xref: /openbmc/linux/net/ipv6/ip6mr.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Linux IPv6 multicast routing support for BSD pim6sd
4  *	Based on net/ipv4/ipmr.c.
5  *
6  *	(c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr>
7  *		LSIIT Laboratory, Strasbourg, France
8  *	(c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com>
9  *		6WIND, Paris, France
10  *	Copyright (C)2007,2008 USAGI/WIDE Project
11  *		YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
12  */
13 
14 #include <linux/uaccess.h>
15 #include <linux/types.h>
16 #include <linux/sched.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/kernel.h>
20 #include <linux/fcntl.h>
21 #include <linux/stat.h>
22 #include <linux/socket.h>
23 #include <linux/inet.h>
24 #include <linux/netdevice.h>
25 #include <linux/inetdevice.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/compat.h>
30 #include <linux/rhashtable.h>
31 #include <net/protocol.h>
32 #include <linux/skbuff.h>
33 #include <net/raw.h>
34 #include <linux/notifier.h>
35 #include <linux/if_arp.h>
36 #include <net/checksum.h>
37 #include <net/netlink.h>
38 #include <net/fib_rules.h>
39 
40 #include <net/ipv6.h>
41 #include <net/ip6_route.h>
42 #include <linux/mroute6.h>
43 #include <linux/pim.h>
44 #include <net/addrconf.h>
45 #include <linux/netfilter_ipv6.h>
46 #include <linux/export.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/netconf.h>
49 #include <net/ip_tunnels.h>
50 
51 #include <linux/nospec.h>
52 
53 struct ip6mr_rule {
54 	struct fib_rule		common;
55 };
56 
57 struct ip6mr_result {
58 	struct mr_table	*mrt;
59 };
60 
61 /* Big lock, protecting vif table, mrt cache and mroute socket state.
62    Note that the changes are semaphored via rtnl_lock.
63  */
64 
65 static DEFINE_RWLOCK(mrt_lock);
66 
67 /* Multicast router control variables */
68 
69 /* Special spinlock for queue of unresolved entries */
70 static DEFINE_SPINLOCK(mfc_unres_lock);
71 
72 /* We return to original Alan's scheme. Hash table of resolved
73    entries is changed only in process context and protected
74    with weak lock mrt_lock. Queue of unresolved entries is protected
75    with strong spinlock mfc_unres_lock.
76 
77    In this case data path is free of exclusive locks at all.
78  */
79 
80 static struct kmem_cache *mrt_cachep __read_mostly;
81 
82 static struct mr_table *ip6mr_new_table(struct net *net, u32 id);
83 static void ip6mr_free_table(struct mr_table *mrt);
84 
85 static void ip6_mr_forward(struct net *net, struct mr_table *mrt,
86 			   struct net_device *dev, struct sk_buff *skb,
87 			   struct mfc6_cache *cache);
88 static int ip6mr_cache_report(struct mr_table *mrt, struct sk_buff *pkt,
89 			      mifi_t mifi, int assert);
90 static void mr6_netlink_event(struct mr_table *mrt, struct mfc6_cache *mfc,
91 			      int cmd);
92 static void mrt6msg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
93 static int ip6mr_rtm_dumproute(struct sk_buff *skb,
94 			       struct netlink_callback *cb);
95 static void mroute_clean_tables(struct mr_table *mrt, int flags);
96 static void ipmr_expire_process(struct timer_list *t);
97 
98 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
99 #define ip6mr_for_each_table(mrt, net) \
100 	list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list, \
101 				lockdep_rtnl_is_held() || \
102 				list_empty(&net->ipv6.mr6_tables))
103 
104 static struct mr_table *ip6mr_mr_table_iter(struct net *net,
105 					    struct mr_table *mrt)
106 {
107 	struct mr_table *ret;
108 
109 	if (!mrt)
110 		ret = list_entry_rcu(net->ipv6.mr6_tables.next,
111 				     struct mr_table, list);
112 	else
113 		ret = list_entry_rcu(mrt->list.next,
114 				     struct mr_table, list);
115 
116 	if (&ret->list == &net->ipv6.mr6_tables)
117 		return NULL;
118 	return ret;
119 }
120 
121 static struct mr_table *ip6mr_get_table(struct net *net, u32 id)
122 {
123 	struct mr_table *mrt;
124 
125 	ip6mr_for_each_table(mrt, net) {
126 		if (mrt->id == id)
127 			return mrt;
128 	}
129 	return NULL;
130 }
131 
132 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
133 			    struct mr_table **mrt)
134 {
135 	int err;
136 	struct ip6mr_result res;
137 	struct fib_lookup_arg arg = {
138 		.result = &res,
139 		.flags = FIB_LOOKUP_NOREF,
140 	};
141 
142 	/* update flow if oif or iif point to device enslaved to l3mdev */
143 	l3mdev_update_flow(net, flowi6_to_flowi(flp6));
144 
145 	err = fib_rules_lookup(net->ipv6.mr6_rules_ops,
146 			       flowi6_to_flowi(flp6), 0, &arg);
147 	if (err < 0)
148 		return err;
149 	*mrt = res.mrt;
150 	return 0;
151 }
152 
153 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp,
154 			     int flags, struct fib_lookup_arg *arg)
155 {
156 	struct ip6mr_result *res = arg->result;
157 	struct mr_table *mrt;
158 
159 	switch (rule->action) {
160 	case FR_ACT_TO_TBL:
161 		break;
162 	case FR_ACT_UNREACHABLE:
163 		return -ENETUNREACH;
164 	case FR_ACT_PROHIBIT:
165 		return -EACCES;
166 	case FR_ACT_BLACKHOLE:
167 	default:
168 		return -EINVAL;
169 	}
170 
171 	arg->table = fib_rule_get_table(rule, arg);
172 
173 	mrt = ip6mr_get_table(rule->fr_net, arg->table);
174 	if (!mrt)
175 		return -EAGAIN;
176 	res->mrt = mrt;
177 	return 0;
178 }
179 
180 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags)
181 {
182 	return 1;
183 }
184 
185 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
186 				struct fib_rule_hdr *frh, struct nlattr **tb,
187 				struct netlink_ext_ack *extack)
188 {
189 	return 0;
190 }
191 
192 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
193 			      struct nlattr **tb)
194 {
195 	return 1;
196 }
197 
198 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
199 			   struct fib_rule_hdr *frh)
200 {
201 	frh->dst_len = 0;
202 	frh->src_len = 0;
203 	frh->tos     = 0;
204 	return 0;
205 }
206 
207 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = {
208 	.family		= RTNL_FAMILY_IP6MR,
209 	.rule_size	= sizeof(struct ip6mr_rule),
210 	.addr_size	= sizeof(struct in6_addr),
211 	.action		= ip6mr_rule_action,
212 	.match		= ip6mr_rule_match,
213 	.configure	= ip6mr_rule_configure,
214 	.compare	= ip6mr_rule_compare,
215 	.fill		= ip6mr_rule_fill,
216 	.nlgroup	= RTNLGRP_IPV6_RULE,
217 	.owner		= THIS_MODULE,
218 };
219 
220 static int __net_init ip6mr_rules_init(struct net *net)
221 {
222 	struct fib_rules_ops *ops;
223 	struct mr_table *mrt;
224 	int err;
225 
226 	ops = fib_rules_register(&ip6mr_rules_ops_template, net);
227 	if (IS_ERR(ops))
228 		return PTR_ERR(ops);
229 
230 	INIT_LIST_HEAD(&net->ipv6.mr6_tables);
231 
232 	mrt = ip6mr_new_table(net, RT6_TABLE_DFLT);
233 	if (IS_ERR(mrt)) {
234 		err = PTR_ERR(mrt);
235 		goto err1;
236 	}
237 
238 	err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0);
239 	if (err < 0)
240 		goto err2;
241 
242 	net->ipv6.mr6_rules_ops = ops;
243 	return 0;
244 
245 err2:
246 	rtnl_lock();
247 	ip6mr_free_table(mrt);
248 	rtnl_unlock();
249 err1:
250 	fib_rules_unregister(ops);
251 	return err;
252 }
253 
254 static void __net_exit ip6mr_rules_exit(struct net *net)
255 {
256 	struct mr_table *mrt, *next;
257 
258 	ASSERT_RTNL();
259 	list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) {
260 		list_del(&mrt->list);
261 		ip6mr_free_table(mrt);
262 	}
263 	fib_rules_unregister(net->ipv6.mr6_rules_ops);
264 }
265 
266 static int ip6mr_rules_dump(struct net *net, struct notifier_block *nb,
267 			    struct netlink_ext_ack *extack)
268 {
269 	return fib_rules_dump(net, nb, RTNL_FAMILY_IP6MR, extack);
270 }
271 
272 static unsigned int ip6mr_rules_seq_read(struct net *net)
273 {
274 	return fib_rules_seq_read(net, RTNL_FAMILY_IP6MR);
275 }
276 
277 bool ip6mr_rule_default(const struct fib_rule *rule)
278 {
279 	return fib_rule_matchall(rule) && rule->action == FR_ACT_TO_TBL &&
280 	       rule->table == RT6_TABLE_DFLT && !rule->l3mdev;
281 }
282 EXPORT_SYMBOL(ip6mr_rule_default);
283 #else
284 #define ip6mr_for_each_table(mrt, net) \
285 	for (mrt = net->ipv6.mrt6; mrt; mrt = NULL)
286 
287 static struct mr_table *ip6mr_mr_table_iter(struct net *net,
288 					    struct mr_table *mrt)
289 {
290 	if (!mrt)
291 		return net->ipv6.mrt6;
292 	return NULL;
293 }
294 
295 static struct mr_table *ip6mr_get_table(struct net *net, u32 id)
296 {
297 	return net->ipv6.mrt6;
298 }
299 
300 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
301 			    struct mr_table **mrt)
302 {
303 	*mrt = net->ipv6.mrt6;
304 	return 0;
305 }
306 
307 static int __net_init ip6mr_rules_init(struct net *net)
308 {
309 	struct mr_table *mrt;
310 
311 	mrt = ip6mr_new_table(net, RT6_TABLE_DFLT);
312 	if (IS_ERR(mrt))
313 		return PTR_ERR(mrt);
314 	net->ipv6.mrt6 = mrt;
315 	return 0;
316 }
317 
318 static void __net_exit ip6mr_rules_exit(struct net *net)
319 {
320 	ASSERT_RTNL();
321 	ip6mr_free_table(net->ipv6.mrt6);
322 	net->ipv6.mrt6 = NULL;
323 }
324 
325 static int ip6mr_rules_dump(struct net *net, struct notifier_block *nb,
326 			    struct netlink_ext_ack *extack)
327 {
328 	return 0;
329 }
330 
331 static unsigned int ip6mr_rules_seq_read(struct net *net)
332 {
333 	return 0;
334 }
335 #endif
336 
337 static int ip6mr_hash_cmp(struct rhashtable_compare_arg *arg,
338 			  const void *ptr)
339 {
340 	const struct mfc6_cache_cmp_arg *cmparg = arg->key;
341 	struct mfc6_cache *c = (struct mfc6_cache *)ptr;
342 
343 	return !ipv6_addr_equal(&c->mf6c_mcastgrp, &cmparg->mf6c_mcastgrp) ||
344 	       !ipv6_addr_equal(&c->mf6c_origin, &cmparg->mf6c_origin);
345 }
346 
347 static const struct rhashtable_params ip6mr_rht_params = {
348 	.head_offset = offsetof(struct mr_mfc, mnode),
349 	.key_offset = offsetof(struct mfc6_cache, cmparg),
350 	.key_len = sizeof(struct mfc6_cache_cmp_arg),
351 	.nelem_hint = 3,
352 	.obj_cmpfn = ip6mr_hash_cmp,
353 	.automatic_shrinking = true,
354 };
355 
356 static void ip6mr_new_table_set(struct mr_table *mrt,
357 				struct net *net)
358 {
359 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
360 	list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables);
361 #endif
362 }
363 
364 static struct mfc6_cache_cmp_arg ip6mr_mr_table_ops_cmparg_any = {
365 	.mf6c_origin = IN6ADDR_ANY_INIT,
366 	.mf6c_mcastgrp = IN6ADDR_ANY_INIT,
367 };
368 
369 static struct mr_table_ops ip6mr_mr_table_ops = {
370 	.rht_params = &ip6mr_rht_params,
371 	.cmparg_any = &ip6mr_mr_table_ops_cmparg_any,
372 };
373 
374 static struct mr_table *ip6mr_new_table(struct net *net, u32 id)
375 {
376 	struct mr_table *mrt;
377 
378 	mrt = ip6mr_get_table(net, id);
379 	if (mrt)
380 		return mrt;
381 
382 	return mr_table_alloc(net, id, &ip6mr_mr_table_ops,
383 			      ipmr_expire_process, ip6mr_new_table_set);
384 }
385 
386 static void ip6mr_free_table(struct mr_table *mrt)
387 {
388 	del_timer_sync(&mrt->ipmr_expire_timer);
389 	mroute_clean_tables(mrt, MRT6_FLUSH_MIFS | MRT6_FLUSH_MIFS_STATIC |
390 				 MRT6_FLUSH_MFC | MRT6_FLUSH_MFC_STATIC);
391 	rhltable_destroy(&mrt->mfc_hash);
392 	kfree(mrt);
393 }
394 
395 #ifdef CONFIG_PROC_FS
396 /* The /proc interfaces to multicast routing
397  * /proc/ip6_mr_cache /proc/ip6_mr_vif
398  */
399 
400 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos)
401 	__acquires(mrt_lock)
402 {
403 	struct mr_vif_iter *iter = seq->private;
404 	struct net *net = seq_file_net(seq);
405 	struct mr_table *mrt;
406 
407 	mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
408 	if (!mrt)
409 		return ERR_PTR(-ENOENT);
410 
411 	iter->mrt = mrt;
412 
413 	read_lock(&mrt_lock);
414 	return mr_vif_seq_start(seq, pos);
415 }
416 
417 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v)
418 	__releases(mrt_lock)
419 {
420 	read_unlock(&mrt_lock);
421 }
422 
423 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v)
424 {
425 	struct mr_vif_iter *iter = seq->private;
426 	struct mr_table *mrt = iter->mrt;
427 
428 	if (v == SEQ_START_TOKEN) {
429 		seq_puts(seq,
430 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags\n");
431 	} else {
432 		const struct vif_device *vif = v;
433 		const char *name = vif->dev ? vif->dev->name : "none";
434 
435 		seq_printf(seq,
436 			   "%2td %-10s %8ld %7ld  %8ld %7ld %05X\n",
437 			   vif - mrt->vif_table,
438 			   name, vif->bytes_in, vif->pkt_in,
439 			   vif->bytes_out, vif->pkt_out,
440 			   vif->flags);
441 	}
442 	return 0;
443 }
444 
445 static const struct seq_operations ip6mr_vif_seq_ops = {
446 	.start = ip6mr_vif_seq_start,
447 	.next  = mr_vif_seq_next,
448 	.stop  = ip6mr_vif_seq_stop,
449 	.show  = ip6mr_vif_seq_show,
450 };
451 
452 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
453 {
454 	struct net *net = seq_file_net(seq);
455 	struct mr_table *mrt;
456 
457 	mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
458 	if (!mrt)
459 		return ERR_PTR(-ENOENT);
460 
461 	return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
462 }
463 
464 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
465 {
466 	int n;
467 
468 	if (v == SEQ_START_TOKEN) {
469 		seq_puts(seq,
470 			 "Group                            "
471 			 "Origin                           "
472 			 "Iif      Pkts  Bytes     Wrong  Oifs\n");
473 	} else {
474 		const struct mfc6_cache *mfc = v;
475 		const struct mr_mfc_iter *it = seq->private;
476 		struct mr_table *mrt = it->mrt;
477 
478 		seq_printf(seq, "%pI6 %pI6 %-3hd",
479 			   &mfc->mf6c_mcastgrp, &mfc->mf6c_origin,
480 			   mfc->_c.mfc_parent);
481 
482 		if (it->cache != &mrt->mfc_unres_queue) {
483 			seq_printf(seq, " %8lu %8lu %8lu",
484 				   mfc->_c.mfc_un.res.pkt,
485 				   mfc->_c.mfc_un.res.bytes,
486 				   mfc->_c.mfc_un.res.wrong_if);
487 			for (n = mfc->_c.mfc_un.res.minvif;
488 			     n < mfc->_c.mfc_un.res.maxvif; n++) {
489 				if (VIF_EXISTS(mrt, n) &&
490 				    mfc->_c.mfc_un.res.ttls[n] < 255)
491 					seq_printf(seq,
492 						   " %2d:%-3d", n,
493 						   mfc->_c.mfc_un.res.ttls[n]);
494 			}
495 		} else {
496 			/* unresolved mfc_caches don't contain
497 			 * pkt, bytes and wrong_if values
498 			 */
499 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
500 		}
501 		seq_putc(seq, '\n');
502 	}
503 	return 0;
504 }
505 
506 static const struct seq_operations ipmr_mfc_seq_ops = {
507 	.start = ipmr_mfc_seq_start,
508 	.next  = mr_mfc_seq_next,
509 	.stop  = mr_mfc_seq_stop,
510 	.show  = ipmr_mfc_seq_show,
511 };
512 #endif
513 
514 #ifdef CONFIG_IPV6_PIMSM_V2
515 
516 static int pim6_rcv(struct sk_buff *skb)
517 {
518 	struct pimreghdr *pim;
519 	struct ipv6hdr   *encap;
520 	struct net_device  *reg_dev = NULL;
521 	struct net *net = dev_net(skb->dev);
522 	struct mr_table *mrt;
523 	struct flowi6 fl6 = {
524 		.flowi6_iif	= skb->dev->ifindex,
525 		.flowi6_mark	= skb->mark,
526 	};
527 	int reg_vif_num;
528 
529 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
530 		goto drop;
531 
532 	pim = (struct pimreghdr *)skb_transport_header(skb);
533 	if (pim->type != ((PIM_VERSION << 4) | PIM_TYPE_REGISTER) ||
534 	    (pim->flags & PIM_NULL_REGISTER) ||
535 	    (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
536 			     sizeof(*pim), IPPROTO_PIM,
537 			     csum_partial((void *)pim, sizeof(*pim), 0)) &&
538 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
539 		goto drop;
540 
541 	/* check if the inner packet is destined to mcast group */
542 	encap = (struct ipv6hdr *)(skb_transport_header(skb) +
543 				   sizeof(*pim));
544 
545 	if (!ipv6_addr_is_multicast(&encap->daddr) ||
546 	    encap->payload_len == 0 ||
547 	    ntohs(encap->payload_len) + sizeof(*pim) > skb->len)
548 		goto drop;
549 
550 	if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
551 		goto drop;
552 	reg_vif_num = mrt->mroute_reg_vif_num;
553 
554 	read_lock(&mrt_lock);
555 	if (reg_vif_num >= 0)
556 		reg_dev = mrt->vif_table[reg_vif_num].dev;
557 	dev_hold(reg_dev);
558 	read_unlock(&mrt_lock);
559 
560 	if (!reg_dev)
561 		goto drop;
562 
563 	skb->mac_header = skb->network_header;
564 	skb_pull(skb, (u8 *)encap - skb->data);
565 	skb_reset_network_header(skb);
566 	skb->protocol = htons(ETH_P_IPV6);
567 	skb->ip_summed = CHECKSUM_NONE;
568 
569 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
570 
571 	netif_rx(skb);
572 
573 	dev_put(reg_dev);
574 	return 0;
575  drop:
576 	kfree_skb(skb);
577 	return 0;
578 }
579 
580 static const struct inet6_protocol pim6_protocol = {
581 	.handler	=	pim6_rcv,
582 };
583 
584 /* Service routines creating virtual interfaces: PIMREG */
585 
586 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb,
587 				      struct net_device *dev)
588 {
589 	struct net *net = dev_net(dev);
590 	struct mr_table *mrt;
591 	struct flowi6 fl6 = {
592 		.flowi6_oif	= dev->ifindex,
593 		.flowi6_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
594 		.flowi6_mark	= skb->mark,
595 	};
596 
597 	if (!pskb_inet_may_pull(skb))
598 		goto tx_err;
599 
600 	if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
601 		goto tx_err;
602 
603 	read_lock(&mrt_lock);
604 	dev->stats.tx_bytes += skb->len;
605 	dev->stats.tx_packets++;
606 	ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT);
607 	read_unlock(&mrt_lock);
608 	kfree_skb(skb);
609 	return NETDEV_TX_OK;
610 
611 tx_err:
612 	dev->stats.tx_errors++;
613 	kfree_skb(skb);
614 	return NETDEV_TX_OK;
615 }
616 
617 static int reg_vif_get_iflink(const struct net_device *dev)
618 {
619 	return 0;
620 }
621 
622 static const struct net_device_ops reg_vif_netdev_ops = {
623 	.ndo_start_xmit	= reg_vif_xmit,
624 	.ndo_get_iflink = reg_vif_get_iflink,
625 };
626 
627 static void reg_vif_setup(struct net_device *dev)
628 {
629 	dev->type		= ARPHRD_PIMREG;
630 	dev->mtu		= 1500 - sizeof(struct ipv6hdr) - 8;
631 	dev->flags		= IFF_NOARP;
632 	dev->netdev_ops		= &reg_vif_netdev_ops;
633 	dev->needs_free_netdev	= true;
634 	dev->features		|= NETIF_F_NETNS_LOCAL;
635 }
636 
637 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr_table *mrt)
638 {
639 	struct net_device *dev;
640 	char name[IFNAMSIZ];
641 
642 	if (mrt->id == RT6_TABLE_DFLT)
643 		sprintf(name, "pim6reg");
644 	else
645 		sprintf(name, "pim6reg%u", mrt->id);
646 
647 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
648 	if (!dev)
649 		return NULL;
650 
651 	dev_net_set(dev, net);
652 
653 	if (register_netdevice(dev)) {
654 		free_netdev(dev);
655 		return NULL;
656 	}
657 
658 	if (dev_open(dev, NULL))
659 		goto failure;
660 
661 	dev_hold(dev);
662 	return dev;
663 
664 failure:
665 	unregister_netdevice(dev);
666 	return NULL;
667 }
668 #endif
669 
670 static int call_ip6mr_vif_entry_notifiers(struct net *net,
671 					  enum fib_event_type event_type,
672 					  struct vif_device *vif,
673 					  mifi_t vif_index, u32 tb_id)
674 {
675 	return mr_call_vif_notifiers(net, RTNL_FAMILY_IP6MR, event_type,
676 				     vif, vif_index, tb_id,
677 				     &net->ipv6.ipmr_seq);
678 }
679 
680 static int call_ip6mr_mfc_entry_notifiers(struct net *net,
681 					  enum fib_event_type event_type,
682 					  struct mfc6_cache *mfc, u32 tb_id)
683 {
684 	return mr_call_mfc_notifiers(net, RTNL_FAMILY_IP6MR, event_type,
685 				     &mfc->_c, tb_id, &net->ipv6.ipmr_seq);
686 }
687 
688 /* Delete a VIF entry */
689 static int mif6_delete(struct mr_table *mrt, int vifi, int notify,
690 		       struct list_head *head)
691 {
692 	struct vif_device *v;
693 	struct net_device *dev;
694 	struct inet6_dev *in6_dev;
695 
696 	if (vifi < 0 || vifi >= mrt->maxvif)
697 		return -EADDRNOTAVAIL;
698 
699 	v = &mrt->vif_table[vifi];
700 
701 	if (VIF_EXISTS(mrt, vifi))
702 		call_ip6mr_vif_entry_notifiers(read_pnet(&mrt->net),
703 					       FIB_EVENT_VIF_DEL, v, vifi,
704 					       mrt->id);
705 
706 	write_lock_bh(&mrt_lock);
707 	dev = v->dev;
708 	v->dev = NULL;
709 
710 	if (!dev) {
711 		write_unlock_bh(&mrt_lock);
712 		return -EADDRNOTAVAIL;
713 	}
714 
715 #ifdef CONFIG_IPV6_PIMSM_V2
716 	if (vifi == mrt->mroute_reg_vif_num)
717 		mrt->mroute_reg_vif_num = -1;
718 #endif
719 
720 	if (vifi + 1 == mrt->maxvif) {
721 		int tmp;
722 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
723 			if (VIF_EXISTS(mrt, tmp))
724 				break;
725 		}
726 		mrt->maxvif = tmp + 1;
727 	}
728 
729 	write_unlock_bh(&mrt_lock);
730 
731 	dev_set_allmulti(dev, -1);
732 
733 	in6_dev = __in6_dev_get(dev);
734 	if (in6_dev) {
735 		atomic_dec(&in6_dev->cnf.mc_forwarding);
736 		inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
737 					     NETCONFA_MC_FORWARDING,
738 					     dev->ifindex, &in6_dev->cnf);
739 	}
740 
741 	if ((v->flags & MIFF_REGISTER) && !notify)
742 		unregister_netdevice_queue(dev, head);
743 
744 	dev_put_track(dev, &v->dev_tracker);
745 	return 0;
746 }
747 
748 static inline void ip6mr_cache_free_rcu(struct rcu_head *head)
749 {
750 	struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
751 
752 	kmem_cache_free(mrt_cachep, (struct mfc6_cache *)c);
753 }
754 
755 static inline void ip6mr_cache_free(struct mfc6_cache *c)
756 {
757 	call_rcu(&c->_c.rcu, ip6mr_cache_free_rcu);
758 }
759 
760 /* Destroy an unresolved cache entry, killing queued skbs
761    and reporting error to netlink readers.
762  */
763 
764 static void ip6mr_destroy_unres(struct mr_table *mrt, struct mfc6_cache *c)
765 {
766 	struct net *net = read_pnet(&mrt->net);
767 	struct sk_buff *skb;
768 
769 	atomic_dec(&mrt->cache_resolve_queue_len);
770 
771 	while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved)) != NULL) {
772 		if (ipv6_hdr(skb)->version == 0) {
773 			struct nlmsghdr *nlh = skb_pull(skb,
774 							sizeof(struct ipv6hdr));
775 			nlh->nlmsg_type = NLMSG_ERROR;
776 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
777 			skb_trim(skb, nlh->nlmsg_len);
778 			((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT;
779 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
780 		} else
781 			kfree_skb(skb);
782 	}
783 
784 	ip6mr_cache_free(c);
785 }
786 
787 
788 /* Timer process for all the unresolved queue. */
789 
790 static void ipmr_do_expire_process(struct mr_table *mrt)
791 {
792 	unsigned long now = jiffies;
793 	unsigned long expires = 10 * HZ;
794 	struct mr_mfc *c, *next;
795 
796 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
797 		if (time_after(c->mfc_un.unres.expires, now)) {
798 			/* not yet... */
799 			unsigned long interval = c->mfc_un.unres.expires - now;
800 			if (interval < expires)
801 				expires = interval;
802 			continue;
803 		}
804 
805 		list_del(&c->list);
806 		mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE);
807 		ip6mr_destroy_unres(mrt, (struct mfc6_cache *)c);
808 	}
809 
810 	if (!list_empty(&mrt->mfc_unres_queue))
811 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
812 }
813 
814 static void ipmr_expire_process(struct timer_list *t)
815 {
816 	struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
817 
818 	if (!spin_trylock(&mfc_unres_lock)) {
819 		mod_timer(&mrt->ipmr_expire_timer, jiffies + 1);
820 		return;
821 	}
822 
823 	if (!list_empty(&mrt->mfc_unres_queue))
824 		ipmr_do_expire_process(mrt);
825 
826 	spin_unlock(&mfc_unres_lock);
827 }
828 
829 /* Fill oifs list. It is called under write locked mrt_lock. */
830 
831 static void ip6mr_update_thresholds(struct mr_table *mrt,
832 				    struct mr_mfc *cache,
833 				    unsigned char *ttls)
834 {
835 	int vifi;
836 
837 	cache->mfc_un.res.minvif = MAXMIFS;
838 	cache->mfc_un.res.maxvif = 0;
839 	memset(cache->mfc_un.res.ttls, 255, MAXMIFS);
840 
841 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
842 		if (VIF_EXISTS(mrt, vifi) &&
843 		    ttls[vifi] && ttls[vifi] < 255) {
844 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
845 			if (cache->mfc_un.res.minvif > vifi)
846 				cache->mfc_un.res.minvif = vifi;
847 			if (cache->mfc_un.res.maxvif <= vifi)
848 				cache->mfc_un.res.maxvif = vifi + 1;
849 		}
850 	}
851 	cache->mfc_un.res.lastuse = jiffies;
852 }
853 
854 static int mif6_add(struct net *net, struct mr_table *mrt,
855 		    struct mif6ctl *vifc, int mrtsock)
856 {
857 	int vifi = vifc->mif6c_mifi;
858 	struct vif_device *v = &mrt->vif_table[vifi];
859 	struct net_device *dev;
860 	struct inet6_dev *in6_dev;
861 	int err;
862 
863 	/* Is vif busy ? */
864 	if (VIF_EXISTS(mrt, vifi))
865 		return -EADDRINUSE;
866 
867 	switch (vifc->mif6c_flags) {
868 #ifdef CONFIG_IPV6_PIMSM_V2
869 	case MIFF_REGISTER:
870 		/*
871 		 * Special Purpose VIF in PIM
872 		 * All the packets will be sent to the daemon
873 		 */
874 		if (mrt->mroute_reg_vif_num >= 0)
875 			return -EADDRINUSE;
876 		dev = ip6mr_reg_vif(net, mrt);
877 		if (!dev)
878 			return -ENOBUFS;
879 		err = dev_set_allmulti(dev, 1);
880 		if (err) {
881 			unregister_netdevice(dev);
882 			dev_put(dev);
883 			return err;
884 		}
885 		break;
886 #endif
887 	case 0:
888 		dev = dev_get_by_index(net, vifc->mif6c_pifi);
889 		if (!dev)
890 			return -EADDRNOTAVAIL;
891 		err = dev_set_allmulti(dev, 1);
892 		if (err) {
893 			dev_put(dev);
894 			return err;
895 		}
896 		break;
897 	default:
898 		return -EINVAL;
899 	}
900 
901 	in6_dev = __in6_dev_get(dev);
902 	if (in6_dev) {
903 		atomic_inc(&in6_dev->cnf.mc_forwarding);
904 		inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
905 					     NETCONFA_MC_FORWARDING,
906 					     dev->ifindex, &in6_dev->cnf);
907 	}
908 
909 	/* Fill in the VIF structures */
910 	vif_device_init(v, dev, vifc->vifc_rate_limit, vifc->vifc_threshold,
911 			vifc->mif6c_flags | (!mrtsock ? VIFF_STATIC : 0),
912 			MIFF_REGISTER);
913 
914 	/* And finish update writing critical data */
915 	write_lock_bh(&mrt_lock);
916 	v->dev = dev;
917 	netdev_tracker_alloc(dev, &v->dev_tracker, GFP_ATOMIC);
918 #ifdef CONFIG_IPV6_PIMSM_V2
919 	if (v->flags & MIFF_REGISTER)
920 		mrt->mroute_reg_vif_num = vifi;
921 #endif
922 	if (vifi + 1 > mrt->maxvif)
923 		mrt->maxvif = vifi + 1;
924 	write_unlock_bh(&mrt_lock);
925 	call_ip6mr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD,
926 				       v, vifi, mrt->id);
927 	return 0;
928 }
929 
930 static struct mfc6_cache *ip6mr_cache_find(struct mr_table *mrt,
931 					   const struct in6_addr *origin,
932 					   const struct in6_addr *mcastgrp)
933 {
934 	struct mfc6_cache_cmp_arg arg = {
935 		.mf6c_origin = *origin,
936 		.mf6c_mcastgrp = *mcastgrp,
937 	};
938 
939 	return mr_mfc_find(mrt, &arg);
940 }
941 
942 /* Look for a (*,G) entry */
943 static struct mfc6_cache *ip6mr_cache_find_any(struct mr_table *mrt,
944 					       struct in6_addr *mcastgrp,
945 					       mifi_t mifi)
946 {
947 	struct mfc6_cache_cmp_arg arg = {
948 		.mf6c_origin = in6addr_any,
949 		.mf6c_mcastgrp = *mcastgrp,
950 	};
951 
952 	if (ipv6_addr_any(mcastgrp))
953 		return mr_mfc_find_any_parent(mrt, mifi);
954 	return mr_mfc_find_any(mrt, mifi, &arg);
955 }
956 
957 /* Look for a (S,G,iif) entry if parent != -1 */
958 static struct mfc6_cache *
959 ip6mr_cache_find_parent(struct mr_table *mrt,
960 			const struct in6_addr *origin,
961 			const struct in6_addr *mcastgrp,
962 			int parent)
963 {
964 	struct mfc6_cache_cmp_arg arg = {
965 		.mf6c_origin = *origin,
966 		.mf6c_mcastgrp = *mcastgrp,
967 	};
968 
969 	return mr_mfc_find_parent(mrt, &arg, parent);
970 }
971 
972 /* Allocate a multicast cache entry */
973 static struct mfc6_cache *ip6mr_cache_alloc(void)
974 {
975 	struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
976 	if (!c)
977 		return NULL;
978 	c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
979 	c->_c.mfc_un.res.minvif = MAXMIFS;
980 	c->_c.free = ip6mr_cache_free_rcu;
981 	refcount_set(&c->_c.mfc_un.res.refcount, 1);
982 	return c;
983 }
984 
985 static struct mfc6_cache *ip6mr_cache_alloc_unres(void)
986 {
987 	struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
988 	if (!c)
989 		return NULL;
990 	skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
991 	c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
992 	return c;
993 }
994 
995 /*
996  *	A cache entry has gone into a resolved state from queued
997  */
998 
999 static void ip6mr_cache_resolve(struct net *net, struct mr_table *mrt,
1000 				struct mfc6_cache *uc, struct mfc6_cache *c)
1001 {
1002 	struct sk_buff *skb;
1003 
1004 	/*
1005 	 *	Play the pending entries through our router
1006 	 */
1007 
1008 	while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1009 		if (ipv6_hdr(skb)->version == 0) {
1010 			struct nlmsghdr *nlh = skb_pull(skb,
1011 							sizeof(struct ipv6hdr));
1012 
1013 			if (mr_fill_mroute(mrt, skb, &c->_c,
1014 					   nlmsg_data(nlh)) > 0) {
1015 				nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh;
1016 			} else {
1017 				nlh->nlmsg_type = NLMSG_ERROR;
1018 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1019 				skb_trim(skb, nlh->nlmsg_len);
1020 				((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE;
1021 			}
1022 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1023 		} else
1024 			ip6_mr_forward(net, mrt, skb->dev, skb, c);
1025 	}
1026 }
1027 
1028 /*
1029  *	Bounce a cache query up to pim6sd and netlink.
1030  *
1031  *	Called under mrt_lock.
1032  */
1033 
1034 static int ip6mr_cache_report(struct mr_table *mrt, struct sk_buff *pkt,
1035 			      mifi_t mifi, int assert)
1036 {
1037 	struct sock *mroute6_sk;
1038 	struct sk_buff *skb;
1039 	struct mrt6msg *msg;
1040 	int ret;
1041 
1042 #ifdef CONFIG_IPV6_PIMSM_V2
1043 	if (assert == MRT6MSG_WHOLEPKT || assert == MRT6MSG_WRMIFWHOLE)
1044 		skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt)
1045 						+sizeof(*msg));
1046 	else
1047 #endif
1048 		skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC);
1049 
1050 	if (!skb)
1051 		return -ENOBUFS;
1052 
1053 	/* I suppose that internal messages
1054 	 * do not require checksums */
1055 
1056 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1057 
1058 #ifdef CONFIG_IPV6_PIMSM_V2
1059 	if (assert == MRT6MSG_WHOLEPKT || assert == MRT6MSG_WRMIFWHOLE) {
1060 		/* Ugly, but we have no choice with this interface.
1061 		   Duplicate old header, fix length etc.
1062 		   And all this only to mangle msg->im6_msgtype and
1063 		   to set msg->im6_mbz to "mbz" :-)
1064 		 */
1065 		skb_push(skb, -skb_network_offset(pkt));
1066 
1067 		skb_push(skb, sizeof(*msg));
1068 		skb_reset_transport_header(skb);
1069 		msg = (struct mrt6msg *)skb_transport_header(skb);
1070 		msg->im6_mbz = 0;
1071 		msg->im6_msgtype = assert;
1072 		if (assert == MRT6MSG_WRMIFWHOLE)
1073 			msg->im6_mif = mifi;
1074 		else
1075 			msg->im6_mif = mrt->mroute_reg_vif_num;
1076 		msg->im6_pad = 0;
1077 		msg->im6_src = ipv6_hdr(pkt)->saddr;
1078 		msg->im6_dst = ipv6_hdr(pkt)->daddr;
1079 
1080 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1081 	} else
1082 #endif
1083 	{
1084 	/*
1085 	 *	Copy the IP header
1086 	 */
1087 
1088 	skb_put(skb, sizeof(struct ipv6hdr));
1089 	skb_reset_network_header(skb);
1090 	skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr));
1091 
1092 	/*
1093 	 *	Add our header
1094 	 */
1095 	skb_put(skb, sizeof(*msg));
1096 	skb_reset_transport_header(skb);
1097 	msg = (struct mrt6msg *)skb_transport_header(skb);
1098 
1099 	msg->im6_mbz = 0;
1100 	msg->im6_msgtype = assert;
1101 	msg->im6_mif = mifi;
1102 	msg->im6_pad = 0;
1103 	msg->im6_src = ipv6_hdr(pkt)->saddr;
1104 	msg->im6_dst = ipv6_hdr(pkt)->daddr;
1105 
1106 	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1107 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1108 	}
1109 
1110 	rcu_read_lock();
1111 	mroute6_sk = rcu_dereference(mrt->mroute_sk);
1112 	if (!mroute6_sk) {
1113 		rcu_read_unlock();
1114 		kfree_skb(skb);
1115 		return -EINVAL;
1116 	}
1117 
1118 	mrt6msg_netlink_event(mrt, skb);
1119 
1120 	/* Deliver to user space multicast routing algorithms */
1121 	ret = sock_queue_rcv_skb(mroute6_sk, skb);
1122 	rcu_read_unlock();
1123 	if (ret < 0) {
1124 		net_warn_ratelimited("mroute6: pending queue full, dropping entries\n");
1125 		kfree_skb(skb);
1126 	}
1127 
1128 	return ret;
1129 }
1130 
1131 /* Queue a packet for resolution. It gets locked cache entry! */
1132 static int ip6mr_cache_unresolved(struct mr_table *mrt, mifi_t mifi,
1133 				  struct sk_buff *skb, struct net_device *dev)
1134 {
1135 	struct mfc6_cache *c;
1136 	bool found = false;
1137 	int err;
1138 
1139 	spin_lock_bh(&mfc_unres_lock);
1140 	list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1141 		if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) &&
1142 		    ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) {
1143 			found = true;
1144 			break;
1145 		}
1146 	}
1147 
1148 	if (!found) {
1149 		/*
1150 		 *	Create a new entry if allowable
1151 		 */
1152 
1153 		c = ip6mr_cache_alloc_unres();
1154 		if (!c) {
1155 			spin_unlock_bh(&mfc_unres_lock);
1156 
1157 			kfree_skb(skb);
1158 			return -ENOBUFS;
1159 		}
1160 
1161 		/* Fill in the new cache entry */
1162 		c->_c.mfc_parent = -1;
1163 		c->mf6c_origin = ipv6_hdr(skb)->saddr;
1164 		c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr;
1165 
1166 		/*
1167 		 *	Reflect first query at pim6sd
1168 		 */
1169 		err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE);
1170 		if (err < 0) {
1171 			/* If the report failed throw the cache entry
1172 			   out - Brad Parker
1173 			 */
1174 			spin_unlock_bh(&mfc_unres_lock);
1175 
1176 			ip6mr_cache_free(c);
1177 			kfree_skb(skb);
1178 			return err;
1179 		}
1180 
1181 		atomic_inc(&mrt->cache_resolve_queue_len);
1182 		list_add(&c->_c.list, &mrt->mfc_unres_queue);
1183 		mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1184 
1185 		ipmr_do_expire_process(mrt);
1186 	}
1187 
1188 	/* See if we can append the packet */
1189 	if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1190 		kfree_skb(skb);
1191 		err = -ENOBUFS;
1192 	} else {
1193 		if (dev) {
1194 			skb->dev = dev;
1195 			skb->skb_iif = dev->ifindex;
1196 		}
1197 		skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1198 		err = 0;
1199 	}
1200 
1201 	spin_unlock_bh(&mfc_unres_lock);
1202 	return err;
1203 }
1204 
1205 /*
1206  *	MFC6 cache manipulation by user space
1207  */
1208 
1209 static int ip6mr_mfc_delete(struct mr_table *mrt, struct mf6cctl *mfc,
1210 			    int parent)
1211 {
1212 	struct mfc6_cache *c;
1213 
1214 	/* The entries are added/deleted only under RTNL */
1215 	rcu_read_lock();
1216 	c = ip6mr_cache_find_parent(mrt, &mfc->mf6cc_origin.sin6_addr,
1217 				    &mfc->mf6cc_mcastgrp.sin6_addr, parent);
1218 	rcu_read_unlock();
1219 	if (!c)
1220 		return -ENOENT;
1221 	rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ip6mr_rht_params);
1222 	list_del_rcu(&c->_c.list);
1223 
1224 	call_ip6mr_mfc_entry_notifiers(read_pnet(&mrt->net),
1225 				       FIB_EVENT_ENTRY_DEL, c, mrt->id);
1226 	mr6_netlink_event(mrt, c, RTM_DELROUTE);
1227 	mr_cache_put(&c->_c);
1228 	return 0;
1229 }
1230 
1231 static int ip6mr_device_event(struct notifier_block *this,
1232 			      unsigned long event, void *ptr)
1233 {
1234 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1235 	struct net *net = dev_net(dev);
1236 	struct mr_table *mrt;
1237 	struct vif_device *v;
1238 	int ct;
1239 
1240 	if (event != NETDEV_UNREGISTER)
1241 		return NOTIFY_DONE;
1242 
1243 	ip6mr_for_each_table(mrt, net) {
1244 		v = &mrt->vif_table[0];
1245 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1246 			if (v->dev == dev)
1247 				mif6_delete(mrt, ct, 1, NULL);
1248 		}
1249 	}
1250 
1251 	return NOTIFY_DONE;
1252 }
1253 
1254 static unsigned int ip6mr_seq_read(struct net *net)
1255 {
1256 	ASSERT_RTNL();
1257 
1258 	return net->ipv6.ipmr_seq + ip6mr_rules_seq_read(net);
1259 }
1260 
1261 static int ip6mr_dump(struct net *net, struct notifier_block *nb,
1262 		      struct netlink_ext_ack *extack)
1263 {
1264 	return mr_dump(net, nb, RTNL_FAMILY_IP6MR, ip6mr_rules_dump,
1265 		       ip6mr_mr_table_iter, &mrt_lock, extack);
1266 }
1267 
1268 static struct notifier_block ip6_mr_notifier = {
1269 	.notifier_call = ip6mr_device_event
1270 };
1271 
1272 static const struct fib_notifier_ops ip6mr_notifier_ops_template = {
1273 	.family		= RTNL_FAMILY_IP6MR,
1274 	.fib_seq_read	= ip6mr_seq_read,
1275 	.fib_dump	= ip6mr_dump,
1276 	.owner		= THIS_MODULE,
1277 };
1278 
1279 static int __net_init ip6mr_notifier_init(struct net *net)
1280 {
1281 	struct fib_notifier_ops *ops;
1282 
1283 	net->ipv6.ipmr_seq = 0;
1284 
1285 	ops = fib_notifier_ops_register(&ip6mr_notifier_ops_template, net);
1286 	if (IS_ERR(ops))
1287 		return PTR_ERR(ops);
1288 
1289 	net->ipv6.ip6mr_notifier_ops = ops;
1290 
1291 	return 0;
1292 }
1293 
1294 static void __net_exit ip6mr_notifier_exit(struct net *net)
1295 {
1296 	fib_notifier_ops_unregister(net->ipv6.ip6mr_notifier_ops);
1297 	net->ipv6.ip6mr_notifier_ops = NULL;
1298 }
1299 
1300 /* Setup for IP multicast routing */
1301 static int __net_init ip6mr_net_init(struct net *net)
1302 {
1303 	int err;
1304 
1305 	err = ip6mr_notifier_init(net);
1306 	if (err)
1307 		return err;
1308 
1309 	err = ip6mr_rules_init(net);
1310 	if (err < 0)
1311 		goto ip6mr_rules_fail;
1312 
1313 #ifdef CONFIG_PROC_FS
1314 	err = -ENOMEM;
1315 	if (!proc_create_net("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_seq_ops,
1316 			sizeof(struct mr_vif_iter)))
1317 		goto proc_vif_fail;
1318 	if (!proc_create_net("ip6_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
1319 			sizeof(struct mr_mfc_iter)))
1320 		goto proc_cache_fail;
1321 #endif
1322 
1323 	return 0;
1324 
1325 #ifdef CONFIG_PROC_FS
1326 proc_cache_fail:
1327 	remove_proc_entry("ip6_mr_vif", net->proc_net);
1328 proc_vif_fail:
1329 	rtnl_lock();
1330 	ip6mr_rules_exit(net);
1331 	rtnl_unlock();
1332 #endif
1333 ip6mr_rules_fail:
1334 	ip6mr_notifier_exit(net);
1335 	return err;
1336 }
1337 
1338 static void __net_exit ip6mr_net_exit(struct net *net)
1339 {
1340 #ifdef CONFIG_PROC_FS
1341 	remove_proc_entry("ip6_mr_cache", net->proc_net);
1342 	remove_proc_entry("ip6_mr_vif", net->proc_net);
1343 #endif
1344 	ip6mr_notifier_exit(net);
1345 }
1346 
1347 static void __net_exit ip6mr_net_exit_batch(struct list_head *net_list)
1348 {
1349 	struct net *net;
1350 
1351 	rtnl_lock();
1352 	list_for_each_entry(net, net_list, exit_list)
1353 		ip6mr_rules_exit(net);
1354 	rtnl_unlock();
1355 }
1356 
1357 static struct pernet_operations ip6mr_net_ops = {
1358 	.init = ip6mr_net_init,
1359 	.exit = ip6mr_net_exit,
1360 	.exit_batch = ip6mr_net_exit_batch,
1361 };
1362 
1363 int __init ip6_mr_init(void)
1364 {
1365 	int err;
1366 
1367 	mrt_cachep = kmem_cache_create("ip6_mrt_cache",
1368 				       sizeof(struct mfc6_cache),
1369 				       0, SLAB_HWCACHE_ALIGN,
1370 				       NULL);
1371 	if (!mrt_cachep)
1372 		return -ENOMEM;
1373 
1374 	err = register_pernet_subsys(&ip6mr_net_ops);
1375 	if (err)
1376 		goto reg_pernet_fail;
1377 
1378 	err = register_netdevice_notifier(&ip6_mr_notifier);
1379 	if (err)
1380 		goto reg_notif_fail;
1381 #ifdef CONFIG_IPV6_PIMSM_V2
1382 	if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) {
1383 		pr_err("%s: can't add PIM protocol\n", __func__);
1384 		err = -EAGAIN;
1385 		goto add_proto_fail;
1386 	}
1387 #endif
1388 	err = rtnl_register_module(THIS_MODULE, RTNL_FAMILY_IP6MR, RTM_GETROUTE,
1389 				   NULL, ip6mr_rtm_dumproute, 0);
1390 	if (err == 0)
1391 		return 0;
1392 
1393 #ifdef CONFIG_IPV6_PIMSM_V2
1394 	inet6_del_protocol(&pim6_protocol, IPPROTO_PIM);
1395 add_proto_fail:
1396 	unregister_netdevice_notifier(&ip6_mr_notifier);
1397 #endif
1398 reg_notif_fail:
1399 	unregister_pernet_subsys(&ip6mr_net_ops);
1400 reg_pernet_fail:
1401 	kmem_cache_destroy(mrt_cachep);
1402 	return err;
1403 }
1404 
1405 void ip6_mr_cleanup(void)
1406 {
1407 	rtnl_unregister(RTNL_FAMILY_IP6MR, RTM_GETROUTE);
1408 #ifdef CONFIG_IPV6_PIMSM_V2
1409 	inet6_del_protocol(&pim6_protocol, IPPROTO_PIM);
1410 #endif
1411 	unregister_netdevice_notifier(&ip6_mr_notifier);
1412 	unregister_pernet_subsys(&ip6mr_net_ops);
1413 	kmem_cache_destroy(mrt_cachep);
1414 }
1415 
1416 static int ip6mr_mfc_add(struct net *net, struct mr_table *mrt,
1417 			 struct mf6cctl *mfc, int mrtsock, int parent)
1418 {
1419 	unsigned char ttls[MAXMIFS];
1420 	struct mfc6_cache *uc, *c;
1421 	struct mr_mfc *_uc;
1422 	bool found;
1423 	int i, err;
1424 
1425 	if (mfc->mf6cc_parent >= MAXMIFS)
1426 		return -ENFILE;
1427 
1428 	memset(ttls, 255, MAXMIFS);
1429 	for (i = 0; i < MAXMIFS; i++) {
1430 		if (IF_ISSET(i, &mfc->mf6cc_ifset))
1431 			ttls[i] = 1;
1432 	}
1433 
1434 	/* The entries are added/deleted only under RTNL */
1435 	rcu_read_lock();
1436 	c = ip6mr_cache_find_parent(mrt, &mfc->mf6cc_origin.sin6_addr,
1437 				    &mfc->mf6cc_mcastgrp.sin6_addr, parent);
1438 	rcu_read_unlock();
1439 	if (c) {
1440 		write_lock_bh(&mrt_lock);
1441 		c->_c.mfc_parent = mfc->mf6cc_parent;
1442 		ip6mr_update_thresholds(mrt, &c->_c, ttls);
1443 		if (!mrtsock)
1444 			c->_c.mfc_flags |= MFC_STATIC;
1445 		write_unlock_bh(&mrt_lock);
1446 		call_ip6mr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1447 					       c, mrt->id);
1448 		mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1449 		return 0;
1450 	}
1451 
1452 	if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) &&
1453 	    !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr))
1454 		return -EINVAL;
1455 
1456 	c = ip6mr_cache_alloc();
1457 	if (!c)
1458 		return -ENOMEM;
1459 
1460 	c->mf6c_origin = mfc->mf6cc_origin.sin6_addr;
1461 	c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr;
1462 	c->_c.mfc_parent = mfc->mf6cc_parent;
1463 	ip6mr_update_thresholds(mrt, &c->_c, ttls);
1464 	if (!mrtsock)
1465 		c->_c.mfc_flags |= MFC_STATIC;
1466 
1467 	err = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1468 				  ip6mr_rht_params);
1469 	if (err) {
1470 		pr_err("ip6mr: rhtable insert error %d\n", err);
1471 		ip6mr_cache_free(c);
1472 		return err;
1473 	}
1474 	list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1475 
1476 	/* Check to see if we resolved a queued list. If so we
1477 	 * need to send on the frames and tidy up.
1478 	 */
1479 	found = false;
1480 	spin_lock_bh(&mfc_unres_lock);
1481 	list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1482 		uc = (struct mfc6_cache *)_uc;
1483 		if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) &&
1484 		    ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) {
1485 			list_del(&_uc->list);
1486 			atomic_dec(&mrt->cache_resolve_queue_len);
1487 			found = true;
1488 			break;
1489 		}
1490 	}
1491 	if (list_empty(&mrt->mfc_unres_queue))
1492 		del_timer(&mrt->ipmr_expire_timer);
1493 	spin_unlock_bh(&mfc_unres_lock);
1494 
1495 	if (found) {
1496 		ip6mr_cache_resolve(net, mrt, uc, c);
1497 		ip6mr_cache_free(uc);
1498 	}
1499 	call_ip6mr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1500 				       c, mrt->id);
1501 	mr6_netlink_event(mrt, c, RTM_NEWROUTE);
1502 	return 0;
1503 }
1504 
1505 /*
1506  *	Close the multicast socket, and clear the vif tables etc
1507  */
1508 
1509 static void mroute_clean_tables(struct mr_table *mrt, int flags)
1510 {
1511 	struct mr_mfc *c, *tmp;
1512 	LIST_HEAD(list);
1513 	int i;
1514 
1515 	/* Shut down all active vif entries */
1516 	if (flags & (MRT6_FLUSH_MIFS | MRT6_FLUSH_MIFS_STATIC)) {
1517 		for (i = 0; i < mrt->maxvif; i++) {
1518 			if (((mrt->vif_table[i].flags & VIFF_STATIC) &&
1519 			     !(flags & MRT6_FLUSH_MIFS_STATIC)) ||
1520 			    (!(mrt->vif_table[i].flags & VIFF_STATIC) && !(flags & MRT6_FLUSH_MIFS)))
1521 				continue;
1522 			mif6_delete(mrt, i, 0, &list);
1523 		}
1524 		unregister_netdevice_many(&list);
1525 	}
1526 
1527 	/* Wipe the cache */
1528 	if (flags & (MRT6_FLUSH_MFC | MRT6_FLUSH_MFC_STATIC)) {
1529 		list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1530 			if (((c->mfc_flags & MFC_STATIC) && !(flags & MRT6_FLUSH_MFC_STATIC)) ||
1531 			    (!(c->mfc_flags & MFC_STATIC) && !(flags & MRT6_FLUSH_MFC)))
1532 				continue;
1533 			rhltable_remove(&mrt->mfc_hash, &c->mnode, ip6mr_rht_params);
1534 			list_del_rcu(&c->list);
1535 			call_ip6mr_mfc_entry_notifiers(read_pnet(&mrt->net),
1536 						       FIB_EVENT_ENTRY_DEL,
1537 						       (struct mfc6_cache *)c, mrt->id);
1538 			mr6_netlink_event(mrt, (struct mfc6_cache *)c, RTM_DELROUTE);
1539 			mr_cache_put(c);
1540 		}
1541 	}
1542 
1543 	if (flags & MRT6_FLUSH_MFC) {
1544 		if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1545 			spin_lock_bh(&mfc_unres_lock);
1546 			list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1547 				list_del(&c->list);
1548 				mr6_netlink_event(mrt, (struct mfc6_cache *)c,
1549 						  RTM_DELROUTE);
1550 				ip6mr_destroy_unres(mrt, (struct mfc6_cache *)c);
1551 			}
1552 			spin_unlock_bh(&mfc_unres_lock);
1553 		}
1554 	}
1555 }
1556 
1557 static int ip6mr_sk_init(struct mr_table *mrt, struct sock *sk)
1558 {
1559 	int err = 0;
1560 	struct net *net = sock_net(sk);
1561 
1562 	rtnl_lock();
1563 	write_lock_bh(&mrt_lock);
1564 	if (rtnl_dereference(mrt->mroute_sk)) {
1565 		err = -EADDRINUSE;
1566 	} else {
1567 		rcu_assign_pointer(mrt->mroute_sk, sk);
1568 		sock_set_flag(sk, SOCK_RCU_FREE);
1569 		atomic_inc(&net->ipv6.devconf_all->mc_forwarding);
1570 	}
1571 	write_unlock_bh(&mrt_lock);
1572 
1573 	if (!err)
1574 		inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
1575 					     NETCONFA_MC_FORWARDING,
1576 					     NETCONFA_IFINDEX_ALL,
1577 					     net->ipv6.devconf_all);
1578 	rtnl_unlock();
1579 
1580 	return err;
1581 }
1582 
1583 int ip6mr_sk_done(struct sock *sk)
1584 {
1585 	struct net *net = sock_net(sk);
1586 	struct ipv6_devconf *devconf;
1587 	struct mr_table *mrt;
1588 	int err = -EACCES;
1589 
1590 	if (sk->sk_type != SOCK_RAW ||
1591 	    inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
1592 		return err;
1593 
1594 	devconf = net->ipv6.devconf_all;
1595 	if (!devconf || !atomic_read(&devconf->mc_forwarding))
1596 		return err;
1597 
1598 	rtnl_lock();
1599 	ip6mr_for_each_table(mrt, net) {
1600 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1601 			write_lock_bh(&mrt_lock);
1602 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1603 			/* Note that mroute_sk had SOCK_RCU_FREE set,
1604 			 * so the RCU grace period before sk freeing
1605 			 * is guaranteed by sk_destruct()
1606 			 */
1607 			atomic_dec(&devconf->mc_forwarding);
1608 			write_unlock_bh(&mrt_lock);
1609 			inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
1610 						     NETCONFA_MC_FORWARDING,
1611 						     NETCONFA_IFINDEX_ALL,
1612 						     net->ipv6.devconf_all);
1613 
1614 			mroute_clean_tables(mrt, MRT6_FLUSH_MIFS | MRT6_FLUSH_MFC);
1615 			err = 0;
1616 			break;
1617 		}
1618 	}
1619 	rtnl_unlock();
1620 
1621 	return err;
1622 }
1623 
1624 bool mroute6_is_socket(struct net *net, struct sk_buff *skb)
1625 {
1626 	struct mr_table *mrt;
1627 	struct flowi6 fl6 = {
1628 		.flowi6_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
1629 		.flowi6_oif	= skb->dev->ifindex,
1630 		.flowi6_mark	= skb->mark,
1631 	};
1632 
1633 	if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
1634 		return NULL;
1635 
1636 	return rcu_access_pointer(mrt->mroute_sk);
1637 }
1638 EXPORT_SYMBOL(mroute6_is_socket);
1639 
1640 /*
1641  *	Socket options and virtual interface manipulation. The whole
1642  *	virtual interface system is a complete heap, but unfortunately
1643  *	that's how BSD mrouted happens to think. Maybe one day with a proper
1644  *	MOSPF/PIM router set up we can clean this up.
1645  */
1646 
1647 int ip6_mroute_setsockopt(struct sock *sk, int optname, sockptr_t optval,
1648 			  unsigned int optlen)
1649 {
1650 	int ret, parent = 0;
1651 	struct mif6ctl vif;
1652 	struct mf6cctl mfc;
1653 	mifi_t mifi;
1654 	struct net *net = sock_net(sk);
1655 	struct mr_table *mrt;
1656 
1657 	if (sk->sk_type != SOCK_RAW ||
1658 	    inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
1659 		return -EOPNOTSUPP;
1660 
1661 	mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1662 	if (!mrt)
1663 		return -ENOENT;
1664 
1665 	if (optname != MRT6_INIT) {
1666 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1667 		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1668 			return -EACCES;
1669 	}
1670 
1671 	switch (optname) {
1672 	case MRT6_INIT:
1673 		if (optlen < sizeof(int))
1674 			return -EINVAL;
1675 
1676 		return ip6mr_sk_init(mrt, sk);
1677 
1678 	case MRT6_DONE:
1679 		return ip6mr_sk_done(sk);
1680 
1681 	case MRT6_ADD_MIF:
1682 		if (optlen < sizeof(vif))
1683 			return -EINVAL;
1684 		if (copy_from_sockptr(&vif, optval, sizeof(vif)))
1685 			return -EFAULT;
1686 		if (vif.mif6c_mifi >= MAXMIFS)
1687 			return -ENFILE;
1688 		rtnl_lock();
1689 		ret = mif6_add(net, mrt, &vif,
1690 			       sk == rtnl_dereference(mrt->mroute_sk));
1691 		rtnl_unlock();
1692 		return ret;
1693 
1694 	case MRT6_DEL_MIF:
1695 		if (optlen < sizeof(mifi_t))
1696 			return -EINVAL;
1697 		if (copy_from_sockptr(&mifi, optval, sizeof(mifi_t)))
1698 			return -EFAULT;
1699 		rtnl_lock();
1700 		ret = mif6_delete(mrt, mifi, 0, NULL);
1701 		rtnl_unlock();
1702 		return ret;
1703 
1704 	/*
1705 	 *	Manipulate the forwarding caches. These live
1706 	 *	in a sort of kernel/user symbiosis.
1707 	 */
1708 	case MRT6_ADD_MFC:
1709 	case MRT6_DEL_MFC:
1710 		parent = -1;
1711 		fallthrough;
1712 	case MRT6_ADD_MFC_PROXY:
1713 	case MRT6_DEL_MFC_PROXY:
1714 		if (optlen < sizeof(mfc))
1715 			return -EINVAL;
1716 		if (copy_from_sockptr(&mfc, optval, sizeof(mfc)))
1717 			return -EFAULT;
1718 		if (parent == 0)
1719 			parent = mfc.mf6cc_parent;
1720 		rtnl_lock();
1721 		if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY)
1722 			ret = ip6mr_mfc_delete(mrt, &mfc, parent);
1723 		else
1724 			ret = ip6mr_mfc_add(net, mrt, &mfc,
1725 					    sk ==
1726 					    rtnl_dereference(mrt->mroute_sk),
1727 					    parent);
1728 		rtnl_unlock();
1729 		return ret;
1730 
1731 	case MRT6_FLUSH:
1732 	{
1733 		int flags;
1734 
1735 		if (optlen != sizeof(flags))
1736 			return -EINVAL;
1737 		if (copy_from_sockptr(&flags, optval, sizeof(flags)))
1738 			return -EFAULT;
1739 		rtnl_lock();
1740 		mroute_clean_tables(mrt, flags);
1741 		rtnl_unlock();
1742 		return 0;
1743 	}
1744 
1745 	/*
1746 	 *	Control PIM assert (to activate pim will activate assert)
1747 	 */
1748 	case MRT6_ASSERT:
1749 	{
1750 		int v;
1751 
1752 		if (optlen != sizeof(v))
1753 			return -EINVAL;
1754 		if (copy_from_sockptr(&v, optval, sizeof(v)))
1755 			return -EFAULT;
1756 		mrt->mroute_do_assert = v;
1757 		return 0;
1758 	}
1759 
1760 #ifdef CONFIG_IPV6_PIMSM_V2
1761 	case MRT6_PIM:
1762 	{
1763 		bool do_wrmifwhole;
1764 		int v;
1765 
1766 		if (optlen != sizeof(v))
1767 			return -EINVAL;
1768 		if (copy_from_sockptr(&v, optval, sizeof(v)))
1769 			return -EFAULT;
1770 
1771 		do_wrmifwhole = (v == MRT6MSG_WRMIFWHOLE);
1772 		v = !!v;
1773 		rtnl_lock();
1774 		ret = 0;
1775 		if (v != mrt->mroute_do_pim) {
1776 			mrt->mroute_do_pim = v;
1777 			mrt->mroute_do_assert = v;
1778 			mrt->mroute_do_wrvifwhole = do_wrmifwhole;
1779 		}
1780 		rtnl_unlock();
1781 		return ret;
1782 	}
1783 
1784 #endif
1785 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
1786 	case MRT6_TABLE:
1787 	{
1788 		u32 v;
1789 
1790 		if (optlen != sizeof(u32))
1791 			return -EINVAL;
1792 		if (copy_from_sockptr(&v, optval, sizeof(v)))
1793 			return -EFAULT;
1794 		/* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */
1795 		if (v != RT_TABLE_DEFAULT && v >= 100000000)
1796 			return -EINVAL;
1797 		if (sk == rcu_access_pointer(mrt->mroute_sk))
1798 			return -EBUSY;
1799 
1800 		rtnl_lock();
1801 		ret = 0;
1802 		mrt = ip6mr_new_table(net, v);
1803 		if (IS_ERR(mrt))
1804 			ret = PTR_ERR(mrt);
1805 		else
1806 			raw6_sk(sk)->ip6mr_table = v;
1807 		rtnl_unlock();
1808 		return ret;
1809 	}
1810 #endif
1811 	/*
1812 	 *	Spurious command, or MRT6_VERSION which you cannot
1813 	 *	set.
1814 	 */
1815 	default:
1816 		return -ENOPROTOOPT;
1817 	}
1818 }
1819 
1820 /*
1821  *	Getsock opt support for the multicast routing system.
1822  */
1823 
1824 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval,
1825 			  int __user *optlen)
1826 {
1827 	int olr;
1828 	int val;
1829 	struct net *net = sock_net(sk);
1830 	struct mr_table *mrt;
1831 
1832 	if (sk->sk_type != SOCK_RAW ||
1833 	    inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
1834 		return -EOPNOTSUPP;
1835 
1836 	mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1837 	if (!mrt)
1838 		return -ENOENT;
1839 
1840 	switch (optname) {
1841 	case MRT6_VERSION:
1842 		val = 0x0305;
1843 		break;
1844 #ifdef CONFIG_IPV6_PIMSM_V2
1845 	case MRT6_PIM:
1846 		val = mrt->mroute_do_pim;
1847 		break;
1848 #endif
1849 	case MRT6_ASSERT:
1850 		val = mrt->mroute_do_assert;
1851 		break;
1852 	default:
1853 		return -ENOPROTOOPT;
1854 	}
1855 
1856 	if (get_user(olr, optlen))
1857 		return -EFAULT;
1858 
1859 	olr = min_t(int, olr, sizeof(int));
1860 	if (olr < 0)
1861 		return -EINVAL;
1862 
1863 	if (put_user(olr, optlen))
1864 		return -EFAULT;
1865 	if (copy_to_user(optval, &val, olr))
1866 		return -EFAULT;
1867 	return 0;
1868 }
1869 
1870 /*
1871  *	The IP multicast ioctl support routines.
1872  */
1873 
1874 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg)
1875 {
1876 	struct sioc_sg_req6 sr;
1877 	struct sioc_mif_req6 vr;
1878 	struct vif_device *vif;
1879 	struct mfc6_cache *c;
1880 	struct net *net = sock_net(sk);
1881 	struct mr_table *mrt;
1882 
1883 	mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1884 	if (!mrt)
1885 		return -ENOENT;
1886 
1887 	switch (cmd) {
1888 	case SIOCGETMIFCNT_IN6:
1889 		if (copy_from_user(&vr, arg, sizeof(vr)))
1890 			return -EFAULT;
1891 		if (vr.mifi >= mrt->maxvif)
1892 			return -EINVAL;
1893 		vr.mifi = array_index_nospec(vr.mifi, mrt->maxvif);
1894 		read_lock(&mrt_lock);
1895 		vif = &mrt->vif_table[vr.mifi];
1896 		if (VIF_EXISTS(mrt, vr.mifi)) {
1897 			vr.icount = vif->pkt_in;
1898 			vr.ocount = vif->pkt_out;
1899 			vr.ibytes = vif->bytes_in;
1900 			vr.obytes = vif->bytes_out;
1901 			read_unlock(&mrt_lock);
1902 
1903 			if (copy_to_user(arg, &vr, sizeof(vr)))
1904 				return -EFAULT;
1905 			return 0;
1906 		}
1907 		read_unlock(&mrt_lock);
1908 		return -EADDRNOTAVAIL;
1909 	case SIOCGETSGCNT_IN6:
1910 		if (copy_from_user(&sr, arg, sizeof(sr)))
1911 			return -EFAULT;
1912 
1913 		rcu_read_lock();
1914 		c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1915 		if (c) {
1916 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1917 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1918 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1919 			rcu_read_unlock();
1920 
1921 			if (copy_to_user(arg, &sr, sizeof(sr)))
1922 				return -EFAULT;
1923 			return 0;
1924 		}
1925 		rcu_read_unlock();
1926 		return -EADDRNOTAVAIL;
1927 	default:
1928 		return -ENOIOCTLCMD;
1929 	}
1930 }
1931 
1932 #ifdef CONFIG_COMPAT
1933 struct compat_sioc_sg_req6 {
1934 	struct sockaddr_in6 src;
1935 	struct sockaddr_in6 grp;
1936 	compat_ulong_t pktcnt;
1937 	compat_ulong_t bytecnt;
1938 	compat_ulong_t wrong_if;
1939 };
1940 
1941 struct compat_sioc_mif_req6 {
1942 	mifi_t	mifi;
1943 	compat_ulong_t icount;
1944 	compat_ulong_t ocount;
1945 	compat_ulong_t ibytes;
1946 	compat_ulong_t obytes;
1947 };
1948 
1949 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1950 {
1951 	struct compat_sioc_sg_req6 sr;
1952 	struct compat_sioc_mif_req6 vr;
1953 	struct vif_device *vif;
1954 	struct mfc6_cache *c;
1955 	struct net *net = sock_net(sk);
1956 	struct mr_table *mrt;
1957 
1958 	mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1959 	if (!mrt)
1960 		return -ENOENT;
1961 
1962 	switch (cmd) {
1963 	case SIOCGETMIFCNT_IN6:
1964 		if (copy_from_user(&vr, arg, sizeof(vr)))
1965 			return -EFAULT;
1966 		if (vr.mifi >= mrt->maxvif)
1967 			return -EINVAL;
1968 		vr.mifi = array_index_nospec(vr.mifi, mrt->maxvif);
1969 		read_lock(&mrt_lock);
1970 		vif = &mrt->vif_table[vr.mifi];
1971 		if (VIF_EXISTS(mrt, vr.mifi)) {
1972 			vr.icount = vif->pkt_in;
1973 			vr.ocount = vif->pkt_out;
1974 			vr.ibytes = vif->bytes_in;
1975 			vr.obytes = vif->bytes_out;
1976 			read_unlock(&mrt_lock);
1977 
1978 			if (copy_to_user(arg, &vr, sizeof(vr)))
1979 				return -EFAULT;
1980 			return 0;
1981 		}
1982 		read_unlock(&mrt_lock);
1983 		return -EADDRNOTAVAIL;
1984 	case SIOCGETSGCNT_IN6:
1985 		if (copy_from_user(&sr, arg, sizeof(sr)))
1986 			return -EFAULT;
1987 
1988 		rcu_read_lock();
1989 		c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1990 		if (c) {
1991 			sr.pktcnt = c->_c.mfc_un.res.pkt;
1992 			sr.bytecnt = c->_c.mfc_un.res.bytes;
1993 			sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1994 			rcu_read_unlock();
1995 
1996 			if (copy_to_user(arg, &sr, sizeof(sr)))
1997 				return -EFAULT;
1998 			return 0;
1999 		}
2000 		rcu_read_unlock();
2001 		return -EADDRNOTAVAIL;
2002 	default:
2003 		return -ENOIOCTLCMD;
2004 	}
2005 }
2006 #endif
2007 
2008 static inline int ip6mr_forward2_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
2009 {
2010 	IP6_INC_STATS(net, ip6_dst_idev(skb_dst(skb)),
2011 		      IPSTATS_MIB_OUTFORWDATAGRAMS);
2012 	IP6_ADD_STATS(net, ip6_dst_idev(skb_dst(skb)),
2013 		      IPSTATS_MIB_OUTOCTETS, skb->len);
2014 	return dst_output(net, sk, skb);
2015 }
2016 
2017 /*
2018  *	Processing handlers for ip6mr_forward
2019  */
2020 
2021 static int ip6mr_forward2(struct net *net, struct mr_table *mrt,
2022 			  struct sk_buff *skb, int vifi)
2023 {
2024 	struct ipv6hdr *ipv6h;
2025 	struct vif_device *vif = &mrt->vif_table[vifi];
2026 	struct net_device *dev;
2027 	struct dst_entry *dst;
2028 	struct flowi6 fl6;
2029 
2030 	if (!vif->dev)
2031 		goto out_free;
2032 
2033 #ifdef CONFIG_IPV6_PIMSM_V2
2034 	if (vif->flags & MIFF_REGISTER) {
2035 		vif->pkt_out++;
2036 		vif->bytes_out += skb->len;
2037 		vif->dev->stats.tx_bytes += skb->len;
2038 		vif->dev->stats.tx_packets++;
2039 		ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT);
2040 		goto out_free;
2041 	}
2042 #endif
2043 
2044 	ipv6h = ipv6_hdr(skb);
2045 
2046 	fl6 = (struct flowi6) {
2047 		.flowi6_oif = vif->link,
2048 		.daddr = ipv6h->daddr,
2049 	};
2050 
2051 	dst = ip6_route_output(net, NULL, &fl6);
2052 	if (dst->error) {
2053 		dst_release(dst);
2054 		goto out_free;
2055 	}
2056 
2057 	skb_dst_drop(skb);
2058 	skb_dst_set(skb, dst);
2059 
2060 	/*
2061 	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
2062 	 * not only before forwarding, but after forwarding on all output
2063 	 * interfaces. It is clear, if mrouter runs a multicasting
2064 	 * program, it should receive packets not depending to what interface
2065 	 * program is joined.
2066 	 * If we will not make it, the program will have to join on all
2067 	 * interfaces. On the other hand, multihoming host (or router, but
2068 	 * not mrouter) cannot join to more than one interface - it will
2069 	 * result in receiving multiple packets.
2070 	 */
2071 	dev = vif->dev;
2072 	skb->dev = dev;
2073 	vif->pkt_out++;
2074 	vif->bytes_out += skb->len;
2075 
2076 	/* We are about to write */
2077 	/* XXX: extension headers? */
2078 	if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev)))
2079 		goto out_free;
2080 
2081 	ipv6h = ipv6_hdr(skb);
2082 	ipv6h->hop_limit--;
2083 
2084 	IP6CB(skb)->flags |= IP6SKB_FORWARDED;
2085 
2086 	return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD,
2087 		       net, NULL, skb, skb->dev, dev,
2088 		       ip6mr_forward2_finish);
2089 
2090 out_free:
2091 	kfree_skb(skb);
2092 	return 0;
2093 }
2094 
2095 static int ip6mr_find_vif(struct mr_table *mrt, struct net_device *dev)
2096 {
2097 	int ct;
2098 
2099 	for (ct = mrt->maxvif - 1; ct >= 0; ct--) {
2100 		if (mrt->vif_table[ct].dev == dev)
2101 			break;
2102 	}
2103 	return ct;
2104 }
2105 
2106 static void ip6_mr_forward(struct net *net, struct mr_table *mrt,
2107 			   struct net_device *dev, struct sk_buff *skb,
2108 			   struct mfc6_cache *c)
2109 {
2110 	int psend = -1;
2111 	int vif, ct;
2112 	int true_vifi = ip6mr_find_vif(mrt, dev);
2113 
2114 	vif = c->_c.mfc_parent;
2115 	c->_c.mfc_un.res.pkt++;
2116 	c->_c.mfc_un.res.bytes += skb->len;
2117 	c->_c.mfc_un.res.lastuse = jiffies;
2118 
2119 	if (ipv6_addr_any(&c->mf6c_origin) && true_vifi >= 0) {
2120 		struct mfc6_cache *cache_proxy;
2121 
2122 		/* For an (*,G) entry, we only check that the incoming
2123 		 * interface is part of the static tree.
2124 		 */
2125 		rcu_read_lock();
2126 		cache_proxy = mr_mfc_find_any_parent(mrt, vif);
2127 		if (cache_proxy &&
2128 		    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255) {
2129 			rcu_read_unlock();
2130 			goto forward;
2131 		}
2132 		rcu_read_unlock();
2133 	}
2134 
2135 	/*
2136 	 * Wrong interface: drop packet and (maybe) send PIM assert.
2137 	 */
2138 	if (mrt->vif_table[vif].dev != dev) {
2139 		c->_c.mfc_un.res.wrong_if++;
2140 
2141 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
2142 		    /* pimsm uses asserts, when switching from RPT to SPT,
2143 		       so that we cannot check that packet arrived on an oif.
2144 		       It is bad, but otherwise we would need to move pretty
2145 		       large chunk of pimd to kernel. Ough... --ANK
2146 		     */
2147 		    (mrt->mroute_do_pim ||
2148 		     c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
2149 		    time_after(jiffies,
2150 			       c->_c.mfc_un.res.last_assert +
2151 			       MFC_ASSERT_THRESH)) {
2152 			c->_c.mfc_un.res.last_assert = jiffies;
2153 			ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF);
2154 			if (mrt->mroute_do_wrvifwhole)
2155 				ip6mr_cache_report(mrt, skb, true_vifi,
2156 						   MRT6MSG_WRMIFWHOLE);
2157 		}
2158 		goto dont_forward;
2159 	}
2160 
2161 forward:
2162 	mrt->vif_table[vif].pkt_in++;
2163 	mrt->vif_table[vif].bytes_in += skb->len;
2164 
2165 	/*
2166 	 *	Forward the frame
2167 	 */
2168 	if (ipv6_addr_any(&c->mf6c_origin) &&
2169 	    ipv6_addr_any(&c->mf6c_mcastgrp)) {
2170 		if (true_vifi >= 0 &&
2171 		    true_vifi != c->_c.mfc_parent &&
2172 		    ipv6_hdr(skb)->hop_limit >
2173 				c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2174 			/* It's an (*,*) entry and the packet is not coming from
2175 			 * the upstream: forward the packet to the upstream
2176 			 * only.
2177 			 */
2178 			psend = c->_c.mfc_parent;
2179 			goto last_forward;
2180 		}
2181 		goto dont_forward;
2182 	}
2183 	for (ct = c->_c.mfc_un.res.maxvif - 1;
2184 	     ct >= c->_c.mfc_un.res.minvif; ct--) {
2185 		/* For (*,G) entry, don't forward to the incoming interface */
2186 		if ((!ipv6_addr_any(&c->mf6c_origin) || ct != true_vifi) &&
2187 		    ipv6_hdr(skb)->hop_limit > c->_c.mfc_un.res.ttls[ct]) {
2188 			if (psend != -1) {
2189 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2190 				if (skb2)
2191 					ip6mr_forward2(net, mrt, skb2, psend);
2192 			}
2193 			psend = ct;
2194 		}
2195 	}
2196 last_forward:
2197 	if (psend != -1) {
2198 		ip6mr_forward2(net, mrt, skb, psend);
2199 		return;
2200 	}
2201 
2202 dont_forward:
2203 	kfree_skb(skb);
2204 }
2205 
2206 
2207 /*
2208  *	Multicast packets for forwarding arrive here
2209  */
2210 
2211 int ip6_mr_input(struct sk_buff *skb)
2212 {
2213 	struct mfc6_cache *cache;
2214 	struct net *net = dev_net(skb->dev);
2215 	struct mr_table *mrt;
2216 	struct flowi6 fl6 = {
2217 		.flowi6_iif	= skb->dev->ifindex,
2218 		.flowi6_mark	= skb->mark,
2219 	};
2220 	int err;
2221 	struct net_device *dev;
2222 
2223 	/* skb->dev passed in is the master dev for vrfs.
2224 	 * Get the proper interface that does have a vif associated with it.
2225 	 */
2226 	dev = skb->dev;
2227 	if (netif_is_l3_master(skb->dev)) {
2228 		dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2229 		if (!dev) {
2230 			kfree_skb(skb);
2231 			return -ENODEV;
2232 		}
2233 	}
2234 
2235 	err = ip6mr_fib_lookup(net, &fl6, &mrt);
2236 	if (err < 0) {
2237 		kfree_skb(skb);
2238 		return err;
2239 	}
2240 
2241 	read_lock(&mrt_lock);
2242 	cache = ip6mr_cache_find(mrt,
2243 				 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr);
2244 	if (!cache) {
2245 		int vif = ip6mr_find_vif(mrt, dev);
2246 
2247 		if (vif >= 0)
2248 			cache = ip6mr_cache_find_any(mrt,
2249 						     &ipv6_hdr(skb)->daddr,
2250 						     vif);
2251 	}
2252 
2253 	/*
2254 	 *	No usable cache entry
2255 	 */
2256 	if (!cache) {
2257 		int vif;
2258 
2259 		vif = ip6mr_find_vif(mrt, dev);
2260 		if (vif >= 0) {
2261 			int err = ip6mr_cache_unresolved(mrt, vif, skb, dev);
2262 			read_unlock(&mrt_lock);
2263 
2264 			return err;
2265 		}
2266 		read_unlock(&mrt_lock);
2267 		kfree_skb(skb);
2268 		return -ENODEV;
2269 	}
2270 
2271 	ip6_mr_forward(net, mrt, dev, skb, cache);
2272 
2273 	read_unlock(&mrt_lock);
2274 
2275 	return 0;
2276 }
2277 
2278 int ip6mr_get_route(struct net *net, struct sk_buff *skb, struct rtmsg *rtm,
2279 		    u32 portid)
2280 {
2281 	int err;
2282 	struct mr_table *mrt;
2283 	struct mfc6_cache *cache;
2284 	struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
2285 
2286 	mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
2287 	if (!mrt)
2288 		return -ENOENT;
2289 
2290 	read_lock(&mrt_lock);
2291 	cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr);
2292 	if (!cache && skb->dev) {
2293 		int vif = ip6mr_find_vif(mrt, skb->dev);
2294 
2295 		if (vif >= 0)
2296 			cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr,
2297 						     vif);
2298 	}
2299 
2300 	if (!cache) {
2301 		struct sk_buff *skb2;
2302 		struct ipv6hdr *iph;
2303 		struct net_device *dev;
2304 		int vif;
2305 
2306 		dev = skb->dev;
2307 		if (!dev || (vif = ip6mr_find_vif(mrt, dev)) < 0) {
2308 			read_unlock(&mrt_lock);
2309 			return -ENODEV;
2310 		}
2311 
2312 		/* really correct? */
2313 		skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
2314 		if (!skb2) {
2315 			read_unlock(&mrt_lock);
2316 			return -ENOMEM;
2317 		}
2318 
2319 		NETLINK_CB(skb2).portid = portid;
2320 		skb_reset_transport_header(skb2);
2321 
2322 		skb_put(skb2, sizeof(struct ipv6hdr));
2323 		skb_reset_network_header(skb2);
2324 
2325 		iph = ipv6_hdr(skb2);
2326 		iph->version = 0;
2327 		iph->priority = 0;
2328 		iph->flow_lbl[0] = 0;
2329 		iph->flow_lbl[1] = 0;
2330 		iph->flow_lbl[2] = 0;
2331 		iph->payload_len = 0;
2332 		iph->nexthdr = IPPROTO_NONE;
2333 		iph->hop_limit = 0;
2334 		iph->saddr = rt->rt6i_src.addr;
2335 		iph->daddr = rt->rt6i_dst.addr;
2336 
2337 		err = ip6mr_cache_unresolved(mrt, vif, skb2, dev);
2338 		read_unlock(&mrt_lock);
2339 
2340 		return err;
2341 	}
2342 
2343 	err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2344 	read_unlock(&mrt_lock);
2345 	return err;
2346 }
2347 
2348 static int ip6mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2349 			     u32 portid, u32 seq, struct mfc6_cache *c, int cmd,
2350 			     int flags)
2351 {
2352 	struct nlmsghdr *nlh;
2353 	struct rtmsg *rtm;
2354 	int err;
2355 
2356 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2357 	if (!nlh)
2358 		return -EMSGSIZE;
2359 
2360 	rtm = nlmsg_data(nlh);
2361 	rtm->rtm_family   = RTNL_FAMILY_IP6MR;
2362 	rtm->rtm_dst_len  = 128;
2363 	rtm->rtm_src_len  = 128;
2364 	rtm->rtm_tos      = 0;
2365 	rtm->rtm_table    = mrt->id;
2366 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2367 		goto nla_put_failure;
2368 	rtm->rtm_type = RTN_MULTICAST;
2369 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2370 	if (c->_c.mfc_flags & MFC_STATIC)
2371 		rtm->rtm_protocol = RTPROT_STATIC;
2372 	else
2373 		rtm->rtm_protocol = RTPROT_MROUTED;
2374 	rtm->rtm_flags    = 0;
2375 
2376 	if (nla_put_in6_addr(skb, RTA_SRC, &c->mf6c_origin) ||
2377 	    nla_put_in6_addr(skb, RTA_DST, &c->mf6c_mcastgrp))
2378 		goto nla_put_failure;
2379 	err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2380 	/* do not break the dump if cache is unresolved */
2381 	if (err < 0 && err != -ENOENT)
2382 		goto nla_put_failure;
2383 
2384 	nlmsg_end(skb, nlh);
2385 	return 0;
2386 
2387 nla_put_failure:
2388 	nlmsg_cancel(skb, nlh);
2389 	return -EMSGSIZE;
2390 }
2391 
2392 static int _ip6mr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2393 			      u32 portid, u32 seq, struct mr_mfc *c,
2394 			      int cmd, int flags)
2395 {
2396 	return ip6mr_fill_mroute(mrt, skb, portid, seq, (struct mfc6_cache *)c,
2397 				 cmd, flags);
2398 }
2399 
2400 static int mr6_msgsize(bool unresolved, int maxvif)
2401 {
2402 	size_t len =
2403 		NLMSG_ALIGN(sizeof(struct rtmsg))
2404 		+ nla_total_size(4)	/* RTA_TABLE */
2405 		+ nla_total_size(sizeof(struct in6_addr))	/* RTA_SRC */
2406 		+ nla_total_size(sizeof(struct in6_addr))	/* RTA_DST */
2407 		;
2408 
2409 	if (!unresolved)
2410 		len = len
2411 		      + nla_total_size(4)	/* RTA_IIF */
2412 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2413 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2414 						/* RTA_MFC_STATS */
2415 		      + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2416 		;
2417 
2418 	return len;
2419 }
2420 
2421 static void mr6_netlink_event(struct mr_table *mrt, struct mfc6_cache *mfc,
2422 			      int cmd)
2423 {
2424 	struct net *net = read_pnet(&mrt->net);
2425 	struct sk_buff *skb;
2426 	int err = -ENOBUFS;
2427 
2428 	skb = nlmsg_new(mr6_msgsize(mfc->_c.mfc_parent >= MAXMIFS, mrt->maxvif),
2429 			GFP_ATOMIC);
2430 	if (!skb)
2431 		goto errout;
2432 
2433 	err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2434 	if (err < 0)
2435 		goto errout;
2436 
2437 	rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC);
2438 	return;
2439 
2440 errout:
2441 	kfree_skb(skb);
2442 	if (err < 0)
2443 		rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err);
2444 }
2445 
2446 static size_t mrt6msg_netlink_msgsize(size_t payloadlen)
2447 {
2448 	size_t len =
2449 		NLMSG_ALIGN(sizeof(struct rtgenmsg))
2450 		+ nla_total_size(1)	/* IP6MRA_CREPORT_MSGTYPE */
2451 		+ nla_total_size(4)	/* IP6MRA_CREPORT_MIF_ID */
2452 					/* IP6MRA_CREPORT_SRC_ADDR */
2453 		+ nla_total_size(sizeof(struct in6_addr))
2454 					/* IP6MRA_CREPORT_DST_ADDR */
2455 		+ nla_total_size(sizeof(struct in6_addr))
2456 					/* IP6MRA_CREPORT_PKT */
2457 		+ nla_total_size(payloadlen)
2458 		;
2459 
2460 	return len;
2461 }
2462 
2463 static void mrt6msg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2464 {
2465 	struct net *net = read_pnet(&mrt->net);
2466 	struct nlmsghdr *nlh;
2467 	struct rtgenmsg *rtgenm;
2468 	struct mrt6msg *msg;
2469 	struct sk_buff *skb;
2470 	struct nlattr *nla;
2471 	int payloadlen;
2472 
2473 	payloadlen = pkt->len - sizeof(struct mrt6msg);
2474 	msg = (struct mrt6msg *)skb_transport_header(pkt);
2475 
2476 	skb = nlmsg_new(mrt6msg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2477 	if (!skb)
2478 		goto errout;
2479 
2480 	nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2481 			sizeof(struct rtgenmsg), 0);
2482 	if (!nlh)
2483 		goto errout;
2484 	rtgenm = nlmsg_data(nlh);
2485 	rtgenm->rtgen_family = RTNL_FAMILY_IP6MR;
2486 	if (nla_put_u8(skb, IP6MRA_CREPORT_MSGTYPE, msg->im6_msgtype) ||
2487 	    nla_put_u32(skb, IP6MRA_CREPORT_MIF_ID, msg->im6_mif) ||
2488 	    nla_put_in6_addr(skb, IP6MRA_CREPORT_SRC_ADDR,
2489 			     &msg->im6_src) ||
2490 	    nla_put_in6_addr(skb, IP6MRA_CREPORT_DST_ADDR,
2491 			     &msg->im6_dst))
2492 		goto nla_put_failure;
2493 
2494 	nla = nla_reserve(skb, IP6MRA_CREPORT_PKT, payloadlen);
2495 	if (!nla || skb_copy_bits(pkt, sizeof(struct mrt6msg),
2496 				  nla_data(nla), payloadlen))
2497 		goto nla_put_failure;
2498 
2499 	nlmsg_end(skb, nlh);
2500 
2501 	rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE_R, NULL, GFP_ATOMIC);
2502 	return;
2503 
2504 nla_put_failure:
2505 	nlmsg_cancel(skb, nlh);
2506 errout:
2507 	kfree_skb(skb);
2508 	rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE_R, -ENOBUFS);
2509 }
2510 
2511 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2512 {
2513 	const struct nlmsghdr *nlh = cb->nlh;
2514 	struct fib_dump_filter filter = {};
2515 	int err;
2516 
2517 	if (cb->strict_check) {
2518 		err = ip_valid_fib_dump_req(sock_net(skb->sk), nlh,
2519 					    &filter, cb);
2520 		if (err < 0)
2521 			return err;
2522 	}
2523 
2524 	if (filter.table_id) {
2525 		struct mr_table *mrt;
2526 
2527 		mrt = ip6mr_get_table(sock_net(skb->sk), filter.table_id);
2528 		if (!mrt) {
2529 			if (rtnl_msg_family(cb->nlh) != RTNL_FAMILY_IP6MR)
2530 				return skb->len;
2531 
2532 			NL_SET_ERR_MSG_MOD(cb->extack, "MR table does not exist");
2533 			return -ENOENT;
2534 		}
2535 		err = mr_table_dump(mrt, skb, cb, _ip6mr_fill_mroute,
2536 				    &mfc_unres_lock, &filter);
2537 		return skb->len ? : err;
2538 	}
2539 
2540 	return mr_rtm_dumproute(skb, cb, ip6mr_mr_table_iter,
2541 				_ip6mr_fill_mroute, &mfc_unres_lock, &filter);
2542 }
2543