xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision f7d84fa7)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63 
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69 
70 /*
71  *	A routing update causes an increase of the serial number on the
72  *	affected subtree. This allows for cached routes to be asynchronously
73  *	tested when modifications are made to the destination cache as a
74  *	result of redirects, path MTU changes, etc.
75  */
76 
77 static void fib6_gc_timer_cb(unsigned long arg);
78 
79 #define FOR_WALKERS(net, w) \
80 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81 
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 	write_lock_bh(&net->ipv6.fib6_walker_lock);
85 	list_add(&w->lh, &net->ipv6.fib6_walkers);
86 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88 
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 	write_lock_bh(&net->ipv6.fib6_walker_lock);
92 	list_del(&w->lh);
93 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95 
96 static int fib6_new_sernum(struct net *net)
97 {
98 	int new, old;
99 
100 	do {
101 		old = atomic_read(&net->ipv6.fib6_sernum);
102 		new = old < INT_MAX ? old + 1 : 1;
103 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 				old, new) != old);
105 	return new;
106 }
107 
108 enum {
109 	FIB6_NO_SERNUM_CHANGE = 0,
110 };
111 
112 /*
113  *	Auxiliary address test functions for the radix tree.
114  *
115  *	These assume a 32bit processor (although it will work on
116  *	64bit processors)
117  */
118 
119 /*
120  *	test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE	0
126 #endif
127 
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 	const __be32 *addr = token;
131 	/*
132 	 * Here,
133 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 	 * is optimized version of
135 	 *	htonl(1 << ((~fn_bit)&0x1F))
136 	 * See include/asm-generic/bitops/le.h.
137 	 */
138 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 	       addr[fn_bit >> 5];
140 }
141 
142 static struct fib6_node *node_alloc(void)
143 {
144 	struct fib6_node *fn;
145 
146 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147 
148 	return fn;
149 }
150 
151 static void node_free(struct fib6_node *fn)
152 {
153 	kmem_cache_free(fib6_node_kmem, fn);
154 }
155 
156 static void rt6_rcu_free(struct rt6_info *rt)
157 {
158 	call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159 }
160 
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162 {
163 	int cpu;
164 
165 	if (!non_pcpu_rt->rt6i_pcpu)
166 		return;
167 
168 	for_each_possible_cpu(cpu) {
169 		struct rt6_info **ppcpu_rt;
170 		struct rt6_info *pcpu_rt;
171 
172 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 		pcpu_rt = *ppcpu_rt;
174 		if (pcpu_rt) {
175 			rt6_rcu_free(pcpu_rt);
176 			*ppcpu_rt = NULL;
177 		}
178 	}
179 
180 	free_percpu(non_pcpu_rt->rt6i_pcpu);
181 	non_pcpu_rt->rt6i_pcpu = NULL;
182 }
183 
184 static void rt6_release(struct rt6_info *rt)
185 {
186 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
187 		rt6_free_pcpu(rt);
188 		rt6_rcu_free(rt);
189 	}
190 }
191 
192 static void fib6_link_table(struct net *net, struct fib6_table *tb)
193 {
194 	unsigned int h;
195 
196 	/*
197 	 * Initialize table lock at a single place to give lockdep a key,
198 	 * tables aren't visible prior to being linked to the list.
199 	 */
200 	rwlock_init(&tb->tb6_lock);
201 
202 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
203 
204 	/*
205 	 * No protection necessary, this is the only list mutatation
206 	 * operation, tables never disappear once they exist.
207 	 */
208 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
209 }
210 
211 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
212 
213 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
214 {
215 	struct fib6_table *table;
216 
217 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
218 	if (table) {
219 		table->tb6_id = id;
220 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
221 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
222 		inet_peer_base_init(&table->tb6_peers);
223 	}
224 
225 	return table;
226 }
227 
228 struct fib6_table *fib6_new_table(struct net *net, u32 id)
229 {
230 	struct fib6_table *tb;
231 
232 	if (id == 0)
233 		id = RT6_TABLE_MAIN;
234 	tb = fib6_get_table(net, id);
235 	if (tb)
236 		return tb;
237 
238 	tb = fib6_alloc_table(net, id);
239 	if (tb)
240 		fib6_link_table(net, tb);
241 
242 	return tb;
243 }
244 EXPORT_SYMBOL_GPL(fib6_new_table);
245 
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 	struct hlist_head *head;
250 	unsigned int h;
251 
252 	if (id == 0)
253 		id = RT6_TABLE_MAIN;
254 	h = id & (FIB6_TABLE_HASHSZ - 1);
255 	rcu_read_lock();
256 	head = &net->ipv6.fib_table_hash[h];
257 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 		if (tb->tb6_id == id) {
259 			rcu_read_unlock();
260 			return tb;
261 		}
262 	}
263 	rcu_read_unlock();
264 
265 	return NULL;
266 }
267 EXPORT_SYMBOL_GPL(fib6_get_table);
268 
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
273 }
274 #else
275 
276 struct fib6_table *fib6_new_table(struct net *net, u32 id)
277 {
278 	return fib6_get_table(net, id);
279 }
280 
281 struct fib6_table *fib6_get_table(struct net *net, u32 id)
282 {
283 	  return net->ipv6.fib6_main_tbl;
284 }
285 
286 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287 				   int flags, pol_lookup_t lookup)
288 {
289 	struct rt6_info *rt;
290 
291 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292 	if (rt->rt6i_flags & RTF_REJECT &&
293 	    rt->dst.error == -EAGAIN) {
294 		ip6_rt_put(rt);
295 		rt = net->ipv6.ip6_null_entry;
296 		dst_hold(&rt->dst);
297 	}
298 
299 	return &rt->dst;
300 }
301 
302 static void __net_init fib6_tables_init(struct net *net)
303 {
304 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
305 }
306 
307 #endif
308 
309 static int fib6_dump_node(struct fib6_walker *w)
310 {
311 	int res;
312 	struct rt6_info *rt;
313 
314 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315 		res = rt6_dump_route(rt, w->args);
316 		if (res < 0) {
317 			/* Frame is full, suspend walking */
318 			w->leaf = rt;
319 			return 1;
320 		}
321 
322 		/* Multipath routes are dumped in one route with the
323 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
324 		 * last sibling of this route (no need to dump the
325 		 * sibling routes again)
326 		 */
327 		if (rt->rt6i_nsiblings)
328 			rt = list_last_entry(&rt->rt6i_siblings,
329 					     struct rt6_info,
330 					     rt6i_siblings);
331 	}
332 	w->leaf = NULL;
333 	return 0;
334 }
335 
336 static void fib6_dump_end(struct netlink_callback *cb)
337 {
338 	struct net *net = sock_net(cb->skb->sk);
339 	struct fib6_walker *w = (void *)cb->args[2];
340 
341 	if (w) {
342 		if (cb->args[4]) {
343 			cb->args[4] = 0;
344 			fib6_walker_unlink(net, w);
345 		}
346 		cb->args[2] = 0;
347 		kfree(w);
348 	}
349 	cb->done = (void *)cb->args[3];
350 	cb->args[1] = 3;
351 }
352 
353 static int fib6_dump_done(struct netlink_callback *cb)
354 {
355 	fib6_dump_end(cb);
356 	return cb->done ? cb->done(cb) : 0;
357 }
358 
359 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
360 			   struct netlink_callback *cb)
361 {
362 	struct net *net = sock_net(skb->sk);
363 	struct fib6_walker *w;
364 	int res;
365 
366 	w = (void *)cb->args[2];
367 	w->root = &table->tb6_root;
368 
369 	if (cb->args[4] == 0) {
370 		w->count = 0;
371 		w->skip = 0;
372 
373 		read_lock_bh(&table->tb6_lock);
374 		res = fib6_walk(net, w);
375 		read_unlock_bh(&table->tb6_lock);
376 		if (res > 0) {
377 			cb->args[4] = 1;
378 			cb->args[5] = w->root->fn_sernum;
379 		}
380 	} else {
381 		if (cb->args[5] != w->root->fn_sernum) {
382 			/* Begin at the root if the tree changed */
383 			cb->args[5] = w->root->fn_sernum;
384 			w->state = FWS_INIT;
385 			w->node = w->root;
386 			w->skip = w->count;
387 		} else
388 			w->skip = 0;
389 
390 		read_lock_bh(&table->tb6_lock);
391 		res = fib6_walk_continue(w);
392 		read_unlock_bh(&table->tb6_lock);
393 		if (res <= 0) {
394 			fib6_walker_unlink(net, w);
395 			cb->args[4] = 0;
396 		}
397 	}
398 
399 	return res;
400 }
401 
402 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
403 {
404 	struct net *net = sock_net(skb->sk);
405 	unsigned int h, s_h;
406 	unsigned int e = 0, s_e;
407 	struct rt6_rtnl_dump_arg arg;
408 	struct fib6_walker *w;
409 	struct fib6_table *tb;
410 	struct hlist_head *head;
411 	int res = 0;
412 
413 	s_h = cb->args[0];
414 	s_e = cb->args[1];
415 
416 	w = (void *)cb->args[2];
417 	if (!w) {
418 		/* New dump:
419 		 *
420 		 * 1. hook callback destructor.
421 		 */
422 		cb->args[3] = (long)cb->done;
423 		cb->done = fib6_dump_done;
424 
425 		/*
426 		 * 2. allocate and initialize walker.
427 		 */
428 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
429 		if (!w)
430 			return -ENOMEM;
431 		w->func = fib6_dump_node;
432 		cb->args[2] = (long)w;
433 	}
434 
435 	arg.skb = skb;
436 	arg.cb = cb;
437 	arg.net = net;
438 	w->args = &arg;
439 
440 	rcu_read_lock();
441 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
442 		e = 0;
443 		head = &net->ipv6.fib_table_hash[h];
444 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
445 			if (e < s_e)
446 				goto next;
447 			res = fib6_dump_table(tb, skb, cb);
448 			if (res != 0)
449 				goto out;
450 next:
451 			e++;
452 		}
453 	}
454 out:
455 	rcu_read_unlock();
456 	cb->args[1] = e;
457 	cb->args[0] = h;
458 
459 	res = res < 0 ? res : skb->len;
460 	if (res <= 0)
461 		fib6_dump_end(cb);
462 	return res;
463 }
464 
465 /*
466  *	Routing Table
467  *
468  *	return the appropriate node for a routing tree "add" operation
469  *	by either creating and inserting or by returning an existing
470  *	node.
471  */
472 
473 static struct fib6_node *fib6_add_1(struct fib6_node *root,
474 				     struct in6_addr *addr, int plen,
475 				     int offset, int allow_create,
476 				     int replace_required, int sernum)
477 {
478 	struct fib6_node *fn, *in, *ln;
479 	struct fib6_node *pn = NULL;
480 	struct rt6key *key;
481 	int	bit;
482 	__be32	dir = 0;
483 
484 	RT6_TRACE("fib6_add_1\n");
485 
486 	/* insert node in tree */
487 
488 	fn = root;
489 
490 	do {
491 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
492 
493 		/*
494 		 *	Prefix match
495 		 */
496 		if (plen < fn->fn_bit ||
497 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
498 			if (!allow_create) {
499 				if (replace_required) {
500 					pr_warn("Can't replace route, no match found\n");
501 					return ERR_PTR(-ENOENT);
502 				}
503 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
504 			}
505 			goto insert_above;
506 		}
507 
508 		/*
509 		 *	Exact match ?
510 		 */
511 
512 		if (plen == fn->fn_bit) {
513 			/* clean up an intermediate node */
514 			if (!(fn->fn_flags & RTN_RTINFO)) {
515 				rt6_release(fn->leaf);
516 				fn->leaf = NULL;
517 			}
518 
519 			fn->fn_sernum = sernum;
520 
521 			return fn;
522 		}
523 
524 		/*
525 		 *	We have more bits to go
526 		 */
527 
528 		/* Try to walk down on tree. */
529 		fn->fn_sernum = sernum;
530 		dir = addr_bit_set(addr, fn->fn_bit);
531 		pn = fn;
532 		fn = dir ? fn->right : fn->left;
533 	} while (fn);
534 
535 	if (!allow_create) {
536 		/* We should not create new node because
537 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
538 		 * I assume it is safe to require NLM_F_CREATE when
539 		 * REPLACE flag is used! Later we may want to remove the
540 		 * check for replace_required, because according
541 		 * to netlink specification, NLM_F_CREATE
542 		 * MUST be specified if new route is created.
543 		 * That would keep IPv6 consistent with IPv4
544 		 */
545 		if (replace_required) {
546 			pr_warn("Can't replace route, no match found\n");
547 			return ERR_PTR(-ENOENT);
548 		}
549 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
550 	}
551 	/*
552 	 *	We walked to the bottom of tree.
553 	 *	Create new leaf node without children.
554 	 */
555 
556 	ln = node_alloc();
557 
558 	if (!ln)
559 		return ERR_PTR(-ENOMEM);
560 	ln->fn_bit = plen;
561 
562 	ln->parent = pn;
563 	ln->fn_sernum = sernum;
564 
565 	if (dir)
566 		pn->right = ln;
567 	else
568 		pn->left  = ln;
569 
570 	return ln;
571 
572 
573 insert_above:
574 	/*
575 	 * split since we don't have a common prefix anymore or
576 	 * we have a less significant route.
577 	 * we've to insert an intermediate node on the list
578 	 * this new node will point to the one we need to create
579 	 * and the current
580 	 */
581 
582 	pn = fn->parent;
583 
584 	/* find 1st bit in difference between the 2 addrs.
585 
586 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
587 	   but if it is >= plen, the value is ignored in any case.
588 	 */
589 
590 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
591 
592 	/*
593 	 *		(intermediate)[in]
594 	 *	          /	   \
595 	 *	(new leaf node)[ln] (old node)[fn]
596 	 */
597 	if (plen > bit) {
598 		in = node_alloc();
599 		ln = node_alloc();
600 
601 		if (!in || !ln) {
602 			if (in)
603 				node_free(in);
604 			if (ln)
605 				node_free(ln);
606 			return ERR_PTR(-ENOMEM);
607 		}
608 
609 		/*
610 		 * new intermediate node.
611 		 * RTN_RTINFO will
612 		 * be off since that an address that chooses one of
613 		 * the branches would not match less specific routes
614 		 * in the other branch
615 		 */
616 
617 		in->fn_bit = bit;
618 
619 		in->parent = pn;
620 		in->leaf = fn->leaf;
621 		atomic_inc(&in->leaf->rt6i_ref);
622 
623 		in->fn_sernum = sernum;
624 
625 		/* update parent pointer */
626 		if (dir)
627 			pn->right = in;
628 		else
629 			pn->left  = in;
630 
631 		ln->fn_bit = plen;
632 
633 		ln->parent = in;
634 		fn->parent = in;
635 
636 		ln->fn_sernum = sernum;
637 
638 		if (addr_bit_set(addr, bit)) {
639 			in->right = ln;
640 			in->left  = fn;
641 		} else {
642 			in->left  = ln;
643 			in->right = fn;
644 		}
645 	} else { /* plen <= bit */
646 
647 		/*
648 		 *		(new leaf node)[ln]
649 		 *	          /	   \
650 		 *	     (old node)[fn] NULL
651 		 */
652 
653 		ln = node_alloc();
654 
655 		if (!ln)
656 			return ERR_PTR(-ENOMEM);
657 
658 		ln->fn_bit = plen;
659 
660 		ln->parent = pn;
661 
662 		ln->fn_sernum = sernum;
663 
664 		if (dir)
665 			pn->right = ln;
666 		else
667 			pn->left  = ln;
668 
669 		if (addr_bit_set(&key->addr, plen))
670 			ln->right = fn;
671 		else
672 			ln->left  = fn;
673 
674 		fn->parent = ln;
675 	}
676 	return ln;
677 }
678 
679 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
680 {
681 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
682 	       RTF_GATEWAY;
683 }
684 
685 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
686 {
687 	int i;
688 
689 	for (i = 0; i < RTAX_MAX; i++) {
690 		if (test_bit(i, mxc->mx_valid))
691 			mp[i] = mxc->mx[i];
692 	}
693 }
694 
695 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
696 {
697 	if (!mxc->mx)
698 		return 0;
699 
700 	if (dst->flags & DST_HOST) {
701 		u32 *mp = dst_metrics_write_ptr(dst);
702 
703 		if (unlikely(!mp))
704 			return -ENOMEM;
705 
706 		fib6_copy_metrics(mp, mxc);
707 	} else {
708 		dst_init_metrics(dst, mxc->mx, false);
709 
710 		/* We've stolen mx now. */
711 		mxc->mx = NULL;
712 	}
713 
714 	return 0;
715 }
716 
717 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
718 			  struct net *net)
719 {
720 	if (atomic_read(&rt->rt6i_ref) != 1) {
721 		/* This route is used as dummy address holder in some split
722 		 * nodes. It is not leaked, but it still holds other resources,
723 		 * which must be released in time. So, scan ascendant nodes
724 		 * and replace dummy references to this route with references
725 		 * to still alive ones.
726 		 */
727 		while (fn) {
728 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
729 				fn->leaf = fib6_find_prefix(net, fn);
730 				atomic_inc(&fn->leaf->rt6i_ref);
731 				rt6_release(rt);
732 			}
733 			fn = fn->parent;
734 		}
735 		/* No more references are possible at this point. */
736 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
737 	}
738 }
739 
740 /*
741  *	Insert routing information in a node.
742  */
743 
744 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
745 			    struct nl_info *info, struct mx6_config *mxc)
746 {
747 	struct rt6_info *iter = NULL;
748 	struct rt6_info **ins;
749 	struct rt6_info **fallback_ins = NULL;
750 	int replace = (info->nlh &&
751 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
752 	int add = (!info->nlh ||
753 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
754 	int found = 0;
755 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
756 	u16 nlflags = NLM_F_EXCL;
757 	int err;
758 
759 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
760 		nlflags |= NLM_F_APPEND;
761 
762 	ins = &fn->leaf;
763 
764 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
765 		/*
766 		 *	Search for duplicates
767 		 */
768 
769 		if (iter->rt6i_metric == rt->rt6i_metric) {
770 			/*
771 			 *	Same priority level
772 			 */
773 			if (info->nlh &&
774 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
775 				return -EEXIST;
776 
777 			nlflags &= ~NLM_F_EXCL;
778 			if (replace) {
779 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
780 					found++;
781 					break;
782 				}
783 				if (rt_can_ecmp)
784 					fallback_ins = fallback_ins ?: ins;
785 				goto next_iter;
786 			}
787 
788 			if (iter->dst.dev == rt->dst.dev &&
789 			    iter->rt6i_idev == rt->rt6i_idev &&
790 			    ipv6_addr_equal(&iter->rt6i_gateway,
791 					    &rt->rt6i_gateway)) {
792 				if (rt->rt6i_nsiblings)
793 					rt->rt6i_nsiblings = 0;
794 				if (!(iter->rt6i_flags & RTF_EXPIRES))
795 					return -EEXIST;
796 				if (!(rt->rt6i_flags & RTF_EXPIRES))
797 					rt6_clean_expires(iter);
798 				else
799 					rt6_set_expires(iter, rt->dst.expires);
800 				iter->rt6i_pmtu = rt->rt6i_pmtu;
801 				return -EEXIST;
802 			}
803 			/* If we have the same destination and the same metric,
804 			 * but not the same gateway, then the route we try to
805 			 * add is sibling to this route, increment our counter
806 			 * of siblings, and later we will add our route to the
807 			 * list.
808 			 * Only static routes (which don't have flag
809 			 * RTF_EXPIRES) are used for ECMPv6.
810 			 *
811 			 * To avoid long list, we only had siblings if the
812 			 * route have a gateway.
813 			 */
814 			if (rt_can_ecmp &&
815 			    rt6_qualify_for_ecmp(iter))
816 				rt->rt6i_nsiblings++;
817 		}
818 
819 		if (iter->rt6i_metric > rt->rt6i_metric)
820 			break;
821 
822 next_iter:
823 		ins = &iter->dst.rt6_next;
824 	}
825 
826 	if (fallback_ins && !found) {
827 		/* No ECMP-able route found, replace first non-ECMP one */
828 		ins = fallback_ins;
829 		iter = *ins;
830 		found++;
831 	}
832 
833 	/* Reset round-robin state, if necessary */
834 	if (ins == &fn->leaf)
835 		fn->rr_ptr = NULL;
836 
837 	/* Link this route to others same route. */
838 	if (rt->rt6i_nsiblings) {
839 		unsigned int rt6i_nsiblings;
840 		struct rt6_info *sibling, *temp_sibling;
841 
842 		/* Find the first route that have the same metric */
843 		sibling = fn->leaf;
844 		while (sibling) {
845 			if (sibling->rt6i_metric == rt->rt6i_metric &&
846 			    rt6_qualify_for_ecmp(sibling)) {
847 				list_add_tail(&rt->rt6i_siblings,
848 					      &sibling->rt6i_siblings);
849 				break;
850 			}
851 			sibling = sibling->dst.rt6_next;
852 		}
853 		/* For each sibling in the list, increment the counter of
854 		 * siblings. BUG() if counters does not match, list of siblings
855 		 * is broken!
856 		 */
857 		rt6i_nsiblings = 0;
858 		list_for_each_entry_safe(sibling, temp_sibling,
859 					 &rt->rt6i_siblings, rt6i_siblings) {
860 			sibling->rt6i_nsiblings++;
861 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
862 			rt6i_nsiblings++;
863 		}
864 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
865 	}
866 
867 	/*
868 	 *	insert node
869 	 */
870 	if (!replace) {
871 		if (!add)
872 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
873 
874 add:
875 		nlflags |= NLM_F_CREATE;
876 		err = fib6_commit_metrics(&rt->dst, mxc);
877 		if (err)
878 			return err;
879 
880 		rt->dst.rt6_next = iter;
881 		*ins = rt;
882 		rt->rt6i_node = fn;
883 		atomic_inc(&rt->rt6i_ref);
884 		if (!info->skip_notify)
885 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
886 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
887 
888 		if (!(fn->fn_flags & RTN_RTINFO)) {
889 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
890 			fn->fn_flags |= RTN_RTINFO;
891 		}
892 
893 	} else {
894 		int nsiblings;
895 
896 		if (!found) {
897 			if (add)
898 				goto add;
899 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
900 			return -ENOENT;
901 		}
902 
903 		err = fib6_commit_metrics(&rt->dst, mxc);
904 		if (err)
905 			return err;
906 
907 		*ins = rt;
908 		rt->rt6i_node = fn;
909 		rt->dst.rt6_next = iter->dst.rt6_next;
910 		atomic_inc(&rt->rt6i_ref);
911 		if (!info->skip_notify)
912 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
913 		if (!(fn->fn_flags & RTN_RTINFO)) {
914 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
915 			fn->fn_flags |= RTN_RTINFO;
916 		}
917 		nsiblings = iter->rt6i_nsiblings;
918 		fib6_purge_rt(iter, fn, info->nl_net);
919 		rt6_release(iter);
920 
921 		if (nsiblings) {
922 			/* Replacing an ECMP route, remove all siblings */
923 			ins = &rt->dst.rt6_next;
924 			iter = *ins;
925 			while (iter) {
926 				if (iter->rt6i_metric > rt->rt6i_metric)
927 					break;
928 				if (rt6_qualify_for_ecmp(iter)) {
929 					*ins = iter->dst.rt6_next;
930 					fib6_purge_rt(iter, fn, info->nl_net);
931 					rt6_release(iter);
932 					nsiblings--;
933 				} else {
934 					ins = &iter->dst.rt6_next;
935 				}
936 				iter = *ins;
937 			}
938 			WARN_ON(nsiblings != 0);
939 		}
940 	}
941 
942 	return 0;
943 }
944 
945 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
946 {
947 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
948 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
949 		mod_timer(&net->ipv6.ip6_fib_timer,
950 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
951 }
952 
953 void fib6_force_start_gc(struct net *net)
954 {
955 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
956 		mod_timer(&net->ipv6.ip6_fib_timer,
957 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
958 }
959 
960 /*
961  *	Add routing information to the routing tree.
962  *	<destination addr>/<source addr>
963  *	with source addr info in sub-trees
964  */
965 
966 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
967 	     struct nl_info *info, struct mx6_config *mxc)
968 {
969 	struct fib6_node *fn, *pn = NULL;
970 	int err = -ENOMEM;
971 	int allow_create = 1;
972 	int replace_required = 0;
973 	int sernum = fib6_new_sernum(info->nl_net);
974 
975 	if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
976 			 !atomic_read(&rt->dst.__refcnt)))
977 		return -EINVAL;
978 
979 	if (info->nlh) {
980 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
981 			allow_create = 0;
982 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
983 			replace_required = 1;
984 	}
985 	if (!allow_create && !replace_required)
986 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
987 
988 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
989 			offsetof(struct rt6_info, rt6i_dst), allow_create,
990 			replace_required, sernum);
991 	if (IS_ERR(fn)) {
992 		err = PTR_ERR(fn);
993 		fn = NULL;
994 		goto out;
995 	}
996 
997 	pn = fn;
998 
999 #ifdef CONFIG_IPV6_SUBTREES
1000 	if (rt->rt6i_src.plen) {
1001 		struct fib6_node *sn;
1002 
1003 		if (!fn->subtree) {
1004 			struct fib6_node *sfn;
1005 
1006 			/*
1007 			 * Create subtree.
1008 			 *
1009 			 *		fn[main tree]
1010 			 *		|
1011 			 *		sfn[subtree root]
1012 			 *		   \
1013 			 *		    sn[new leaf node]
1014 			 */
1015 
1016 			/* Create subtree root node */
1017 			sfn = node_alloc();
1018 			if (!sfn)
1019 				goto st_failure;
1020 
1021 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1022 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1023 			sfn->fn_flags = RTN_ROOT;
1024 			sfn->fn_sernum = sernum;
1025 
1026 			/* Now add the first leaf node to new subtree */
1027 
1028 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1029 					rt->rt6i_src.plen,
1030 					offsetof(struct rt6_info, rt6i_src),
1031 					allow_create, replace_required, sernum);
1032 
1033 			if (IS_ERR(sn)) {
1034 				/* If it is failed, discard just allocated
1035 				   root, and then (in st_failure) stale node
1036 				   in main tree.
1037 				 */
1038 				node_free(sfn);
1039 				err = PTR_ERR(sn);
1040 				goto st_failure;
1041 			}
1042 
1043 			/* Now link new subtree to main tree */
1044 			sfn->parent = fn;
1045 			fn->subtree = sfn;
1046 		} else {
1047 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1048 					rt->rt6i_src.plen,
1049 					offsetof(struct rt6_info, rt6i_src),
1050 					allow_create, replace_required, sernum);
1051 
1052 			if (IS_ERR(sn)) {
1053 				err = PTR_ERR(sn);
1054 				goto st_failure;
1055 			}
1056 		}
1057 
1058 		if (!fn->leaf) {
1059 			fn->leaf = rt;
1060 			atomic_inc(&rt->rt6i_ref);
1061 		}
1062 		fn = sn;
1063 	}
1064 #endif
1065 
1066 	err = fib6_add_rt2node(fn, rt, info, mxc);
1067 	if (!err) {
1068 		fib6_start_gc(info->nl_net, rt);
1069 		if (!(rt->rt6i_flags & RTF_CACHE))
1070 			fib6_prune_clones(info->nl_net, pn);
1071 		rt->dst.flags &= ~DST_NOCACHE;
1072 	}
1073 
1074 out:
1075 	if (err) {
1076 #ifdef CONFIG_IPV6_SUBTREES
1077 		/*
1078 		 * If fib6_add_1 has cleared the old leaf pointer in the
1079 		 * super-tree leaf node we have to find a new one for it.
1080 		 */
1081 		if (pn != fn && pn->leaf == rt) {
1082 			pn->leaf = NULL;
1083 			atomic_dec(&rt->rt6i_ref);
1084 		}
1085 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1086 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1087 #if RT6_DEBUG >= 2
1088 			if (!pn->leaf) {
1089 				WARN_ON(pn->leaf == NULL);
1090 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1091 			}
1092 #endif
1093 			atomic_inc(&pn->leaf->rt6i_ref);
1094 		}
1095 #endif
1096 		if (!(rt->dst.flags & DST_NOCACHE))
1097 			dst_free(&rt->dst);
1098 	}
1099 	return err;
1100 
1101 #ifdef CONFIG_IPV6_SUBTREES
1102 	/* Subtree creation failed, probably main tree node
1103 	   is orphan. If it is, shoot it.
1104 	 */
1105 st_failure:
1106 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1107 		fib6_repair_tree(info->nl_net, fn);
1108 	if (!(rt->dst.flags & DST_NOCACHE))
1109 		dst_free(&rt->dst);
1110 	return err;
1111 #endif
1112 }
1113 
1114 /*
1115  *	Routing tree lookup
1116  *
1117  */
1118 
1119 struct lookup_args {
1120 	int			offset;		/* key offset on rt6_info	*/
1121 	const struct in6_addr	*addr;		/* search key			*/
1122 };
1123 
1124 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1125 				       struct lookup_args *args)
1126 {
1127 	struct fib6_node *fn;
1128 	__be32 dir;
1129 
1130 	if (unlikely(args->offset == 0))
1131 		return NULL;
1132 
1133 	/*
1134 	 *	Descend on a tree
1135 	 */
1136 
1137 	fn = root;
1138 
1139 	for (;;) {
1140 		struct fib6_node *next;
1141 
1142 		dir = addr_bit_set(args->addr, fn->fn_bit);
1143 
1144 		next = dir ? fn->right : fn->left;
1145 
1146 		if (next) {
1147 			fn = next;
1148 			continue;
1149 		}
1150 		break;
1151 	}
1152 
1153 	while (fn) {
1154 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1155 			struct rt6key *key;
1156 
1157 			key = (struct rt6key *) ((u8 *) fn->leaf +
1158 						 args->offset);
1159 
1160 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1161 #ifdef CONFIG_IPV6_SUBTREES
1162 				if (fn->subtree) {
1163 					struct fib6_node *sfn;
1164 					sfn = fib6_lookup_1(fn->subtree,
1165 							    args + 1);
1166 					if (!sfn)
1167 						goto backtrack;
1168 					fn = sfn;
1169 				}
1170 #endif
1171 				if (fn->fn_flags & RTN_RTINFO)
1172 					return fn;
1173 			}
1174 		}
1175 #ifdef CONFIG_IPV6_SUBTREES
1176 backtrack:
1177 #endif
1178 		if (fn->fn_flags & RTN_ROOT)
1179 			break;
1180 
1181 		fn = fn->parent;
1182 	}
1183 
1184 	return NULL;
1185 }
1186 
1187 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1188 			      const struct in6_addr *saddr)
1189 {
1190 	struct fib6_node *fn;
1191 	struct lookup_args args[] = {
1192 		{
1193 			.offset = offsetof(struct rt6_info, rt6i_dst),
1194 			.addr = daddr,
1195 		},
1196 #ifdef CONFIG_IPV6_SUBTREES
1197 		{
1198 			.offset = offsetof(struct rt6_info, rt6i_src),
1199 			.addr = saddr,
1200 		},
1201 #endif
1202 		{
1203 			.offset = 0,	/* sentinel */
1204 		}
1205 	};
1206 
1207 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1208 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1209 		fn = root;
1210 
1211 	return fn;
1212 }
1213 
1214 /*
1215  *	Get node with specified destination prefix (and source prefix,
1216  *	if subtrees are used)
1217  */
1218 
1219 
1220 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1221 				       const struct in6_addr *addr,
1222 				       int plen, int offset)
1223 {
1224 	struct fib6_node *fn;
1225 
1226 	for (fn = root; fn ; ) {
1227 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1228 
1229 		/*
1230 		 *	Prefix match
1231 		 */
1232 		if (plen < fn->fn_bit ||
1233 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1234 			return NULL;
1235 
1236 		if (plen == fn->fn_bit)
1237 			return fn;
1238 
1239 		/*
1240 		 *	We have more bits to go
1241 		 */
1242 		if (addr_bit_set(addr, fn->fn_bit))
1243 			fn = fn->right;
1244 		else
1245 			fn = fn->left;
1246 	}
1247 	return NULL;
1248 }
1249 
1250 struct fib6_node *fib6_locate(struct fib6_node *root,
1251 			      const struct in6_addr *daddr, int dst_len,
1252 			      const struct in6_addr *saddr, int src_len)
1253 {
1254 	struct fib6_node *fn;
1255 
1256 	fn = fib6_locate_1(root, daddr, dst_len,
1257 			   offsetof(struct rt6_info, rt6i_dst));
1258 
1259 #ifdef CONFIG_IPV6_SUBTREES
1260 	if (src_len) {
1261 		WARN_ON(saddr == NULL);
1262 		if (fn && fn->subtree)
1263 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1264 					   offsetof(struct rt6_info, rt6i_src));
1265 	}
1266 #endif
1267 
1268 	if (fn && fn->fn_flags & RTN_RTINFO)
1269 		return fn;
1270 
1271 	return NULL;
1272 }
1273 
1274 
1275 /*
1276  *	Deletion
1277  *
1278  */
1279 
1280 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1281 {
1282 	if (fn->fn_flags & RTN_ROOT)
1283 		return net->ipv6.ip6_null_entry;
1284 
1285 	while (fn) {
1286 		if (fn->left)
1287 			return fn->left->leaf;
1288 		if (fn->right)
1289 			return fn->right->leaf;
1290 
1291 		fn = FIB6_SUBTREE(fn);
1292 	}
1293 	return NULL;
1294 }
1295 
1296 /*
1297  *	Called to trim the tree of intermediate nodes when possible. "fn"
1298  *	is the node we want to try and remove.
1299  */
1300 
1301 static struct fib6_node *fib6_repair_tree(struct net *net,
1302 					   struct fib6_node *fn)
1303 {
1304 	int children;
1305 	int nstate;
1306 	struct fib6_node *child, *pn;
1307 	struct fib6_walker *w;
1308 	int iter = 0;
1309 
1310 	for (;;) {
1311 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1312 		iter++;
1313 
1314 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1315 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1316 		WARN_ON(fn->leaf);
1317 
1318 		children = 0;
1319 		child = NULL;
1320 		if (fn->right)
1321 			child = fn->right, children |= 1;
1322 		if (fn->left)
1323 			child = fn->left, children |= 2;
1324 
1325 		if (children == 3 || FIB6_SUBTREE(fn)
1326 #ifdef CONFIG_IPV6_SUBTREES
1327 		    /* Subtree root (i.e. fn) may have one child */
1328 		    || (children && fn->fn_flags & RTN_ROOT)
1329 #endif
1330 		    ) {
1331 			fn->leaf = fib6_find_prefix(net, fn);
1332 #if RT6_DEBUG >= 2
1333 			if (!fn->leaf) {
1334 				WARN_ON(!fn->leaf);
1335 				fn->leaf = net->ipv6.ip6_null_entry;
1336 			}
1337 #endif
1338 			atomic_inc(&fn->leaf->rt6i_ref);
1339 			return fn->parent;
1340 		}
1341 
1342 		pn = fn->parent;
1343 #ifdef CONFIG_IPV6_SUBTREES
1344 		if (FIB6_SUBTREE(pn) == fn) {
1345 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1346 			FIB6_SUBTREE(pn) = NULL;
1347 			nstate = FWS_L;
1348 		} else {
1349 			WARN_ON(fn->fn_flags & RTN_ROOT);
1350 #endif
1351 			if (pn->right == fn)
1352 				pn->right = child;
1353 			else if (pn->left == fn)
1354 				pn->left = child;
1355 #if RT6_DEBUG >= 2
1356 			else
1357 				WARN_ON(1);
1358 #endif
1359 			if (child)
1360 				child->parent = pn;
1361 			nstate = FWS_R;
1362 #ifdef CONFIG_IPV6_SUBTREES
1363 		}
1364 #endif
1365 
1366 		read_lock(&net->ipv6.fib6_walker_lock);
1367 		FOR_WALKERS(net, w) {
1368 			if (!child) {
1369 				if (w->root == fn) {
1370 					w->root = w->node = NULL;
1371 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1372 				} else if (w->node == fn) {
1373 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1374 					w->node = pn;
1375 					w->state = nstate;
1376 				}
1377 			} else {
1378 				if (w->root == fn) {
1379 					w->root = child;
1380 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1381 				}
1382 				if (w->node == fn) {
1383 					w->node = child;
1384 					if (children&2) {
1385 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1386 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1387 					} else {
1388 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1389 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1390 					}
1391 				}
1392 			}
1393 		}
1394 		read_unlock(&net->ipv6.fib6_walker_lock);
1395 
1396 		node_free(fn);
1397 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1398 			return pn;
1399 
1400 		rt6_release(pn->leaf);
1401 		pn->leaf = NULL;
1402 		fn = pn;
1403 	}
1404 }
1405 
1406 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1407 			   struct nl_info *info)
1408 {
1409 	struct fib6_walker *w;
1410 	struct rt6_info *rt = *rtp;
1411 	struct net *net = info->nl_net;
1412 
1413 	RT6_TRACE("fib6_del_route\n");
1414 
1415 	/* Unlink it */
1416 	*rtp = rt->dst.rt6_next;
1417 	rt->rt6i_node = NULL;
1418 	net->ipv6.rt6_stats->fib_rt_entries--;
1419 	net->ipv6.rt6_stats->fib_discarded_routes++;
1420 
1421 	/* Reset round-robin state, if necessary */
1422 	if (fn->rr_ptr == rt)
1423 		fn->rr_ptr = NULL;
1424 
1425 	/* Remove this entry from other siblings */
1426 	if (rt->rt6i_nsiblings) {
1427 		struct rt6_info *sibling, *next_sibling;
1428 
1429 		list_for_each_entry_safe(sibling, next_sibling,
1430 					 &rt->rt6i_siblings, rt6i_siblings)
1431 			sibling->rt6i_nsiblings--;
1432 		rt->rt6i_nsiblings = 0;
1433 		list_del_init(&rt->rt6i_siblings);
1434 	}
1435 
1436 	/* Adjust walkers */
1437 	read_lock(&net->ipv6.fib6_walker_lock);
1438 	FOR_WALKERS(net, w) {
1439 		if (w->state == FWS_C && w->leaf == rt) {
1440 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1441 			w->leaf = rt->dst.rt6_next;
1442 			if (!w->leaf)
1443 				w->state = FWS_U;
1444 		}
1445 	}
1446 	read_unlock(&net->ipv6.fib6_walker_lock);
1447 
1448 	rt->dst.rt6_next = NULL;
1449 
1450 	/* If it was last route, expunge its radix tree node */
1451 	if (!fn->leaf) {
1452 		fn->fn_flags &= ~RTN_RTINFO;
1453 		net->ipv6.rt6_stats->fib_route_nodes--;
1454 		fn = fib6_repair_tree(net, fn);
1455 	}
1456 
1457 	fib6_purge_rt(rt, fn, net);
1458 
1459 	if (!info->skip_notify)
1460 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1461 	rt6_release(rt);
1462 }
1463 
1464 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1465 {
1466 	struct net *net = info->nl_net;
1467 	struct fib6_node *fn = rt->rt6i_node;
1468 	struct rt6_info **rtp;
1469 
1470 #if RT6_DEBUG >= 2
1471 	if (rt->dst.obsolete > 0) {
1472 		WARN_ON(fn);
1473 		return -ENOENT;
1474 	}
1475 #endif
1476 	if (!fn || rt == net->ipv6.ip6_null_entry)
1477 		return -ENOENT;
1478 
1479 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1480 
1481 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1482 		struct fib6_node *pn = fn;
1483 #ifdef CONFIG_IPV6_SUBTREES
1484 		/* clones of this route might be in another subtree */
1485 		if (rt->rt6i_src.plen) {
1486 			while (!(pn->fn_flags & RTN_ROOT))
1487 				pn = pn->parent;
1488 			pn = pn->parent;
1489 		}
1490 #endif
1491 		fib6_prune_clones(info->nl_net, pn);
1492 	}
1493 
1494 	/*
1495 	 *	Walk the leaf entries looking for ourself
1496 	 */
1497 
1498 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1499 		if (*rtp == rt) {
1500 			fib6_del_route(fn, rtp, info);
1501 			return 0;
1502 		}
1503 	}
1504 	return -ENOENT;
1505 }
1506 
1507 /*
1508  *	Tree traversal function.
1509  *
1510  *	Certainly, it is not interrupt safe.
1511  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1512  *	It means, that we can modify tree during walking
1513  *	and use this function for garbage collection, clone pruning,
1514  *	cleaning tree when a device goes down etc. etc.
1515  *
1516  *	It guarantees that every node will be traversed,
1517  *	and that it will be traversed only once.
1518  *
1519  *	Callback function w->func may return:
1520  *	0 -> continue walking.
1521  *	positive value -> walking is suspended (used by tree dumps,
1522  *	and probably by gc, if it will be split to several slices)
1523  *	negative value -> terminate walking.
1524  *
1525  *	The function itself returns:
1526  *	0   -> walk is complete.
1527  *	>0  -> walk is incomplete (i.e. suspended)
1528  *	<0  -> walk is terminated by an error.
1529  */
1530 
1531 static int fib6_walk_continue(struct fib6_walker *w)
1532 {
1533 	struct fib6_node *fn, *pn;
1534 
1535 	for (;;) {
1536 		fn = w->node;
1537 		if (!fn)
1538 			return 0;
1539 
1540 		if (w->prune && fn != w->root &&
1541 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1542 			w->state = FWS_C;
1543 			w->leaf = fn->leaf;
1544 		}
1545 		switch (w->state) {
1546 #ifdef CONFIG_IPV6_SUBTREES
1547 		case FWS_S:
1548 			if (FIB6_SUBTREE(fn)) {
1549 				w->node = FIB6_SUBTREE(fn);
1550 				continue;
1551 			}
1552 			w->state = FWS_L;
1553 #endif
1554 		case FWS_L:
1555 			if (fn->left) {
1556 				w->node = fn->left;
1557 				w->state = FWS_INIT;
1558 				continue;
1559 			}
1560 			w->state = FWS_R;
1561 		case FWS_R:
1562 			if (fn->right) {
1563 				w->node = fn->right;
1564 				w->state = FWS_INIT;
1565 				continue;
1566 			}
1567 			w->state = FWS_C;
1568 			w->leaf = fn->leaf;
1569 		case FWS_C:
1570 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1571 				int err;
1572 
1573 				if (w->skip) {
1574 					w->skip--;
1575 					goto skip;
1576 				}
1577 
1578 				err = w->func(w);
1579 				if (err)
1580 					return err;
1581 
1582 				w->count++;
1583 				continue;
1584 			}
1585 skip:
1586 			w->state = FWS_U;
1587 		case FWS_U:
1588 			if (fn == w->root)
1589 				return 0;
1590 			pn = fn->parent;
1591 			w->node = pn;
1592 #ifdef CONFIG_IPV6_SUBTREES
1593 			if (FIB6_SUBTREE(pn) == fn) {
1594 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1595 				w->state = FWS_L;
1596 				continue;
1597 			}
1598 #endif
1599 			if (pn->left == fn) {
1600 				w->state = FWS_R;
1601 				continue;
1602 			}
1603 			if (pn->right == fn) {
1604 				w->state = FWS_C;
1605 				w->leaf = w->node->leaf;
1606 				continue;
1607 			}
1608 #if RT6_DEBUG >= 2
1609 			WARN_ON(1);
1610 #endif
1611 		}
1612 	}
1613 }
1614 
1615 static int fib6_walk(struct net *net, struct fib6_walker *w)
1616 {
1617 	int res;
1618 
1619 	w->state = FWS_INIT;
1620 	w->node = w->root;
1621 
1622 	fib6_walker_link(net, w);
1623 	res = fib6_walk_continue(w);
1624 	if (res <= 0)
1625 		fib6_walker_unlink(net, w);
1626 	return res;
1627 }
1628 
1629 static int fib6_clean_node(struct fib6_walker *w)
1630 {
1631 	int res;
1632 	struct rt6_info *rt;
1633 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1634 	struct nl_info info = {
1635 		.nl_net = c->net,
1636 	};
1637 
1638 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1639 	    w->node->fn_sernum != c->sernum)
1640 		w->node->fn_sernum = c->sernum;
1641 
1642 	if (!c->func) {
1643 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1644 		w->leaf = NULL;
1645 		return 0;
1646 	}
1647 
1648 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1649 		res = c->func(rt, c->arg);
1650 		if (res < 0) {
1651 			w->leaf = rt;
1652 			res = fib6_del(rt, &info);
1653 			if (res) {
1654 #if RT6_DEBUG >= 2
1655 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1656 					 __func__, rt, rt->rt6i_node, res);
1657 #endif
1658 				continue;
1659 			}
1660 			return 0;
1661 		}
1662 		WARN_ON(res != 0);
1663 	}
1664 	w->leaf = rt;
1665 	return 0;
1666 }
1667 
1668 /*
1669  *	Convenient frontend to tree walker.
1670  *
1671  *	func is called on each route.
1672  *		It may return -1 -> delete this route.
1673  *		              0  -> continue walking
1674  *
1675  *	prune==1 -> only immediate children of node (certainly,
1676  *	ignoring pure split nodes) will be scanned.
1677  */
1678 
1679 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1680 			    int (*func)(struct rt6_info *, void *arg),
1681 			    bool prune, int sernum, void *arg)
1682 {
1683 	struct fib6_cleaner c;
1684 
1685 	c.w.root = root;
1686 	c.w.func = fib6_clean_node;
1687 	c.w.prune = prune;
1688 	c.w.count = 0;
1689 	c.w.skip = 0;
1690 	c.func = func;
1691 	c.sernum = sernum;
1692 	c.arg = arg;
1693 	c.net = net;
1694 
1695 	fib6_walk(net, &c.w);
1696 }
1697 
1698 static void __fib6_clean_all(struct net *net,
1699 			     int (*func)(struct rt6_info *, void *),
1700 			     int sernum, void *arg)
1701 {
1702 	struct fib6_table *table;
1703 	struct hlist_head *head;
1704 	unsigned int h;
1705 
1706 	rcu_read_lock();
1707 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1708 		head = &net->ipv6.fib_table_hash[h];
1709 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1710 			write_lock_bh(&table->tb6_lock);
1711 			fib6_clean_tree(net, &table->tb6_root,
1712 					func, false, sernum, arg);
1713 			write_unlock_bh(&table->tb6_lock);
1714 		}
1715 	}
1716 	rcu_read_unlock();
1717 }
1718 
1719 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1720 		    void *arg)
1721 {
1722 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1723 }
1724 
1725 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1726 {
1727 	if (rt->rt6i_flags & RTF_CACHE) {
1728 		RT6_TRACE("pruning clone %p\n", rt);
1729 		return -1;
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1736 {
1737 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1738 			FIB6_NO_SERNUM_CHANGE, NULL);
1739 }
1740 
1741 static void fib6_flush_trees(struct net *net)
1742 {
1743 	int new_sernum = fib6_new_sernum(net);
1744 
1745 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1746 }
1747 
1748 /*
1749  *	Garbage collection
1750  */
1751 
1752 struct fib6_gc_args
1753 {
1754 	int			timeout;
1755 	int			more;
1756 };
1757 
1758 static int fib6_age(struct rt6_info *rt, void *arg)
1759 {
1760 	struct fib6_gc_args *gc_args = arg;
1761 	unsigned long now = jiffies;
1762 
1763 	/*
1764 	 *	check addrconf expiration here.
1765 	 *	Routes are expired even if they are in use.
1766 	 *
1767 	 *	Also age clones. Note, that clones are aged out
1768 	 *	only if they are not in use now.
1769 	 */
1770 
1771 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1772 		if (time_after(now, rt->dst.expires)) {
1773 			RT6_TRACE("expiring %p\n", rt);
1774 			return -1;
1775 		}
1776 		gc_args->more++;
1777 	} else if (rt->rt6i_flags & RTF_CACHE) {
1778 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1779 		    time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1780 			RT6_TRACE("aging clone %p\n", rt);
1781 			return -1;
1782 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1783 			struct neighbour *neigh;
1784 			__u8 neigh_flags = 0;
1785 
1786 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1787 			if (neigh) {
1788 				neigh_flags = neigh->flags;
1789 				neigh_release(neigh);
1790 			}
1791 			if (!(neigh_flags & NTF_ROUTER)) {
1792 				RT6_TRACE("purging route %p via non-router but gateway\n",
1793 					  rt);
1794 				return -1;
1795 			}
1796 		}
1797 		gc_args->more++;
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1804 {
1805 	struct fib6_gc_args gc_args;
1806 	unsigned long now;
1807 
1808 	if (force) {
1809 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
1810 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1811 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1812 		return;
1813 	}
1814 	gc_args.timeout = expires ? (int)expires :
1815 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1816 
1817 	gc_args.more = icmp6_dst_gc();
1818 
1819 	fib6_clean_all(net, fib6_age, &gc_args);
1820 	now = jiffies;
1821 	net->ipv6.ip6_rt_last_gc = now;
1822 
1823 	if (gc_args.more)
1824 		mod_timer(&net->ipv6.ip6_fib_timer,
1825 			  round_jiffies(now
1826 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1827 	else
1828 		del_timer(&net->ipv6.ip6_fib_timer);
1829 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1830 }
1831 
1832 static void fib6_gc_timer_cb(unsigned long arg)
1833 {
1834 	fib6_run_gc(0, (struct net *)arg, true);
1835 }
1836 
1837 static int __net_init fib6_net_init(struct net *net)
1838 {
1839 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1840 
1841 	spin_lock_init(&net->ipv6.fib6_gc_lock);
1842 	rwlock_init(&net->ipv6.fib6_walker_lock);
1843 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1844 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1845 
1846 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1847 	if (!net->ipv6.rt6_stats)
1848 		goto out_timer;
1849 
1850 	/* Avoid false sharing : Use at least a full cache line */
1851 	size = max_t(size_t, size, L1_CACHE_BYTES);
1852 
1853 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1854 	if (!net->ipv6.fib_table_hash)
1855 		goto out_rt6_stats;
1856 
1857 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1858 					  GFP_KERNEL);
1859 	if (!net->ipv6.fib6_main_tbl)
1860 		goto out_fib_table_hash;
1861 
1862 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1863 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1864 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1865 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1866 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1867 
1868 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1869 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1870 					   GFP_KERNEL);
1871 	if (!net->ipv6.fib6_local_tbl)
1872 		goto out_fib6_main_tbl;
1873 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1874 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1875 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1876 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1877 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1878 #endif
1879 	fib6_tables_init(net);
1880 
1881 	return 0;
1882 
1883 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1884 out_fib6_main_tbl:
1885 	kfree(net->ipv6.fib6_main_tbl);
1886 #endif
1887 out_fib_table_hash:
1888 	kfree(net->ipv6.fib_table_hash);
1889 out_rt6_stats:
1890 	kfree(net->ipv6.rt6_stats);
1891 out_timer:
1892 	return -ENOMEM;
1893 }
1894 
1895 static void fib6_net_exit(struct net *net)
1896 {
1897 	rt6_ifdown(net, NULL);
1898 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1899 
1900 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1901 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1902 	kfree(net->ipv6.fib6_local_tbl);
1903 #endif
1904 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1905 	kfree(net->ipv6.fib6_main_tbl);
1906 	kfree(net->ipv6.fib_table_hash);
1907 	kfree(net->ipv6.rt6_stats);
1908 }
1909 
1910 static struct pernet_operations fib6_net_ops = {
1911 	.init = fib6_net_init,
1912 	.exit = fib6_net_exit,
1913 };
1914 
1915 int __init fib6_init(void)
1916 {
1917 	int ret = -ENOMEM;
1918 
1919 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1920 					   sizeof(struct fib6_node),
1921 					   0, SLAB_HWCACHE_ALIGN,
1922 					   NULL);
1923 	if (!fib6_node_kmem)
1924 		goto out;
1925 
1926 	ret = register_pernet_subsys(&fib6_net_ops);
1927 	if (ret)
1928 		goto out_kmem_cache_create;
1929 
1930 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1931 			      NULL);
1932 	if (ret)
1933 		goto out_unregister_subsys;
1934 
1935 	__fib6_flush_trees = fib6_flush_trees;
1936 out:
1937 	return ret;
1938 
1939 out_unregister_subsys:
1940 	unregister_pernet_subsys(&fib6_net_ops);
1941 out_kmem_cache_create:
1942 	kmem_cache_destroy(fib6_node_kmem);
1943 	goto out;
1944 }
1945 
1946 void fib6_gc_cleanup(void)
1947 {
1948 	unregister_pernet_subsys(&fib6_net_ops);
1949 	kmem_cache_destroy(fib6_node_kmem);
1950 }
1951 
1952 #ifdef CONFIG_PROC_FS
1953 
1954 struct ipv6_route_iter {
1955 	struct seq_net_private p;
1956 	struct fib6_walker w;
1957 	loff_t skip;
1958 	struct fib6_table *tbl;
1959 	int sernum;
1960 };
1961 
1962 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1963 {
1964 	struct rt6_info *rt = v;
1965 	struct ipv6_route_iter *iter = seq->private;
1966 
1967 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1968 
1969 #ifdef CONFIG_IPV6_SUBTREES
1970 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1971 #else
1972 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1973 #endif
1974 	if (rt->rt6i_flags & RTF_GATEWAY)
1975 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1976 	else
1977 		seq_puts(seq, "00000000000000000000000000000000");
1978 
1979 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1980 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1981 		   rt->dst.__use, rt->rt6i_flags,
1982 		   rt->dst.dev ? rt->dst.dev->name : "");
1983 	iter->w.leaf = NULL;
1984 	return 0;
1985 }
1986 
1987 static int ipv6_route_yield(struct fib6_walker *w)
1988 {
1989 	struct ipv6_route_iter *iter = w->args;
1990 
1991 	if (!iter->skip)
1992 		return 1;
1993 
1994 	do {
1995 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1996 		iter->skip--;
1997 		if (!iter->skip && iter->w.leaf)
1998 			return 1;
1999 	} while (iter->w.leaf);
2000 
2001 	return 0;
2002 }
2003 
2004 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2005 				      struct net *net)
2006 {
2007 	memset(&iter->w, 0, sizeof(iter->w));
2008 	iter->w.func = ipv6_route_yield;
2009 	iter->w.root = &iter->tbl->tb6_root;
2010 	iter->w.state = FWS_INIT;
2011 	iter->w.node = iter->w.root;
2012 	iter->w.args = iter;
2013 	iter->sernum = iter->w.root->fn_sernum;
2014 	INIT_LIST_HEAD(&iter->w.lh);
2015 	fib6_walker_link(net, &iter->w);
2016 }
2017 
2018 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2019 						    struct net *net)
2020 {
2021 	unsigned int h;
2022 	struct hlist_node *node;
2023 
2024 	if (tbl) {
2025 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2026 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2027 	} else {
2028 		h = 0;
2029 		node = NULL;
2030 	}
2031 
2032 	while (!node && h < FIB6_TABLE_HASHSZ) {
2033 		node = rcu_dereference_bh(
2034 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2035 	}
2036 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2037 }
2038 
2039 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2040 {
2041 	if (iter->sernum != iter->w.root->fn_sernum) {
2042 		iter->sernum = iter->w.root->fn_sernum;
2043 		iter->w.state = FWS_INIT;
2044 		iter->w.node = iter->w.root;
2045 		WARN_ON(iter->w.skip);
2046 		iter->w.skip = iter->w.count;
2047 	}
2048 }
2049 
2050 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2051 {
2052 	int r;
2053 	struct rt6_info *n;
2054 	struct net *net = seq_file_net(seq);
2055 	struct ipv6_route_iter *iter = seq->private;
2056 
2057 	if (!v)
2058 		goto iter_table;
2059 
2060 	n = ((struct rt6_info *)v)->dst.rt6_next;
2061 	if (n) {
2062 		++*pos;
2063 		return n;
2064 	}
2065 
2066 iter_table:
2067 	ipv6_route_check_sernum(iter);
2068 	read_lock(&iter->tbl->tb6_lock);
2069 	r = fib6_walk_continue(&iter->w);
2070 	read_unlock(&iter->tbl->tb6_lock);
2071 	if (r > 0) {
2072 		if (v)
2073 			++*pos;
2074 		return iter->w.leaf;
2075 	} else if (r < 0) {
2076 		fib6_walker_unlink(net, &iter->w);
2077 		return NULL;
2078 	}
2079 	fib6_walker_unlink(net, &iter->w);
2080 
2081 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2082 	if (!iter->tbl)
2083 		return NULL;
2084 
2085 	ipv6_route_seq_setup_walk(iter, net);
2086 	goto iter_table;
2087 }
2088 
2089 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2090 	__acquires(RCU_BH)
2091 {
2092 	struct net *net = seq_file_net(seq);
2093 	struct ipv6_route_iter *iter = seq->private;
2094 
2095 	rcu_read_lock_bh();
2096 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2097 	iter->skip = *pos;
2098 
2099 	if (iter->tbl) {
2100 		ipv6_route_seq_setup_walk(iter, net);
2101 		return ipv6_route_seq_next(seq, NULL, pos);
2102 	} else {
2103 		return NULL;
2104 	}
2105 }
2106 
2107 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2108 {
2109 	struct fib6_walker *w = &iter->w;
2110 	return w->node && !(w->state == FWS_U && w->node == w->root);
2111 }
2112 
2113 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2114 	__releases(RCU_BH)
2115 {
2116 	struct net *net = seq_file_net(seq);
2117 	struct ipv6_route_iter *iter = seq->private;
2118 
2119 	if (ipv6_route_iter_active(iter))
2120 		fib6_walker_unlink(net, &iter->w);
2121 
2122 	rcu_read_unlock_bh();
2123 }
2124 
2125 static const struct seq_operations ipv6_route_seq_ops = {
2126 	.start	= ipv6_route_seq_start,
2127 	.next	= ipv6_route_seq_next,
2128 	.stop	= ipv6_route_seq_stop,
2129 	.show	= ipv6_route_seq_show
2130 };
2131 
2132 int ipv6_route_open(struct inode *inode, struct file *file)
2133 {
2134 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2135 			    sizeof(struct ipv6_route_iter));
2136 }
2137 
2138 #endif /* CONFIG_PROC_FS */
2139