1 /* 2 * Linux IPv6 multicast routing support for BSD pim6sd 3 * Based on net/ipv4/ipmr.c. 4 * 5 * (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr> 6 * LSIIT Laboratory, Strasbourg, France 7 * (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com> 8 * 6WIND, Paris, France 9 * Copyright (C)2007,2008 USAGI/WIDE Project 10 * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 * 17 */ 18 19 #include <linux/uaccess.h> 20 #include <linux/types.h> 21 #include <linux/sched.h> 22 #include <linux/errno.h> 23 #include <linux/timer.h> 24 #include <linux/mm.h> 25 #include <linux/kernel.h> 26 #include <linux/fcntl.h> 27 #include <linux/stat.h> 28 #include <linux/socket.h> 29 #include <linux/inet.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/proc_fs.h> 33 #include <linux/seq_file.h> 34 #include <linux/init.h> 35 #include <linux/slab.h> 36 #include <linux/compat.h> 37 #include <net/protocol.h> 38 #include <linux/skbuff.h> 39 #include <net/sock.h> 40 #include <net/raw.h> 41 #include <linux/notifier.h> 42 #include <linux/if_arp.h> 43 #include <net/checksum.h> 44 #include <net/netlink.h> 45 #include <net/fib_rules.h> 46 47 #include <net/ipv6.h> 48 #include <net/ip6_route.h> 49 #include <linux/mroute6.h> 50 #include <linux/pim.h> 51 #include <net/addrconf.h> 52 #include <linux/netfilter_ipv6.h> 53 #include <linux/export.h> 54 #include <net/ip6_checksum.h> 55 #include <linux/netconf.h> 56 57 struct mr6_table { 58 struct list_head list; 59 possible_net_t net; 60 u32 id; 61 struct sock *mroute6_sk; 62 struct timer_list ipmr_expire_timer; 63 struct list_head mfc6_unres_queue; 64 struct list_head mfc6_cache_array[MFC6_LINES]; 65 struct mif_device vif6_table[MAXMIFS]; 66 int maxvif; 67 atomic_t cache_resolve_queue_len; 68 bool mroute_do_assert; 69 bool mroute_do_pim; 70 #ifdef CONFIG_IPV6_PIMSM_V2 71 int mroute_reg_vif_num; 72 #endif 73 }; 74 75 struct ip6mr_rule { 76 struct fib_rule common; 77 }; 78 79 struct ip6mr_result { 80 struct mr6_table *mrt; 81 }; 82 83 /* Big lock, protecting vif table, mrt cache and mroute socket state. 84 Note that the changes are semaphored via rtnl_lock. 85 */ 86 87 static DEFINE_RWLOCK(mrt_lock); 88 89 /* 90 * Multicast router control variables 91 */ 92 93 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL) 94 95 /* Special spinlock for queue of unresolved entries */ 96 static DEFINE_SPINLOCK(mfc_unres_lock); 97 98 /* We return to original Alan's scheme. Hash table of resolved 99 entries is changed only in process context and protected 100 with weak lock mrt_lock. Queue of unresolved entries is protected 101 with strong spinlock mfc_unres_lock. 102 103 In this case data path is free of exclusive locks at all. 104 */ 105 106 static struct kmem_cache *mrt_cachep __read_mostly; 107 108 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id); 109 static void ip6mr_free_table(struct mr6_table *mrt); 110 111 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt, 112 struct sk_buff *skb, struct mfc6_cache *cache); 113 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt, 114 mifi_t mifi, int assert); 115 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 116 struct mfc6_cache *c, struct rtmsg *rtm); 117 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc, 118 int cmd); 119 static void mrt6msg_netlink_event(struct mr6_table *mrt, struct sk_buff *pkt); 120 static int ip6mr_rtm_dumproute(struct sk_buff *skb, 121 struct netlink_callback *cb); 122 static void mroute_clean_tables(struct mr6_table *mrt, bool all); 123 static void ipmr_expire_process(struct timer_list *t); 124 125 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 126 #define ip6mr_for_each_table(mrt, net) \ 127 list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list) 128 129 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id) 130 { 131 struct mr6_table *mrt; 132 133 ip6mr_for_each_table(mrt, net) { 134 if (mrt->id == id) 135 return mrt; 136 } 137 return NULL; 138 } 139 140 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 141 struct mr6_table **mrt) 142 { 143 int err; 144 struct ip6mr_result res; 145 struct fib_lookup_arg arg = { 146 .result = &res, 147 .flags = FIB_LOOKUP_NOREF, 148 }; 149 150 err = fib_rules_lookup(net->ipv6.mr6_rules_ops, 151 flowi6_to_flowi(flp6), 0, &arg); 152 if (err < 0) 153 return err; 154 *mrt = res.mrt; 155 return 0; 156 } 157 158 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp, 159 int flags, struct fib_lookup_arg *arg) 160 { 161 struct ip6mr_result *res = arg->result; 162 struct mr6_table *mrt; 163 164 switch (rule->action) { 165 case FR_ACT_TO_TBL: 166 break; 167 case FR_ACT_UNREACHABLE: 168 return -ENETUNREACH; 169 case FR_ACT_PROHIBIT: 170 return -EACCES; 171 case FR_ACT_BLACKHOLE: 172 default: 173 return -EINVAL; 174 } 175 176 mrt = ip6mr_get_table(rule->fr_net, rule->table); 177 if (!mrt) 178 return -EAGAIN; 179 res->mrt = mrt; 180 return 0; 181 } 182 183 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags) 184 { 185 return 1; 186 } 187 188 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = { 189 FRA_GENERIC_POLICY, 190 }; 191 192 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 193 struct fib_rule_hdr *frh, struct nlattr **tb) 194 { 195 return 0; 196 } 197 198 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 199 struct nlattr **tb) 200 { 201 return 1; 202 } 203 204 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 205 struct fib_rule_hdr *frh) 206 { 207 frh->dst_len = 0; 208 frh->src_len = 0; 209 frh->tos = 0; 210 return 0; 211 } 212 213 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = { 214 .family = RTNL_FAMILY_IP6MR, 215 .rule_size = sizeof(struct ip6mr_rule), 216 .addr_size = sizeof(struct in6_addr), 217 .action = ip6mr_rule_action, 218 .match = ip6mr_rule_match, 219 .configure = ip6mr_rule_configure, 220 .compare = ip6mr_rule_compare, 221 .fill = ip6mr_rule_fill, 222 .nlgroup = RTNLGRP_IPV6_RULE, 223 .policy = ip6mr_rule_policy, 224 .owner = THIS_MODULE, 225 }; 226 227 static int __net_init ip6mr_rules_init(struct net *net) 228 { 229 struct fib_rules_ops *ops; 230 struct mr6_table *mrt; 231 int err; 232 233 ops = fib_rules_register(&ip6mr_rules_ops_template, net); 234 if (IS_ERR(ops)) 235 return PTR_ERR(ops); 236 237 INIT_LIST_HEAD(&net->ipv6.mr6_tables); 238 239 mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); 240 if (!mrt) { 241 err = -ENOMEM; 242 goto err1; 243 } 244 245 err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0); 246 if (err < 0) 247 goto err2; 248 249 net->ipv6.mr6_rules_ops = ops; 250 return 0; 251 252 err2: 253 ip6mr_free_table(mrt); 254 err1: 255 fib_rules_unregister(ops); 256 return err; 257 } 258 259 static void __net_exit ip6mr_rules_exit(struct net *net) 260 { 261 struct mr6_table *mrt, *next; 262 263 rtnl_lock(); 264 list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) { 265 list_del(&mrt->list); 266 ip6mr_free_table(mrt); 267 } 268 fib_rules_unregister(net->ipv6.mr6_rules_ops); 269 rtnl_unlock(); 270 } 271 #else 272 #define ip6mr_for_each_table(mrt, net) \ 273 for (mrt = net->ipv6.mrt6; mrt; mrt = NULL) 274 275 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id) 276 { 277 return net->ipv6.mrt6; 278 } 279 280 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 281 struct mr6_table **mrt) 282 { 283 *mrt = net->ipv6.mrt6; 284 return 0; 285 } 286 287 static int __net_init ip6mr_rules_init(struct net *net) 288 { 289 net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT); 290 return net->ipv6.mrt6 ? 0 : -ENOMEM; 291 } 292 293 static void __net_exit ip6mr_rules_exit(struct net *net) 294 { 295 rtnl_lock(); 296 ip6mr_free_table(net->ipv6.mrt6); 297 net->ipv6.mrt6 = NULL; 298 rtnl_unlock(); 299 } 300 #endif 301 302 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id) 303 { 304 struct mr6_table *mrt; 305 unsigned int i; 306 307 mrt = ip6mr_get_table(net, id); 308 if (mrt) 309 return mrt; 310 311 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 312 if (!mrt) 313 return NULL; 314 mrt->id = id; 315 write_pnet(&mrt->net, net); 316 317 /* Forwarding cache */ 318 for (i = 0; i < MFC6_LINES; i++) 319 INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]); 320 321 INIT_LIST_HEAD(&mrt->mfc6_unres_queue); 322 323 timer_setup(&mrt->ipmr_expire_timer, ipmr_expire_process, 0); 324 325 #ifdef CONFIG_IPV6_PIMSM_V2 326 mrt->mroute_reg_vif_num = -1; 327 #endif 328 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 329 list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables); 330 #endif 331 return mrt; 332 } 333 334 static void ip6mr_free_table(struct mr6_table *mrt) 335 { 336 del_timer_sync(&mrt->ipmr_expire_timer); 337 mroute_clean_tables(mrt, true); 338 kfree(mrt); 339 } 340 341 #ifdef CONFIG_PROC_FS 342 343 struct ipmr_mfc_iter { 344 struct seq_net_private p; 345 struct mr6_table *mrt; 346 struct list_head *cache; 347 int ct; 348 }; 349 350 351 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net, 352 struct ipmr_mfc_iter *it, loff_t pos) 353 { 354 struct mr6_table *mrt = it->mrt; 355 struct mfc6_cache *mfc; 356 357 read_lock(&mrt_lock); 358 for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) { 359 it->cache = &mrt->mfc6_cache_array[it->ct]; 360 list_for_each_entry(mfc, it->cache, list) 361 if (pos-- == 0) 362 return mfc; 363 } 364 read_unlock(&mrt_lock); 365 366 spin_lock_bh(&mfc_unres_lock); 367 it->cache = &mrt->mfc6_unres_queue; 368 list_for_each_entry(mfc, it->cache, list) 369 if (pos-- == 0) 370 return mfc; 371 spin_unlock_bh(&mfc_unres_lock); 372 373 it->cache = NULL; 374 return NULL; 375 } 376 377 /* 378 * The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif 379 */ 380 381 struct ipmr_vif_iter { 382 struct seq_net_private p; 383 struct mr6_table *mrt; 384 int ct; 385 }; 386 387 static struct mif_device *ip6mr_vif_seq_idx(struct net *net, 388 struct ipmr_vif_iter *iter, 389 loff_t pos) 390 { 391 struct mr6_table *mrt = iter->mrt; 392 393 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 394 if (!MIF_EXISTS(mrt, iter->ct)) 395 continue; 396 if (pos-- == 0) 397 return &mrt->vif6_table[iter->ct]; 398 } 399 return NULL; 400 } 401 402 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos) 403 __acquires(mrt_lock) 404 { 405 struct ipmr_vif_iter *iter = seq->private; 406 struct net *net = seq_file_net(seq); 407 struct mr6_table *mrt; 408 409 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 410 if (!mrt) 411 return ERR_PTR(-ENOENT); 412 413 iter->mrt = mrt; 414 415 read_lock(&mrt_lock); 416 return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1) 417 : SEQ_START_TOKEN; 418 } 419 420 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 421 { 422 struct ipmr_vif_iter *iter = seq->private; 423 struct net *net = seq_file_net(seq); 424 struct mr6_table *mrt = iter->mrt; 425 426 ++*pos; 427 if (v == SEQ_START_TOKEN) 428 return ip6mr_vif_seq_idx(net, iter, 0); 429 430 while (++iter->ct < mrt->maxvif) { 431 if (!MIF_EXISTS(mrt, iter->ct)) 432 continue; 433 return &mrt->vif6_table[iter->ct]; 434 } 435 return NULL; 436 } 437 438 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v) 439 __releases(mrt_lock) 440 { 441 read_unlock(&mrt_lock); 442 } 443 444 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v) 445 { 446 struct ipmr_vif_iter *iter = seq->private; 447 struct mr6_table *mrt = iter->mrt; 448 449 if (v == SEQ_START_TOKEN) { 450 seq_puts(seq, 451 "Interface BytesIn PktsIn BytesOut PktsOut Flags\n"); 452 } else { 453 const struct mif_device *vif = v; 454 const char *name = vif->dev ? vif->dev->name : "none"; 455 456 seq_printf(seq, 457 "%2td %-10s %8ld %7ld %8ld %7ld %05X\n", 458 vif - mrt->vif6_table, 459 name, vif->bytes_in, vif->pkt_in, 460 vif->bytes_out, vif->pkt_out, 461 vif->flags); 462 } 463 return 0; 464 } 465 466 static const struct seq_operations ip6mr_vif_seq_ops = { 467 .start = ip6mr_vif_seq_start, 468 .next = ip6mr_vif_seq_next, 469 .stop = ip6mr_vif_seq_stop, 470 .show = ip6mr_vif_seq_show, 471 }; 472 473 static int ip6mr_vif_open(struct inode *inode, struct file *file) 474 { 475 return seq_open_net(inode, file, &ip6mr_vif_seq_ops, 476 sizeof(struct ipmr_vif_iter)); 477 } 478 479 static const struct file_operations ip6mr_vif_fops = { 480 .open = ip6mr_vif_open, 481 .read = seq_read, 482 .llseek = seq_lseek, 483 .release = seq_release_net, 484 }; 485 486 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 487 { 488 struct ipmr_mfc_iter *it = seq->private; 489 struct net *net = seq_file_net(seq); 490 struct mr6_table *mrt; 491 492 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 493 if (!mrt) 494 return ERR_PTR(-ENOENT); 495 496 it->mrt = mrt; 497 it->cache = NULL; 498 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 499 : SEQ_START_TOKEN; 500 } 501 502 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 503 { 504 struct mfc6_cache *mfc = v; 505 struct ipmr_mfc_iter *it = seq->private; 506 struct net *net = seq_file_net(seq); 507 struct mr6_table *mrt = it->mrt; 508 509 ++*pos; 510 511 if (v == SEQ_START_TOKEN) 512 return ipmr_mfc_seq_idx(net, seq->private, 0); 513 514 if (mfc->list.next != it->cache) 515 return list_entry(mfc->list.next, struct mfc6_cache, list); 516 517 if (it->cache == &mrt->mfc6_unres_queue) 518 goto end_of_list; 519 520 BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]); 521 522 while (++it->ct < MFC6_LINES) { 523 it->cache = &mrt->mfc6_cache_array[it->ct]; 524 if (list_empty(it->cache)) 525 continue; 526 return list_first_entry(it->cache, struct mfc6_cache, list); 527 } 528 529 /* exhausted cache_array, show unresolved */ 530 read_unlock(&mrt_lock); 531 it->cache = &mrt->mfc6_unres_queue; 532 it->ct = 0; 533 534 spin_lock_bh(&mfc_unres_lock); 535 if (!list_empty(it->cache)) 536 return list_first_entry(it->cache, struct mfc6_cache, list); 537 538 end_of_list: 539 spin_unlock_bh(&mfc_unres_lock); 540 it->cache = NULL; 541 542 return NULL; 543 } 544 545 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 546 { 547 struct ipmr_mfc_iter *it = seq->private; 548 struct mr6_table *mrt = it->mrt; 549 550 if (it->cache == &mrt->mfc6_unres_queue) 551 spin_unlock_bh(&mfc_unres_lock); 552 else if (it->cache == &mrt->mfc6_cache_array[it->ct]) 553 read_unlock(&mrt_lock); 554 } 555 556 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 557 { 558 int n; 559 560 if (v == SEQ_START_TOKEN) { 561 seq_puts(seq, 562 "Group " 563 "Origin " 564 "Iif Pkts Bytes Wrong Oifs\n"); 565 } else { 566 const struct mfc6_cache *mfc = v; 567 const struct ipmr_mfc_iter *it = seq->private; 568 struct mr6_table *mrt = it->mrt; 569 570 seq_printf(seq, "%pI6 %pI6 %-3hd", 571 &mfc->mf6c_mcastgrp, &mfc->mf6c_origin, 572 mfc->mf6c_parent); 573 574 if (it->cache != &mrt->mfc6_unres_queue) { 575 seq_printf(seq, " %8lu %8lu %8lu", 576 mfc->mfc_un.res.pkt, 577 mfc->mfc_un.res.bytes, 578 mfc->mfc_un.res.wrong_if); 579 for (n = mfc->mfc_un.res.minvif; 580 n < mfc->mfc_un.res.maxvif; n++) { 581 if (MIF_EXISTS(mrt, n) && 582 mfc->mfc_un.res.ttls[n] < 255) 583 seq_printf(seq, 584 " %2d:%-3d", 585 n, mfc->mfc_un.res.ttls[n]); 586 } 587 } else { 588 /* unresolved mfc_caches don't contain 589 * pkt, bytes and wrong_if values 590 */ 591 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 592 } 593 seq_putc(seq, '\n'); 594 } 595 return 0; 596 } 597 598 static const struct seq_operations ipmr_mfc_seq_ops = { 599 .start = ipmr_mfc_seq_start, 600 .next = ipmr_mfc_seq_next, 601 .stop = ipmr_mfc_seq_stop, 602 .show = ipmr_mfc_seq_show, 603 }; 604 605 static int ipmr_mfc_open(struct inode *inode, struct file *file) 606 { 607 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 608 sizeof(struct ipmr_mfc_iter)); 609 } 610 611 static const struct file_operations ip6mr_mfc_fops = { 612 .open = ipmr_mfc_open, 613 .read = seq_read, 614 .llseek = seq_lseek, 615 .release = seq_release_net, 616 }; 617 #endif 618 619 #ifdef CONFIG_IPV6_PIMSM_V2 620 621 static int pim6_rcv(struct sk_buff *skb) 622 { 623 struct pimreghdr *pim; 624 struct ipv6hdr *encap; 625 struct net_device *reg_dev = NULL; 626 struct net *net = dev_net(skb->dev); 627 struct mr6_table *mrt; 628 struct flowi6 fl6 = { 629 .flowi6_iif = skb->dev->ifindex, 630 .flowi6_mark = skb->mark, 631 }; 632 int reg_vif_num; 633 634 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap))) 635 goto drop; 636 637 pim = (struct pimreghdr *)skb_transport_header(skb); 638 if (pim->type != ((PIM_VERSION << 4) | PIM_TYPE_REGISTER) || 639 (pim->flags & PIM_NULL_REGISTER) || 640 (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 641 sizeof(*pim), IPPROTO_PIM, 642 csum_partial((void *)pim, sizeof(*pim), 0)) && 643 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 644 goto drop; 645 646 /* check if the inner packet is destined to mcast group */ 647 encap = (struct ipv6hdr *)(skb_transport_header(skb) + 648 sizeof(*pim)); 649 650 if (!ipv6_addr_is_multicast(&encap->daddr) || 651 encap->payload_len == 0 || 652 ntohs(encap->payload_len) + sizeof(*pim) > skb->len) 653 goto drop; 654 655 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 656 goto drop; 657 reg_vif_num = mrt->mroute_reg_vif_num; 658 659 read_lock(&mrt_lock); 660 if (reg_vif_num >= 0) 661 reg_dev = mrt->vif6_table[reg_vif_num].dev; 662 if (reg_dev) 663 dev_hold(reg_dev); 664 read_unlock(&mrt_lock); 665 666 if (!reg_dev) 667 goto drop; 668 669 skb->mac_header = skb->network_header; 670 skb_pull(skb, (u8 *)encap - skb->data); 671 skb_reset_network_header(skb); 672 skb->protocol = htons(ETH_P_IPV6); 673 skb->ip_summed = CHECKSUM_NONE; 674 675 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 676 677 netif_rx(skb); 678 679 dev_put(reg_dev); 680 return 0; 681 drop: 682 kfree_skb(skb); 683 return 0; 684 } 685 686 static const struct inet6_protocol pim6_protocol = { 687 .handler = pim6_rcv, 688 }; 689 690 /* Service routines creating virtual interfaces: PIMREG */ 691 692 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, 693 struct net_device *dev) 694 { 695 struct net *net = dev_net(dev); 696 struct mr6_table *mrt; 697 struct flowi6 fl6 = { 698 .flowi6_oif = dev->ifindex, 699 .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 700 .flowi6_mark = skb->mark, 701 }; 702 int err; 703 704 err = ip6mr_fib_lookup(net, &fl6, &mrt); 705 if (err < 0) { 706 kfree_skb(skb); 707 return err; 708 } 709 710 read_lock(&mrt_lock); 711 dev->stats.tx_bytes += skb->len; 712 dev->stats.tx_packets++; 713 ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT); 714 read_unlock(&mrt_lock); 715 kfree_skb(skb); 716 return NETDEV_TX_OK; 717 } 718 719 static int reg_vif_get_iflink(const struct net_device *dev) 720 { 721 return 0; 722 } 723 724 static const struct net_device_ops reg_vif_netdev_ops = { 725 .ndo_start_xmit = reg_vif_xmit, 726 .ndo_get_iflink = reg_vif_get_iflink, 727 }; 728 729 static void reg_vif_setup(struct net_device *dev) 730 { 731 dev->type = ARPHRD_PIMREG; 732 dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8; 733 dev->flags = IFF_NOARP; 734 dev->netdev_ops = ®_vif_netdev_ops; 735 dev->needs_free_netdev = true; 736 dev->features |= NETIF_F_NETNS_LOCAL; 737 } 738 739 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt) 740 { 741 struct net_device *dev; 742 char name[IFNAMSIZ]; 743 744 if (mrt->id == RT6_TABLE_DFLT) 745 sprintf(name, "pim6reg"); 746 else 747 sprintf(name, "pim6reg%u", mrt->id); 748 749 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 750 if (!dev) 751 return NULL; 752 753 dev_net_set(dev, net); 754 755 if (register_netdevice(dev)) { 756 free_netdev(dev); 757 return NULL; 758 } 759 760 if (dev_open(dev)) 761 goto failure; 762 763 dev_hold(dev); 764 return dev; 765 766 failure: 767 unregister_netdevice(dev); 768 return NULL; 769 } 770 #endif 771 772 /* 773 * Delete a VIF entry 774 */ 775 776 static int mif6_delete(struct mr6_table *mrt, int vifi, int notify, 777 struct list_head *head) 778 { 779 struct mif_device *v; 780 struct net_device *dev; 781 struct inet6_dev *in6_dev; 782 783 if (vifi < 0 || vifi >= mrt->maxvif) 784 return -EADDRNOTAVAIL; 785 786 v = &mrt->vif6_table[vifi]; 787 788 write_lock_bh(&mrt_lock); 789 dev = v->dev; 790 v->dev = NULL; 791 792 if (!dev) { 793 write_unlock_bh(&mrt_lock); 794 return -EADDRNOTAVAIL; 795 } 796 797 #ifdef CONFIG_IPV6_PIMSM_V2 798 if (vifi == mrt->mroute_reg_vif_num) 799 mrt->mroute_reg_vif_num = -1; 800 #endif 801 802 if (vifi + 1 == mrt->maxvif) { 803 int tmp; 804 for (tmp = vifi - 1; tmp >= 0; tmp--) { 805 if (MIF_EXISTS(mrt, tmp)) 806 break; 807 } 808 mrt->maxvif = tmp + 1; 809 } 810 811 write_unlock_bh(&mrt_lock); 812 813 dev_set_allmulti(dev, -1); 814 815 in6_dev = __in6_dev_get(dev); 816 if (in6_dev) { 817 in6_dev->cnf.mc_forwarding--; 818 inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 819 NETCONFA_MC_FORWARDING, 820 dev->ifindex, &in6_dev->cnf); 821 } 822 823 if ((v->flags & MIFF_REGISTER) && !notify) 824 unregister_netdevice_queue(dev, head); 825 826 dev_put(dev); 827 return 0; 828 } 829 830 static inline void ip6mr_cache_free(struct mfc6_cache *c) 831 { 832 kmem_cache_free(mrt_cachep, c); 833 } 834 835 /* Destroy an unresolved cache entry, killing queued skbs 836 and reporting error to netlink readers. 837 */ 838 839 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c) 840 { 841 struct net *net = read_pnet(&mrt->net); 842 struct sk_buff *skb; 843 844 atomic_dec(&mrt->cache_resolve_queue_len); 845 846 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) { 847 if (ipv6_hdr(skb)->version == 0) { 848 struct nlmsghdr *nlh = skb_pull(skb, 849 sizeof(struct ipv6hdr)); 850 nlh->nlmsg_type = NLMSG_ERROR; 851 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 852 skb_trim(skb, nlh->nlmsg_len); 853 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT; 854 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 855 } else 856 kfree_skb(skb); 857 } 858 859 ip6mr_cache_free(c); 860 } 861 862 863 /* Timer process for all the unresolved queue. */ 864 865 static void ipmr_do_expire_process(struct mr6_table *mrt) 866 { 867 unsigned long now = jiffies; 868 unsigned long expires = 10 * HZ; 869 struct mfc6_cache *c, *next; 870 871 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) { 872 if (time_after(c->mfc_un.unres.expires, now)) { 873 /* not yet... */ 874 unsigned long interval = c->mfc_un.unres.expires - now; 875 if (interval < expires) 876 expires = interval; 877 continue; 878 } 879 880 list_del(&c->list); 881 mr6_netlink_event(mrt, c, RTM_DELROUTE); 882 ip6mr_destroy_unres(mrt, c); 883 } 884 885 if (!list_empty(&mrt->mfc6_unres_queue)) 886 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 887 } 888 889 static void ipmr_expire_process(struct timer_list *t) 890 { 891 struct mr6_table *mrt = from_timer(mrt, t, ipmr_expire_timer); 892 893 if (!spin_trylock(&mfc_unres_lock)) { 894 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1); 895 return; 896 } 897 898 if (!list_empty(&mrt->mfc6_unres_queue)) 899 ipmr_do_expire_process(mrt); 900 901 spin_unlock(&mfc_unres_lock); 902 } 903 904 /* Fill oifs list. It is called under write locked mrt_lock. */ 905 906 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache, 907 unsigned char *ttls) 908 { 909 int vifi; 910 911 cache->mfc_un.res.minvif = MAXMIFS; 912 cache->mfc_un.res.maxvif = 0; 913 memset(cache->mfc_un.res.ttls, 255, MAXMIFS); 914 915 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 916 if (MIF_EXISTS(mrt, vifi) && 917 ttls[vifi] && ttls[vifi] < 255) { 918 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 919 if (cache->mfc_un.res.minvif > vifi) 920 cache->mfc_un.res.minvif = vifi; 921 if (cache->mfc_un.res.maxvif <= vifi) 922 cache->mfc_un.res.maxvif = vifi + 1; 923 } 924 } 925 cache->mfc_un.res.lastuse = jiffies; 926 } 927 928 static int mif6_add(struct net *net, struct mr6_table *mrt, 929 struct mif6ctl *vifc, int mrtsock) 930 { 931 int vifi = vifc->mif6c_mifi; 932 struct mif_device *v = &mrt->vif6_table[vifi]; 933 struct net_device *dev; 934 struct inet6_dev *in6_dev; 935 int err; 936 937 /* Is vif busy ? */ 938 if (MIF_EXISTS(mrt, vifi)) 939 return -EADDRINUSE; 940 941 switch (vifc->mif6c_flags) { 942 #ifdef CONFIG_IPV6_PIMSM_V2 943 case MIFF_REGISTER: 944 /* 945 * Special Purpose VIF in PIM 946 * All the packets will be sent to the daemon 947 */ 948 if (mrt->mroute_reg_vif_num >= 0) 949 return -EADDRINUSE; 950 dev = ip6mr_reg_vif(net, mrt); 951 if (!dev) 952 return -ENOBUFS; 953 err = dev_set_allmulti(dev, 1); 954 if (err) { 955 unregister_netdevice(dev); 956 dev_put(dev); 957 return err; 958 } 959 break; 960 #endif 961 case 0: 962 dev = dev_get_by_index(net, vifc->mif6c_pifi); 963 if (!dev) 964 return -EADDRNOTAVAIL; 965 err = dev_set_allmulti(dev, 1); 966 if (err) { 967 dev_put(dev); 968 return err; 969 } 970 break; 971 default: 972 return -EINVAL; 973 } 974 975 in6_dev = __in6_dev_get(dev); 976 if (in6_dev) { 977 in6_dev->cnf.mc_forwarding++; 978 inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF, 979 NETCONFA_MC_FORWARDING, 980 dev->ifindex, &in6_dev->cnf); 981 } 982 983 /* 984 * Fill in the VIF structures 985 */ 986 v->rate_limit = vifc->vifc_rate_limit; 987 v->flags = vifc->mif6c_flags; 988 if (!mrtsock) 989 v->flags |= VIFF_STATIC; 990 v->threshold = vifc->vifc_threshold; 991 v->bytes_in = 0; 992 v->bytes_out = 0; 993 v->pkt_in = 0; 994 v->pkt_out = 0; 995 v->link = dev->ifindex; 996 if (v->flags & MIFF_REGISTER) 997 v->link = dev_get_iflink(dev); 998 999 /* And finish update writing critical data */ 1000 write_lock_bh(&mrt_lock); 1001 v->dev = dev; 1002 #ifdef CONFIG_IPV6_PIMSM_V2 1003 if (v->flags & MIFF_REGISTER) 1004 mrt->mroute_reg_vif_num = vifi; 1005 #endif 1006 if (vifi + 1 > mrt->maxvif) 1007 mrt->maxvif = vifi + 1; 1008 write_unlock_bh(&mrt_lock); 1009 return 0; 1010 } 1011 1012 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt, 1013 const struct in6_addr *origin, 1014 const struct in6_addr *mcastgrp) 1015 { 1016 int line = MFC6_HASH(mcastgrp, origin); 1017 struct mfc6_cache *c; 1018 1019 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) { 1020 if (ipv6_addr_equal(&c->mf6c_origin, origin) && 1021 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) 1022 return c; 1023 } 1024 return NULL; 1025 } 1026 1027 /* Look for a (*,*,oif) entry */ 1028 static struct mfc6_cache *ip6mr_cache_find_any_parent(struct mr6_table *mrt, 1029 mifi_t mifi) 1030 { 1031 int line = MFC6_HASH(&in6addr_any, &in6addr_any); 1032 struct mfc6_cache *c; 1033 1034 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) 1035 if (ipv6_addr_any(&c->mf6c_origin) && 1036 ipv6_addr_any(&c->mf6c_mcastgrp) && 1037 (c->mfc_un.res.ttls[mifi] < 255)) 1038 return c; 1039 1040 return NULL; 1041 } 1042 1043 /* Look for a (*,G) entry */ 1044 static struct mfc6_cache *ip6mr_cache_find_any(struct mr6_table *mrt, 1045 struct in6_addr *mcastgrp, 1046 mifi_t mifi) 1047 { 1048 int line = MFC6_HASH(mcastgrp, &in6addr_any); 1049 struct mfc6_cache *c, *proxy; 1050 1051 if (ipv6_addr_any(mcastgrp)) 1052 goto skip; 1053 1054 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) 1055 if (ipv6_addr_any(&c->mf6c_origin) && 1056 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) { 1057 if (c->mfc_un.res.ttls[mifi] < 255) 1058 return c; 1059 1060 /* It's ok if the mifi is part of the static tree */ 1061 proxy = ip6mr_cache_find_any_parent(mrt, 1062 c->mf6c_parent); 1063 if (proxy && proxy->mfc_un.res.ttls[mifi] < 255) 1064 return c; 1065 } 1066 1067 skip: 1068 return ip6mr_cache_find_any_parent(mrt, mifi); 1069 } 1070 1071 /* 1072 * Allocate a multicast cache entry 1073 */ 1074 static struct mfc6_cache *ip6mr_cache_alloc(void) 1075 { 1076 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 1077 if (!c) 1078 return NULL; 1079 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1; 1080 c->mfc_un.res.minvif = MAXMIFS; 1081 return c; 1082 } 1083 1084 static struct mfc6_cache *ip6mr_cache_alloc_unres(void) 1085 { 1086 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 1087 if (!c) 1088 return NULL; 1089 skb_queue_head_init(&c->mfc_un.unres.unresolved); 1090 c->mfc_un.unres.expires = jiffies + 10 * HZ; 1091 return c; 1092 } 1093 1094 /* 1095 * A cache entry has gone into a resolved state from queued 1096 */ 1097 1098 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt, 1099 struct mfc6_cache *uc, struct mfc6_cache *c) 1100 { 1101 struct sk_buff *skb; 1102 1103 /* 1104 * Play the pending entries through our router 1105 */ 1106 1107 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 1108 if (ipv6_hdr(skb)->version == 0) { 1109 struct nlmsghdr *nlh = skb_pull(skb, 1110 sizeof(struct ipv6hdr)); 1111 1112 if (__ip6mr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 1113 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh; 1114 } else { 1115 nlh->nlmsg_type = NLMSG_ERROR; 1116 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1117 skb_trim(skb, nlh->nlmsg_len); 1118 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE; 1119 } 1120 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1121 } else 1122 ip6_mr_forward(net, mrt, skb, c); 1123 } 1124 } 1125 1126 /* 1127 * Bounce a cache query up to pim6sd and netlink. 1128 * 1129 * Called under mrt_lock. 1130 */ 1131 1132 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt, 1133 mifi_t mifi, int assert) 1134 { 1135 struct sk_buff *skb; 1136 struct mrt6msg *msg; 1137 int ret; 1138 1139 #ifdef CONFIG_IPV6_PIMSM_V2 1140 if (assert == MRT6MSG_WHOLEPKT) 1141 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt) 1142 +sizeof(*msg)); 1143 else 1144 #endif 1145 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC); 1146 1147 if (!skb) 1148 return -ENOBUFS; 1149 1150 /* I suppose that internal messages 1151 * do not require checksums */ 1152 1153 skb->ip_summed = CHECKSUM_UNNECESSARY; 1154 1155 #ifdef CONFIG_IPV6_PIMSM_V2 1156 if (assert == MRT6MSG_WHOLEPKT) { 1157 /* Ugly, but we have no choice with this interface. 1158 Duplicate old header, fix length etc. 1159 And all this only to mangle msg->im6_msgtype and 1160 to set msg->im6_mbz to "mbz" :-) 1161 */ 1162 skb_push(skb, -skb_network_offset(pkt)); 1163 1164 skb_push(skb, sizeof(*msg)); 1165 skb_reset_transport_header(skb); 1166 msg = (struct mrt6msg *)skb_transport_header(skb); 1167 msg->im6_mbz = 0; 1168 msg->im6_msgtype = MRT6MSG_WHOLEPKT; 1169 msg->im6_mif = mrt->mroute_reg_vif_num; 1170 msg->im6_pad = 0; 1171 msg->im6_src = ipv6_hdr(pkt)->saddr; 1172 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1173 1174 skb->ip_summed = CHECKSUM_UNNECESSARY; 1175 } else 1176 #endif 1177 { 1178 /* 1179 * Copy the IP header 1180 */ 1181 1182 skb_put(skb, sizeof(struct ipv6hdr)); 1183 skb_reset_network_header(skb); 1184 skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr)); 1185 1186 /* 1187 * Add our header 1188 */ 1189 skb_put(skb, sizeof(*msg)); 1190 skb_reset_transport_header(skb); 1191 msg = (struct mrt6msg *)skb_transport_header(skb); 1192 1193 msg->im6_mbz = 0; 1194 msg->im6_msgtype = assert; 1195 msg->im6_mif = mifi; 1196 msg->im6_pad = 0; 1197 msg->im6_src = ipv6_hdr(pkt)->saddr; 1198 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1199 1200 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1201 skb->ip_summed = CHECKSUM_UNNECESSARY; 1202 } 1203 1204 if (!mrt->mroute6_sk) { 1205 kfree_skb(skb); 1206 return -EINVAL; 1207 } 1208 1209 mrt6msg_netlink_event(mrt, skb); 1210 1211 /* 1212 * Deliver to user space multicast routing algorithms 1213 */ 1214 ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb); 1215 if (ret < 0) { 1216 net_warn_ratelimited("mroute6: pending queue full, dropping entries\n"); 1217 kfree_skb(skb); 1218 } 1219 1220 return ret; 1221 } 1222 1223 /* 1224 * Queue a packet for resolution. It gets locked cache entry! 1225 */ 1226 1227 static int 1228 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb) 1229 { 1230 bool found = false; 1231 int err; 1232 struct mfc6_cache *c; 1233 1234 spin_lock_bh(&mfc_unres_lock); 1235 list_for_each_entry(c, &mrt->mfc6_unres_queue, list) { 1236 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) && 1237 ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) { 1238 found = true; 1239 break; 1240 } 1241 } 1242 1243 if (!found) { 1244 /* 1245 * Create a new entry if allowable 1246 */ 1247 1248 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1249 (c = ip6mr_cache_alloc_unres()) == NULL) { 1250 spin_unlock_bh(&mfc_unres_lock); 1251 1252 kfree_skb(skb); 1253 return -ENOBUFS; 1254 } 1255 1256 /* 1257 * Fill in the new cache entry 1258 */ 1259 c->mf6c_parent = -1; 1260 c->mf6c_origin = ipv6_hdr(skb)->saddr; 1261 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr; 1262 1263 /* 1264 * Reflect first query at pim6sd 1265 */ 1266 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE); 1267 if (err < 0) { 1268 /* If the report failed throw the cache entry 1269 out - Brad Parker 1270 */ 1271 spin_unlock_bh(&mfc_unres_lock); 1272 1273 ip6mr_cache_free(c); 1274 kfree_skb(skb); 1275 return err; 1276 } 1277 1278 atomic_inc(&mrt->cache_resolve_queue_len); 1279 list_add(&c->list, &mrt->mfc6_unres_queue); 1280 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1281 1282 ipmr_do_expire_process(mrt); 1283 } 1284 1285 /* 1286 * See if we can append the packet 1287 */ 1288 if (c->mfc_un.unres.unresolved.qlen > 3) { 1289 kfree_skb(skb); 1290 err = -ENOBUFS; 1291 } else { 1292 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1293 err = 0; 1294 } 1295 1296 spin_unlock_bh(&mfc_unres_lock); 1297 return err; 1298 } 1299 1300 /* 1301 * MFC6 cache manipulation by user space 1302 */ 1303 1304 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc, 1305 int parent) 1306 { 1307 int line; 1308 struct mfc6_cache *c, *next; 1309 1310 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); 1311 1312 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) { 1313 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && 1314 ipv6_addr_equal(&c->mf6c_mcastgrp, 1315 &mfc->mf6cc_mcastgrp.sin6_addr) && 1316 (parent == -1 || parent == c->mf6c_parent)) { 1317 write_lock_bh(&mrt_lock); 1318 list_del(&c->list); 1319 write_unlock_bh(&mrt_lock); 1320 1321 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1322 ip6mr_cache_free(c); 1323 return 0; 1324 } 1325 } 1326 return -ENOENT; 1327 } 1328 1329 static int ip6mr_device_event(struct notifier_block *this, 1330 unsigned long event, void *ptr) 1331 { 1332 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1333 struct net *net = dev_net(dev); 1334 struct mr6_table *mrt; 1335 struct mif_device *v; 1336 int ct; 1337 1338 if (event != NETDEV_UNREGISTER) 1339 return NOTIFY_DONE; 1340 1341 ip6mr_for_each_table(mrt, net) { 1342 v = &mrt->vif6_table[0]; 1343 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1344 if (v->dev == dev) 1345 mif6_delete(mrt, ct, 1, NULL); 1346 } 1347 } 1348 1349 return NOTIFY_DONE; 1350 } 1351 1352 static struct notifier_block ip6_mr_notifier = { 1353 .notifier_call = ip6mr_device_event 1354 }; 1355 1356 /* 1357 * Setup for IP multicast routing 1358 */ 1359 1360 static int __net_init ip6mr_net_init(struct net *net) 1361 { 1362 int err; 1363 1364 err = ip6mr_rules_init(net); 1365 if (err < 0) 1366 goto fail; 1367 1368 #ifdef CONFIG_PROC_FS 1369 err = -ENOMEM; 1370 if (!proc_create("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_fops)) 1371 goto proc_vif_fail; 1372 if (!proc_create("ip6_mr_cache", 0, net->proc_net, &ip6mr_mfc_fops)) 1373 goto proc_cache_fail; 1374 #endif 1375 1376 return 0; 1377 1378 #ifdef CONFIG_PROC_FS 1379 proc_cache_fail: 1380 remove_proc_entry("ip6_mr_vif", net->proc_net); 1381 proc_vif_fail: 1382 ip6mr_rules_exit(net); 1383 #endif 1384 fail: 1385 return err; 1386 } 1387 1388 static void __net_exit ip6mr_net_exit(struct net *net) 1389 { 1390 #ifdef CONFIG_PROC_FS 1391 remove_proc_entry("ip6_mr_cache", net->proc_net); 1392 remove_proc_entry("ip6_mr_vif", net->proc_net); 1393 #endif 1394 ip6mr_rules_exit(net); 1395 } 1396 1397 static struct pernet_operations ip6mr_net_ops = { 1398 .init = ip6mr_net_init, 1399 .exit = ip6mr_net_exit, 1400 }; 1401 1402 int __init ip6_mr_init(void) 1403 { 1404 int err; 1405 1406 mrt_cachep = kmem_cache_create("ip6_mrt_cache", 1407 sizeof(struct mfc6_cache), 1408 0, SLAB_HWCACHE_ALIGN, 1409 NULL); 1410 if (!mrt_cachep) 1411 return -ENOMEM; 1412 1413 err = register_pernet_subsys(&ip6mr_net_ops); 1414 if (err) 1415 goto reg_pernet_fail; 1416 1417 err = register_netdevice_notifier(&ip6_mr_notifier); 1418 if (err) 1419 goto reg_notif_fail; 1420 #ifdef CONFIG_IPV6_PIMSM_V2 1421 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) { 1422 pr_err("%s: can't add PIM protocol\n", __func__); 1423 err = -EAGAIN; 1424 goto add_proto_fail; 1425 } 1426 #endif 1427 err = rtnl_register_module(THIS_MODULE, RTNL_FAMILY_IP6MR, RTM_GETROUTE, 1428 NULL, ip6mr_rtm_dumproute, 0); 1429 if (err == 0) 1430 return 0; 1431 1432 #ifdef CONFIG_IPV6_PIMSM_V2 1433 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); 1434 add_proto_fail: 1435 unregister_netdevice_notifier(&ip6_mr_notifier); 1436 #endif 1437 reg_notif_fail: 1438 unregister_pernet_subsys(&ip6mr_net_ops); 1439 reg_pernet_fail: 1440 kmem_cache_destroy(mrt_cachep); 1441 return err; 1442 } 1443 1444 void ip6_mr_cleanup(void) 1445 { 1446 rtnl_unregister(RTNL_FAMILY_IP6MR, RTM_GETROUTE); 1447 #ifdef CONFIG_IPV6_PIMSM_V2 1448 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); 1449 #endif 1450 unregister_netdevice_notifier(&ip6_mr_notifier); 1451 unregister_pernet_subsys(&ip6mr_net_ops); 1452 kmem_cache_destroy(mrt_cachep); 1453 } 1454 1455 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt, 1456 struct mf6cctl *mfc, int mrtsock, int parent) 1457 { 1458 bool found = false; 1459 int line; 1460 struct mfc6_cache *uc, *c; 1461 unsigned char ttls[MAXMIFS]; 1462 int i; 1463 1464 if (mfc->mf6cc_parent >= MAXMIFS) 1465 return -ENFILE; 1466 1467 memset(ttls, 255, MAXMIFS); 1468 for (i = 0; i < MAXMIFS; i++) { 1469 if (IF_ISSET(i, &mfc->mf6cc_ifset)) 1470 ttls[i] = 1; 1471 1472 } 1473 1474 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); 1475 1476 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) { 1477 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && 1478 ipv6_addr_equal(&c->mf6c_mcastgrp, 1479 &mfc->mf6cc_mcastgrp.sin6_addr) && 1480 (parent == -1 || parent == mfc->mf6cc_parent)) { 1481 found = true; 1482 break; 1483 } 1484 } 1485 1486 if (found) { 1487 write_lock_bh(&mrt_lock); 1488 c->mf6c_parent = mfc->mf6cc_parent; 1489 ip6mr_update_thresholds(mrt, c, ttls); 1490 if (!mrtsock) 1491 c->mfc_flags |= MFC_STATIC; 1492 write_unlock_bh(&mrt_lock); 1493 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1494 return 0; 1495 } 1496 1497 if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) && 1498 !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr)) 1499 return -EINVAL; 1500 1501 c = ip6mr_cache_alloc(); 1502 if (!c) 1503 return -ENOMEM; 1504 1505 c->mf6c_origin = mfc->mf6cc_origin.sin6_addr; 1506 c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr; 1507 c->mf6c_parent = mfc->mf6cc_parent; 1508 ip6mr_update_thresholds(mrt, c, ttls); 1509 if (!mrtsock) 1510 c->mfc_flags |= MFC_STATIC; 1511 1512 write_lock_bh(&mrt_lock); 1513 list_add(&c->list, &mrt->mfc6_cache_array[line]); 1514 write_unlock_bh(&mrt_lock); 1515 1516 /* 1517 * Check to see if we resolved a queued list. If so we 1518 * need to send on the frames and tidy up. 1519 */ 1520 found = false; 1521 spin_lock_bh(&mfc_unres_lock); 1522 list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) { 1523 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) && 1524 ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) { 1525 list_del(&uc->list); 1526 atomic_dec(&mrt->cache_resolve_queue_len); 1527 found = true; 1528 break; 1529 } 1530 } 1531 if (list_empty(&mrt->mfc6_unres_queue)) 1532 del_timer(&mrt->ipmr_expire_timer); 1533 spin_unlock_bh(&mfc_unres_lock); 1534 1535 if (found) { 1536 ip6mr_cache_resolve(net, mrt, uc, c); 1537 ip6mr_cache_free(uc); 1538 } 1539 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1540 return 0; 1541 } 1542 1543 /* 1544 * Close the multicast socket, and clear the vif tables etc 1545 */ 1546 1547 static void mroute_clean_tables(struct mr6_table *mrt, bool all) 1548 { 1549 int i; 1550 LIST_HEAD(list); 1551 struct mfc6_cache *c, *next; 1552 1553 /* 1554 * Shut down all active vif entries 1555 */ 1556 for (i = 0; i < mrt->maxvif; i++) { 1557 if (!all && (mrt->vif6_table[i].flags & VIFF_STATIC)) 1558 continue; 1559 mif6_delete(mrt, i, 0, &list); 1560 } 1561 unregister_netdevice_many(&list); 1562 1563 /* 1564 * Wipe the cache 1565 */ 1566 for (i = 0; i < MFC6_LINES; i++) { 1567 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) { 1568 if (!all && (c->mfc_flags & MFC_STATIC)) 1569 continue; 1570 write_lock_bh(&mrt_lock); 1571 list_del(&c->list); 1572 write_unlock_bh(&mrt_lock); 1573 1574 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1575 ip6mr_cache_free(c); 1576 } 1577 } 1578 1579 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1580 spin_lock_bh(&mfc_unres_lock); 1581 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) { 1582 list_del(&c->list); 1583 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1584 ip6mr_destroy_unres(mrt, c); 1585 } 1586 spin_unlock_bh(&mfc_unres_lock); 1587 } 1588 } 1589 1590 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk) 1591 { 1592 int err = 0; 1593 struct net *net = sock_net(sk); 1594 1595 rtnl_lock(); 1596 write_lock_bh(&mrt_lock); 1597 if (likely(mrt->mroute6_sk == NULL)) { 1598 mrt->mroute6_sk = sk; 1599 net->ipv6.devconf_all->mc_forwarding++; 1600 } else { 1601 err = -EADDRINUSE; 1602 } 1603 write_unlock_bh(&mrt_lock); 1604 1605 if (!err) 1606 inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, 1607 NETCONFA_MC_FORWARDING, 1608 NETCONFA_IFINDEX_ALL, 1609 net->ipv6.devconf_all); 1610 rtnl_unlock(); 1611 1612 return err; 1613 } 1614 1615 int ip6mr_sk_done(struct sock *sk) 1616 { 1617 int err = -EACCES; 1618 struct net *net = sock_net(sk); 1619 struct mr6_table *mrt; 1620 1621 if (sk->sk_type != SOCK_RAW || 1622 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1623 return err; 1624 1625 rtnl_lock(); 1626 ip6mr_for_each_table(mrt, net) { 1627 if (sk == mrt->mroute6_sk) { 1628 write_lock_bh(&mrt_lock); 1629 mrt->mroute6_sk = NULL; 1630 net->ipv6.devconf_all->mc_forwarding--; 1631 write_unlock_bh(&mrt_lock); 1632 inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, 1633 NETCONFA_MC_FORWARDING, 1634 NETCONFA_IFINDEX_ALL, 1635 net->ipv6.devconf_all); 1636 1637 mroute_clean_tables(mrt, false); 1638 err = 0; 1639 break; 1640 } 1641 } 1642 rtnl_unlock(); 1643 1644 return err; 1645 } 1646 1647 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb) 1648 { 1649 struct mr6_table *mrt; 1650 struct flowi6 fl6 = { 1651 .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 1652 .flowi6_oif = skb->dev->ifindex, 1653 .flowi6_mark = skb->mark, 1654 }; 1655 1656 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 1657 return NULL; 1658 1659 return mrt->mroute6_sk; 1660 } 1661 1662 /* 1663 * Socket options and virtual interface manipulation. The whole 1664 * virtual interface system is a complete heap, but unfortunately 1665 * that's how BSD mrouted happens to think. Maybe one day with a proper 1666 * MOSPF/PIM router set up we can clean this up. 1667 */ 1668 1669 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1670 { 1671 int ret, parent = 0; 1672 struct mif6ctl vif; 1673 struct mf6cctl mfc; 1674 mifi_t mifi; 1675 struct net *net = sock_net(sk); 1676 struct mr6_table *mrt; 1677 1678 if (sk->sk_type != SOCK_RAW || 1679 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1680 return -EOPNOTSUPP; 1681 1682 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1683 if (!mrt) 1684 return -ENOENT; 1685 1686 if (optname != MRT6_INIT) { 1687 if (sk != mrt->mroute6_sk && !ns_capable(net->user_ns, CAP_NET_ADMIN)) 1688 return -EACCES; 1689 } 1690 1691 switch (optname) { 1692 case MRT6_INIT: 1693 if (optlen < sizeof(int)) 1694 return -EINVAL; 1695 1696 return ip6mr_sk_init(mrt, sk); 1697 1698 case MRT6_DONE: 1699 return ip6mr_sk_done(sk); 1700 1701 case MRT6_ADD_MIF: 1702 if (optlen < sizeof(vif)) 1703 return -EINVAL; 1704 if (copy_from_user(&vif, optval, sizeof(vif))) 1705 return -EFAULT; 1706 if (vif.mif6c_mifi >= MAXMIFS) 1707 return -ENFILE; 1708 rtnl_lock(); 1709 ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk); 1710 rtnl_unlock(); 1711 return ret; 1712 1713 case MRT6_DEL_MIF: 1714 if (optlen < sizeof(mifi_t)) 1715 return -EINVAL; 1716 if (copy_from_user(&mifi, optval, sizeof(mifi_t))) 1717 return -EFAULT; 1718 rtnl_lock(); 1719 ret = mif6_delete(mrt, mifi, 0, NULL); 1720 rtnl_unlock(); 1721 return ret; 1722 1723 /* 1724 * Manipulate the forwarding caches. These live 1725 * in a sort of kernel/user symbiosis. 1726 */ 1727 case MRT6_ADD_MFC: 1728 case MRT6_DEL_MFC: 1729 parent = -1; 1730 /* fall through */ 1731 case MRT6_ADD_MFC_PROXY: 1732 case MRT6_DEL_MFC_PROXY: 1733 if (optlen < sizeof(mfc)) 1734 return -EINVAL; 1735 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1736 return -EFAULT; 1737 if (parent == 0) 1738 parent = mfc.mf6cc_parent; 1739 rtnl_lock(); 1740 if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY) 1741 ret = ip6mr_mfc_delete(mrt, &mfc, parent); 1742 else 1743 ret = ip6mr_mfc_add(net, mrt, &mfc, 1744 sk == mrt->mroute6_sk, parent); 1745 rtnl_unlock(); 1746 return ret; 1747 1748 /* 1749 * Control PIM assert (to activate pim will activate assert) 1750 */ 1751 case MRT6_ASSERT: 1752 { 1753 int v; 1754 1755 if (optlen != sizeof(v)) 1756 return -EINVAL; 1757 if (get_user(v, (int __user *)optval)) 1758 return -EFAULT; 1759 mrt->mroute_do_assert = v; 1760 return 0; 1761 } 1762 1763 #ifdef CONFIG_IPV6_PIMSM_V2 1764 case MRT6_PIM: 1765 { 1766 int v; 1767 1768 if (optlen != sizeof(v)) 1769 return -EINVAL; 1770 if (get_user(v, (int __user *)optval)) 1771 return -EFAULT; 1772 v = !!v; 1773 rtnl_lock(); 1774 ret = 0; 1775 if (v != mrt->mroute_do_pim) { 1776 mrt->mroute_do_pim = v; 1777 mrt->mroute_do_assert = v; 1778 } 1779 rtnl_unlock(); 1780 return ret; 1781 } 1782 1783 #endif 1784 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 1785 case MRT6_TABLE: 1786 { 1787 u32 v; 1788 1789 if (optlen != sizeof(u32)) 1790 return -EINVAL; 1791 if (get_user(v, (u32 __user *)optval)) 1792 return -EFAULT; 1793 /* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */ 1794 if (v != RT_TABLE_DEFAULT && v >= 100000000) 1795 return -EINVAL; 1796 if (sk == mrt->mroute6_sk) 1797 return -EBUSY; 1798 1799 rtnl_lock(); 1800 ret = 0; 1801 if (!ip6mr_new_table(net, v)) 1802 ret = -ENOMEM; 1803 raw6_sk(sk)->ip6mr_table = v; 1804 rtnl_unlock(); 1805 return ret; 1806 } 1807 #endif 1808 /* 1809 * Spurious command, or MRT6_VERSION which you cannot 1810 * set. 1811 */ 1812 default: 1813 return -ENOPROTOOPT; 1814 } 1815 } 1816 1817 /* 1818 * Getsock opt support for the multicast routing system. 1819 */ 1820 1821 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, 1822 int __user *optlen) 1823 { 1824 int olr; 1825 int val; 1826 struct net *net = sock_net(sk); 1827 struct mr6_table *mrt; 1828 1829 if (sk->sk_type != SOCK_RAW || 1830 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1831 return -EOPNOTSUPP; 1832 1833 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1834 if (!mrt) 1835 return -ENOENT; 1836 1837 switch (optname) { 1838 case MRT6_VERSION: 1839 val = 0x0305; 1840 break; 1841 #ifdef CONFIG_IPV6_PIMSM_V2 1842 case MRT6_PIM: 1843 val = mrt->mroute_do_pim; 1844 break; 1845 #endif 1846 case MRT6_ASSERT: 1847 val = mrt->mroute_do_assert; 1848 break; 1849 default: 1850 return -ENOPROTOOPT; 1851 } 1852 1853 if (get_user(olr, optlen)) 1854 return -EFAULT; 1855 1856 olr = min_t(int, olr, sizeof(int)); 1857 if (olr < 0) 1858 return -EINVAL; 1859 1860 if (put_user(olr, optlen)) 1861 return -EFAULT; 1862 if (copy_to_user(optval, &val, olr)) 1863 return -EFAULT; 1864 return 0; 1865 } 1866 1867 /* 1868 * The IP multicast ioctl support routines. 1869 */ 1870 1871 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg) 1872 { 1873 struct sioc_sg_req6 sr; 1874 struct sioc_mif_req6 vr; 1875 struct mif_device *vif; 1876 struct mfc6_cache *c; 1877 struct net *net = sock_net(sk); 1878 struct mr6_table *mrt; 1879 1880 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1881 if (!mrt) 1882 return -ENOENT; 1883 1884 switch (cmd) { 1885 case SIOCGETMIFCNT_IN6: 1886 if (copy_from_user(&vr, arg, sizeof(vr))) 1887 return -EFAULT; 1888 if (vr.mifi >= mrt->maxvif) 1889 return -EINVAL; 1890 read_lock(&mrt_lock); 1891 vif = &mrt->vif6_table[vr.mifi]; 1892 if (MIF_EXISTS(mrt, vr.mifi)) { 1893 vr.icount = vif->pkt_in; 1894 vr.ocount = vif->pkt_out; 1895 vr.ibytes = vif->bytes_in; 1896 vr.obytes = vif->bytes_out; 1897 read_unlock(&mrt_lock); 1898 1899 if (copy_to_user(arg, &vr, sizeof(vr))) 1900 return -EFAULT; 1901 return 0; 1902 } 1903 read_unlock(&mrt_lock); 1904 return -EADDRNOTAVAIL; 1905 case SIOCGETSGCNT_IN6: 1906 if (copy_from_user(&sr, arg, sizeof(sr))) 1907 return -EFAULT; 1908 1909 read_lock(&mrt_lock); 1910 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1911 if (c) { 1912 sr.pktcnt = c->mfc_un.res.pkt; 1913 sr.bytecnt = c->mfc_un.res.bytes; 1914 sr.wrong_if = c->mfc_un.res.wrong_if; 1915 read_unlock(&mrt_lock); 1916 1917 if (copy_to_user(arg, &sr, sizeof(sr))) 1918 return -EFAULT; 1919 return 0; 1920 } 1921 read_unlock(&mrt_lock); 1922 return -EADDRNOTAVAIL; 1923 default: 1924 return -ENOIOCTLCMD; 1925 } 1926 } 1927 1928 #ifdef CONFIG_COMPAT 1929 struct compat_sioc_sg_req6 { 1930 struct sockaddr_in6 src; 1931 struct sockaddr_in6 grp; 1932 compat_ulong_t pktcnt; 1933 compat_ulong_t bytecnt; 1934 compat_ulong_t wrong_if; 1935 }; 1936 1937 struct compat_sioc_mif_req6 { 1938 mifi_t mifi; 1939 compat_ulong_t icount; 1940 compat_ulong_t ocount; 1941 compat_ulong_t ibytes; 1942 compat_ulong_t obytes; 1943 }; 1944 1945 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1946 { 1947 struct compat_sioc_sg_req6 sr; 1948 struct compat_sioc_mif_req6 vr; 1949 struct mif_device *vif; 1950 struct mfc6_cache *c; 1951 struct net *net = sock_net(sk); 1952 struct mr6_table *mrt; 1953 1954 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1955 if (!mrt) 1956 return -ENOENT; 1957 1958 switch (cmd) { 1959 case SIOCGETMIFCNT_IN6: 1960 if (copy_from_user(&vr, arg, sizeof(vr))) 1961 return -EFAULT; 1962 if (vr.mifi >= mrt->maxvif) 1963 return -EINVAL; 1964 read_lock(&mrt_lock); 1965 vif = &mrt->vif6_table[vr.mifi]; 1966 if (MIF_EXISTS(mrt, vr.mifi)) { 1967 vr.icount = vif->pkt_in; 1968 vr.ocount = vif->pkt_out; 1969 vr.ibytes = vif->bytes_in; 1970 vr.obytes = vif->bytes_out; 1971 read_unlock(&mrt_lock); 1972 1973 if (copy_to_user(arg, &vr, sizeof(vr))) 1974 return -EFAULT; 1975 return 0; 1976 } 1977 read_unlock(&mrt_lock); 1978 return -EADDRNOTAVAIL; 1979 case SIOCGETSGCNT_IN6: 1980 if (copy_from_user(&sr, arg, sizeof(sr))) 1981 return -EFAULT; 1982 1983 read_lock(&mrt_lock); 1984 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1985 if (c) { 1986 sr.pktcnt = c->mfc_un.res.pkt; 1987 sr.bytecnt = c->mfc_un.res.bytes; 1988 sr.wrong_if = c->mfc_un.res.wrong_if; 1989 read_unlock(&mrt_lock); 1990 1991 if (copy_to_user(arg, &sr, sizeof(sr))) 1992 return -EFAULT; 1993 return 0; 1994 } 1995 read_unlock(&mrt_lock); 1996 return -EADDRNOTAVAIL; 1997 default: 1998 return -ENOIOCTLCMD; 1999 } 2000 } 2001 #endif 2002 2003 static inline int ip6mr_forward2_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 2004 { 2005 __IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)), 2006 IPSTATS_MIB_OUTFORWDATAGRAMS); 2007 __IP6_ADD_STATS(net, ip6_dst_idev(skb_dst(skb)), 2008 IPSTATS_MIB_OUTOCTETS, skb->len); 2009 return dst_output(net, sk, skb); 2010 } 2011 2012 /* 2013 * Processing handlers for ip6mr_forward 2014 */ 2015 2016 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt, 2017 struct sk_buff *skb, struct mfc6_cache *c, int vifi) 2018 { 2019 struct ipv6hdr *ipv6h; 2020 struct mif_device *vif = &mrt->vif6_table[vifi]; 2021 struct net_device *dev; 2022 struct dst_entry *dst; 2023 struct flowi6 fl6; 2024 2025 if (!vif->dev) 2026 goto out_free; 2027 2028 #ifdef CONFIG_IPV6_PIMSM_V2 2029 if (vif->flags & MIFF_REGISTER) { 2030 vif->pkt_out++; 2031 vif->bytes_out += skb->len; 2032 vif->dev->stats.tx_bytes += skb->len; 2033 vif->dev->stats.tx_packets++; 2034 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT); 2035 goto out_free; 2036 } 2037 #endif 2038 2039 ipv6h = ipv6_hdr(skb); 2040 2041 fl6 = (struct flowi6) { 2042 .flowi6_oif = vif->link, 2043 .daddr = ipv6h->daddr, 2044 }; 2045 2046 dst = ip6_route_output(net, NULL, &fl6); 2047 if (dst->error) { 2048 dst_release(dst); 2049 goto out_free; 2050 } 2051 2052 skb_dst_drop(skb); 2053 skb_dst_set(skb, dst); 2054 2055 /* 2056 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 2057 * not only before forwarding, but after forwarding on all output 2058 * interfaces. It is clear, if mrouter runs a multicasting 2059 * program, it should receive packets not depending to what interface 2060 * program is joined. 2061 * If we will not make it, the program will have to join on all 2062 * interfaces. On the other hand, multihoming host (or router, but 2063 * not mrouter) cannot join to more than one interface - it will 2064 * result in receiving multiple packets. 2065 */ 2066 dev = vif->dev; 2067 skb->dev = dev; 2068 vif->pkt_out++; 2069 vif->bytes_out += skb->len; 2070 2071 /* We are about to write */ 2072 /* XXX: extension headers? */ 2073 if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev))) 2074 goto out_free; 2075 2076 ipv6h = ipv6_hdr(skb); 2077 ipv6h->hop_limit--; 2078 2079 IP6CB(skb)->flags |= IP6SKB_FORWARDED; 2080 2081 return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, 2082 net, NULL, skb, skb->dev, dev, 2083 ip6mr_forward2_finish); 2084 2085 out_free: 2086 kfree_skb(skb); 2087 return 0; 2088 } 2089 2090 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev) 2091 { 2092 int ct; 2093 2094 for (ct = mrt->maxvif - 1; ct >= 0; ct--) { 2095 if (mrt->vif6_table[ct].dev == dev) 2096 break; 2097 } 2098 return ct; 2099 } 2100 2101 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt, 2102 struct sk_buff *skb, struct mfc6_cache *cache) 2103 { 2104 int psend = -1; 2105 int vif, ct; 2106 int true_vifi = ip6mr_find_vif(mrt, skb->dev); 2107 2108 vif = cache->mf6c_parent; 2109 cache->mfc_un.res.pkt++; 2110 cache->mfc_un.res.bytes += skb->len; 2111 cache->mfc_un.res.lastuse = jiffies; 2112 2113 if (ipv6_addr_any(&cache->mf6c_origin) && true_vifi >= 0) { 2114 struct mfc6_cache *cache_proxy; 2115 2116 /* For an (*,G) entry, we only check that the incoming 2117 * interface is part of the static tree. 2118 */ 2119 cache_proxy = ip6mr_cache_find_any_parent(mrt, vif); 2120 if (cache_proxy && 2121 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 2122 goto forward; 2123 } 2124 2125 /* 2126 * Wrong interface: drop packet and (maybe) send PIM assert. 2127 */ 2128 if (mrt->vif6_table[vif].dev != skb->dev) { 2129 cache->mfc_un.res.wrong_if++; 2130 2131 if (true_vifi >= 0 && mrt->mroute_do_assert && 2132 /* pimsm uses asserts, when switching from RPT to SPT, 2133 so that we cannot check that packet arrived on an oif. 2134 It is bad, but otherwise we would need to move pretty 2135 large chunk of pimd to kernel. Ough... --ANK 2136 */ 2137 (mrt->mroute_do_pim || 2138 cache->mfc_un.res.ttls[true_vifi] < 255) && 2139 time_after(jiffies, 2140 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 2141 cache->mfc_un.res.last_assert = jiffies; 2142 ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF); 2143 } 2144 goto dont_forward; 2145 } 2146 2147 forward: 2148 mrt->vif6_table[vif].pkt_in++; 2149 mrt->vif6_table[vif].bytes_in += skb->len; 2150 2151 /* 2152 * Forward the frame 2153 */ 2154 if (ipv6_addr_any(&cache->mf6c_origin) && 2155 ipv6_addr_any(&cache->mf6c_mcastgrp)) { 2156 if (true_vifi >= 0 && 2157 true_vifi != cache->mf6c_parent && 2158 ipv6_hdr(skb)->hop_limit > 2159 cache->mfc_un.res.ttls[cache->mf6c_parent]) { 2160 /* It's an (*,*) entry and the packet is not coming from 2161 * the upstream: forward the packet to the upstream 2162 * only. 2163 */ 2164 psend = cache->mf6c_parent; 2165 goto last_forward; 2166 } 2167 goto dont_forward; 2168 } 2169 for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) { 2170 /* For (*,G) entry, don't forward to the incoming interface */ 2171 if ((!ipv6_addr_any(&cache->mf6c_origin) || ct != true_vifi) && 2172 ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) { 2173 if (psend != -1) { 2174 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2175 if (skb2) 2176 ip6mr_forward2(net, mrt, skb2, cache, psend); 2177 } 2178 psend = ct; 2179 } 2180 } 2181 last_forward: 2182 if (psend != -1) { 2183 ip6mr_forward2(net, mrt, skb, cache, psend); 2184 return; 2185 } 2186 2187 dont_forward: 2188 kfree_skb(skb); 2189 } 2190 2191 2192 /* 2193 * Multicast packets for forwarding arrive here 2194 */ 2195 2196 int ip6_mr_input(struct sk_buff *skb) 2197 { 2198 struct mfc6_cache *cache; 2199 struct net *net = dev_net(skb->dev); 2200 struct mr6_table *mrt; 2201 struct flowi6 fl6 = { 2202 .flowi6_iif = skb->dev->ifindex, 2203 .flowi6_mark = skb->mark, 2204 }; 2205 int err; 2206 2207 err = ip6mr_fib_lookup(net, &fl6, &mrt); 2208 if (err < 0) { 2209 kfree_skb(skb); 2210 return err; 2211 } 2212 2213 read_lock(&mrt_lock); 2214 cache = ip6mr_cache_find(mrt, 2215 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr); 2216 if (!cache) { 2217 int vif = ip6mr_find_vif(mrt, skb->dev); 2218 2219 if (vif >= 0) 2220 cache = ip6mr_cache_find_any(mrt, 2221 &ipv6_hdr(skb)->daddr, 2222 vif); 2223 } 2224 2225 /* 2226 * No usable cache entry 2227 */ 2228 if (!cache) { 2229 int vif; 2230 2231 vif = ip6mr_find_vif(mrt, skb->dev); 2232 if (vif >= 0) { 2233 int err = ip6mr_cache_unresolved(mrt, vif, skb); 2234 read_unlock(&mrt_lock); 2235 2236 return err; 2237 } 2238 read_unlock(&mrt_lock); 2239 kfree_skb(skb); 2240 return -ENODEV; 2241 } 2242 2243 ip6_mr_forward(net, mrt, skb, cache); 2244 2245 read_unlock(&mrt_lock); 2246 2247 return 0; 2248 } 2249 2250 2251 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 2252 struct mfc6_cache *c, struct rtmsg *rtm) 2253 { 2254 struct rta_mfc_stats mfcs; 2255 struct nlattr *mp_attr; 2256 struct rtnexthop *nhp; 2257 unsigned long lastuse; 2258 int ct; 2259 2260 /* If cache is unresolved, don't try to parse IIF and OIF */ 2261 if (c->mf6c_parent >= MAXMIFS) { 2262 rtm->rtm_flags |= RTNH_F_UNRESOLVED; 2263 return -ENOENT; 2264 } 2265 2266 if (MIF_EXISTS(mrt, c->mf6c_parent) && 2267 nla_put_u32(skb, RTA_IIF, mrt->vif6_table[c->mf6c_parent].dev->ifindex) < 0) 2268 return -EMSGSIZE; 2269 mp_attr = nla_nest_start(skb, RTA_MULTIPATH); 2270 if (!mp_attr) 2271 return -EMSGSIZE; 2272 2273 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2274 if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2275 nhp = nla_reserve_nohdr(skb, sizeof(*nhp)); 2276 if (!nhp) { 2277 nla_nest_cancel(skb, mp_attr); 2278 return -EMSGSIZE; 2279 } 2280 2281 nhp->rtnh_flags = 0; 2282 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2283 nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex; 2284 nhp->rtnh_len = sizeof(*nhp); 2285 } 2286 } 2287 2288 nla_nest_end(skb, mp_attr); 2289 2290 lastuse = READ_ONCE(c->mfc_un.res.lastuse); 2291 lastuse = time_after_eq(jiffies, lastuse) ? jiffies - lastuse : 0; 2292 2293 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2294 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2295 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2296 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) || 2297 nla_put_u64_64bit(skb, RTA_EXPIRES, jiffies_to_clock_t(lastuse), 2298 RTA_PAD)) 2299 return -EMSGSIZE; 2300 2301 rtm->rtm_type = RTN_MULTICAST; 2302 return 1; 2303 } 2304 2305 int ip6mr_get_route(struct net *net, struct sk_buff *skb, struct rtmsg *rtm, 2306 u32 portid) 2307 { 2308 int err; 2309 struct mr6_table *mrt; 2310 struct mfc6_cache *cache; 2311 struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); 2312 2313 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 2314 if (!mrt) 2315 return -ENOENT; 2316 2317 read_lock(&mrt_lock); 2318 cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr); 2319 if (!cache && skb->dev) { 2320 int vif = ip6mr_find_vif(mrt, skb->dev); 2321 2322 if (vif >= 0) 2323 cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr, 2324 vif); 2325 } 2326 2327 if (!cache) { 2328 struct sk_buff *skb2; 2329 struct ipv6hdr *iph; 2330 struct net_device *dev; 2331 int vif; 2332 2333 dev = skb->dev; 2334 if (!dev || (vif = ip6mr_find_vif(mrt, dev)) < 0) { 2335 read_unlock(&mrt_lock); 2336 return -ENODEV; 2337 } 2338 2339 /* really correct? */ 2340 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); 2341 if (!skb2) { 2342 read_unlock(&mrt_lock); 2343 return -ENOMEM; 2344 } 2345 2346 NETLINK_CB(skb2).portid = portid; 2347 skb_reset_transport_header(skb2); 2348 2349 skb_put(skb2, sizeof(struct ipv6hdr)); 2350 skb_reset_network_header(skb2); 2351 2352 iph = ipv6_hdr(skb2); 2353 iph->version = 0; 2354 iph->priority = 0; 2355 iph->flow_lbl[0] = 0; 2356 iph->flow_lbl[1] = 0; 2357 iph->flow_lbl[2] = 0; 2358 iph->payload_len = 0; 2359 iph->nexthdr = IPPROTO_NONE; 2360 iph->hop_limit = 0; 2361 iph->saddr = rt->rt6i_src.addr; 2362 iph->daddr = rt->rt6i_dst.addr; 2363 2364 err = ip6mr_cache_unresolved(mrt, vif, skb2); 2365 read_unlock(&mrt_lock); 2366 2367 return err; 2368 } 2369 2370 if (rtm->rtm_flags & RTM_F_NOTIFY) 2371 cache->mfc_flags |= MFC_NOTIFY; 2372 2373 err = __ip6mr_fill_mroute(mrt, skb, cache, rtm); 2374 read_unlock(&mrt_lock); 2375 return err; 2376 } 2377 2378 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 2379 u32 portid, u32 seq, struct mfc6_cache *c, int cmd, 2380 int flags) 2381 { 2382 struct nlmsghdr *nlh; 2383 struct rtmsg *rtm; 2384 int err; 2385 2386 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2387 if (!nlh) 2388 return -EMSGSIZE; 2389 2390 rtm = nlmsg_data(nlh); 2391 rtm->rtm_family = RTNL_FAMILY_IP6MR; 2392 rtm->rtm_dst_len = 128; 2393 rtm->rtm_src_len = 128; 2394 rtm->rtm_tos = 0; 2395 rtm->rtm_table = mrt->id; 2396 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2397 goto nla_put_failure; 2398 rtm->rtm_type = RTN_MULTICAST; 2399 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2400 if (c->mfc_flags & MFC_STATIC) 2401 rtm->rtm_protocol = RTPROT_STATIC; 2402 else 2403 rtm->rtm_protocol = RTPROT_MROUTED; 2404 rtm->rtm_flags = 0; 2405 2406 if (nla_put_in6_addr(skb, RTA_SRC, &c->mf6c_origin) || 2407 nla_put_in6_addr(skb, RTA_DST, &c->mf6c_mcastgrp)) 2408 goto nla_put_failure; 2409 err = __ip6mr_fill_mroute(mrt, skb, c, rtm); 2410 /* do not break the dump if cache is unresolved */ 2411 if (err < 0 && err != -ENOENT) 2412 goto nla_put_failure; 2413 2414 nlmsg_end(skb, nlh); 2415 return 0; 2416 2417 nla_put_failure: 2418 nlmsg_cancel(skb, nlh); 2419 return -EMSGSIZE; 2420 } 2421 2422 static int mr6_msgsize(bool unresolved, int maxvif) 2423 { 2424 size_t len = 2425 NLMSG_ALIGN(sizeof(struct rtmsg)) 2426 + nla_total_size(4) /* RTA_TABLE */ 2427 + nla_total_size(sizeof(struct in6_addr)) /* RTA_SRC */ 2428 + nla_total_size(sizeof(struct in6_addr)) /* RTA_DST */ 2429 ; 2430 2431 if (!unresolved) 2432 len = len 2433 + nla_total_size(4) /* RTA_IIF */ 2434 + nla_total_size(0) /* RTA_MULTIPATH */ 2435 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2436 /* RTA_MFC_STATS */ 2437 + nla_total_size_64bit(sizeof(struct rta_mfc_stats)) 2438 ; 2439 2440 return len; 2441 } 2442 2443 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc, 2444 int cmd) 2445 { 2446 struct net *net = read_pnet(&mrt->net); 2447 struct sk_buff *skb; 2448 int err = -ENOBUFS; 2449 2450 skb = nlmsg_new(mr6_msgsize(mfc->mf6c_parent >= MAXMIFS, mrt->maxvif), 2451 GFP_ATOMIC); 2452 if (!skb) 2453 goto errout; 2454 2455 err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2456 if (err < 0) 2457 goto errout; 2458 2459 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC); 2460 return; 2461 2462 errout: 2463 kfree_skb(skb); 2464 if (err < 0) 2465 rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err); 2466 } 2467 2468 static size_t mrt6msg_netlink_msgsize(size_t payloadlen) 2469 { 2470 size_t len = 2471 NLMSG_ALIGN(sizeof(struct rtgenmsg)) 2472 + nla_total_size(1) /* IP6MRA_CREPORT_MSGTYPE */ 2473 + nla_total_size(4) /* IP6MRA_CREPORT_MIF_ID */ 2474 /* IP6MRA_CREPORT_SRC_ADDR */ 2475 + nla_total_size(sizeof(struct in6_addr)) 2476 /* IP6MRA_CREPORT_DST_ADDR */ 2477 + nla_total_size(sizeof(struct in6_addr)) 2478 /* IP6MRA_CREPORT_PKT */ 2479 + nla_total_size(payloadlen) 2480 ; 2481 2482 return len; 2483 } 2484 2485 static void mrt6msg_netlink_event(struct mr6_table *mrt, struct sk_buff *pkt) 2486 { 2487 struct net *net = read_pnet(&mrt->net); 2488 struct nlmsghdr *nlh; 2489 struct rtgenmsg *rtgenm; 2490 struct mrt6msg *msg; 2491 struct sk_buff *skb; 2492 struct nlattr *nla; 2493 int payloadlen; 2494 2495 payloadlen = pkt->len - sizeof(struct mrt6msg); 2496 msg = (struct mrt6msg *)skb_transport_header(pkt); 2497 2498 skb = nlmsg_new(mrt6msg_netlink_msgsize(payloadlen), GFP_ATOMIC); 2499 if (!skb) 2500 goto errout; 2501 2502 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT, 2503 sizeof(struct rtgenmsg), 0); 2504 if (!nlh) 2505 goto errout; 2506 rtgenm = nlmsg_data(nlh); 2507 rtgenm->rtgen_family = RTNL_FAMILY_IP6MR; 2508 if (nla_put_u8(skb, IP6MRA_CREPORT_MSGTYPE, msg->im6_msgtype) || 2509 nla_put_u32(skb, IP6MRA_CREPORT_MIF_ID, msg->im6_mif) || 2510 nla_put_in6_addr(skb, IP6MRA_CREPORT_SRC_ADDR, 2511 &msg->im6_src) || 2512 nla_put_in6_addr(skb, IP6MRA_CREPORT_DST_ADDR, 2513 &msg->im6_dst)) 2514 goto nla_put_failure; 2515 2516 nla = nla_reserve(skb, IP6MRA_CREPORT_PKT, payloadlen); 2517 if (!nla || skb_copy_bits(pkt, sizeof(struct mrt6msg), 2518 nla_data(nla), payloadlen)) 2519 goto nla_put_failure; 2520 2521 nlmsg_end(skb, nlh); 2522 2523 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE_R, NULL, GFP_ATOMIC); 2524 return; 2525 2526 nla_put_failure: 2527 nlmsg_cancel(skb, nlh); 2528 errout: 2529 kfree_skb(skb); 2530 rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE_R, -ENOBUFS); 2531 } 2532 2533 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2534 { 2535 struct net *net = sock_net(skb->sk); 2536 struct mr6_table *mrt; 2537 struct mfc6_cache *mfc; 2538 unsigned int t = 0, s_t; 2539 unsigned int h = 0, s_h; 2540 unsigned int e = 0, s_e; 2541 2542 s_t = cb->args[0]; 2543 s_h = cb->args[1]; 2544 s_e = cb->args[2]; 2545 2546 read_lock(&mrt_lock); 2547 ip6mr_for_each_table(mrt, net) { 2548 if (t < s_t) 2549 goto next_table; 2550 if (t > s_t) 2551 s_h = 0; 2552 for (h = s_h; h < MFC6_LINES; h++) { 2553 list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) { 2554 if (e < s_e) 2555 goto next_entry; 2556 if (ip6mr_fill_mroute(mrt, skb, 2557 NETLINK_CB(cb->skb).portid, 2558 cb->nlh->nlmsg_seq, 2559 mfc, RTM_NEWROUTE, 2560 NLM_F_MULTI) < 0) 2561 goto done; 2562 next_entry: 2563 e++; 2564 } 2565 e = s_e = 0; 2566 } 2567 spin_lock_bh(&mfc_unres_lock); 2568 list_for_each_entry(mfc, &mrt->mfc6_unres_queue, list) { 2569 if (e < s_e) 2570 goto next_entry2; 2571 if (ip6mr_fill_mroute(mrt, skb, 2572 NETLINK_CB(cb->skb).portid, 2573 cb->nlh->nlmsg_seq, 2574 mfc, RTM_NEWROUTE, 2575 NLM_F_MULTI) < 0) { 2576 spin_unlock_bh(&mfc_unres_lock); 2577 goto done; 2578 } 2579 next_entry2: 2580 e++; 2581 } 2582 spin_unlock_bh(&mfc_unres_lock); 2583 e = s_e = 0; 2584 s_h = 0; 2585 next_table: 2586 t++; 2587 } 2588 done: 2589 read_unlock(&mrt_lock); 2590 2591 cb->args[2] = e; 2592 cb->args[1] = h; 2593 cb->args[0] = t; 2594 2595 return skb->len; 2596 } 2597