xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision d0b73b48)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*
15  * 	Changes:
16  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17  * 				remove ip6_null_entry from the top of
18  * 				routing table.
19  * 	Ville Nuorvala:		Fixed routing subtrees.
20  */
21 
22 #define pr_fmt(fmt) "IPv6: " fmt
23 
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33 
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 #define RT6_DEBUG 2
42 
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48 
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50 
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 	FWS_S,
55 #endif
56 	FWS_L,
57 	FWS_R,
58 	FWS_C,
59 	FWS_U
60 };
61 
62 struct fib6_cleaner_t
63 {
64 	struct fib6_walker_t w;
65 	struct net *net;
66 	int (*func)(struct rt6_info *, void *arg);
67 	void *arg;
68 };
69 
70 static DEFINE_RWLOCK(fib6_walker_lock);
71 
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77 
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 			      struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84 
85 /*
86  *	A routing update causes an increase of the serial number on the
87  *	affected subtree. This allows for cached routes to be asynchronously
88  *	tested when modifications are made to the destination cache as a
89  *	result of redirects, path MTU changes, etc.
90  */
91 
92 static __u32 rt_sernum;
93 
94 static void fib6_gc_timer_cb(unsigned long arg);
95 
96 static LIST_HEAD(fib6_walkers);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
98 
99 static inline void fib6_walker_link(struct fib6_walker_t *w)
100 {
101 	write_lock_bh(&fib6_walker_lock);
102 	list_add(&w->lh, &fib6_walkers);
103 	write_unlock_bh(&fib6_walker_lock);
104 }
105 
106 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
107 {
108 	write_lock_bh(&fib6_walker_lock);
109 	list_del(&w->lh);
110 	write_unlock_bh(&fib6_walker_lock);
111 }
112 static __inline__ u32 fib6_new_sernum(void)
113 {
114 	u32 n = ++rt_sernum;
115 	if ((__s32)n <= 0)
116 		rt_sernum = n = 1;
117 	return n;
118 }
119 
120 /*
121  *	Auxiliary address test functions for the radix tree.
122  *
123  *	These assume a 32bit processor (although it will work on
124  *	64bit processors)
125  */
126 
127 /*
128  *	test bit
129  */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE	0
134 #endif
135 
136 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138 	const __be32 *addr = token;
139 	/*
140 	 * Here,
141 	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 	 * is optimized version of
143 	 *	htonl(1 << ((~fn_bit)&0x1F))
144 	 * See include/asm-generic/bitops/le.h.
145 	 */
146 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 	       addr[fn_bit >> 5];
148 }
149 
150 static __inline__ struct fib6_node * node_alloc(void)
151 {
152 	struct fib6_node *fn;
153 
154 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
155 
156 	return fn;
157 }
158 
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161 	kmem_cache_free(fib6_node_kmem, fn);
162 }
163 
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166 	if (atomic_dec_and_test(&rt->rt6i_ref))
167 		dst_free(&rt->dst);
168 }
169 
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
171 {
172 	unsigned int h;
173 
174 	/*
175 	 * Initialize table lock at a single place to give lockdep a key,
176 	 * tables aren't visible prior to being linked to the list.
177 	 */
178 	rwlock_init(&tb->tb6_lock);
179 
180 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
181 
182 	/*
183 	 * No protection necessary, this is the only list mutatation
184 	 * operation, tables never disappear once they exist.
185 	 */
186 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
187 }
188 
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
190 
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
192 {
193 	struct fib6_table *table;
194 
195 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
196 	if (table) {
197 		table->tb6_id = id;
198 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200 		inet_peer_base_init(&table->tb6_peers);
201 	}
202 
203 	return table;
204 }
205 
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208 	struct fib6_table *tb;
209 
210 	if (id == 0)
211 		id = RT6_TABLE_MAIN;
212 	tb = fib6_get_table(net, id);
213 	if (tb)
214 		return tb;
215 
216 	tb = fib6_alloc_table(net, id);
217 	if (tb)
218 		fib6_link_table(net, tb);
219 
220 	return tb;
221 }
222 
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225 	struct fib6_table *tb;
226 	struct hlist_head *head;
227 	struct hlist_node *node;
228 	unsigned int h;
229 
230 	if (id == 0)
231 		id = RT6_TABLE_MAIN;
232 	h = id & (FIB6_TABLE_HASHSZ - 1);
233 	rcu_read_lock();
234 	head = &net->ipv6.fib_table_hash[h];
235 	hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
236 		if (tb->tb6_id == id) {
237 			rcu_read_unlock();
238 			return tb;
239 		}
240 	}
241 	rcu_read_unlock();
242 
243 	return NULL;
244 }
245 
246 static void __net_init fib6_tables_init(struct net *net)
247 {
248 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
249 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
250 }
251 #else
252 
253 struct fib6_table *fib6_new_table(struct net *net, u32 id)
254 {
255 	return fib6_get_table(net, id);
256 }
257 
258 struct fib6_table *fib6_get_table(struct net *net, u32 id)
259 {
260 	  return net->ipv6.fib6_main_tbl;
261 }
262 
263 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
264 				   int flags, pol_lookup_t lookup)
265 {
266 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
267 }
268 
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 }
273 
274 #endif
275 
276 static int fib6_dump_node(struct fib6_walker_t *w)
277 {
278 	int res;
279 	struct rt6_info *rt;
280 
281 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
282 		res = rt6_dump_route(rt, w->args);
283 		if (res < 0) {
284 			/* Frame is full, suspend walking */
285 			w->leaf = rt;
286 			return 1;
287 		}
288 		WARN_ON(res == 0);
289 	}
290 	w->leaf = NULL;
291 	return 0;
292 }
293 
294 static void fib6_dump_end(struct netlink_callback *cb)
295 {
296 	struct fib6_walker_t *w = (void*)cb->args[2];
297 
298 	if (w) {
299 		if (cb->args[4]) {
300 			cb->args[4] = 0;
301 			fib6_walker_unlink(w);
302 		}
303 		cb->args[2] = 0;
304 		kfree(w);
305 	}
306 	cb->done = (void*)cb->args[3];
307 	cb->args[1] = 3;
308 }
309 
310 static int fib6_dump_done(struct netlink_callback *cb)
311 {
312 	fib6_dump_end(cb);
313 	return cb->done ? cb->done(cb) : 0;
314 }
315 
316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 			   struct netlink_callback *cb)
318 {
319 	struct fib6_walker_t *w;
320 	int res;
321 
322 	w = (void *)cb->args[2];
323 	w->root = &table->tb6_root;
324 
325 	if (cb->args[4] == 0) {
326 		w->count = 0;
327 		w->skip = 0;
328 
329 		read_lock_bh(&table->tb6_lock);
330 		res = fib6_walk(w);
331 		read_unlock_bh(&table->tb6_lock);
332 		if (res > 0) {
333 			cb->args[4] = 1;
334 			cb->args[5] = w->root->fn_sernum;
335 		}
336 	} else {
337 		if (cb->args[5] != w->root->fn_sernum) {
338 			/* Begin at the root if the tree changed */
339 			cb->args[5] = w->root->fn_sernum;
340 			w->state = FWS_INIT;
341 			w->node = w->root;
342 			w->skip = w->count;
343 		} else
344 			w->skip = 0;
345 
346 		read_lock_bh(&table->tb6_lock);
347 		res = fib6_walk_continue(w);
348 		read_unlock_bh(&table->tb6_lock);
349 		if (res <= 0) {
350 			fib6_walker_unlink(w);
351 			cb->args[4] = 0;
352 		}
353 	}
354 
355 	return res;
356 }
357 
358 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
359 {
360 	struct net *net = sock_net(skb->sk);
361 	unsigned int h, s_h;
362 	unsigned int e = 0, s_e;
363 	struct rt6_rtnl_dump_arg arg;
364 	struct fib6_walker_t *w;
365 	struct fib6_table *tb;
366 	struct hlist_node *node;
367 	struct hlist_head *head;
368 	int res = 0;
369 
370 	s_h = cb->args[0];
371 	s_e = cb->args[1];
372 
373 	w = (void *)cb->args[2];
374 	if (!w) {
375 		/* New dump:
376 		 *
377 		 * 1. hook callback destructor.
378 		 */
379 		cb->args[3] = (long)cb->done;
380 		cb->done = fib6_dump_done;
381 
382 		/*
383 		 * 2. allocate and initialize walker.
384 		 */
385 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 		if (!w)
387 			return -ENOMEM;
388 		w->func = fib6_dump_node;
389 		cb->args[2] = (long)w;
390 	}
391 
392 	arg.skb = skb;
393 	arg.cb = cb;
394 	arg.net = net;
395 	w->args = &arg;
396 
397 	rcu_read_lock();
398 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
399 		e = 0;
400 		head = &net->ipv6.fib_table_hash[h];
401 		hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
402 			if (e < s_e)
403 				goto next;
404 			res = fib6_dump_table(tb, skb, cb);
405 			if (res != 0)
406 				goto out;
407 next:
408 			e++;
409 		}
410 	}
411 out:
412 	rcu_read_unlock();
413 	cb->args[1] = e;
414 	cb->args[0] = h;
415 
416 	res = res < 0 ? res : skb->len;
417 	if (res <= 0)
418 		fib6_dump_end(cb);
419 	return res;
420 }
421 
422 /*
423  *	Routing Table
424  *
425  *	return the appropriate node for a routing tree "add" operation
426  *	by either creating and inserting or by returning an existing
427  *	node.
428  */
429 
430 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
431 				     int addrlen, int plen,
432 				     int offset, int allow_create,
433 				     int replace_required)
434 {
435 	struct fib6_node *fn, *in, *ln;
436 	struct fib6_node *pn = NULL;
437 	struct rt6key *key;
438 	int	bit;
439 	__be32	dir = 0;
440 	__u32	sernum = fib6_new_sernum();
441 
442 	RT6_TRACE("fib6_add_1\n");
443 
444 	/* insert node in tree */
445 
446 	fn = root;
447 
448 	do {
449 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
450 
451 		/*
452 		 *	Prefix match
453 		 */
454 		if (plen < fn->fn_bit ||
455 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
456 			if (!allow_create) {
457 				if (replace_required) {
458 					pr_warn("Can't replace route, no match found\n");
459 					return ERR_PTR(-ENOENT);
460 				}
461 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
462 			}
463 			goto insert_above;
464 		}
465 
466 		/*
467 		 *	Exact match ?
468 		 */
469 
470 		if (plen == fn->fn_bit) {
471 			/* clean up an intermediate node */
472 			if (!(fn->fn_flags & RTN_RTINFO)) {
473 				rt6_release(fn->leaf);
474 				fn->leaf = NULL;
475 			}
476 
477 			fn->fn_sernum = sernum;
478 
479 			return fn;
480 		}
481 
482 		/*
483 		 *	We have more bits to go
484 		 */
485 
486 		/* Try to walk down on tree. */
487 		fn->fn_sernum = sernum;
488 		dir = addr_bit_set(addr, fn->fn_bit);
489 		pn = fn;
490 		fn = dir ? fn->right: fn->left;
491 	} while (fn);
492 
493 	if (!allow_create) {
494 		/* We should not create new node because
495 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
496 		 * I assume it is safe to require NLM_F_CREATE when
497 		 * REPLACE flag is used! Later we may want to remove the
498 		 * check for replace_required, because according
499 		 * to netlink specification, NLM_F_CREATE
500 		 * MUST be specified if new route is created.
501 		 * That would keep IPv6 consistent with IPv4
502 		 */
503 		if (replace_required) {
504 			pr_warn("Can't replace route, no match found\n");
505 			return ERR_PTR(-ENOENT);
506 		}
507 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
508 	}
509 	/*
510 	 *	We walked to the bottom of tree.
511 	 *	Create new leaf node without children.
512 	 */
513 
514 	ln = node_alloc();
515 
516 	if (!ln)
517 		return ERR_PTR(-ENOMEM);
518 	ln->fn_bit = plen;
519 
520 	ln->parent = pn;
521 	ln->fn_sernum = sernum;
522 
523 	if (dir)
524 		pn->right = ln;
525 	else
526 		pn->left  = ln;
527 
528 	return ln;
529 
530 
531 insert_above:
532 	/*
533 	 * split since we don't have a common prefix anymore or
534 	 * we have a less significant route.
535 	 * we've to insert an intermediate node on the list
536 	 * this new node will point to the one we need to create
537 	 * and the current
538 	 */
539 
540 	pn = fn->parent;
541 
542 	/* find 1st bit in difference between the 2 addrs.
543 
544 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
545 	   but if it is >= plen, the value is ignored in any case.
546 	 */
547 
548 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
549 
550 	/*
551 	 *		(intermediate)[in]
552 	 *	          /	   \
553 	 *	(new leaf node)[ln] (old node)[fn]
554 	 */
555 	if (plen > bit) {
556 		in = node_alloc();
557 		ln = node_alloc();
558 
559 		if (!in || !ln) {
560 			if (in)
561 				node_free(in);
562 			if (ln)
563 				node_free(ln);
564 			return ERR_PTR(-ENOMEM);
565 		}
566 
567 		/*
568 		 * new intermediate node.
569 		 * RTN_RTINFO will
570 		 * be off since that an address that chooses one of
571 		 * the branches would not match less specific routes
572 		 * in the other branch
573 		 */
574 
575 		in->fn_bit = bit;
576 
577 		in->parent = pn;
578 		in->leaf = fn->leaf;
579 		atomic_inc(&in->leaf->rt6i_ref);
580 
581 		in->fn_sernum = sernum;
582 
583 		/* update parent pointer */
584 		if (dir)
585 			pn->right = in;
586 		else
587 			pn->left  = in;
588 
589 		ln->fn_bit = plen;
590 
591 		ln->parent = in;
592 		fn->parent = in;
593 
594 		ln->fn_sernum = sernum;
595 
596 		if (addr_bit_set(addr, bit)) {
597 			in->right = ln;
598 			in->left  = fn;
599 		} else {
600 			in->left  = ln;
601 			in->right = fn;
602 		}
603 	} else { /* plen <= bit */
604 
605 		/*
606 		 *		(new leaf node)[ln]
607 		 *	          /	   \
608 		 *	     (old node)[fn] NULL
609 		 */
610 
611 		ln = node_alloc();
612 
613 		if (!ln)
614 			return ERR_PTR(-ENOMEM);
615 
616 		ln->fn_bit = plen;
617 
618 		ln->parent = pn;
619 
620 		ln->fn_sernum = sernum;
621 
622 		if (dir)
623 			pn->right = ln;
624 		else
625 			pn->left  = ln;
626 
627 		if (addr_bit_set(&key->addr, plen))
628 			ln->right = fn;
629 		else
630 			ln->left  = fn;
631 
632 		fn->parent = ln;
633 	}
634 	return ln;
635 }
636 
637 /*
638  *	Insert routing information in a node.
639  */
640 
641 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
642 			    struct nl_info *info)
643 {
644 	struct rt6_info *iter = NULL;
645 	struct rt6_info **ins;
646 	int replace = (info->nlh &&
647 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
648 	int add = (!info->nlh ||
649 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
650 	int found = 0;
651 
652 	ins = &fn->leaf;
653 
654 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
655 		/*
656 		 *	Search for duplicates
657 		 */
658 
659 		if (iter->rt6i_metric == rt->rt6i_metric) {
660 			/*
661 			 *	Same priority level
662 			 */
663 			if (info->nlh &&
664 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
665 				return -EEXIST;
666 			if (replace) {
667 				found++;
668 				break;
669 			}
670 
671 			if (iter->dst.dev == rt->dst.dev &&
672 			    iter->rt6i_idev == rt->rt6i_idev &&
673 			    ipv6_addr_equal(&iter->rt6i_gateway,
674 					    &rt->rt6i_gateway)) {
675 				if (rt->rt6i_nsiblings)
676 					rt->rt6i_nsiblings = 0;
677 				if (!(iter->rt6i_flags & RTF_EXPIRES))
678 					return -EEXIST;
679 				if (!(rt->rt6i_flags & RTF_EXPIRES))
680 					rt6_clean_expires(iter);
681 				else
682 					rt6_set_expires(iter, rt->dst.expires);
683 				return -EEXIST;
684 			}
685 			/* If we have the same destination and the same metric,
686 			 * but not the same gateway, then the route we try to
687 			 * add is sibling to this route, increment our counter
688 			 * of siblings, and later we will add our route to the
689 			 * list.
690 			 * Only static routes (which don't have flag
691 			 * RTF_EXPIRES) are used for ECMPv6.
692 			 *
693 			 * To avoid long list, we only had siblings if the
694 			 * route have a gateway.
695 			 */
696 			if (rt->rt6i_flags & RTF_GATEWAY &&
697 			    !(rt->rt6i_flags & RTF_EXPIRES) &&
698 			    !(iter->rt6i_flags & RTF_EXPIRES))
699 				rt->rt6i_nsiblings++;
700 		}
701 
702 		if (iter->rt6i_metric > rt->rt6i_metric)
703 			break;
704 
705 		ins = &iter->dst.rt6_next;
706 	}
707 
708 	/* Reset round-robin state, if necessary */
709 	if (ins == &fn->leaf)
710 		fn->rr_ptr = NULL;
711 
712 	/* Link this route to others same route. */
713 	if (rt->rt6i_nsiblings) {
714 		unsigned int rt6i_nsiblings;
715 		struct rt6_info *sibling, *temp_sibling;
716 
717 		/* Find the first route that have the same metric */
718 		sibling = fn->leaf;
719 		while (sibling) {
720 			if (sibling->rt6i_metric == rt->rt6i_metric) {
721 				list_add_tail(&rt->rt6i_siblings,
722 					      &sibling->rt6i_siblings);
723 				break;
724 			}
725 			sibling = sibling->dst.rt6_next;
726 		}
727 		/* For each sibling in the list, increment the counter of
728 		 * siblings. BUG() if counters does not match, list of siblings
729 		 * is broken!
730 		 */
731 		rt6i_nsiblings = 0;
732 		list_for_each_entry_safe(sibling, temp_sibling,
733 					 &rt->rt6i_siblings, rt6i_siblings) {
734 			sibling->rt6i_nsiblings++;
735 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
736 			rt6i_nsiblings++;
737 		}
738 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
739 	}
740 
741 	/*
742 	 *	insert node
743 	 */
744 	if (!replace) {
745 		if (!add)
746 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
747 
748 add:
749 		rt->dst.rt6_next = iter;
750 		*ins = rt;
751 		rt->rt6i_node = fn;
752 		atomic_inc(&rt->rt6i_ref);
753 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
754 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
755 
756 		if (!(fn->fn_flags & RTN_RTINFO)) {
757 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
758 			fn->fn_flags |= RTN_RTINFO;
759 		}
760 
761 	} else {
762 		if (!found) {
763 			if (add)
764 				goto add;
765 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
766 			return -ENOENT;
767 		}
768 		*ins = rt;
769 		rt->rt6i_node = fn;
770 		rt->dst.rt6_next = iter->dst.rt6_next;
771 		atomic_inc(&rt->rt6i_ref);
772 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
773 		rt6_release(iter);
774 		if (!(fn->fn_flags & RTN_RTINFO)) {
775 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
776 			fn->fn_flags |= RTN_RTINFO;
777 		}
778 	}
779 
780 	return 0;
781 }
782 
783 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
784 {
785 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
786 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
787 		mod_timer(&net->ipv6.ip6_fib_timer,
788 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
789 }
790 
791 void fib6_force_start_gc(struct net *net)
792 {
793 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
794 		mod_timer(&net->ipv6.ip6_fib_timer,
795 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
796 }
797 
798 /*
799  *	Add routing information to the routing tree.
800  *	<destination addr>/<source addr>
801  *	with source addr info in sub-trees
802  */
803 
804 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
805 {
806 	struct fib6_node *fn, *pn = NULL;
807 	int err = -ENOMEM;
808 	int allow_create = 1;
809 	int replace_required = 0;
810 
811 	if (info->nlh) {
812 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
813 			allow_create = 0;
814 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
815 			replace_required = 1;
816 	}
817 	if (!allow_create && !replace_required)
818 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
819 
820 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
821 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
822 			allow_create, replace_required);
823 
824 	if (IS_ERR(fn)) {
825 		err = PTR_ERR(fn);
826 		goto out;
827 	}
828 
829 	pn = fn;
830 
831 #ifdef CONFIG_IPV6_SUBTREES
832 	if (rt->rt6i_src.plen) {
833 		struct fib6_node *sn;
834 
835 		if (!fn->subtree) {
836 			struct fib6_node *sfn;
837 
838 			/*
839 			 * Create subtree.
840 			 *
841 			 *		fn[main tree]
842 			 *		|
843 			 *		sfn[subtree root]
844 			 *		   \
845 			 *		    sn[new leaf node]
846 			 */
847 
848 			/* Create subtree root node */
849 			sfn = node_alloc();
850 			if (!sfn)
851 				goto st_failure;
852 
853 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
854 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
855 			sfn->fn_flags = RTN_ROOT;
856 			sfn->fn_sernum = fib6_new_sernum();
857 
858 			/* Now add the first leaf node to new subtree */
859 
860 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
861 					sizeof(struct in6_addr), rt->rt6i_src.plen,
862 					offsetof(struct rt6_info, rt6i_src),
863 					allow_create, replace_required);
864 
865 			if (IS_ERR(sn)) {
866 				/* If it is failed, discard just allocated
867 				   root, and then (in st_failure) stale node
868 				   in main tree.
869 				 */
870 				node_free(sfn);
871 				err = PTR_ERR(sn);
872 				goto st_failure;
873 			}
874 
875 			/* Now link new subtree to main tree */
876 			sfn->parent = fn;
877 			fn->subtree = sfn;
878 		} else {
879 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
880 					sizeof(struct in6_addr), rt->rt6i_src.plen,
881 					offsetof(struct rt6_info, rt6i_src),
882 					allow_create, replace_required);
883 
884 			if (IS_ERR(sn)) {
885 				err = PTR_ERR(sn);
886 				goto st_failure;
887 			}
888 		}
889 
890 		if (!fn->leaf) {
891 			fn->leaf = rt;
892 			atomic_inc(&rt->rt6i_ref);
893 		}
894 		fn = sn;
895 	}
896 #endif
897 
898 	err = fib6_add_rt2node(fn, rt, info);
899 	if (!err) {
900 		fib6_start_gc(info->nl_net, rt);
901 		if (!(rt->rt6i_flags & RTF_CACHE))
902 			fib6_prune_clones(info->nl_net, pn, rt);
903 	}
904 
905 out:
906 	if (err) {
907 #ifdef CONFIG_IPV6_SUBTREES
908 		/*
909 		 * If fib6_add_1 has cleared the old leaf pointer in the
910 		 * super-tree leaf node we have to find a new one for it.
911 		 */
912 		if (pn != fn && pn->leaf == rt) {
913 			pn->leaf = NULL;
914 			atomic_dec(&rt->rt6i_ref);
915 		}
916 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
917 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
918 #if RT6_DEBUG >= 2
919 			if (!pn->leaf) {
920 				WARN_ON(pn->leaf == NULL);
921 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
922 			}
923 #endif
924 			atomic_inc(&pn->leaf->rt6i_ref);
925 		}
926 #endif
927 		dst_free(&rt->dst);
928 	}
929 	return err;
930 
931 #ifdef CONFIG_IPV6_SUBTREES
932 	/* Subtree creation failed, probably main tree node
933 	   is orphan. If it is, shoot it.
934 	 */
935 st_failure:
936 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
937 		fib6_repair_tree(info->nl_net, fn);
938 	dst_free(&rt->dst);
939 	return err;
940 #endif
941 }
942 
943 /*
944  *	Routing tree lookup
945  *
946  */
947 
948 struct lookup_args {
949 	int			offset;		/* key offset on rt6_info	*/
950 	const struct in6_addr	*addr;		/* search key			*/
951 };
952 
953 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
954 					struct lookup_args *args)
955 {
956 	struct fib6_node *fn;
957 	__be32 dir;
958 
959 	if (unlikely(args->offset == 0))
960 		return NULL;
961 
962 	/*
963 	 *	Descend on a tree
964 	 */
965 
966 	fn = root;
967 
968 	for (;;) {
969 		struct fib6_node *next;
970 
971 		dir = addr_bit_set(args->addr, fn->fn_bit);
972 
973 		next = dir ? fn->right : fn->left;
974 
975 		if (next) {
976 			fn = next;
977 			continue;
978 		}
979 		break;
980 	}
981 
982 	while (fn) {
983 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
984 			struct rt6key *key;
985 
986 			key = (struct rt6key *) ((u8 *) fn->leaf +
987 						 args->offset);
988 
989 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
990 #ifdef CONFIG_IPV6_SUBTREES
991 				if (fn->subtree)
992 					fn = fib6_lookup_1(fn->subtree, args + 1);
993 #endif
994 				if (!fn || fn->fn_flags & RTN_RTINFO)
995 					return fn;
996 			}
997 		}
998 
999 		if (fn->fn_flags & RTN_ROOT)
1000 			break;
1001 
1002 		fn = fn->parent;
1003 	}
1004 
1005 	return NULL;
1006 }
1007 
1008 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1009 			       const struct in6_addr *saddr)
1010 {
1011 	struct fib6_node *fn;
1012 	struct lookup_args args[] = {
1013 		{
1014 			.offset = offsetof(struct rt6_info, rt6i_dst),
1015 			.addr = daddr,
1016 		},
1017 #ifdef CONFIG_IPV6_SUBTREES
1018 		{
1019 			.offset = offsetof(struct rt6_info, rt6i_src),
1020 			.addr = saddr,
1021 		},
1022 #endif
1023 		{
1024 			.offset = 0,	/* sentinel */
1025 		}
1026 	};
1027 
1028 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1029 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1030 		fn = root;
1031 
1032 	return fn;
1033 }
1034 
1035 /*
1036  *	Get node with specified destination prefix (and source prefix,
1037  *	if subtrees are used)
1038  */
1039 
1040 
1041 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1042 					const struct in6_addr *addr,
1043 					int plen, int offset)
1044 {
1045 	struct fib6_node *fn;
1046 
1047 	for (fn = root; fn ; ) {
1048 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1049 
1050 		/*
1051 		 *	Prefix match
1052 		 */
1053 		if (plen < fn->fn_bit ||
1054 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1055 			return NULL;
1056 
1057 		if (plen == fn->fn_bit)
1058 			return fn;
1059 
1060 		/*
1061 		 *	We have more bits to go
1062 		 */
1063 		if (addr_bit_set(addr, fn->fn_bit))
1064 			fn = fn->right;
1065 		else
1066 			fn = fn->left;
1067 	}
1068 	return NULL;
1069 }
1070 
1071 struct fib6_node * fib6_locate(struct fib6_node *root,
1072 			       const struct in6_addr *daddr, int dst_len,
1073 			       const struct in6_addr *saddr, int src_len)
1074 {
1075 	struct fib6_node *fn;
1076 
1077 	fn = fib6_locate_1(root, daddr, dst_len,
1078 			   offsetof(struct rt6_info, rt6i_dst));
1079 
1080 #ifdef CONFIG_IPV6_SUBTREES
1081 	if (src_len) {
1082 		WARN_ON(saddr == NULL);
1083 		if (fn && fn->subtree)
1084 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1085 					   offsetof(struct rt6_info, rt6i_src));
1086 	}
1087 #endif
1088 
1089 	if (fn && fn->fn_flags & RTN_RTINFO)
1090 		return fn;
1091 
1092 	return NULL;
1093 }
1094 
1095 
1096 /*
1097  *	Deletion
1098  *
1099  */
1100 
1101 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1102 {
1103 	if (fn->fn_flags & RTN_ROOT)
1104 		return net->ipv6.ip6_null_entry;
1105 
1106 	while (fn) {
1107 		if (fn->left)
1108 			return fn->left->leaf;
1109 		if (fn->right)
1110 			return fn->right->leaf;
1111 
1112 		fn = FIB6_SUBTREE(fn);
1113 	}
1114 	return NULL;
1115 }
1116 
1117 /*
1118  *	Called to trim the tree of intermediate nodes when possible. "fn"
1119  *	is the node we want to try and remove.
1120  */
1121 
1122 static struct fib6_node *fib6_repair_tree(struct net *net,
1123 					   struct fib6_node *fn)
1124 {
1125 	int children;
1126 	int nstate;
1127 	struct fib6_node *child, *pn;
1128 	struct fib6_walker_t *w;
1129 	int iter = 0;
1130 
1131 	for (;;) {
1132 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1133 		iter++;
1134 
1135 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1136 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1137 		WARN_ON(fn->leaf != NULL);
1138 
1139 		children = 0;
1140 		child = NULL;
1141 		if (fn->right) child = fn->right, children |= 1;
1142 		if (fn->left) child = fn->left, children |= 2;
1143 
1144 		if (children == 3 || FIB6_SUBTREE(fn)
1145 #ifdef CONFIG_IPV6_SUBTREES
1146 		    /* Subtree root (i.e. fn) may have one child */
1147 		    || (children && fn->fn_flags & RTN_ROOT)
1148 #endif
1149 		    ) {
1150 			fn->leaf = fib6_find_prefix(net, fn);
1151 #if RT6_DEBUG >= 2
1152 			if (!fn->leaf) {
1153 				WARN_ON(!fn->leaf);
1154 				fn->leaf = net->ipv6.ip6_null_entry;
1155 			}
1156 #endif
1157 			atomic_inc(&fn->leaf->rt6i_ref);
1158 			return fn->parent;
1159 		}
1160 
1161 		pn = fn->parent;
1162 #ifdef CONFIG_IPV6_SUBTREES
1163 		if (FIB6_SUBTREE(pn) == fn) {
1164 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1165 			FIB6_SUBTREE(pn) = NULL;
1166 			nstate = FWS_L;
1167 		} else {
1168 			WARN_ON(fn->fn_flags & RTN_ROOT);
1169 #endif
1170 			if (pn->right == fn) pn->right = child;
1171 			else if (pn->left == fn) pn->left = child;
1172 #if RT6_DEBUG >= 2
1173 			else
1174 				WARN_ON(1);
1175 #endif
1176 			if (child)
1177 				child->parent = pn;
1178 			nstate = FWS_R;
1179 #ifdef CONFIG_IPV6_SUBTREES
1180 		}
1181 #endif
1182 
1183 		read_lock(&fib6_walker_lock);
1184 		FOR_WALKERS(w) {
1185 			if (!child) {
1186 				if (w->root == fn) {
1187 					w->root = w->node = NULL;
1188 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1189 				} else if (w->node == fn) {
1190 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1191 					w->node = pn;
1192 					w->state = nstate;
1193 				}
1194 			} else {
1195 				if (w->root == fn) {
1196 					w->root = child;
1197 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1198 				}
1199 				if (w->node == fn) {
1200 					w->node = child;
1201 					if (children&2) {
1202 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1203 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1204 					} else {
1205 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1206 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1207 					}
1208 				}
1209 			}
1210 		}
1211 		read_unlock(&fib6_walker_lock);
1212 
1213 		node_free(fn);
1214 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1215 			return pn;
1216 
1217 		rt6_release(pn->leaf);
1218 		pn->leaf = NULL;
1219 		fn = pn;
1220 	}
1221 }
1222 
1223 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1224 			   struct nl_info *info)
1225 {
1226 	struct fib6_walker_t *w;
1227 	struct rt6_info *rt = *rtp;
1228 	struct net *net = info->nl_net;
1229 
1230 	RT6_TRACE("fib6_del_route\n");
1231 
1232 	/* Unlink it */
1233 	*rtp = rt->dst.rt6_next;
1234 	rt->rt6i_node = NULL;
1235 	net->ipv6.rt6_stats->fib_rt_entries--;
1236 	net->ipv6.rt6_stats->fib_discarded_routes++;
1237 
1238 	/* Reset round-robin state, if necessary */
1239 	if (fn->rr_ptr == rt)
1240 		fn->rr_ptr = NULL;
1241 
1242 	/* Remove this entry from other siblings */
1243 	if (rt->rt6i_nsiblings) {
1244 		struct rt6_info *sibling, *next_sibling;
1245 
1246 		list_for_each_entry_safe(sibling, next_sibling,
1247 					 &rt->rt6i_siblings, rt6i_siblings)
1248 			sibling->rt6i_nsiblings--;
1249 		rt->rt6i_nsiblings = 0;
1250 		list_del_init(&rt->rt6i_siblings);
1251 	}
1252 
1253 	/* Adjust walkers */
1254 	read_lock(&fib6_walker_lock);
1255 	FOR_WALKERS(w) {
1256 		if (w->state == FWS_C && w->leaf == rt) {
1257 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1258 			w->leaf = rt->dst.rt6_next;
1259 			if (!w->leaf)
1260 				w->state = FWS_U;
1261 		}
1262 	}
1263 	read_unlock(&fib6_walker_lock);
1264 
1265 	rt->dst.rt6_next = NULL;
1266 
1267 	/* If it was last route, expunge its radix tree node */
1268 	if (!fn->leaf) {
1269 		fn->fn_flags &= ~RTN_RTINFO;
1270 		net->ipv6.rt6_stats->fib_route_nodes--;
1271 		fn = fib6_repair_tree(net, fn);
1272 	}
1273 
1274 	if (atomic_read(&rt->rt6i_ref) != 1) {
1275 		/* This route is used as dummy address holder in some split
1276 		 * nodes. It is not leaked, but it still holds other resources,
1277 		 * which must be released in time. So, scan ascendant nodes
1278 		 * and replace dummy references to this route with references
1279 		 * to still alive ones.
1280 		 */
1281 		while (fn) {
1282 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1283 				fn->leaf = fib6_find_prefix(net, fn);
1284 				atomic_inc(&fn->leaf->rt6i_ref);
1285 				rt6_release(rt);
1286 			}
1287 			fn = fn->parent;
1288 		}
1289 		/* No more references are possible at this point. */
1290 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1291 	}
1292 
1293 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1294 	rt6_release(rt);
1295 }
1296 
1297 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1298 {
1299 	struct net *net = info->nl_net;
1300 	struct fib6_node *fn = rt->rt6i_node;
1301 	struct rt6_info **rtp;
1302 
1303 #if RT6_DEBUG >= 2
1304 	if (rt->dst.obsolete>0) {
1305 		WARN_ON(fn != NULL);
1306 		return -ENOENT;
1307 	}
1308 #endif
1309 	if (!fn || rt == net->ipv6.ip6_null_entry)
1310 		return -ENOENT;
1311 
1312 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1313 
1314 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1315 		struct fib6_node *pn = fn;
1316 #ifdef CONFIG_IPV6_SUBTREES
1317 		/* clones of this route might be in another subtree */
1318 		if (rt->rt6i_src.plen) {
1319 			while (!(pn->fn_flags & RTN_ROOT))
1320 				pn = pn->parent;
1321 			pn = pn->parent;
1322 		}
1323 #endif
1324 		fib6_prune_clones(info->nl_net, pn, rt);
1325 	}
1326 
1327 	/*
1328 	 *	Walk the leaf entries looking for ourself
1329 	 */
1330 
1331 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1332 		if (*rtp == rt) {
1333 			fib6_del_route(fn, rtp, info);
1334 			return 0;
1335 		}
1336 	}
1337 	return -ENOENT;
1338 }
1339 
1340 /*
1341  *	Tree traversal function.
1342  *
1343  *	Certainly, it is not interrupt safe.
1344  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1345  *	It means, that we can modify tree during walking
1346  *	and use this function for garbage collection, clone pruning,
1347  *	cleaning tree when a device goes down etc. etc.
1348  *
1349  *	It guarantees that every node will be traversed,
1350  *	and that it will be traversed only once.
1351  *
1352  *	Callback function w->func may return:
1353  *	0 -> continue walking.
1354  *	positive value -> walking is suspended (used by tree dumps,
1355  *	and probably by gc, if it will be split to several slices)
1356  *	negative value -> terminate walking.
1357  *
1358  *	The function itself returns:
1359  *	0   -> walk is complete.
1360  *	>0  -> walk is incomplete (i.e. suspended)
1361  *	<0  -> walk is terminated by an error.
1362  */
1363 
1364 static int fib6_walk_continue(struct fib6_walker_t *w)
1365 {
1366 	struct fib6_node *fn, *pn;
1367 
1368 	for (;;) {
1369 		fn = w->node;
1370 		if (!fn)
1371 			return 0;
1372 
1373 		if (w->prune && fn != w->root &&
1374 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1375 			w->state = FWS_C;
1376 			w->leaf = fn->leaf;
1377 		}
1378 		switch (w->state) {
1379 #ifdef CONFIG_IPV6_SUBTREES
1380 		case FWS_S:
1381 			if (FIB6_SUBTREE(fn)) {
1382 				w->node = FIB6_SUBTREE(fn);
1383 				continue;
1384 			}
1385 			w->state = FWS_L;
1386 #endif
1387 		case FWS_L:
1388 			if (fn->left) {
1389 				w->node = fn->left;
1390 				w->state = FWS_INIT;
1391 				continue;
1392 			}
1393 			w->state = FWS_R;
1394 		case FWS_R:
1395 			if (fn->right) {
1396 				w->node = fn->right;
1397 				w->state = FWS_INIT;
1398 				continue;
1399 			}
1400 			w->state = FWS_C;
1401 			w->leaf = fn->leaf;
1402 		case FWS_C:
1403 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1404 				int err;
1405 
1406 				if (w->skip) {
1407 					w->skip--;
1408 					continue;
1409 				}
1410 
1411 				err = w->func(w);
1412 				if (err)
1413 					return err;
1414 
1415 				w->count++;
1416 				continue;
1417 			}
1418 			w->state = FWS_U;
1419 		case FWS_U:
1420 			if (fn == w->root)
1421 				return 0;
1422 			pn = fn->parent;
1423 			w->node = pn;
1424 #ifdef CONFIG_IPV6_SUBTREES
1425 			if (FIB6_SUBTREE(pn) == fn) {
1426 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1427 				w->state = FWS_L;
1428 				continue;
1429 			}
1430 #endif
1431 			if (pn->left == fn) {
1432 				w->state = FWS_R;
1433 				continue;
1434 			}
1435 			if (pn->right == fn) {
1436 				w->state = FWS_C;
1437 				w->leaf = w->node->leaf;
1438 				continue;
1439 			}
1440 #if RT6_DEBUG >= 2
1441 			WARN_ON(1);
1442 #endif
1443 		}
1444 	}
1445 }
1446 
1447 static int fib6_walk(struct fib6_walker_t *w)
1448 {
1449 	int res;
1450 
1451 	w->state = FWS_INIT;
1452 	w->node = w->root;
1453 
1454 	fib6_walker_link(w);
1455 	res = fib6_walk_continue(w);
1456 	if (res <= 0)
1457 		fib6_walker_unlink(w);
1458 	return res;
1459 }
1460 
1461 static int fib6_clean_node(struct fib6_walker_t *w)
1462 {
1463 	int res;
1464 	struct rt6_info *rt;
1465 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1466 	struct nl_info info = {
1467 		.nl_net = c->net,
1468 	};
1469 
1470 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1471 		res = c->func(rt, c->arg);
1472 		if (res < 0) {
1473 			w->leaf = rt;
1474 			res = fib6_del(rt, &info);
1475 			if (res) {
1476 #if RT6_DEBUG >= 2
1477 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1478 					 __func__, rt, rt->rt6i_node, res);
1479 #endif
1480 				continue;
1481 			}
1482 			return 0;
1483 		}
1484 		WARN_ON(res != 0);
1485 	}
1486 	w->leaf = rt;
1487 	return 0;
1488 }
1489 
1490 /*
1491  *	Convenient frontend to tree walker.
1492  *
1493  *	func is called on each route.
1494  *		It may return -1 -> delete this route.
1495  *		              0  -> continue walking
1496  *
1497  *	prune==1 -> only immediate children of node (certainly,
1498  *	ignoring pure split nodes) will be scanned.
1499  */
1500 
1501 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1502 			    int (*func)(struct rt6_info *, void *arg),
1503 			    int prune, void *arg)
1504 {
1505 	struct fib6_cleaner_t c;
1506 
1507 	c.w.root = root;
1508 	c.w.func = fib6_clean_node;
1509 	c.w.prune = prune;
1510 	c.w.count = 0;
1511 	c.w.skip = 0;
1512 	c.func = func;
1513 	c.arg = arg;
1514 	c.net = net;
1515 
1516 	fib6_walk(&c.w);
1517 }
1518 
1519 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1520 		    int prune, void *arg)
1521 {
1522 	struct fib6_table *table;
1523 	struct hlist_node *node;
1524 	struct hlist_head *head;
1525 	unsigned int h;
1526 
1527 	rcu_read_lock();
1528 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1529 		head = &net->ipv6.fib_table_hash[h];
1530 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1531 			read_lock_bh(&table->tb6_lock);
1532 			fib6_clean_tree(net, &table->tb6_root,
1533 					func, prune, arg);
1534 			read_unlock_bh(&table->tb6_lock);
1535 		}
1536 	}
1537 	rcu_read_unlock();
1538 }
1539 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1540 		    int prune, void *arg)
1541 {
1542 	struct fib6_table *table;
1543 	struct hlist_node *node;
1544 	struct hlist_head *head;
1545 	unsigned int h;
1546 
1547 	rcu_read_lock();
1548 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1549 		head = &net->ipv6.fib_table_hash[h];
1550 		hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1551 			write_lock_bh(&table->tb6_lock);
1552 			fib6_clean_tree(net, &table->tb6_root,
1553 					func, prune, arg);
1554 			write_unlock_bh(&table->tb6_lock);
1555 		}
1556 	}
1557 	rcu_read_unlock();
1558 }
1559 
1560 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1561 {
1562 	if (rt->rt6i_flags & RTF_CACHE) {
1563 		RT6_TRACE("pruning clone %p\n", rt);
1564 		return -1;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1571 			      struct rt6_info *rt)
1572 {
1573 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1574 }
1575 
1576 /*
1577  *	Garbage collection
1578  */
1579 
1580 static struct fib6_gc_args
1581 {
1582 	int			timeout;
1583 	int			more;
1584 } gc_args;
1585 
1586 static int fib6_age(struct rt6_info *rt, void *arg)
1587 {
1588 	unsigned long now = jiffies;
1589 
1590 	/*
1591 	 *	check addrconf expiration here.
1592 	 *	Routes are expired even if they are in use.
1593 	 *
1594 	 *	Also age clones. Note, that clones are aged out
1595 	 *	only if they are not in use now.
1596 	 */
1597 
1598 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1599 		if (time_after(now, rt->dst.expires)) {
1600 			RT6_TRACE("expiring %p\n", rt);
1601 			return -1;
1602 		}
1603 		gc_args.more++;
1604 	} else if (rt->rt6i_flags & RTF_CACHE) {
1605 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1606 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1607 			RT6_TRACE("aging clone %p\n", rt);
1608 			return -1;
1609 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1610 			struct neighbour *neigh;
1611 			__u8 neigh_flags = 0;
1612 
1613 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1614 			if (neigh) {
1615 				neigh_flags = neigh->flags;
1616 				neigh_release(neigh);
1617 			}
1618 			if (!(neigh_flags & NTF_ROUTER)) {
1619 				RT6_TRACE("purging route %p via non-router but gateway\n",
1620 					  rt);
1621 				return -1;
1622 			}
1623 		}
1624 		gc_args.more++;
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 static DEFINE_SPINLOCK(fib6_gc_lock);
1631 
1632 void fib6_run_gc(unsigned long expires, struct net *net)
1633 {
1634 	if (expires != ~0UL) {
1635 		spin_lock_bh(&fib6_gc_lock);
1636 		gc_args.timeout = expires ? (int)expires :
1637 			net->ipv6.sysctl.ip6_rt_gc_interval;
1638 	} else {
1639 		if (!spin_trylock_bh(&fib6_gc_lock)) {
1640 			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1641 			return;
1642 		}
1643 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1644 	}
1645 
1646 	gc_args.more = icmp6_dst_gc();
1647 
1648 	fib6_clean_all(net, fib6_age, 0, NULL);
1649 
1650 	if (gc_args.more)
1651 		mod_timer(&net->ipv6.ip6_fib_timer,
1652 			  round_jiffies(jiffies
1653 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1654 	else
1655 		del_timer(&net->ipv6.ip6_fib_timer);
1656 	spin_unlock_bh(&fib6_gc_lock);
1657 }
1658 
1659 static void fib6_gc_timer_cb(unsigned long arg)
1660 {
1661 	fib6_run_gc(0, (struct net *)arg);
1662 }
1663 
1664 static int __net_init fib6_net_init(struct net *net)
1665 {
1666 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1667 
1668 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1669 
1670 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1671 	if (!net->ipv6.rt6_stats)
1672 		goto out_timer;
1673 
1674 	/* Avoid false sharing : Use at least a full cache line */
1675 	size = max_t(size_t, size, L1_CACHE_BYTES);
1676 
1677 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1678 	if (!net->ipv6.fib_table_hash)
1679 		goto out_rt6_stats;
1680 
1681 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1682 					  GFP_KERNEL);
1683 	if (!net->ipv6.fib6_main_tbl)
1684 		goto out_fib_table_hash;
1685 
1686 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1687 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1688 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1689 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1690 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1691 
1692 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1693 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1694 					   GFP_KERNEL);
1695 	if (!net->ipv6.fib6_local_tbl)
1696 		goto out_fib6_main_tbl;
1697 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1698 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1699 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1700 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1701 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1702 #endif
1703 	fib6_tables_init(net);
1704 
1705 	return 0;
1706 
1707 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1708 out_fib6_main_tbl:
1709 	kfree(net->ipv6.fib6_main_tbl);
1710 #endif
1711 out_fib_table_hash:
1712 	kfree(net->ipv6.fib_table_hash);
1713 out_rt6_stats:
1714 	kfree(net->ipv6.rt6_stats);
1715 out_timer:
1716 	return -ENOMEM;
1717  }
1718 
1719 static void fib6_net_exit(struct net *net)
1720 {
1721 	rt6_ifdown(net, NULL);
1722 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1723 
1724 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1725 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1726 	kfree(net->ipv6.fib6_local_tbl);
1727 #endif
1728 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1729 	kfree(net->ipv6.fib6_main_tbl);
1730 	kfree(net->ipv6.fib_table_hash);
1731 	kfree(net->ipv6.rt6_stats);
1732 }
1733 
1734 static struct pernet_operations fib6_net_ops = {
1735 	.init = fib6_net_init,
1736 	.exit = fib6_net_exit,
1737 };
1738 
1739 int __init fib6_init(void)
1740 {
1741 	int ret = -ENOMEM;
1742 
1743 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1744 					   sizeof(struct fib6_node),
1745 					   0, SLAB_HWCACHE_ALIGN,
1746 					   NULL);
1747 	if (!fib6_node_kmem)
1748 		goto out;
1749 
1750 	ret = register_pernet_subsys(&fib6_net_ops);
1751 	if (ret)
1752 		goto out_kmem_cache_create;
1753 
1754 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1755 			      NULL);
1756 	if (ret)
1757 		goto out_unregister_subsys;
1758 out:
1759 	return ret;
1760 
1761 out_unregister_subsys:
1762 	unregister_pernet_subsys(&fib6_net_ops);
1763 out_kmem_cache_create:
1764 	kmem_cache_destroy(fib6_node_kmem);
1765 	goto out;
1766 }
1767 
1768 void fib6_gc_cleanup(void)
1769 {
1770 	unregister_pernet_subsys(&fib6_net_ops);
1771 	kmem_cache_destroy(fib6_node_kmem);
1772 }
1773