1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Changes: 14 * Yuji SEKIYA @USAGI: Support default route on router node; 15 * remove ip6_null_entry from the top of 16 * routing table. 17 * Ville Nuorvala: Fixed routing subtrees. 18 */ 19 20 #define pr_fmt(fmt) "IPv6: " fmt 21 22 #include <linux/errno.h> 23 #include <linux/types.h> 24 #include <linux/net.h> 25 #include <linux/route.h> 26 #include <linux/netdevice.h> 27 #include <linux/in6.h> 28 #include <linux/init.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 32 #include <net/ipv6.h> 33 #include <net/ndisc.h> 34 #include <net/addrconf.h> 35 36 #include <net/ip6_fib.h> 37 #include <net/ip6_route.h> 38 39 #define RT6_DEBUG 2 40 41 #if RT6_DEBUG >= 3 42 #define RT6_TRACE(x...) pr_debug(x) 43 #else 44 #define RT6_TRACE(x...) do { ; } while (0) 45 #endif 46 47 static struct kmem_cache *fib6_node_kmem __read_mostly; 48 49 struct fib6_cleaner { 50 struct fib6_walker w; 51 struct net *net; 52 int (*func)(struct rt6_info *, void *arg); 53 int sernum; 54 void *arg; 55 }; 56 57 static DEFINE_RWLOCK(fib6_walker_lock); 58 59 #ifdef CONFIG_IPV6_SUBTREES 60 #define FWS_INIT FWS_S 61 #else 62 #define FWS_INIT FWS_L 63 #endif 64 65 static void fib6_prune_clones(struct net *net, struct fib6_node *fn); 66 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn); 67 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn); 68 static int fib6_walk(struct fib6_walker *w); 69 static int fib6_walk_continue(struct fib6_walker *w); 70 71 /* 72 * A routing update causes an increase of the serial number on the 73 * affected subtree. This allows for cached routes to be asynchronously 74 * tested when modifications are made to the destination cache as a 75 * result of redirects, path MTU changes, etc. 76 */ 77 78 static void fib6_gc_timer_cb(unsigned long arg); 79 80 static LIST_HEAD(fib6_walkers); 81 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh) 82 83 static void fib6_walker_link(struct fib6_walker *w) 84 { 85 write_lock_bh(&fib6_walker_lock); 86 list_add(&w->lh, &fib6_walkers); 87 write_unlock_bh(&fib6_walker_lock); 88 } 89 90 static void fib6_walker_unlink(struct fib6_walker *w) 91 { 92 write_lock_bh(&fib6_walker_lock); 93 list_del(&w->lh); 94 write_unlock_bh(&fib6_walker_lock); 95 } 96 97 static int fib6_new_sernum(struct net *net) 98 { 99 int new, old; 100 101 do { 102 old = atomic_read(&net->ipv6.fib6_sernum); 103 new = old < INT_MAX ? old + 1 : 1; 104 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 105 old, new) != old); 106 return new; 107 } 108 109 enum { 110 FIB6_NO_SERNUM_CHANGE = 0, 111 }; 112 113 /* 114 * Auxiliary address test functions for the radix tree. 115 * 116 * These assume a 32bit processor (although it will work on 117 * 64bit processors) 118 */ 119 120 /* 121 * test bit 122 */ 123 #if defined(__LITTLE_ENDIAN) 124 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 125 #else 126 # define BITOP_BE32_SWIZZLE 0 127 #endif 128 129 static __be32 addr_bit_set(const void *token, int fn_bit) 130 { 131 const __be32 *addr = token; 132 /* 133 * Here, 134 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 135 * is optimized version of 136 * htonl(1 << ((~fn_bit)&0x1F)) 137 * See include/asm-generic/bitops/le.h. 138 */ 139 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 140 addr[fn_bit >> 5]; 141 } 142 143 static struct fib6_node *node_alloc(void) 144 { 145 struct fib6_node *fn; 146 147 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 148 149 return fn; 150 } 151 152 static void node_free(struct fib6_node *fn) 153 { 154 kmem_cache_free(fib6_node_kmem, fn); 155 } 156 157 static void rt6_release(struct rt6_info *rt) 158 { 159 if (atomic_dec_and_test(&rt->rt6i_ref)) 160 dst_free(&rt->dst); 161 } 162 163 static void fib6_link_table(struct net *net, struct fib6_table *tb) 164 { 165 unsigned int h; 166 167 /* 168 * Initialize table lock at a single place to give lockdep a key, 169 * tables aren't visible prior to being linked to the list. 170 */ 171 rwlock_init(&tb->tb6_lock); 172 173 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 174 175 /* 176 * No protection necessary, this is the only list mutatation 177 * operation, tables never disappear once they exist. 178 */ 179 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 180 } 181 182 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 183 184 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 185 { 186 struct fib6_table *table; 187 188 table = kzalloc(sizeof(*table), GFP_ATOMIC); 189 if (table) { 190 table->tb6_id = id; 191 table->tb6_root.leaf = net->ipv6.ip6_null_entry; 192 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 193 inet_peer_base_init(&table->tb6_peers); 194 } 195 196 return table; 197 } 198 199 struct fib6_table *fib6_new_table(struct net *net, u32 id) 200 { 201 struct fib6_table *tb; 202 203 if (id == 0) 204 id = RT6_TABLE_MAIN; 205 tb = fib6_get_table(net, id); 206 if (tb) 207 return tb; 208 209 tb = fib6_alloc_table(net, id); 210 if (tb) 211 fib6_link_table(net, tb); 212 213 return tb; 214 } 215 216 struct fib6_table *fib6_get_table(struct net *net, u32 id) 217 { 218 struct fib6_table *tb; 219 struct hlist_head *head; 220 unsigned int h; 221 222 if (id == 0) 223 id = RT6_TABLE_MAIN; 224 h = id & (FIB6_TABLE_HASHSZ - 1); 225 rcu_read_lock(); 226 head = &net->ipv6.fib_table_hash[h]; 227 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 228 if (tb->tb6_id == id) { 229 rcu_read_unlock(); 230 return tb; 231 } 232 } 233 rcu_read_unlock(); 234 235 return NULL; 236 } 237 238 static void __net_init fib6_tables_init(struct net *net) 239 { 240 fib6_link_table(net, net->ipv6.fib6_main_tbl); 241 fib6_link_table(net, net->ipv6.fib6_local_tbl); 242 } 243 #else 244 245 struct fib6_table *fib6_new_table(struct net *net, u32 id) 246 { 247 return fib6_get_table(net, id); 248 } 249 250 struct fib6_table *fib6_get_table(struct net *net, u32 id) 251 { 252 return net->ipv6.fib6_main_tbl; 253 } 254 255 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 256 int flags, pol_lookup_t lookup) 257 { 258 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 259 } 260 261 static void __net_init fib6_tables_init(struct net *net) 262 { 263 fib6_link_table(net, net->ipv6.fib6_main_tbl); 264 } 265 266 #endif 267 268 static int fib6_dump_node(struct fib6_walker *w) 269 { 270 int res; 271 struct rt6_info *rt; 272 273 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 274 res = rt6_dump_route(rt, w->args); 275 if (res < 0) { 276 /* Frame is full, suspend walking */ 277 w->leaf = rt; 278 return 1; 279 } 280 WARN_ON(res == 0); 281 } 282 w->leaf = NULL; 283 return 0; 284 } 285 286 static void fib6_dump_end(struct netlink_callback *cb) 287 { 288 struct fib6_walker *w = (void *)cb->args[2]; 289 290 if (w) { 291 if (cb->args[4]) { 292 cb->args[4] = 0; 293 fib6_walker_unlink(w); 294 } 295 cb->args[2] = 0; 296 kfree(w); 297 } 298 cb->done = (void *)cb->args[3]; 299 cb->args[1] = 3; 300 } 301 302 static int fib6_dump_done(struct netlink_callback *cb) 303 { 304 fib6_dump_end(cb); 305 return cb->done ? cb->done(cb) : 0; 306 } 307 308 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 309 struct netlink_callback *cb) 310 { 311 struct fib6_walker *w; 312 int res; 313 314 w = (void *)cb->args[2]; 315 w->root = &table->tb6_root; 316 317 if (cb->args[4] == 0) { 318 w->count = 0; 319 w->skip = 0; 320 321 read_lock_bh(&table->tb6_lock); 322 res = fib6_walk(w); 323 read_unlock_bh(&table->tb6_lock); 324 if (res > 0) { 325 cb->args[4] = 1; 326 cb->args[5] = w->root->fn_sernum; 327 } 328 } else { 329 if (cb->args[5] != w->root->fn_sernum) { 330 /* Begin at the root if the tree changed */ 331 cb->args[5] = w->root->fn_sernum; 332 w->state = FWS_INIT; 333 w->node = w->root; 334 w->skip = w->count; 335 } else 336 w->skip = 0; 337 338 read_lock_bh(&table->tb6_lock); 339 res = fib6_walk_continue(w); 340 read_unlock_bh(&table->tb6_lock); 341 if (res <= 0) { 342 fib6_walker_unlink(w); 343 cb->args[4] = 0; 344 } 345 } 346 347 return res; 348 } 349 350 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 351 { 352 struct net *net = sock_net(skb->sk); 353 unsigned int h, s_h; 354 unsigned int e = 0, s_e; 355 struct rt6_rtnl_dump_arg arg; 356 struct fib6_walker *w; 357 struct fib6_table *tb; 358 struct hlist_head *head; 359 int res = 0; 360 361 s_h = cb->args[0]; 362 s_e = cb->args[1]; 363 364 w = (void *)cb->args[2]; 365 if (!w) { 366 /* New dump: 367 * 368 * 1. hook callback destructor. 369 */ 370 cb->args[3] = (long)cb->done; 371 cb->done = fib6_dump_done; 372 373 /* 374 * 2. allocate and initialize walker. 375 */ 376 w = kzalloc(sizeof(*w), GFP_ATOMIC); 377 if (!w) 378 return -ENOMEM; 379 w->func = fib6_dump_node; 380 cb->args[2] = (long)w; 381 } 382 383 arg.skb = skb; 384 arg.cb = cb; 385 arg.net = net; 386 w->args = &arg; 387 388 rcu_read_lock(); 389 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 390 e = 0; 391 head = &net->ipv6.fib_table_hash[h]; 392 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 393 if (e < s_e) 394 goto next; 395 res = fib6_dump_table(tb, skb, cb); 396 if (res != 0) 397 goto out; 398 next: 399 e++; 400 } 401 } 402 out: 403 rcu_read_unlock(); 404 cb->args[1] = e; 405 cb->args[0] = h; 406 407 res = res < 0 ? res : skb->len; 408 if (res <= 0) 409 fib6_dump_end(cb); 410 return res; 411 } 412 413 /* 414 * Routing Table 415 * 416 * return the appropriate node for a routing tree "add" operation 417 * by either creating and inserting or by returning an existing 418 * node. 419 */ 420 421 static struct fib6_node *fib6_add_1(struct fib6_node *root, 422 struct in6_addr *addr, int plen, 423 int offset, int allow_create, 424 int replace_required, int sernum) 425 { 426 struct fib6_node *fn, *in, *ln; 427 struct fib6_node *pn = NULL; 428 struct rt6key *key; 429 int bit; 430 __be32 dir = 0; 431 432 RT6_TRACE("fib6_add_1\n"); 433 434 /* insert node in tree */ 435 436 fn = root; 437 438 do { 439 key = (struct rt6key *)((u8 *)fn->leaf + offset); 440 441 /* 442 * Prefix match 443 */ 444 if (plen < fn->fn_bit || 445 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 446 if (!allow_create) { 447 if (replace_required) { 448 pr_warn("Can't replace route, no match found\n"); 449 return ERR_PTR(-ENOENT); 450 } 451 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 452 } 453 goto insert_above; 454 } 455 456 /* 457 * Exact match ? 458 */ 459 460 if (plen == fn->fn_bit) { 461 /* clean up an intermediate node */ 462 if (!(fn->fn_flags & RTN_RTINFO)) { 463 rt6_release(fn->leaf); 464 fn->leaf = NULL; 465 } 466 467 fn->fn_sernum = sernum; 468 469 return fn; 470 } 471 472 /* 473 * We have more bits to go 474 */ 475 476 /* Try to walk down on tree. */ 477 fn->fn_sernum = sernum; 478 dir = addr_bit_set(addr, fn->fn_bit); 479 pn = fn; 480 fn = dir ? fn->right : fn->left; 481 } while (fn); 482 483 if (!allow_create) { 484 /* We should not create new node because 485 * NLM_F_REPLACE was specified without NLM_F_CREATE 486 * I assume it is safe to require NLM_F_CREATE when 487 * REPLACE flag is used! Later we may want to remove the 488 * check for replace_required, because according 489 * to netlink specification, NLM_F_CREATE 490 * MUST be specified if new route is created. 491 * That would keep IPv6 consistent with IPv4 492 */ 493 if (replace_required) { 494 pr_warn("Can't replace route, no match found\n"); 495 return ERR_PTR(-ENOENT); 496 } 497 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 498 } 499 /* 500 * We walked to the bottom of tree. 501 * Create new leaf node without children. 502 */ 503 504 ln = node_alloc(); 505 506 if (!ln) 507 return ERR_PTR(-ENOMEM); 508 ln->fn_bit = plen; 509 510 ln->parent = pn; 511 ln->fn_sernum = sernum; 512 513 if (dir) 514 pn->right = ln; 515 else 516 pn->left = ln; 517 518 return ln; 519 520 521 insert_above: 522 /* 523 * split since we don't have a common prefix anymore or 524 * we have a less significant route. 525 * we've to insert an intermediate node on the list 526 * this new node will point to the one we need to create 527 * and the current 528 */ 529 530 pn = fn->parent; 531 532 /* find 1st bit in difference between the 2 addrs. 533 534 See comment in __ipv6_addr_diff: bit may be an invalid value, 535 but if it is >= plen, the value is ignored in any case. 536 */ 537 538 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 539 540 /* 541 * (intermediate)[in] 542 * / \ 543 * (new leaf node)[ln] (old node)[fn] 544 */ 545 if (plen > bit) { 546 in = node_alloc(); 547 ln = node_alloc(); 548 549 if (!in || !ln) { 550 if (in) 551 node_free(in); 552 if (ln) 553 node_free(ln); 554 return ERR_PTR(-ENOMEM); 555 } 556 557 /* 558 * new intermediate node. 559 * RTN_RTINFO will 560 * be off since that an address that chooses one of 561 * the branches would not match less specific routes 562 * in the other branch 563 */ 564 565 in->fn_bit = bit; 566 567 in->parent = pn; 568 in->leaf = fn->leaf; 569 atomic_inc(&in->leaf->rt6i_ref); 570 571 in->fn_sernum = sernum; 572 573 /* update parent pointer */ 574 if (dir) 575 pn->right = in; 576 else 577 pn->left = in; 578 579 ln->fn_bit = plen; 580 581 ln->parent = in; 582 fn->parent = in; 583 584 ln->fn_sernum = sernum; 585 586 if (addr_bit_set(addr, bit)) { 587 in->right = ln; 588 in->left = fn; 589 } else { 590 in->left = ln; 591 in->right = fn; 592 } 593 } else { /* plen <= bit */ 594 595 /* 596 * (new leaf node)[ln] 597 * / \ 598 * (old node)[fn] NULL 599 */ 600 601 ln = node_alloc(); 602 603 if (!ln) 604 return ERR_PTR(-ENOMEM); 605 606 ln->fn_bit = plen; 607 608 ln->parent = pn; 609 610 ln->fn_sernum = sernum; 611 612 if (dir) 613 pn->right = ln; 614 else 615 pn->left = ln; 616 617 if (addr_bit_set(&key->addr, plen)) 618 ln->right = fn; 619 else 620 ln->left = fn; 621 622 fn->parent = ln; 623 } 624 return ln; 625 } 626 627 static bool rt6_qualify_for_ecmp(struct rt6_info *rt) 628 { 629 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) == 630 RTF_GATEWAY; 631 } 632 633 static int fib6_commit_metrics(struct dst_entry *dst, 634 struct nlattr *mx, int mx_len) 635 { 636 struct nlattr *nla; 637 int remaining; 638 u32 *mp; 639 640 if (dst->flags & DST_HOST) { 641 mp = dst_metrics_write_ptr(dst); 642 } else { 643 mp = kzalloc(sizeof(u32) * RTAX_MAX, GFP_ATOMIC); 644 if (!mp) 645 return -ENOMEM; 646 dst_init_metrics(dst, mp, 0); 647 } 648 649 nla_for_each_attr(nla, mx, mx_len, remaining) { 650 int type = nla_type(nla); 651 652 if (type) { 653 if (type > RTAX_MAX) 654 return -EINVAL; 655 656 mp[type - 1] = nla_get_u32(nla); 657 } 658 } 659 return 0; 660 } 661 662 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn, 663 struct net *net) 664 { 665 if (atomic_read(&rt->rt6i_ref) != 1) { 666 /* This route is used as dummy address holder in some split 667 * nodes. It is not leaked, but it still holds other resources, 668 * which must be released in time. So, scan ascendant nodes 669 * and replace dummy references to this route with references 670 * to still alive ones. 671 */ 672 while (fn) { 673 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) { 674 fn->leaf = fib6_find_prefix(net, fn); 675 atomic_inc(&fn->leaf->rt6i_ref); 676 rt6_release(rt); 677 } 678 fn = fn->parent; 679 } 680 /* No more references are possible at this point. */ 681 BUG_ON(atomic_read(&rt->rt6i_ref) != 1); 682 } 683 } 684 685 /* 686 * Insert routing information in a node. 687 */ 688 689 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 690 struct nl_info *info, struct nlattr *mx, int mx_len) 691 { 692 struct rt6_info *iter = NULL; 693 struct rt6_info **ins; 694 int replace = (info->nlh && 695 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 696 int add = (!info->nlh || 697 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 698 int found = 0; 699 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 700 int err; 701 702 ins = &fn->leaf; 703 704 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) { 705 /* 706 * Search for duplicates 707 */ 708 709 if (iter->rt6i_metric == rt->rt6i_metric) { 710 /* 711 * Same priority level 712 */ 713 if (info->nlh && 714 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 715 return -EEXIST; 716 if (replace) { 717 found++; 718 break; 719 } 720 721 if (iter->dst.dev == rt->dst.dev && 722 iter->rt6i_idev == rt->rt6i_idev && 723 ipv6_addr_equal(&iter->rt6i_gateway, 724 &rt->rt6i_gateway)) { 725 if (rt->rt6i_nsiblings) 726 rt->rt6i_nsiblings = 0; 727 if (!(iter->rt6i_flags & RTF_EXPIRES)) 728 return -EEXIST; 729 if (!(rt->rt6i_flags & RTF_EXPIRES)) 730 rt6_clean_expires(iter); 731 else 732 rt6_set_expires(iter, rt->dst.expires); 733 return -EEXIST; 734 } 735 /* If we have the same destination and the same metric, 736 * but not the same gateway, then the route we try to 737 * add is sibling to this route, increment our counter 738 * of siblings, and later we will add our route to the 739 * list. 740 * Only static routes (which don't have flag 741 * RTF_EXPIRES) are used for ECMPv6. 742 * 743 * To avoid long list, we only had siblings if the 744 * route have a gateway. 745 */ 746 if (rt_can_ecmp && 747 rt6_qualify_for_ecmp(iter)) 748 rt->rt6i_nsiblings++; 749 } 750 751 if (iter->rt6i_metric > rt->rt6i_metric) 752 break; 753 754 ins = &iter->dst.rt6_next; 755 } 756 757 /* Reset round-robin state, if necessary */ 758 if (ins == &fn->leaf) 759 fn->rr_ptr = NULL; 760 761 /* Link this route to others same route. */ 762 if (rt->rt6i_nsiblings) { 763 unsigned int rt6i_nsiblings; 764 struct rt6_info *sibling, *temp_sibling; 765 766 /* Find the first route that have the same metric */ 767 sibling = fn->leaf; 768 while (sibling) { 769 if (sibling->rt6i_metric == rt->rt6i_metric && 770 rt6_qualify_for_ecmp(sibling)) { 771 list_add_tail(&rt->rt6i_siblings, 772 &sibling->rt6i_siblings); 773 break; 774 } 775 sibling = sibling->dst.rt6_next; 776 } 777 /* For each sibling in the list, increment the counter of 778 * siblings. BUG() if counters does not match, list of siblings 779 * is broken! 780 */ 781 rt6i_nsiblings = 0; 782 list_for_each_entry_safe(sibling, temp_sibling, 783 &rt->rt6i_siblings, rt6i_siblings) { 784 sibling->rt6i_nsiblings++; 785 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings); 786 rt6i_nsiblings++; 787 } 788 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings); 789 } 790 791 /* 792 * insert node 793 */ 794 if (!replace) { 795 if (!add) 796 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 797 798 add: 799 if (mx) { 800 err = fib6_commit_metrics(&rt->dst, mx, mx_len); 801 if (err) 802 return err; 803 } 804 rt->dst.rt6_next = iter; 805 *ins = rt; 806 rt->rt6i_node = fn; 807 atomic_inc(&rt->rt6i_ref); 808 inet6_rt_notify(RTM_NEWROUTE, rt, info); 809 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 810 811 if (!(fn->fn_flags & RTN_RTINFO)) { 812 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 813 fn->fn_flags |= RTN_RTINFO; 814 } 815 816 } else { 817 if (!found) { 818 if (add) 819 goto add; 820 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 821 return -ENOENT; 822 } 823 if (mx) { 824 err = fib6_commit_metrics(&rt->dst, mx, mx_len); 825 if (err) 826 return err; 827 } 828 *ins = rt; 829 rt->rt6i_node = fn; 830 rt->dst.rt6_next = iter->dst.rt6_next; 831 atomic_inc(&rt->rt6i_ref); 832 inet6_rt_notify(RTM_NEWROUTE, rt, info); 833 if (!(fn->fn_flags & RTN_RTINFO)) { 834 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 835 fn->fn_flags |= RTN_RTINFO; 836 } 837 fib6_purge_rt(iter, fn, info->nl_net); 838 rt6_release(iter); 839 } 840 841 return 0; 842 } 843 844 static void fib6_start_gc(struct net *net, struct rt6_info *rt) 845 { 846 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 847 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE))) 848 mod_timer(&net->ipv6.ip6_fib_timer, 849 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 850 } 851 852 void fib6_force_start_gc(struct net *net) 853 { 854 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 855 mod_timer(&net->ipv6.ip6_fib_timer, 856 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 857 } 858 859 /* 860 * Add routing information to the routing tree. 861 * <destination addr>/<source addr> 862 * with source addr info in sub-trees 863 */ 864 865 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info, 866 struct nlattr *mx, int mx_len) 867 { 868 struct fib6_node *fn, *pn = NULL; 869 int err = -ENOMEM; 870 int allow_create = 1; 871 int replace_required = 0; 872 int sernum = fib6_new_sernum(info->nl_net); 873 874 if (info->nlh) { 875 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 876 allow_create = 0; 877 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 878 replace_required = 1; 879 } 880 if (!allow_create && !replace_required) 881 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 882 883 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen, 884 offsetof(struct rt6_info, rt6i_dst), allow_create, 885 replace_required, sernum); 886 if (IS_ERR(fn)) { 887 err = PTR_ERR(fn); 888 fn = NULL; 889 goto out; 890 } 891 892 pn = fn; 893 894 #ifdef CONFIG_IPV6_SUBTREES 895 if (rt->rt6i_src.plen) { 896 struct fib6_node *sn; 897 898 if (!fn->subtree) { 899 struct fib6_node *sfn; 900 901 /* 902 * Create subtree. 903 * 904 * fn[main tree] 905 * | 906 * sfn[subtree root] 907 * \ 908 * sn[new leaf node] 909 */ 910 911 /* Create subtree root node */ 912 sfn = node_alloc(); 913 if (!sfn) 914 goto st_failure; 915 916 sfn->leaf = info->nl_net->ipv6.ip6_null_entry; 917 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 918 sfn->fn_flags = RTN_ROOT; 919 sfn->fn_sernum = sernum; 920 921 /* Now add the first leaf node to new subtree */ 922 923 sn = fib6_add_1(sfn, &rt->rt6i_src.addr, 924 rt->rt6i_src.plen, 925 offsetof(struct rt6_info, rt6i_src), 926 allow_create, replace_required, sernum); 927 928 if (IS_ERR(sn)) { 929 /* If it is failed, discard just allocated 930 root, and then (in st_failure) stale node 931 in main tree. 932 */ 933 node_free(sfn); 934 err = PTR_ERR(sn); 935 goto st_failure; 936 } 937 938 /* Now link new subtree to main tree */ 939 sfn->parent = fn; 940 fn->subtree = sfn; 941 } else { 942 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr, 943 rt->rt6i_src.plen, 944 offsetof(struct rt6_info, rt6i_src), 945 allow_create, replace_required, sernum); 946 947 if (IS_ERR(sn)) { 948 err = PTR_ERR(sn); 949 goto st_failure; 950 } 951 } 952 953 if (!fn->leaf) { 954 fn->leaf = rt; 955 atomic_inc(&rt->rt6i_ref); 956 } 957 fn = sn; 958 } 959 #endif 960 961 err = fib6_add_rt2node(fn, rt, info, mx, mx_len); 962 if (!err) { 963 fib6_start_gc(info->nl_net, rt); 964 if (!(rt->rt6i_flags & RTF_CACHE)) 965 fib6_prune_clones(info->nl_net, pn); 966 } 967 968 out: 969 if (err) { 970 #ifdef CONFIG_IPV6_SUBTREES 971 /* 972 * If fib6_add_1 has cleared the old leaf pointer in the 973 * super-tree leaf node we have to find a new one for it. 974 */ 975 if (pn != fn && pn->leaf == rt) { 976 pn->leaf = NULL; 977 atomic_dec(&rt->rt6i_ref); 978 } 979 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) { 980 pn->leaf = fib6_find_prefix(info->nl_net, pn); 981 #if RT6_DEBUG >= 2 982 if (!pn->leaf) { 983 WARN_ON(pn->leaf == NULL); 984 pn->leaf = info->nl_net->ipv6.ip6_null_entry; 985 } 986 #endif 987 atomic_inc(&pn->leaf->rt6i_ref); 988 } 989 #endif 990 dst_free(&rt->dst); 991 } 992 return err; 993 994 #ifdef CONFIG_IPV6_SUBTREES 995 /* Subtree creation failed, probably main tree node 996 is orphan. If it is, shoot it. 997 */ 998 st_failure: 999 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 1000 fib6_repair_tree(info->nl_net, fn); 1001 dst_free(&rt->dst); 1002 return err; 1003 #endif 1004 } 1005 1006 /* 1007 * Routing tree lookup 1008 * 1009 */ 1010 1011 struct lookup_args { 1012 int offset; /* key offset on rt6_info */ 1013 const struct in6_addr *addr; /* search key */ 1014 }; 1015 1016 static struct fib6_node *fib6_lookup_1(struct fib6_node *root, 1017 struct lookup_args *args) 1018 { 1019 struct fib6_node *fn; 1020 __be32 dir; 1021 1022 if (unlikely(args->offset == 0)) 1023 return NULL; 1024 1025 /* 1026 * Descend on a tree 1027 */ 1028 1029 fn = root; 1030 1031 for (;;) { 1032 struct fib6_node *next; 1033 1034 dir = addr_bit_set(args->addr, fn->fn_bit); 1035 1036 next = dir ? fn->right : fn->left; 1037 1038 if (next) { 1039 fn = next; 1040 continue; 1041 } 1042 break; 1043 } 1044 1045 while (fn) { 1046 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) { 1047 struct rt6key *key; 1048 1049 key = (struct rt6key *) ((u8 *) fn->leaf + 1050 args->offset); 1051 1052 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1053 #ifdef CONFIG_IPV6_SUBTREES 1054 if (fn->subtree) { 1055 struct fib6_node *sfn; 1056 sfn = fib6_lookup_1(fn->subtree, 1057 args + 1); 1058 if (!sfn) 1059 goto backtrack; 1060 fn = sfn; 1061 } 1062 #endif 1063 if (fn->fn_flags & RTN_RTINFO) 1064 return fn; 1065 } 1066 } 1067 #ifdef CONFIG_IPV6_SUBTREES 1068 backtrack: 1069 #endif 1070 if (fn->fn_flags & RTN_ROOT) 1071 break; 1072 1073 fn = fn->parent; 1074 } 1075 1076 return NULL; 1077 } 1078 1079 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 1080 const struct in6_addr *saddr) 1081 { 1082 struct fib6_node *fn; 1083 struct lookup_args args[] = { 1084 { 1085 .offset = offsetof(struct rt6_info, rt6i_dst), 1086 .addr = daddr, 1087 }, 1088 #ifdef CONFIG_IPV6_SUBTREES 1089 { 1090 .offset = offsetof(struct rt6_info, rt6i_src), 1091 .addr = saddr, 1092 }, 1093 #endif 1094 { 1095 .offset = 0, /* sentinel */ 1096 } 1097 }; 1098 1099 fn = fib6_lookup_1(root, daddr ? args : args + 1); 1100 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1101 fn = root; 1102 1103 return fn; 1104 } 1105 1106 /* 1107 * Get node with specified destination prefix (and source prefix, 1108 * if subtrees are used) 1109 */ 1110 1111 1112 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1113 const struct in6_addr *addr, 1114 int plen, int offset) 1115 { 1116 struct fib6_node *fn; 1117 1118 for (fn = root; fn ; ) { 1119 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset); 1120 1121 /* 1122 * Prefix match 1123 */ 1124 if (plen < fn->fn_bit || 1125 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1126 return NULL; 1127 1128 if (plen == fn->fn_bit) 1129 return fn; 1130 1131 /* 1132 * We have more bits to go 1133 */ 1134 if (addr_bit_set(addr, fn->fn_bit)) 1135 fn = fn->right; 1136 else 1137 fn = fn->left; 1138 } 1139 return NULL; 1140 } 1141 1142 struct fib6_node *fib6_locate(struct fib6_node *root, 1143 const struct in6_addr *daddr, int dst_len, 1144 const struct in6_addr *saddr, int src_len) 1145 { 1146 struct fib6_node *fn; 1147 1148 fn = fib6_locate_1(root, daddr, dst_len, 1149 offsetof(struct rt6_info, rt6i_dst)); 1150 1151 #ifdef CONFIG_IPV6_SUBTREES 1152 if (src_len) { 1153 WARN_ON(saddr == NULL); 1154 if (fn && fn->subtree) 1155 fn = fib6_locate_1(fn->subtree, saddr, src_len, 1156 offsetof(struct rt6_info, rt6i_src)); 1157 } 1158 #endif 1159 1160 if (fn && fn->fn_flags & RTN_RTINFO) 1161 return fn; 1162 1163 return NULL; 1164 } 1165 1166 1167 /* 1168 * Deletion 1169 * 1170 */ 1171 1172 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn) 1173 { 1174 if (fn->fn_flags & RTN_ROOT) 1175 return net->ipv6.ip6_null_entry; 1176 1177 while (fn) { 1178 if (fn->left) 1179 return fn->left->leaf; 1180 if (fn->right) 1181 return fn->right->leaf; 1182 1183 fn = FIB6_SUBTREE(fn); 1184 } 1185 return NULL; 1186 } 1187 1188 /* 1189 * Called to trim the tree of intermediate nodes when possible. "fn" 1190 * is the node we want to try and remove. 1191 */ 1192 1193 static struct fib6_node *fib6_repair_tree(struct net *net, 1194 struct fib6_node *fn) 1195 { 1196 int children; 1197 int nstate; 1198 struct fib6_node *child, *pn; 1199 struct fib6_walker *w; 1200 int iter = 0; 1201 1202 for (;;) { 1203 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1204 iter++; 1205 1206 WARN_ON(fn->fn_flags & RTN_RTINFO); 1207 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1208 WARN_ON(fn->leaf != NULL); 1209 1210 children = 0; 1211 child = NULL; 1212 if (fn->right) 1213 child = fn->right, children |= 1; 1214 if (fn->left) 1215 child = fn->left, children |= 2; 1216 1217 if (children == 3 || FIB6_SUBTREE(fn) 1218 #ifdef CONFIG_IPV6_SUBTREES 1219 /* Subtree root (i.e. fn) may have one child */ 1220 || (children && fn->fn_flags & RTN_ROOT) 1221 #endif 1222 ) { 1223 fn->leaf = fib6_find_prefix(net, fn); 1224 #if RT6_DEBUG >= 2 1225 if (!fn->leaf) { 1226 WARN_ON(!fn->leaf); 1227 fn->leaf = net->ipv6.ip6_null_entry; 1228 } 1229 #endif 1230 atomic_inc(&fn->leaf->rt6i_ref); 1231 return fn->parent; 1232 } 1233 1234 pn = fn->parent; 1235 #ifdef CONFIG_IPV6_SUBTREES 1236 if (FIB6_SUBTREE(pn) == fn) { 1237 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1238 FIB6_SUBTREE(pn) = NULL; 1239 nstate = FWS_L; 1240 } else { 1241 WARN_ON(fn->fn_flags & RTN_ROOT); 1242 #endif 1243 if (pn->right == fn) 1244 pn->right = child; 1245 else if (pn->left == fn) 1246 pn->left = child; 1247 #if RT6_DEBUG >= 2 1248 else 1249 WARN_ON(1); 1250 #endif 1251 if (child) 1252 child->parent = pn; 1253 nstate = FWS_R; 1254 #ifdef CONFIG_IPV6_SUBTREES 1255 } 1256 #endif 1257 1258 read_lock(&fib6_walker_lock); 1259 FOR_WALKERS(w) { 1260 if (!child) { 1261 if (w->root == fn) { 1262 w->root = w->node = NULL; 1263 RT6_TRACE("W %p adjusted by delroot 1\n", w); 1264 } else if (w->node == fn) { 1265 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1266 w->node = pn; 1267 w->state = nstate; 1268 } 1269 } else { 1270 if (w->root == fn) { 1271 w->root = child; 1272 RT6_TRACE("W %p adjusted by delroot 2\n", w); 1273 } 1274 if (w->node == fn) { 1275 w->node = child; 1276 if (children&2) { 1277 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1278 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1279 } else { 1280 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1281 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1282 } 1283 } 1284 } 1285 } 1286 read_unlock(&fib6_walker_lock); 1287 1288 node_free(fn); 1289 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1290 return pn; 1291 1292 rt6_release(pn->leaf); 1293 pn->leaf = NULL; 1294 fn = pn; 1295 } 1296 } 1297 1298 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp, 1299 struct nl_info *info) 1300 { 1301 struct fib6_walker *w; 1302 struct rt6_info *rt = *rtp; 1303 struct net *net = info->nl_net; 1304 1305 RT6_TRACE("fib6_del_route\n"); 1306 1307 /* Unlink it */ 1308 *rtp = rt->dst.rt6_next; 1309 rt->rt6i_node = NULL; 1310 net->ipv6.rt6_stats->fib_rt_entries--; 1311 net->ipv6.rt6_stats->fib_discarded_routes++; 1312 1313 /* Reset round-robin state, if necessary */ 1314 if (fn->rr_ptr == rt) 1315 fn->rr_ptr = NULL; 1316 1317 /* Remove this entry from other siblings */ 1318 if (rt->rt6i_nsiblings) { 1319 struct rt6_info *sibling, *next_sibling; 1320 1321 list_for_each_entry_safe(sibling, next_sibling, 1322 &rt->rt6i_siblings, rt6i_siblings) 1323 sibling->rt6i_nsiblings--; 1324 rt->rt6i_nsiblings = 0; 1325 list_del_init(&rt->rt6i_siblings); 1326 } 1327 1328 /* Adjust walkers */ 1329 read_lock(&fib6_walker_lock); 1330 FOR_WALKERS(w) { 1331 if (w->state == FWS_C && w->leaf == rt) { 1332 RT6_TRACE("walker %p adjusted by delroute\n", w); 1333 w->leaf = rt->dst.rt6_next; 1334 if (!w->leaf) 1335 w->state = FWS_U; 1336 } 1337 } 1338 read_unlock(&fib6_walker_lock); 1339 1340 rt->dst.rt6_next = NULL; 1341 1342 /* If it was last route, expunge its radix tree node */ 1343 if (!fn->leaf) { 1344 fn->fn_flags &= ~RTN_RTINFO; 1345 net->ipv6.rt6_stats->fib_route_nodes--; 1346 fn = fib6_repair_tree(net, fn); 1347 } 1348 1349 fib6_purge_rt(rt, fn, net); 1350 1351 inet6_rt_notify(RTM_DELROUTE, rt, info); 1352 rt6_release(rt); 1353 } 1354 1355 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1356 { 1357 struct net *net = info->nl_net; 1358 struct fib6_node *fn = rt->rt6i_node; 1359 struct rt6_info **rtp; 1360 1361 #if RT6_DEBUG >= 2 1362 if (rt->dst.obsolete > 0) { 1363 WARN_ON(fn != NULL); 1364 return -ENOENT; 1365 } 1366 #endif 1367 if (!fn || rt == net->ipv6.ip6_null_entry) 1368 return -ENOENT; 1369 1370 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1371 1372 if (!(rt->rt6i_flags & RTF_CACHE)) { 1373 struct fib6_node *pn = fn; 1374 #ifdef CONFIG_IPV6_SUBTREES 1375 /* clones of this route might be in another subtree */ 1376 if (rt->rt6i_src.plen) { 1377 while (!(pn->fn_flags & RTN_ROOT)) 1378 pn = pn->parent; 1379 pn = pn->parent; 1380 } 1381 #endif 1382 fib6_prune_clones(info->nl_net, pn); 1383 } 1384 1385 /* 1386 * Walk the leaf entries looking for ourself 1387 */ 1388 1389 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) { 1390 if (*rtp == rt) { 1391 fib6_del_route(fn, rtp, info); 1392 return 0; 1393 } 1394 } 1395 return -ENOENT; 1396 } 1397 1398 /* 1399 * Tree traversal function. 1400 * 1401 * Certainly, it is not interrupt safe. 1402 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1403 * It means, that we can modify tree during walking 1404 * and use this function for garbage collection, clone pruning, 1405 * cleaning tree when a device goes down etc. etc. 1406 * 1407 * It guarantees that every node will be traversed, 1408 * and that it will be traversed only once. 1409 * 1410 * Callback function w->func may return: 1411 * 0 -> continue walking. 1412 * positive value -> walking is suspended (used by tree dumps, 1413 * and probably by gc, if it will be split to several slices) 1414 * negative value -> terminate walking. 1415 * 1416 * The function itself returns: 1417 * 0 -> walk is complete. 1418 * >0 -> walk is incomplete (i.e. suspended) 1419 * <0 -> walk is terminated by an error. 1420 */ 1421 1422 static int fib6_walk_continue(struct fib6_walker *w) 1423 { 1424 struct fib6_node *fn, *pn; 1425 1426 for (;;) { 1427 fn = w->node; 1428 if (!fn) 1429 return 0; 1430 1431 if (w->prune && fn != w->root && 1432 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) { 1433 w->state = FWS_C; 1434 w->leaf = fn->leaf; 1435 } 1436 switch (w->state) { 1437 #ifdef CONFIG_IPV6_SUBTREES 1438 case FWS_S: 1439 if (FIB6_SUBTREE(fn)) { 1440 w->node = FIB6_SUBTREE(fn); 1441 continue; 1442 } 1443 w->state = FWS_L; 1444 #endif 1445 case FWS_L: 1446 if (fn->left) { 1447 w->node = fn->left; 1448 w->state = FWS_INIT; 1449 continue; 1450 } 1451 w->state = FWS_R; 1452 case FWS_R: 1453 if (fn->right) { 1454 w->node = fn->right; 1455 w->state = FWS_INIT; 1456 continue; 1457 } 1458 w->state = FWS_C; 1459 w->leaf = fn->leaf; 1460 case FWS_C: 1461 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 1462 int err; 1463 1464 if (w->skip) { 1465 w->skip--; 1466 goto skip; 1467 } 1468 1469 err = w->func(w); 1470 if (err) 1471 return err; 1472 1473 w->count++; 1474 continue; 1475 } 1476 skip: 1477 w->state = FWS_U; 1478 case FWS_U: 1479 if (fn == w->root) 1480 return 0; 1481 pn = fn->parent; 1482 w->node = pn; 1483 #ifdef CONFIG_IPV6_SUBTREES 1484 if (FIB6_SUBTREE(pn) == fn) { 1485 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1486 w->state = FWS_L; 1487 continue; 1488 } 1489 #endif 1490 if (pn->left == fn) { 1491 w->state = FWS_R; 1492 continue; 1493 } 1494 if (pn->right == fn) { 1495 w->state = FWS_C; 1496 w->leaf = w->node->leaf; 1497 continue; 1498 } 1499 #if RT6_DEBUG >= 2 1500 WARN_ON(1); 1501 #endif 1502 } 1503 } 1504 } 1505 1506 static int fib6_walk(struct fib6_walker *w) 1507 { 1508 int res; 1509 1510 w->state = FWS_INIT; 1511 w->node = w->root; 1512 1513 fib6_walker_link(w); 1514 res = fib6_walk_continue(w); 1515 if (res <= 0) 1516 fib6_walker_unlink(w); 1517 return res; 1518 } 1519 1520 static int fib6_clean_node(struct fib6_walker *w) 1521 { 1522 int res; 1523 struct rt6_info *rt; 1524 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 1525 struct nl_info info = { 1526 .nl_net = c->net, 1527 }; 1528 1529 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 1530 w->node->fn_sernum != c->sernum) 1531 w->node->fn_sernum = c->sernum; 1532 1533 if (!c->func) { 1534 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 1535 w->leaf = NULL; 1536 return 0; 1537 } 1538 1539 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) { 1540 res = c->func(rt, c->arg); 1541 if (res < 0) { 1542 w->leaf = rt; 1543 res = fib6_del(rt, &info); 1544 if (res) { 1545 #if RT6_DEBUG >= 2 1546 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 1547 __func__, rt, rt->rt6i_node, res); 1548 #endif 1549 continue; 1550 } 1551 return 0; 1552 } 1553 WARN_ON(res != 0); 1554 } 1555 w->leaf = rt; 1556 return 0; 1557 } 1558 1559 /* 1560 * Convenient frontend to tree walker. 1561 * 1562 * func is called on each route. 1563 * It may return -1 -> delete this route. 1564 * 0 -> continue walking 1565 * 1566 * prune==1 -> only immediate children of node (certainly, 1567 * ignoring pure split nodes) will be scanned. 1568 */ 1569 1570 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1571 int (*func)(struct rt6_info *, void *arg), 1572 bool prune, int sernum, void *arg) 1573 { 1574 struct fib6_cleaner c; 1575 1576 c.w.root = root; 1577 c.w.func = fib6_clean_node; 1578 c.w.prune = prune; 1579 c.w.count = 0; 1580 c.w.skip = 0; 1581 c.func = func; 1582 c.sernum = sernum; 1583 c.arg = arg; 1584 c.net = net; 1585 1586 fib6_walk(&c.w); 1587 } 1588 1589 static void __fib6_clean_all(struct net *net, 1590 int (*func)(struct rt6_info *, void *), 1591 int sernum, void *arg) 1592 { 1593 struct fib6_table *table; 1594 struct hlist_head *head; 1595 unsigned int h; 1596 1597 rcu_read_lock(); 1598 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1599 head = &net->ipv6.fib_table_hash[h]; 1600 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 1601 write_lock_bh(&table->tb6_lock); 1602 fib6_clean_tree(net, &table->tb6_root, 1603 func, false, sernum, arg); 1604 write_unlock_bh(&table->tb6_lock); 1605 } 1606 } 1607 rcu_read_unlock(); 1608 } 1609 1610 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *), 1611 void *arg) 1612 { 1613 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg); 1614 } 1615 1616 static int fib6_prune_clone(struct rt6_info *rt, void *arg) 1617 { 1618 if (rt->rt6i_flags & RTF_CACHE) { 1619 RT6_TRACE("pruning clone %p\n", rt); 1620 return -1; 1621 } 1622 1623 return 0; 1624 } 1625 1626 static void fib6_prune_clones(struct net *net, struct fib6_node *fn) 1627 { 1628 fib6_clean_tree(net, fn, fib6_prune_clone, true, 1629 FIB6_NO_SERNUM_CHANGE, NULL); 1630 } 1631 1632 static void fib6_flush_trees(struct net *net) 1633 { 1634 int new_sernum = fib6_new_sernum(net); 1635 1636 __fib6_clean_all(net, NULL, new_sernum, NULL); 1637 } 1638 1639 /* 1640 * Garbage collection 1641 */ 1642 1643 static struct fib6_gc_args 1644 { 1645 int timeout; 1646 int more; 1647 } gc_args; 1648 1649 static int fib6_age(struct rt6_info *rt, void *arg) 1650 { 1651 unsigned long now = jiffies; 1652 1653 /* 1654 * check addrconf expiration here. 1655 * Routes are expired even if they are in use. 1656 * 1657 * Also age clones. Note, that clones are aged out 1658 * only if they are not in use now. 1659 */ 1660 1661 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) { 1662 if (time_after(now, rt->dst.expires)) { 1663 RT6_TRACE("expiring %p\n", rt); 1664 return -1; 1665 } 1666 gc_args.more++; 1667 } else if (rt->rt6i_flags & RTF_CACHE) { 1668 if (atomic_read(&rt->dst.__refcnt) == 0 && 1669 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) { 1670 RT6_TRACE("aging clone %p\n", rt); 1671 return -1; 1672 } else if (rt->rt6i_flags & RTF_GATEWAY) { 1673 struct neighbour *neigh; 1674 __u8 neigh_flags = 0; 1675 1676 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway); 1677 if (neigh) { 1678 neigh_flags = neigh->flags; 1679 neigh_release(neigh); 1680 } 1681 if (!(neigh_flags & NTF_ROUTER)) { 1682 RT6_TRACE("purging route %p via non-router but gateway\n", 1683 rt); 1684 return -1; 1685 } 1686 } 1687 gc_args.more++; 1688 } 1689 1690 return 0; 1691 } 1692 1693 static DEFINE_SPINLOCK(fib6_gc_lock); 1694 1695 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 1696 { 1697 unsigned long now; 1698 1699 if (force) { 1700 spin_lock_bh(&fib6_gc_lock); 1701 } else if (!spin_trylock_bh(&fib6_gc_lock)) { 1702 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 1703 return; 1704 } 1705 gc_args.timeout = expires ? (int)expires : 1706 net->ipv6.sysctl.ip6_rt_gc_interval; 1707 1708 gc_args.more = icmp6_dst_gc(); 1709 1710 fib6_clean_all(net, fib6_age, NULL); 1711 now = jiffies; 1712 net->ipv6.ip6_rt_last_gc = now; 1713 1714 if (gc_args.more) 1715 mod_timer(&net->ipv6.ip6_fib_timer, 1716 round_jiffies(now 1717 + net->ipv6.sysctl.ip6_rt_gc_interval)); 1718 else 1719 del_timer(&net->ipv6.ip6_fib_timer); 1720 spin_unlock_bh(&fib6_gc_lock); 1721 } 1722 1723 static void fib6_gc_timer_cb(unsigned long arg) 1724 { 1725 fib6_run_gc(0, (struct net *)arg, true); 1726 } 1727 1728 static int __net_init fib6_net_init(struct net *net) 1729 { 1730 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 1731 1732 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net); 1733 1734 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 1735 if (!net->ipv6.rt6_stats) 1736 goto out_timer; 1737 1738 /* Avoid false sharing : Use at least a full cache line */ 1739 size = max_t(size_t, size, L1_CACHE_BYTES); 1740 1741 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 1742 if (!net->ipv6.fib_table_hash) 1743 goto out_rt6_stats; 1744 1745 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 1746 GFP_KERNEL); 1747 if (!net->ipv6.fib6_main_tbl) 1748 goto out_fib_table_hash; 1749 1750 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 1751 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1752 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 1753 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1754 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 1755 1756 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1757 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 1758 GFP_KERNEL); 1759 if (!net->ipv6.fib6_local_tbl) 1760 goto out_fib6_main_tbl; 1761 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 1762 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry; 1763 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 1764 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 1765 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 1766 #endif 1767 fib6_tables_init(net); 1768 1769 return 0; 1770 1771 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1772 out_fib6_main_tbl: 1773 kfree(net->ipv6.fib6_main_tbl); 1774 #endif 1775 out_fib_table_hash: 1776 kfree(net->ipv6.fib_table_hash); 1777 out_rt6_stats: 1778 kfree(net->ipv6.rt6_stats); 1779 out_timer: 1780 return -ENOMEM; 1781 } 1782 1783 static void fib6_net_exit(struct net *net) 1784 { 1785 rt6_ifdown(net, NULL); 1786 del_timer_sync(&net->ipv6.ip6_fib_timer); 1787 1788 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 1789 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers); 1790 kfree(net->ipv6.fib6_local_tbl); 1791 #endif 1792 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers); 1793 kfree(net->ipv6.fib6_main_tbl); 1794 kfree(net->ipv6.fib_table_hash); 1795 kfree(net->ipv6.rt6_stats); 1796 } 1797 1798 static struct pernet_operations fib6_net_ops = { 1799 .init = fib6_net_init, 1800 .exit = fib6_net_exit, 1801 }; 1802 1803 int __init fib6_init(void) 1804 { 1805 int ret = -ENOMEM; 1806 1807 fib6_node_kmem = kmem_cache_create("fib6_nodes", 1808 sizeof(struct fib6_node), 1809 0, SLAB_HWCACHE_ALIGN, 1810 NULL); 1811 if (!fib6_node_kmem) 1812 goto out; 1813 1814 ret = register_pernet_subsys(&fib6_net_ops); 1815 if (ret) 1816 goto out_kmem_cache_create; 1817 1818 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib, 1819 NULL); 1820 if (ret) 1821 goto out_unregister_subsys; 1822 1823 __fib6_flush_trees = fib6_flush_trees; 1824 out: 1825 return ret; 1826 1827 out_unregister_subsys: 1828 unregister_pernet_subsys(&fib6_net_ops); 1829 out_kmem_cache_create: 1830 kmem_cache_destroy(fib6_node_kmem); 1831 goto out; 1832 } 1833 1834 void fib6_gc_cleanup(void) 1835 { 1836 unregister_pernet_subsys(&fib6_net_ops); 1837 kmem_cache_destroy(fib6_node_kmem); 1838 } 1839 1840 #ifdef CONFIG_PROC_FS 1841 1842 struct ipv6_route_iter { 1843 struct seq_net_private p; 1844 struct fib6_walker w; 1845 loff_t skip; 1846 struct fib6_table *tbl; 1847 int sernum; 1848 }; 1849 1850 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 1851 { 1852 struct rt6_info *rt = v; 1853 struct ipv6_route_iter *iter = seq->private; 1854 1855 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen); 1856 1857 #ifdef CONFIG_IPV6_SUBTREES 1858 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen); 1859 #else 1860 seq_puts(seq, "00000000000000000000000000000000 00 "); 1861 #endif 1862 if (rt->rt6i_flags & RTF_GATEWAY) 1863 seq_printf(seq, "%pi6", &rt->rt6i_gateway); 1864 else 1865 seq_puts(seq, "00000000000000000000000000000000"); 1866 1867 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 1868 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt), 1869 rt->dst.__use, rt->rt6i_flags, 1870 rt->dst.dev ? rt->dst.dev->name : ""); 1871 iter->w.leaf = NULL; 1872 return 0; 1873 } 1874 1875 static int ipv6_route_yield(struct fib6_walker *w) 1876 { 1877 struct ipv6_route_iter *iter = w->args; 1878 1879 if (!iter->skip) 1880 return 1; 1881 1882 do { 1883 iter->w.leaf = iter->w.leaf->dst.rt6_next; 1884 iter->skip--; 1885 if (!iter->skip && iter->w.leaf) 1886 return 1; 1887 } while (iter->w.leaf); 1888 1889 return 0; 1890 } 1891 1892 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter) 1893 { 1894 memset(&iter->w, 0, sizeof(iter->w)); 1895 iter->w.func = ipv6_route_yield; 1896 iter->w.root = &iter->tbl->tb6_root; 1897 iter->w.state = FWS_INIT; 1898 iter->w.node = iter->w.root; 1899 iter->w.args = iter; 1900 iter->sernum = iter->w.root->fn_sernum; 1901 INIT_LIST_HEAD(&iter->w.lh); 1902 fib6_walker_link(&iter->w); 1903 } 1904 1905 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 1906 struct net *net) 1907 { 1908 unsigned int h; 1909 struct hlist_node *node; 1910 1911 if (tbl) { 1912 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 1913 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 1914 } else { 1915 h = 0; 1916 node = NULL; 1917 } 1918 1919 while (!node && h < FIB6_TABLE_HASHSZ) { 1920 node = rcu_dereference_bh( 1921 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 1922 } 1923 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 1924 } 1925 1926 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 1927 { 1928 if (iter->sernum != iter->w.root->fn_sernum) { 1929 iter->sernum = iter->w.root->fn_sernum; 1930 iter->w.state = FWS_INIT; 1931 iter->w.node = iter->w.root; 1932 WARN_ON(iter->w.skip); 1933 iter->w.skip = iter->w.count; 1934 } 1935 } 1936 1937 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1938 { 1939 int r; 1940 struct rt6_info *n; 1941 struct net *net = seq_file_net(seq); 1942 struct ipv6_route_iter *iter = seq->private; 1943 1944 if (!v) 1945 goto iter_table; 1946 1947 n = ((struct rt6_info *)v)->dst.rt6_next; 1948 if (n) { 1949 ++*pos; 1950 return n; 1951 } 1952 1953 iter_table: 1954 ipv6_route_check_sernum(iter); 1955 read_lock(&iter->tbl->tb6_lock); 1956 r = fib6_walk_continue(&iter->w); 1957 read_unlock(&iter->tbl->tb6_lock); 1958 if (r > 0) { 1959 if (v) 1960 ++*pos; 1961 return iter->w.leaf; 1962 } else if (r < 0) { 1963 fib6_walker_unlink(&iter->w); 1964 return NULL; 1965 } 1966 fib6_walker_unlink(&iter->w); 1967 1968 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 1969 if (!iter->tbl) 1970 return NULL; 1971 1972 ipv6_route_seq_setup_walk(iter); 1973 goto iter_table; 1974 } 1975 1976 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 1977 __acquires(RCU_BH) 1978 { 1979 struct net *net = seq_file_net(seq); 1980 struct ipv6_route_iter *iter = seq->private; 1981 1982 rcu_read_lock_bh(); 1983 iter->tbl = ipv6_route_seq_next_table(NULL, net); 1984 iter->skip = *pos; 1985 1986 if (iter->tbl) { 1987 ipv6_route_seq_setup_walk(iter); 1988 return ipv6_route_seq_next(seq, NULL, pos); 1989 } else { 1990 return NULL; 1991 } 1992 } 1993 1994 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 1995 { 1996 struct fib6_walker *w = &iter->w; 1997 return w->node && !(w->state == FWS_U && w->node == w->root); 1998 } 1999 2000 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2001 __releases(RCU_BH) 2002 { 2003 struct ipv6_route_iter *iter = seq->private; 2004 2005 if (ipv6_route_iter_active(iter)) 2006 fib6_walker_unlink(&iter->w); 2007 2008 rcu_read_unlock_bh(); 2009 } 2010 2011 static const struct seq_operations ipv6_route_seq_ops = { 2012 .start = ipv6_route_seq_start, 2013 .next = ipv6_route_seq_next, 2014 .stop = ipv6_route_seq_stop, 2015 .show = ipv6_route_seq_show 2016 }; 2017 2018 int ipv6_route_open(struct inode *inode, struct file *file) 2019 { 2020 return seq_open_net(inode, file, &ipv6_route_seq_ops, 2021 sizeof(struct ipv6_route_iter)); 2022 } 2023 2024 #endif /* CONFIG_PROC_FS */ 2025