1051 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr)); 1052 skb_trim(skb, nlh->nlmsg_len); 1053 ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -EMSGSIZE; 1054 } 1055 rtnl_unicast(skb, net, NETLINK_CB(skb).pid); 1056 } else 1057 ip6_mr_forward(net, mrt, skb, c); 1058 } 1059 } 1060 1061 /* 1062 * Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd 1063 * expects the following bizarre scheme. 1064 * 1065 * Called under mrt_lock. 1066 */ 1067 1068 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt, 1069 mifi_t mifi, int assert) 1070 { 1071 struct sk_buff *skb; 1072 struct mrt6msg *msg; 1073 int ret; 1074 1075 #ifdef CONFIG_IPV6_PIMSM_V2 1076 if (assert == MRT6MSG_WHOLEPKT) 1077 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt) 1078 +sizeof(*msg)); 1079 else 1080 #endif 1081 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC); 1082 1083 if (!skb) 1084 return -ENOBUFS; 1085 1086 /* I suppose that internal messages 1087 * do not require checksums */ 1088 1089 skb->ip_summed = CHECKSUM_UNNECESSARY; 1090 1091 #ifdef CONFIG_IPV6_PIMSM_V2 1092 if (assert == MRT6MSG_WHOLEPKT) { 1093 /* Ugly, but we have no choice with this interface. 1094 Duplicate old header, fix length etc. 1095 And all this only to mangle msg->im6_msgtype and 1096 to set msg->im6_mbz to "mbz" :-) 1097 */ 1098 skb_push(skb, -skb_network_offset(pkt)); 1099 1100 skb_push(skb, sizeof(*msg)); 1101 skb_reset_transport_header(skb); 1102 msg = (struct mrt6msg *)skb_transport_header(skb); 1103 msg->im6_mbz = 0; 1104 msg->im6_msgtype = MRT6MSG_WHOLEPKT; 1105 msg->im6_mif = mrt->mroute_reg_vif_num; 1106 msg->im6_pad = 0; 1107 msg->im6_src = ipv6_hdr(pkt)->saddr; 1108 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1109 1110 skb->ip_summed = CHECKSUM_UNNECESSARY; 1111 } else 1112 #endif 1113 { 1114 /* 1115 * Copy the IP header 1116 */ 1117 1118 skb_put(skb, sizeof(struct ipv6hdr)); 1119 skb_reset_network_header(skb); 1120 skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr)); 1121 1122 /* 1123 * Add our header 1124 */ 1125 skb_put(skb, sizeof(*msg)); 1126 skb_reset_transport_header(skb); 1127 msg = (struct mrt6msg *)skb_transport_header(skb); 1128 1129 msg->im6_mbz = 0; 1130 msg->im6_msgtype = assert; 1131 msg->im6_mif = mifi; 1132 msg->im6_pad = 0; 1133 msg->im6_src = ipv6_hdr(pkt)->saddr; 1134 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1135 1136 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1137 skb->ip_summed = CHECKSUM_UNNECESSARY; 1138 } 1139 1140 if (mrt->mroute6_sk == NULL) { 1141 kfree_skb(skb); 1142 return -EINVAL; 1143 } 1144 1145 /* 1146 * Deliver to user space multicast routing algorithms 1147 */ 1148 ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb); 1149 if (ret < 0) { 1150 if (net_ratelimit()) 1151 printk(KERN_WARNING "mroute6: pending queue full, dropping entries.\n"); 1152 kfree_skb(skb); 1153 } 1154 1155 return ret; 1156 } 1157 1158 /* 1159 * Queue a packet for resolution. It gets locked cache entry! 1160 */ 1161 1162 static int 1163 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb) 1164 { 1165 bool found = false; 1166 int err; 1167 struct mfc6_cache *c; 1168 1169 spin_lock_bh(&mfc_unres_lock); 1170 list_for_each_entry(c, &mrt->mfc6_unres_queue, list) { 1171 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) && 1172 ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) { 1173 found = true; 1174 break; 1175 } 1176 } 1177 1178 if (!found) { 1179 /* 1180 * Create a new entry if allowable 1181 */ 1182 1183 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1184 (c = ip6mr_cache_alloc_unres()) == NULL) { 1185 spin_unlock_bh(&mfc_unres_lock); 1186 1187 kfree_skb(skb); 1188 return -ENOBUFS; 1189 } 1190 1191 /* 1192 * Fill in the new cache entry 1193 */ 1194 c->mf6c_parent = -1; 1195 c->mf6c_origin = ipv6_hdr(skb)->saddr; 1196 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr; 1197 1198 /* 1199 * Reflect first query at pim6sd 1200 */ 1201 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE); 1202 if (err < 0) { 1203 /* If the report failed throw the cache entry 1204 out - Brad Parker 1205 */ 1206 spin_unlock_bh(&mfc_unres_lock); 1207 1208 ip6mr_cache_free(c); 1209 kfree_skb(skb); 1210 return err; 1211 } 1212 1213 atomic_inc(&mrt->cache_resolve_queue_len); 1214 list_add(&c->list, &mrt->mfc6_unres_queue); 1215 1216 ipmr_do_expire_process(mrt); 1217 } 1218 1219 /* 1220 * See if we can append the packet 1221 */ 1222 if (c->mfc_un.unres.unresolved.qlen > 3) { 1223 kfree_skb(skb); 1224 err = -ENOBUFS; 1225 } else { 1226 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1227 err = 0; 1228 } 1229 1230 spin_unlock_bh(&mfc_unres_lock); 1231 return err; 1232 } 1233 1234 /* 1235 * MFC6 cache manipulation by user space 1236 */ 1237 1238 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc) 1239 { 1240 int line; 1241 struct mfc6_cache *c, *next; 1242 1243 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); 1244 1245 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) { 1246 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && 1247 ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) { 1248 write_lock_bh(&mrt_lock); 1249 list_del(&c->list); 1250 write_unlock_bh(&mrt_lock); 1251 1252 ip6mr_cache_free(c); 1253 return 0; 1254 } 1255 } 1256 return -ENOENT; 1257 } 1258 1259 static int ip6mr_device_event(struct notifier_block *this, 1260 unsigned long event, void *ptr) 1261 { 1262 struct net_device *dev = ptr; 1263 struct net *net = dev_net(dev); 1264 struct mr6_table *mrt; 1265 struct mif_device *v; 1266 int ct; 1267 LIST_HEAD(list); 1268 1269 if (event != NETDEV_UNREGISTER) 1270 return NOTIFY_DONE; 1271 1272 ip6mr_for_each_table(mrt, net) { 1273 v = &mrt->vif6_table[0]; 1274 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1275 if (v->dev == dev) 1276 mif6_delete(mrt, ct, &list); 1277 } 1278 } 1279 unregister_netdevice_many(&list); 1280 1281 return NOTIFY_DONE; 1282 } 1283 1284 static struct notifier_block ip6_mr_notifier = { 1285 .notifier_call = ip6mr_device_event 1286 }; 1287 1288 /* 1289 * Setup for IP multicast routing 1290 */ 1291 1292 static int __net_init ip6mr_net_init(struct net *net) 1293 { 1294 int err; 1295 1296 err = ip6mr_rules_init(net); 1297 if (err < 0) 1298 goto fail; 1299 1300 #ifdef CONFIG_PROC_FS 1301 err = -ENOMEM; 1302 if (!proc_net_fops_create(net, "ip6_mr_vif", 0, &ip6mr_vif_fops)) 1303 goto proc_vif_fail; 1304 if (!proc_net_fops_create(net, "ip6_mr_cache", 0, &ip6mr_mfc_fops)) 1305 goto proc_cache_fail; 1306 #endif 1307 1308 return 0; 1309 1310 #ifdef CONFIG_PROC_FS 1311 proc_cache_fail: 1312 proc_net_remove(net, "ip6_mr_vif"); 1313 proc_vif_fail: 1314 ip6mr_rules_exit(net); 1315 #endif 1316 fail: 1317 return err; 1318 } 1319 1320 static void __net_exit ip6mr_net_exit(struct net *net) 1321 { 1322 #ifdef CONFIG_PROC_FS 1323 proc_net_remove(net, "ip6_mr_cache"); 1324 proc_net_remove(net, "ip6_mr_vif"); 1325 #endif 1326 ip6mr_rules_exit(net); 1327 } 1328 1329 static struct pernet_operations ip6mr_net_ops = { 1330 .init = ip6mr_net_init, 1331 .exit = ip6mr_net_exit, 1332 }; 1333 1334 int __init ip6_mr_init(void) 1335 { 1336 int err; 1337 1338 mrt_cachep = kmem_cache_create("ip6_mrt_cache", 1339 sizeof(struct mfc6_cache), 1340 0, SLAB_HWCACHE_ALIGN, 1341 NULL); 1342 if (!mrt_cachep) 1343 return -ENOMEM; 1344 1345 err = register_pernet_subsys(&ip6mr_net_ops); 1346 if (err) 1347 goto reg_pernet_fail; 1348 1349 err = register_netdevice_notifier(&ip6_mr_notifier); 1350 if (err) 1351 goto reg_notif_fail; 1352 #ifdef CONFIG_IPV6_PIMSM_V2 1353 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) { 1354 printk(KERN_ERR "ip6_mr_init: can't add PIM protocol\n"); 1355 err = -EAGAIN; 1356 goto add_proto_fail; 1357 } 1358 #endif 1359 rtnl_register(RTNL_FAMILY_IP6MR, RTM_GETROUTE, NULL, 1360 ip6mr_rtm_dumproute, NULL); 1361 return 0; 1362 #ifdef CONFIG_IPV6_PIMSM_V2 1363 add_proto_fail: 1364 unregister_netdevice_notifier(&ip6_mr_notifier); 1365 #endif 1366 reg_notif_fail: 1367 unregister_pernet_subsys(&ip6mr_net_ops); 1368 reg_pernet_fail: 1369 kmem_cache_destroy(mrt_cachep); 1370 return err; 1371 } 1372 1373 void ip6_mr_cleanup(void) 1374 { 1375 unregister_netdevice_notifier(&ip6_mr_notifier); 1376 unregister_pernet_subsys(&ip6mr_net_ops); 1377 kmem_cache_destroy(mrt_cachep); 1378 } 1379 1380 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt, 1381 struct mf6cctl *mfc, int mrtsock) 1382 { 1383 bool found = false; 1384 int line; 1385 struct mfc6_cache *uc, *c; 1386 unsigned char ttls[MAXMIFS]; 1387 int i; 1388 1389 if (mfc->mf6cc_parent >= MAXMIFS) 1390 return -ENFILE; 1391 1392 memset(ttls, 255, MAXMIFS); 1393 for (i = 0; i < MAXMIFS; i++) { 1394 if (IF_ISSET(i, &mfc->mf6cc_ifset)) 1395 ttls[i] = 1; 1396 1397 } 1398 1399 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); 1400 1401 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) { 1402 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && 1403 ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) { 1404 found = true; 1405 break; 1406 } 1407 } 1408 1409 if (found) { 1410 write_lock_bh(&mrt_lock); 1411 c->mf6c_parent = mfc->mf6cc_parent; 1412 ip6mr_update_thresholds(mrt, c, ttls); 1413 if (!mrtsock) 1414 c->mfc_flags |= MFC_STATIC; 1415 write_unlock_bh(&mrt_lock); 1416 return 0; 1417 } 1418 1419 if (!ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr)) 1420 return -EINVAL; 1421 1422 c = ip6mr_cache_alloc(); 1423 if (c == NULL) 1424 return -ENOMEM; 1425 1426 c->mf6c_origin = mfc->mf6cc_origin.sin6_addr; 1427 c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr; 1428 c->mf6c_parent = mfc->mf6cc_parent; 1429 ip6mr_update_thresholds(mrt, c, ttls); 1430 if (!mrtsock) 1431 c->mfc_flags |= MFC_STATIC; 1432 1433 write_lock_bh(&mrt_lock); 1434 list_add(&c->list, &mrt->mfc6_cache_array[line]); 1435 write_unlock_bh(&mrt_lock); 1436 1437 /* 1438 * Check to see if we resolved a queued list. If so we 1439 * need to send on the frames and tidy up. 1440 */ 1441 found = false; 1442 spin_lock_bh(&mfc_unres_lock); 1443 list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) { 1444 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) && 1445 ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) { 1446 list_del(&uc->list); 1447 atomic_dec(&mrt->cache_resolve_queue_len); 1448 found = true; 1449 break; 1450 } 1451 } 1452 if (list_empty(&mrt->mfc6_unres_queue)) 1453 del_timer(&mrt->ipmr_expire_timer); 1454 spin_unlock_bh(&mfc_unres_lock); 1455 1456 if (found) { 1457 ip6mr_cache_resolve(net, mrt, uc, c); 1458 ip6mr_cache_free(uc); 1459 } 1460 return 0; 1461 } 1462 1463 /* 1464 * Close the multicast socket, and clear the vif tables etc 1465 */ 1466 1467 static void mroute_clean_tables(struct mr6_table *mrt) 1468 { 1469 int i; 1470 LIST_HEAD(list); 1471 struct mfc6_cache *c, *next; 1472 1473 /* 1474 * Shut down all active vif entries 1475 */ 1476 for (i = 0; i < mrt->maxvif; i++) { 1477 if (!(mrt->vif6_table[i].flags & VIFF_STATIC)) 1478 mif6_delete(mrt, i, &list); 1479 } 1480 unregister_netdevice_many(&list); 1481 1482 /* 1483 * Wipe the cache 1484 */ 1485 for (i = 0; i < MFC6_LINES; i++) { 1486 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) { 1487 if (c->mfc_flags & MFC_STATIC) 1488 continue; 1489 write_lock_bh(&mrt_lock); 1490 list_del(&c->list); 1491 write_unlock_bh(&mrt_lock); 1492 1493 ip6mr_cache_free(c); 1494 } 1495 } 1496 1497 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1498 spin_lock_bh(&mfc_unres_lock); 1499 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) { 1500 list_del(&c->list); 1501 ip6mr_destroy_unres(mrt, c); 1502 } 1503 spin_unlock_bh(&mfc_unres_lock); 1504 } 1505 } 1506 1507 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk) 1508 { 1509 int err = 0; 1510 struct net *net = sock_net(sk); 1511 1512 rtnl_lock(); 1513 write_lock_bh(&mrt_lock); 1514 if (likely(mrt->mroute6_sk == NULL)) { 1515 mrt->mroute6_sk = sk; 1516 net->ipv6.devconf_all->mc_forwarding++; 1517 } 1518 else 1519 err = -EADDRINUSE; 1520 write_unlock_bh(&mrt_lock); 1521 1522 rtnl_unlock(); 1523 1524 return err; 1525 } 1526 1527 int ip6mr_sk_done(struct sock *sk) 1528 { 1529 int err = -EACCES; 1530 struct net *net = sock_net(sk); 1531 struct mr6_table *mrt; 1532 1533 rtnl_lock(); 1534 ip6mr_for_each_table(mrt, net) { 1535 if (sk == mrt->mroute6_sk) { 1536 write_lock_bh(&mrt_lock); 1537 mrt->mroute6_sk = NULL; 1538 net->ipv6.devconf_all->mc_forwarding--; 1539 write_unlock_bh(&mrt_lock); 1540 1541 mroute_clean_tables(mrt); 1542 err = 0; 1543 break; 1544 } 1545 } 1546 rtnl_unlock(); 1547 1548 return err; 1549 } 1550 1551 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb) 1552 { 1553 struct mr6_table *mrt; 1554 struct flowi6 fl6 = { 1555 .flowi6_iif = skb->skb_iif, 1556 .flowi6_oif = skb->dev->ifindex, 1557 .flowi6_mark = skb->mark, 1558 }; 1559 1560 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 1561 return NULL; 1562 1563 return mrt->mroute6_sk; 1564 } 1565 1566 /* 1567 * Socket options and virtual interface manipulation. The whole 1568 * virtual interface system is a complete heap, but unfortunately 1569 * that's how BSD mrouted happens to think. Maybe one day with a proper 1570 * MOSPF/PIM router set up we can clean this up. 1571 */ 1572 1573 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1574 { 1575 int ret; 1576 struct mif6ctl vif; 1577 struct mf6cctl mfc; 1578 mifi_t mifi; 1579 struct net *net = sock_net(sk); 1580 struct mr6_table *mrt; 1581 1582 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1583 if (mrt == NULL) 1584 return -ENOENT; 1585 1586 if (optname != MRT6_INIT) { 1587 if (sk != mrt->mroute6_sk && !capable(CAP_NET_ADMIN)) 1588 return -EACCES; 1589 } 1590 1591 switch (optname) { 1592 case MRT6_INIT: 1593 if (sk->sk_type != SOCK_RAW || 1594 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1595 return -EOPNOTSUPP; 1596 if (optlen < sizeof(int)) 1597 return -EINVAL; 1598 1599 return ip6mr_sk_init(mrt, sk); 1600 1601 case MRT6_DONE: 1602 return ip6mr_sk_done(sk); 1603 1604 case MRT6_ADD_MIF: 1605 if (optlen < sizeof(vif)) 1606 return -EINVAL; 1607 if (copy_from_user(&vif, optval, sizeof(vif))) 1608 return -EFAULT; 1609 if (vif.mif6c_mifi >= MAXMIFS) 1610 return -ENFILE; 1611 rtnl_lock(); 1612 ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk); 1613 rtnl_unlock(); 1614 return ret; 1615 1616 case MRT6_DEL_MIF: 1617 if (optlen < sizeof(mifi_t)) 1618 return -EINVAL; 1619 if (copy_from_user(&mifi, optval, sizeof(mifi_t))) 1620 return -EFAULT; 1621 rtnl_lock(); 1622 ret = mif6_delete(mrt, mifi, NULL); 1623 rtnl_unlock(); 1624 return ret; 1625 1626 /* 1627 * Manipulate the forwarding caches. These live 1628 * in a sort of kernel/user symbiosis. 1629 */ 1630 case MRT6_ADD_MFC: 1631 case MRT6_DEL_MFC: 1632 if (optlen < sizeof(mfc)) 1633 return -EINVAL; 1634 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1635 return -EFAULT; 1636 rtnl_lock(); 1637 if (optname == MRT6_DEL_MFC) 1638 ret = ip6mr_mfc_delete(mrt, &mfc); 1639 else 1640 ret = ip6mr_mfc_add(net, mrt, &mfc, sk == mrt->mroute6_sk); 1641 rtnl_unlock(); 1642 return ret; 1643 1644 /* 1645 * Control PIM assert (to activate pim will activate assert) 1646 */ 1647 case MRT6_ASSERT: 1648 { 1649 int v; 1650 if (get_user(v, (int __user *)optval)) 1651 return -EFAULT; 1652 mrt->mroute_do_assert = !!v; 1653 return 0; 1654 } 1655 1656 #ifdef CONFIG_IPV6_PIMSM_V2 1657 case MRT6_PIM: 1658 { 1659 int v; 1660 if (get_user(v, (int __user *)optval)) 1661 return -EFAULT; 1662 v = !!v; 1663 rtnl_lock(); 1664 ret = 0; 1665 if (v != mrt->mroute_do_pim) { 1666 mrt->mroute_do_pim = v; 1667 mrt->mroute_do_assert = v; 1668 } 1669 rtnl_unlock(); 1670 return ret; 1671 } 1672 1673 #endif 1674 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 1675 case MRT6_TABLE: 1676 { 1677 u32 v; 1678 1679 if (optlen != sizeof(u32)) 1680 return -EINVAL; 1681 if (get_user(v, (u32 __user *)optval)) 1682 return -EFAULT; 1683 if (sk == mrt->mroute6_sk) 1684 return -EBUSY; 1685 1686 rtnl_lock(); 1687 ret = 0; 1688 if (!ip6mr_new_table(net, v)) 1689 ret = -ENOMEM; 1690 raw6_sk(sk)->ip6mr_table = v; 1691 rtnl_unlock(); 1692 return ret; 1693 } 1694 #endif 1695 /* 1696 * Spurious command, or MRT6_VERSION which you cannot 1697 * set. 1698 */ 1699 default: 1700 return -ENOPROTOOPT; 1701 } 1702 } 1703 1704 /* 1705 * Getsock opt support for the multicast routing system. 1706 */ 1707 1708 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, 1709 int __user *optlen) 1710 { 1711 int olr; 1712 int val; 1713 struct net *net = sock_net(sk); 1714 struct mr6_table *mrt; 1715 1716 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1717 if (mrt == NULL) 1718 return -ENOENT; 1719 1720 switch (optname) { 1721 case MRT6_VERSION: 1722 val = 0x0305; 1723 break; 1724 #ifdef CONFIG_IPV6_PIMSM_V2 1725 case MRT6_PIM: 1726 val = mrt->mroute_do_pim; 1727 break; 1728 #endif 1729 case MRT6_ASSERT: 1730 val = mrt->mroute_do_assert; 1731 break; 1732 default: 1733 return -ENOPROTOOPT; 1734 } 1735 1736 if (get_user(olr, optlen)) 1737 return -EFAULT; 1738 1739 olr = min_t(int, olr, sizeof(int)); 1740 if (olr < 0) 1741 return -EINVAL; 1742 1743 if (put_user(olr, optlen)) 1744 return -EFAULT; 1745 if (copy_to_user(optval, &val, olr)) 1746 return -EFAULT; 1747 return 0; 1748 } 1749 1750 /* 1751 * The IP multicast ioctl support routines. 1752 */ 1753 1754 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg) 1755 { 1756 struct sioc_sg_req6 sr; 1757 struct sioc_mif_req6 vr; 1758 struct mif_device *vif; 1759 struct mfc6_cache *c; 1760 struct net *net = sock_net(sk); 1761 struct mr6_table *mrt; 1762 1763 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1764 if (mrt == NULL) 1765 return -ENOENT; 1766 1767 switch (cmd) { 1768 case SIOCGETMIFCNT_IN6: 1769 if (copy_from_user(&vr, arg, sizeof(vr))) 1770 return -EFAULT; 1771 if (vr.mifi >= mrt->maxvif) 1772 return -EINVAL; 1773 read_lock(&mrt_lock); 1774 vif = &mrt->vif6_table[vr.mifi]; 1775 if (MIF_EXISTS(mrt, vr.mifi)) { 1776 vr.icount = vif->pkt_in; 1777 vr.ocount = vif->pkt_out; 1778 vr.ibytes = vif->bytes_in; 1779 vr.obytes = vif->bytes_out; 1780 read_unlock(&mrt_lock); 1781 1782 if (copy_to_user(arg, &vr, sizeof(vr))) 1783 return -EFAULT; 1784 return 0; 1785 } 1786 read_unlock(&mrt_lock); 1787 return -EADDRNOTAVAIL; 1788 case SIOCGETSGCNT_IN6: 1789 if (copy_from_user(&sr, arg, sizeof(sr))) 1790 return -EFAULT; 1791 1792 read_lock(&mrt_lock); 1793 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1794 if (c) { 1795 sr.pktcnt = c->mfc_un.res.pkt; 1796 sr.bytecnt = c->mfc_un.res.bytes; 1797 sr.wrong_if = c->mfc_un.res.wrong_if; 1798 read_unlock(&mrt_lock); 1799 1800 if (copy_to_user(arg, &sr, sizeof(sr))) 1801 return -EFAULT; 1802 return 0; 1803 } 1804 read_unlock(&mrt_lock); 1805 return -EADDRNOTAVAIL; 1806 default: 1807 return -ENOIOCTLCMD; 1808 } 1809 } 1810 1811 #ifdef CONFIG_COMPAT 1812 struct compat_sioc_sg_req6 { 1813 struct sockaddr_in6 src; 1814 struct sockaddr_in6 grp; 1815 compat_ulong_t pktcnt; 1816 compat_ulong_t bytecnt; 1817 compat_ulong_t wrong_if; 1818 }; 1819 1820 struct compat_sioc_mif_req6 { 1821 mifi_t mifi; 1822 compat_ulong_t icount; 1823 compat_ulong_t ocount; 1824 compat_ulong_t ibytes; 1825 compat_ulong_t obytes; 1826 }; 1827 1828 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1829 { 1830 struct compat_sioc_sg_req6 sr; 1831 struct compat_sioc_mif_req6 vr; 1832 struct mif_device *vif; 1833 struct mfc6_cache *c; 1834 struct net *net = sock_net(sk); 1835 struct mr6_table *mrt; 1836 1837 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1838 if (mrt == NULL) 1839 return -ENOENT; 1840 1841 switch (cmd) { 1842 case SIOCGETMIFCNT_IN6: 1843 if (copy_from_user(&vr, arg, sizeof(vr))) 1844 return -EFAULT; 1845 if (vr.mifi >= mrt->maxvif) 1846 return -EINVAL; 1847 read_lock(&mrt_lock); 1848 vif = &mrt->vif6_table[vr.mifi]; 1849 if (MIF_EXISTS(mrt, vr.mifi)) { 1850 vr.icount = vif->pkt_in; 1851 vr.ocount = vif->pkt_out; 1852 vr.ibytes = vif->bytes_in; 1853 vr.obytes = vif->bytes_out; 1854 read_unlock(&mrt_lock); 1855 1856 if (copy_to_user(arg, &vr, sizeof(vr))) 1857 return -EFAULT; 1858 return 0; 1859 } 1860 read_unlock(&mrt_lock); 1861 return -EADDRNOTAVAIL; 1862 case SIOCGETSGCNT_IN6: 1863 if (copy_from_user(&sr, arg, sizeof(sr))) 1864 return -EFAULT; 1865 1866 read_lock(&mrt_lock); 1867 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1868 if (c) { 1869 sr.pktcnt = c->mfc_un.res.pkt; 1870 sr.bytecnt = c->mfc_un.res.bytes; 1871 sr.wrong_if = c->mfc_un.res.wrong_if; 1872 read_unlock(&mrt_lock); 1873 1874 if (copy_to_user(arg, &sr, sizeof(sr))) 1875 return -EFAULT; 1876 return 0; 1877 } 1878 read_unlock(&mrt_lock); 1879 return -EADDRNOTAVAIL; 1880 default: 1881 return -ENOIOCTLCMD; 1882 } 1883 } 1884 #endif 1885 1886 static inline int ip6mr_forward2_finish(struct sk_buff *skb) 1887 { 1888 IP6_INC_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)), 1889 IPSTATS_MIB_OUTFORWDATAGRAMS); 1890 return dst_output(skb); 1891 } 1892 1893 /* 1894 * Processing handlers for ip6mr_forward 1895 */ 1896 1897 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt, 1898 struct sk_buff *skb, struct mfc6_cache *c, int vifi) 1899 { 1900 struct ipv6hdr *ipv6h; 1901 struct mif_device *vif = &mrt->vif6_table[vifi]; 1902 struct net_device *dev; 1903 struct dst_entry *dst; 1904 struct flowi6 fl6; 1905 1906 if (vif->dev == NULL) 1907 goto out_free; 1908 1909 #ifdef CONFIG_IPV6_PIMSM_V2 1910 if (vif->flags & MIFF_REGISTER) { 1911 vif->pkt_out++; 1912 vif->bytes_out += skb->len; 1913 vif->dev->stats.tx_bytes += skb->len; 1914 vif->dev->stats.tx_packets++; 1915 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT); 1916 goto out_free; 1917 } 1918 #endif 1919 1920 ipv6h = ipv6_hdr(skb); 1921 1922 fl6 = (struct flowi6) { 1923 .flowi6_oif = vif->link, 1924 .daddr = ipv6h->daddr, 1925 }; 1926 1927 dst = ip6_route_output(net, NULL, &fl6); 1928 if (dst->error) { 1929 dst_release(dst); 1930 goto out_free; 1931 } 1932 1933 skb_dst_drop(skb); 1934 skb_dst_set(skb, dst); 1935 1936 /* 1937 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 1938 * not only before forwarding, but after forwarding on all output 1939 * interfaces. It is clear, if mrouter runs a multicasting 1940 * program, it should receive packets not depending to what interface 1941 * program is joined. 1942 * If we will not make it, the program will have to join on all 1943 * interfaces. On the other hand, multihoming host (or router, but 1944 * not mrouter) cannot join to more than one interface - it will 1945 * result in receiving multiple packets. 1946 */ 1947 dev = vif->dev; 1948 skb->dev = dev; 1949 vif->pkt_out++; 1950 vif->bytes_out += skb->len; 1951 1952 /* We are about to write */ 1953 /* XXX: extension headers? */ 1954 if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev))) 1955 goto out_free; 1956 1957 ipv6h = ipv6_hdr(skb); 1958 ipv6h->hop_limit--; 1959 1960 IP6CB(skb)->flags |= IP6SKB_FORWARDED; 1961 1962 return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, skb, skb->dev, dev, 1963 ip6mr_forward2_finish); 1964 1965 out_free: 1966 kfree_skb(skb); 1967 return 0; 1968 } 1969 1970 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev) 1971 { 1972 int ct; 1973 1974 for (ct = mrt->maxvif - 1; ct >= 0; ct--) { 1975 if (mrt->vif6_table[ct].dev == dev) 1976 break; 1977 } 1978 return ct; 1979 } 1980 1981 static int ip6_mr_forward(struct net *net, struct mr6_table *mrt, 1982 struct sk_buff *skb, struct mfc6_cache *cache) 1983 { 1984 int psend = -1; 1985 int vif, ct; 1986 1987 vif = cache->mf6c_parent; 1988 cache->mfc_un.res.pkt++; 1989 cache->mfc_un.res.bytes += skb->len; 1990 1991 /* 1992 * Wrong interface: drop packet and (maybe) send PIM assert. 1993 */ 1994 if (mrt->vif6_table[vif].dev != skb->dev) { 1995 int true_vifi; 1996 1997 cache->mfc_un.res.wrong_if++; 1998 true_vifi = ip6mr_find_vif(mrt, skb->dev); 1999 2000 if (true_vifi >= 0 && mrt->mroute_do_assert && 2001 /* pimsm uses asserts, when switching from RPT to SPT, 2002 so that we cannot check that packet arrived on an oif. 2003 It is bad, but otherwise we would need to move pretty 2004 large chunk of pimd to kernel. Ough... --ANK 2005 */ 2006 (mrt->mroute_do_pim || 2007 cache->mfc_un.res.ttls[true_vifi] < 255) && 2008 time_after(jiffies, 2009 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 2010 cache->mfc_un.res.last_assert = jiffies; 2011 ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF); 2012 } 2013 goto dont_forward; 2014 } 2015 2016 mrt->vif6_table[vif].pkt_in++; 2017 mrt->vif6_table[vif].bytes_in += skb->len; 2018 2019 /* 2020 * Forward the frame 2021 */ 2022 for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) { 2023 if (ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) { 2024 if (psend != -1) { 2025 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2026 if (skb2) 2027 ip6mr_forward2(net, mrt, skb2, cache, psend); 2028 } 2029 psend = ct; 2030 } 2031 } 2032 if (psend != -1) { 2033 ip6mr_forward2(net, mrt, skb, cache, psend); 2034 return 0; 2035 } 2036 2037 dont_forward: 2038 kfree_skb(skb); 2039 return 0; 2040 } 2041 2042 2043 /* 2044 * Multicast packets for forwarding arrive here 2045 */ 2046 2047 int ip6_mr_input(struct sk_buff *skb) 2048 { 2049 struct mfc6_cache *cache; 2050 struct net *net = dev_net(skb->dev); 2051 struct mr6_table *mrt; 2052 struct flowi6 fl6 = { 2053 .flowi6_iif = skb->dev->ifindex, 2054 .flowi6_mark = skb->mark, 2055 }; 2056 int err; 2057 2058 err = ip6mr_fib_lookup(net, &fl6, &mrt); 2059 if (err < 0) { 2060 kfree_skb(skb); 2061 return err; 2062 } 2063 2064 read_lock(&mrt_lock); 2065 cache = ip6mr_cache_find(mrt, 2066 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr); 2067 2068 /* 2069 * No usable cache entry 2070 */ 2071 if (cache == NULL) { 2072 int vif; 2073 2074 vif = ip6mr_find_vif(mrt, skb->dev); 2075 if (vif >= 0) { 2076 int err = ip6mr_cache_unresolved(mrt, vif, skb); 2077 read_unlock(&mrt_lock); 2078 2079 return err; 2080 } 2081 read_unlock(&mrt_lock); 2082 kfree_skb(skb); 2083 return -ENODEV; 2084 } 2085 2086 ip6_mr_forward(net, mrt, skb, cache); 2087 2088 read_unlock(&mrt_lock); 2089 2090 return 0; 2091 } 2092 2093 2094 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 2095 struct mfc6_cache *c, struct rtmsg *rtm) 2096 { 2097 int ct; 2098 struct rtnexthop *nhp; 2099 u8 *b = skb_tail_pointer(skb); 2100 struct rtattr *mp_head; 2101 2102 /* If cache is unresolved, don't try to parse IIF and OIF */ 2103 if (c->mf6c_parent >= MAXMIFS) 2104 return -ENOENT; 2105 2106 if (MIF_EXISTS(mrt, c->mf6c_parent)) 2107 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif6_table[c->mf6c_parent].dev->ifindex); 2108 2109 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0)); 2110 2111 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2112 if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2113 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4)) 2114 goto rtattr_failure; 2115 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp))); 2116 nhp->rtnh_flags = 0; 2117 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2118 nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex; 2119 nhp->rtnh_len = sizeof(*nhp); 2120 } 2121 } 2122 mp_head->rta_type = RTA_MULTIPATH; 2123 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head; 2124 rtm->rtm_type = RTN_MULTICAST; 2125 return 1; 2126 2127 rtattr_failure: 2128 nlmsg_trim(skb, b); 2129 return -EMSGSIZE; 2130 } 2131 2132 int ip6mr_get_route(struct net *net, 2133 struct sk_buff *skb, struct rtmsg *rtm, int nowait) 2134 { 2135 int err; 2136 struct mr6_table *mrt; 2137 struct mfc6_cache *cache; 2138 struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); 2139 2140 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 2141 if (mrt == NULL) 2142 return -ENOENT; 2143 2144 read_lock(&mrt_lock); 2145 cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr); 2146 2147 if (!cache) { 2148 struct sk_buff *skb2; 2149 struct ipv6hdr *iph; 2150 struct net_device *dev; 2151 int vif; 2152 2153 if (nowait) { 2154 read_unlock(&mrt_lock); 2155 return -EAGAIN; 2156 } 2157 2158 dev = skb->dev; 2159 if (dev == NULL || (vif = ip6mr_find_vif(mrt, dev)) < 0) { 2160 read_unlock(&mrt_lock); 2161 return -ENODEV; 2162 } 2163 2164 /* really correct? */ 2165 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); 2166 if (!skb2) { 2167 read_unlock(&mrt_lock); 2168 return -ENOMEM; 2169 } 2170 2171 skb_reset_transport_header(skb2); 2172 2173 skb_put(skb2, sizeof(struct ipv6hdr)); 2174 skb_reset_network_header(skb2); 2175 2176 iph = ipv6_hdr(skb2); 2177 iph->version = 0; 2178 iph->priority = 0; 2179 iph->flow_lbl[0] = 0; 2180 iph->flow_lbl[1] = 0; 2181 iph->flow_lbl[2] = 0; 2182 iph->payload_len = 0; 2183 iph->nexthdr = IPPROTO_NONE; 2184 iph->hop_limit = 0; 2185 iph->saddr = rt->rt6i_src.addr; 2186 iph->daddr = rt->rt6i_dst.addr; 2187 2188 err = ip6mr_cache_unresolved(mrt, vif, skb2); 2189 read_unlock(&mrt_lock); 2190 2191 return err; 2192 } 2193 2194 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY)) 2195 cache->mfc_flags |= MFC_NOTIFY; 2196 2197 err = __ip6mr_fill_mroute(mrt, skb, cache, rtm); 2198 read_unlock(&mrt_lock); 2199 return err; 2200 } 2201 2202 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 2203 u32 pid, u32 seq, struct mfc6_cache *c) 2204 { 2205 struct nlmsghdr *nlh; 2206 struct rtmsg *rtm; 2207 2208 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI); 2209 if (nlh == NULL) 2210 return -EMSGSIZE; 2211 2212 rtm = nlmsg_data(nlh); 2213 rtm->rtm_family = RTNL_FAMILY_IPMR; 2214 rtm->rtm_dst_len = 128; 2215 rtm->rtm_src_len = 128; 2216 rtm->rtm_tos = 0; 2217 rtm->rtm_table = mrt->id; 2218 NLA_PUT_U32(skb, RTA_TABLE, mrt->id); 2219 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2220 rtm->rtm_protocol = RTPROT_UNSPEC; 2221 rtm->rtm_flags = 0; 2222 2223 NLA_PUT(skb, RTA_SRC, 16, &c->mf6c_origin); 2224 NLA_PUT(skb, RTA_DST, 16, &c->mf6c_mcastgrp); 2225 2226 if (__ip6mr_fill_mroute(mrt, skb, c, rtm) < 0) 2227 goto nla_put_failure; 2228 2229 return nlmsg_end(skb, nlh); 2230 2231 nla_put_failure: 2232 nlmsg_cancel(skb, nlh); 2233 return -EMSGSIZE; 2234 } 2235 2236 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2237 { 2238 struct net *net = sock_net(skb->sk); 2239 struct mr6_table *mrt; 2240 struct mfc6_cache *mfc; 2241 unsigned int t = 0, s_t; 2242 unsigned int h = 0, s_h; 2243 unsigned int e = 0, s_e; 2244 2245 s_t = cb->args[0]; 2246 s_h = cb->args[1]; 2247 s_e = cb->args[2]; 2248 2249 read_lock(&mrt_lock); 2250 ip6mr_for_each_table(mrt, net) { 2251 if (t < s_t) 2252 goto next_table; 2253 if (t > s_t) 2254 s_h = 0; 2255 for (h = s_h; h < MFC6_LINES; h++) { 2256 list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) { 2257 if (e < s_e) 2258 goto next_entry; 2259 if (ip6mr_fill_mroute(mrt, skb, 2260 NETLINK_CB(cb->skb).pid, 2261 cb->nlh->nlmsg_seq, 2262 mfc) < 0) 2263 goto done; 2264 next_entry: 2265 e++; 2266 } 2267 e = s_e = 0; 2268 } 2269 s_h = 0; 2270 next_table: 2271 t++; 2272 } 2273 done: 2274 read_unlock(&mrt_lock); 2275 2276 cb->args[2] = e; 2277 cb->args[1] = h; 2278 cb->args[0] = t; 2279 2280 return skb->len; 2281 } 2282