1 /* 2 * Linux IPv6 multicast routing support for BSD pim6sd 3 * Based on net/ipv4/ipmr.c. 4 * 5 * (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr> 6 * LSIIT Laboratory, Strasbourg, France 7 * (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com> 8 * 6WIND, Paris, France 9 * Copyright (C)2007,2008 USAGI/WIDE Project 10 * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 15 * 2 of the License, or (at your option) any later version. 16 * 17 */ 18 19 #include <asm/uaccess.h> 20 #include <linux/types.h> 21 #include <linux/sched.h> 22 #include <linux/errno.h> 23 #include <linux/timer.h> 24 #include <linux/mm.h> 25 #include <linux/kernel.h> 26 #include <linux/fcntl.h> 27 #include <linux/stat.h> 28 #include <linux/socket.h> 29 #include <linux/inet.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/proc_fs.h> 33 #include <linux/seq_file.h> 34 #include <linux/init.h> 35 #include <linux/slab.h> 36 #include <linux/compat.h> 37 #include <net/protocol.h> 38 #include <linux/skbuff.h> 39 #include <net/sock.h> 40 #include <net/raw.h> 41 #include <linux/notifier.h> 42 #include <linux/if_arp.h> 43 #include <net/checksum.h> 44 #include <net/netlink.h> 45 #include <net/fib_rules.h> 46 47 #include <net/ipv6.h> 48 #include <net/ip6_route.h> 49 #include <linux/mroute6.h> 50 #include <linux/pim.h> 51 #include <net/addrconf.h> 52 #include <linux/netfilter_ipv6.h> 53 #include <linux/export.h> 54 #include <net/ip6_checksum.h> 55 #include <linux/netconf.h> 56 57 struct mr6_table { 58 struct list_head list; 59 #ifdef CONFIG_NET_NS 60 struct net *net; 61 #endif 62 u32 id; 63 struct sock *mroute6_sk; 64 struct timer_list ipmr_expire_timer; 65 struct list_head mfc6_unres_queue; 66 struct list_head mfc6_cache_array[MFC6_LINES]; 67 struct mif_device vif6_table[MAXMIFS]; 68 int maxvif; 69 atomic_t cache_resolve_queue_len; 70 bool mroute_do_assert; 71 bool mroute_do_pim; 72 #ifdef CONFIG_IPV6_PIMSM_V2 73 int mroute_reg_vif_num; 74 #endif 75 }; 76 77 struct ip6mr_rule { 78 struct fib_rule common; 79 }; 80 81 struct ip6mr_result { 82 struct mr6_table *mrt; 83 }; 84 85 /* Big lock, protecting vif table, mrt cache and mroute socket state. 86 Note that the changes are semaphored via rtnl_lock. 87 */ 88 89 static DEFINE_RWLOCK(mrt_lock); 90 91 /* 92 * Multicast router control variables 93 */ 94 95 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL) 96 97 /* Special spinlock for queue of unresolved entries */ 98 static DEFINE_SPINLOCK(mfc_unres_lock); 99 100 /* We return to original Alan's scheme. Hash table of resolved 101 entries is changed only in process context and protected 102 with weak lock mrt_lock. Queue of unresolved entries is protected 103 with strong spinlock mfc_unres_lock. 104 105 In this case data path is free of exclusive locks at all. 106 */ 107 108 static struct kmem_cache *mrt_cachep __read_mostly; 109 110 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id); 111 static void ip6mr_free_table(struct mr6_table *mrt); 112 113 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt, 114 struct sk_buff *skb, struct mfc6_cache *cache); 115 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt, 116 mifi_t mifi, int assert); 117 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 118 struct mfc6_cache *c, struct rtmsg *rtm); 119 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc, 120 int cmd); 121 static int ip6mr_rtm_dumproute(struct sk_buff *skb, 122 struct netlink_callback *cb); 123 static void mroute_clean_tables(struct mr6_table *mrt); 124 static void ipmr_expire_process(unsigned long arg); 125 126 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 127 #define ip6mr_for_each_table(mrt, net) \ 128 list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list) 129 130 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id) 131 { 132 struct mr6_table *mrt; 133 134 ip6mr_for_each_table(mrt, net) { 135 if (mrt->id == id) 136 return mrt; 137 } 138 return NULL; 139 } 140 141 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 142 struct mr6_table **mrt) 143 { 144 int err; 145 struct ip6mr_result res; 146 struct fib_lookup_arg arg = { 147 .result = &res, 148 .flags = FIB_LOOKUP_NOREF, 149 }; 150 151 err = fib_rules_lookup(net->ipv6.mr6_rules_ops, 152 flowi6_to_flowi(flp6), 0, &arg); 153 if (err < 0) 154 return err; 155 *mrt = res.mrt; 156 return 0; 157 } 158 159 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp, 160 int flags, struct fib_lookup_arg *arg) 161 { 162 struct ip6mr_result *res = arg->result; 163 struct mr6_table *mrt; 164 165 switch (rule->action) { 166 case FR_ACT_TO_TBL: 167 break; 168 case FR_ACT_UNREACHABLE: 169 return -ENETUNREACH; 170 case FR_ACT_PROHIBIT: 171 return -EACCES; 172 case FR_ACT_BLACKHOLE: 173 default: 174 return -EINVAL; 175 } 176 177 mrt = ip6mr_get_table(rule->fr_net, rule->table); 178 if (mrt == NULL) 179 return -EAGAIN; 180 res->mrt = mrt; 181 return 0; 182 } 183 184 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags) 185 { 186 return 1; 187 } 188 189 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = { 190 FRA_GENERIC_POLICY, 191 }; 192 193 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb, 194 struct fib_rule_hdr *frh, struct nlattr **tb) 195 { 196 return 0; 197 } 198 199 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh, 200 struct nlattr **tb) 201 { 202 return 1; 203 } 204 205 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb, 206 struct fib_rule_hdr *frh) 207 { 208 frh->dst_len = 0; 209 frh->src_len = 0; 210 frh->tos = 0; 211 return 0; 212 } 213 214 static const struct fib_rules_ops __net_initconst ip6mr_rules_ops_template = { 215 .family = RTNL_FAMILY_IP6MR, 216 .rule_size = sizeof(struct ip6mr_rule), 217 .addr_size = sizeof(struct in6_addr), 218 .action = ip6mr_rule_action, 219 .match = ip6mr_rule_match, 220 .configure = ip6mr_rule_configure, 221 .compare = ip6mr_rule_compare, 222 .default_pref = fib_default_rule_pref, 223 .fill = ip6mr_rule_fill, 224 .nlgroup = RTNLGRP_IPV6_RULE, 225 .policy = ip6mr_rule_policy, 226 .owner = THIS_MODULE, 227 }; 228 229 static int __net_init ip6mr_rules_init(struct net *net) 230 { 231 struct fib_rules_ops *ops; 232 struct mr6_table *mrt; 233 int err; 234 235 ops = fib_rules_register(&ip6mr_rules_ops_template, net); 236 if (IS_ERR(ops)) 237 return PTR_ERR(ops); 238 239 INIT_LIST_HEAD(&net->ipv6.mr6_tables); 240 241 mrt = ip6mr_new_table(net, RT6_TABLE_DFLT); 242 if (mrt == NULL) { 243 err = -ENOMEM; 244 goto err1; 245 } 246 247 err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0); 248 if (err < 0) 249 goto err2; 250 251 net->ipv6.mr6_rules_ops = ops; 252 return 0; 253 254 err2: 255 kfree(mrt); 256 err1: 257 fib_rules_unregister(ops); 258 return err; 259 } 260 261 static void __net_exit ip6mr_rules_exit(struct net *net) 262 { 263 struct mr6_table *mrt, *next; 264 265 rtnl_lock(); 266 list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) { 267 list_del(&mrt->list); 268 ip6mr_free_table(mrt); 269 } 270 rtnl_unlock(); 271 fib_rules_unregister(net->ipv6.mr6_rules_ops); 272 } 273 #else 274 #define ip6mr_for_each_table(mrt, net) \ 275 for (mrt = net->ipv6.mrt6; mrt; mrt = NULL) 276 277 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id) 278 { 279 return net->ipv6.mrt6; 280 } 281 282 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6, 283 struct mr6_table **mrt) 284 { 285 *mrt = net->ipv6.mrt6; 286 return 0; 287 } 288 289 static int __net_init ip6mr_rules_init(struct net *net) 290 { 291 net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT); 292 return net->ipv6.mrt6 ? 0 : -ENOMEM; 293 } 294 295 static void __net_exit ip6mr_rules_exit(struct net *net) 296 { 297 rtnl_lock(); 298 ip6mr_free_table(net->ipv6.mrt6); 299 net->ipv6.mrt6 = NULL; 300 rtnl_unlock(); 301 } 302 #endif 303 304 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id) 305 { 306 struct mr6_table *mrt; 307 unsigned int i; 308 309 mrt = ip6mr_get_table(net, id); 310 if (mrt != NULL) 311 return mrt; 312 313 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL); 314 if (mrt == NULL) 315 return NULL; 316 mrt->id = id; 317 write_pnet(&mrt->net, net); 318 319 /* Forwarding cache */ 320 for (i = 0; i < MFC6_LINES; i++) 321 INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]); 322 323 INIT_LIST_HEAD(&mrt->mfc6_unres_queue); 324 325 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process, 326 (unsigned long)mrt); 327 328 #ifdef CONFIG_IPV6_PIMSM_V2 329 mrt->mroute_reg_vif_num = -1; 330 #endif 331 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 332 list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables); 333 #endif 334 return mrt; 335 } 336 337 static void ip6mr_free_table(struct mr6_table *mrt) 338 { 339 del_timer(&mrt->ipmr_expire_timer); 340 mroute_clean_tables(mrt); 341 kfree(mrt); 342 } 343 344 #ifdef CONFIG_PROC_FS 345 346 struct ipmr_mfc_iter { 347 struct seq_net_private p; 348 struct mr6_table *mrt; 349 struct list_head *cache; 350 int ct; 351 }; 352 353 354 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net, 355 struct ipmr_mfc_iter *it, loff_t pos) 356 { 357 struct mr6_table *mrt = it->mrt; 358 struct mfc6_cache *mfc; 359 360 read_lock(&mrt_lock); 361 for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) { 362 it->cache = &mrt->mfc6_cache_array[it->ct]; 363 list_for_each_entry(mfc, it->cache, list) 364 if (pos-- == 0) 365 return mfc; 366 } 367 read_unlock(&mrt_lock); 368 369 spin_lock_bh(&mfc_unres_lock); 370 it->cache = &mrt->mfc6_unres_queue; 371 list_for_each_entry(mfc, it->cache, list) 372 if (pos-- == 0) 373 return mfc; 374 spin_unlock_bh(&mfc_unres_lock); 375 376 it->cache = NULL; 377 return NULL; 378 } 379 380 /* 381 * The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif 382 */ 383 384 struct ipmr_vif_iter { 385 struct seq_net_private p; 386 struct mr6_table *mrt; 387 int ct; 388 }; 389 390 static struct mif_device *ip6mr_vif_seq_idx(struct net *net, 391 struct ipmr_vif_iter *iter, 392 loff_t pos) 393 { 394 struct mr6_table *mrt = iter->mrt; 395 396 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) { 397 if (!MIF_EXISTS(mrt, iter->ct)) 398 continue; 399 if (pos-- == 0) 400 return &mrt->vif6_table[iter->ct]; 401 } 402 return NULL; 403 } 404 405 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos) 406 __acquires(mrt_lock) 407 { 408 struct ipmr_vif_iter *iter = seq->private; 409 struct net *net = seq_file_net(seq); 410 struct mr6_table *mrt; 411 412 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 413 if (mrt == NULL) 414 return ERR_PTR(-ENOENT); 415 416 iter->mrt = mrt; 417 418 read_lock(&mrt_lock); 419 return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1) 420 : SEQ_START_TOKEN; 421 } 422 423 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos) 424 { 425 struct ipmr_vif_iter *iter = seq->private; 426 struct net *net = seq_file_net(seq); 427 struct mr6_table *mrt = iter->mrt; 428 429 ++*pos; 430 if (v == SEQ_START_TOKEN) 431 return ip6mr_vif_seq_idx(net, iter, 0); 432 433 while (++iter->ct < mrt->maxvif) { 434 if (!MIF_EXISTS(mrt, iter->ct)) 435 continue; 436 return &mrt->vif6_table[iter->ct]; 437 } 438 return NULL; 439 } 440 441 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v) 442 __releases(mrt_lock) 443 { 444 read_unlock(&mrt_lock); 445 } 446 447 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v) 448 { 449 struct ipmr_vif_iter *iter = seq->private; 450 struct mr6_table *mrt = iter->mrt; 451 452 if (v == SEQ_START_TOKEN) { 453 seq_puts(seq, 454 "Interface BytesIn PktsIn BytesOut PktsOut Flags\n"); 455 } else { 456 const struct mif_device *vif = v; 457 const char *name = vif->dev ? vif->dev->name : "none"; 458 459 seq_printf(seq, 460 "%2td %-10s %8ld %7ld %8ld %7ld %05X\n", 461 vif - mrt->vif6_table, 462 name, vif->bytes_in, vif->pkt_in, 463 vif->bytes_out, vif->pkt_out, 464 vif->flags); 465 } 466 return 0; 467 } 468 469 static const struct seq_operations ip6mr_vif_seq_ops = { 470 .start = ip6mr_vif_seq_start, 471 .next = ip6mr_vif_seq_next, 472 .stop = ip6mr_vif_seq_stop, 473 .show = ip6mr_vif_seq_show, 474 }; 475 476 static int ip6mr_vif_open(struct inode *inode, struct file *file) 477 { 478 return seq_open_net(inode, file, &ip6mr_vif_seq_ops, 479 sizeof(struct ipmr_vif_iter)); 480 } 481 482 static const struct file_operations ip6mr_vif_fops = { 483 .owner = THIS_MODULE, 484 .open = ip6mr_vif_open, 485 .read = seq_read, 486 .llseek = seq_lseek, 487 .release = seq_release_net, 488 }; 489 490 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos) 491 { 492 struct ipmr_mfc_iter *it = seq->private; 493 struct net *net = seq_file_net(seq); 494 struct mr6_table *mrt; 495 496 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 497 if (mrt == NULL) 498 return ERR_PTR(-ENOENT); 499 500 it->mrt = mrt; 501 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1) 502 : SEQ_START_TOKEN; 503 } 504 505 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos) 506 { 507 struct mfc6_cache *mfc = v; 508 struct ipmr_mfc_iter *it = seq->private; 509 struct net *net = seq_file_net(seq); 510 struct mr6_table *mrt = it->mrt; 511 512 ++*pos; 513 514 if (v == SEQ_START_TOKEN) 515 return ipmr_mfc_seq_idx(net, seq->private, 0); 516 517 if (mfc->list.next != it->cache) 518 return list_entry(mfc->list.next, struct mfc6_cache, list); 519 520 if (it->cache == &mrt->mfc6_unres_queue) 521 goto end_of_list; 522 523 BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]); 524 525 while (++it->ct < MFC6_LINES) { 526 it->cache = &mrt->mfc6_cache_array[it->ct]; 527 if (list_empty(it->cache)) 528 continue; 529 return list_first_entry(it->cache, struct mfc6_cache, list); 530 } 531 532 /* exhausted cache_array, show unresolved */ 533 read_unlock(&mrt_lock); 534 it->cache = &mrt->mfc6_unres_queue; 535 it->ct = 0; 536 537 spin_lock_bh(&mfc_unres_lock); 538 if (!list_empty(it->cache)) 539 return list_first_entry(it->cache, struct mfc6_cache, list); 540 541 end_of_list: 542 spin_unlock_bh(&mfc_unres_lock); 543 it->cache = NULL; 544 545 return NULL; 546 } 547 548 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v) 549 { 550 struct ipmr_mfc_iter *it = seq->private; 551 struct mr6_table *mrt = it->mrt; 552 553 if (it->cache == &mrt->mfc6_unres_queue) 554 spin_unlock_bh(&mfc_unres_lock); 555 else if (it->cache == mrt->mfc6_cache_array) 556 read_unlock(&mrt_lock); 557 } 558 559 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v) 560 { 561 int n; 562 563 if (v == SEQ_START_TOKEN) { 564 seq_puts(seq, 565 "Group " 566 "Origin " 567 "Iif Pkts Bytes Wrong Oifs\n"); 568 } else { 569 const struct mfc6_cache *mfc = v; 570 const struct ipmr_mfc_iter *it = seq->private; 571 struct mr6_table *mrt = it->mrt; 572 573 seq_printf(seq, "%pI6 %pI6 %-3hd", 574 &mfc->mf6c_mcastgrp, &mfc->mf6c_origin, 575 mfc->mf6c_parent); 576 577 if (it->cache != &mrt->mfc6_unres_queue) { 578 seq_printf(seq, " %8lu %8lu %8lu", 579 mfc->mfc_un.res.pkt, 580 mfc->mfc_un.res.bytes, 581 mfc->mfc_un.res.wrong_if); 582 for (n = mfc->mfc_un.res.minvif; 583 n < mfc->mfc_un.res.maxvif; n++) { 584 if (MIF_EXISTS(mrt, n) && 585 mfc->mfc_un.res.ttls[n] < 255) 586 seq_printf(seq, 587 " %2d:%-3d", 588 n, mfc->mfc_un.res.ttls[n]); 589 } 590 } else { 591 /* unresolved mfc_caches don't contain 592 * pkt, bytes and wrong_if values 593 */ 594 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul); 595 } 596 seq_putc(seq, '\n'); 597 } 598 return 0; 599 } 600 601 static const struct seq_operations ipmr_mfc_seq_ops = { 602 .start = ipmr_mfc_seq_start, 603 .next = ipmr_mfc_seq_next, 604 .stop = ipmr_mfc_seq_stop, 605 .show = ipmr_mfc_seq_show, 606 }; 607 608 static int ipmr_mfc_open(struct inode *inode, struct file *file) 609 { 610 return seq_open_net(inode, file, &ipmr_mfc_seq_ops, 611 sizeof(struct ipmr_mfc_iter)); 612 } 613 614 static const struct file_operations ip6mr_mfc_fops = { 615 .owner = THIS_MODULE, 616 .open = ipmr_mfc_open, 617 .read = seq_read, 618 .llseek = seq_lseek, 619 .release = seq_release_net, 620 }; 621 #endif 622 623 #ifdef CONFIG_IPV6_PIMSM_V2 624 625 static int pim6_rcv(struct sk_buff *skb) 626 { 627 struct pimreghdr *pim; 628 struct ipv6hdr *encap; 629 struct net_device *reg_dev = NULL; 630 struct net *net = dev_net(skb->dev); 631 struct mr6_table *mrt; 632 struct flowi6 fl6 = { 633 .flowi6_iif = skb->dev->ifindex, 634 .flowi6_mark = skb->mark, 635 }; 636 int reg_vif_num; 637 638 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap))) 639 goto drop; 640 641 pim = (struct pimreghdr *)skb_transport_header(skb); 642 if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) || 643 (pim->flags & PIM_NULL_REGISTER) || 644 (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 645 sizeof(*pim), IPPROTO_PIM, 646 csum_partial((void *)pim, sizeof(*pim), 0)) && 647 csum_fold(skb_checksum(skb, 0, skb->len, 0)))) 648 goto drop; 649 650 /* check if the inner packet is destined to mcast group */ 651 encap = (struct ipv6hdr *)(skb_transport_header(skb) + 652 sizeof(*pim)); 653 654 if (!ipv6_addr_is_multicast(&encap->daddr) || 655 encap->payload_len == 0 || 656 ntohs(encap->payload_len) + sizeof(*pim) > skb->len) 657 goto drop; 658 659 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 660 goto drop; 661 reg_vif_num = mrt->mroute_reg_vif_num; 662 663 read_lock(&mrt_lock); 664 if (reg_vif_num >= 0) 665 reg_dev = mrt->vif6_table[reg_vif_num].dev; 666 if (reg_dev) 667 dev_hold(reg_dev); 668 read_unlock(&mrt_lock); 669 670 if (reg_dev == NULL) 671 goto drop; 672 673 skb->mac_header = skb->network_header; 674 skb_pull(skb, (u8 *)encap - skb->data); 675 skb_reset_network_header(skb); 676 skb->protocol = htons(ETH_P_IPV6); 677 skb->ip_summed = CHECKSUM_NONE; 678 679 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev)); 680 681 netif_rx(skb); 682 683 dev_put(reg_dev); 684 return 0; 685 drop: 686 kfree_skb(skb); 687 return 0; 688 } 689 690 static const struct inet6_protocol pim6_protocol = { 691 .handler = pim6_rcv, 692 }; 693 694 /* Service routines creating virtual interfaces: PIMREG */ 695 696 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, 697 struct net_device *dev) 698 { 699 struct net *net = dev_net(dev); 700 struct mr6_table *mrt; 701 struct flowi6 fl6 = { 702 .flowi6_oif = dev->ifindex, 703 .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 704 .flowi6_mark = skb->mark, 705 }; 706 int err; 707 708 err = ip6mr_fib_lookup(net, &fl6, &mrt); 709 if (err < 0) { 710 kfree_skb(skb); 711 return err; 712 } 713 714 read_lock(&mrt_lock); 715 dev->stats.tx_bytes += skb->len; 716 dev->stats.tx_packets++; 717 ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT); 718 read_unlock(&mrt_lock); 719 kfree_skb(skb); 720 return NETDEV_TX_OK; 721 } 722 723 static const struct net_device_ops reg_vif_netdev_ops = { 724 .ndo_start_xmit = reg_vif_xmit, 725 }; 726 727 static void reg_vif_setup(struct net_device *dev) 728 { 729 dev->type = ARPHRD_PIMREG; 730 dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8; 731 dev->flags = IFF_NOARP; 732 dev->netdev_ops = ®_vif_netdev_ops; 733 dev->destructor = free_netdev; 734 dev->features |= NETIF_F_NETNS_LOCAL; 735 } 736 737 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt) 738 { 739 struct net_device *dev; 740 char name[IFNAMSIZ]; 741 742 if (mrt->id == RT6_TABLE_DFLT) 743 sprintf(name, "pim6reg"); 744 else 745 sprintf(name, "pim6reg%u", mrt->id); 746 747 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup); 748 if (dev == NULL) 749 return NULL; 750 751 dev_net_set(dev, net); 752 753 if (register_netdevice(dev)) { 754 free_netdev(dev); 755 return NULL; 756 } 757 dev->iflink = 0; 758 759 if (dev_open(dev)) 760 goto failure; 761 762 dev_hold(dev); 763 return dev; 764 765 failure: 766 /* allow the register to be completed before unregistering. */ 767 rtnl_unlock(); 768 rtnl_lock(); 769 770 unregister_netdevice(dev); 771 return NULL; 772 } 773 #endif 774 775 /* 776 * Delete a VIF entry 777 */ 778 779 static int mif6_delete(struct mr6_table *mrt, int vifi, struct list_head *head) 780 { 781 struct mif_device *v; 782 struct net_device *dev; 783 struct inet6_dev *in6_dev; 784 785 if (vifi < 0 || vifi >= mrt->maxvif) 786 return -EADDRNOTAVAIL; 787 788 v = &mrt->vif6_table[vifi]; 789 790 write_lock_bh(&mrt_lock); 791 dev = v->dev; 792 v->dev = NULL; 793 794 if (!dev) { 795 write_unlock_bh(&mrt_lock); 796 return -EADDRNOTAVAIL; 797 } 798 799 #ifdef CONFIG_IPV6_PIMSM_V2 800 if (vifi == mrt->mroute_reg_vif_num) 801 mrt->mroute_reg_vif_num = -1; 802 #endif 803 804 if (vifi + 1 == mrt->maxvif) { 805 int tmp; 806 for (tmp = vifi - 1; tmp >= 0; tmp--) { 807 if (MIF_EXISTS(mrt, tmp)) 808 break; 809 } 810 mrt->maxvif = tmp + 1; 811 } 812 813 write_unlock_bh(&mrt_lock); 814 815 dev_set_allmulti(dev, -1); 816 817 in6_dev = __in6_dev_get(dev); 818 if (in6_dev) { 819 in6_dev->cnf.mc_forwarding--; 820 inet6_netconf_notify_devconf(dev_net(dev), 821 NETCONFA_MC_FORWARDING, 822 dev->ifindex, &in6_dev->cnf); 823 } 824 825 if (v->flags & MIFF_REGISTER) 826 unregister_netdevice_queue(dev, head); 827 828 dev_put(dev); 829 return 0; 830 } 831 832 static inline void ip6mr_cache_free(struct mfc6_cache *c) 833 { 834 kmem_cache_free(mrt_cachep, c); 835 } 836 837 /* Destroy an unresolved cache entry, killing queued skbs 838 and reporting error to netlink readers. 839 */ 840 841 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c) 842 { 843 struct net *net = read_pnet(&mrt->net); 844 struct sk_buff *skb; 845 846 atomic_dec(&mrt->cache_resolve_queue_len); 847 848 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) { 849 if (ipv6_hdr(skb)->version == 0) { 850 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr)); 851 nlh->nlmsg_type = NLMSG_ERROR; 852 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 853 skb_trim(skb, nlh->nlmsg_len); 854 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -ETIMEDOUT; 855 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 856 } else 857 kfree_skb(skb); 858 } 859 860 ip6mr_cache_free(c); 861 } 862 863 864 /* Timer process for all the unresolved queue. */ 865 866 static void ipmr_do_expire_process(struct mr6_table *mrt) 867 { 868 unsigned long now = jiffies; 869 unsigned long expires = 10 * HZ; 870 struct mfc6_cache *c, *next; 871 872 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) { 873 if (time_after(c->mfc_un.unres.expires, now)) { 874 /* not yet... */ 875 unsigned long interval = c->mfc_un.unres.expires - now; 876 if (interval < expires) 877 expires = interval; 878 continue; 879 } 880 881 list_del(&c->list); 882 mr6_netlink_event(mrt, c, RTM_DELROUTE); 883 ip6mr_destroy_unres(mrt, c); 884 } 885 886 if (!list_empty(&mrt->mfc6_unres_queue)) 887 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires); 888 } 889 890 static void ipmr_expire_process(unsigned long arg) 891 { 892 struct mr6_table *mrt = (struct mr6_table *)arg; 893 894 if (!spin_trylock(&mfc_unres_lock)) { 895 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1); 896 return; 897 } 898 899 if (!list_empty(&mrt->mfc6_unres_queue)) 900 ipmr_do_expire_process(mrt); 901 902 spin_unlock(&mfc_unres_lock); 903 } 904 905 /* Fill oifs list. It is called under write locked mrt_lock. */ 906 907 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache, 908 unsigned char *ttls) 909 { 910 int vifi; 911 912 cache->mfc_un.res.minvif = MAXMIFS; 913 cache->mfc_un.res.maxvif = 0; 914 memset(cache->mfc_un.res.ttls, 255, MAXMIFS); 915 916 for (vifi = 0; vifi < mrt->maxvif; vifi++) { 917 if (MIF_EXISTS(mrt, vifi) && 918 ttls[vifi] && ttls[vifi] < 255) { 919 cache->mfc_un.res.ttls[vifi] = ttls[vifi]; 920 if (cache->mfc_un.res.minvif > vifi) 921 cache->mfc_un.res.minvif = vifi; 922 if (cache->mfc_un.res.maxvif <= vifi) 923 cache->mfc_un.res.maxvif = vifi + 1; 924 } 925 } 926 } 927 928 static int mif6_add(struct net *net, struct mr6_table *mrt, 929 struct mif6ctl *vifc, int mrtsock) 930 { 931 int vifi = vifc->mif6c_mifi; 932 struct mif_device *v = &mrt->vif6_table[vifi]; 933 struct net_device *dev; 934 struct inet6_dev *in6_dev; 935 int err; 936 937 /* Is vif busy ? */ 938 if (MIF_EXISTS(mrt, vifi)) 939 return -EADDRINUSE; 940 941 switch (vifc->mif6c_flags) { 942 #ifdef CONFIG_IPV6_PIMSM_V2 943 case MIFF_REGISTER: 944 /* 945 * Special Purpose VIF in PIM 946 * All the packets will be sent to the daemon 947 */ 948 if (mrt->mroute_reg_vif_num >= 0) 949 return -EADDRINUSE; 950 dev = ip6mr_reg_vif(net, mrt); 951 if (!dev) 952 return -ENOBUFS; 953 err = dev_set_allmulti(dev, 1); 954 if (err) { 955 unregister_netdevice(dev); 956 dev_put(dev); 957 return err; 958 } 959 break; 960 #endif 961 case 0: 962 dev = dev_get_by_index(net, vifc->mif6c_pifi); 963 if (!dev) 964 return -EADDRNOTAVAIL; 965 err = dev_set_allmulti(dev, 1); 966 if (err) { 967 dev_put(dev); 968 return err; 969 } 970 break; 971 default: 972 return -EINVAL; 973 } 974 975 in6_dev = __in6_dev_get(dev); 976 if (in6_dev) { 977 in6_dev->cnf.mc_forwarding++; 978 inet6_netconf_notify_devconf(dev_net(dev), 979 NETCONFA_MC_FORWARDING, 980 dev->ifindex, &in6_dev->cnf); 981 } 982 983 /* 984 * Fill in the VIF structures 985 */ 986 v->rate_limit = vifc->vifc_rate_limit; 987 v->flags = vifc->mif6c_flags; 988 if (!mrtsock) 989 v->flags |= VIFF_STATIC; 990 v->threshold = vifc->vifc_threshold; 991 v->bytes_in = 0; 992 v->bytes_out = 0; 993 v->pkt_in = 0; 994 v->pkt_out = 0; 995 v->link = dev->ifindex; 996 if (v->flags & MIFF_REGISTER) 997 v->link = dev->iflink; 998 999 /* And finish update writing critical data */ 1000 write_lock_bh(&mrt_lock); 1001 v->dev = dev; 1002 #ifdef CONFIG_IPV6_PIMSM_V2 1003 if (v->flags & MIFF_REGISTER) 1004 mrt->mroute_reg_vif_num = vifi; 1005 #endif 1006 if (vifi + 1 > mrt->maxvif) 1007 mrt->maxvif = vifi + 1; 1008 write_unlock_bh(&mrt_lock); 1009 return 0; 1010 } 1011 1012 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt, 1013 const struct in6_addr *origin, 1014 const struct in6_addr *mcastgrp) 1015 { 1016 int line = MFC6_HASH(mcastgrp, origin); 1017 struct mfc6_cache *c; 1018 1019 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) { 1020 if (ipv6_addr_equal(&c->mf6c_origin, origin) && 1021 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) 1022 return c; 1023 } 1024 return NULL; 1025 } 1026 1027 /* Look for a (*,*,oif) entry */ 1028 static struct mfc6_cache *ip6mr_cache_find_any_parent(struct mr6_table *mrt, 1029 mifi_t mifi) 1030 { 1031 int line = MFC6_HASH(&in6addr_any, &in6addr_any); 1032 struct mfc6_cache *c; 1033 1034 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) 1035 if (ipv6_addr_any(&c->mf6c_origin) && 1036 ipv6_addr_any(&c->mf6c_mcastgrp) && 1037 (c->mfc_un.res.ttls[mifi] < 255)) 1038 return c; 1039 1040 return NULL; 1041 } 1042 1043 /* Look for a (*,G) entry */ 1044 static struct mfc6_cache *ip6mr_cache_find_any(struct mr6_table *mrt, 1045 struct in6_addr *mcastgrp, 1046 mifi_t mifi) 1047 { 1048 int line = MFC6_HASH(mcastgrp, &in6addr_any); 1049 struct mfc6_cache *c, *proxy; 1050 1051 if (ipv6_addr_any(mcastgrp)) 1052 goto skip; 1053 1054 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) 1055 if (ipv6_addr_any(&c->mf6c_origin) && 1056 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp)) { 1057 if (c->mfc_un.res.ttls[mifi] < 255) 1058 return c; 1059 1060 /* It's ok if the mifi is part of the static tree */ 1061 proxy = ip6mr_cache_find_any_parent(mrt, 1062 c->mf6c_parent); 1063 if (proxy && proxy->mfc_un.res.ttls[mifi] < 255) 1064 return c; 1065 } 1066 1067 skip: 1068 return ip6mr_cache_find_any_parent(mrt, mifi); 1069 } 1070 1071 /* 1072 * Allocate a multicast cache entry 1073 */ 1074 static struct mfc6_cache *ip6mr_cache_alloc(void) 1075 { 1076 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL); 1077 if (c == NULL) 1078 return NULL; 1079 c->mfc_un.res.minvif = MAXMIFS; 1080 return c; 1081 } 1082 1083 static struct mfc6_cache *ip6mr_cache_alloc_unres(void) 1084 { 1085 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC); 1086 if (c == NULL) 1087 return NULL; 1088 skb_queue_head_init(&c->mfc_un.unres.unresolved); 1089 c->mfc_un.unres.expires = jiffies + 10 * HZ; 1090 return c; 1091 } 1092 1093 /* 1094 * A cache entry has gone into a resolved state from queued 1095 */ 1096 1097 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt, 1098 struct mfc6_cache *uc, struct mfc6_cache *c) 1099 { 1100 struct sk_buff *skb; 1101 1102 /* 1103 * Play the pending entries through our router 1104 */ 1105 1106 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) { 1107 if (ipv6_hdr(skb)->version == 0) { 1108 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr)); 1109 1110 if (__ip6mr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) { 1111 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh; 1112 } else { 1113 nlh->nlmsg_type = NLMSG_ERROR; 1114 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr)); 1115 skb_trim(skb, nlh->nlmsg_len); 1116 ((struct nlmsgerr *)nlmsg_data(nlh))->error = -EMSGSIZE; 1117 } 1118 rtnl_unicast(skb, net, NETLINK_CB(skb).portid); 1119 } else 1120 ip6_mr_forward(net, mrt, skb, c); 1121 } 1122 } 1123 1124 /* 1125 * Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd 1126 * expects the following bizarre scheme. 1127 * 1128 * Called under mrt_lock. 1129 */ 1130 1131 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt, 1132 mifi_t mifi, int assert) 1133 { 1134 struct sk_buff *skb; 1135 struct mrt6msg *msg; 1136 int ret; 1137 1138 #ifdef CONFIG_IPV6_PIMSM_V2 1139 if (assert == MRT6MSG_WHOLEPKT) 1140 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt) 1141 +sizeof(*msg)); 1142 else 1143 #endif 1144 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC); 1145 1146 if (!skb) 1147 return -ENOBUFS; 1148 1149 /* I suppose that internal messages 1150 * do not require checksums */ 1151 1152 skb->ip_summed = CHECKSUM_UNNECESSARY; 1153 1154 #ifdef CONFIG_IPV6_PIMSM_V2 1155 if (assert == MRT6MSG_WHOLEPKT) { 1156 /* Ugly, but we have no choice with this interface. 1157 Duplicate old header, fix length etc. 1158 And all this only to mangle msg->im6_msgtype and 1159 to set msg->im6_mbz to "mbz" :-) 1160 */ 1161 skb_push(skb, -skb_network_offset(pkt)); 1162 1163 skb_push(skb, sizeof(*msg)); 1164 skb_reset_transport_header(skb); 1165 msg = (struct mrt6msg *)skb_transport_header(skb); 1166 msg->im6_mbz = 0; 1167 msg->im6_msgtype = MRT6MSG_WHOLEPKT; 1168 msg->im6_mif = mrt->mroute_reg_vif_num; 1169 msg->im6_pad = 0; 1170 msg->im6_src = ipv6_hdr(pkt)->saddr; 1171 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1172 1173 skb->ip_summed = CHECKSUM_UNNECESSARY; 1174 } else 1175 #endif 1176 { 1177 /* 1178 * Copy the IP header 1179 */ 1180 1181 skb_put(skb, sizeof(struct ipv6hdr)); 1182 skb_reset_network_header(skb); 1183 skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr)); 1184 1185 /* 1186 * Add our header 1187 */ 1188 skb_put(skb, sizeof(*msg)); 1189 skb_reset_transport_header(skb); 1190 msg = (struct mrt6msg *)skb_transport_header(skb); 1191 1192 msg->im6_mbz = 0; 1193 msg->im6_msgtype = assert; 1194 msg->im6_mif = mifi; 1195 msg->im6_pad = 0; 1196 msg->im6_src = ipv6_hdr(pkt)->saddr; 1197 msg->im6_dst = ipv6_hdr(pkt)->daddr; 1198 1199 skb_dst_set(skb, dst_clone(skb_dst(pkt))); 1200 skb->ip_summed = CHECKSUM_UNNECESSARY; 1201 } 1202 1203 if (mrt->mroute6_sk == NULL) { 1204 kfree_skb(skb); 1205 return -EINVAL; 1206 } 1207 1208 /* 1209 * Deliver to user space multicast routing algorithms 1210 */ 1211 ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb); 1212 if (ret < 0) { 1213 net_warn_ratelimited("mroute6: pending queue full, dropping entries\n"); 1214 kfree_skb(skb); 1215 } 1216 1217 return ret; 1218 } 1219 1220 /* 1221 * Queue a packet for resolution. It gets locked cache entry! 1222 */ 1223 1224 static int 1225 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb) 1226 { 1227 bool found = false; 1228 int err; 1229 struct mfc6_cache *c; 1230 1231 spin_lock_bh(&mfc_unres_lock); 1232 list_for_each_entry(c, &mrt->mfc6_unres_queue, list) { 1233 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) && 1234 ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) { 1235 found = true; 1236 break; 1237 } 1238 } 1239 1240 if (!found) { 1241 /* 1242 * Create a new entry if allowable 1243 */ 1244 1245 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 || 1246 (c = ip6mr_cache_alloc_unres()) == NULL) { 1247 spin_unlock_bh(&mfc_unres_lock); 1248 1249 kfree_skb(skb); 1250 return -ENOBUFS; 1251 } 1252 1253 /* 1254 * Fill in the new cache entry 1255 */ 1256 c->mf6c_parent = -1; 1257 c->mf6c_origin = ipv6_hdr(skb)->saddr; 1258 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr; 1259 1260 /* 1261 * Reflect first query at pim6sd 1262 */ 1263 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE); 1264 if (err < 0) { 1265 /* If the report failed throw the cache entry 1266 out - Brad Parker 1267 */ 1268 spin_unlock_bh(&mfc_unres_lock); 1269 1270 ip6mr_cache_free(c); 1271 kfree_skb(skb); 1272 return err; 1273 } 1274 1275 atomic_inc(&mrt->cache_resolve_queue_len); 1276 list_add(&c->list, &mrt->mfc6_unres_queue); 1277 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1278 1279 ipmr_do_expire_process(mrt); 1280 } 1281 1282 /* 1283 * See if we can append the packet 1284 */ 1285 if (c->mfc_un.unres.unresolved.qlen > 3) { 1286 kfree_skb(skb); 1287 err = -ENOBUFS; 1288 } else { 1289 skb_queue_tail(&c->mfc_un.unres.unresolved, skb); 1290 err = 0; 1291 } 1292 1293 spin_unlock_bh(&mfc_unres_lock); 1294 return err; 1295 } 1296 1297 /* 1298 * MFC6 cache manipulation by user space 1299 */ 1300 1301 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc, 1302 int parent) 1303 { 1304 int line; 1305 struct mfc6_cache *c, *next; 1306 1307 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); 1308 1309 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) { 1310 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && 1311 ipv6_addr_equal(&c->mf6c_mcastgrp, 1312 &mfc->mf6cc_mcastgrp.sin6_addr) && 1313 (parent == -1 || parent == c->mf6c_parent)) { 1314 write_lock_bh(&mrt_lock); 1315 list_del(&c->list); 1316 write_unlock_bh(&mrt_lock); 1317 1318 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1319 ip6mr_cache_free(c); 1320 return 0; 1321 } 1322 } 1323 return -ENOENT; 1324 } 1325 1326 static int ip6mr_device_event(struct notifier_block *this, 1327 unsigned long event, void *ptr) 1328 { 1329 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1330 struct net *net = dev_net(dev); 1331 struct mr6_table *mrt; 1332 struct mif_device *v; 1333 int ct; 1334 LIST_HEAD(list); 1335 1336 if (event != NETDEV_UNREGISTER) 1337 return NOTIFY_DONE; 1338 1339 ip6mr_for_each_table(mrt, net) { 1340 v = &mrt->vif6_table[0]; 1341 for (ct = 0; ct < mrt->maxvif; ct++, v++) { 1342 if (v->dev == dev) 1343 mif6_delete(mrt, ct, &list); 1344 } 1345 } 1346 unregister_netdevice_many(&list); 1347 1348 return NOTIFY_DONE; 1349 } 1350 1351 static struct notifier_block ip6_mr_notifier = { 1352 .notifier_call = ip6mr_device_event 1353 }; 1354 1355 /* 1356 * Setup for IP multicast routing 1357 */ 1358 1359 static int __net_init ip6mr_net_init(struct net *net) 1360 { 1361 int err; 1362 1363 err = ip6mr_rules_init(net); 1364 if (err < 0) 1365 goto fail; 1366 1367 #ifdef CONFIG_PROC_FS 1368 err = -ENOMEM; 1369 if (!proc_create("ip6_mr_vif", 0, net->proc_net, &ip6mr_vif_fops)) 1370 goto proc_vif_fail; 1371 if (!proc_create("ip6_mr_cache", 0, net->proc_net, &ip6mr_mfc_fops)) 1372 goto proc_cache_fail; 1373 #endif 1374 1375 return 0; 1376 1377 #ifdef CONFIG_PROC_FS 1378 proc_cache_fail: 1379 remove_proc_entry("ip6_mr_vif", net->proc_net); 1380 proc_vif_fail: 1381 ip6mr_rules_exit(net); 1382 #endif 1383 fail: 1384 return err; 1385 } 1386 1387 static void __net_exit ip6mr_net_exit(struct net *net) 1388 { 1389 #ifdef CONFIG_PROC_FS 1390 remove_proc_entry("ip6_mr_cache", net->proc_net); 1391 remove_proc_entry("ip6_mr_vif", net->proc_net); 1392 #endif 1393 ip6mr_rules_exit(net); 1394 } 1395 1396 static struct pernet_operations ip6mr_net_ops = { 1397 .init = ip6mr_net_init, 1398 .exit = ip6mr_net_exit, 1399 }; 1400 1401 int __init ip6_mr_init(void) 1402 { 1403 int err; 1404 1405 mrt_cachep = kmem_cache_create("ip6_mrt_cache", 1406 sizeof(struct mfc6_cache), 1407 0, SLAB_HWCACHE_ALIGN, 1408 NULL); 1409 if (!mrt_cachep) 1410 return -ENOMEM; 1411 1412 err = register_pernet_subsys(&ip6mr_net_ops); 1413 if (err) 1414 goto reg_pernet_fail; 1415 1416 err = register_netdevice_notifier(&ip6_mr_notifier); 1417 if (err) 1418 goto reg_notif_fail; 1419 #ifdef CONFIG_IPV6_PIMSM_V2 1420 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) { 1421 pr_err("%s: can't add PIM protocol\n", __func__); 1422 err = -EAGAIN; 1423 goto add_proto_fail; 1424 } 1425 #endif 1426 rtnl_register(RTNL_FAMILY_IP6MR, RTM_GETROUTE, NULL, 1427 ip6mr_rtm_dumproute, NULL); 1428 return 0; 1429 #ifdef CONFIG_IPV6_PIMSM_V2 1430 add_proto_fail: 1431 unregister_netdevice_notifier(&ip6_mr_notifier); 1432 #endif 1433 reg_notif_fail: 1434 unregister_pernet_subsys(&ip6mr_net_ops); 1435 reg_pernet_fail: 1436 kmem_cache_destroy(mrt_cachep); 1437 return err; 1438 } 1439 1440 void ip6_mr_cleanup(void) 1441 { 1442 rtnl_unregister(RTNL_FAMILY_IP6MR, RTM_GETROUTE); 1443 #ifdef CONFIG_IPV6_PIMSM_V2 1444 inet6_del_protocol(&pim6_protocol, IPPROTO_PIM); 1445 #endif 1446 unregister_netdevice_notifier(&ip6_mr_notifier); 1447 unregister_pernet_subsys(&ip6mr_net_ops); 1448 kmem_cache_destroy(mrt_cachep); 1449 } 1450 1451 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt, 1452 struct mf6cctl *mfc, int mrtsock, int parent) 1453 { 1454 bool found = false; 1455 int line; 1456 struct mfc6_cache *uc, *c; 1457 unsigned char ttls[MAXMIFS]; 1458 int i; 1459 1460 if (mfc->mf6cc_parent >= MAXMIFS) 1461 return -ENFILE; 1462 1463 memset(ttls, 255, MAXMIFS); 1464 for (i = 0; i < MAXMIFS; i++) { 1465 if (IF_ISSET(i, &mfc->mf6cc_ifset)) 1466 ttls[i] = 1; 1467 1468 } 1469 1470 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr); 1471 1472 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) { 1473 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) && 1474 ipv6_addr_equal(&c->mf6c_mcastgrp, 1475 &mfc->mf6cc_mcastgrp.sin6_addr) && 1476 (parent == -1 || parent == mfc->mf6cc_parent)) { 1477 found = true; 1478 break; 1479 } 1480 } 1481 1482 if (found) { 1483 write_lock_bh(&mrt_lock); 1484 c->mf6c_parent = mfc->mf6cc_parent; 1485 ip6mr_update_thresholds(mrt, c, ttls); 1486 if (!mrtsock) 1487 c->mfc_flags |= MFC_STATIC; 1488 write_unlock_bh(&mrt_lock); 1489 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1490 return 0; 1491 } 1492 1493 if (!ipv6_addr_any(&mfc->mf6cc_mcastgrp.sin6_addr) && 1494 !ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr)) 1495 return -EINVAL; 1496 1497 c = ip6mr_cache_alloc(); 1498 if (c == NULL) 1499 return -ENOMEM; 1500 1501 c->mf6c_origin = mfc->mf6cc_origin.sin6_addr; 1502 c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr; 1503 c->mf6c_parent = mfc->mf6cc_parent; 1504 ip6mr_update_thresholds(mrt, c, ttls); 1505 if (!mrtsock) 1506 c->mfc_flags |= MFC_STATIC; 1507 1508 write_lock_bh(&mrt_lock); 1509 list_add(&c->list, &mrt->mfc6_cache_array[line]); 1510 write_unlock_bh(&mrt_lock); 1511 1512 /* 1513 * Check to see if we resolved a queued list. If so we 1514 * need to send on the frames and tidy up. 1515 */ 1516 found = false; 1517 spin_lock_bh(&mfc_unres_lock); 1518 list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) { 1519 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) && 1520 ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) { 1521 list_del(&uc->list); 1522 atomic_dec(&mrt->cache_resolve_queue_len); 1523 found = true; 1524 break; 1525 } 1526 } 1527 if (list_empty(&mrt->mfc6_unres_queue)) 1528 del_timer(&mrt->ipmr_expire_timer); 1529 spin_unlock_bh(&mfc_unres_lock); 1530 1531 if (found) { 1532 ip6mr_cache_resolve(net, mrt, uc, c); 1533 ip6mr_cache_free(uc); 1534 } 1535 mr6_netlink_event(mrt, c, RTM_NEWROUTE); 1536 return 0; 1537 } 1538 1539 /* 1540 * Close the multicast socket, and clear the vif tables etc 1541 */ 1542 1543 static void mroute_clean_tables(struct mr6_table *mrt) 1544 { 1545 int i; 1546 LIST_HEAD(list); 1547 struct mfc6_cache *c, *next; 1548 1549 /* 1550 * Shut down all active vif entries 1551 */ 1552 for (i = 0; i < mrt->maxvif; i++) { 1553 if (!(mrt->vif6_table[i].flags & VIFF_STATIC)) 1554 mif6_delete(mrt, i, &list); 1555 } 1556 unregister_netdevice_many(&list); 1557 1558 /* 1559 * Wipe the cache 1560 */ 1561 for (i = 0; i < MFC6_LINES; i++) { 1562 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) { 1563 if (c->mfc_flags & MFC_STATIC) 1564 continue; 1565 write_lock_bh(&mrt_lock); 1566 list_del(&c->list); 1567 write_unlock_bh(&mrt_lock); 1568 1569 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1570 ip6mr_cache_free(c); 1571 } 1572 } 1573 1574 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) { 1575 spin_lock_bh(&mfc_unres_lock); 1576 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) { 1577 list_del(&c->list); 1578 mr6_netlink_event(mrt, c, RTM_DELROUTE); 1579 ip6mr_destroy_unres(mrt, c); 1580 } 1581 spin_unlock_bh(&mfc_unres_lock); 1582 } 1583 } 1584 1585 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk) 1586 { 1587 int err = 0; 1588 struct net *net = sock_net(sk); 1589 1590 rtnl_lock(); 1591 write_lock_bh(&mrt_lock); 1592 if (likely(mrt->mroute6_sk == NULL)) { 1593 mrt->mroute6_sk = sk; 1594 net->ipv6.devconf_all->mc_forwarding++; 1595 inet6_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, 1596 NETCONFA_IFINDEX_ALL, 1597 net->ipv6.devconf_all); 1598 } 1599 else 1600 err = -EADDRINUSE; 1601 write_unlock_bh(&mrt_lock); 1602 1603 rtnl_unlock(); 1604 1605 return err; 1606 } 1607 1608 int ip6mr_sk_done(struct sock *sk) 1609 { 1610 int err = -EACCES; 1611 struct net *net = sock_net(sk); 1612 struct mr6_table *mrt; 1613 1614 rtnl_lock(); 1615 ip6mr_for_each_table(mrt, net) { 1616 if (sk == mrt->mroute6_sk) { 1617 write_lock_bh(&mrt_lock); 1618 mrt->mroute6_sk = NULL; 1619 net->ipv6.devconf_all->mc_forwarding--; 1620 inet6_netconf_notify_devconf(net, 1621 NETCONFA_MC_FORWARDING, 1622 NETCONFA_IFINDEX_ALL, 1623 net->ipv6.devconf_all); 1624 write_unlock_bh(&mrt_lock); 1625 1626 mroute_clean_tables(mrt); 1627 err = 0; 1628 break; 1629 } 1630 } 1631 rtnl_unlock(); 1632 1633 return err; 1634 } 1635 1636 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb) 1637 { 1638 struct mr6_table *mrt; 1639 struct flowi6 fl6 = { 1640 .flowi6_iif = skb->skb_iif ? : LOOPBACK_IFINDEX, 1641 .flowi6_oif = skb->dev->ifindex, 1642 .flowi6_mark = skb->mark, 1643 }; 1644 1645 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0) 1646 return NULL; 1647 1648 return mrt->mroute6_sk; 1649 } 1650 1651 /* 1652 * Socket options and virtual interface manipulation. The whole 1653 * virtual interface system is a complete heap, but unfortunately 1654 * that's how BSD mrouted happens to think. Maybe one day with a proper 1655 * MOSPF/PIM router set up we can clean this up. 1656 */ 1657 1658 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen) 1659 { 1660 int ret, parent = 0; 1661 struct mif6ctl vif; 1662 struct mf6cctl mfc; 1663 mifi_t mifi; 1664 struct net *net = sock_net(sk); 1665 struct mr6_table *mrt; 1666 1667 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1668 if (mrt == NULL) 1669 return -ENOENT; 1670 1671 if (optname != MRT6_INIT) { 1672 if (sk != mrt->mroute6_sk && !ns_capable(net->user_ns, CAP_NET_ADMIN)) 1673 return -EACCES; 1674 } 1675 1676 switch (optname) { 1677 case MRT6_INIT: 1678 if (sk->sk_type != SOCK_RAW || 1679 inet_sk(sk)->inet_num != IPPROTO_ICMPV6) 1680 return -EOPNOTSUPP; 1681 if (optlen < sizeof(int)) 1682 return -EINVAL; 1683 1684 return ip6mr_sk_init(mrt, sk); 1685 1686 case MRT6_DONE: 1687 return ip6mr_sk_done(sk); 1688 1689 case MRT6_ADD_MIF: 1690 if (optlen < sizeof(vif)) 1691 return -EINVAL; 1692 if (copy_from_user(&vif, optval, sizeof(vif))) 1693 return -EFAULT; 1694 if (vif.mif6c_mifi >= MAXMIFS) 1695 return -ENFILE; 1696 rtnl_lock(); 1697 ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk); 1698 rtnl_unlock(); 1699 return ret; 1700 1701 case MRT6_DEL_MIF: 1702 if (optlen < sizeof(mifi_t)) 1703 return -EINVAL; 1704 if (copy_from_user(&mifi, optval, sizeof(mifi_t))) 1705 return -EFAULT; 1706 rtnl_lock(); 1707 ret = mif6_delete(mrt, mifi, NULL); 1708 rtnl_unlock(); 1709 return ret; 1710 1711 /* 1712 * Manipulate the forwarding caches. These live 1713 * in a sort of kernel/user symbiosis. 1714 */ 1715 case MRT6_ADD_MFC: 1716 case MRT6_DEL_MFC: 1717 parent = -1; 1718 case MRT6_ADD_MFC_PROXY: 1719 case MRT6_DEL_MFC_PROXY: 1720 if (optlen < sizeof(mfc)) 1721 return -EINVAL; 1722 if (copy_from_user(&mfc, optval, sizeof(mfc))) 1723 return -EFAULT; 1724 if (parent == 0) 1725 parent = mfc.mf6cc_parent; 1726 rtnl_lock(); 1727 if (optname == MRT6_DEL_MFC || optname == MRT6_DEL_MFC_PROXY) 1728 ret = ip6mr_mfc_delete(mrt, &mfc, parent); 1729 else 1730 ret = ip6mr_mfc_add(net, mrt, &mfc, 1731 sk == mrt->mroute6_sk, parent); 1732 rtnl_unlock(); 1733 return ret; 1734 1735 /* 1736 * Control PIM assert (to activate pim will activate assert) 1737 */ 1738 case MRT6_ASSERT: 1739 { 1740 int v; 1741 1742 if (optlen != sizeof(v)) 1743 return -EINVAL; 1744 if (get_user(v, (int __user *)optval)) 1745 return -EFAULT; 1746 mrt->mroute_do_assert = v; 1747 return 0; 1748 } 1749 1750 #ifdef CONFIG_IPV6_PIMSM_V2 1751 case MRT6_PIM: 1752 { 1753 int v; 1754 1755 if (optlen != sizeof(v)) 1756 return -EINVAL; 1757 if (get_user(v, (int __user *)optval)) 1758 return -EFAULT; 1759 v = !!v; 1760 rtnl_lock(); 1761 ret = 0; 1762 if (v != mrt->mroute_do_pim) { 1763 mrt->mroute_do_pim = v; 1764 mrt->mroute_do_assert = v; 1765 } 1766 rtnl_unlock(); 1767 return ret; 1768 } 1769 1770 #endif 1771 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES 1772 case MRT6_TABLE: 1773 { 1774 u32 v; 1775 1776 if (optlen != sizeof(u32)) 1777 return -EINVAL; 1778 if (get_user(v, (u32 __user *)optval)) 1779 return -EFAULT; 1780 /* "pim6reg%u" should not exceed 16 bytes (IFNAMSIZ) */ 1781 if (v != RT_TABLE_DEFAULT && v >= 100000000) 1782 return -EINVAL; 1783 if (sk == mrt->mroute6_sk) 1784 return -EBUSY; 1785 1786 rtnl_lock(); 1787 ret = 0; 1788 if (!ip6mr_new_table(net, v)) 1789 ret = -ENOMEM; 1790 raw6_sk(sk)->ip6mr_table = v; 1791 rtnl_unlock(); 1792 return ret; 1793 } 1794 #endif 1795 /* 1796 * Spurious command, or MRT6_VERSION which you cannot 1797 * set. 1798 */ 1799 default: 1800 return -ENOPROTOOPT; 1801 } 1802 } 1803 1804 /* 1805 * Getsock opt support for the multicast routing system. 1806 */ 1807 1808 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, 1809 int __user *optlen) 1810 { 1811 int olr; 1812 int val; 1813 struct net *net = sock_net(sk); 1814 struct mr6_table *mrt; 1815 1816 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1817 if (mrt == NULL) 1818 return -ENOENT; 1819 1820 switch (optname) { 1821 case MRT6_VERSION: 1822 val = 0x0305; 1823 break; 1824 #ifdef CONFIG_IPV6_PIMSM_V2 1825 case MRT6_PIM: 1826 val = mrt->mroute_do_pim; 1827 break; 1828 #endif 1829 case MRT6_ASSERT: 1830 val = mrt->mroute_do_assert; 1831 break; 1832 default: 1833 return -ENOPROTOOPT; 1834 } 1835 1836 if (get_user(olr, optlen)) 1837 return -EFAULT; 1838 1839 olr = min_t(int, olr, sizeof(int)); 1840 if (olr < 0) 1841 return -EINVAL; 1842 1843 if (put_user(olr, optlen)) 1844 return -EFAULT; 1845 if (copy_to_user(optval, &val, olr)) 1846 return -EFAULT; 1847 return 0; 1848 } 1849 1850 /* 1851 * The IP multicast ioctl support routines. 1852 */ 1853 1854 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg) 1855 { 1856 struct sioc_sg_req6 sr; 1857 struct sioc_mif_req6 vr; 1858 struct mif_device *vif; 1859 struct mfc6_cache *c; 1860 struct net *net = sock_net(sk); 1861 struct mr6_table *mrt; 1862 1863 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1864 if (mrt == NULL) 1865 return -ENOENT; 1866 1867 switch (cmd) { 1868 case SIOCGETMIFCNT_IN6: 1869 if (copy_from_user(&vr, arg, sizeof(vr))) 1870 return -EFAULT; 1871 if (vr.mifi >= mrt->maxvif) 1872 return -EINVAL; 1873 read_lock(&mrt_lock); 1874 vif = &mrt->vif6_table[vr.mifi]; 1875 if (MIF_EXISTS(mrt, vr.mifi)) { 1876 vr.icount = vif->pkt_in; 1877 vr.ocount = vif->pkt_out; 1878 vr.ibytes = vif->bytes_in; 1879 vr.obytes = vif->bytes_out; 1880 read_unlock(&mrt_lock); 1881 1882 if (copy_to_user(arg, &vr, sizeof(vr))) 1883 return -EFAULT; 1884 return 0; 1885 } 1886 read_unlock(&mrt_lock); 1887 return -EADDRNOTAVAIL; 1888 case SIOCGETSGCNT_IN6: 1889 if (copy_from_user(&sr, arg, sizeof(sr))) 1890 return -EFAULT; 1891 1892 read_lock(&mrt_lock); 1893 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1894 if (c) { 1895 sr.pktcnt = c->mfc_un.res.pkt; 1896 sr.bytecnt = c->mfc_un.res.bytes; 1897 sr.wrong_if = c->mfc_un.res.wrong_if; 1898 read_unlock(&mrt_lock); 1899 1900 if (copy_to_user(arg, &sr, sizeof(sr))) 1901 return -EFAULT; 1902 return 0; 1903 } 1904 read_unlock(&mrt_lock); 1905 return -EADDRNOTAVAIL; 1906 default: 1907 return -ENOIOCTLCMD; 1908 } 1909 } 1910 1911 #ifdef CONFIG_COMPAT 1912 struct compat_sioc_sg_req6 { 1913 struct sockaddr_in6 src; 1914 struct sockaddr_in6 grp; 1915 compat_ulong_t pktcnt; 1916 compat_ulong_t bytecnt; 1917 compat_ulong_t wrong_if; 1918 }; 1919 1920 struct compat_sioc_mif_req6 { 1921 mifi_t mifi; 1922 compat_ulong_t icount; 1923 compat_ulong_t ocount; 1924 compat_ulong_t ibytes; 1925 compat_ulong_t obytes; 1926 }; 1927 1928 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg) 1929 { 1930 struct compat_sioc_sg_req6 sr; 1931 struct compat_sioc_mif_req6 vr; 1932 struct mif_device *vif; 1933 struct mfc6_cache *c; 1934 struct net *net = sock_net(sk); 1935 struct mr6_table *mrt; 1936 1937 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT); 1938 if (mrt == NULL) 1939 return -ENOENT; 1940 1941 switch (cmd) { 1942 case SIOCGETMIFCNT_IN6: 1943 if (copy_from_user(&vr, arg, sizeof(vr))) 1944 return -EFAULT; 1945 if (vr.mifi >= mrt->maxvif) 1946 return -EINVAL; 1947 read_lock(&mrt_lock); 1948 vif = &mrt->vif6_table[vr.mifi]; 1949 if (MIF_EXISTS(mrt, vr.mifi)) { 1950 vr.icount = vif->pkt_in; 1951 vr.ocount = vif->pkt_out; 1952 vr.ibytes = vif->bytes_in; 1953 vr.obytes = vif->bytes_out; 1954 read_unlock(&mrt_lock); 1955 1956 if (copy_to_user(arg, &vr, sizeof(vr))) 1957 return -EFAULT; 1958 return 0; 1959 } 1960 read_unlock(&mrt_lock); 1961 return -EADDRNOTAVAIL; 1962 case SIOCGETSGCNT_IN6: 1963 if (copy_from_user(&sr, arg, sizeof(sr))) 1964 return -EFAULT; 1965 1966 read_lock(&mrt_lock); 1967 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr); 1968 if (c) { 1969 sr.pktcnt = c->mfc_un.res.pkt; 1970 sr.bytecnt = c->mfc_un.res.bytes; 1971 sr.wrong_if = c->mfc_un.res.wrong_if; 1972 read_unlock(&mrt_lock); 1973 1974 if (copy_to_user(arg, &sr, sizeof(sr))) 1975 return -EFAULT; 1976 return 0; 1977 } 1978 read_unlock(&mrt_lock); 1979 return -EADDRNOTAVAIL; 1980 default: 1981 return -ENOIOCTLCMD; 1982 } 1983 } 1984 #endif 1985 1986 static inline int ip6mr_forward2_finish(struct sk_buff *skb) 1987 { 1988 IP6_INC_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)), 1989 IPSTATS_MIB_OUTFORWDATAGRAMS); 1990 IP6_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)), 1991 IPSTATS_MIB_OUTOCTETS, skb->len); 1992 return dst_output(skb); 1993 } 1994 1995 /* 1996 * Processing handlers for ip6mr_forward 1997 */ 1998 1999 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt, 2000 struct sk_buff *skb, struct mfc6_cache *c, int vifi) 2001 { 2002 struct ipv6hdr *ipv6h; 2003 struct mif_device *vif = &mrt->vif6_table[vifi]; 2004 struct net_device *dev; 2005 struct dst_entry *dst; 2006 struct flowi6 fl6; 2007 2008 if (vif->dev == NULL) 2009 goto out_free; 2010 2011 #ifdef CONFIG_IPV6_PIMSM_V2 2012 if (vif->flags & MIFF_REGISTER) { 2013 vif->pkt_out++; 2014 vif->bytes_out += skb->len; 2015 vif->dev->stats.tx_bytes += skb->len; 2016 vif->dev->stats.tx_packets++; 2017 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT); 2018 goto out_free; 2019 } 2020 #endif 2021 2022 ipv6h = ipv6_hdr(skb); 2023 2024 fl6 = (struct flowi6) { 2025 .flowi6_oif = vif->link, 2026 .daddr = ipv6h->daddr, 2027 }; 2028 2029 dst = ip6_route_output(net, NULL, &fl6); 2030 if (dst->error) { 2031 dst_release(dst); 2032 goto out_free; 2033 } 2034 2035 skb_dst_drop(skb); 2036 skb_dst_set(skb, dst); 2037 2038 /* 2039 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally 2040 * not only before forwarding, but after forwarding on all output 2041 * interfaces. It is clear, if mrouter runs a multicasting 2042 * program, it should receive packets not depending to what interface 2043 * program is joined. 2044 * If we will not make it, the program will have to join on all 2045 * interfaces. On the other hand, multihoming host (or router, but 2046 * not mrouter) cannot join to more than one interface - it will 2047 * result in receiving multiple packets. 2048 */ 2049 dev = vif->dev; 2050 skb->dev = dev; 2051 vif->pkt_out++; 2052 vif->bytes_out += skb->len; 2053 2054 /* We are about to write */ 2055 /* XXX: extension headers? */ 2056 if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev))) 2057 goto out_free; 2058 2059 ipv6h = ipv6_hdr(skb); 2060 ipv6h->hop_limit--; 2061 2062 IP6CB(skb)->flags |= IP6SKB_FORWARDED; 2063 2064 return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, skb, skb->dev, dev, 2065 ip6mr_forward2_finish); 2066 2067 out_free: 2068 kfree_skb(skb); 2069 return 0; 2070 } 2071 2072 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev) 2073 { 2074 int ct; 2075 2076 for (ct = mrt->maxvif - 1; ct >= 0; ct--) { 2077 if (mrt->vif6_table[ct].dev == dev) 2078 break; 2079 } 2080 return ct; 2081 } 2082 2083 static void ip6_mr_forward(struct net *net, struct mr6_table *mrt, 2084 struct sk_buff *skb, struct mfc6_cache *cache) 2085 { 2086 int psend = -1; 2087 int vif, ct; 2088 int true_vifi = ip6mr_find_vif(mrt, skb->dev); 2089 2090 vif = cache->mf6c_parent; 2091 cache->mfc_un.res.pkt++; 2092 cache->mfc_un.res.bytes += skb->len; 2093 2094 if (ipv6_addr_any(&cache->mf6c_origin) && true_vifi >= 0) { 2095 struct mfc6_cache *cache_proxy; 2096 2097 /* For an (*,G) entry, we only check that the incoming 2098 * interface is part of the static tree. 2099 */ 2100 cache_proxy = ip6mr_cache_find_any_parent(mrt, vif); 2101 if (cache_proxy && 2102 cache_proxy->mfc_un.res.ttls[true_vifi] < 255) 2103 goto forward; 2104 } 2105 2106 /* 2107 * Wrong interface: drop packet and (maybe) send PIM assert. 2108 */ 2109 if (mrt->vif6_table[vif].dev != skb->dev) { 2110 cache->mfc_un.res.wrong_if++; 2111 2112 if (true_vifi >= 0 && mrt->mroute_do_assert && 2113 /* pimsm uses asserts, when switching from RPT to SPT, 2114 so that we cannot check that packet arrived on an oif. 2115 It is bad, but otherwise we would need to move pretty 2116 large chunk of pimd to kernel. Ough... --ANK 2117 */ 2118 (mrt->mroute_do_pim || 2119 cache->mfc_un.res.ttls[true_vifi] < 255) && 2120 time_after(jiffies, 2121 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) { 2122 cache->mfc_un.res.last_assert = jiffies; 2123 ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF); 2124 } 2125 goto dont_forward; 2126 } 2127 2128 forward: 2129 mrt->vif6_table[vif].pkt_in++; 2130 mrt->vif6_table[vif].bytes_in += skb->len; 2131 2132 /* 2133 * Forward the frame 2134 */ 2135 if (ipv6_addr_any(&cache->mf6c_origin) && 2136 ipv6_addr_any(&cache->mf6c_mcastgrp)) { 2137 if (true_vifi >= 0 && 2138 true_vifi != cache->mf6c_parent && 2139 ipv6_hdr(skb)->hop_limit > 2140 cache->mfc_un.res.ttls[cache->mf6c_parent]) { 2141 /* It's an (*,*) entry and the packet is not coming from 2142 * the upstream: forward the packet to the upstream 2143 * only. 2144 */ 2145 psend = cache->mf6c_parent; 2146 goto last_forward; 2147 } 2148 goto dont_forward; 2149 } 2150 for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) { 2151 /* For (*,G) entry, don't forward to the incoming interface */ 2152 if ((!ipv6_addr_any(&cache->mf6c_origin) || ct != true_vifi) && 2153 ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) { 2154 if (psend != -1) { 2155 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 2156 if (skb2) 2157 ip6mr_forward2(net, mrt, skb2, cache, psend); 2158 } 2159 psend = ct; 2160 } 2161 } 2162 last_forward: 2163 if (psend != -1) { 2164 ip6mr_forward2(net, mrt, skb, cache, psend); 2165 return; 2166 } 2167 2168 dont_forward: 2169 kfree_skb(skb); 2170 } 2171 2172 2173 /* 2174 * Multicast packets for forwarding arrive here 2175 */ 2176 2177 int ip6_mr_input(struct sk_buff *skb) 2178 { 2179 struct mfc6_cache *cache; 2180 struct net *net = dev_net(skb->dev); 2181 struct mr6_table *mrt; 2182 struct flowi6 fl6 = { 2183 .flowi6_iif = skb->dev->ifindex, 2184 .flowi6_mark = skb->mark, 2185 }; 2186 int err; 2187 2188 err = ip6mr_fib_lookup(net, &fl6, &mrt); 2189 if (err < 0) { 2190 kfree_skb(skb); 2191 return err; 2192 } 2193 2194 read_lock(&mrt_lock); 2195 cache = ip6mr_cache_find(mrt, 2196 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr); 2197 if (cache == NULL) { 2198 int vif = ip6mr_find_vif(mrt, skb->dev); 2199 2200 if (vif >= 0) 2201 cache = ip6mr_cache_find_any(mrt, 2202 &ipv6_hdr(skb)->daddr, 2203 vif); 2204 } 2205 2206 /* 2207 * No usable cache entry 2208 */ 2209 if (cache == NULL) { 2210 int vif; 2211 2212 vif = ip6mr_find_vif(mrt, skb->dev); 2213 if (vif >= 0) { 2214 int err = ip6mr_cache_unresolved(mrt, vif, skb); 2215 read_unlock(&mrt_lock); 2216 2217 return err; 2218 } 2219 read_unlock(&mrt_lock); 2220 kfree_skb(skb); 2221 return -ENODEV; 2222 } 2223 2224 ip6_mr_forward(net, mrt, skb, cache); 2225 2226 read_unlock(&mrt_lock); 2227 2228 return 0; 2229 } 2230 2231 2232 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 2233 struct mfc6_cache *c, struct rtmsg *rtm) 2234 { 2235 int ct; 2236 struct rtnexthop *nhp; 2237 struct nlattr *mp_attr; 2238 struct rta_mfc_stats mfcs; 2239 2240 /* If cache is unresolved, don't try to parse IIF and OIF */ 2241 if (c->mf6c_parent >= MAXMIFS) 2242 return -ENOENT; 2243 2244 if (MIF_EXISTS(mrt, c->mf6c_parent) && 2245 nla_put_u32(skb, RTA_IIF, mrt->vif6_table[c->mf6c_parent].dev->ifindex) < 0) 2246 return -EMSGSIZE; 2247 mp_attr = nla_nest_start(skb, RTA_MULTIPATH); 2248 if (mp_attr == NULL) 2249 return -EMSGSIZE; 2250 2251 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) { 2252 if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) { 2253 nhp = nla_reserve_nohdr(skb, sizeof(*nhp)); 2254 if (nhp == NULL) { 2255 nla_nest_cancel(skb, mp_attr); 2256 return -EMSGSIZE; 2257 } 2258 2259 nhp->rtnh_flags = 0; 2260 nhp->rtnh_hops = c->mfc_un.res.ttls[ct]; 2261 nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex; 2262 nhp->rtnh_len = sizeof(*nhp); 2263 } 2264 } 2265 2266 nla_nest_end(skb, mp_attr); 2267 2268 mfcs.mfcs_packets = c->mfc_un.res.pkt; 2269 mfcs.mfcs_bytes = c->mfc_un.res.bytes; 2270 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if; 2271 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0) 2272 return -EMSGSIZE; 2273 2274 rtm->rtm_type = RTN_MULTICAST; 2275 return 1; 2276 } 2277 2278 int ip6mr_get_route(struct net *net, 2279 struct sk_buff *skb, struct rtmsg *rtm, int nowait) 2280 { 2281 int err; 2282 struct mr6_table *mrt; 2283 struct mfc6_cache *cache; 2284 struct rt6_info *rt = (struct rt6_info *)skb_dst(skb); 2285 2286 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT); 2287 if (mrt == NULL) 2288 return -ENOENT; 2289 2290 read_lock(&mrt_lock); 2291 cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr); 2292 if (!cache && skb->dev) { 2293 int vif = ip6mr_find_vif(mrt, skb->dev); 2294 2295 if (vif >= 0) 2296 cache = ip6mr_cache_find_any(mrt, &rt->rt6i_dst.addr, 2297 vif); 2298 } 2299 2300 if (!cache) { 2301 struct sk_buff *skb2; 2302 struct ipv6hdr *iph; 2303 struct net_device *dev; 2304 int vif; 2305 2306 if (nowait) { 2307 read_unlock(&mrt_lock); 2308 return -EAGAIN; 2309 } 2310 2311 dev = skb->dev; 2312 if (dev == NULL || (vif = ip6mr_find_vif(mrt, dev)) < 0) { 2313 read_unlock(&mrt_lock); 2314 return -ENODEV; 2315 } 2316 2317 /* really correct? */ 2318 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC); 2319 if (!skb2) { 2320 read_unlock(&mrt_lock); 2321 return -ENOMEM; 2322 } 2323 2324 skb_reset_transport_header(skb2); 2325 2326 skb_put(skb2, sizeof(struct ipv6hdr)); 2327 skb_reset_network_header(skb2); 2328 2329 iph = ipv6_hdr(skb2); 2330 iph->version = 0; 2331 iph->priority = 0; 2332 iph->flow_lbl[0] = 0; 2333 iph->flow_lbl[1] = 0; 2334 iph->flow_lbl[2] = 0; 2335 iph->payload_len = 0; 2336 iph->nexthdr = IPPROTO_NONE; 2337 iph->hop_limit = 0; 2338 iph->saddr = rt->rt6i_src.addr; 2339 iph->daddr = rt->rt6i_dst.addr; 2340 2341 err = ip6mr_cache_unresolved(mrt, vif, skb2); 2342 read_unlock(&mrt_lock); 2343 2344 return err; 2345 } 2346 2347 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY)) 2348 cache->mfc_flags |= MFC_NOTIFY; 2349 2350 err = __ip6mr_fill_mroute(mrt, skb, cache, rtm); 2351 read_unlock(&mrt_lock); 2352 return err; 2353 } 2354 2355 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb, 2356 u32 portid, u32 seq, struct mfc6_cache *c, int cmd, 2357 int flags) 2358 { 2359 struct nlmsghdr *nlh; 2360 struct rtmsg *rtm; 2361 int err; 2362 2363 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags); 2364 if (nlh == NULL) 2365 return -EMSGSIZE; 2366 2367 rtm = nlmsg_data(nlh); 2368 rtm->rtm_family = RTNL_FAMILY_IP6MR; 2369 rtm->rtm_dst_len = 128; 2370 rtm->rtm_src_len = 128; 2371 rtm->rtm_tos = 0; 2372 rtm->rtm_table = mrt->id; 2373 if (nla_put_u32(skb, RTA_TABLE, mrt->id)) 2374 goto nla_put_failure; 2375 rtm->rtm_type = RTN_MULTICAST; 2376 rtm->rtm_scope = RT_SCOPE_UNIVERSE; 2377 if (c->mfc_flags & MFC_STATIC) 2378 rtm->rtm_protocol = RTPROT_STATIC; 2379 else 2380 rtm->rtm_protocol = RTPROT_MROUTED; 2381 rtm->rtm_flags = 0; 2382 2383 if (nla_put(skb, RTA_SRC, 16, &c->mf6c_origin) || 2384 nla_put(skb, RTA_DST, 16, &c->mf6c_mcastgrp)) 2385 goto nla_put_failure; 2386 err = __ip6mr_fill_mroute(mrt, skb, c, rtm); 2387 /* do not break the dump if cache is unresolved */ 2388 if (err < 0 && err != -ENOENT) 2389 goto nla_put_failure; 2390 2391 nlmsg_end(skb, nlh); 2392 return 0; 2393 2394 nla_put_failure: 2395 nlmsg_cancel(skb, nlh); 2396 return -EMSGSIZE; 2397 } 2398 2399 static int mr6_msgsize(bool unresolved, int maxvif) 2400 { 2401 size_t len = 2402 NLMSG_ALIGN(sizeof(struct rtmsg)) 2403 + nla_total_size(4) /* RTA_TABLE */ 2404 + nla_total_size(sizeof(struct in6_addr)) /* RTA_SRC */ 2405 + nla_total_size(sizeof(struct in6_addr)) /* RTA_DST */ 2406 ; 2407 2408 if (!unresolved) 2409 len = len 2410 + nla_total_size(4) /* RTA_IIF */ 2411 + nla_total_size(0) /* RTA_MULTIPATH */ 2412 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop)) 2413 /* RTA_MFC_STATS */ 2414 + nla_total_size(sizeof(struct rta_mfc_stats)) 2415 ; 2416 2417 return len; 2418 } 2419 2420 static void mr6_netlink_event(struct mr6_table *mrt, struct mfc6_cache *mfc, 2421 int cmd) 2422 { 2423 struct net *net = read_pnet(&mrt->net); 2424 struct sk_buff *skb; 2425 int err = -ENOBUFS; 2426 2427 skb = nlmsg_new(mr6_msgsize(mfc->mf6c_parent >= MAXMIFS, mrt->maxvif), 2428 GFP_ATOMIC); 2429 if (skb == NULL) 2430 goto errout; 2431 2432 err = ip6mr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0); 2433 if (err < 0) 2434 goto errout; 2435 2436 rtnl_notify(skb, net, 0, RTNLGRP_IPV6_MROUTE, NULL, GFP_ATOMIC); 2437 return; 2438 2439 errout: 2440 kfree_skb(skb); 2441 if (err < 0) 2442 rtnl_set_sk_err(net, RTNLGRP_IPV6_MROUTE, err); 2443 } 2444 2445 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb) 2446 { 2447 struct net *net = sock_net(skb->sk); 2448 struct mr6_table *mrt; 2449 struct mfc6_cache *mfc; 2450 unsigned int t = 0, s_t; 2451 unsigned int h = 0, s_h; 2452 unsigned int e = 0, s_e; 2453 2454 s_t = cb->args[0]; 2455 s_h = cb->args[1]; 2456 s_e = cb->args[2]; 2457 2458 read_lock(&mrt_lock); 2459 ip6mr_for_each_table(mrt, net) { 2460 if (t < s_t) 2461 goto next_table; 2462 if (t > s_t) 2463 s_h = 0; 2464 for (h = s_h; h < MFC6_LINES; h++) { 2465 list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) { 2466 if (e < s_e) 2467 goto next_entry; 2468 if (ip6mr_fill_mroute(mrt, skb, 2469 NETLINK_CB(cb->skb).portid, 2470 cb->nlh->nlmsg_seq, 2471 mfc, RTM_NEWROUTE, 2472 NLM_F_MULTI) < 0) 2473 goto done; 2474 next_entry: 2475 e++; 2476 } 2477 e = s_e = 0; 2478 } 2479 spin_lock_bh(&mfc_unres_lock); 2480 list_for_each_entry(mfc, &mrt->mfc6_unres_queue, list) { 2481 if (e < s_e) 2482 goto next_entry2; 2483 if (ip6mr_fill_mroute(mrt, skb, 2484 NETLINK_CB(cb->skb).portid, 2485 cb->nlh->nlmsg_seq, 2486 mfc, RTM_NEWROUTE, 2487 NLM_F_MULTI) < 0) { 2488 spin_unlock_bh(&mfc_unres_lock); 2489 goto done; 2490 } 2491 next_entry2: 2492 e++; 2493 } 2494 spin_unlock_bh(&mfc_unres_lock); 2495 e = s_e = 0; 2496 s_h = 0; 2497 next_table: 2498 t++; 2499 } 2500 done: 2501 read_unlock(&mrt_lock); 2502 2503 cb->args[2] = e; 2504 cb->args[1] = h; 2505 cb->args[0] = t; 2506 2507 return skb->len; 2508 } 2509