1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* 15 * Changes: 16 * Yuji SEKIYA @USAGI: Support default route on router node; 17 * remove ip6_null_entry from the top of 18 * routing table. 19 * Ville Nuorvala: Fixed routing subtrees. 20 */ 21 #include <linux/errno.h> 22 #include <linux/types.h> 23 #include <linux/net.h> 24 #include <linux/route.h> 25 #include <linux/netdevice.h> 26 #include <linux/in6.h> 27 #include <linux/init.h> 28 #include <linux/list.h> 29 30 #ifdef CONFIG_PROC_FS 31 #include <linux/proc_fs.h> 32 #endif 33 34 #include <net/ipv6.h> 35 #include <net/ndisc.h> 36 #include <net/addrconf.h> 37 38 #include <net/ip6_fib.h> 39 #include <net/ip6_route.h> 40 41 #define RT6_DEBUG 2 42 43 #if RT6_DEBUG >= 3 44 #define RT6_TRACE(x...) printk(KERN_DEBUG x) 45 #else 46 #define RT6_TRACE(x...) do { ; } while (0) 47 #endif 48 49 static struct kmem_cache * fib6_node_kmem __read_mostly; 50 51 enum fib_walk_state_t 52 { 53 #ifdef CONFIG_IPV6_SUBTREES 54 FWS_S, 55 #endif 56 FWS_L, 57 FWS_R, 58 FWS_C, 59 FWS_U 60 }; 61 62 struct fib6_cleaner_t 63 { 64 struct fib6_walker_t w; 65 struct net *net; 66 int (*func)(struct rt6_info *, void *arg); 67 void *arg; 68 }; 69 70 static DEFINE_RWLOCK(fib6_walker_lock); 71 72 #ifdef CONFIG_IPV6_SUBTREES 73 #define FWS_INIT FWS_S 74 #else 75 #define FWS_INIT FWS_L 76 #endif 77 78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn, 79 struct rt6_info *rt); 80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn); 81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn); 82 static int fib6_walk(struct fib6_walker_t *w); 83 static int fib6_walk_continue(struct fib6_walker_t *w); 84 85 /* 86 * A routing update causes an increase of the serial number on the 87 * affected subtree. This allows for cached routes to be asynchronously 88 * tested when modifications are made to the destination cache as a 89 * result of redirects, path MTU changes, etc. 90 */ 91 92 static __u32 rt_sernum; 93 94 static void fib6_gc_timer_cb(unsigned long arg); 95 96 static struct fib6_walker_t fib6_walker_list = { 97 .prev = &fib6_walker_list, 98 .next = &fib6_walker_list, 99 }; 100 101 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next) 102 103 static inline void fib6_walker_link(struct fib6_walker_t *w) 104 { 105 write_lock_bh(&fib6_walker_lock); 106 w->next = fib6_walker_list.next; 107 w->prev = &fib6_walker_list; 108 w->next->prev = w; 109 w->prev->next = w; 110 write_unlock_bh(&fib6_walker_lock); 111 } 112 113 static inline void fib6_walker_unlink(struct fib6_walker_t *w) 114 { 115 write_lock_bh(&fib6_walker_lock); 116 w->next->prev = w->prev; 117 w->prev->next = w->next; 118 w->prev = w->next = w; 119 write_unlock_bh(&fib6_walker_lock); 120 } 121 static __inline__ u32 fib6_new_sernum(void) 122 { 123 u32 n = ++rt_sernum; 124 if ((__s32)n <= 0) 125 rt_sernum = n = 1; 126 return n; 127 } 128 129 /* 130 * Auxiliary address test functions for the radix tree. 131 * 132 * These assume a 32bit processor (although it will work on 133 * 64bit processors) 134 */ 135 136 /* 137 * test bit 138 */ 139 140 static __inline__ __be32 addr_bit_set(void *token, int fn_bit) 141 { 142 __be32 *addr = token; 143 144 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5]; 145 } 146 147 static __inline__ struct fib6_node * node_alloc(void) 148 { 149 struct fib6_node *fn; 150 151 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 152 153 return fn; 154 } 155 156 static __inline__ void node_free(struct fib6_node * fn) 157 { 158 kmem_cache_free(fib6_node_kmem, fn); 159 } 160 161 static __inline__ void rt6_release(struct rt6_info *rt) 162 { 163 if (atomic_dec_and_test(&rt->rt6i_ref)) 164 dst_free(&rt->u.dst); 165 } 166 167 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 168 #define FIB_TABLE_HASHSZ 256 169 #else 170 #define FIB_TABLE_HASHSZ 1 171 #endif 172 173 static void fib6_link_table(struct net *net, struct fib6_table *tb) 174 { 175 unsigned int h; 176 177 /* 178 * Initialize table lock at a single place to give lockdep a key, 179 * tables aren't visible prior to being linked to the list. 180 */ 181 rwlock_init(&tb->tb6_lock); 182 183 h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1); 184 185 /* 186 * No protection necessary, this is the only list mutatation 187 * operation, tables never disappear once they exist. 188 */ 189 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 190 } 191 192 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 193 194 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 195 { 196 struct fib6_table *table; 197 198 table = kzalloc(sizeof(*table), GFP_ATOMIC); 199 if (table != NULL) { 200 table->tb6_id = id; 201 table->tb6_root.leaf = net->ipv6.ip6_null_entry; 202 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 203 } 204 205 return table; 206 } 207 208 struct fib6_table *fib6_new_table(struct net *net, u32 id) 209 { 210 struct fib6_table *tb; 211 212 if (id == 0) 213 id = RT6_TABLE_MAIN; 214 tb = fib6_get_table(net, id); 215 if (tb) 216 return tb; 217 218 tb = fib6_alloc_table(net, id); 219 if (tb != NULL) 220 fib6_link_table(net, tb); 221 222 return tb; 223 } 224 225 struct fib6_table *fib6_get_table(struct net *net, u32 id) 226 { 227 struct fib6_table *tb; 228 struct hlist_head *head; 229 struct hlist_node *node; 230 unsigned int h; 231 232 if (id == 0) 233 id = RT6_TABLE_MAIN; 234 h = id & (FIB_TABLE_HASHSZ - 1); 235 rcu_read_lock(); 236 head = &net->ipv6.fib_table_hash[h]; 237 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) { 238 if (tb->tb6_id == id) { 239 rcu_read_unlock(); 240 return tb; 241 } 242 } 243 rcu_read_unlock(); 244 245 return NULL; 246 } 247 248 static void fib6_tables_init(struct net *net) 249 { 250 fib6_link_table(net, net->ipv6.fib6_main_tbl); 251 fib6_link_table(net, net->ipv6.fib6_local_tbl); 252 } 253 #else 254 255 struct fib6_table *fib6_new_table(struct net *net, u32 id) 256 { 257 return fib6_get_table(net, id); 258 } 259 260 struct fib6_table *fib6_get_table(struct net *net, u32 id) 261 { 262 return net->ipv6.fib6_main_tbl; 263 } 264 265 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl, 266 int flags, pol_lookup_t lookup) 267 { 268 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags); 269 } 270 271 static void fib6_tables_init(struct net *net) 272 { 273 fib6_link_table(net, net->ipv6.fib6_main_tbl); 274 } 275 276 #endif 277 278 static int fib6_dump_node(struct fib6_walker_t *w) 279 { 280 int res; 281 struct rt6_info *rt; 282 283 for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) { 284 res = rt6_dump_route(rt, w->args); 285 if (res < 0) { 286 /* Frame is full, suspend walking */ 287 w->leaf = rt; 288 return 1; 289 } 290 WARN_ON(res == 0); 291 } 292 w->leaf = NULL; 293 return 0; 294 } 295 296 static void fib6_dump_end(struct netlink_callback *cb) 297 { 298 struct fib6_walker_t *w = (void*)cb->args[2]; 299 300 if (w) { 301 cb->args[2] = 0; 302 kfree(w); 303 } 304 cb->done = (void*)cb->args[3]; 305 cb->args[1] = 3; 306 } 307 308 static int fib6_dump_done(struct netlink_callback *cb) 309 { 310 fib6_dump_end(cb); 311 return cb->done ? cb->done(cb) : 0; 312 } 313 314 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 315 struct netlink_callback *cb) 316 { 317 struct fib6_walker_t *w; 318 int res; 319 320 w = (void *)cb->args[2]; 321 w->root = &table->tb6_root; 322 323 if (cb->args[4] == 0) { 324 read_lock_bh(&table->tb6_lock); 325 res = fib6_walk(w); 326 read_unlock_bh(&table->tb6_lock); 327 if (res > 0) 328 cb->args[4] = 1; 329 } else { 330 read_lock_bh(&table->tb6_lock); 331 res = fib6_walk_continue(w); 332 read_unlock_bh(&table->tb6_lock); 333 if (res != 0) { 334 if (res < 0) 335 fib6_walker_unlink(w); 336 goto end; 337 } 338 fib6_walker_unlink(w); 339 cb->args[4] = 0; 340 } 341 end: 342 return res; 343 } 344 345 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 346 { 347 struct net *net = sock_net(skb->sk); 348 unsigned int h, s_h; 349 unsigned int e = 0, s_e; 350 struct rt6_rtnl_dump_arg arg; 351 struct fib6_walker_t *w; 352 struct fib6_table *tb; 353 struct hlist_node *node; 354 struct hlist_head *head; 355 int res = 0; 356 357 s_h = cb->args[0]; 358 s_e = cb->args[1]; 359 360 w = (void *)cb->args[2]; 361 if (w == NULL) { 362 /* New dump: 363 * 364 * 1. hook callback destructor. 365 */ 366 cb->args[3] = (long)cb->done; 367 cb->done = fib6_dump_done; 368 369 /* 370 * 2. allocate and initialize walker. 371 */ 372 w = kzalloc(sizeof(*w), GFP_ATOMIC); 373 if (w == NULL) 374 return -ENOMEM; 375 w->func = fib6_dump_node; 376 cb->args[2] = (long)w; 377 } 378 379 arg.skb = skb; 380 arg.cb = cb; 381 w->args = &arg; 382 383 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) { 384 e = 0; 385 head = &net->ipv6.fib_table_hash[h]; 386 hlist_for_each_entry(tb, node, head, tb6_hlist) { 387 if (e < s_e) 388 goto next; 389 res = fib6_dump_table(tb, skb, cb); 390 if (res != 0) 391 goto out; 392 next: 393 e++; 394 } 395 } 396 out: 397 cb->args[1] = e; 398 cb->args[0] = h; 399 400 res = res < 0 ? res : skb->len; 401 if (res <= 0) 402 fib6_dump_end(cb); 403 return res; 404 } 405 406 /* 407 * Routing Table 408 * 409 * return the appropriate node for a routing tree "add" operation 410 * by either creating and inserting or by returning an existing 411 * node. 412 */ 413 414 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr, 415 int addrlen, int plen, 416 int offset) 417 { 418 struct fib6_node *fn, *in, *ln; 419 struct fib6_node *pn = NULL; 420 struct rt6key *key; 421 int bit; 422 __be32 dir = 0; 423 __u32 sernum = fib6_new_sernum(); 424 425 RT6_TRACE("fib6_add_1\n"); 426 427 /* insert node in tree */ 428 429 fn = root; 430 431 do { 432 key = (struct rt6key *)((u8 *)fn->leaf + offset); 433 434 /* 435 * Prefix match 436 */ 437 if (plen < fn->fn_bit || 438 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 439 goto insert_above; 440 441 /* 442 * Exact match ? 443 */ 444 445 if (plen == fn->fn_bit) { 446 /* clean up an intermediate node */ 447 if ((fn->fn_flags & RTN_RTINFO) == 0) { 448 rt6_release(fn->leaf); 449 fn->leaf = NULL; 450 } 451 452 fn->fn_sernum = sernum; 453 454 return fn; 455 } 456 457 /* 458 * We have more bits to go 459 */ 460 461 /* Try to walk down on tree. */ 462 fn->fn_sernum = sernum; 463 dir = addr_bit_set(addr, fn->fn_bit); 464 pn = fn; 465 fn = dir ? fn->right: fn->left; 466 } while (fn); 467 468 /* 469 * We walked to the bottom of tree. 470 * Create new leaf node without children. 471 */ 472 473 ln = node_alloc(); 474 475 if (ln == NULL) 476 return NULL; 477 ln->fn_bit = plen; 478 479 ln->parent = pn; 480 ln->fn_sernum = sernum; 481 482 if (dir) 483 pn->right = ln; 484 else 485 pn->left = ln; 486 487 return ln; 488 489 490 insert_above: 491 /* 492 * split since we don't have a common prefix anymore or 493 * we have a less significant route. 494 * we've to insert an intermediate node on the list 495 * this new node will point to the one we need to create 496 * and the current 497 */ 498 499 pn = fn->parent; 500 501 /* find 1st bit in difference between the 2 addrs. 502 503 See comment in __ipv6_addr_diff: bit may be an invalid value, 504 but if it is >= plen, the value is ignored in any case. 505 */ 506 507 bit = __ipv6_addr_diff(addr, &key->addr, addrlen); 508 509 /* 510 * (intermediate)[in] 511 * / \ 512 * (new leaf node)[ln] (old node)[fn] 513 */ 514 if (plen > bit) { 515 in = node_alloc(); 516 ln = node_alloc(); 517 518 if (in == NULL || ln == NULL) { 519 if (in) 520 node_free(in); 521 if (ln) 522 node_free(ln); 523 return NULL; 524 } 525 526 /* 527 * new intermediate node. 528 * RTN_RTINFO will 529 * be off since that an address that chooses one of 530 * the branches would not match less specific routes 531 * in the other branch 532 */ 533 534 in->fn_bit = bit; 535 536 in->parent = pn; 537 in->leaf = fn->leaf; 538 atomic_inc(&in->leaf->rt6i_ref); 539 540 in->fn_sernum = sernum; 541 542 /* update parent pointer */ 543 if (dir) 544 pn->right = in; 545 else 546 pn->left = in; 547 548 ln->fn_bit = plen; 549 550 ln->parent = in; 551 fn->parent = in; 552 553 ln->fn_sernum = sernum; 554 555 if (addr_bit_set(addr, bit)) { 556 in->right = ln; 557 in->left = fn; 558 } else { 559 in->left = ln; 560 in->right = fn; 561 } 562 } else { /* plen <= bit */ 563 564 /* 565 * (new leaf node)[ln] 566 * / \ 567 * (old node)[fn] NULL 568 */ 569 570 ln = node_alloc(); 571 572 if (ln == NULL) 573 return NULL; 574 575 ln->fn_bit = plen; 576 577 ln->parent = pn; 578 579 ln->fn_sernum = sernum; 580 581 if (dir) 582 pn->right = ln; 583 else 584 pn->left = ln; 585 586 if (addr_bit_set(&key->addr, plen)) 587 ln->right = fn; 588 else 589 ln->left = fn; 590 591 fn->parent = ln; 592 } 593 return ln; 594 } 595 596 /* 597 * Insert routing information in a node. 598 */ 599 600 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 601 struct nl_info *info) 602 { 603 struct rt6_info *iter = NULL; 604 struct rt6_info **ins; 605 606 ins = &fn->leaf; 607 608 for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) { 609 /* 610 * Search for duplicates 611 */ 612 613 if (iter->rt6i_metric == rt->rt6i_metric) { 614 /* 615 * Same priority level 616 */ 617 618 if (iter->rt6i_dev == rt->rt6i_dev && 619 iter->rt6i_idev == rt->rt6i_idev && 620 ipv6_addr_equal(&iter->rt6i_gateway, 621 &rt->rt6i_gateway)) { 622 if (!(iter->rt6i_flags&RTF_EXPIRES)) 623 return -EEXIST; 624 iter->rt6i_expires = rt->rt6i_expires; 625 if (!(rt->rt6i_flags&RTF_EXPIRES)) { 626 iter->rt6i_flags &= ~RTF_EXPIRES; 627 iter->rt6i_expires = 0; 628 } 629 return -EEXIST; 630 } 631 } 632 633 if (iter->rt6i_metric > rt->rt6i_metric) 634 break; 635 636 ins = &iter->u.dst.rt6_next; 637 } 638 639 /* Reset round-robin state, if necessary */ 640 if (ins == &fn->leaf) 641 fn->rr_ptr = NULL; 642 643 /* 644 * insert node 645 */ 646 647 rt->u.dst.rt6_next = iter; 648 *ins = rt; 649 rt->rt6i_node = fn; 650 atomic_inc(&rt->rt6i_ref); 651 inet6_rt_notify(RTM_NEWROUTE, rt, info); 652 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 653 654 if ((fn->fn_flags & RTN_RTINFO) == 0) { 655 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 656 fn->fn_flags |= RTN_RTINFO; 657 } 658 659 return 0; 660 } 661 662 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt) 663 { 664 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 665 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE))) 666 mod_timer(&net->ipv6.ip6_fib_timer, 667 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 668 } 669 670 void fib6_force_start_gc(struct net *net) 671 { 672 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 673 mod_timer(&net->ipv6.ip6_fib_timer, 674 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 675 } 676 677 /* 678 * Add routing information to the routing tree. 679 * <destination addr>/<source addr> 680 * with source addr info in sub-trees 681 */ 682 683 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info) 684 { 685 struct fib6_node *fn, *pn = NULL; 686 int err = -ENOMEM; 687 688 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr), 689 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst)); 690 691 if (fn == NULL) 692 goto out; 693 694 pn = fn; 695 696 #ifdef CONFIG_IPV6_SUBTREES 697 if (rt->rt6i_src.plen) { 698 struct fib6_node *sn; 699 700 if (fn->subtree == NULL) { 701 struct fib6_node *sfn; 702 703 /* 704 * Create subtree. 705 * 706 * fn[main tree] 707 * | 708 * sfn[subtree root] 709 * \ 710 * sn[new leaf node] 711 */ 712 713 /* Create subtree root node */ 714 sfn = node_alloc(); 715 if (sfn == NULL) 716 goto st_failure; 717 718 sfn->leaf = info->nl_net->ipv6.ip6_null_entry; 719 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 720 sfn->fn_flags = RTN_ROOT; 721 sfn->fn_sernum = fib6_new_sernum(); 722 723 /* Now add the first leaf node to new subtree */ 724 725 sn = fib6_add_1(sfn, &rt->rt6i_src.addr, 726 sizeof(struct in6_addr), rt->rt6i_src.plen, 727 offsetof(struct rt6_info, rt6i_src)); 728 729 if (sn == NULL) { 730 /* If it is failed, discard just allocated 731 root, and then (in st_failure) stale node 732 in main tree. 733 */ 734 node_free(sfn); 735 goto st_failure; 736 } 737 738 /* Now link new subtree to main tree */ 739 sfn->parent = fn; 740 fn->subtree = sfn; 741 } else { 742 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr, 743 sizeof(struct in6_addr), rt->rt6i_src.plen, 744 offsetof(struct rt6_info, rt6i_src)); 745 746 if (sn == NULL) 747 goto st_failure; 748 } 749 750 if (fn->leaf == NULL) { 751 fn->leaf = rt; 752 atomic_inc(&rt->rt6i_ref); 753 } 754 fn = sn; 755 } 756 #endif 757 758 err = fib6_add_rt2node(fn, rt, info); 759 760 if (err == 0) { 761 fib6_start_gc(info->nl_net, rt); 762 if (!(rt->rt6i_flags&RTF_CACHE)) 763 fib6_prune_clones(info->nl_net, pn, rt); 764 } 765 766 out: 767 if (err) { 768 #ifdef CONFIG_IPV6_SUBTREES 769 /* 770 * If fib6_add_1 has cleared the old leaf pointer in the 771 * super-tree leaf node we have to find a new one for it. 772 */ 773 if (pn != fn && pn->leaf == rt) { 774 pn->leaf = NULL; 775 atomic_dec(&rt->rt6i_ref); 776 } 777 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) { 778 pn->leaf = fib6_find_prefix(info->nl_net, pn); 779 #if RT6_DEBUG >= 2 780 if (!pn->leaf) { 781 WARN_ON(pn->leaf == NULL); 782 pn->leaf = info->nl_net->ipv6.ip6_null_entry; 783 } 784 #endif 785 atomic_inc(&pn->leaf->rt6i_ref); 786 } 787 #endif 788 dst_free(&rt->u.dst); 789 } 790 return err; 791 792 #ifdef CONFIG_IPV6_SUBTREES 793 /* Subtree creation failed, probably main tree node 794 is orphan. If it is, shoot it. 795 */ 796 st_failure: 797 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 798 fib6_repair_tree(info->nl_net, fn); 799 dst_free(&rt->u.dst); 800 return err; 801 #endif 802 } 803 804 /* 805 * Routing tree lookup 806 * 807 */ 808 809 struct lookup_args { 810 int offset; /* key offset on rt6_info */ 811 struct in6_addr *addr; /* search key */ 812 }; 813 814 static struct fib6_node * fib6_lookup_1(struct fib6_node *root, 815 struct lookup_args *args) 816 { 817 struct fib6_node *fn; 818 __be32 dir; 819 820 if (unlikely(args->offset == 0)) 821 return NULL; 822 823 /* 824 * Descend on a tree 825 */ 826 827 fn = root; 828 829 for (;;) { 830 struct fib6_node *next; 831 832 dir = addr_bit_set(args->addr, fn->fn_bit); 833 834 next = dir ? fn->right : fn->left; 835 836 if (next) { 837 fn = next; 838 continue; 839 } 840 841 break; 842 } 843 844 while(fn) { 845 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) { 846 struct rt6key *key; 847 848 key = (struct rt6key *) ((u8 *) fn->leaf + 849 args->offset); 850 851 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 852 #ifdef CONFIG_IPV6_SUBTREES 853 if (fn->subtree) 854 fn = fib6_lookup_1(fn->subtree, args + 1); 855 #endif 856 if (!fn || fn->fn_flags & RTN_RTINFO) 857 return fn; 858 } 859 } 860 861 if (fn->fn_flags & RTN_ROOT) 862 break; 863 864 fn = fn->parent; 865 } 866 867 return NULL; 868 } 869 870 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr, 871 struct in6_addr *saddr) 872 { 873 struct fib6_node *fn; 874 struct lookup_args args[] = { 875 { 876 .offset = offsetof(struct rt6_info, rt6i_dst), 877 .addr = daddr, 878 }, 879 #ifdef CONFIG_IPV6_SUBTREES 880 { 881 .offset = offsetof(struct rt6_info, rt6i_src), 882 .addr = saddr, 883 }, 884 #endif 885 { 886 .offset = 0, /* sentinel */ 887 } 888 }; 889 890 fn = fib6_lookup_1(root, daddr ? args : args + 1); 891 892 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT) 893 fn = root; 894 895 return fn; 896 } 897 898 /* 899 * Get node with specified destination prefix (and source prefix, 900 * if subtrees are used) 901 */ 902 903 904 static struct fib6_node * fib6_locate_1(struct fib6_node *root, 905 struct in6_addr *addr, 906 int plen, int offset) 907 { 908 struct fib6_node *fn; 909 910 for (fn = root; fn ; ) { 911 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset); 912 913 /* 914 * Prefix match 915 */ 916 if (plen < fn->fn_bit || 917 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 918 return NULL; 919 920 if (plen == fn->fn_bit) 921 return fn; 922 923 /* 924 * We have more bits to go 925 */ 926 if (addr_bit_set(addr, fn->fn_bit)) 927 fn = fn->right; 928 else 929 fn = fn->left; 930 } 931 return NULL; 932 } 933 934 struct fib6_node * fib6_locate(struct fib6_node *root, 935 struct in6_addr *daddr, int dst_len, 936 struct in6_addr *saddr, int src_len) 937 { 938 struct fib6_node *fn; 939 940 fn = fib6_locate_1(root, daddr, dst_len, 941 offsetof(struct rt6_info, rt6i_dst)); 942 943 #ifdef CONFIG_IPV6_SUBTREES 944 if (src_len) { 945 WARN_ON(saddr == NULL); 946 if (fn && fn->subtree) 947 fn = fib6_locate_1(fn->subtree, saddr, src_len, 948 offsetof(struct rt6_info, rt6i_src)); 949 } 950 #endif 951 952 if (fn && fn->fn_flags&RTN_RTINFO) 953 return fn; 954 955 return NULL; 956 } 957 958 959 /* 960 * Deletion 961 * 962 */ 963 964 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn) 965 { 966 if (fn->fn_flags&RTN_ROOT) 967 return net->ipv6.ip6_null_entry; 968 969 while(fn) { 970 if(fn->left) 971 return fn->left->leaf; 972 973 if(fn->right) 974 return fn->right->leaf; 975 976 fn = FIB6_SUBTREE(fn); 977 } 978 return NULL; 979 } 980 981 /* 982 * Called to trim the tree of intermediate nodes when possible. "fn" 983 * is the node we want to try and remove. 984 */ 985 986 static struct fib6_node *fib6_repair_tree(struct net *net, 987 struct fib6_node *fn) 988 { 989 int children; 990 int nstate; 991 struct fib6_node *child, *pn; 992 struct fib6_walker_t *w; 993 int iter = 0; 994 995 for (;;) { 996 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 997 iter++; 998 999 WARN_ON(fn->fn_flags & RTN_RTINFO); 1000 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1001 WARN_ON(fn->leaf != NULL); 1002 1003 children = 0; 1004 child = NULL; 1005 if (fn->right) child = fn->right, children |= 1; 1006 if (fn->left) child = fn->left, children |= 2; 1007 1008 if (children == 3 || FIB6_SUBTREE(fn) 1009 #ifdef CONFIG_IPV6_SUBTREES 1010 /* Subtree root (i.e. fn) may have one child */ 1011 || (children && fn->fn_flags&RTN_ROOT) 1012 #endif 1013 ) { 1014 fn->leaf = fib6_find_prefix(net, fn); 1015 #if RT6_DEBUG >= 2 1016 if (fn->leaf==NULL) { 1017 WARN_ON(!fn->leaf); 1018 fn->leaf = net->ipv6.ip6_null_entry; 1019 } 1020 #endif 1021 atomic_inc(&fn->leaf->rt6i_ref); 1022 return fn->parent; 1023 } 1024 1025 pn = fn->parent; 1026 #ifdef CONFIG_IPV6_SUBTREES 1027 if (FIB6_SUBTREE(pn) == fn) { 1028 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1029 FIB6_SUBTREE(pn) = NULL; 1030 nstate = FWS_L; 1031 } else { 1032 WARN_ON(fn->fn_flags & RTN_ROOT); 1033 #endif 1034 if (pn->right == fn) pn->right = child; 1035 else if (pn->left == fn) pn->left = child; 1036 #if RT6_DEBUG >= 2 1037 else 1038 WARN_ON(1); 1039 #endif 1040 if (child) 1041 child->parent = pn; 1042 nstate = FWS_R; 1043 #ifdef CONFIG_IPV6_SUBTREES 1044 } 1045 #endif 1046 1047 read_lock(&fib6_walker_lock); 1048 FOR_WALKERS(w) { 1049 if (child == NULL) { 1050 if (w->root == fn) { 1051 w->root = w->node = NULL; 1052 RT6_TRACE("W %p adjusted by delroot 1\n", w); 1053 } else if (w->node == fn) { 1054 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1055 w->node = pn; 1056 w->state = nstate; 1057 } 1058 } else { 1059 if (w->root == fn) { 1060 w->root = child; 1061 RT6_TRACE("W %p adjusted by delroot 2\n", w); 1062 } 1063 if (w->node == fn) { 1064 w->node = child; 1065 if (children&2) { 1066 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1067 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT; 1068 } else { 1069 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1070 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT; 1071 } 1072 } 1073 } 1074 } 1075 read_unlock(&fib6_walker_lock); 1076 1077 node_free(fn); 1078 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn)) 1079 return pn; 1080 1081 rt6_release(pn->leaf); 1082 pn->leaf = NULL; 1083 fn = pn; 1084 } 1085 } 1086 1087 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp, 1088 struct nl_info *info) 1089 { 1090 struct fib6_walker_t *w; 1091 struct rt6_info *rt = *rtp; 1092 struct net *net = info->nl_net; 1093 1094 RT6_TRACE("fib6_del_route\n"); 1095 1096 /* Unlink it */ 1097 *rtp = rt->u.dst.rt6_next; 1098 rt->rt6i_node = NULL; 1099 net->ipv6.rt6_stats->fib_rt_entries--; 1100 net->ipv6.rt6_stats->fib_discarded_routes++; 1101 1102 /* Reset round-robin state, if necessary */ 1103 if (fn->rr_ptr == rt) 1104 fn->rr_ptr = NULL; 1105 1106 /* Adjust walkers */ 1107 read_lock(&fib6_walker_lock); 1108 FOR_WALKERS(w) { 1109 if (w->state == FWS_C && w->leaf == rt) { 1110 RT6_TRACE("walker %p adjusted by delroute\n", w); 1111 w->leaf = rt->u.dst.rt6_next; 1112 if (w->leaf == NULL) 1113 w->state = FWS_U; 1114 } 1115 } 1116 read_unlock(&fib6_walker_lock); 1117 1118 rt->u.dst.rt6_next = NULL; 1119 1120 /* If it was last route, expunge its radix tree node */ 1121 if (fn->leaf == NULL) { 1122 fn->fn_flags &= ~RTN_RTINFO; 1123 net->ipv6.rt6_stats->fib_route_nodes--; 1124 fn = fib6_repair_tree(net, fn); 1125 } 1126 1127 if (atomic_read(&rt->rt6i_ref) != 1) { 1128 /* This route is used as dummy address holder in some split 1129 * nodes. It is not leaked, but it still holds other resources, 1130 * which must be released in time. So, scan ascendant nodes 1131 * and replace dummy references to this route with references 1132 * to still alive ones. 1133 */ 1134 while (fn) { 1135 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) { 1136 fn->leaf = fib6_find_prefix(net, fn); 1137 atomic_inc(&fn->leaf->rt6i_ref); 1138 rt6_release(rt); 1139 } 1140 fn = fn->parent; 1141 } 1142 /* No more references are possible at this point. */ 1143 BUG_ON(atomic_read(&rt->rt6i_ref) != 1); 1144 } 1145 1146 inet6_rt_notify(RTM_DELROUTE, rt, info); 1147 rt6_release(rt); 1148 } 1149 1150 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1151 { 1152 struct net *net = info->nl_net; 1153 struct fib6_node *fn = rt->rt6i_node; 1154 struct rt6_info **rtp; 1155 1156 #if RT6_DEBUG >= 2 1157 if (rt->u.dst.obsolete>0) { 1158 WARN_ON(fn != NULL); 1159 return -ENOENT; 1160 } 1161 #endif 1162 if (fn == NULL || rt == net->ipv6.ip6_null_entry) 1163 return -ENOENT; 1164 1165 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1166 1167 if (!(rt->rt6i_flags&RTF_CACHE)) { 1168 struct fib6_node *pn = fn; 1169 #ifdef CONFIG_IPV6_SUBTREES 1170 /* clones of this route might be in another subtree */ 1171 if (rt->rt6i_src.plen) { 1172 while (!(pn->fn_flags&RTN_ROOT)) 1173 pn = pn->parent; 1174 pn = pn->parent; 1175 } 1176 #endif 1177 fib6_prune_clones(info->nl_net, pn, rt); 1178 } 1179 1180 /* 1181 * Walk the leaf entries looking for ourself 1182 */ 1183 1184 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) { 1185 if (*rtp == rt) { 1186 fib6_del_route(fn, rtp, info); 1187 return 0; 1188 } 1189 } 1190 return -ENOENT; 1191 } 1192 1193 /* 1194 * Tree traversal function. 1195 * 1196 * Certainly, it is not interrupt safe. 1197 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1198 * It means, that we can modify tree during walking 1199 * and use this function for garbage collection, clone pruning, 1200 * cleaning tree when a device goes down etc. etc. 1201 * 1202 * It guarantees that every node will be traversed, 1203 * and that it will be traversed only once. 1204 * 1205 * Callback function w->func may return: 1206 * 0 -> continue walking. 1207 * positive value -> walking is suspended (used by tree dumps, 1208 * and probably by gc, if it will be split to several slices) 1209 * negative value -> terminate walking. 1210 * 1211 * The function itself returns: 1212 * 0 -> walk is complete. 1213 * >0 -> walk is incomplete (i.e. suspended) 1214 * <0 -> walk is terminated by an error. 1215 */ 1216 1217 static int fib6_walk_continue(struct fib6_walker_t *w) 1218 { 1219 struct fib6_node *fn, *pn; 1220 1221 for (;;) { 1222 fn = w->node; 1223 if (fn == NULL) 1224 return 0; 1225 1226 if (w->prune && fn != w->root && 1227 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) { 1228 w->state = FWS_C; 1229 w->leaf = fn->leaf; 1230 } 1231 switch (w->state) { 1232 #ifdef CONFIG_IPV6_SUBTREES 1233 case FWS_S: 1234 if (FIB6_SUBTREE(fn)) { 1235 w->node = FIB6_SUBTREE(fn); 1236 continue; 1237 } 1238 w->state = FWS_L; 1239 #endif 1240 case FWS_L: 1241 if (fn->left) { 1242 w->node = fn->left; 1243 w->state = FWS_INIT; 1244 continue; 1245 } 1246 w->state = FWS_R; 1247 case FWS_R: 1248 if (fn->right) { 1249 w->node = fn->right; 1250 w->state = FWS_INIT; 1251 continue; 1252 } 1253 w->state = FWS_C; 1254 w->leaf = fn->leaf; 1255 case FWS_C: 1256 if (w->leaf && fn->fn_flags&RTN_RTINFO) { 1257 int err = w->func(w); 1258 if (err) 1259 return err; 1260 continue; 1261 } 1262 w->state = FWS_U; 1263 case FWS_U: 1264 if (fn == w->root) 1265 return 0; 1266 pn = fn->parent; 1267 w->node = pn; 1268 #ifdef CONFIG_IPV6_SUBTREES 1269 if (FIB6_SUBTREE(pn) == fn) { 1270 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1271 w->state = FWS_L; 1272 continue; 1273 } 1274 #endif 1275 if (pn->left == fn) { 1276 w->state = FWS_R; 1277 continue; 1278 } 1279 if (pn->right == fn) { 1280 w->state = FWS_C; 1281 w->leaf = w->node->leaf; 1282 continue; 1283 } 1284 #if RT6_DEBUG >= 2 1285 WARN_ON(1); 1286 #endif 1287 } 1288 } 1289 } 1290 1291 static int fib6_walk(struct fib6_walker_t *w) 1292 { 1293 int res; 1294 1295 w->state = FWS_INIT; 1296 w->node = w->root; 1297 1298 fib6_walker_link(w); 1299 res = fib6_walk_continue(w); 1300 if (res <= 0) 1301 fib6_walker_unlink(w); 1302 return res; 1303 } 1304 1305 static int fib6_clean_node(struct fib6_walker_t *w) 1306 { 1307 int res; 1308 struct rt6_info *rt; 1309 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w); 1310 struct nl_info info = { 1311 .nl_net = c->net, 1312 }; 1313 1314 for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) { 1315 res = c->func(rt, c->arg); 1316 if (res < 0) { 1317 w->leaf = rt; 1318 res = fib6_del(rt, &info); 1319 if (res) { 1320 #if RT6_DEBUG >= 2 1321 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res); 1322 #endif 1323 continue; 1324 } 1325 return 0; 1326 } 1327 WARN_ON(res != 0); 1328 } 1329 w->leaf = rt; 1330 return 0; 1331 } 1332 1333 /* 1334 * Convenient frontend to tree walker. 1335 * 1336 * func is called on each route. 1337 * It may return -1 -> delete this route. 1338 * 0 -> continue walking 1339 * 1340 * prune==1 -> only immediate children of node (certainly, 1341 * ignoring pure split nodes) will be scanned. 1342 */ 1343 1344 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1345 int (*func)(struct rt6_info *, void *arg), 1346 int prune, void *arg) 1347 { 1348 struct fib6_cleaner_t c; 1349 1350 c.w.root = root; 1351 c.w.func = fib6_clean_node; 1352 c.w.prune = prune; 1353 c.func = func; 1354 c.arg = arg; 1355 c.net = net; 1356 1357 fib6_walk(&c.w); 1358 } 1359 1360 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg), 1361 int prune, void *arg) 1362 { 1363 struct fib6_table *table; 1364 struct hlist_node *node; 1365 struct hlist_head *head; 1366 unsigned int h; 1367 1368 rcu_read_lock(); 1369 for (h = 0; h < FIB_TABLE_HASHSZ; h++) { 1370 head = &net->ipv6.fib_table_hash[h]; 1371 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) { 1372 write_lock_bh(&table->tb6_lock); 1373 fib6_clean_tree(net, &table->tb6_root, 1374 func, prune, arg); 1375 write_unlock_bh(&table->tb6_lock); 1376 } 1377 } 1378 rcu_read_unlock(); 1379 } 1380 1381 static int fib6_prune_clone(struct rt6_info *rt, void *arg) 1382 { 1383 if (rt->rt6i_flags & RTF_CACHE) { 1384 RT6_TRACE("pruning clone %p\n", rt); 1385 return -1; 1386 } 1387 1388 return 0; 1389 } 1390 1391 static void fib6_prune_clones(struct net *net, struct fib6_node *fn, 1392 struct rt6_info *rt) 1393 { 1394 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt); 1395 } 1396 1397 /* 1398 * Garbage collection 1399 */ 1400 1401 static struct fib6_gc_args 1402 { 1403 int timeout; 1404 int more; 1405 } gc_args; 1406 1407 static int fib6_age(struct rt6_info *rt, void *arg) 1408 { 1409 unsigned long now = jiffies; 1410 1411 /* 1412 * check addrconf expiration here. 1413 * Routes are expired even if they are in use. 1414 * 1415 * Also age clones. Note, that clones are aged out 1416 * only if they are not in use now. 1417 */ 1418 1419 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) { 1420 if (time_after(now, rt->rt6i_expires)) { 1421 RT6_TRACE("expiring %p\n", rt); 1422 return -1; 1423 } 1424 gc_args.more++; 1425 } else if (rt->rt6i_flags & RTF_CACHE) { 1426 if (atomic_read(&rt->u.dst.__refcnt) == 0 && 1427 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) { 1428 RT6_TRACE("aging clone %p\n", rt); 1429 return -1; 1430 } else if ((rt->rt6i_flags & RTF_GATEWAY) && 1431 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) { 1432 RT6_TRACE("purging route %p via non-router but gateway\n", 1433 rt); 1434 return -1; 1435 } 1436 gc_args.more++; 1437 } 1438 1439 return 0; 1440 } 1441 1442 static DEFINE_SPINLOCK(fib6_gc_lock); 1443 1444 void fib6_run_gc(unsigned long expires, struct net *net) 1445 { 1446 if (expires != ~0UL) { 1447 spin_lock_bh(&fib6_gc_lock); 1448 gc_args.timeout = expires ? (int)expires : 1449 net->ipv6.sysctl.ip6_rt_gc_interval; 1450 } else { 1451 if (!spin_trylock_bh(&fib6_gc_lock)) { 1452 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 1453 return; 1454 } 1455 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval; 1456 } 1457 1458 gc_args.more = icmp6_dst_gc(); 1459 1460 fib6_clean_all(net, fib6_age, 0, NULL); 1461 1462 if (gc_args.more) 1463 mod_timer(&net->ipv6.ip6_fib_timer, 1464 round_jiffies(jiffies 1465 + net->ipv6.sysctl.ip6_rt_gc_interval)); 1466 else 1467 del_timer(&net->ipv6.ip6_fib_timer); 1468 spin_unlock_bh(&fib6_gc_lock); 1469 } 1470 1471 static void fib6_gc_timer_cb(unsigned long arg) 1472 { 1473 fib6_run_gc(0, (struct net *)arg); 1474 } 1475 1476 static int fib6_net_init(struct net *net) 1477 { 1478 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net); 1479 1480 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 1481 if (!net->ipv6.rt6_stats) 1482 goto out_timer; 1483 1484 net->ipv6.fib_table_hash = kcalloc(FIB_TABLE_HASHSZ, 1485 sizeof(*net->ipv6.fib_table_hash), 1486 GFP_KERNEL); 1487 if (!net->ipv6.fib_table_hash) 1488 goto out_rt6_stats; 1489 1490 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 1491 GFP_KERNEL); 1492 if (!net->ipv6.fib6_main_tbl) 1493 goto out_fib_table_hash; 1494 1495 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 1496 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1497 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 1498 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1499 1500 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1501 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 1502 GFP_KERNEL); 1503 if (!net->ipv6.fib6_local_tbl) 1504 goto out_fib6_main_tbl; 1505 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 1506 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1507 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 1508 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1509 #endif 1510 fib6_tables_init(net); 1511 1512 return 0; 1513 1514 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1515 out_fib6_main_tbl: 1516 kfree(net->ipv6.fib6_main_tbl); 1517 #endif 1518 out_fib_table_hash: 1519 kfree(net->ipv6.fib_table_hash); 1520 out_rt6_stats: 1521 kfree(net->ipv6.rt6_stats); 1522 out_timer: 1523 return -ENOMEM; 1524 } 1525 1526 static void fib6_net_exit(struct net *net) 1527 { 1528 rt6_ifdown(net, NULL); 1529 del_timer_sync(&net->ipv6.ip6_fib_timer); 1530 1531 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1532 kfree(net->ipv6.fib6_local_tbl); 1533 #endif 1534 kfree(net->ipv6.fib6_main_tbl); 1535 kfree(net->ipv6.fib_table_hash); 1536 kfree(net->ipv6.rt6_stats); 1537 } 1538 1539 static struct pernet_operations fib6_net_ops = { 1540 .init = fib6_net_init, 1541 .exit = fib6_net_exit, 1542 }; 1543 1544 int __init fib6_init(void) 1545 { 1546 int ret = -ENOMEM; 1547 1548 fib6_node_kmem = kmem_cache_create("fib6_nodes", 1549 sizeof(struct fib6_node), 1550 0, SLAB_HWCACHE_ALIGN, 1551 NULL); 1552 if (!fib6_node_kmem) 1553 goto out; 1554 1555 ret = register_pernet_subsys(&fib6_net_ops); 1556 if (ret) 1557 goto out_kmem_cache_create; 1558 1559 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib); 1560 if (ret) 1561 goto out_unregister_subsys; 1562 out: 1563 return ret; 1564 1565 out_unregister_subsys: 1566 unregister_pernet_subsys(&fib6_net_ops); 1567 out_kmem_cache_create: 1568 kmem_cache_destroy(fib6_node_kmem); 1569 goto out; 1570 } 1571 1572 void fib6_gc_cleanup(void) 1573 { 1574 unregister_pernet_subsys(&fib6_net_ops); 1575 kmem_cache_destroy(fib6_node_kmem); 1576 } 1577