xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision dea54fba)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63 
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69 
70 /*
71  *	A routing update causes an increase of the serial number on the
72  *	affected subtree. This allows for cached routes to be asynchronously
73  *	tested when modifications are made to the destination cache as a
74  *	result of redirects, path MTU changes, etc.
75  */
76 
77 static void fib6_gc_timer_cb(unsigned long arg);
78 
79 #define FOR_WALKERS(net, w) \
80 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81 
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 	write_lock_bh(&net->ipv6.fib6_walker_lock);
85 	list_add(&w->lh, &net->ipv6.fib6_walkers);
86 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88 
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 	write_lock_bh(&net->ipv6.fib6_walker_lock);
92 	list_del(&w->lh);
93 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95 
96 static int fib6_new_sernum(struct net *net)
97 {
98 	int new, old;
99 
100 	do {
101 		old = atomic_read(&net->ipv6.fib6_sernum);
102 		new = old < INT_MAX ? old + 1 : 1;
103 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 				old, new) != old);
105 	return new;
106 }
107 
108 enum {
109 	FIB6_NO_SERNUM_CHANGE = 0,
110 };
111 
112 /*
113  *	Auxiliary address test functions for the radix tree.
114  *
115  *	These assume a 32bit processor (although it will work on
116  *	64bit processors)
117  */
118 
119 /*
120  *	test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE	0
126 #endif
127 
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 	const __be32 *addr = token;
131 	/*
132 	 * Here,
133 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 	 * is optimized version of
135 	 *	htonl(1 << ((~fn_bit)&0x1F))
136 	 * See include/asm-generic/bitops/le.h.
137 	 */
138 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 	       addr[fn_bit >> 5];
140 }
141 
142 static struct fib6_node *node_alloc(void)
143 {
144 	struct fib6_node *fn;
145 
146 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147 
148 	return fn;
149 }
150 
151 static void node_free(struct fib6_node *fn)
152 {
153 	kmem_cache_free(fib6_node_kmem, fn);
154 }
155 
156 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
157 {
158 	int cpu;
159 
160 	if (!non_pcpu_rt->rt6i_pcpu)
161 		return;
162 
163 	for_each_possible_cpu(cpu) {
164 		struct rt6_info **ppcpu_rt;
165 		struct rt6_info *pcpu_rt;
166 
167 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
168 		pcpu_rt = *ppcpu_rt;
169 		if (pcpu_rt) {
170 			dst_dev_put(&pcpu_rt->dst);
171 			dst_release(&pcpu_rt->dst);
172 			*ppcpu_rt = NULL;
173 		}
174 	}
175 
176 	free_percpu(non_pcpu_rt->rt6i_pcpu);
177 	non_pcpu_rt->rt6i_pcpu = NULL;
178 }
179 
180 static void rt6_release(struct rt6_info *rt)
181 {
182 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
183 		rt6_free_pcpu(rt);
184 		dst_dev_put(&rt->dst);
185 		dst_release(&rt->dst);
186 	}
187 }
188 
189 static void fib6_link_table(struct net *net, struct fib6_table *tb)
190 {
191 	unsigned int h;
192 
193 	/*
194 	 * Initialize table lock at a single place to give lockdep a key,
195 	 * tables aren't visible prior to being linked to the list.
196 	 */
197 	rwlock_init(&tb->tb6_lock);
198 
199 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
200 
201 	/*
202 	 * No protection necessary, this is the only list mutatation
203 	 * operation, tables never disappear once they exist.
204 	 */
205 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
206 }
207 
208 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
209 
210 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
211 {
212 	struct fib6_table *table;
213 
214 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
215 	if (table) {
216 		table->tb6_id = id;
217 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
218 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
219 		inet_peer_base_init(&table->tb6_peers);
220 	}
221 
222 	return table;
223 }
224 
225 struct fib6_table *fib6_new_table(struct net *net, u32 id)
226 {
227 	struct fib6_table *tb;
228 
229 	if (id == 0)
230 		id = RT6_TABLE_MAIN;
231 	tb = fib6_get_table(net, id);
232 	if (tb)
233 		return tb;
234 
235 	tb = fib6_alloc_table(net, id);
236 	if (tb)
237 		fib6_link_table(net, tb);
238 
239 	return tb;
240 }
241 EXPORT_SYMBOL_GPL(fib6_new_table);
242 
243 struct fib6_table *fib6_get_table(struct net *net, u32 id)
244 {
245 	struct fib6_table *tb;
246 	struct hlist_head *head;
247 	unsigned int h;
248 
249 	if (id == 0)
250 		id = RT6_TABLE_MAIN;
251 	h = id & (FIB6_TABLE_HASHSZ - 1);
252 	rcu_read_lock();
253 	head = &net->ipv6.fib_table_hash[h];
254 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
255 		if (tb->tb6_id == id) {
256 			rcu_read_unlock();
257 			return tb;
258 		}
259 	}
260 	rcu_read_unlock();
261 
262 	return NULL;
263 }
264 EXPORT_SYMBOL_GPL(fib6_get_table);
265 
266 static void __net_init fib6_tables_init(struct net *net)
267 {
268 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
269 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
270 }
271 #else
272 
273 struct fib6_table *fib6_new_table(struct net *net, u32 id)
274 {
275 	return fib6_get_table(net, id);
276 }
277 
278 struct fib6_table *fib6_get_table(struct net *net, u32 id)
279 {
280 	  return net->ipv6.fib6_main_tbl;
281 }
282 
283 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
284 				   int flags, pol_lookup_t lookup)
285 {
286 	struct rt6_info *rt;
287 
288 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
289 	if (rt->dst.error == -EAGAIN) {
290 		ip6_rt_put(rt);
291 		rt = net->ipv6.ip6_null_entry;
292 		dst_hold(&rt->dst);
293 	}
294 
295 	return &rt->dst;
296 }
297 
298 static void __net_init fib6_tables_init(struct net *net)
299 {
300 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 }
302 
303 #endif
304 
305 static int fib6_dump_node(struct fib6_walker *w)
306 {
307 	int res;
308 	struct rt6_info *rt;
309 
310 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
311 		res = rt6_dump_route(rt, w->args);
312 		if (res < 0) {
313 			/* Frame is full, suspend walking */
314 			w->leaf = rt;
315 			return 1;
316 		}
317 
318 		/* Multipath routes are dumped in one route with the
319 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
320 		 * last sibling of this route (no need to dump the
321 		 * sibling routes again)
322 		 */
323 		if (rt->rt6i_nsiblings)
324 			rt = list_last_entry(&rt->rt6i_siblings,
325 					     struct rt6_info,
326 					     rt6i_siblings);
327 	}
328 	w->leaf = NULL;
329 	return 0;
330 }
331 
332 static void fib6_dump_end(struct netlink_callback *cb)
333 {
334 	struct net *net = sock_net(cb->skb->sk);
335 	struct fib6_walker *w = (void *)cb->args[2];
336 
337 	if (w) {
338 		if (cb->args[4]) {
339 			cb->args[4] = 0;
340 			fib6_walker_unlink(net, w);
341 		}
342 		cb->args[2] = 0;
343 		kfree(w);
344 	}
345 	cb->done = (void *)cb->args[3];
346 	cb->args[1] = 3;
347 }
348 
349 static int fib6_dump_done(struct netlink_callback *cb)
350 {
351 	fib6_dump_end(cb);
352 	return cb->done ? cb->done(cb) : 0;
353 }
354 
355 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
356 			   struct netlink_callback *cb)
357 {
358 	struct net *net = sock_net(skb->sk);
359 	struct fib6_walker *w;
360 	int res;
361 
362 	w = (void *)cb->args[2];
363 	w->root = &table->tb6_root;
364 
365 	if (cb->args[4] == 0) {
366 		w->count = 0;
367 		w->skip = 0;
368 
369 		read_lock_bh(&table->tb6_lock);
370 		res = fib6_walk(net, w);
371 		read_unlock_bh(&table->tb6_lock);
372 		if (res > 0) {
373 			cb->args[4] = 1;
374 			cb->args[5] = w->root->fn_sernum;
375 		}
376 	} else {
377 		if (cb->args[5] != w->root->fn_sernum) {
378 			/* Begin at the root if the tree changed */
379 			cb->args[5] = w->root->fn_sernum;
380 			w->state = FWS_INIT;
381 			w->node = w->root;
382 			w->skip = w->count;
383 		} else
384 			w->skip = 0;
385 
386 		read_lock_bh(&table->tb6_lock);
387 		res = fib6_walk_continue(w);
388 		read_unlock_bh(&table->tb6_lock);
389 		if (res <= 0) {
390 			fib6_walker_unlink(net, w);
391 			cb->args[4] = 0;
392 		}
393 	}
394 
395 	return res;
396 }
397 
398 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
399 {
400 	struct net *net = sock_net(skb->sk);
401 	unsigned int h, s_h;
402 	unsigned int e = 0, s_e;
403 	struct rt6_rtnl_dump_arg arg;
404 	struct fib6_walker *w;
405 	struct fib6_table *tb;
406 	struct hlist_head *head;
407 	int res = 0;
408 
409 	s_h = cb->args[0];
410 	s_e = cb->args[1];
411 
412 	w = (void *)cb->args[2];
413 	if (!w) {
414 		/* New dump:
415 		 *
416 		 * 1. hook callback destructor.
417 		 */
418 		cb->args[3] = (long)cb->done;
419 		cb->done = fib6_dump_done;
420 
421 		/*
422 		 * 2. allocate and initialize walker.
423 		 */
424 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
425 		if (!w)
426 			return -ENOMEM;
427 		w->func = fib6_dump_node;
428 		cb->args[2] = (long)w;
429 	}
430 
431 	arg.skb = skb;
432 	arg.cb = cb;
433 	arg.net = net;
434 	w->args = &arg;
435 
436 	rcu_read_lock();
437 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
438 		e = 0;
439 		head = &net->ipv6.fib_table_hash[h];
440 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
441 			if (e < s_e)
442 				goto next;
443 			res = fib6_dump_table(tb, skb, cb);
444 			if (res != 0)
445 				goto out;
446 next:
447 			e++;
448 		}
449 	}
450 out:
451 	rcu_read_unlock();
452 	cb->args[1] = e;
453 	cb->args[0] = h;
454 
455 	res = res < 0 ? res : skb->len;
456 	if (res <= 0)
457 		fib6_dump_end(cb);
458 	return res;
459 }
460 
461 /*
462  *	Routing Table
463  *
464  *	return the appropriate node for a routing tree "add" operation
465  *	by either creating and inserting or by returning an existing
466  *	node.
467  */
468 
469 static struct fib6_node *fib6_add_1(struct fib6_node *root,
470 				     struct in6_addr *addr, int plen,
471 				     int offset, int allow_create,
472 				     int replace_required, int sernum,
473 				     struct netlink_ext_ack *extack)
474 {
475 	struct fib6_node *fn, *in, *ln;
476 	struct fib6_node *pn = NULL;
477 	struct rt6key *key;
478 	int	bit;
479 	__be32	dir = 0;
480 
481 	RT6_TRACE("fib6_add_1\n");
482 
483 	/* insert node in tree */
484 
485 	fn = root;
486 
487 	do {
488 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
489 
490 		/*
491 		 *	Prefix match
492 		 */
493 		if (plen < fn->fn_bit ||
494 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
495 			if (!allow_create) {
496 				if (replace_required) {
497 					NL_SET_ERR_MSG(extack,
498 						       "Can not replace route - no match found");
499 					pr_warn("Can't replace route, no match found\n");
500 					return ERR_PTR(-ENOENT);
501 				}
502 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
503 			}
504 			goto insert_above;
505 		}
506 
507 		/*
508 		 *	Exact match ?
509 		 */
510 
511 		if (plen == fn->fn_bit) {
512 			/* clean up an intermediate node */
513 			if (!(fn->fn_flags & RTN_RTINFO)) {
514 				rt6_release(fn->leaf);
515 				fn->leaf = NULL;
516 			}
517 
518 			fn->fn_sernum = sernum;
519 
520 			return fn;
521 		}
522 
523 		/*
524 		 *	We have more bits to go
525 		 */
526 
527 		/* Try to walk down on tree. */
528 		fn->fn_sernum = sernum;
529 		dir = addr_bit_set(addr, fn->fn_bit);
530 		pn = fn;
531 		fn = dir ? fn->right : fn->left;
532 	} while (fn);
533 
534 	if (!allow_create) {
535 		/* We should not create new node because
536 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
537 		 * I assume it is safe to require NLM_F_CREATE when
538 		 * REPLACE flag is used! Later we may want to remove the
539 		 * check for replace_required, because according
540 		 * to netlink specification, NLM_F_CREATE
541 		 * MUST be specified if new route is created.
542 		 * That would keep IPv6 consistent with IPv4
543 		 */
544 		if (replace_required) {
545 			NL_SET_ERR_MSG(extack,
546 				       "Can not replace route - no match found");
547 			pr_warn("Can't replace route, no match found\n");
548 			return ERR_PTR(-ENOENT);
549 		}
550 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
551 	}
552 	/*
553 	 *	We walked to the bottom of tree.
554 	 *	Create new leaf node without children.
555 	 */
556 
557 	ln = node_alloc();
558 
559 	if (!ln)
560 		return ERR_PTR(-ENOMEM);
561 	ln->fn_bit = plen;
562 
563 	ln->parent = pn;
564 	ln->fn_sernum = sernum;
565 
566 	if (dir)
567 		pn->right = ln;
568 	else
569 		pn->left  = ln;
570 
571 	return ln;
572 
573 
574 insert_above:
575 	/*
576 	 * split since we don't have a common prefix anymore or
577 	 * we have a less significant route.
578 	 * we've to insert an intermediate node on the list
579 	 * this new node will point to the one we need to create
580 	 * and the current
581 	 */
582 
583 	pn = fn->parent;
584 
585 	/* find 1st bit in difference between the 2 addrs.
586 
587 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
588 	   but if it is >= plen, the value is ignored in any case.
589 	 */
590 
591 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
592 
593 	/*
594 	 *		(intermediate)[in]
595 	 *	          /	   \
596 	 *	(new leaf node)[ln] (old node)[fn]
597 	 */
598 	if (plen > bit) {
599 		in = node_alloc();
600 		ln = node_alloc();
601 
602 		if (!in || !ln) {
603 			if (in)
604 				node_free(in);
605 			if (ln)
606 				node_free(ln);
607 			return ERR_PTR(-ENOMEM);
608 		}
609 
610 		/*
611 		 * new intermediate node.
612 		 * RTN_RTINFO will
613 		 * be off since that an address that chooses one of
614 		 * the branches would not match less specific routes
615 		 * in the other branch
616 		 */
617 
618 		in->fn_bit = bit;
619 
620 		in->parent = pn;
621 		in->leaf = fn->leaf;
622 		atomic_inc(&in->leaf->rt6i_ref);
623 
624 		in->fn_sernum = sernum;
625 
626 		/* update parent pointer */
627 		if (dir)
628 			pn->right = in;
629 		else
630 			pn->left  = in;
631 
632 		ln->fn_bit = plen;
633 
634 		ln->parent = in;
635 		fn->parent = in;
636 
637 		ln->fn_sernum = sernum;
638 
639 		if (addr_bit_set(addr, bit)) {
640 			in->right = ln;
641 			in->left  = fn;
642 		} else {
643 			in->left  = ln;
644 			in->right = fn;
645 		}
646 	} else { /* plen <= bit */
647 
648 		/*
649 		 *		(new leaf node)[ln]
650 		 *	          /	   \
651 		 *	     (old node)[fn] NULL
652 		 */
653 
654 		ln = node_alloc();
655 
656 		if (!ln)
657 			return ERR_PTR(-ENOMEM);
658 
659 		ln->fn_bit = plen;
660 
661 		ln->parent = pn;
662 
663 		ln->fn_sernum = sernum;
664 
665 		if (dir)
666 			pn->right = ln;
667 		else
668 			pn->left  = ln;
669 
670 		if (addr_bit_set(&key->addr, plen))
671 			ln->right = fn;
672 		else
673 			ln->left  = fn;
674 
675 		fn->parent = ln;
676 	}
677 	return ln;
678 }
679 
680 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
681 {
682 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
683 	       RTF_GATEWAY;
684 }
685 
686 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
687 {
688 	int i;
689 
690 	for (i = 0; i < RTAX_MAX; i++) {
691 		if (test_bit(i, mxc->mx_valid))
692 			mp[i] = mxc->mx[i];
693 	}
694 }
695 
696 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
697 {
698 	if (!mxc->mx)
699 		return 0;
700 
701 	if (dst->flags & DST_HOST) {
702 		u32 *mp = dst_metrics_write_ptr(dst);
703 
704 		if (unlikely(!mp))
705 			return -ENOMEM;
706 
707 		fib6_copy_metrics(mp, mxc);
708 	} else {
709 		dst_init_metrics(dst, mxc->mx, false);
710 
711 		/* We've stolen mx now. */
712 		mxc->mx = NULL;
713 	}
714 
715 	return 0;
716 }
717 
718 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
719 			  struct net *net)
720 {
721 	if (atomic_read(&rt->rt6i_ref) != 1) {
722 		/* This route is used as dummy address holder in some split
723 		 * nodes. It is not leaked, but it still holds other resources,
724 		 * which must be released in time. So, scan ascendant nodes
725 		 * and replace dummy references to this route with references
726 		 * to still alive ones.
727 		 */
728 		while (fn) {
729 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
730 				fn->leaf = fib6_find_prefix(net, fn);
731 				atomic_inc(&fn->leaf->rt6i_ref);
732 				rt6_release(rt);
733 			}
734 			fn = fn->parent;
735 		}
736 		/* No more references are possible at this point. */
737 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
738 	}
739 }
740 
741 /*
742  *	Insert routing information in a node.
743  */
744 
745 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
746 			    struct nl_info *info, struct mx6_config *mxc)
747 {
748 	struct rt6_info *iter = NULL;
749 	struct rt6_info **ins;
750 	struct rt6_info **fallback_ins = NULL;
751 	int replace = (info->nlh &&
752 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
753 	int add = (!info->nlh ||
754 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
755 	int found = 0;
756 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
757 	u16 nlflags = NLM_F_EXCL;
758 	int err;
759 
760 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
761 		nlflags |= NLM_F_APPEND;
762 
763 	ins = &fn->leaf;
764 
765 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
766 		/*
767 		 *	Search for duplicates
768 		 */
769 
770 		if (iter->rt6i_metric == rt->rt6i_metric) {
771 			/*
772 			 *	Same priority level
773 			 */
774 			if (info->nlh &&
775 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
776 				return -EEXIST;
777 
778 			nlflags &= ~NLM_F_EXCL;
779 			if (replace) {
780 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
781 					found++;
782 					break;
783 				}
784 				if (rt_can_ecmp)
785 					fallback_ins = fallback_ins ?: ins;
786 				goto next_iter;
787 			}
788 
789 			if (rt6_duplicate_nexthop(iter, rt)) {
790 				if (rt->rt6i_nsiblings)
791 					rt->rt6i_nsiblings = 0;
792 				if (!(iter->rt6i_flags & RTF_EXPIRES))
793 					return -EEXIST;
794 				if (!(rt->rt6i_flags & RTF_EXPIRES))
795 					rt6_clean_expires(iter);
796 				else
797 					rt6_set_expires(iter, rt->dst.expires);
798 				iter->rt6i_pmtu = rt->rt6i_pmtu;
799 				return -EEXIST;
800 			}
801 			/* If we have the same destination and the same metric,
802 			 * but not the same gateway, then the route we try to
803 			 * add is sibling to this route, increment our counter
804 			 * of siblings, and later we will add our route to the
805 			 * list.
806 			 * Only static routes (which don't have flag
807 			 * RTF_EXPIRES) are used for ECMPv6.
808 			 *
809 			 * To avoid long list, we only had siblings if the
810 			 * route have a gateway.
811 			 */
812 			if (rt_can_ecmp &&
813 			    rt6_qualify_for_ecmp(iter))
814 				rt->rt6i_nsiblings++;
815 		}
816 
817 		if (iter->rt6i_metric > rt->rt6i_metric)
818 			break;
819 
820 next_iter:
821 		ins = &iter->dst.rt6_next;
822 	}
823 
824 	if (fallback_ins && !found) {
825 		/* No ECMP-able route found, replace first non-ECMP one */
826 		ins = fallback_ins;
827 		iter = *ins;
828 		found++;
829 	}
830 
831 	/* Reset round-robin state, if necessary */
832 	if (ins == &fn->leaf)
833 		fn->rr_ptr = NULL;
834 
835 	/* Link this route to others same route. */
836 	if (rt->rt6i_nsiblings) {
837 		unsigned int rt6i_nsiblings;
838 		struct rt6_info *sibling, *temp_sibling;
839 
840 		/* Find the first route that have the same metric */
841 		sibling = fn->leaf;
842 		while (sibling) {
843 			if (sibling->rt6i_metric == rt->rt6i_metric &&
844 			    rt6_qualify_for_ecmp(sibling)) {
845 				list_add_tail(&rt->rt6i_siblings,
846 					      &sibling->rt6i_siblings);
847 				break;
848 			}
849 			sibling = sibling->dst.rt6_next;
850 		}
851 		/* For each sibling in the list, increment the counter of
852 		 * siblings. BUG() if counters does not match, list of siblings
853 		 * is broken!
854 		 */
855 		rt6i_nsiblings = 0;
856 		list_for_each_entry_safe(sibling, temp_sibling,
857 					 &rt->rt6i_siblings, rt6i_siblings) {
858 			sibling->rt6i_nsiblings++;
859 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
860 			rt6i_nsiblings++;
861 		}
862 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
863 	}
864 
865 	/*
866 	 *	insert node
867 	 */
868 	if (!replace) {
869 		if (!add)
870 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
871 
872 add:
873 		nlflags |= NLM_F_CREATE;
874 		err = fib6_commit_metrics(&rt->dst, mxc);
875 		if (err)
876 			return err;
877 
878 		rt->dst.rt6_next = iter;
879 		*ins = rt;
880 		rt->rt6i_node = fn;
881 		atomic_inc(&rt->rt6i_ref);
882 		if (!info->skip_notify)
883 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
884 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
885 
886 		if (!(fn->fn_flags & RTN_RTINFO)) {
887 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
888 			fn->fn_flags |= RTN_RTINFO;
889 		}
890 
891 	} else {
892 		int nsiblings;
893 
894 		if (!found) {
895 			if (add)
896 				goto add;
897 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
898 			return -ENOENT;
899 		}
900 
901 		err = fib6_commit_metrics(&rt->dst, mxc);
902 		if (err)
903 			return err;
904 
905 		*ins = rt;
906 		rt->rt6i_node = fn;
907 		rt->dst.rt6_next = iter->dst.rt6_next;
908 		atomic_inc(&rt->rt6i_ref);
909 		if (!info->skip_notify)
910 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
911 		if (!(fn->fn_flags & RTN_RTINFO)) {
912 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
913 			fn->fn_flags |= RTN_RTINFO;
914 		}
915 		nsiblings = iter->rt6i_nsiblings;
916 		fib6_purge_rt(iter, fn, info->nl_net);
917 		if (fn->rr_ptr == iter)
918 			fn->rr_ptr = NULL;
919 		rt6_release(iter);
920 
921 		if (nsiblings) {
922 			/* Replacing an ECMP route, remove all siblings */
923 			ins = &rt->dst.rt6_next;
924 			iter = *ins;
925 			while (iter) {
926 				if (iter->rt6i_metric > rt->rt6i_metric)
927 					break;
928 				if (rt6_qualify_for_ecmp(iter)) {
929 					*ins = iter->dst.rt6_next;
930 					fib6_purge_rt(iter, fn, info->nl_net);
931 					if (fn->rr_ptr == iter)
932 						fn->rr_ptr = NULL;
933 					rt6_release(iter);
934 					nsiblings--;
935 				} else {
936 					ins = &iter->dst.rt6_next;
937 				}
938 				iter = *ins;
939 			}
940 			WARN_ON(nsiblings != 0);
941 		}
942 	}
943 
944 	return 0;
945 }
946 
947 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
948 {
949 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
950 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
951 		mod_timer(&net->ipv6.ip6_fib_timer,
952 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
953 }
954 
955 void fib6_force_start_gc(struct net *net)
956 {
957 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
958 		mod_timer(&net->ipv6.ip6_fib_timer,
959 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
960 }
961 
962 /*
963  *	Add routing information to the routing tree.
964  *	<destination addr>/<source addr>
965  *	with source addr info in sub-trees
966  */
967 
968 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
969 	     struct nl_info *info, struct mx6_config *mxc,
970 	     struct netlink_ext_ack *extack)
971 {
972 	struct fib6_node *fn, *pn = NULL;
973 	int err = -ENOMEM;
974 	int allow_create = 1;
975 	int replace_required = 0;
976 	int sernum = fib6_new_sernum(info->nl_net);
977 
978 	if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
979 		return -EINVAL;
980 
981 	if (info->nlh) {
982 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
983 			allow_create = 0;
984 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
985 			replace_required = 1;
986 	}
987 	if (!allow_create && !replace_required)
988 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
989 
990 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
991 			offsetof(struct rt6_info, rt6i_dst), allow_create,
992 			replace_required, sernum, extack);
993 	if (IS_ERR(fn)) {
994 		err = PTR_ERR(fn);
995 		fn = NULL;
996 		goto out;
997 	}
998 
999 	pn = fn;
1000 
1001 #ifdef CONFIG_IPV6_SUBTREES
1002 	if (rt->rt6i_src.plen) {
1003 		struct fib6_node *sn;
1004 
1005 		if (!fn->subtree) {
1006 			struct fib6_node *sfn;
1007 
1008 			/*
1009 			 * Create subtree.
1010 			 *
1011 			 *		fn[main tree]
1012 			 *		|
1013 			 *		sfn[subtree root]
1014 			 *		   \
1015 			 *		    sn[new leaf node]
1016 			 */
1017 
1018 			/* Create subtree root node */
1019 			sfn = node_alloc();
1020 			if (!sfn)
1021 				goto failure;
1022 
1023 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1024 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1025 			sfn->fn_flags = RTN_ROOT;
1026 			sfn->fn_sernum = sernum;
1027 
1028 			/* Now add the first leaf node to new subtree */
1029 
1030 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1031 					rt->rt6i_src.plen,
1032 					offsetof(struct rt6_info, rt6i_src),
1033 					allow_create, replace_required, sernum,
1034 					extack);
1035 
1036 			if (IS_ERR(sn)) {
1037 				/* If it is failed, discard just allocated
1038 				   root, and then (in failure) stale node
1039 				   in main tree.
1040 				 */
1041 				node_free(sfn);
1042 				err = PTR_ERR(sn);
1043 				goto failure;
1044 			}
1045 
1046 			/* Now link new subtree to main tree */
1047 			sfn->parent = fn;
1048 			fn->subtree = sfn;
1049 		} else {
1050 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1051 					rt->rt6i_src.plen,
1052 					offsetof(struct rt6_info, rt6i_src),
1053 					allow_create, replace_required, sernum,
1054 					extack);
1055 
1056 			if (IS_ERR(sn)) {
1057 				err = PTR_ERR(sn);
1058 				goto failure;
1059 			}
1060 		}
1061 
1062 		if (!fn->leaf) {
1063 			fn->leaf = rt;
1064 			atomic_inc(&rt->rt6i_ref);
1065 		}
1066 		fn = sn;
1067 	}
1068 #endif
1069 
1070 	err = fib6_add_rt2node(fn, rt, info, mxc);
1071 	if (!err) {
1072 		fib6_start_gc(info->nl_net, rt);
1073 		if (!(rt->rt6i_flags & RTF_CACHE))
1074 			fib6_prune_clones(info->nl_net, pn);
1075 	}
1076 
1077 out:
1078 	if (err) {
1079 #ifdef CONFIG_IPV6_SUBTREES
1080 		/*
1081 		 * If fib6_add_1 has cleared the old leaf pointer in the
1082 		 * super-tree leaf node we have to find a new one for it.
1083 		 */
1084 		if (pn != fn && pn->leaf == rt) {
1085 			pn->leaf = NULL;
1086 			atomic_dec(&rt->rt6i_ref);
1087 		}
1088 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1089 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1090 #if RT6_DEBUG >= 2
1091 			if (!pn->leaf) {
1092 				WARN_ON(pn->leaf == NULL);
1093 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1094 			}
1095 #endif
1096 			atomic_inc(&pn->leaf->rt6i_ref);
1097 		}
1098 #endif
1099 		goto failure;
1100 	}
1101 	return err;
1102 
1103 failure:
1104 	/* fn->leaf could be NULL if fn is an intermediate node and we
1105 	 * failed to add the new route to it in both subtree creation
1106 	 * failure and fib6_add_rt2node() failure case.
1107 	 * In both cases, fib6_repair_tree() should be called to fix
1108 	 * fn->leaf.
1109 	 */
1110 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1111 		fib6_repair_tree(info->nl_net, fn);
1112 	/* Always release dst as dst->__refcnt is guaranteed
1113 	 * to be taken before entering this function
1114 	 */
1115 	dst_release_immediate(&rt->dst);
1116 	return err;
1117 }
1118 
1119 /*
1120  *	Routing tree lookup
1121  *
1122  */
1123 
1124 struct lookup_args {
1125 	int			offset;		/* key offset on rt6_info	*/
1126 	const struct in6_addr	*addr;		/* search key			*/
1127 };
1128 
1129 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1130 				       struct lookup_args *args)
1131 {
1132 	struct fib6_node *fn;
1133 	__be32 dir;
1134 
1135 	if (unlikely(args->offset == 0))
1136 		return NULL;
1137 
1138 	/*
1139 	 *	Descend on a tree
1140 	 */
1141 
1142 	fn = root;
1143 
1144 	for (;;) {
1145 		struct fib6_node *next;
1146 
1147 		dir = addr_bit_set(args->addr, fn->fn_bit);
1148 
1149 		next = dir ? fn->right : fn->left;
1150 
1151 		if (next) {
1152 			fn = next;
1153 			continue;
1154 		}
1155 		break;
1156 	}
1157 
1158 	while (fn) {
1159 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1160 			struct rt6key *key;
1161 
1162 			key = (struct rt6key *) ((u8 *) fn->leaf +
1163 						 args->offset);
1164 
1165 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1166 #ifdef CONFIG_IPV6_SUBTREES
1167 				if (fn->subtree) {
1168 					struct fib6_node *sfn;
1169 					sfn = fib6_lookup_1(fn->subtree,
1170 							    args + 1);
1171 					if (!sfn)
1172 						goto backtrack;
1173 					fn = sfn;
1174 				}
1175 #endif
1176 				if (fn->fn_flags & RTN_RTINFO)
1177 					return fn;
1178 			}
1179 		}
1180 #ifdef CONFIG_IPV6_SUBTREES
1181 backtrack:
1182 #endif
1183 		if (fn->fn_flags & RTN_ROOT)
1184 			break;
1185 
1186 		fn = fn->parent;
1187 	}
1188 
1189 	return NULL;
1190 }
1191 
1192 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1193 			      const struct in6_addr *saddr)
1194 {
1195 	struct fib6_node *fn;
1196 	struct lookup_args args[] = {
1197 		{
1198 			.offset = offsetof(struct rt6_info, rt6i_dst),
1199 			.addr = daddr,
1200 		},
1201 #ifdef CONFIG_IPV6_SUBTREES
1202 		{
1203 			.offset = offsetof(struct rt6_info, rt6i_src),
1204 			.addr = saddr,
1205 		},
1206 #endif
1207 		{
1208 			.offset = 0,	/* sentinel */
1209 		}
1210 	};
1211 
1212 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1213 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1214 		fn = root;
1215 
1216 	return fn;
1217 }
1218 
1219 /*
1220  *	Get node with specified destination prefix (and source prefix,
1221  *	if subtrees are used)
1222  */
1223 
1224 
1225 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1226 				       const struct in6_addr *addr,
1227 				       int plen, int offset)
1228 {
1229 	struct fib6_node *fn;
1230 
1231 	for (fn = root; fn ; ) {
1232 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1233 
1234 		/*
1235 		 *	Prefix match
1236 		 */
1237 		if (plen < fn->fn_bit ||
1238 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1239 			return NULL;
1240 
1241 		if (plen == fn->fn_bit)
1242 			return fn;
1243 
1244 		/*
1245 		 *	We have more bits to go
1246 		 */
1247 		if (addr_bit_set(addr, fn->fn_bit))
1248 			fn = fn->right;
1249 		else
1250 			fn = fn->left;
1251 	}
1252 	return NULL;
1253 }
1254 
1255 struct fib6_node *fib6_locate(struct fib6_node *root,
1256 			      const struct in6_addr *daddr, int dst_len,
1257 			      const struct in6_addr *saddr, int src_len)
1258 {
1259 	struct fib6_node *fn;
1260 
1261 	fn = fib6_locate_1(root, daddr, dst_len,
1262 			   offsetof(struct rt6_info, rt6i_dst));
1263 
1264 #ifdef CONFIG_IPV6_SUBTREES
1265 	if (src_len) {
1266 		WARN_ON(saddr == NULL);
1267 		if (fn && fn->subtree)
1268 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1269 					   offsetof(struct rt6_info, rt6i_src));
1270 	}
1271 #endif
1272 
1273 	if (fn && fn->fn_flags & RTN_RTINFO)
1274 		return fn;
1275 
1276 	return NULL;
1277 }
1278 
1279 
1280 /*
1281  *	Deletion
1282  *
1283  */
1284 
1285 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1286 {
1287 	if (fn->fn_flags & RTN_ROOT)
1288 		return net->ipv6.ip6_null_entry;
1289 
1290 	while (fn) {
1291 		if (fn->left)
1292 			return fn->left->leaf;
1293 		if (fn->right)
1294 			return fn->right->leaf;
1295 
1296 		fn = FIB6_SUBTREE(fn);
1297 	}
1298 	return NULL;
1299 }
1300 
1301 /*
1302  *	Called to trim the tree of intermediate nodes when possible. "fn"
1303  *	is the node we want to try and remove.
1304  */
1305 
1306 static struct fib6_node *fib6_repair_tree(struct net *net,
1307 					   struct fib6_node *fn)
1308 {
1309 	int children;
1310 	int nstate;
1311 	struct fib6_node *child, *pn;
1312 	struct fib6_walker *w;
1313 	int iter = 0;
1314 
1315 	for (;;) {
1316 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1317 		iter++;
1318 
1319 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1320 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1321 		WARN_ON(fn->leaf);
1322 
1323 		children = 0;
1324 		child = NULL;
1325 		if (fn->right)
1326 			child = fn->right, children |= 1;
1327 		if (fn->left)
1328 			child = fn->left, children |= 2;
1329 
1330 		if (children == 3 || FIB6_SUBTREE(fn)
1331 #ifdef CONFIG_IPV6_SUBTREES
1332 		    /* Subtree root (i.e. fn) may have one child */
1333 		    || (children && fn->fn_flags & RTN_ROOT)
1334 #endif
1335 		    ) {
1336 			fn->leaf = fib6_find_prefix(net, fn);
1337 #if RT6_DEBUG >= 2
1338 			if (!fn->leaf) {
1339 				WARN_ON(!fn->leaf);
1340 				fn->leaf = net->ipv6.ip6_null_entry;
1341 			}
1342 #endif
1343 			atomic_inc(&fn->leaf->rt6i_ref);
1344 			return fn->parent;
1345 		}
1346 
1347 		pn = fn->parent;
1348 #ifdef CONFIG_IPV6_SUBTREES
1349 		if (FIB6_SUBTREE(pn) == fn) {
1350 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1351 			FIB6_SUBTREE(pn) = NULL;
1352 			nstate = FWS_L;
1353 		} else {
1354 			WARN_ON(fn->fn_flags & RTN_ROOT);
1355 #endif
1356 			if (pn->right == fn)
1357 				pn->right = child;
1358 			else if (pn->left == fn)
1359 				pn->left = child;
1360 #if RT6_DEBUG >= 2
1361 			else
1362 				WARN_ON(1);
1363 #endif
1364 			if (child)
1365 				child->parent = pn;
1366 			nstate = FWS_R;
1367 #ifdef CONFIG_IPV6_SUBTREES
1368 		}
1369 #endif
1370 
1371 		read_lock(&net->ipv6.fib6_walker_lock);
1372 		FOR_WALKERS(net, w) {
1373 			if (!child) {
1374 				if (w->root == fn) {
1375 					w->root = w->node = NULL;
1376 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1377 				} else if (w->node == fn) {
1378 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1379 					w->node = pn;
1380 					w->state = nstate;
1381 				}
1382 			} else {
1383 				if (w->root == fn) {
1384 					w->root = child;
1385 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1386 				}
1387 				if (w->node == fn) {
1388 					w->node = child;
1389 					if (children&2) {
1390 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1391 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1392 					} else {
1393 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1394 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1395 					}
1396 				}
1397 			}
1398 		}
1399 		read_unlock(&net->ipv6.fib6_walker_lock);
1400 
1401 		node_free(fn);
1402 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1403 			return pn;
1404 
1405 		rt6_release(pn->leaf);
1406 		pn->leaf = NULL;
1407 		fn = pn;
1408 	}
1409 }
1410 
1411 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1412 			   struct nl_info *info)
1413 {
1414 	struct fib6_walker *w;
1415 	struct rt6_info *rt = *rtp;
1416 	struct net *net = info->nl_net;
1417 
1418 	RT6_TRACE("fib6_del_route\n");
1419 
1420 	/* Unlink it */
1421 	*rtp = rt->dst.rt6_next;
1422 	rt->rt6i_node = NULL;
1423 	net->ipv6.rt6_stats->fib_rt_entries--;
1424 	net->ipv6.rt6_stats->fib_discarded_routes++;
1425 
1426 	/* Reset round-robin state, if necessary */
1427 	if (fn->rr_ptr == rt)
1428 		fn->rr_ptr = NULL;
1429 
1430 	/* Remove this entry from other siblings */
1431 	if (rt->rt6i_nsiblings) {
1432 		struct rt6_info *sibling, *next_sibling;
1433 
1434 		list_for_each_entry_safe(sibling, next_sibling,
1435 					 &rt->rt6i_siblings, rt6i_siblings)
1436 			sibling->rt6i_nsiblings--;
1437 		rt->rt6i_nsiblings = 0;
1438 		list_del_init(&rt->rt6i_siblings);
1439 	}
1440 
1441 	/* Adjust walkers */
1442 	read_lock(&net->ipv6.fib6_walker_lock);
1443 	FOR_WALKERS(net, w) {
1444 		if (w->state == FWS_C && w->leaf == rt) {
1445 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1446 			w->leaf = rt->dst.rt6_next;
1447 			if (!w->leaf)
1448 				w->state = FWS_U;
1449 		}
1450 	}
1451 	read_unlock(&net->ipv6.fib6_walker_lock);
1452 
1453 	rt->dst.rt6_next = NULL;
1454 
1455 	/* If it was last route, expunge its radix tree node */
1456 	if (!fn->leaf) {
1457 		fn->fn_flags &= ~RTN_RTINFO;
1458 		net->ipv6.rt6_stats->fib_route_nodes--;
1459 		fn = fib6_repair_tree(net, fn);
1460 	}
1461 
1462 	fib6_purge_rt(rt, fn, net);
1463 
1464 	if (!info->skip_notify)
1465 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1466 	rt6_release(rt);
1467 }
1468 
1469 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1470 {
1471 	struct net *net = info->nl_net;
1472 	struct fib6_node *fn = rt->rt6i_node;
1473 	struct rt6_info **rtp;
1474 
1475 #if RT6_DEBUG >= 2
1476 	if (rt->dst.obsolete > 0) {
1477 		WARN_ON(fn);
1478 		return -ENOENT;
1479 	}
1480 #endif
1481 	if (!fn || rt == net->ipv6.ip6_null_entry)
1482 		return -ENOENT;
1483 
1484 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1485 
1486 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1487 		struct fib6_node *pn = fn;
1488 #ifdef CONFIG_IPV6_SUBTREES
1489 		/* clones of this route might be in another subtree */
1490 		if (rt->rt6i_src.plen) {
1491 			while (!(pn->fn_flags & RTN_ROOT))
1492 				pn = pn->parent;
1493 			pn = pn->parent;
1494 		}
1495 #endif
1496 		fib6_prune_clones(info->nl_net, pn);
1497 	}
1498 
1499 	/*
1500 	 *	Walk the leaf entries looking for ourself
1501 	 */
1502 
1503 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1504 		if (*rtp == rt) {
1505 			fib6_del_route(fn, rtp, info);
1506 			return 0;
1507 		}
1508 	}
1509 	return -ENOENT;
1510 }
1511 
1512 /*
1513  *	Tree traversal function.
1514  *
1515  *	Certainly, it is not interrupt safe.
1516  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1517  *	It means, that we can modify tree during walking
1518  *	and use this function for garbage collection, clone pruning,
1519  *	cleaning tree when a device goes down etc. etc.
1520  *
1521  *	It guarantees that every node will be traversed,
1522  *	and that it will be traversed only once.
1523  *
1524  *	Callback function w->func may return:
1525  *	0 -> continue walking.
1526  *	positive value -> walking is suspended (used by tree dumps,
1527  *	and probably by gc, if it will be split to several slices)
1528  *	negative value -> terminate walking.
1529  *
1530  *	The function itself returns:
1531  *	0   -> walk is complete.
1532  *	>0  -> walk is incomplete (i.e. suspended)
1533  *	<0  -> walk is terminated by an error.
1534  */
1535 
1536 static int fib6_walk_continue(struct fib6_walker *w)
1537 {
1538 	struct fib6_node *fn, *pn;
1539 
1540 	for (;;) {
1541 		fn = w->node;
1542 		if (!fn)
1543 			return 0;
1544 
1545 		if (w->prune && fn != w->root &&
1546 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1547 			w->state = FWS_C;
1548 			w->leaf = fn->leaf;
1549 		}
1550 		switch (w->state) {
1551 #ifdef CONFIG_IPV6_SUBTREES
1552 		case FWS_S:
1553 			if (FIB6_SUBTREE(fn)) {
1554 				w->node = FIB6_SUBTREE(fn);
1555 				continue;
1556 			}
1557 			w->state = FWS_L;
1558 #endif
1559 		case FWS_L:
1560 			if (fn->left) {
1561 				w->node = fn->left;
1562 				w->state = FWS_INIT;
1563 				continue;
1564 			}
1565 			w->state = FWS_R;
1566 		case FWS_R:
1567 			if (fn->right) {
1568 				w->node = fn->right;
1569 				w->state = FWS_INIT;
1570 				continue;
1571 			}
1572 			w->state = FWS_C;
1573 			w->leaf = fn->leaf;
1574 		case FWS_C:
1575 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1576 				int err;
1577 
1578 				if (w->skip) {
1579 					w->skip--;
1580 					goto skip;
1581 				}
1582 
1583 				err = w->func(w);
1584 				if (err)
1585 					return err;
1586 
1587 				w->count++;
1588 				continue;
1589 			}
1590 skip:
1591 			w->state = FWS_U;
1592 		case FWS_U:
1593 			if (fn == w->root)
1594 				return 0;
1595 			pn = fn->parent;
1596 			w->node = pn;
1597 #ifdef CONFIG_IPV6_SUBTREES
1598 			if (FIB6_SUBTREE(pn) == fn) {
1599 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1600 				w->state = FWS_L;
1601 				continue;
1602 			}
1603 #endif
1604 			if (pn->left == fn) {
1605 				w->state = FWS_R;
1606 				continue;
1607 			}
1608 			if (pn->right == fn) {
1609 				w->state = FWS_C;
1610 				w->leaf = w->node->leaf;
1611 				continue;
1612 			}
1613 #if RT6_DEBUG >= 2
1614 			WARN_ON(1);
1615 #endif
1616 		}
1617 	}
1618 }
1619 
1620 static int fib6_walk(struct net *net, struct fib6_walker *w)
1621 {
1622 	int res;
1623 
1624 	w->state = FWS_INIT;
1625 	w->node = w->root;
1626 
1627 	fib6_walker_link(net, w);
1628 	res = fib6_walk_continue(w);
1629 	if (res <= 0)
1630 		fib6_walker_unlink(net, w);
1631 	return res;
1632 }
1633 
1634 static int fib6_clean_node(struct fib6_walker *w)
1635 {
1636 	int res;
1637 	struct rt6_info *rt;
1638 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1639 	struct nl_info info = {
1640 		.nl_net = c->net,
1641 	};
1642 
1643 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1644 	    w->node->fn_sernum != c->sernum)
1645 		w->node->fn_sernum = c->sernum;
1646 
1647 	if (!c->func) {
1648 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1649 		w->leaf = NULL;
1650 		return 0;
1651 	}
1652 
1653 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1654 		res = c->func(rt, c->arg);
1655 		if (res < 0) {
1656 			w->leaf = rt;
1657 			res = fib6_del(rt, &info);
1658 			if (res) {
1659 #if RT6_DEBUG >= 2
1660 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1661 					 __func__, rt, rt->rt6i_node, res);
1662 #endif
1663 				continue;
1664 			}
1665 			return 0;
1666 		}
1667 		WARN_ON(res != 0);
1668 	}
1669 	w->leaf = rt;
1670 	return 0;
1671 }
1672 
1673 /*
1674  *	Convenient frontend to tree walker.
1675  *
1676  *	func is called on each route.
1677  *		It may return -1 -> delete this route.
1678  *		              0  -> continue walking
1679  *
1680  *	prune==1 -> only immediate children of node (certainly,
1681  *	ignoring pure split nodes) will be scanned.
1682  */
1683 
1684 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1685 			    int (*func)(struct rt6_info *, void *arg),
1686 			    bool prune, int sernum, void *arg)
1687 {
1688 	struct fib6_cleaner c;
1689 
1690 	c.w.root = root;
1691 	c.w.func = fib6_clean_node;
1692 	c.w.prune = prune;
1693 	c.w.count = 0;
1694 	c.w.skip = 0;
1695 	c.func = func;
1696 	c.sernum = sernum;
1697 	c.arg = arg;
1698 	c.net = net;
1699 
1700 	fib6_walk(net, &c.w);
1701 }
1702 
1703 static void __fib6_clean_all(struct net *net,
1704 			     int (*func)(struct rt6_info *, void *),
1705 			     int sernum, void *arg)
1706 {
1707 	struct fib6_table *table;
1708 	struct hlist_head *head;
1709 	unsigned int h;
1710 
1711 	rcu_read_lock();
1712 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1713 		head = &net->ipv6.fib_table_hash[h];
1714 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1715 			write_lock_bh(&table->tb6_lock);
1716 			fib6_clean_tree(net, &table->tb6_root,
1717 					func, false, sernum, arg);
1718 			write_unlock_bh(&table->tb6_lock);
1719 		}
1720 	}
1721 	rcu_read_unlock();
1722 }
1723 
1724 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1725 		    void *arg)
1726 {
1727 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1728 }
1729 
1730 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1731 {
1732 	if (rt->rt6i_flags & RTF_CACHE) {
1733 		RT6_TRACE("pruning clone %p\n", rt);
1734 		return -1;
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1741 {
1742 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1743 			FIB6_NO_SERNUM_CHANGE, NULL);
1744 }
1745 
1746 static void fib6_flush_trees(struct net *net)
1747 {
1748 	int new_sernum = fib6_new_sernum(net);
1749 
1750 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1751 }
1752 
1753 /*
1754  *	Garbage collection
1755  */
1756 
1757 struct fib6_gc_args
1758 {
1759 	int			timeout;
1760 	int			more;
1761 };
1762 
1763 static int fib6_age(struct rt6_info *rt, void *arg)
1764 {
1765 	struct fib6_gc_args *gc_args = arg;
1766 	unsigned long now = jiffies;
1767 
1768 	/*
1769 	 *	check addrconf expiration here.
1770 	 *	Routes are expired even if they are in use.
1771 	 *
1772 	 *	Also age clones. Note, that clones are aged out
1773 	 *	only if they are not in use now.
1774 	 */
1775 
1776 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1777 		if (time_after(now, rt->dst.expires)) {
1778 			RT6_TRACE("expiring %p\n", rt);
1779 			return -1;
1780 		}
1781 		gc_args->more++;
1782 	} else if (rt->rt6i_flags & RTF_CACHE) {
1783 		if (atomic_read(&rt->dst.__refcnt) == 1 &&
1784 		    time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1785 			RT6_TRACE("aging clone %p\n", rt);
1786 			return -1;
1787 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1788 			struct neighbour *neigh;
1789 			__u8 neigh_flags = 0;
1790 
1791 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1792 			if (neigh) {
1793 				neigh_flags = neigh->flags;
1794 				neigh_release(neigh);
1795 			}
1796 			if (!(neigh_flags & NTF_ROUTER)) {
1797 				RT6_TRACE("purging route %p via non-router but gateway\n",
1798 					  rt);
1799 				return -1;
1800 			}
1801 		}
1802 		gc_args->more++;
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1809 {
1810 	struct fib6_gc_args gc_args;
1811 	unsigned long now;
1812 
1813 	if (force) {
1814 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
1815 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1816 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1817 		return;
1818 	}
1819 	gc_args.timeout = expires ? (int)expires :
1820 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1821 	gc_args.more = 0;
1822 
1823 	fib6_clean_all(net, fib6_age, &gc_args);
1824 	now = jiffies;
1825 	net->ipv6.ip6_rt_last_gc = now;
1826 
1827 	if (gc_args.more)
1828 		mod_timer(&net->ipv6.ip6_fib_timer,
1829 			  round_jiffies(now
1830 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1831 	else
1832 		del_timer(&net->ipv6.ip6_fib_timer);
1833 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1834 }
1835 
1836 static void fib6_gc_timer_cb(unsigned long arg)
1837 {
1838 	fib6_run_gc(0, (struct net *)arg, true);
1839 }
1840 
1841 static int __net_init fib6_net_init(struct net *net)
1842 {
1843 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1844 
1845 	spin_lock_init(&net->ipv6.fib6_gc_lock);
1846 	rwlock_init(&net->ipv6.fib6_walker_lock);
1847 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1848 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1849 
1850 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1851 	if (!net->ipv6.rt6_stats)
1852 		goto out_timer;
1853 
1854 	/* Avoid false sharing : Use at least a full cache line */
1855 	size = max_t(size_t, size, L1_CACHE_BYTES);
1856 
1857 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1858 	if (!net->ipv6.fib_table_hash)
1859 		goto out_rt6_stats;
1860 
1861 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1862 					  GFP_KERNEL);
1863 	if (!net->ipv6.fib6_main_tbl)
1864 		goto out_fib_table_hash;
1865 
1866 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1867 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1868 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1869 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1870 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1871 
1872 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1873 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1874 					   GFP_KERNEL);
1875 	if (!net->ipv6.fib6_local_tbl)
1876 		goto out_fib6_main_tbl;
1877 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1878 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1879 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1880 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1881 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1882 #endif
1883 	fib6_tables_init(net);
1884 
1885 	return 0;
1886 
1887 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1888 out_fib6_main_tbl:
1889 	kfree(net->ipv6.fib6_main_tbl);
1890 #endif
1891 out_fib_table_hash:
1892 	kfree(net->ipv6.fib_table_hash);
1893 out_rt6_stats:
1894 	kfree(net->ipv6.rt6_stats);
1895 out_timer:
1896 	return -ENOMEM;
1897 }
1898 
1899 static void fib6_net_exit(struct net *net)
1900 {
1901 	rt6_ifdown(net, NULL);
1902 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1903 
1904 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1905 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1906 	kfree(net->ipv6.fib6_local_tbl);
1907 #endif
1908 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1909 	kfree(net->ipv6.fib6_main_tbl);
1910 	kfree(net->ipv6.fib_table_hash);
1911 	kfree(net->ipv6.rt6_stats);
1912 }
1913 
1914 static struct pernet_operations fib6_net_ops = {
1915 	.init = fib6_net_init,
1916 	.exit = fib6_net_exit,
1917 };
1918 
1919 int __init fib6_init(void)
1920 {
1921 	int ret = -ENOMEM;
1922 
1923 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1924 					   sizeof(struct fib6_node),
1925 					   0, SLAB_HWCACHE_ALIGN,
1926 					   NULL);
1927 	if (!fib6_node_kmem)
1928 		goto out;
1929 
1930 	ret = register_pernet_subsys(&fib6_net_ops);
1931 	if (ret)
1932 		goto out_kmem_cache_create;
1933 
1934 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1935 			      NULL);
1936 	if (ret)
1937 		goto out_unregister_subsys;
1938 
1939 	__fib6_flush_trees = fib6_flush_trees;
1940 out:
1941 	return ret;
1942 
1943 out_unregister_subsys:
1944 	unregister_pernet_subsys(&fib6_net_ops);
1945 out_kmem_cache_create:
1946 	kmem_cache_destroy(fib6_node_kmem);
1947 	goto out;
1948 }
1949 
1950 void fib6_gc_cleanup(void)
1951 {
1952 	unregister_pernet_subsys(&fib6_net_ops);
1953 	kmem_cache_destroy(fib6_node_kmem);
1954 }
1955 
1956 #ifdef CONFIG_PROC_FS
1957 
1958 struct ipv6_route_iter {
1959 	struct seq_net_private p;
1960 	struct fib6_walker w;
1961 	loff_t skip;
1962 	struct fib6_table *tbl;
1963 	int sernum;
1964 };
1965 
1966 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1967 {
1968 	struct rt6_info *rt = v;
1969 	struct ipv6_route_iter *iter = seq->private;
1970 
1971 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1972 
1973 #ifdef CONFIG_IPV6_SUBTREES
1974 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1975 #else
1976 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1977 #endif
1978 	if (rt->rt6i_flags & RTF_GATEWAY)
1979 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1980 	else
1981 		seq_puts(seq, "00000000000000000000000000000000");
1982 
1983 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1984 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1985 		   rt->dst.__use, rt->rt6i_flags,
1986 		   rt->dst.dev ? rt->dst.dev->name : "");
1987 	iter->w.leaf = NULL;
1988 	return 0;
1989 }
1990 
1991 static int ipv6_route_yield(struct fib6_walker *w)
1992 {
1993 	struct ipv6_route_iter *iter = w->args;
1994 
1995 	if (!iter->skip)
1996 		return 1;
1997 
1998 	do {
1999 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
2000 		iter->skip--;
2001 		if (!iter->skip && iter->w.leaf)
2002 			return 1;
2003 	} while (iter->w.leaf);
2004 
2005 	return 0;
2006 }
2007 
2008 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2009 				      struct net *net)
2010 {
2011 	memset(&iter->w, 0, sizeof(iter->w));
2012 	iter->w.func = ipv6_route_yield;
2013 	iter->w.root = &iter->tbl->tb6_root;
2014 	iter->w.state = FWS_INIT;
2015 	iter->w.node = iter->w.root;
2016 	iter->w.args = iter;
2017 	iter->sernum = iter->w.root->fn_sernum;
2018 	INIT_LIST_HEAD(&iter->w.lh);
2019 	fib6_walker_link(net, &iter->w);
2020 }
2021 
2022 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2023 						    struct net *net)
2024 {
2025 	unsigned int h;
2026 	struct hlist_node *node;
2027 
2028 	if (tbl) {
2029 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2030 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2031 	} else {
2032 		h = 0;
2033 		node = NULL;
2034 	}
2035 
2036 	while (!node && h < FIB6_TABLE_HASHSZ) {
2037 		node = rcu_dereference_bh(
2038 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2039 	}
2040 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2041 }
2042 
2043 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2044 {
2045 	if (iter->sernum != iter->w.root->fn_sernum) {
2046 		iter->sernum = iter->w.root->fn_sernum;
2047 		iter->w.state = FWS_INIT;
2048 		iter->w.node = iter->w.root;
2049 		WARN_ON(iter->w.skip);
2050 		iter->w.skip = iter->w.count;
2051 	}
2052 }
2053 
2054 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2055 {
2056 	int r;
2057 	struct rt6_info *n;
2058 	struct net *net = seq_file_net(seq);
2059 	struct ipv6_route_iter *iter = seq->private;
2060 
2061 	if (!v)
2062 		goto iter_table;
2063 
2064 	n = ((struct rt6_info *)v)->dst.rt6_next;
2065 	if (n) {
2066 		++*pos;
2067 		return n;
2068 	}
2069 
2070 iter_table:
2071 	ipv6_route_check_sernum(iter);
2072 	read_lock(&iter->tbl->tb6_lock);
2073 	r = fib6_walk_continue(&iter->w);
2074 	read_unlock(&iter->tbl->tb6_lock);
2075 	if (r > 0) {
2076 		if (v)
2077 			++*pos;
2078 		return iter->w.leaf;
2079 	} else if (r < 0) {
2080 		fib6_walker_unlink(net, &iter->w);
2081 		return NULL;
2082 	}
2083 	fib6_walker_unlink(net, &iter->w);
2084 
2085 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2086 	if (!iter->tbl)
2087 		return NULL;
2088 
2089 	ipv6_route_seq_setup_walk(iter, net);
2090 	goto iter_table;
2091 }
2092 
2093 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2094 	__acquires(RCU_BH)
2095 {
2096 	struct net *net = seq_file_net(seq);
2097 	struct ipv6_route_iter *iter = seq->private;
2098 
2099 	rcu_read_lock_bh();
2100 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2101 	iter->skip = *pos;
2102 
2103 	if (iter->tbl) {
2104 		ipv6_route_seq_setup_walk(iter, net);
2105 		return ipv6_route_seq_next(seq, NULL, pos);
2106 	} else {
2107 		return NULL;
2108 	}
2109 }
2110 
2111 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2112 {
2113 	struct fib6_walker *w = &iter->w;
2114 	return w->node && !(w->state == FWS_U && w->node == w->root);
2115 }
2116 
2117 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2118 	__releases(RCU_BH)
2119 {
2120 	struct net *net = seq_file_net(seq);
2121 	struct ipv6_route_iter *iter = seq->private;
2122 
2123 	if (ipv6_route_iter_active(iter))
2124 		fib6_walker_unlink(net, &iter->w);
2125 
2126 	rcu_read_unlock_bh();
2127 }
2128 
2129 static const struct seq_operations ipv6_route_seq_ops = {
2130 	.start	= ipv6_route_seq_start,
2131 	.next	= ipv6_route_seq_next,
2132 	.stop	= ipv6_route_seq_stop,
2133 	.show	= ipv6_route_seq_show
2134 };
2135 
2136 int ipv6_route_open(struct inode *inode, struct file *file)
2137 {
2138 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2139 			    sizeof(struct ipv6_route_iter));
2140 }
2141 
2142 #endif /* CONFIG_PROC_FS */
2143