xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39 
40 #define RT6_DEBUG 2
41 
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47 
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49 
50 struct fib6_cleaner {
51 	struct fib6_walker w;
52 	struct net *net;
53 	int (*func)(struct rt6_info *, void *arg);
54 	int sernum;
55 	void *arg;
56 };
57 
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63 
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69 
70 /*
71  *	A routing update causes an increase of the serial number on the
72  *	affected subtree. This allows for cached routes to be asynchronously
73  *	tested when modifications are made to the destination cache as a
74  *	result of redirects, path MTU changes, etc.
75  */
76 
77 static void fib6_gc_timer_cb(unsigned long arg);
78 
79 #define FOR_WALKERS(net, w) \
80 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81 
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 	write_lock_bh(&net->ipv6.fib6_walker_lock);
85 	list_add(&w->lh, &net->ipv6.fib6_walkers);
86 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88 
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 	write_lock_bh(&net->ipv6.fib6_walker_lock);
92 	list_del(&w->lh);
93 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95 
96 static int fib6_new_sernum(struct net *net)
97 {
98 	int new, old;
99 
100 	do {
101 		old = atomic_read(&net->ipv6.fib6_sernum);
102 		new = old < INT_MAX ? old + 1 : 1;
103 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 				old, new) != old);
105 	return new;
106 }
107 
108 enum {
109 	FIB6_NO_SERNUM_CHANGE = 0,
110 };
111 
112 /*
113  *	Auxiliary address test functions for the radix tree.
114  *
115  *	These assume a 32bit processor (although it will work on
116  *	64bit processors)
117  */
118 
119 /*
120  *	test bit
121  */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE	0
126 #endif
127 
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 	const __be32 *addr = token;
131 	/*
132 	 * Here,
133 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 	 * is optimized version of
135 	 *	htonl(1 << ((~fn_bit)&0x1F))
136 	 * See include/asm-generic/bitops/le.h.
137 	 */
138 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 	       addr[fn_bit >> 5];
140 }
141 
142 static struct fib6_node *node_alloc(void)
143 {
144 	struct fib6_node *fn;
145 
146 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147 
148 	return fn;
149 }
150 
151 static void node_free(struct fib6_node *fn)
152 {
153 	kmem_cache_free(fib6_node_kmem, fn);
154 }
155 
156 static void rt6_rcu_free(struct rt6_info *rt)
157 {
158 	call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159 }
160 
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162 {
163 	int cpu;
164 
165 	if (!non_pcpu_rt->rt6i_pcpu)
166 		return;
167 
168 	for_each_possible_cpu(cpu) {
169 		struct rt6_info **ppcpu_rt;
170 		struct rt6_info *pcpu_rt;
171 
172 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 		pcpu_rt = *ppcpu_rt;
174 		if (pcpu_rt) {
175 			rt6_rcu_free(pcpu_rt);
176 			*ppcpu_rt = NULL;
177 		}
178 	}
179 
180 	free_percpu(non_pcpu_rt->rt6i_pcpu);
181 	non_pcpu_rt->rt6i_pcpu = NULL;
182 }
183 
184 static void rt6_release(struct rt6_info *rt)
185 {
186 	if (atomic_dec_and_test(&rt->rt6i_ref)) {
187 		rt6_free_pcpu(rt);
188 		rt6_rcu_free(rt);
189 	}
190 }
191 
192 static void fib6_link_table(struct net *net, struct fib6_table *tb)
193 {
194 	unsigned int h;
195 
196 	/*
197 	 * Initialize table lock at a single place to give lockdep a key,
198 	 * tables aren't visible prior to being linked to the list.
199 	 */
200 	rwlock_init(&tb->tb6_lock);
201 
202 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
203 
204 	/*
205 	 * No protection necessary, this is the only list mutatation
206 	 * operation, tables never disappear once they exist.
207 	 */
208 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
209 }
210 
211 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
212 
213 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
214 {
215 	struct fib6_table *table;
216 
217 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
218 	if (table) {
219 		table->tb6_id = id;
220 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
221 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
222 		inet_peer_base_init(&table->tb6_peers);
223 	}
224 
225 	return table;
226 }
227 
228 struct fib6_table *fib6_new_table(struct net *net, u32 id)
229 {
230 	struct fib6_table *tb;
231 
232 	if (id == 0)
233 		id = RT6_TABLE_MAIN;
234 	tb = fib6_get_table(net, id);
235 	if (tb)
236 		return tb;
237 
238 	tb = fib6_alloc_table(net, id);
239 	if (tb)
240 		fib6_link_table(net, tb);
241 
242 	return tb;
243 }
244 EXPORT_SYMBOL_GPL(fib6_new_table);
245 
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 	struct fib6_table *tb;
249 	struct hlist_head *head;
250 	unsigned int h;
251 
252 	if (id == 0)
253 		id = RT6_TABLE_MAIN;
254 	h = id & (FIB6_TABLE_HASHSZ - 1);
255 	rcu_read_lock();
256 	head = &net->ipv6.fib_table_hash[h];
257 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 		if (tb->tb6_id == id) {
259 			rcu_read_unlock();
260 			return tb;
261 		}
262 	}
263 	rcu_read_unlock();
264 
265 	return NULL;
266 }
267 EXPORT_SYMBOL_GPL(fib6_get_table);
268 
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
273 }
274 #else
275 
276 struct fib6_table *fib6_new_table(struct net *net, u32 id)
277 {
278 	return fib6_get_table(net, id);
279 }
280 
281 struct fib6_table *fib6_get_table(struct net *net, u32 id)
282 {
283 	  return net->ipv6.fib6_main_tbl;
284 }
285 
286 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287 				   int flags, pol_lookup_t lookup)
288 {
289 	struct rt6_info *rt;
290 
291 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292 	if (rt->rt6i_flags & RTF_REJECT &&
293 	    rt->dst.error == -EAGAIN) {
294 		ip6_rt_put(rt);
295 		rt = net->ipv6.ip6_null_entry;
296 		dst_hold(&rt->dst);
297 	}
298 
299 	return &rt->dst;
300 }
301 
302 static void __net_init fib6_tables_init(struct net *net)
303 {
304 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
305 }
306 
307 #endif
308 
309 static int fib6_dump_node(struct fib6_walker *w)
310 {
311 	int res;
312 	struct rt6_info *rt;
313 
314 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315 		res = rt6_dump_route(rt, w->args);
316 		if (res < 0) {
317 			/* Frame is full, suspend walking */
318 			w->leaf = rt;
319 			return 1;
320 		}
321 	}
322 	w->leaf = NULL;
323 	return 0;
324 }
325 
326 static void fib6_dump_end(struct netlink_callback *cb)
327 {
328 	struct net *net = sock_net(cb->skb->sk);
329 	struct fib6_walker *w = (void *)cb->args[2];
330 
331 	if (w) {
332 		if (cb->args[4]) {
333 			cb->args[4] = 0;
334 			fib6_walker_unlink(net, w);
335 		}
336 		cb->args[2] = 0;
337 		kfree(w);
338 	}
339 	cb->done = (void *)cb->args[3];
340 	cb->args[1] = 3;
341 }
342 
343 static int fib6_dump_done(struct netlink_callback *cb)
344 {
345 	fib6_dump_end(cb);
346 	return cb->done ? cb->done(cb) : 0;
347 }
348 
349 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
350 			   struct netlink_callback *cb)
351 {
352 	struct net *net = sock_net(skb->sk);
353 	struct fib6_walker *w;
354 	int res;
355 
356 	w = (void *)cb->args[2];
357 	w->root = &table->tb6_root;
358 
359 	if (cb->args[4] == 0) {
360 		w->count = 0;
361 		w->skip = 0;
362 
363 		read_lock_bh(&table->tb6_lock);
364 		res = fib6_walk(net, w);
365 		read_unlock_bh(&table->tb6_lock);
366 		if (res > 0) {
367 			cb->args[4] = 1;
368 			cb->args[5] = w->root->fn_sernum;
369 		}
370 	} else {
371 		if (cb->args[5] != w->root->fn_sernum) {
372 			/* Begin at the root if the tree changed */
373 			cb->args[5] = w->root->fn_sernum;
374 			w->state = FWS_INIT;
375 			w->node = w->root;
376 			w->skip = w->count;
377 		} else
378 			w->skip = 0;
379 
380 		read_lock_bh(&table->tb6_lock);
381 		res = fib6_walk_continue(w);
382 		read_unlock_bh(&table->tb6_lock);
383 		if (res <= 0) {
384 			fib6_walker_unlink(net, w);
385 			cb->args[4] = 0;
386 		}
387 	}
388 
389 	return res;
390 }
391 
392 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
393 {
394 	struct net *net = sock_net(skb->sk);
395 	unsigned int h, s_h;
396 	unsigned int e = 0, s_e;
397 	struct rt6_rtnl_dump_arg arg;
398 	struct fib6_walker *w;
399 	struct fib6_table *tb;
400 	struct hlist_head *head;
401 	int res = 0;
402 
403 	s_h = cb->args[0];
404 	s_e = cb->args[1];
405 
406 	w = (void *)cb->args[2];
407 	if (!w) {
408 		/* New dump:
409 		 *
410 		 * 1. hook callback destructor.
411 		 */
412 		cb->args[3] = (long)cb->done;
413 		cb->done = fib6_dump_done;
414 
415 		/*
416 		 * 2. allocate and initialize walker.
417 		 */
418 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
419 		if (!w)
420 			return -ENOMEM;
421 		w->func = fib6_dump_node;
422 		cb->args[2] = (long)w;
423 	}
424 
425 	arg.skb = skb;
426 	arg.cb = cb;
427 	arg.net = net;
428 	w->args = &arg;
429 
430 	rcu_read_lock();
431 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
432 		e = 0;
433 		head = &net->ipv6.fib_table_hash[h];
434 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
435 			if (e < s_e)
436 				goto next;
437 			res = fib6_dump_table(tb, skb, cb);
438 			if (res != 0)
439 				goto out;
440 next:
441 			e++;
442 		}
443 	}
444 out:
445 	rcu_read_unlock();
446 	cb->args[1] = e;
447 	cb->args[0] = h;
448 
449 	res = res < 0 ? res : skb->len;
450 	if (res <= 0)
451 		fib6_dump_end(cb);
452 	return res;
453 }
454 
455 /*
456  *	Routing Table
457  *
458  *	return the appropriate node for a routing tree "add" operation
459  *	by either creating and inserting or by returning an existing
460  *	node.
461  */
462 
463 static struct fib6_node *fib6_add_1(struct fib6_node *root,
464 				     struct in6_addr *addr, int plen,
465 				     int offset, int allow_create,
466 				     int replace_required, int sernum)
467 {
468 	struct fib6_node *fn, *in, *ln;
469 	struct fib6_node *pn = NULL;
470 	struct rt6key *key;
471 	int	bit;
472 	__be32	dir = 0;
473 
474 	RT6_TRACE("fib6_add_1\n");
475 
476 	/* insert node in tree */
477 
478 	fn = root;
479 
480 	do {
481 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
482 
483 		/*
484 		 *	Prefix match
485 		 */
486 		if (plen < fn->fn_bit ||
487 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
488 			if (!allow_create) {
489 				if (replace_required) {
490 					pr_warn("Can't replace route, no match found\n");
491 					return ERR_PTR(-ENOENT);
492 				}
493 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
494 			}
495 			goto insert_above;
496 		}
497 
498 		/*
499 		 *	Exact match ?
500 		 */
501 
502 		if (plen == fn->fn_bit) {
503 			/* clean up an intermediate node */
504 			if (!(fn->fn_flags & RTN_RTINFO)) {
505 				rt6_release(fn->leaf);
506 				fn->leaf = NULL;
507 			}
508 
509 			fn->fn_sernum = sernum;
510 
511 			return fn;
512 		}
513 
514 		/*
515 		 *	We have more bits to go
516 		 */
517 
518 		/* Try to walk down on tree. */
519 		fn->fn_sernum = sernum;
520 		dir = addr_bit_set(addr, fn->fn_bit);
521 		pn = fn;
522 		fn = dir ? fn->right : fn->left;
523 	} while (fn);
524 
525 	if (!allow_create) {
526 		/* We should not create new node because
527 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
528 		 * I assume it is safe to require NLM_F_CREATE when
529 		 * REPLACE flag is used! Later we may want to remove the
530 		 * check for replace_required, because according
531 		 * to netlink specification, NLM_F_CREATE
532 		 * MUST be specified if new route is created.
533 		 * That would keep IPv6 consistent with IPv4
534 		 */
535 		if (replace_required) {
536 			pr_warn("Can't replace route, no match found\n");
537 			return ERR_PTR(-ENOENT);
538 		}
539 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
540 	}
541 	/*
542 	 *	We walked to the bottom of tree.
543 	 *	Create new leaf node without children.
544 	 */
545 
546 	ln = node_alloc();
547 
548 	if (!ln)
549 		return ERR_PTR(-ENOMEM);
550 	ln->fn_bit = plen;
551 
552 	ln->parent = pn;
553 	ln->fn_sernum = sernum;
554 
555 	if (dir)
556 		pn->right = ln;
557 	else
558 		pn->left  = ln;
559 
560 	return ln;
561 
562 
563 insert_above:
564 	/*
565 	 * split since we don't have a common prefix anymore or
566 	 * we have a less significant route.
567 	 * we've to insert an intermediate node on the list
568 	 * this new node will point to the one we need to create
569 	 * and the current
570 	 */
571 
572 	pn = fn->parent;
573 
574 	/* find 1st bit in difference between the 2 addrs.
575 
576 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
577 	   but if it is >= plen, the value is ignored in any case.
578 	 */
579 
580 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
581 
582 	/*
583 	 *		(intermediate)[in]
584 	 *	          /	   \
585 	 *	(new leaf node)[ln] (old node)[fn]
586 	 */
587 	if (plen > bit) {
588 		in = node_alloc();
589 		ln = node_alloc();
590 
591 		if (!in || !ln) {
592 			if (in)
593 				node_free(in);
594 			if (ln)
595 				node_free(ln);
596 			return ERR_PTR(-ENOMEM);
597 		}
598 
599 		/*
600 		 * new intermediate node.
601 		 * RTN_RTINFO will
602 		 * be off since that an address that chooses one of
603 		 * the branches would not match less specific routes
604 		 * in the other branch
605 		 */
606 
607 		in->fn_bit = bit;
608 
609 		in->parent = pn;
610 		in->leaf = fn->leaf;
611 		atomic_inc(&in->leaf->rt6i_ref);
612 
613 		in->fn_sernum = sernum;
614 
615 		/* update parent pointer */
616 		if (dir)
617 			pn->right = in;
618 		else
619 			pn->left  = in;
620 
621 		ln->fn_bit = plen;
622 
623 		ln->parent = in;
624 		fn->parent = in;
625 
626 		ln->fn_sernum = sernum;
627 
628 		if (addr_bit_set(addr, bit)) {
629 			in->right = ln;
630 			in->left  = fn;
631 		} else {
632 			in->left  = ln;
633 			in->right = fn;
634 		}
635 	} else { /* plen <= bit */
636 
637 		/*
638 		 *		(new leaf node)[ln]
639 		 *	          /	   \
640 		 *	     (old node)[fn] NULL
641 		 */
642 
643 		ln = node_alloc();
644 
645 		if (!ln)
646 			return ERR_PTR(-ENOMEM);
647 
648 		ln->fn_bit = plen;
649 
650 		ln->parent = pn;
651 
652 		ln->fn_sernum = sernum;
653 
654 		if (dir)
655 			pn->right = ln;
656 		else
657 			pn->left  = ln;
658 
659 		if (addr_bit_set(&key->addr, plen))
660 			ln->right = fn;
661 		else
662 			ln->left  = fn;
663 
664 		fn->parent = ln;
665 	}
666 	return ln;
667 }
668 
669 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
670 {
671 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
672 	       RTF_GATEWAY;
673 }
674 
675 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
676 {
677 	int i;
678 
679 	for (i = 0; i < RTAX_MAX; i++) {
680 		if (test_bit(i, mxc->mx_valid))
681 			mp[i] = mxc->mx[i];
682 	}
683 }
684 
685 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
686 {
687 	if (!mxc->mx)
688 		return 0;
689 
690 	if (dst->flags & DST_HOST) {
691 		u32 *mp = dst_metrics_write_ptr(dst);
692 
693 		if (unlikely(!mp))
694 			return -ENOMEM;
695 
696 		fib6_copy_metrics(mp, mxc);
697 	} else {
698 		dst_init_metrics(dst, mxc->mx, false);
699 
700 		/* We've stolen mx now. */
701 		mxc->mx = NULL;
702 	}
703 
704 	return 0;
705 }
706 
707 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
708 			  struct net *net)
709 {
710 	if (atomic_read(&rt->rt6i_ref) != 1) {
711 		/* This route is used as dummy address holder in some split
712 		 * nodes. It is not leaked, but it still holds other resources,
713 		 * which must be released in time. So, scan ascendant nodes
714 		 * and replace dummy references to this route with references
715 		 * to still alive ones.
716 		 */
717 		while (fn) {
718 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
719 				fn->leaf = fib6_find_prefix(net, fn);
720 				atomic_inc(&fn->leaf->rt6i_ref);
721 				rt6_release(rt);
722 			}
723 			fn = fn->parent;
724 		}
725 		/* No more references are possible at this point. */
726 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
727 	}
728 }
729 
730 /*
731  *	Insert routing information in a node.
732  */
733 
734 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
735 			    struct nl_info *info, struct mx6_config *mxc)
736 {
737 	struct rt6_info *iter = NULL;
738 	struct rt6_info **ins;
739 	struct rt6_info **fallback_ins = NULL;
740 	int replace = (info->nlh &&
741 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
742 	int add = (!info->nlh ||
743 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
744 	int found = 0;
745 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
746 	u16 nlflags = NLM_F_EXCL;
747 	int err;
748 
749 	ins = &fn->leaf;
750 
751 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
752 		/*
753 		 *	Search for duplicates
754 		 */
755 
756 		if (iter->rt6i_metric == rt->rt6i_metric) {
757 			/*
758 			 *	Same priority level
759 			 */
760 			if (info->nlh &&
761 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
762 				return -EEXIST;
763 
764 			nlflags &= ~NLM_F_EXCL;
765 			if (replace) {
766 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
767 					found++;
768 					break;
769 				}
770 				if (rt_can_ecmp)
771 					fallback_ins = fallback_ins ?: ins;
772 				goto next_iter;
773 			}
774 
775 			if (iter->dst.dev == rt->dst.dev &&
776 			    iter->rt6i_idev == rt->rt6i_idev &&
777 			    ipv6_addr_equal(&iter->rt6i_gateway,
778 					    &rt->rt6i_gateway)) {
779 				if (rt->rt6i_nsiblings)
780 					rt->rt6i_nsiblings = 0;
781 				if (!(iter->rt6i_flags & RTF_EXPIRES))
782 					return -EEXIST;
783 				if (!(rt->rt6i_flags & RTF_EXPIRES))
784 					rt6_clean_expires(iter);
785 				else
786 					rt6_set_expires(iter, rt->dst.expires);
787 				iter->rt6i_pmtu = rt->rt6i_pmtu;
788 				return -EEXIST;
789 			}
790 			/* If we have the same destination and the same metric,
791 			 * but not the same gateway, then the route we try to
792 			 * add is sibling to this route, increment our counter
793 			 * of siblings, and later we will add our route to the
794 			 * list.
795 			 * Only static routes (which don't have flag
796 			 * RTF_EXPIRES) are used for ECMPv6.
797 			 *
798 			 * To avoid long list, we only had siblings if the
799 			 * route have a gateway.
800 			 */
801 			if (rt_can_ecmp &&
802 			    rt6_qualify_for_ecmp(iter))
803 				rt->rt6i_nsiblings++;
804 		}
805 
806 		if (iter->rt6i_metric > rt->rt6i_metric)
807 			break;
808 
809 next_iter:
810 		ins = &iter->dst.rt6_next;
811 	}
812 
813 	if (fallback_ins && !found) {
814 		/* No ECMP-able route found, replace first non-ECMP one */
815 		ins = fallback_ins;
816 		iter = *ins;
817 		found++;
818 	}
819 
820 	/* Reset round-robin state, if necessary */
821 	if (ins == &fn->leaf)
822 		fn->rr_ptr = NULL;
823 
824 	/* Link this route to others same route. */
825 	if (rt->rt6i_nsiblings) {
826 		unsigned int rt6i_nsiblings;
827 		struct rt6_info *sibling, *temp_sibling;
828 
829 		/* Find the first route that have the same metric */
830 		sibling = fn->leaf;
831 		while (sibling) {
832 			if (sibling->rt6i_metric == rt->rt6i_metric &&
833 			    rt6_qualify_for_ecmp(sibling)) {
834 				list_add_tail(&rt->rt6i_siblings,
835 					      &sibling->rt6i_siblings);
836 				break;
837 			}
838 			sibling = sibling->dst.rt6_next;
839 		}
840 		/* For each sibling in the list, increment the counter of
841 		 * siblings. BUG() if counters does not match, list of siblings
842 		 * is broken!
843 		 */
844 		rt6i_nsiblings = 0;
845 		list_for_each_entry_safe(sibling, temp_sibling,
846 					 &rt->rt6i_siblings, rt6i_siblings) {
847 			sibling->rt6i_nsiblings++;
848 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
849 			rt6i_nsiblings++;
850 		}
851 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
852 	}
853 
854 	/*
855 	 *	insert node
856 	 */
857 	if (!replace) {
858 		if (!add)
859 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
860 
861 add:
862 		nlflags |= NLM_F_CREATE;
863 		err = fib6_commit_metrics(&rt->dst, mxc);
864 		if (err)
865 			return err;
866 
867 		rt->dst.rt6_next = iter;
868 		*ins = rt;
869 		rt->rt6i_node = fn;
870 		atomic_inc(&rt->rt6i_ref);
871 		inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
872 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
873 
874 		if (!(fn->fn_flags & RTN_RTINFO)) {
875 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
876 			fn->fn_flags |= RTN_RTINFO;
877 		}
878 
879 	} else {
880 		int nsiblings;
881 
882 		if (!found) {
883 			if (add)
884 				goto add;
885 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
886 			return -ENOENT;
887 		}
888 
889 		err = fib6_commit_metrics(&rt->dst, mxc);
890 		if (err)
891 			return err;
892 
893 		*ins = rt;
894 		rt->rt6i_node = fn;
895 		rt->dst.rt6_next = iter->dst.rt6_next;
896 		atomic_inc(&rt->rt6i_ref);
897 		inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
898 		if (!(fn->fn_flags & RTN_RTINFO)) {
899 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
900 			fn->fn_flags |= RTN_RTINFO;
901 		}
902 		nsiblings = iter->rt6i_nsiblings;
903 		fib6_purge_rt(iter, fn, info->nl_net);
904 		rt6_release(iter);
905 
906 		if (nsiblings) {
907 			/* Replacing an ECMP route, remove all siblings */
908 			ins = &rt->dst.rt6_next;
909 			iter = *ins;
910 			while (iter) {
911 				if (rt6_qualify_for_ecmp(iter)) {
912 					*ins = iter->dst.rt6_next;
913 					fib6_purge_rt(iter, fn, info->nl_net);
914 					rt6_release(iter);
915 					nsiblings--;
916 				} else {
917 					ins = &iter->dst.rt6_next;
918 				}
919 				iter = *ins;
920 			}
921 			WARN_ON(nsiblings != 0);
922 		}
923 	}
924 
925 	return 0;
926 }
927 
928 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
929 {
930 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
931 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
932 		mod_timer(&net->ipv6.ip6_fib_timer,
933 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
934 }
935 
936 void fib6_force_start_gc(struct net *net)
937 {
938 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
939 		mod_timer(&net->ipv6.ip6_fib_timer,
940 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
941 }
942 
943 /*
944  *	Add routing information to the routing tree.
945  *	<destination addr>/<source addr>
946  *	with source addr info in sub-trees
947  */
948 
949 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
950 	     struct nl_info *info, struct mx6_config *mxc)
951 {
952 	struct fib6_node *fn, *pn = NULL;
953 	int err = -ENOMEM;
954 	int allow_create = 1;
955 	int replace_required = 0;
956 	int sernum = fib6_new_sernum(info->nl_net);
957 
958 	if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
959 			 !atomic_read(&rt->dst.__refcnt)))
960 		return -EINVAL;
961 
962 	if (info->nlh) {
963 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
964 			allow_create = 0;
965 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
966 			replace_required = 1;
967 	}
968 	if (!allow_create && !replace_required)
969 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
970 
971 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
972 			offsetof(struct rt6_info, rt6i_dst), allow_create,
973 			replace_required, sernum);
974 	if (IS_ERR(fn)) {
975 		err = PTR_ERR(fn);
976 		fn = NULL;
977 		goto out;
978 	}
979 
980 	pn = fn;
981 
982 #ifdef CONFIG_IPV6_SUBTREES
983 	if (rt->rt6i_src.plen) {
984 		struct fib6_node *sn;
985 
986 		if (!fn->subtree) {
987 			struct fib6_node *sfn;
988 
989 			/*
990 			 * Create subtree.
991 			 *
992 			 *		fn[main tree]
993 			 *		|
994 			 *		sfn[subtree root]
995 			 *		   \
996 			 *		    sn[new leaf node]
997 			 */
998 
999 			/* Create subtree root node */
1000 			sfn = node_alloc();
1001 			if (!sfn)
1002 				goto st_failure;
1003 
1004 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1005 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1006 			sfn->fn_flags = RTN_ROOT;
1007 			sfn->fn_sernum = sernum;
1008 
1009 			/* Now add the first leaf node to new subtree */
1010 
1011 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1012 					rt->rt6i_src.plen,
1013 					offsetof(struct rt6_info, rt6i_src),
1014 					allow_create, replace_required, sernum);
1015 
1016 			if (IS_ERR(sn)) {
1017 				/* If it is failed, discard just allocated
1018 				   root, and then (in st_failure) stale node
1019 				   in main tree.
1020 				 */
1021 				node_free(sfn);
1022 				err = PTR_ERR(sn);
1023 				goto st_failure;
1024 			}
1025 
1026 			/* Now link new subtree to main tree */
1027 			sfn->parent = fn;
1028 			fn->subtree = sfn;
1029 		} else {
1030 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1031 					rt->rt6i_src.plen,
1032 					offsetof(struct rt6_info, rt6i_src),
1033 					allow_create, replace_required, sernum);
1034 
1035 			if (IS_ERR(sn)) {
1036 				err = PTR_ERR(sn);
1037 				goto st_failure;
1038 			}
1039 		}
1040 
1041 		if (!fn->leaf) {
1042 			fn->leaf = rt;
1043 			atomic_inc(&rt->rt6i_ref);
1044 		}
1045 		fn = sn;
1046 	}
1047 #endif
1048 
1049 	err = fib6_add_rt2node(fn, rt, info, mxc);
1050 	if (!err) {
1051 		fib6_start_gc(info->nl_net, rt);
1052 		if (!(rt->rt6i_flags & RTF_CACHE))
1053 			fib6_prune_clones(info->nl_net, pn);
1054 		rt->dst.flags &= ~DST_NOCACHE;
1055 	}
1056 
1057 out:
1058 	if (err) {
1059 #ifdef CONFIG_IPV6_SUBTREES
1060 		/*
1061 		 * If fib6_add_1 has cleared the old leaf pointer in the
1062 		 * super-tree leaf node we have to find a new one for it.
1063 		 */
1064 		if (pn != fn && pn->leaf == rt) {
1065 			pn->leaf = NULL;
1066 			atomic_dec(&rt->rt6i_ref);
1067 		}
1068 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1069 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
1070 #if RT6_DEBUG >= 2
1071 			if (!pn->leaf) {
1072 				WARN_ON(pn->leaf == NULL);
1073 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1074 			}
1075 #endif
1076 			atomic_inc(&pn->leaf->rt6i_ref);
1077 		}
1078 #endif
1079 		if (!(rt->dst.flags & DST_NOCACHE))
1080 			dst_free(&rt->dst);
1081 	}
1082 	return err;
1083 
1084 #ifdef CONFIG_IPV6_SUBTREES
1085 	/* Subtree creation failed, probably main tree node
1086 	   is orphan. If it is, shoot it.
1087 	 */
1088 st_failure:
1089 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1090 		fib6_repair_tree(info->nl_net, fn);
1091 	if (!(rt->dst.flags & DST_NOCACHE))
1092 		dst_free(&rt->dst);
1093 	return err;
1094 #endif
1095 }
1096 
1097 /*
1098  *	Routing tree lookup
1099  *
1100  */
1101 
1102 struct lookup_args {
1103 	int			offset;		/* key offset on rt6_info	*/
1104 	const struct in6_addr	*addr;		/* search key			*/
1105 };
1106 
1107 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1108 				       struct lookup_args *args)
1109 {
1110 	struct fib6_node *fn;
1111 	__be32 dir;
1112 
1113 	if (unlikely(args->offset == 0))
1114 		return NULL;
1115 
1116 	/*
1117 	 *	Descend on a tree
1118 	 */
1119 
1120 	fn = root;
1121 
1122 	for (;;) {
1123 		struct fib6_node *next;
1124 
1125 		dir = addr_bit_set(args->addr, fn->fn_bit);
1126 
1127 		next = dir ? fn->right : fn->left;
1128 
1129 		if (next) {
1130 			fn = next;
1131 			continue;
1132 		}
1133 		break;
1134 	}
1135 
1136 	while (fn) {
1137 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1138 			struct rt6key *key;
1139 
1140 			key = (struct rt6key *) ((u8 *) fn->leaf +
1141 						 args->offset);
1142 
1143 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1144 #ifdef CONFIG_IPV6_SUBTREES
1145 				if (fn->subtree) {
1146 					struct fib6_node *sfn;
1147 					sfn = fib6_lookup_1(fn->subtree,
1148 							    args + 1);
1149 					if (!sfn)
1150 						goto backtrack;
1151 					fn = sfn;
1152 				}
1153 #endif
1154 				if (fn->fn_flags & RTN_RTINFO)
1155 					return fn;
1156 			}
1157 		}
1158 #ifdef CONFIG_IPV6_SUBTREES
1159 backtrack:
1160 #endif
1161 		if (fn->fn_flags & RTN_ROOT)
1162 			break;
1163 
1164 		fn = fn->parent;
1165 	}
1166 
1167 	return NULL;
1168 }
1169 
1170 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1171 			      const struct in6_addr *saddr)
1172 {
1173 	struct fib6_node *fn;
1174 	struct lookup_args args[] = {
1175 		{
1176 			.offset = offsetof(struct rt6_info, rt6i_dst),
1177 			.addr = daddr,
1178 		},
1179 #ifdef CONFIG_IPV6_SUBTREES
1180 		{
1181 			.offset = offsetof(struct rt6_info, rt6i_src),
1182 			.addr = saddr,
1183 		},
1184 #endif
1185 		{
1186 			.offset = 0,	/* sentinel */
1187 		}
1188 	};
1189 
1190 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1191 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1192 		fn = root;
1193 
1194 	return fn;
1195 }
1196 
1197 /*
1198  *	Get node with specified destination prefix (and source prefix,
1199  *	if subtrees are used)
1200  */
1201 
1202 
1203 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1204 				       const struct in6_addr *addr,
1205 				       int plen, int offset)
1206 {
1207 	struct fib6_node *fn;
1208 
1209 	for (fn = root; fn ; ) {
1210 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1211 
1212 		/*
1213 		 *	Prefix match
1214 		 */
1215 		if (plen < fn->fn_bit ||
1216 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1217 			return NULL;
1218 
1219 		if (plen == fn->fn_bit)
1220 			return fn;
1221 
1222 		/*
1223 		 *	We have more bits to go
1224 		 */
1225 		if (addr_bit_set(addr, fn->fn_bit))
1226 			fn = fn->right;
1227 		else
1228 			fn = fn->left;
1229 	}
1230 	return NULL;
1231 }
1232 
1233 struct fib6_node *fib6_locate(struct fib6_node *root,
1234 			      const struct in6_addr *daddr, int dst_len,
1235 			      const struct in6_addr *saddr, int src_len)
1236 {
1237 	struct fib6_node *fn;
1238 
1239 	fn = fib6_locate_1(root, daddr, dst_len,
1240 			   offsetof(struct rt6_info, rt6i_dst));
1241 
1242 #ifdef CONFIG_IPV6_SUBTREES
1243 	if (src_len) {
1244 		WARN_ON(saddr == NULL);
1245 		if (fn && fn->subtree)
1246 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1247 					   offsetof(struct rt6_info, rt6i_src));
1248 	}
1249 #endif
1250 
1251 	if (fn && fn->fn_flags & RTN_RTINFO)
1252 		return fn;
1253 
1254 	return NULL;
1255 }
1256 
1257 
1258 /*
1259  *	Deletion
1260  *
1261  */
1262 
1263 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1264 {
1265 	if (fn->fn_flags & RTN_ROOT)
1266 		return net->ipv6.ip6_null_entry;
1267 
1268 	while (fn) {
1269 		if (fn->left)
1270 			return fn->left->leaf;
1271 		if (fn->right)
1272 			return fn->right->leaf;
1273 
1274 		fn = FIB6_SUBTREE(fn);
1275 	}
1276 	return NULL;
1277 }
1278 
1279 /*
1280  *	Called to trim the tree of intermediate nodes when possible. "fn"
1281  *	is the node we want to try and remove.
1282  */
1283 
1284 static struct fib6_node *fib6_repair_tree(struct net *net,
1285 					   struct fib6_node *fn)
1286 {
1287 	int children;
1288 	int nstate;
1289 	struct fib6_node *child, *pn;
1290 	struct fib6_walker *w;
1291 	int iter = 0;
1292 
1293 	for (;;) {
1294 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1295 		iter++;
1296 
1297 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1298 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1299 		WARN_ON(fn->leaf);
1300 
1301 		children = 0;
1302 		child = NULL;
1303 		if (fn->right)
1304 			child = fn->right, children |= 1;
1305 		if (fn->left)
1306 			child = fn->left, children |= 2;
1307 
1308 		if (children == 3 || FIB6_SUBTREE(fn)
1309 #ifdef CONFIG_IPV6_SUBTREES
1310 		    /* Subtree root (i.e. fn) may have one child */
1311 		    || (children && fn->fn_flags & RTN_ROOT)
1312 #endif
1313 		    ) {
1314 			fn->leaf = fib6_find_prefix(net, fn);
1315 #if RT6_DEBUG >= 2
1316 			if (!fn->leaf) {
1317 				WARN_ON(!fn->leaf);
1318 				fn->leaf = net->ipv6.ip6_null_entry;
1319 			}
1320 #endif
1321 			atomic_inc(&fn->leaf->rt6i_ref);
1322 			return fn->parent;
1323 		}
1324 
1325 		pn = fn->parent;
1326 #ifdef CONFIG_IPV6_SUBTREES
1327 		if (FIB6_SUBTREE(pn) == fn) {
1328 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1329 			FIB6_SUBTREE(pn) = NULL;
1330 			nstate = FWS_L;
1331 		} else {
1332 			WARN_ON(fn->fn_flags & RTN_ROOT);
1333 #endif
1334 			if (pn->right == fn)
1335 				pn->right = child;
1336 			else if (pn->left == fn)
1337 				pn->left = child;
1338 #if RT6_DEBUG >= 2
1339 			else
1340 				WARN_ON(1);
1341 #endif
1342 			if (child)
1343 				child->parent = pn;
1344 			nstate = FWS_R;
1345 #ifdef CONFIG_IPV6_SUBTREES
1346 		}
1347 #endif
1348 
1349 		read_lock(&net->ipv6.fib6_walker_lock);
1350 		FOR_WALKERS(net, w) {
1351 			if (!child) {
1352 				if (w->root == fn) {
1353 					w->root = w->node = NULL;
1354 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1355 				} else if (w->node == fn) {
1356 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1357 					w->node = pn;
1358 					w->state = nstate;
1359 				}
1360 			} else {
1361 				if (w->root == fn) {
1362 					w->root = child;
1363 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1364 				}
1365 				if (w->node == fn) {
1366 					w->node = child;
1367 					if (children&2) {
1368 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1369 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1370 					} else {
1371 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1372 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1373 					}
1374 				}
1375 			}
1376 		}
1377 		read_unlock(&net->ipv6.fib6_walker_lock);
1378 
1379 		node_free(fn);
1380 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1381 			return pn;
1382 
1383 		rt6_release(pn->leaf);
1384 		pn->leaf = NULL;
1385 		fn = pn;
1386 	}
1387 }
1388 
1389 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1390 			   struct nl_info *info)
1391 {
1392 	struct fib6_walker *w;
1393 	struct rt6_info *rt = *rtp;
1394 	struct net *net = info->nl_net;
1395 
1396 	RT6_TRACE("fib6_del_route\n");
1397 
1398 	/* Unlink it */
1399 	*rtp = rt->dst.rt6_next;
1400 	rt->rt6i_node = NULL;
1401 	net->ipv6.rt6_stats->fib_rt_entries--;
1402 	net->ipv6.rt6_stats->fib_discarded_routes++;
1403 
1404 	/* Reset round-robin state, if necessary */
1405 	if (fn->rr_ptr == rt)
1406 		fn->rr_ptr = NULL;
1407 
1408 	/* Remove this entry from other siblings */
1409 	if (rt->rt6i_nsiblings) {
1410 		struct rt6_info *sibling, *next_sibling;
1411 
1412 		list_for_each_entry_safe(sibling, next_sibling,
1413 					 &rt->rt6i_siblings, rt6i_siblings)
1414 			sibling->rt6i_nsiblings--;
1415 		rt->rt6i_nsiblings = 0;
1416 		list_del_init(&rt->rt6i_siblings);
1417 	}
1418 
1419 	/* Adjust walkers */
1420 	read_lock(&net->ipv6.fib6_walker_lock);
1421 	FOR_WALKERS(net, w) {
1422 		if (w->state == FWS_C && w->leaf == rt) {
1423 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1424 			w->leaf = rt->dst.rt6_next;
1425 			if (!w->leaf)
1426 				w->state = FWS_U;
1427 		}
1428 	}
1429 	read_unlock(&net->ipv6.fib6_walker_lock);
1430 
1431 	rt->dst.rt6_next = NULL;
1432 
1433 	/* If it was last route, expunge its radix tree node */
1434 	if (!fn->leaf) {
1435 		fn->fn_flags &= ~RTN_RTINFO;
1436 		net->ipv6.rt6_stats->fib_route_nodes--;
1437 		fn = fib6_repair_tree(net, fn);
1438 	}
1439 
1440 	fib6_purge_rt(rt, fn, net);
1441 
1442 	inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1443 	rt6_release(rt);
1444 }
1445 
1446 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1447 {
1448 	struct net *net = info->nl_net;
1449 	struct fib6_node *fn = rt->rt6i_node;
1450 	struct rt6_info **rtp;
1451 
1452 #if RT6_DEBUG >= 2
1453 	if (rt->dst.obsolete > 0) {
1454 		WARN_ON(fn);
1455 		return -ENOENT;
1456 	}
1457 #endif
1458 	if (!fn || rt == net->ipv6.ip6_null_entry)
1459 		return -ENOENT;
1460 
1461 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1462 
1463 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1464 		struct fib6_node *pn = fn;
1465 #ifdef CONFIG_IPV6_SUBTREES
1466 		/* clones of this route might be in another subtree */
1467 		if (rt->rt6i_src.plen) {
1468 			while (!(pn->fn_flags & RTN_ROOT))
1469 				pn = pn->parent;
1470 			pn = pn->parent;
1471 		}
1472 #endif
1473 		fib6_prune_clones(info->nl_net, pn);
1474 	}
1475 
1476 	/*
1477 	 *	Walk the leaf entries looking for ourself
1478 	 */
1479 
1480 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1481 		if (*rtp == rt) {
1482 			fib6_del_route(fn, rtp, info);
1483 			return 0;
1484 		}
1485 	}
1486 	return -ENOENT;
1487 }
1488 
1489 /*
1490  *	Tree traversal function.
1491  *
1492  *	Certainly, it is not interrupt safe.
1493  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1494  *	It means, that we can modify tree during walking
1495  *	and use this function for garbage collection, clone pruning,
1496  *	cleaning tree when a device goes down etc. etc.
1497  *
1498  *	It guarantees that every node will be traversed,
1499  *	and that it will be traversed only once.
1500  *
1501  *	Callback function w->func may return:
1502  *	0 -> continue walking.
1503  *	positive value -> walking is suspended (used by tree dumps,
1504  *	and probably by gc, if it will be split to several slices)
1505  *	negative value -> terminate walking.
1506  *
1507  *	The function itself returns:
1508  *	0   -> walk is complete.
1509  *	>0  -> walk is incomplete (i.e. suspended)
1510  *	<0  -> walk is terminated by an error.
1511  */
1512 
1513 static int fib6_walk_continue(struct fib6_walker *w)
1514 {
1515 	struct fib6_node *fn, *pn;
1516 
1517 	for (;;) {
1518 		fn = w->node;
1519 		if (!fn)
1520 			return 0;
1521 
1522 		if (w->prune && fn != w->root &&
1523 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1524 			w->state = FWS_C;
1525 			w->leaf = fn->leaf;
1526 		}
1527 		switch (w->state) {
1528 #ifdef CONFIG_IPV6_SUBTREES
1529 		case FWS_S:
1530 			if (FIB6_SUBTREE(fn)) {
1531 				w->node = FIB6_SUBTREE(fn);
1532 				continue;
1533 			}
1534 			w->state = FWS_L;
1535 #endif
1536 		case FWS_L:
1537 			if (fn->left) {
1538 				w->node = fn->left;
1539 				w->state = FWS_INIT;
1540 				continue;
1541 			}
1542 			w->state = FWS_R;
1543 		case FWS_R:
1544 			if (fn->right) {
1545 				w->node = fn->right;
1546 				w->state = FWS_INIT;
1547 				continue;
1548 			}
1549 			w->state = FWS_C;
1550 			w->leaf = fn->leaf;
1551 		case FWS_C:
1552 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1553 				int err;
1554 
1555 				if (w->skip) {
1556 					w->skip--;
1557 					goto skip;
1558 				}
1559 
1560 				err = w->func(w);
1561 				if (err)
1562 					return err;
1563 
1564 				w->count++;
1565 				continue;
1566 			}
1567 skip:
1568 			w->state = FWS_U;
1569 		case FWS_U:
1570 			if (fn == w->root)
1571 				return 0;
1572 			pn = fn->parent;
1573 			w->node = pn;
1574 #ifdef CONFIG_IPV6_SUBTREES
1575 			if (FIB6_SUBTREE(pn) == fn) {
1576 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1577 				w->state = FWS_L;
1578 				continue;
1579 			}
1580 #endif
1581 			if (pn->left == fn) {
1582 				w->state = FWS_R;
1583 				continue;
1584 			}
1585 			if (pn->right == fn) {
1586 				w->state = FWS_C;
1587 				w->leaf = w->node->leaf;
1588 				continue;
1589 			}
1590 #if RT6_DEBUG >= 2
1591 			WARN_ON(1);
1592 #endif
1593 		}
1594 	}
1595 }
1596 
1597 static int fib6_walk(struct net *net, struct fib6_walker *w)
1598 {
1599 	int res;
1600 
1601 	w->state = FWS_INIT;
1602 	w->node = w->root;
1603 
1604 	fib6_walker_link(net, w);
1605 	res = fib6_walk_continue(w);
1606 	if (res <= 0)
1607 		fib6_walker_unlink(net, w);
1608 	return res;
1609 }
1610 
1611 static int fib6_clean_node(struct fib6_walker *w)
1612 {
1613 	int res;
1614 	struct rt6_info *rt;
1615 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1616 	struct nl_info info = {
1617 		.nl_net = c->net,
1618 	};
1619 
1620 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1621 	    w->node->fn_sernum != c->sernum)
1622 		w->node->fn_sernum = c->sernum;
1623 
1624 	if (!c->func) {
1625 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1626 		w->leaf = NULL;
1627 		return 0;
1628 	}
1629 
1630 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1631 		res = c->func(rt, c->arg);
1632 		if (res < 0) {
1633 			w->leaf = rt;
1634 			res = fib6_del(rt, &info);
1635 			if (res) {
1636 #if RT6_DEBUG >= 2
1637 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1638 					 __func__, rt, rt->rt6i_node, res);
1639 #endif
1640 				continue;
1641 			}
1642 			return 0;
1643 		}
1644 		WARN_ON(res != 0);
1645 	}
1646 	w->leaf = rt;
1647 	return 0;
1648 }
1649 
1650 /*
1651  *	Convenient frontend to tree walker.
1652  *
1653  *	func is called on each route.
1654  *		It may return -1 -> delete this route.
1655  *		              0  -> continue walking
1656  *
1657  *	prune==1 -> only immediate children of node (certainly,
1658  *	ignoring pure split nodes) will be scanned.
1659  */
1660 
1661 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1662 			    int (*func)(struct rt6_info *, void *arg),
1663 			    bool prune, int sernum, void *arg)
1664 {
1665 	struct fib6_cleaner c;
1666 
1667 	c.w.root = root;
1668 	c.w.func = fib6_clean_node;
1669 	c.w.prune = prune;
1670 	c.w.count = 0;
1671 	c.w.skip = 0;
1672 	c.func = func;
1673 	c.sernum = sernum;
1674 	c.arg = arg;
1675 	c.net = net;
1676 
1677 	fib6_walk(net, &c.w);
1678 }
1679 
1680 static void __fib6_clean_all(struct net *net,
1681 			     int (*func)(struct rt6_info *, void *),
1682 			     int sernum, void *arg)
1683 {
1684 	struct fib6_table *table;
1685 	struct hlist_head *head;
1686 	unsigned int h;
1687 
1688 	rcu_read_lock();
1689 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1690 		head = &net->ipv6.fib_table_hash[h];
1691 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1692 			write_lock_bh(&table->tb6_lock);
1693 			fib6_clean_tree(net, &table->tb6_root,
1694 					func, false, sernum, arg);
1695 			write_unlock_bh(&table->tb6_lock);
1696 		}
1697 	}
1698 	rcu_read_unlock();
1699 }
1700 
1701 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1702 		    void *arg)
1703 {
1704 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1705 }
1706 
1707 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1708 {
1709 	if (rt->rt6i_flags & RTF_CACHE) {
1710 		RT6_TRACE("pruning clone %p\n", rt);
1711 		return -1;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1718 {
1719 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1720 			FIB6_NO_SERNUM_CHANGE, NULL);
1721 }
1722 
1723 static void fib6_flush_trees(struct net *net)
1724 {
1725 	int new_sernum = fib6_new_sernum(net);
1726 
1727 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1728 }
1729 
1730 /*
1731  *	Garbage collection
1732  */
1733 
1734 struct fib6_gc_args
1735 {
1736 	int			timeout;
1737 	int			more;
1738 };
1739 
1740 static int fib6_age(struct rt6_info *rt, void *arg)
1741 {
1742 	struct fib6_gc_args *gc_args = arg;
1743 	unsigned long now = jiffies;
1744 
1745 	/*
1746 	 *	check addrconf expiration here.
1747 	 *	Routes are expired even if they are in use.
1748 	 *
1749 	 *	Also age clones. Note, that clones are aged out
1750 	 *	only if they are not in use now.
1751 	 */
1752 
1753 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1754 		if (time_after(now, rt->dst.expires)) {
1755 			RT6_TRACE("expiring %p\n", rt);
1756 			return -1;
1757 		}
1758 		gc_args->more++;
1759 	} else if (rt->rt6i_flags & RTF_CACHE) {
1760 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1761 		    time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1762 			RT6_TRACE("aging clone %p\n", rt);
1763 			return -1;
1764 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1765 			struct neighbour *neigh;
1766 			__u8 neigh_flags = 0;
1767 
1768 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1769 			if (neigh) {
1770 				neigh_flags = neigh->flags;
1771 				neigh_release(neigh);
1772 			}
1773 			if (!(neigh_flags & NTF_ROUTER)) {
1774 				RT6_TRACE("purging route %p via non-router but gateway\n",
1775 					  rt);
1776 				return -1;
1777 			}
1778 		}
1779 		gc_args->more++;
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1786 {
1787 	struct fib6_gc_args gc_args;
1788 	unsigned long now;
1789 
1790 	if (force) {
1791 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
1792 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1793 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1794 		return;
1795 	}
1796 	gc_args.timeout = expires ? (int)expires :
1797 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1798 
1799 	gc_args.more = icmp6_dst_gc();
1800 
1801 	fib6_clean_all(net, fib6_age, &gc_args);
1802 	now = jiffies;
1803 	net->ipv6.ip6_rt_last_gc = now;
1804 
1805 	if (gc_args.more)
1806 		mod_timer(&net->ipv6.ip6_fib_timer,
1807 			  round_jiffies(now
1808 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1809 	else
1810 		del_timer(&net->ipv6.ip6_fib_timer);
1811 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1812 }
1813 
1814 static void fib6_gc_timer_cb(unsigned long arg)
1815 {
1816 	fib6_run_gc(0, (struct net *)arg, true);
1817 }
1818 
1819 static int __net_init fib6_net_init(struct net *net)
1820 {
1821 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1822 
1823 	spin_lock_init(&net->ipv6.fib6_gc_lock);
1824 	rwlock_init(&net->ipv6.fib6_walker_lock);
1825 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1826 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1827 
1828 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1829 	if (!net->ipv6.rt6_stats)
1830 		goto out_timer;
1831 
1832 	/* Avoid false sharing : Use at least a full cache line */
1833 	size = max_t(size_t, size, L1_CACHE_BYTES);
1834 
1835 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1836 	if (!net->ipv6.fib_table_hash)
1837 		goto out_rt6_stats;
1838 
1839 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1840 					  GFP_KERNEL);
1841 	if (!net->ipv6.fib6_main_tbl)
1842 		goto out_fib_table_hash;
1843 
1844 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1845 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1846 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1847 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1848 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1849 
1850 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1851 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1852 					   GFP_KERNEL);
1853 	if (!net->ipv6.fib6_local_tbl)
1854 		goto out_fib6_main_tbl;
1855 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1856 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1857 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1858 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1859 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1860 #endif
1861 	fib6_tables_init(net);
1862 
1863 	return 0;
1864 
1865 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1866 out_fib6_main_tbl:
1867 	kfree(net->ipv6.fib6_main_tbl);
1868 #endif
1869 out_fib_table_hash:
1870 	kfree(net->ipv6.fib_table_hash);
1871 out_rt6_stats:
1872 	kfree(net->ipv6.rt6_stats);
1873 out_timer:
1874 	return -ENOMEM;
1875 }
1876 
1877 static void fib6_net_exit(struct net *net)
1878 {
1879 	rt6_ifdown(net, NULL);
1880 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1881 
1882 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1883 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1884 	kfree(net->ipv6.fib6_local_tbl);
1885 #endif
1886 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1887 	kfree(net->ipv6.fib6_main_tbl);
1888 	kfree(net->ipv6.fib_table_hash);
1889 	kfree(net->ipv6.rt6_stats);
1890 }
1891 
1892 static struct pernet_operations fib6_net_ops = {
1893 	.init = fib6_net_init,
1894 	.exit = fib6_net_exit,
1895 };
1896 
1897 int __init fib6_init(void)
1898 {
1899 	int ret = -ENOMEM;
1900 
1901 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1902 					   sizeof(struct fib6_node),
1903 					   0, SLAB_HWCACHE_ALIGN,
1904 					   NULL);
1905 	if (!fib6_node_kmem)
1906 		goto out;
1907 
1908 	ret = register_pernet_subsys(&fib6_net_ops);
1909 	if (ret)
1910 		goto out_kmem_cache_create;
1911 
1912 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1913 			      NULL);
1914 	if (ret)
1915 		goto out_unregister_subsys;
1916 
1917 	__fib6_flush_trees = fib6_flush_trees;
1918 out:
1919 	return ret;
1920 
1921 out_unregister_subsys:
1922 	unregister_pernet_subsys(&fib6_net_ops);
1923 out_kmem_cache_create:
1924 	kmem_cache_destroy(fib6_node_kmem);
1925 	goto out;
1926 }
1927 
1928 void fib6_gc_cleanup(void)
1929 {
1930 	unregister_pernet_subsys(&fib6_net_ops);
1931 	kmem_cache_destroy(fib6_node_kmem);
1932 }
1933 
1934 #ifdef CONFIG_PROC_FS
1935 
1936 struct ipv6_route_iter {
1937 	struct seq_net_private p;
1938 	struct fib6_walker w;
1939 	loff_t skip;
1940 	struct fib6_table *tbl;
1941 	int sernum;
1942 };
1943 
1944 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1945 {
1946 	struct rt6_info *rt = v;
1947 	struct ipv6_route_iter *iter = seq->private;
1948 
1949 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1950 
1951 #ifdef CONFIG_IPV6_SUBTREES
1952 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1953 #else
1954 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1955 #endif
1956 	if (rt->rt6i_flags & RTF_GATEWAY)
1957 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1958 	else
1959 		seq_puts(seq, "00000000000000000000000000000000");
1960 
1961 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1962 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1963 		   rt->dst.__use, rt->rt6i_flags,
1964 		   rt->dst.dev ? rt->dst.dev->name : "");
1965 	iter->w.leaf = NULL;
1966 	return 0;
1967 }
1968 
1969 static int ipv6_route_yield(struct fib6_walker *w)
1970 {
1971 	struct ipv6_route_iter *iter = w->args;
1972 
1973 	if (!iter->skip)
1974 		return 1;
1975 
1976 	do {
1977 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1978 		iter->skip--;
1979 		if (!iter->skip && iter->w.leaf)
1980 			return 1;
1981 	} while (iter->w.leaf);
1982 
1983 	return 0;
1984 }
1985 
1986 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1987 				      struct net *net)
1988 {
1989 	memset(&iter->w, 0, sizeof(iter->w));
1990 	iter->w.func = ipv6_route_yield;
1991 	iter->w.root = &iter->tbl->tb6_root;
1992 	iter->w.state = FWS_INIT;
1993 	iter->w.node = iter->w.root;
1994 	iter->w.args = iter;
1995 	iter->sernum = iter->w.root->fn_sernum;
1996 	INIT_LIST_HEAD(&iter->w.lh);
1997 	fib6_walker_link(net, &iter->w);
1998 }
1999 
2000 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2001 						    struct net *net)
2002 {
2003 	unsigned int h;
2004 	struct hlist_node *node;
2005 
2006 	if (tbl) {
2007 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2008 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2009 	} else {
2010 		h = 0;
2011 		node = NULL;
2012 	}
2013 
2014 	while (!node && h < FIB6_TABLE_HASHSZ) {
2015 		node = rcu_dereference_bh(
2016 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2017 	}
2018 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2019 }
2020 
2021 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2022 {
2023 	if (iter->sernum != iter->w.root->fn_sernum) {
2024 		iter->sernum = iter->w.root->fn_sernum;
2025 		iter->w.state = FWS_INIT;
2026 		iter->w.node = iter->w.root;
2027 		WARN_ON(iter->w.skip);
2028 		iter->w.skip = iter->w.count;
2029 	}
2030 }
2031 
2032 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2033 {
2034 	int r;
2035 	struct rt6_info *n;
2036 	struct net *net = seq_file_net(seq);
2037 	struct ipv6_route_iter *iter = seq->private;
2038 
2039 	if (!v)
2040 		goto iter_table;
2041 
2042 	n = ((struct rt6_info *)v)->dst.rt6_next;
2043 	if (n) {
2044 		++*pos;
2045 		return n;
2046 	}
2047 
2048 iter_table:
2049 	ipv6_route_check_sernum(iter);
2050 	read_lock(&iter->tbl->tb6_lock);
2051 	r = fib6_walk_continue(&iter->w);
2052 	read_unlock(&iter->tbl->tb6_lock);
2053 	if (r > 0) {
2054 		if (v)
2055 			++*pos;
2056 		return iter->w.leaf;
2057 	} else if (r < 0) {
2058 		fib6_walker_unlink(net, &iter->w);
2059 		return NULL;
2060 	}
2061 	fib6_walker_unlink(net, &iter->w);
2062 
2063 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2064 	if (!iter->tbl)
2065 		return NULL;
2066 
2067 	ipv6_route_seq_setup_walk(iter, net);
2068 	goto iter_table;
2069 }
2070 
2071 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2072 	__acquires(RCU_BH)
2073 {
2074 	struct net *net = seq_file_net(seq);
2075 	struct ipv6_route_iter *iter = seq->private;
2076 
2077 	rcu_read_lock_bh();
2078 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2079 	iter->skip = *pos;
2080 
2081 	if (iter->tbl) {
2082 		ipv6_route_seq_setup_walk(iter, net);
2083 		return ipv6_route_seq_next(seq, NULL, pos);
2084 	} else {
2085 		return NULL;
2086 	}
2087 }
2088 
2089 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2090 {
2091 	struct fib6_walker *w = &iter->w;
2092 	return w->node && !(w->state == FWS_U && w->node == w->root);
2093 }
2094 
2095 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2096 	__releases(RCU_BH)
2097 {
2098 	struct net *net = seq_file_net(seq);
2099 	struct ipv6_route_iter *iter = seq->private;
2100 
2101 	if (ipv6_route_iter_active(iter))
2102 		fib6_walker_unlink(net, &iter->w);
2103 
2104 	rcu_read_unlock_bh();
2105 }
2106 
2107 static const struct seq_operations ipv6_route_seq_ops = {
2108 	.start	= ipv6_route_seq_start,
2109 	.next	= ipv6_route_seq_next,
2110 	.stop	= ipv6_route_seq_stop,
2111 	.show	= ipv6_route_seq_show
2112 };
2113 
2114 int ipv6_route_open(struct inode *inode, struct file *file)
2115 {
2116 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2117 			    sizeof(struct ipv6_route_iter));
2118 }
2119 
2120 #endif /* CONFIG_PROC_FS */
2121