xref: /openbmc/linux/net/ipv6/ip6mr.c (revision 8e694cd2)
1 /*
2  *	Linux IPv6 multicast routing support for BSD pim6sd
3  *	Based on net/ipv4/ipmr.c.
4  *
5  *	(c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr>
6  *		LSIIT Laboratory, Strasbourg, France
7  *	(c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com>
8  *		6WIND, Paris, France
9  *	Copyright (C)2007,2008 USAGI/WIDE Project
10  *		YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
11  *
12  *	This program is free software; you can redistribute it and/or
13  *	modify it under the terms of the GNU General Public License
14  *	as published by the Free Software Foundation; either version
15  *	2 of the License, or (at your option) any later version.
16  *
17  */
18 
19 #include <asm/uaccess.h>
20 #include <linux/types.h>
21 #include <linux/sched.h>
22 #include <linux/errno.h>
23 #include <linux/timer.h>
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/fcntl.h>
27 #include <linux/stat.h>
28 #include <linux/socket.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/proc_fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/compat.h>
37 #include <net/protocol.h>
38 #include <linux/skbuff.h>
39 #include <net/sock.h>
40 #include <net/raw.h>
41 #include <linux/notifier.h>
42 #include <linux/if_arp.h>
43 #include <net/checksum.h>
44 #include <net/netlink.h>
45 #include <net/fib_rules.h>
46 
47 #include <net/ipv6.h>
48 #include <net/ip6_route.h>
49 #include <linux/mroute6.h>
50 #include <linux/pim.h>
51 #include <net/addrconf.h>
52 #include <linux/netfilter_ipv6.h>
53 #include <linux/export.h>
54 #include <net/ip6_checksum.h>
55 #include <linux/netconf.h>
56 
57 struct mr6_table {
58 	struct list_head	list;
59 	possible_net_t		net;
60 	u32			id;
61 	struct sock		*mroute6_sk;
62 	struct timer_list	ipmr_expire_timer;
63 	struct list_head	mfc6_unres_queue;
64 	struct list_head	mfc6_cache_array[MFC6_LINES];
65 	struct mif_device	vif6_table[MAXMIFS];
66 	int			maxvif;
67 	atomic_t		cache_resolve_queue_len;
68 	bool			mroute_do_assert;
69 	bool			mroute_do_pim;
70 #ifdef CONFIG_IPV6_PIMSM_V2
71 	int			mroute_reg_vif_num;
72 #endif
73 };
74 
75 struct ip6mr_rule {
76 	struct fib_rule		common;
77 };
78 
79 struct ip6mr_result {
80 	struct mr6_table	*mrt;
81 };
82 
83 /* Big lock, protecting vif table, mrt cache and mroute socket state.
84    Note that the changes are semaphored via rtnl_lock.
85  */
86 
87 static DEFINE_RWLOCK(mrt_lock);
88 
89 /*
90  *	Multicast router control variables
91  */
92 
93 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL)
94 
95 /* Special spinlock for queue of unresolved entries */
96 static DEFINE_SPINLOCK(mfc_unres_lock);
97 
98 /* We return to original Alan's scheme. Hash table of resolved
99    entries is changed only in process context and protected
100    with weak lock mrt_lock. Queue of unresolved entries is protected
101    with strong spinlock mfc_unres_lock.
102 
103    In this case data path is free of exclusive locks at all.
104  */
105 
106 static struct kmem_cache *mrt_cachep __read_mostly;
107 
108 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id);
109 static void ip6mr_free_table(struct mr6_table *mrt);
110 
111 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt,
112 			   struct sk_buff *skb, struct mfc6_cache *cache);
113 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
114 			      mifi_t mifi, int assert);
115 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
116 			       struct mfc6_cache *c, struct rtmsg *rtm);
117 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc,
118 			      int cmd);
119 static int ip6mr_rtm_dumproute(struct sk_buff *skb,
120 			       struct netlink_callback *cb);
121 static void mroute_clean_tables(struct mr6_table *mrt, bool all);
122 static void ipmr_expire_process(unsigned long arg);
123 
124 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
125 #define ip6mr_for_each_table(mrt, net) \
126 	list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list)
127 
128 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
129 {
130 	struct mr6_table *mrt;
131 
132 	ip6mr_for_each_table(mrt, net) {
133 		if (mrt->id == id)
134 			return mrt;
135 	}
136 	return NULL;
137 }
138 
139 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
140 			    struct mr6_table **mrt)
141 {
142 	int err;
143 	struct ip6mr_result res;
144 	struct fib_lookup_arg arg = {
145 		.result = &res,
146 		.flags = FIB_LOOKUP_NOREF,
147 	};
148 
149 	err = fib_rules_lookup(net->ipv6.mr6_rules_ops,
150 			       flowi6_to_flowi(flp6), 0, &arg);
151 	if (err < 0)
152 		return err;
153 	*mrt = res.mrt;
154 	return 0;
155 }
156 
157 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp,
158 			     int flags, struct fib_lookup_arg *arg)
159 {
160 	struct ip6mr_result *res = arg->result;
161 	struct mr6_table *mrt;
162 
163 	switch (rule->action) {
164 	case FR_ACT_TO_TBL:
165 		break;
166 	case FR_ACT_UNREACHABLE:
167 		return -ENETUNREACH;
168 	case FR_ACT_PROHIBIT:
169 		return -EACCES;
170 	case FR_ACT_BLACKHOLE:
171 	default:
172 		return -EINVAL;
173 	}
174 
175 	mrt = ip6mr_get_table(rule->fr_net, rule->table);
176 	if (!mrt)
177 		return -EAGAIN;
178 	res->mrt = mrt;
179 	return 0;
180 }
181 
182 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags)
183 {
184 	return 1;
185 }
186 
187 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = {
188 	FRA_GENERIC_POLICY,
189 };
190 
191 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
192 				struct fib_rule_hdr *frh, struct nlattr **tb)
193 {
194 	return 0;
195 }
196 
197 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
198 			      struct nlattr **tb)
199 {
200 	return 1;
201 }
202 
203 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
204 			   struct fib_rule_hdr *frh)
205 {
206 	frh->dst_len = 0;
207 	frh->src_len = 0;
208 	frh->tos     = 0;
209 	return 0;
210 }
211 
212 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = {
213 	.family		= RTNL_FAMILY_IP6MR,
214 	.rule_size	= sizeof(struct ip6mr_rule),
215 	.addr_size	= sizeof(struct in6_addr),
216 	.action		= ip6mr_rule_action,
217 	.match		= ip6mr_rule_match,
218 	.configure	= ip6mr_rule_configure,
219 	.compare	= ip6mr_rule_compare,
220 	.fill		= ip6mr_rule_fill,
221 	.nlgroup	= RTNLGRP_IPV6_RULE,
222 	.policy		= ip6mr_rule_policy,
223 	.owner		= THIS_MODULE,
224 };
225 
226 static int __net_init ip6mr_rules_init(struct net *net)
227 {
228 	struct fib_rules_ops *ops;
229 	struct mr6_table *mrt;
230 	int err;
231 
232 	ops = fib_rules_register(&ip6mr_rules_ops_template, net);
233 	if (IS_ERR(ops))
234 		return PTR_ERR(ops);
235 
236 	INIT_LIST_HEAD(&net->ipv6.mr6_tables);
237 
238 	mrt = ip6mr_new_table(net, RT6_TABLE_DFLT);
239 	if (!mrt) {
240 		err = -ENOMEM;
241 		goto err1;
242 	}
243 
244 	err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0);
245 	if (err < 0)
246 		goto err2;
247 
248 	net->ipv6.mr6_rules_ops = ops;
249 	return 0;
250 
251 err2:
252 	ip6mr_free_table(mrt);
253 err1:
254 	fib_rules_unregister(ops);
255 	return err;
256 }
257 
258 static void __net_exit ip6mr_rules_exit(struct net *net)
259 {
260 	struct mr6_table *mrt, *next;
261 
262 	rtnl_lock();
263 	list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) {
264 		list_del(&mrt->list);
265 		ip6mr_free_table(mrt);
266 	}
267 	fib_rules_unregister(net->ipv6.mr6_rules_ops);
268 	rtnl_unlock();
269 }
270 #else
271 #define ip6mr_for_each_table(mrt, net) \
272 	for (mrt = net->ipv6.mrt6; mrt; mrt = NULL)
273 
274 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
275 {
276 	return net->ipv6.mrt6;
277 }
278 
279 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
280 			    struct mr6_table **mrt)
281 {
282 	*mrt = net->ipv6.mrt6;
283 	return 0;
284 }
285 
286 static int __net_init ip6mr_rules_init(struct net *net)
287 {
288 	net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT);
289 	return net->ipv6.mrt6 ? 0 : -ENOMEM;
290 }
291 
292 static void __net_exit ip6mr_rules_exit(struct net *net)
293 {
294 	rtnl_lock();
295 	ip6mr_free_table(net->ipv6.mrt6);
296 	net->ipv6.mrt6 = NULL;
297 	rtnl_unlock();
298 }
299 #endif
300 
301 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id)
302 {
303 	struct mr6_table *mrt;
304 	unsigned int i;
305 
306 	mrt = ip6mr_get_table(net, id);
307 	if (mrt)
308 		return mrt;
309 
310 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
311 	if (!mrt)
312 		return NULL;
313 	mrt->id = id;
314 	write_pnet(&mrt->net, net);
315 
316 	/* Forwarding cache */
317 	for (i = 0; i < MFC6_LINES; i++)
318 		INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]);
319 
320 	INIT_LIST_HEAD(&mrt->mfc6_unres_queue);
321 
322 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
323 		    (unsigned long)mrt);
324 
325 #ifdef CONFIG_IPV6_PIMSM_V2
326 	mrt->mroute_reg_vif_num = -1;
327 #endif
328 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
329 	list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables);
330 #endif
331 	return mrt;
332 }
333 
334 static void ip6mr_free_table(struct mr6_table *mrt)
335 {
336 	del_timer_sync(&mrt->ipmr_expire_timer);
337 	mroute_clean_tables(mrt, true);
338 	kfree(mrt);
339 }
340 
341 #ifdef CONFIG_PROC_FS
342 
343 struct ipmr_mfc_iter {
344 	struct seq_net_private p;
345 	struct mr6_table *mrt;
346 	struct list_head *cache;
347 	int ct;
348 };
349 
350 
351 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net,
352 					   struct ipmr_mfc_iter *it, loff_t pos)
353 {
354 	struct mr6_table *mrt = it->mrt;
355 	struct mfc6_cache *mfc;
356 
357 	read_lock(&mrt_lock);
358 	for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) {
359 		it->cache = &mrt->mfc6_cache_array[it->ct];
360 		list_for_each_entry(mfc, it->cache, list)
361 			if (pos-- == 0)
362 				return mfc;
363 	}
364 	read_unlock(&mrt_lock);
365 
366 	spin_lock_bh(&mfc_unres_lock);
367 	it->cache = &mrt->mfc6_unres_queue;
368 	list_for_each_entry(mfc, it->cache, list)
369 		if (pos-- == 0)
370 			return mfc;
371 	spin_unlock_bh(&mfc_unres_lock);
372 
373 	it->cache = NULL;
374 	return NULL;
375 }
376 
377 /*
378  *	The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif
379  */
380 
381 struct ipmr_vif_iter {
382 	struct seq_net_private p;
383 	struct mr6_table *mrt;
384 	int ct;
385 };
386 
387 static struct mif_device *ip6mr_vif_seq_idx(struct net *net,
388 					    struct ipmr_vif_iter *iter,
389 					    loff_t pos)
390 {
391 	struct mr6_table *mrt = iter->mrt;
392 
393 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
394 		if (!MIF_EXISTS(mrt, iter->ct))
395 			continue;
396 		if (pos-- == 0)
397 			return &mrt->vif6_table[iter->ct];
398 	}
399 	return NULL;
400 }
401 
402 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos)
403 	__acquires(mrt_lock)
404 {
405 	struct ipmr_vif_iter *iter = seq->private;
406 	struct net *net = seq_file_net(seq);
407 	struct mr6_table *mrt;
408 
409 	mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
410 	if (!mrt)
411 		return ERR_PTR(-ENOENT);
412 
413 	iter->mrt = mrt;
414 
415 	read_lock(&mrt_lock);
416 	return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1)
417 		: SEQ_START_TOKEN;
418 }
419 
420 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
421 {
422 	struct ipmr_vif_iter *iter = seq->private;
423 	struct net *net = seq_file_net(seq);
424 	struct mr6_table *mrt = iter->mrt;
425 
426 	++*pos;
427 	if (v == SEQ_START_TOKEN)
428 		return ip6mr_vif_seq_idx(net, iter, 0);
429 
430 	while (++iter->ct < mrt->maxvif) {
431 		if (!MIF_EXISTS(mrt, iter->ct))
432 			continue;
433 		return &mrt->vif6_table[iter->ct];
434 	}
435 	return NULL;
436 }
437 
438 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v)
439 	__releases(mrt_lock)
440 {
441 	read_unlock(&mrt_lock);
442 }
443 
444 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v)
445 {
446 	struct ipmr_vif_iter *iter = seq->private;
447 	struct mr6_table *mrt = iter->mrt;
448 
449 	if (v == SEQ_START_TOKEN) {
450 		seq_puts(seq,
451 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags\n");
452 	} else {
453 		const struct mif_device *vif = v;
454 		const char *name = vif->dev ? vif->dev->name : "none";
455 
456 		seq_printf(seq,
457 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X\n",
458 			   vif - mrt->vif6_table,
459 			   name, vif->bytes_in, vif->pkt_in,
460 			   vif->bytes_out, vif->pkt_out,
461 			   vif->flags);
462 	}
463 	return 0;
464 }
465 
466 static const struct seq_operations ip6mr_vif_seq_ops = {
467 	.start = ip6mr_vif_seq_start,
468 	.next  = ip6mr_vif_seq_next,
469 	.stop  = ip6mr_vif_seq_stop,
470 	.show  = ip6mr_vif_seq_show,
471 };
472 
473 static int ip6mr_vif_open(struct inode *inode, struct file *file)
474 {
475 	return seq_open_net(inode, file, &ip6mr_vif_seq_ops,
476 			    sizeof(struct ipmr_vif_iter));
477 }
478 
479 static const struct file_operations ip6mr_vif_fops = {
480 	.owner	 = THIS_MODULE,
481 	.open    = ip6mr_vif_open,
482 	.read    = seq_read,
483 	.llseek  = seq_lseek,
484 	.release = seq_release_net,
485 };
486 
487 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
488 {
489 	struct ipmr_mfc_iter *it = seq->private;
490 	struct net *net = seq_file_net(seq);
491 	struct mr6_table *mrt;
492 
493 	mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
494 	if (!mrt)
495 		return ERR_PTR(-ENOENT);
496 
497 	it->mrt = mrt;
498 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
499 		: SEQ_START_TOKEN;
500 }
501 
502 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
503 {
504 	struct mfc6_cache *mfc = v;
505 	struct ipmr_mfc_iter *it = seq->private;
506 	struct net *net = seq_file_net(seq);
507 	struct mr6_table *mrt = it->mrt;
508 
509 	++*pos;
510 
511 	if (v == SEQ_START_TOKEN)
512 		return ipmr_mfc_seq_idx(net, seq->private, 0);
513 
514 	if (mfc->list.next != it->cache)
515 		return list_entry(mfc->list.next, struct mfc6_cache, list);
516 
517 	if (it->cache == &mrt->mfc6_unres_queue)
518 		goto end_of_list;
519 
520 	BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]);
521 
522 	while (++it->ct < MFC6_LINES) {
523 		it->cache = &mrt->mfc6_cache_array[it->ct];
524 		if (list_empty(it->cache))
525 			continue;
526 		return list_first_entry(it->cache, struct mfc6_cache, list);
527 	}
528 
529 	/* exhausted cache_array, show unresolved */
530 	read_unlock(&mrt_lock);
531 	it->cache = &mrt->mfc6_unres_queue;
532 	it->ct = 0;
533 
534 	spin_lock_bh(&mfc_unres_lock);
535 	if (!list_empty(it->cache))
536 		return list_first_entry(it->cache, struct mfc6_cache, list);
537 
538  end_of_list:
539 	spin_unlock_bh(&mfc_unres_lock);
540 	it->cache = NULL;
541 
542 	return NULL;
543 }
544 
545 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
546 {
547 	struct ipmr_mfc_iter *it = seq->private;
548 	struct mr6_table *mrt = it->mrt;
549 
550 	if (it->cache == &mrt->mfc6_unres_queue)
551 		spin_unlock_bh(&mfc_unres_lock);
552 	else if (it->cache == &mrt->mfc6_cache_array[it->ct])
553 		read_unlock(&mrt_lock);
554 }
555 
556 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
557 {
558 	int n;
559 
560 	if (v == SEQ_START_TOKEN) {
561 		seq_puts(seq,
562 			 "Group                            "
563 			 "Origin                           "
564 			 "Iif      Pkts  Bytes     Wrong  Oifs\n");
565 	} else {
566 		const struct mfc6_cache *mfc = v;
567 		const struct ipmr_mfc_iter *it = seq->private;
568 		struct mr6_table *mrt = it->mrt;
569 
570 		seq_printf(seq, "%pI6 %pI6 %-3hd",
571 			   &mfc->mf6c_mcastgrp, &mfc->mf6c_origin,
572 			   mfc->mf6c_parent);
573 
574 		if (it->cache != &mrt->mfc6_unres_queue) {
575 			seq_printf(seq, " %8lu %8lu %8lu",
576 				   mfc->mfc_un.res.pkt,
577 				   mfc->mfc_un.res.bytes,
578 				   mfc->mfc_un.res.wrong_if);
579 			for (n = mfc->mfc_un.res.minvif;
580 			     n < mfc->mfc_un.res.maxvif; n++) {
581 				if (MIF_EXISTS(mrt, n) &&
582 				    mfc->mfc_un.res.ttls[n] < 255)
583 					seq_printf(seq,
584 						   " %2d:%-3d",
585 						   n, mfc->mfc_un.res.ttls[n]);
586 			}
587 		} else {
588 			/* unresolved mfc_caches don't contain
589 			 * pkt, bytes and wrong_if values
590 			 */
591 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
592 		}
593 		seq_putc(seq, '\n');
594 	}
595 	return 0;
596 }
597 
598 static const struct seq_operations ipmr_mfc_seq_ops = {
599 	.start = ipmr_mfc_seq_start,
600 	.next  = ipmr_mfc_seq_next,
601 	.stop  = ipmr_mfc_seq_stop,
602 	.show  = ipmr_mfc_seq_show,
603 };
604 
605 static int ipmr_mfc_open(struct inode *inode, struct file *file)
606 {
607 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
608 			    sizeof(struct ipmr_mfc_iter));
609 }
610 
611 static const struct file_operations ip6mr_mfc_fops = {
612 	.owner	 = THIS_MODULE,
613 	.open    = ipmr_mfc_open,
614 	.read    = seq_read,
615 	.llseek  = seq_lseek,
616 	.release = seq_release_net,
617 };
618 #endif
619 
620 #ifdef CONFIG_IPV6_PIMSM_V2
621 
622 static int pim6_rcv(struct sk_buff *skb)
623 {
624 	struct pimreghdr *pim;
625 	struct ipv6hdr   *encap;
626 	struct net_device  *reg_dev = NULL;
627 	struct net *net = dev_net(skb->dev);
628 	struct mr6_table *mrt;
629 	struct flowi6 fl6 = {
630 		.flowi6_iif	= skb->dev->ifindex,
631 		.flowi6_mark	= skb->mark,
632 	};
633 	int reg_vif_num;
634 
635 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
636 		goto drop;
637 
638 	pim = (struct pimreghdr *)skb_transport_header(skb);
639 	if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) ||
640 	    (pim->flags & PIM_NULL_REGISTER) ||
641 	    (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
642 			     sizeof(*pim), IPPROTO_PIM,
643 			     csum_partial((void *)pim, sizeof(*pim), 0)) &&
644 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
645 		goto drop;
646 
647 	/* check if the inner packet is destined to mcast group */
648 	encap = (struct ipv6hdr *)(skb_transport_header(skb) +
649 				   sizeof(*pim));
650 
651 	if (!ipv6_addr_is_multicast(&encap->daddr) ||
652 	    encap->payload_len == 0 ||
653 	    ntohs(encap->payload_len) + sizeof(*pim) > skb->len)
654 		goto drop;
655 
656 	if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
657 		goto drop;
658 	reg_vif_num = mrt->mroute_reg_vif_num;
659 
660 	read_lock(&mrt_lock);
661 	if (reg_vif_num >= 0)
662 		reg_dev = mrt->vif6_table[reg_vif_num].dev;
663 	if (reg_dev)
664 		dev_hold(reg_dev);
665 	read_unlock(&mrt_lock);
666 
667 	if (!reg_dev)
668 		goto drop;
669 
670 	skb->mac_header = skb->network_header;
671 	skb_pull(skb, (u8 *)encap - skb->data);
672 	skb_reset_network_header(skb);
673 	skb->protocol = htons(ETH_P_IPV6);
674 	skb->ip_summed = CHECKSUM_NONE;
675 
676 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
677 
678 	netif_rx(skb);
679 
680 	dev_put(reg_dev);
681 	return 0;
682  drop:
683 	kfree_skb(skb);
684 	return 0;
685 }
686 
687 static const struct inet6_protocol pim6_protocol = {
688 	.handler	=	pim6_rcv,
689 };
690 
691 /* Service routines creating virtual interfaces: PIMREG */
692 
693 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb,
694 				      struct net_device *dev)
695 {
696 	struct net *net = dev_net(dev);
697 	struct mr6_table *mrt;
698 	struct flowi6 fl6 = {
699 		.flowi6_oif	= dev->ifindex,
700 		.flowi6_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
701 		.flowi6_mark	= skb->mark,
702 	};
703 	int err;
704 
705 	err = ip6mr_fib_lookup(net, &fl6, &mrt);
706 	if (err < 0) {
707 		kfree_skb(skb);
708 		return err;
709 	}
710 
711 	read_lock(&mrt_lock);
712 	dev->stats.tx_bytes += skb->len;
713 	dev->stats.tx_packets++;
714 	ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT);
715 	read_unlock(&mrt_lock);
716 	kfree_skb(skb);
717 	return NETDEV_TX_OK;
718 }
719 
720 static int reg_vif_get_iflink(const struct net_device *dev)
721 {
722 	return 0;
723 }
724 
725 static const struct net_device_ops reg_vif_netdev_ops = {
726 	.ndo_start_xmit	= reg_vif_xmit,
727 	.ndo_get_iflink = reg_vif_get_iflink,
728 };
729 
730 static void reg_vif_setup(struct net_device *dev)
731 {
732 	dev->type		= ARPHRD_PIMREG;
733 	dev->mtu		= 1500 - sizeof(struct ipv6hdr) - 8;
734 	dev->flags		= IFF_NOARP;
735 	dev->netdev_ops		= &reg_vif_netdev_ops;
736 	dev->destructor		= free_netdev;
737 	dev->features		|= NETIF_F_NETNS_LOCAL;
738 }
739 
740 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt)
741 {
742 	struct net_device *dev;
743 	char name[IFNAMSIZ];
744 
745 	if (mrt->id == RT6_TABLE_DFLT)
746 		sprintf(name, "pim6reg");
747 	else
748 		sprintf(name, "pim6reg%u", mrt->id);
749 
750 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
751 	if (!dev)
752 		return NULL;
753 
754 	dev_net_set(dev, net);
755 
756 	if (register_netdevice(dev)) {
757 		free_netdev(dev);
758 		return NULL;
759 	}
760 
761 	if (dev_open(dev))
762 		goto failure;
763 
764 	dev_hold(dev);
765 	return dev;
766 
767 failure:
768 	unregister_netdevice(dev);
769 	return NULL;
770 }
771 #endif
772 
773 /*
774  *	Delete a VIF entry
775  */
776 
777 static int mif6_delete(struct mr6_table *mrt, int vifi, struct list_head *head)
778 {
779 	struct mif_device *v;
780 	struct net_device *dev;
781 	struct inet6_dev *in6_dev;
782 
783 	if (vifi < 0 || vifi >= mrt->maxvif)
784 		return -EADDRNOTAVAIL;
785 
786 	v = &mrt->vif6_table[vifi];
787 
788 	write_lock_bh(&mrt_lock);
789 	dev = v->dev;
790 	v->dev = NULL;
791 
792 	if (!dev) {
793 		write_unlock_bh(&mrt_lock);
794 		return -EADDRNOTAVAIL;
795 	}
796 
797 #ifdef CONFIG_IPV6_PIMSM_V2
798 	if (vifi == mrt->mroute_reg_vif_num)
799 		mrt->mroute_reg_vif_num = -1;
800 #endif
801 
802 	if (vifi + 1 == mrt->maxvif) {
803 		int tmp;
804 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
805 			if (MIF_EXISTS(mrt, tmp))
806 				break;
807 		}
808 		mrt->maxvif = tmp + 1;
809 	}
810 
811 	write_unlock_bh(&mrt_lock);
812 
813 	dev_set_allmulti(dev, -1);
814 
815 	in6_dev = __in6_dev_get(dev);
816 	if (in6_dev) {
817 		in6_dev->cnf.mc_forwarding--;
818 		inet6_netconf_notify_devconf(dev_net(dev),
819 					     NETCONFA_MC_FORWARDING,
820 					     dev->ifindex, &in6_dev->cnf);
821 	}
822 
823 	if (v->flags & MIFF_REGISTER)
824 		unregister_netdevice_queue(dev, head);
825 
826 	dev_put(dev);
827 	return 0;
828 }
829 
830 static inline void ip6mr_cache_free(struct mfc6_cache *c)
831 {
832 	kmem_cache_free(mrt_cachep, c);
833 }
834 
835 /* Destroy an unresolved cache entry, killing queued skbs
836    and reporting error to netlink readers.
837  */
838 
839 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c)
840 {
841 	struct net *net = read_pnet(&mrt->net);
842 	struct sk_buff *skb;
843 
844 	atomic_dec(&mrt->cache_resolve_queue_len);
845 
846 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) {
847 		if (ipv6_hdr(skb)->version == 0) {
848 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
849 			nlh->nlmsg_type = NLMSG_ERROR;
850 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
851 			skb_trim(skb, nlh->nlmsg_len);
852 			((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT;
853 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
854 		} else
855 			kfree_skb(skb);
856 	}
857 
858 	ip6mr_cache_free(c);
859 }
860 
861 
862 /* Timer process for all the unresolved queue. */
863 
864 static void ipmr_do_expire_process(struct mr6_table *mrt)
865 {
866 	unsigned long now = jiffies;
867 	unsigned long expires = 10 * HZ;
868 	struct mfc6_cache *c, *next;
869 
870 	list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
871 		if (time_after(c->mfc_un.unres.expires, now)) {
872 			/* not yet... */
873 			unsigned long interval = c->mfc_un.unres.expires - now;
874 			if (interval < expires)
875 				expires = interval;
876 			continue;
877 		}
878 
879 		list_del(&c->list);
880 		mr6_netlink_event(mrt, c, RTM_DELROUTE);
881 		ip6mr_destroy_unres(mrt, c);
882 	}
883 
884 	if (!list_empty(&mrt->mfc6_unres_queue))
885 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
886 }
887 
888 static void ipmr_expire_process(unsigned long arg)
889 {
890 	struct mr6_table *mrt = (struct mr6_table *)arg;
891 
892 	if (!spin_trylock(&mfc_unres_lock)) {
893 		mod_timer(&mrt->ipmr_expire_timer, jiffies + 1);
894 		return;
895 	}
896 
897 	if (!list_empty(&mrt->mfc6_unres_queue))
898 		ipmr_do_expire_process(mrt);
899 
900 	spin_unlock(&mfc_unres_lock);
901 }
902 
903 /* Fill oifs list. It is called under write locked mrt_lock. */
904 
905 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache,
906 				    unsigned char *ttls)
907 {
908 	int vifi;
909 
910 	cache->mfc_un.res.minvif = MAXMIFS;
911 	cache->mfc_un.res.maxvif = 0;
912 	memset(cache->mfc_un.res.ttls, 255, MAXMIFS);
913 
914 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
915 		if (MIF_EXISTS(mrt, vifi) &&
916 		    ttls[vifi] && ttls[vifi] < 255) {
917 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
918 			if (cache->mfc_un.res.minvif > vifi)
919 				cache->mfc_un.res.minvif = vifi;
920 			if (cache->mfc_un.res.maxvif <= vifi)
921 				cache->mfc_un.res.maxvif = vifi + 1;
922 		}
923 	}
924 }
925 
926 static int mif6_add(struct net *net, struct mr6_table *mrt,
927 		    struct mif6ctl *vifc, int mrtsock)
928 {
929 	int vifi = vifc->mif6c_mifi;
930 	struct mif_device *v = &mrt->vif6_table[vifi];
931 	struct net_device *dev;
932 	struct inet6_dev *in6_dev;
933 	int err;
934 
935 	/* Is vif busy ? */
936 	if (MIF_EXISTS(mrt, vifi))
937 		return -EADDRINUSE;
938 
939 	switch (vifc->mif6c_flags) {
940 #ifdef CONFIG_IPV6_PIMSM_V2
941 	case MIFF_REGISTER:
942 		/*
943 		 * Special Purpose VIF in PIM
944 		 * All the packets will be sent to the daemon
945 		 */
946 		if (mrt->mroute_reg_vif_num >= 0)
947 			return -EADDRINUSE;
948 		dev = ip6mr_reg_vif(net, mrt);
949 		if (!dev)
950 			return -ENOBUFS;
951 		err = dev_set_allmulti(dev, 1);
952 		if (err) {
953 			unregister_netdevice(dev);
954 			dev_put(dev);
955 			return err;
956 		}
957 		break;
958 #endif
959 	case 0:
960 		dev = dev_get_by_index(net, vifc->mif6c_pifi);
961 		if (!dev)
962 			return -EADDRNOTAVAIL;
963 		err = dev_set_allmulti(dev, 1);
964 		if (err) {
965 			dev_put(dev);
966 			return err;
967 		}
968 		break;
969 	default:
970 		return -EINVAL;
971 	}
972 
973 	in6_dev = __in6_dev_get(dev);
974 	if (in6_dev) {
975 		in6_dev->cnf.mc_forwarding++;
976 		inet6_netconf_notify_devconf(dev_net(dev),
977 					     NETCONFA_MC_FORWARDING,
978 					     dev->ifindex, &in6_dev->cnf);
979 	}
980 
981 	/*
982 	 *	Fill in the VIF structures
983 	 */
984 	v->rate_limit = vifc->vifc_rate_limit;
985 	v->flags = vifc->mif6c_flags;
986 	if (!mrtsock)
987 		v->flags |= VIFF_STATIC;
988 	v->threshold = vifc->vifc_threshold;
989 	v->bytes_in = 0;
990 	v->bytes_out = 0;
991 	v->pkt_in = 0;
992 	v->pkt_out = 0;
993 	v->link = dev->ifindex;
994 	if (v->flags & MIFF_REGISTER)
995 		v->link = dev_get_iflink(dev);
996 
997 	/* And finish update writing critical data */
998 	write_lock_bh(&mrt_lock);
999 	v->dev = dev;
1000 #ifdef CONFIG_IPV6_PIMSM_V2
1001 	if (v->flags & MIFF_REGISTER)
1002 		mrt->mroute_reg_vif_num = vifi;
1003 #endif
1004 	if (vifi + 1 > mrt->maxvif)
1005 		mrt->maxvif = vifi + 1;
1006 	write_unlock_bh(&mrt_lock);
1007 	return 0;
1008 }
1009 
1010 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt,
1011 					   const struct in6_addr *origin,
1012 					   const struct in6_addr *mcastgrp)
1013 {
1014 	int line = MFC6_HASH(mcastgrp, origin);
1015 	struct mfc6_cache *c;
1016 
1017 	list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1018 		if (ipv6_addr_equal(&c->mf6c_origin, origin) &&
1019 		    ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp))
1020 			return c;
1021 	}
1022 	return NULL;
1023 }
1024 
1025 /* Look for a (*,*,oif) entry */
1026 static struct mfc6_cache *ip6mr_cache_find_any_parent(struct mr6_table *mrt,
1027 						      mifi_t mifi)
1028 {
1029 	int line = MFC6_HASH(&in6addr_any, &in6addr_any);
1030 	struct mfc6_cache *c;
1031 
1032 	list_for_each_entry(c, &mrt->mfc6_cache_array[line], list)
1033 		if (ipv6_addr_any(&c->mf6c_origin) &&
1034 		    ipv6_addr_any(&c->mf6c_mcastgrp) &&
1035 		    (c->mfc_un.res.ttls[mifi] < 255))
1036 			return c;
1037 
1038 	return NULL;
1039 }
1040 
1041 /* Look for a (*,G) entry */
1042 static struct mfc6_cache *ip6mr_cache_find_any(struct mr6_table *mrt,
1043 					       struct in6_addr *mcastgrp,
1044 					       mifi_t mifi)
1045 {
1046 	int line = MFC6_HASH(mcastgrp, &in6addr_any);
1047 	struct mfc6_cache *c, *proxy;
1048 
1049 	if (ipv6_addr_any(mcastgrp))
1050 		goto skip;
1051 
1052 	list_for_each_entry(c, &mrt->mfc6_cache_array[line], list)
1053 		if (ipv6_addr_any(&c->mf6c_origin) &&
1054 		    ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) {
1055 			if (c->mfc_un.res.ttls[mifi] < 255)
1056 				return c;
1057 
1058 			/* It's ok if the mifi is part of the static tree */
1059 			proxy = ip6mr_cache_find_any_parent(mrt,
1060 							    c->mf6c_parent);
1061 			if (proxy && proxy->mfc_un.res.ttls[mifi] < 255)
1062 				return c;
1063 		}
1064 
1065 skip:
1066 	return ip6mr_cache_find_any_parent(mrt, mifi);
1067 }
1068 
1069 /*
1070  *	Allocate a multicast cache entry
1071  */
1072 static struct mfc6_cache *ip6mr_cache_alloc(void)
1073 {
1074 	struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
1075 	if (!c)
1076 		return NULL;
1077 	c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
1078 	c->mfc_un.res.minvif = MAXMIFS;
1079 	return c;
1080 }
1081 
1082 static struct mfc6_cache *ip6mr_cache_alloc_unres(void)
1083 {
1084 	struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1085 	if (!c)
1086 		return NULL;
1087 	skb_queue_head_init(&c->mfc_un.unres.unresolved);
1088 	c->mfc_un.unres.expires = jiffies + 10 * HZ;
1089 	return c;
1090 }
1091 
1092 /*
1093  *	A cache entry has gone into a resolved state from queued
1094  */
1095 
1096 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt,
1097 				struct mfc6_cache *uc, struct mfc6_cache *c)
1098 {
1099 	struct sk_buff *skb;
1100 
1101 	/*
1102 	 *	Play the pending entries through our router
1103 	 */
1104 
1105 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
1106 		if (ipv6_hdr(skb)->version == 0) {
1107 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
1108 
1109 			if (__ip6mr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
1110 				nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh;
1111 			} else {
1112 				nlh->nlmsg_type = NLMSG_ERROR;
1113 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1114 				skb_trim(skb, nlh->nlmsg_len);
1115 				((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE;
1116 			}
1117 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1118 		} else
1119 			ip6_mr_forward(net, mrt, skb, c);
1120 	}
1121 }
1122 
1123 /*
1124  *	Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd
1125  *	expects the following bizarre scheme.
1126  *
1127  *	Called under mrt_lock.
1128  */
1129 
1130 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
1131 			      mifi_t mifi, int assert)
1132 {
1133 	struct sk_buff *skb;
1134 	struct mrt6msg *msg;
1135 	int ret;
1136 
1137 #ifdef CONFIG_IPV6_PIMSM_V2
1138 	if (assert == MRT6MSG_WHOLEPKT)
1139 		skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt)
1140 						+sizeof(*msg));
1141 	else
1142 #endif
1143 		skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC);
1144 
1145 	if (!skb)
1146 		return -ENOBUFS;
1147 
1148 	/* I suppose that internal messages
1149 	 * do not require checksums */
1150 
1151 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1152 
1153 #ifdef CONFIG_IPV6_PIMSM_V2
1154 	if (assert == MRT6MSG_WHOLEPKT) {
1155 		/* Ugly, but we have no choice with this interface.
1156 		   Duplicate old header, fix length etc.
1157 		   And all this only to mangle msg->im6_msgtype and
1158 		   to set msg->im6_mbz to "mbz" :-)
1159 		 */
1160 		skb_push(skb, -skb_network_offset(pkt));
1161 
1162 		skb_push(skb, sizeof(*msg));
1163 		skb_reset_transport_header(skb);
1164 		msg = (struct mrt6msg *)skb_transport_header(skb);
1165 		msg->im6_mbz = 0;
1166 		msg->im6_msgtype = MRT6MSG_WHOLEPKT;
1167 		msg->im6_mif = mrt->mroute_reg_vif_num;
1168 		msg->im6_pad = 0;
1169 		msg->im6_src = ipv6_hdr(pkt)->saddr;
1170 		msg->im6_dst = ipv6_hdr(pkt)->daddr;
1171 
1172 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1173 	} else
1174 #endif
1175 	{
1176 	/*
1177 	 *	Copy the IP header
1178 	 */
1179 
1180 	skb_put(skb, sizeof(struct ipv6hdr));
1181 	skb_reset_network_header(skb);
1182 	skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr));
1183 
1184 	/*
1185 	 *	Add our header
1186 	 */
1187 	skb_put(skb, sizeof(*msg));
1188 	skb_reset_transport_header(skb);
1189 	msg = (struct mrt6msg *)skb_transport_header(skb);
1190 
1191 	msg->im6_mbz = 0;
1192 	msg->im6_msgtype = assert;
1193 	msg->im6_mif = mifi;
1194 	msg->im6_pad = 0;
1195 	msg->im6_src = ipv6_hdr(pkt)->saddr;
1196 	msg->im6_dst = ipv6_hdr(pkt)->daddr;
1197 
1198 	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1199 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1200 	}
1201 
1202 	if (!mrt->mroute6_sk) {
1203 		kfree_skb(skb);
1204 		return -EINVAL;
1205 	}
1206 
1207 	/*
1208 	 *	Deliver to user space multicast routing algorithms
1209 	 */
1210 	ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb);
1211 	if (ret < 0) {
1212 		net_warn_ratelimited("mroute6: pending queue full, dropping entries\n");
1213 		kfree_skb(skb);
1214 	}
1215 
1216 	return ret;
1217 }
1218 
1219 /*
1220  *	Queue a packet for resolution. It gets locked cache entry!
1221  */
1222 
1223 static int
1224 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb)
1225 {
1226 	bool found = false;
1227 	int err;
1228 	struct mfc6_cache *c;
1229 
1230 	spin_lock_bh(&mfc_unres_lock);
1231 	list_for_each_entry(c, &mrt->mfc6_unres_queue, list) {
1232 		if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) &&
1233 		    ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) {
1234 			found = true;
1235 			break;
1236 		}
1237 	}
1238 
1239 	if (!found) {
1240 		/*
1241 		 *	Create a new entry if allowable
1242 		 */
1243 
1244 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1245 		    (c = ip6mr_cache_alloc_unres()) == NULL) {
1246 			spin_unlock_bh(&mfc_unres_lock);
1247 
1248 			kfree_skb(skb);
1249 			return -ENOBUFS;
1250 		}
1251 
1252 		/*
1253 		 *	Fill in the new cache entry
1254 		 */
1255 		c->mf6c_parent = -1;
1256 		c->mf6c_origin = ipv6_hdr(skb)->saddr;
1257 		c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr;
1258 
1259 		/*
1260 		 *	Reflect first query at pim6sd
1261 		 */
1262 		err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE);
1263 		if (err < 0) {
1264 			/* If the report failed throw the cache entry
1265 			   out - Brad Parker
1266 			 */
1267 			spin_unlock_bh(&mfc_unres_lock);
1268 
1269 			ip6mr_cache_free(c);
1270 			kfree_skb(skb);
1271 			return err;
1272 		}
1273 
1274 		atomic_inc(&mrt->cache_resolve_queue_len);
1275 		list_add(&c->list, &mrt->mfc6_unres_queue);
1276 		mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1277 
1278 		ipmr_do_expire_process(mrt);
1279 	}
1280 
1281 	/*
1282 	 *	See if we can append the packet
1283 	 */
1284 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1285 		kfree_skb(skb);
1286 		err = -ENOBUFS;
1287 	} else {
1288 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1289 		err = 0;
1290 	}
1291 
1292 	spin_unlock_bh(&mfc_unres_lock);
1293 	return err;
1294 }
1295 
1296 /*
1297  *	MFC6 cache manipulation by user space
1298  */
1299 
1300 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc,
1301 			    int parent)
1302 {
1303 	int line;
1304 	struct mfc6_cache *c, *next;
1305 
1306 	line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1307 
1308 	list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) {
1309 		if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1310 		    ipv6_addr_equal(&c->mf6c_mcastgrp,
1311 				    &mfc->mf6cc_mcastgrp.sin6_addr) &&
1312 		    (parent == -1 || parent == c->mf6c_parent)) {
1313 			write_lock_bh(&mrt_lock);
1314 			list_del(&c->list);
1315 			write_unlock_bh(&mrt_lock);
1316 
1317 			mr6_netlink_event(mrt, c, RTM_DELROUTE);
1318 			ip6mr_cache_free(c);
1319 			return 0;
1320 		}
1321 	}
1322 	return -ENOENT;
1323 }
1324 
1325 static int ip6mr_device_event(struct notifier_block *this,
1326 			      unsigned long event, void *ptr)
1327 {
1328 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1329 	struct net *net = dev_net(dev);
1330 	struct mr6_table *mrt;
1331 	struct mif_device *v;
1332 	int ct;
1333 	LIST_HEAD(list);
1334 
1335 	if (event != NETDEV_UNREGISTER)
1336 		return NOTIFY_DONE;
1337 
1338 	ip6mr_for_each_table(mrt, net) {
1339 		v = &mrt->vif6_table[0];
1340 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1341 			if (v->dev == dev)
1342 				mif6_delete(mrt, ct, &list);
1343 		}
1344 	}
1345 	unregister_netdevice_many(&list);
1346 
1347 	return NOTIFY_DONE;
1348 }
1349 
1350 static struct notifier_block ip6_mr_notifier = {
1351 	.notifier_call = ip6mr_device_event
1352 };
1353 
1354 /*
1355  *	Setup for IP multicast routing
1356  */
1357 
1358 static int __net_init ip6mr_net_init(struct net *net)
1359 {
1360 	int err;
1361 
1362 	err = ip6mr_rules_init(net);
1363 	if (err < 0)
1364 		goto fail;
1365 
1366 #ifdef CONFIG_PROC_FS
1367 	err = -ENOMEM;
1368 	if (!proc_create("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_fops))
1369 		goto proc_vif_fail;
1370 	if (!proc_create("ip6_mr_cache", 0, net->proc_net, &ip6mr_mfc_fops))
1371 		goto proc_cache_fail;
1372 #endif
1373 
1374 	return 0;
1375 
1376 #ifdef CONFIG_PROC_FS
1377 proc_cache_fail:
1378 	remove_proc_entry("ip6_mr_vif", net->proc_net);
1379 proc_vif_fail:
1380 	ip6mr_rules_exit(net);
1381 #endif
1382 fail:
1383 	return err;
1384 }
1385 
1386 static void __net_exit ip6mr_net_exit(struct net *net)
1387 {
1388 #ifdef CONFIG_PROC_FS
1389 	remove_proc_entry("ip6_mr_cache", net->proc_net);
1390 	remove_proc_entry("ip6_mr_vif", net->proc_net);
1391 #endif
1392 	ip6mr_rules_exit(net);
1393 }
1394 
1395 static struct pernet_operations ip6mr_net_ops = {
1396 	.init = ip6mr_net_init,
1397 	.exit = ip6mr_net_exit,
1398 };
1399 
1400 int __init ip6_mr_init(void)
1401 {
1402 	int err;
1403 
1404 	mrt_cachep = kmem_cache_create("ip6_mrt_cache",
1405 				       sizeof(struct mfc6_cache),
1406 				       0, SLAB_HWCACHE_ALIGN,
1407 				       NULL);
1408 	if (!mrt_cachep)
1409 		return -ENOMEM;
1410 
1411 	err = register_pernet_subsys(&ip6mr_net_ops);
1412 	if (err)
1413 		goto reg_pernet_fail;
1414 
1415 	err = register_netdevice_notifier(&ip6_mr_notifier);
1416 	if (err)
1417 		goto reg_notif_fail;
1418 #ifdef CONFIG_IPV6_PIMSM_V2
1419 	if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) {
1420 		pr_err("%s: can't add PIM protocol\n", __func__);
1421 		err = -EAGAIN;
1422 		goto add_proto_fail;
1423 	}
1424 #endif
1425 	rtnl_register(RTNL_FAMILY_IP6MR, RTM_GETROUTE, NULL,
1426 		      ip6mr_rtm_dumproute, NULL);
1427 	return 0;
1428 #ifdef CONFIG_IPV6_PIMSM_V2
1429 add_proto_fail:
1430 	unregister_netdevice_notifier(&ip6_mr_notifier);
1431 #endif
1432 reg_notif_fail:
1433 	unregister_pernet_subsys(&ip6mr_net_ops);
1434 reg_pernet_fail:
1435 	kmem_cache_destroy(mrt_cachep);
1436 	return err;
1437 }
1438 
1439 void ip6_mr_cleanup(void)
1440 {
1441 	rtnl_unregister(RTNL_FAMILY_IP6MR, RTM_GETROUTE);
1442 #ifdef CONFIG_IPV6_PIMSM_V2
1443 	inet6_del_protocol(&pim6_protocol, IPPROTO_PIM);
1444 #endif
1445 	unregister_netdevice_notifier(&ip6_mr_notifier);
1446 	unregister_pernet_subsys(&ip6mr_net_ops);
1447 	kmem_cache_destroy(mrt_cachep);
1448 }
1449 
1450 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt,
1451 			 struct mf6cctl *mfc, int mrtsock, int parent)
1452 {
1453 	bool found = false;
1454 	int line;
1455 	struct mfc6_cache *uc, *c;
1456 	unsigned char ttls[MAXMIFS];
1457 	int i;
1458 
1459 	if (mfc->mf6cc_parent >= MAXMIFS)
1460 		return -ENFILE;
1461 
1462 	memset(ttls, 255, MAXMIFS);
1463 	for (i = 0; i < MAXMIFS; i++) {
1464 		if (IF_ISSET(i, &mfc->mf6cc_ifset))
1465 			ttls[i] = 1;
1466 
1467 	}
1468 
1469 	line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1470 
1471 	list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1472 		if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1473 		    ipv6_addr_equal(&c->mf6c_mcastgrp,
1474 				    &mfc->mf6cc_mcastgrp.sin6_addr) &&
1475 		    (parent == -1 || parent == mfc->mf6cc_parent)) {
1476 			found = true;
1477 			break;
1478 		}
1479 	}
1480 
1481 	if (found) {
1482 		write_lock_bh(&mrt_lock);
1483 		c->mf6c_parent = mfc->mf6cc_parent;
1484 		ip6mr_update_thresholds(mrt, c, ttls);
1485 		if (!mrtsock)
1486 			c->mfc_flags |= MFC_STATIC;
1487 		write_unlock_bh(&mrt_lock);
1488 		mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1489 		return 0;
1490 	}
1491 
1492 	if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) &&
1493 	    !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr))
1494 		return -EINVAL;
1495 
1496 	c = ip6mr_cache_alloc();
1497 	if (!c)
1498 		return -ENOMEM;
1499 
1500 	c->mf6c_origin = mfc->mf6cc_origin.sin6_addr;
1501 	c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr;
1502 	c->mf6c_parent = mfc->mf6cc_parent;
1503 	c->mfc_un.res.lastuse = jiffies;
1504 	ip6mr_update_thresholds(mrt, c, ttls);
1505 	if (!mrtsock)
1506 		c->mfc_flags |= MFC_STATIC;
1507 
1508 	write_lock_bh(&mrt_lock);
1509 	list_add(&c->list, &mrt->mfc6_cache_array[line]);
1510 	write_unlock_bh(&mrt_lock);
1511 
1512 	/*
1513 	 *	Check to see if we resolved a queued list. If so we
1514 	 *	need to send on the frames and tidy up.
1515 	 */
1516 	found = false;
1517 	spin_lock_bh(&mfc_unres_lock);
1518 	list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) {
1519 		if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) &&
1520 		    ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) {
1521 			list_del(&uc->list);
1522 			atomic_dec(&mrt->cache_resolve_queue_len);
1523 			found = true;
1524 			break;
1525 		}
1526 	}
1527 	if (list_empty(&mrt->mfc6_unres_queue))
1528 		del_timer(&mrt->ipmr_expire_timer);
1529 	spin_unlock_bh(&mfc_unres_lock);
1530 
1531 	if (found) {
1532 		ip6mr_cache_resolve(net, mrt, uc, c);
1533 		ip6mr_cache_free(uc);
1534 	}
1535 	mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1536 	return 0;
1537 }
1538 
1539 /*
1540  *	Close the multicast socket, and clear the vif tables etc
1541  */
1542 
1543 static void mroute_clean_tables(struct mr6_table *mrt, bool all)
1544 {
1545 	int i;
1546 	LIST_HEAD(list);
1547 	struct mfc6_cache *c, *next;
1548 
1549 	/*
1550 	 *	Shut down all active vif entries
1551 	 */
1552 	for (i = 0; i < mrt->maxvif; i++) {
1553 		if (!all && (mrt->vif6_table[i].flags & VIFF_STATIC))
1554 			continue;
1555 		mif6_delete(mrt, i, &list);
1556 	}
1557 	unregister_netdevice_many(&list);
1558 
1559 	/*
1560 	 *	Wipe the cache
1561 	 */
1562 	for (i = 0; i < MFC6_LINES; i++) {
1563 		list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) {
1564 			if (!all && (c->mfc_flags & MFC_STATIC))
1565 				continue;
1566 			write_lock_bh(&mrt_lock);
1567 			list_del(&c->list);
1568 			write_unlock_bh(&mrt_lock);
1569 
1570 			mr6_netlink_event(mrt, c, RTM_DELROUTE);
1571 			ip6mr_cache_free(c);
1572 		}
1573 	}
1574 
1575 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1576 		spin_lock_bh(&mfc_unres_lock);
1577 		list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
1578 			list_del(&c->list);
1579 			mr6_netlink_event(mrt, c, RTM_DELROUTE);
1580 			ip6mr_destroy_unres(mrt, c);
1581 		}
1582 		spin_unlock_bh(&mfc_unres_lock);
1583 	}
1584 }
1585 
1586 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk)
1587 {
1588 	int err = 0;
1589 	struct net *net = sock_net(sk);
1590 
1591 	rtnl_lock();
1592 	write_lock_bh(&mrt_lock);
1593 	if (likely(mrt->mroute6_sk == NULL)) {
1594 		mrt->mroute6_sk = sk;
1595 		net->ipv6.devconf_all->mc_forwarding++;
1596 	} else {
1597 		err = -EADDRINUSE;
1598 	}
1599 	write_unlock_bh(&mrt_lock);
1600 
1601 	if (!err)
1602 		inet6_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1603 					     NETCONFA_IFINDEX_ALL,
1604 					     net->ipv6.devconf_all);
1605 	rtnl_unlock();
1606 
1607 	return err;
1608 }
1609 
1610 int ip6mr_sk_done(struct sock *sk)
1611 {
1612 	int err = -EACCES;
1613 	struct net *net = sock_net(sk);
1614 	struct mr6_table *mrt;
1615 
1616 	rtnl_lock();
1617 	ip6mr_for_each_table(mrt, net) {
1618 		if (sk == mrt->mroute6_sk) {
1619 			write_lock_bh(&mrt_lock);
1620 			mrt->mroute6_sk = NULL;
1621 			net->ipv6.devconf_all->mc_forwarding--;
1622 			write_unlock_bh(&mrt_lock);
1623 			inet6_netconf_notify_devconf(net,
1624 						     NETCONFA_MC_FORWARDING,
1625 						     NETCONFA_IFINDEX_ALL,
1626 						     net->ipv6.devconf_all);
1627 
1628 			mroute_clean_tables(mrt, false);
1629 			err = 0;
1630 			break;
1631 		}
1632 	}
1633 	rtnl_unlock();
1634 
1635 	return err;
1636 }
1637 
1638 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb)
1639 {
1640 	struct mr6_table *mrt;
1641 	struct flowi6 fl6 = {
1642 		.flowi6_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
1643 		.flowi6_oif	= skb->dev->ifindex,
1644 		.flowi6_mark	= skb->mark,
1645 	};
1646 
1647 	if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
1648 		return NULL;
1649 
1650 	return mrt->mroute6_sk;
1651 }
1652 
1653 /*
1654  *	Socket options and virtual interface manipulation. The whole
1655  *	virtual interface system is a complete heap, but unfortunately
1656  *	that's how BSD mrouted happens to think. Maybe one day with a proper
1657  *	MOSPF/PIM router set up we can clean this up.
1658  */
1659 
1660 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1661 {
1662 	int ret, parent = 0;
1663 	struct mif6ctl vif;
1664 	struct mf6cctl mfc;
1665 	mifi_t mifi;
1666 	struct net *net = sock_net(sk);
1667 	struct mr6_table *mrt;
1668 
1669 	mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1670 	if (!mrt)
1671 		return -ENOENT;
1672 
1673 	if (optname != MRT6_INIT) {
1674 		if (sk != mrt->mroute6_sk && !ns_capable(net->user_ns, CAP_NET_ADMIN))
1675 			return -EACCES;
1676 	}
1677 
1678 	switch (optname) {
1679 	case MRT6_INIT:
1680 		if (sk->sk_type != SOCK_RAW ||
1681 		    inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
1682 			return -EOPNOTSUPP;
1683 		if (optlen < sizeof(int))
1684 			return -EINVAL;
1685 
1686 		return ip6mr_sk_init(mrt, sk);
1687 
1688 	case MRT6_DONE:
1689 		return ip6mr_sk_done(sk);
1690 
1691 	case MRT6_ADD_MIF:
1692 		if (optlen < sizeof(vif))
1693 			return -EINVAL;
1694 		if (copy_from_user(&vif, optval, sizeof(vif)))
1695 			return -EFAULT;
1696 		if (vif.mif6c_mifi >= MAXMIFS)
1697 			return -ENFILE;
1698 		rtnl_lock();
1699 		ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk);
1700 		rtnl_unlock();
1701 		return ret;
1702 
1703 	case MRT6_DEL_MIF:
1704 		if (optlen < sizeof(mifi_t))
1705 			return -EINVAL;
1706 		if (copy_from_user(&mifi, optval, sizeof(mifi_t)))
1707 			return -EFAULT;
1708 		rtnl_lock();
1709 		ret = mif6_delete(mrt, mifi, NULL);
1710 		rtnl_unlock();
1711 		return ret;
1712 
1713 	/*
1714 	 *	Manipulate the forwarding caches. These live
1715 	 *	in a sort of kernel/user symbiosis.
1716 	 */
1717 	case MRT6_ADD_MFC:
1718 	case MRT6_DEL_MFC:
1719 		parent = -1;
1720 	case MRT6_ADD_MFC_PROXY:
1721 	case MRT6_DEL_MFC_PROXY:
1722 		if (optlen < sizeof(mfc))
1723 			return -EINVAL;
1724 		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1725 			return -EFAULT;
1726 		if (parent == 0)
1727 			parent = mfc.mf6cc_parent;
1728 		rtnl_lock();
1729 		if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY)
1730 			ret = ip6mr_mfc_delete(mrt, &mfc, parent);
1731 		else
1732 			ret = ip6mr_mfc_add(net, mrt, &mfc,
1733 					    sk == mrt->mroute6_sk, parent);
1734 		rtnl_unlock();
1735 		return ret;
1736 
1737 	/*
1738 	 *	Control PIM assert (to activate pim will activate assert)
1739 	 */
1740 	case MRT6_ASSERT:
1741 	{
1742 		int v;
1743 
1744 		if (optlen != sizeof(v))
1745 			return -EINVAL;
1746 		if (get_user(v, (int __user *)optval))
1747 			return -EFAULT;
1748 		mrt->mroute_do_assert = v;
1749 		return 0;
1750 	}
1751 
1752 #ifdef CONFIG_IPV6_PIMSM_V2
1753 	case MRT6_PIM:
1754 	{
1755 		int v;
1756 
1757 		if (optlen != sizeof(v))
1758 			return -EINVAL;
1759 		if (get_user(v, (int __user *)optval))
1760 			return -EFAULT;
1761 		v = !!v;
1762 		rtnl_lock();
1763 		ret = 0;
1764 		if (v != mrt->mroute_do_pim) {
1765 			mrt->mroute_do_pim = v;
1766 			mrt->mroute_do_assert = v;
1767 		}
1768 		rtnl_unlock();
1769 		return ret;
1770 	}
1771 
1772 #endif
1773 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
1774 	case MRT6_TABLE:
1775 	{
1776 		u32 v;
1777 
1778 		if (optlen != sizeof(u32))
1779 			return -EINVAL;
1780 		if (get_user(v, (u32 __user *)optval))
1781 			return -EFAULT;
1782 		/* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */
1783 		if (v != RT_TABLE_DEFAULT && v >= 100000000)
1784 			return -EINVAL;
1785 		if (sk == mrt->mroute6_sk)
1786 			return -EBUSY;
1787 
1788 		rtnl_lock();
1789 		ret = 0;
1790 		if (!ip6mr_new_table(net, v))
1791 			ret = -ENOMEM;
1792 		raw6_sk(sk)->ip6mr_table = v;
1793 		rtnl_unlock();
1794 		return ret;
1795 	}
1796 #endif
1797 	/*
1798 	 *	Spurious command, or MRT6_VERSION which you cannot
1799 	 *	set.
1800 	 */
1801 	default:
1802 		return -ENOPROTOOPT;
1803 	}
1804 }
1805 
1806 /*
1807  *	Getsock opt support for the multicast routing system.
1808  */
1809 
1810 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval,
1811 			  int __user *optlen)
1812 {
1813 	int olr;
1814 	int val;
1815 	struct net *net = sock_net(sk);
1816 	struct mr6_table *mrt;
1817 
1818 	mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1819 	if (!mrt)
1820 		return -ENOENT;
1821 
1822 	switch (optname) {
1823 	case MRT6_VERSION:
1824 		val = 0x0305;
1825 		break;
1826 #ifdef CONFIG_IPV6_PIMSM_V2
1827 	case MRT6_PIM:
1828 		val = mrt->mroute_do_pim;
1829 		break;
1830 #endif
1831 	case MRT6_ASSERT:
1832 		val = mrt->mroute_do_assert;
1833 		break;
1834 	default:
1835 		return -ENOPROTOOPT;
1836 	}
1837 
1838 	if (get_user(olr, optlen))
1839 		return -EFAULT;
1840 
1841 	olr = min_t(int, olr, sizeof(int));
1842 	if (olr < 0)
1843 		return -EINVAL;
1844 
1845 	if (put_user(olr, optlen))
1846 		return -EFAULT;
1847 	if (copy_to_user(optval, &val, olr))
1848 		return -EFAULT;
1849 	return 0;
1850 }
1851 
1852 /*
1853  *	The IP multicast ioctl support routines.
1854  */
1855 
1856 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg)
1857 {
1858 	struct sioc_sg_req6 sr;
1859 	struct sioc_mif_req6 vr;
1860 	struct mif_device *vif;
1861 	struct mfc6_cache *c;
1862 	struct net *net = sock_net(sk);
1863 	struct mr6_table *mrt;
1864 
1865 	mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1866 	if (!mrt)
1867 		return -ENOENT;
1868 
1869 	switch (cmd) {
1870 	case SIOCGETMIFCNT_IN6:
1871 		if (copy_from_user(&vr, arg, sizeof(vr)))
1872 			return -EFAULT;
1873 		if (vr.mifi >= mrt->maxvif)
1874 			return -EINVAL;
1875 		read_lock(&mrt_lock);
1876 		vif = &mrt->vif6_table[vr.mifi];
1877 		if (MIF_EXISTS(mrt, vr.mifi)) {
1878 			vr.icount = vif->pkt_in;
1879 			vr.ocount = vif->pkt_out;
1880 			vr.ibytes = vif->bytes_in;
1881 			vr.obytes = vif->bytes_out;
1882 			read_unlock(&mrt_lock);
1883 
1884 			if (copy_to_user(arg, &vr, sizeof(vr)))
1885 				return -EFAULT;
1886 			return 0;
1887 		}
1888 		read_unlock(&mrt_lock);
1889 		return -EADDRNOTAVAIL;
1890 	case SIOCGETSGCNT_IN6:
1891 		if (copy_from_user(&sr, arg, sizeof(sr)))
1892 			return -EFAULT;
1893 
1894 		read_lock(&mrt_lock);
1895 		c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1896 		if (c) {
1897 			sr.pktcnt = c->mfc_un.res.pkt;
1898 			sr.bytecnt = c->mfc_un.res.bytes;
1899 			sr.wrong_if = c->mfc_un.res.wrong_if;
1900 			read_unlock(&mrt_lock);
1901 
1902 			if (copy_to_user(arg, &sr, sizeof(sr)))
1903 				return -EFAULT;
1904 			return 0;
1905 		}
1906 		read_unlock(&mrt_lock);
1907 		return -EADDRNOTAVAIL;
1908 	default:
1909 		return -ENOIOCTLCMD;
1910 	}
1911 }
1912 
1913 #ifdef CONFIG_COMPAT
1914 struct compat_sioc_sg_req6 {
1915 	struct sockaddr_in6 src;
1916 	struct sockaddr_in6 grp;
1917 	compat_ulong_t pktcnt;
1918 	compat_ulong_t bytecnt;
1919 	compat_ulong_t wrong_if;
1920 };
1921 
1922 struct compat_sioc_mif_req6 {
1923 	mifi_t	mifi;
1924 	compat_ulong_t icount;
1925 	compat_ulong_t ocount;
1926 	compat_ulong_t ibytes;
1927 	compat_ulong_t obytes;
1928 };
1929 
1930 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1931 {
1932 	struct compat_sioc_sg_req6 sr;
1933 	struct compat_sioc_mif_req6 vr;
1934 	struct mif_device *vif;
1935 	struct mfc6_cache *c;
1936 	struct net *net = sock_net(sk);
1937 	struct mr6_table *mrt;
1938 
1939 	mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1940 	if (!mrt)
1941 		return -ENOENT;
1942 
1943 	switch (cmd) {
1944 	case SIOCGETMIFCNT_IN6:
1945 		if (copy_from_user(&vr, arg, sizeof(vr)))
1946 			return -EFAULT;
1947 		if (vr.mifi >= mrt->maxvif)
1948 			return -EINVAL;
1949 		read_lock(&mrt_lock);
1950 		vif = &mrt->vif6_table[vr.mifi];
1951 		if (MIF_EXISTS(mrt, vr.mifi)) {
1952 			vr.icount = vif->pkt_in;
1953 			vr.ocount = vif->pkt_out;
1954 			vr.ibytes = vif->bytes_in;
1955 			vr.obytes = vif->bytes_out;
1956 			read_unlock(&mrt_lock);
1957 
1958 			if (copy_to_user(arg, &vr, sizeof(vr)))
1959 				return -EFAULT;
1960 			return 0;
1961 		}
1962 		read_unlock(&mrt_lock);
1963 		return -EADDRNOTAVAIL;
1964 	case SIOCGETSGCNT_IN6:
1965 		if (copy_from_user(&sr, arg, sizeof(sr)))
1966 			return -EFAULT;
1967 
1968 		read_lock(&mrt_lock);
1969 		c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1970 		if (c) {
1971 			sr.pktcnt = c->mfc_un.res.pkt;
1972 			sr.bytecnt = c->mfc_un.res.bytes;
1973 			sr.wrong_if = c->mfc_un.res.wrong_if;
1974 			read_unlock(&mrt_lock);
1975 
1976 			if (copy_to_user(arg, &sr, sizeof(sr)))
1977 				return -EFAULT;
1978 			return 0;
1979 		}
1980 		read_unlock(&mrt_lock);
1981 		return -EADDRNOTAVAIL;
1982 	default:
1983 		return -ENOIOCTLCMD;
1984 	}
1985 }
1986 #endif
1987 
1988 static inline int ip6mr_forward2_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1989 {
1990 	__IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
1991 			IPSTATS_MIB_OUTFORWDATAGRAMS);
1992 	__IP6_ADD_STATS(net, ip6_dst_idev(skb_dst(skb)),
1993 			IPSTATS_MIB_OUTOCTETS, skb->len);
1994 	return dst_output(net, sk, skb);
1995 }
1996 
1997 /*
1998  *	Processing handlers for ip6mr_forward
1999  */
2000 
2001 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt,
2002 			  struct sk_buff *skb, struct mfc6_cache *c, int vifi)
2003 {
2004 	struct ipv6hdr *ipv6h;
2005 	struct mif_device *vif = &mrt->vif6_table[vifi];
2006 	struct net_device *dev;
2007 	struct dst_entry *dst;
2008 	struct flowi6 fl6;
2009 
2010 	if (!vif->dev)
2011 		goto out_free;
2012 
2013 #ifdef CONFIG_IPV6_PIMSM_V2
2014 	if (vif->flags & MIFF_REGISTER) {
2015 		vif->pkt_out++;
2016 		vif->bytes_out += skb->len;
2017 		vif->dev->stats.tx_bytes += skb->len;
2018 		vif->dev->stats.tx_packets++;
2019 		ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT);
2020 		goto out_free;
2021 	}
2022 #endif
2023 
2024 	ipv6h = ipv6_hdr(skb);
2025 
2026 	fl6 = (struct flowi6) {
2027 		.flowi6_oif = vif->link,
2028 		.daddr = ipv6h->daddr,
2029 	};
2030 
2031 	dst = ip6_route_output(net, NULL, &fl6);
2032 	if (dst->error) {
2033 		dst_release(dst);
2034 		goto out_free;
2035 	}
2036 
2037 	skb_dst_drop(skb);
2038 	skb_dst_set(skb, dst);
2039 
2040 	/*
2041 	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
2042 	 * not only before forwarding, but after forwarding on all output
2043 	 * interfaces. It is clear, if mrouter runs a multicasting
2044 	 * program, it should receive packets not depending to what interface
2045 	 * program is joined.
2046 	 * If we will not make it, the program will have to join on all
2047 	 * interfaces. On the other hand, multihoming host (or router, but
2048 	 * not mrouter) cannot join to more than one interface - it will
2049 	 * result in receiving multiple packets.
2050 	 */
2051 	dev = vif->dev;
2052 	skb->dev = dev;
2053 	vif->pkt_out++;
2054 	vif->bytes_out += skb->len;
2055 
2056 	/* We are about to write */
2057 	/* XXX: extension headers? */
2058 	if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev)))
2059 		goto out_free;
2060 
2061 	ipv6h = ipv6_hdr(skb);
2062 	ipv6h->hop_limit--;
2063 
2064 	IP6CB(skb)->flags |= IP6SKB_FORWARDED;
2065 
2066 	return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD,
2067 		       net, NULL, skb, skb->dev, dev,
2068 		       ip6mr_forward2_finish);
2069 
2070 out_free:
2071 	kfree_skb(skb);
2072 	return 0;
2073 }
2074 
2075 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev)
2076 {
2077 	int ct;
2078 
2079 	for (ct = mrt->maxvif - 1; ct >= 0; ct--) {
2080 		if (mrt->vif6_table[ct].dev == dev)
2081 			break;
2082 	}
2083 	return ct;
2084 }
2085 
2086 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt,
2087 			   struct sk_buff *skb, struct mfc6_cache *cache)
2088 {
2089 	int psend = -1;
2090 	int vif, ct;
2091 	int true_vifi = ip6mr_find_vif(mrt, skb->dev);
2092 
2093 	vif = cache->mf6c_parent;
2094 	cache->mfc_un.res.pkt++;
2095 	cache->mfc_un.res.bytes += skb->len;
2096 	cache->mfc_un.res.lastuse = jiffies;
2097 
2098 	if (ipv6_addr_any(&cache->mf6c_origin) && true_vifi >= 0) {
2099 		struct mfc6_cache *cache_proxy;
2100 
2101 		/* For an (*,G) entry, we only check that the incoming
2102 		 * interface is part of the static tree.
2103 		 */
2104 		cache_proxy = ip6mr_cache_find_any_parent(mrt, vif);
2105 		if (cache_proxy &&
2106 		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
2107 			goto forward;
2108 	}
2109 
2110 	/*
2111 	 * Wrong interface: drop packet and (maybe) send PIM assert.
2112 	 */
2113 	if (mrt->vif6_table[vif].dev != skb->dev) {
2114 		cache->mfc_un.res.wrong_if++;
2115 
2116 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2117 		    /* pimsm uses asserts, when switching from RPT to SPT,
2118 		       so that we cannot check that packet arrived on an oif.
2119 		       It is bad, but otherwise we would need to move pretty
2120 		       large chunk of pimd to kernel. Ough... --ANK
2121 		     */
2122 		    (mrt->mroute_do_pim ||
2123 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
2124 		    time_after(jiffies,
2125 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
2126 			cache->mfc_un.res.last_assert = jiffies;
2127 			ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF);
2128 		}
2129 		goto dont_forward;
2130 	}
2131 
2132 forward:
2133 	mrt->vif6_table[vif].pkt_in++;
2134 	mrt->vif6_table[vif].bytes_in += skb->len;
2135 
2136 	/*
2137 	 *	Forward the frame
2138 	 */
2139 	if (ipv6_addr_any(&cache->mf6c_origin) &&
2140 	    ipv6_addr_any(&cache->mf6c_mcastgrp)) {
2141 		if (true_vifi >= 0 &&
2142 		    true_vifi != cache->mf6c_parent &&
2143 		    ipv6_hdr(skb)->hop_limit >
2144 				cache->mfc_un.res.ttls[cache->mf6c_parent]) {
2145 			/* It's an (*,*) entry and the packet is not coming from
2146 			 * the upstream: forward the packet to the upstream
2147 			 * only.
2148 			 */
2149 			psend = cache->mf6c_parent;
2150 			goto last_forward;
2151 		}
2152 		goto dont_forward;
2153 	}
2154 	for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) {
2155 		/* For (*,G) entry, don't forward to the incoming interface */
2156 		if ((!ipv6_addr_any(&cache->mf6c_origin) || ct != true_vifi) &&
2157 		    ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) {
2158 			if (psend != -1) {
2159 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2160 				if (skb2)
2161 					ip6mr_forward2(net, mrt, skb2, cache, psend);
2162 			}
2163 			psend = ct;
2164 		}
2165 	}
2166 last_forward:
2167 	if (psend != -1) {
2168 		ip6mr_forward2(net, mrt, skb, cache, psend);
2169 		return;
2170 	}
2171 
2172 dont_forward:
2173 	kfree_skb(skb);
2174 }
2175 
2176 
2177 /*
2178  *	Multicast packets for forwarding arrive here
2179  */
2180 
2181 int ip6_mr_input(struct sk_buff *skb)
2182 {
2183 	struct mfc6_cache *cache;
2184 	struct net *net = dev_net(skb->dev);
2185 	struct mr6_table *mrt;
2186 	struct flowi6 fl6 = {
2187 		.flowi6_iif	= skb->dev->ifindex,
2188 		.flowi6_mark	= skb->mark,
2189 	};
2190 	int err;
2191 
2192 	err = ip6mr_fib_lookup(net, &fl6, &mrt);
2193 	if (err < 0) {
2194 		kfree_skb(skb);
2195 		return err;
2196 	}
2197 
2198 	read_lock(&mrt_lock);
2199 	cache = ip6mr_cache_find(mrt,
2200 				 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr);
2201 	if (!cache) {
2202 		int vif = ip6mr_find_vif(mrt, skb->dev);
2203 
2204 		if (vif >= 0)
2205 			cache = ip6mr_cache_find_any(mrt,
2206 						     &ipv6_hdr(skb)->daddr,
2207 						     vif);
2208 	}
2209 
2210 	/*
2211 	 *	No usable cache entry
2212 	 */
2213 	if (!cache) {
2214 		int vif;
2215 
2216 		vif = ip6mr_find_vif(mrt, skb->dev);
2217 		if (vif >= 0) {
2218 			int err = ip6mr_cache_unresolved(mrt, vif, skb);
2219 			read_unlock(&mrt_lock);
2220 
2221 			return err;
2222 		}
2223 		read_unlock(&mrt_lock);
2224 		kfree_skb(skb);
2225 		return -ENODEV;
2226 	}
2227 
2228 	ip6_mr_forward(net, mrt, skb, cache);
2229 
2230 	read_unlock(&mrt_lock);
2231 
2232 	return 0;
2233 }
2234 
2235 
2236 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2237 			       struct mfc6_cache *c, struct rtmsg *rtm)
2238 {
2239 	struct rta_mfc_stats mfcs;
2240 	struct nlattr *mp_attr;
2241 	struct rtnexthop *nhp;
2242 	int ct;
2243 
2244 	/* If cache is unresolved, don't try to parse IIF and OIF */
2245 	if (c->mf6c_parent >= MAXMIFS)
2246 		return -ENOENT;
2247 
2248 	if (MIF_EXISTS(mrt, c->mf6c_parent) &&
2249 	    nla_put_u32(skb, RTA_IIF, mrt->vif6_table[c->mf6c_parent].dev->ifindex) < 0)
2250 		return -EMSGSIZE;
2251 	mp_attr = nla_nest_start(skb, RTA_MULTIPATH);
2252 	if (!mp_attr)
2253 		return -EMSGSIZE;
2254 
2255 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2256 		if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2257 			nhp = nla_reserve_nohdr(skb, sizeof(*nhp));
2258 			if (!nhp) {
2259 				nla_nest_cancel(skb, mp_attr);
2260 				return -EMSGSIZE;
2261 			}
2262 
2263 			nhp->rtnh_flags = 0;
2264 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2265 			nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex;
2266 			nhp->rtnh_len = sizeof(*nhp);
2267 		}
2268 	}
2269 
2270 	nla_nest_end(skb, mp_attr);
2271 
2272 	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2273 	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2274 	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2275 	if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) ||
2276 	    nla_put_u64_64bit(skb, RTA_EXPIRES,
2277 			      jiffies_to_clock_t(c->mfc_un.res.lastuse),
2278 			      RTA_PAD))
2279 		return -EMSGSIZE;
2280 
2281 	rtm->rtm_type = RTN_MULTICAST;
2282 	return 1;
2283 }
2284 
2285 int ip6mr_get_route(struct net *net,
2286 		    struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2287 {
2288 	int err;
2289 	struct mr6_table *mrt;
2290 	struct mfc6_cache *cache;
2291 	struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
2292 
2293 	mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
2294 	if (!mrt)
2295 		return -ENOENT;
2296 
2297 	read_lock(&mrt_lock);
2298 	cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr);
2299 	if (!cache && skb->dev) {
2300 		int vif = ip6mr_find_vif(mrt, skb->dev);
2301 
2302 		if (vif >= 0)
2303 			cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr,
2304 						     vif);
2305 	}
2306 
2307 	if (!cache) {
2308 		struct sk_buff *skb2;
2309 		struct ipv6hdr *iph;
2310 		struct net_device *dev;
2311 		int vif;
2312 
2313 		if (nowait) {
2314 			read_unlock(&mrt_lock);
2315 			return -EAGAIN;
2316 		}
2317 
2318 		dev = skb->dev;
2319 		if (!dev || (vif = ip6mr_find_vif(mrt, dev)) < 0) {
2320 			read_unlock(&mrt_lock);
2321 			return -ENODEV;
2322 		}
2323 
2324 		/* really correct? */
2325 		skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
2326 		if (!skb2) {
2327 			read_unlock(&mrt_lock);
2328 			return -ENOMEM;
2329 		}
2330 
2331 		skb_reset_transport_header(skb2);
2332 
2333 		skb_put(skb2, sizeof(struct ipv6hdr));
2334 		skb_reset_network_header(skb2);
2335 
2336 		iph = ipv6_hdr(skb2);
2337 		iph->version = 0;
2338 		iph->priority = 0;
2339 		iph->flow_lbl[0] = 0;
2340 		iph->flow_lbl[1] = 0;
2341 		iph->flow_lbl[2] = 0;
2342 		iph->payload_len = 0;
2343 		iph->nexthdr = IPPROTO_NONE;
2344 		iph->hop_limit = 0;
2345 		iph->saddr = rt->rt6i_src.addr;
2346 		iph->daddr = rt->rt6i_dst.addr;
2347 
2348 		err = ip6mr_cache_unresolved(mrt, vif, skb2);
2349 		read_unlock(&mrt_lock);
2350 
2351 		return err;
2352 	}
2353 
2354 	if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
2355 		cache->mfc_flags |= MFC_NOTIFY;
2356 
2357 	err = __ip6mr_fill_mroute(mrt, skb, cache, rtm);
2358 	read_unlock(&mrt_lock);
2359 	return err;
2360 }
2361 
2362 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2363 			     u32 portid, u32 seq, struct mfc6_cache *c, int cmd,
2364 			     int flags)
2365 {
2366 	struct nlmsghdr *nlh;
2367 	struct rtmsg *rtm;
2368 	int err;
2369 
2370 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2371 	if (!nlh)
2372 		return -EMSGSIZE;
2373 
2374 	rtm = nlmsg_data(nlh);
2375 	rtm->rtm_family   = RTNL_FAMILY_IP6MR;
2376 	rtm->rtm_dst_len  = 128;
2377 	rtm->rtm_src_len  = 128;
2378 	rtm->rtm_tos      = 0;
2379 	rtm->rtm_table    = mrt->id;
2380 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2381 		goto nla_put_failure;
2382 	rtm->rtm_type = RTN_MULTICAST;
2383 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2384 	if (c->mfc_flags & MFC_STATIC)
2385 		rtm->rtm_protocol = RTPROT_STATIC;
2386 	else
2387 		rtm->rtm_protocol = RTPROT_MROUTED;
2388 	rtm->rtm_flags    = 0;
2389 
2390 	if (nla_put_in6_addr(skb, RTA_SRC, &c->mf6c_origin) ||
2391 	    nla_put_in6_addr(skb, RTA_DST, &c->mf6c_mcastgrp))
2392 		goto nla_put_failure;
2393 	err = __ip6mr_fill_mroute(mrt, skb, c, rtm);
2394 	/* do not break the dump if cache is unresolved */
2395 	if (err < 0 && err != -ENOENT)
2396 		goto nla_put_failure;
2397 
2398 	nlmsg_end(skb, nlh);
2399 	return 0;
2400 
2401 nla_put_failure:
2402 	nlmsg_cancel(skb, nlh);
2403 	return -EMSGSIZE;
2404 }
2405 
2406 static int mr6_msgsize(bool unresolved, int maxvif)
2407 {
2408 	size_t len =
2409 		NLMSG_ALIGN(sizeof(struct rtmsg))
2410 		+ nla_total_size(4)	/* RTA_TABLE */
2411 		+ nla_total_size(sizeof(struct in6_addr))	/* RTA_SRC */
2412 		+ nla_total_size(sizeof(struct in6_addr))	/* RTA_DST */
2413 		;
2414 
2415 	if (!unresolved)
2416 		len = len
2417 		      + nla_total_size(4)	/* RTA_IIF */
2418 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2419 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2420 						/* RTA_MFC_STATS */
2421 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2422 		;
2423 
2424 	return len;
2425 }
2426 
2427 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc,
2428 			      int cmd)
2429 {
2430 	struct net *net = read_pnet(&mrt->net);
2431 	struct sk_buff *skb;
2432 	int err = -ENOBUFS;
2433 
2434 	skb = nlmsg_new(mr6_msgsize(mfc->mf6c_parent >= MAXMIFS, mrt->maxvif),
2435 			GFP_ATOMIC);
2436 	if (!skb)
2437 		goto errout;
2438 
2439 	err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2440 	if (err < 0)
2441 		goto errout;
2442 
2443 	rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC);
2444 	return;
2445 
2446 errout:
2447 	kfree_skb(skb);
2448 	if (err < 0)
2449 		rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err);
2450 }
2451 
2452 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2453 {
2454 	struct net *net = sock_net(skb->sk);
2455 	struct mr6_table *mrt;
2456 	struct mfc6_cache *mfc;
2457 	unsigned int t = 0, s_t;
2458 	unsigned int h = 0, s_h;
2459 	unsigned int e = 0, s_e;
2460 
2461 	s_t = cb->args[0];
2462 	s_h = cb->args[1];
2463 	s_e = cb->args[2];
2464 
2465 	read_lock(&mrt_lock);
2466 	ip6mr_for_each_table(mrt, net) {
2467 		if (t < s_t)
2468 			goto next_table;
2469 		if (t > s_t)
2470 			s_h = 0;
2471 		for (h = s_h; h < MFC6_LINES; h++) {
2472 			list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) {
2473 				if (e < s_e)
2474 					goto next_entry;
2475 				if (ip6mr_fill_mroute(mrt, skb,
2476 						      NETLINK_CB(cb->skb).portid,
2477 						      cb->nlh->nlmsg_seq,
2478 						      mfc, RTM_NEWROUTE,
2479 						      NLM_F_MULTI) < 0)
2480 					goto done;
2481 next_entry:
2482 				e++;
2483 			}
2484 			e = s_e = 0;
2485 		}
2486 		spin_lock_bh(&mfc_unres_lock);
2487 		list_for_each_entry(mfc, &mrt->mfc6_unres_queue, list) {
2488 			if (e < s_e)
2489 				goto next_entry2;
2490 			if (ip6mr_fill_mroute(mrt, skb,
2491 					      NETLINK_CB(cb->skb).portid,
2492 					      cb->nlh->nlmsg_seq,
2493 					      mfc, RTM_NEWROUTE,
2494 					      NLM_F_MULTI) < 0) {
2495 				spin_unlock_bh(&mfc_unres_lock);
2496 				goto done;
2497 			}
2498 next_entry2:
2499 			e++;
2500 		}
2501 		spin_unlock_bh(&mfc_unres_lock);
2502 		e = s_e = 0;
2503 		s_h = 0;
2504 next_table:
2505 		t++;
2506 	}
2507 done:
2508 	read_unlock(&mrt_lock);
2509 
2510 	cb->args[2] = e;
2511 	cb->args[1] = h;
2512 	cb->args[0] = t;
2513 
2514 	return skb->len;
2515 }
2516