1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Changes: 14 * Yuji SEKIYA @USAGI: Support default route on router node; 15 * remove ip6_null_entry from the top of 16 * routing table. 17 * Ville Nuorvala: Fixed routing subtrees. 18 */ 19 20 #define pr_fmt(fmt) "IPv6: " fmt 21 22 #include <linux/errno.h> 23 #include <linux/types.h> 24 #include <linux/net.h> 25 #include <linux/route.h> 26 #include <linux/netdevice.h> 27 #include <linux/in6.h> 28 #include <linux/init.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 32 #include <net/ipv6.h> 33 #include <net/ndisc.h> 34 #include <net/addrconf.h> 35 #include <net/lwtunnel.h> 36 #include <net/fib_notifier.h> 37 38 #include <net/ip6_fib.h> 39 #include <net/ip6_route.h> 40 41 static struct kmem_cache *fib6_node_kmem __read_mostly; 42 43 struct fib6_cleaner { 44 struct fib6_walker w; 45 struct net *net; 46 int (*func)(struct rt6_info *, void *arg); 47 int sernum; 48 void *arg; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct rt6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old; 95 96 do { 97 old = atomic_read(&net->ipv6.fib6_sernum); 98 new = old < INT_MAX ? old + 1 : 1; 99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 100 old, new) != old); 101 return new; 102 } 103 104 enum { 105 FIB6_NO_SERNUM_CHANGE = 0, 106 }; 107 108 void fib6_update_sernum(struct rt6_info *rt) 109 { 110 struct fib6_table *table = rt->rt6i_table; 111 struct net *net = dev_net(rt->dst.dev); 112 struct fib6_node *fn; 113 114 spin_lock_bh(&table->tb6_lock); 115 fn = rcu_dereference_protected(rt->rt6i_node, 116 lockdep_is_held(&table->tb6_lock)); 117 if (fn) 118 fn->fn_sernum = fib6_new_sernum(net); 119 spin_unlock_bh(&table->tb6_lock); 120 } 121 122 /* 123 * Auxiliary address test functions for the radix tree. 124 * 125 * These assume a 32bit processor (although it will work on 126 * 64bit processors) 127 */ 128 129 /* 130 * test bit 131 */ 132 #if defined(__LITTLE_ENDIAN) 133 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 134 #else 135 # define BITOP_BE32_SWIZZLE 0 136 #endif 137 138 static __be32 addr_bit_set(const void *token, int fn_bit) 139 { 140 const __be32 *addr = token; 141 /* 142 * Here, 143 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 144 * is optimized version of 145 * htonl(1 << ((~fn_bit)&0x1F)) 146 * See include/asm-generic/bitops/le.h. 147 */ 148 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 149 addr[fn_bit >> 5]; 150 } 151 152 static struct fib6_node *node_alloc(struct net *net) 153 { 154 struct fib6_node *fn; 155 156 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 157 if (fn) 158 net->ipv6.rt6_stats->fib_nodes++; 159 160 return fn; 161 } 162 163 static void node_free_immediate(struct net *net, struct fib6_node *fn) 164 { 165 kmem_cache_free(fib6_node_kmem, fn); 166 net->ipv6.rt6_stats->fib_nodes--; 167 } 168 169 static void node_free_rcu(struct rcu_head *head) 170 { 171 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 172 173 kmem_cache_free(fib6_node_kmem, fn); 174 } 175 176 static void node_free(struct net *net, struct fib6_node *fn) 177 { 178 call_rcu(&fn->rcu, node_free_rcu); 179 net->ipv6.rt6_stats->fib_nodes--; 180 } 181 182 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt) 183 { 184 int cpu; 185 186 if (!non_pcpu_rt->rt6i_pcpu) 187 return; 188 189 for_each_possible_cpu(cpu) { 190 struct rt6_info **ppcpu_rt; 191 struct rt6_info *pcpu_rt; 192 193 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu); 194 pcpu_rt = *ppcpu_rt; 195 if (pcpu_rt) { 196 dst_dev_put(&pcpu_rt->dst); 197 dst_release(&pcpu_rt->dst); 198 *ppcpu_rt = NULL; 199 } 200 } 201 } 202 EXPORT_SYMBOL_GPL(rt6_free_pcpu); 203 204 static void fib6_free_table(struct fib6_table *table) 205 { 206 inetpeer_invalidate_tree(&table->tb6_peers); 207 kfree(table); 208 } 209 210 static void fib6_link_table(struct net *net, struct fib6_table *tb) 211 { 212 unsigned int h; 213 214 /* 215 * Initialize table lock at a single place to give lockdep a key, 216 * tables aren't visible prior to being linked to the list. 217 */ 218 spin_lock_init(&tb->tb6_lock); 219 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 220 221 /* 222 * No protection necessary, this is the only list mutatation 223 * operation, tables never disappear once they exist. 224 */ 225 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 226 } 227 228 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 229 230 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 231 { 232 struct fib6_table *table; 233 234 table = kzalloc(sizeof(*table), GFP_ATOMIC); 235 if (table) { 236 table->tb6_id = id; 237 rcu_assign_pointer(table->tb6_root.leaf, 238 net->ipv6.ip6_null_entry); 239 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 240 inet_peer_base_init(&table->tb6_peers); 241 } 242 243 return table; 244 } 245 246 struct fib6_table *fib6_new_table(struct net *net, u32 id) 247 { 248 struct fib6_table *tb; 249 250 if (id == 0) 251 id = RT6_TABLE_MAIN; 252 tb = fib6_get_table(net, id); 253 if (tb) 254 return tb; 255 256 tb = fib6_alloc_table(net, id); 257 if (tb) 258 fib6_link_table(net, tb); 259 260 return tb; 261 } 262 EXPORT_SYMBOL_GPL(fib6_new_table); 263 264 struct fib6_table *fib6_get_table(struct net *net, u32 id) 265 { 266 struct fib6_table *tb; 267 struct hlist_head *head; 268 unsigned int h; 269 270 if (id == 0) 271 id = RT6_TABLE_MAIN; 272 h = id & (FIB6_TABLE_HASHSZ - 1); 273 rcu_read_lock(); 274 head = &net->ipv6.fib_table_hash[h]; 275 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 276 if (tb->tb6_id == id) { 277 rcu_read_unlock(); 278 return tb; 279 } 280 } 281 rcu_read_unlock(); 282 283 return NULL; 284 } 285 EXPORT_SYMBOL_GPL(fib6_get_table); 286 287 static void __net_init fib6_tables_init(struct net *net) 288 { 289 fib6_link_table(net, net->ipv6.fib6_main_tbl); 290 fib6_link_table(net, net->ipv6.fib6_local_tbl); 291 } 292 #else 293 294 struct fib6_table *fib6_new_table(struct net *net, u32 id) 295 { 296 return fib6_get_table(net, id); 297 } 298 299 struct fib6_table *fib6_get_table(struct net *net, u32 id) 300 { 301 return net->ipv6.fib6_main_tbl; 302 } 303 304 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 305 int flags, pol_lookup_t lookup) 306 { 307 struct rt6_info *rt; 308 309 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 310 if (rt->dst.error == -EAGAIN) { 311 ip6_rt_put(rt); 312 rt = net->ipv6.ip6_null_entry; 313 dst_hold(&rt->dst); 314 } 315 316 return &rt->dst; 317 } 318 319 static void __net_init fib6_tables_init(struct net *net) 320 { 321 fib6_link_table(net, net->ipv6.fib6_main_tbl); 322 } 323 324 #endif 325 326 unsigned int fib6_tables_seq_read(struct net *net) 327 { 328 unsigned int h, fib_seq = 0; 329 330 rcu_read_lock(); 331 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 332 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 333 struct fib6_table *tb; 334 335 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 336 fib_seq += tb->fib_seq; 337 } 338 rcu_read_unlock(); 339 340 return fib_seq; 341 } 342 343 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net, 344 enum fib_event_type event_type, 345 struct rt6_info *rt) 346 { 347 struct fib6_entry_notifier_info info = { 348 .rt = rt, 349 }; 350 351 return call_fib6_notifier(nb, net, event_type, &info.info); 352 } 353 354 static int call_fib6_entry_notifiers(struct net *net, 355 enum fib_event_type event_type, 356 struct rt6_info *rt, 357 struct netlink_ext_ack *extack) 358 { 359 struct fib6_entry_notifier_info info = { 360 .info.extack = extack, 361 .rt = rt, 362 }; 363 364 rt->rt6i_table->fib_seq++; 365 return call_fib6_notifiers(net, event_type, &info.info); 366 } 367 368 struct fib6_dump_arg { 369 struct net *net; 370 struct notifier_block *nb; 371 }; 372 373 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg) 374 { 375 if (rt == arg->net->ipv6.ip6_null_entry) 376 return; 377 call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt); 378 } 379 380 static int fib6_node_dump(struct fib6_walker *w) 381 { 382 struct rt6_info *rt; 383 384 for_each_fib6_walker_rt(w) 385 fib6_rt_dump(rt, w->args); 386 w->leaf = NULL; 387 return 0; 388 } 389 390 static void fib6_table_dump(struct net *net, struct fib6_table *tb, 391 struct fib6_walker *w) 392 { 393 w->root = &tb->tb6_root; 394 spin_lock_bh(&tb->tb6_lock); 395 fib6_walk(net, w); 396 spin_unlock_bh(&tb->tb6_lock); 397 } 398 399 /* Called with rcu_read_lock() */ 400 int fib6_tables_dump(struct net *net, struct notifier_block *nb) 401 { 402 struct fib6_dump_arg arg; 403 struct fib6_walker *w; 404 unsigned int h; 405 406 w = kzalloc(sizeof(*w), GFP_ATOMIC); 407 if (!w) 408 return -ENOMEM; 409 410 w->func = fib6_node_dump; 411 arg.net = net; 412 arg.nb = nb; 413 w->args = &arg; 414 415 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 416 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 417 struct fib6_table *tb; 418 419 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 420 fib6_table_dump(net, tb, w); 421 } 422 423 kfree(w); 424 425 return 0; 426 } 427 428 static int fib6_dump_node(struct fib6_walker *w) 429 { 430 int res; 431 struct rt6_info *rt; 432 433 for_each_fib6_walker_rt(w) { 434 res = rt6_dump_route(rt, w->args); 435 if (res < 0) { 436 /* Frame is full, suspend walking */ 437 w->leaf = rt; 438 return 1; 439 } 440 441 /* Multipath routes are dumped in one route with the 442 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 443 * last sibling of this route (no need to dump the 444 * sibling routes again) 445 */ 446 if (rt->rt6i_nsiblings) 447 rt = list_last_entry(&rt->rt6i_siblings, 448 struct rt6_info, 449 rt6i_siblings); 450 } 451 w->leaf = NULL; 452 return 0; 453 } 454 455 static void fib6_dump_end(struct netlink_callback *cb) 456 { 457 struct net *net = sock_net(cb->skb->sk); 458 struct fib6_walker *w = (void *)cb->args[2]; 459 460 if (w) { 461 if (cb->args[4]) { 462 cb->args[4] = 0; 463 fib6_walker_unlink(net, w); 464 } 465 cb->args[2] = 0; 466 kfree(w); 467 } 468 cb->done = (void *)cb->args[3]; 469 cb->args[1] = 3; 470 } 471 472 static int fib6_dump_done(struct netlink_callback *cb) 473 { 474 fib6_dump_end(cb); 475 return cb->done ? cb->done(cb) : 0; 476 } 477 478 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 479 struct netlink_callback *cb) 480 { 481 struct net *net = sock_net(skb->sk); 482 struct fib6_walker *w; 483 int res; 484 485 w = (void *)cb->args[2]; 486 w->root = &table->tb6_root; 487 488 if (cb->args[4] == 0) { 489 w->count = 0; 490 w->skip = 0; 491 492 spin_lock_bh(&table->tb6_lock); 493 res = fib6_walk(net, w); 494 spin_unlock_bh(&table->tb6_lock); 495 if (res > 0) { 496 cb->args[4] = 1; 497 cb->args[5] = w->root->fn_sernum; 498 } 499 } else { 500 if (cb->args[5] != w->root->fn_sernum) { 501 /* Begin at the root if the tree changed */ 502 cb->args[5] = w->root->fn_sernum; 503 w->state = FWS_INIT; 504 w->node = w->root; 505 w->skip = w->count; 506 } else 507 w->skip = 0; 508 509 spin_lock_bh(&table->tb6_lock); 510 res = fib6_walk_continue(w); 511 spin_unlock_bh(&table->tb6_lock); 512 if (res <= 0) { 513 fib6_walker_unlink(net, w); 514 cb->args[4] = 0; 515 } 516 } 517 518 return res; 519 } 520 521 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 522 { 523 struct net *net = sock_net(skb->sk); 524 unsigned int h, s_h; 525 unsigned int e = 0, s_e; 526 struct rt6_rtnl_dump_arg arg; 527 struct fib6_walker *w; 528 struct fib6_table *tb; 529 struct hlist_head *head; 530 int res = 0; 531 532 s_h = cb->args[0]; 533 s_e = cb->args[1]; 534 535 w = (void *)cb->args[2]; 536 if (!w) { 537 /* New dump: 538 * 539 * 1. hook callback destructor. 540 */ 541 cb->args[3] = (long)cb->done; 542 cb->done = fib6_dump_done; 543 544 /* 545 * 2. allocate and initialize walker. 546 */ 547 w = kzalloc(sizeof(*w), GFP_ATOMIC); 548 if (!w) 549 return -ENOMEM; 550 w->func = fib6_dump_node; 551 cb->args[2] = (long)w; 552 } 553 554 arg.skb = skb; 555 arg.cb = cb; 556 arg.net = net; 557 w->args = &arg; 558 559 rcu_read_lock(); 560 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 561 e = 0; 562 head = &net->ipv6.fib_table_hash[h]; 563 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 564 if (e < s_e) 565 goto next; 566 res = fib6_dump_table(tb, skb, cb); 567 if (res != 0) 568 goto out; 569 next: 570 e++; 571 } 572 } 573 out: 574 rcu_read_unlock(); 575 cb->args[1] = e; 576 cb->args[0] = h; 577 578 res = res < 0 ? res : skb->len; 579 if (res <= 0) 580 fib6_dump_end(cb); 581 return res; 582 } 583 584 /* 585 * Routing Table 586 * 587 * return the appropriate node for a routing tree "add" operation 588 * by either creating and inserting or by returning an existing 589 * node. 590 */ 591 592 static struct fib6_node *fib6_add_1(struct net *net, 593 struct fib6_table *table, 594 struct fib6_node *root, 595 struct in6_addr *addr, int plen, 596 int offset, int allow_create, 597 int replace_required, 598 struct netlink_ext_ack *extack) 599 { 600 struct fib6_node *fn, *in, *ln; 601 struct fib6_node *pn = NULL; 602 struct rt6key *key; 603 int bit; 604 __be32 dir = 0; 605 606 RT6_TRACE("fib6_add_1\n"); 607 608 /* insert node in tree */ 609 610 fn = root; 611 612 do { 613 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 614 lockdep_is_held(&table->tb6_lock)); 615 key = (struct rt6key *)((u8 *)leaf + offset); 616 617 /* 618 * Prefix match 619 */ 620 if (plen < fn->fn_bit || 621 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 622 if (!allow_create) { 623 if (replace_required) { 624 NL_SET_ERR_MSG(extack, 625 "Can not replace route - no match found"); 626 pr_warn("Can't replace route, no match found\n"); 627 return ERR_PTR(-ENOENT); 628 } 629 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 630 } 631 goto insert_above; 632 } 633 634 /* 635 * Exact match ? 636 */ 637 638 if (plen == fn->fn_bit) { 639 /* clean up an intermediate node */ 640 if (!(fn->fn_flags & RTN_RTINFO)) { 641 RCU_INIT_POINTER(fn->leaf, NULL); 642 rt6_release(leaf); 643 } 644 645 return fn; 646 } 647 648 /* 649 * We have more bits to go 650 */ 651 652 /* Try to walk down on tree. */ 653 dir = addr_bit_set(addr, fn->fn_bit); 654 pn = fn; 655 fn = dir ? 656 rcu_dereference_protected(fn->right, 657 lockdep_is_held(&table->tb6_lock)) : 658 rcu_dereference_protected(fn->left, 659 lockdep_is_held(&table->tb6_lock)); 660 } while (fn); 661 662 if (!allow_create) { 663 /* We should not create new node because 664 * NLM_F_REPLACE was specified without NLM_F_CREATE 665 * I assume it is safe to require NLM_F_CREATE when 666 * REPLACE flag is used! Later we may want to remove the 667 * check for replace_required, because according 668 * to netlink specification, NLM_F_CREATE 669 * MUST be specified if new route is created. 670 * That would keep IPv6 consistent with IPv4 671 */ 672 if (replace_required) { 673 NL_SET_ERR_MSG(extack, 674 "Can not replace route - no match found"); 675 pr_warn("Can't replace route, no match found\n"); 676 return ERR_PTR(-ENOENT); 677 } 678 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 679 } 680 /* 681 * We walked to the bottom of tree. 682 * Create new leaf node without children. 683 */ 684 685 ln = node_alloc(net); 686 687 if (!ln) 688 return ERR_PTR(-ENOMEM); 689 ln->fn_bit = plen; 690 RCU_INIT_POINTER(ln->parent, pn); 691 692 if (dir) 693 rcu_assign_pointer(pn->right, ln); 694 else 695 rcu_assign_pointer(pn->left, ln); 696 697 return ln; 698 699 700 insert_above: 701 /* 702 * split since we don't have a common prefix anymore or 703 * we have a less significant route. 704 * we've to insert an intermediate node on the list 705 * this new node will point to the one we need to create 706 * and the current 707 */ 708 709 pn = rcu_dereference_protected(fn->parent, 710 lockdep_is_held(&table->tb6_lock)); 711 712 /* find 1st bit in difference between the 2 addrs. 713 714 See comment in __ipv6_addr_diff: bit may be an invalid value, 715 but if it is >= plen, the value is ignored in any case. 716 */ 717 718 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 719 720 /* 721 * (intermediate)[in] 722 * / \ 723 * (new leaf node)[ln] (old node)[fn] 724 */ 725 if (plen > bit) { 726 in = node_alloc(net); 727 ln = node_alloc(net); 728 729 if (!in || !ln) { 730 if (in) 731 node_free_immediate(net, in); 732 if (ln) 733 node_free_immediate(net, ln); 734 return ERR_PTR(-ENOMEM); 735 } 736 737 /* 738 * new intermediate node. 739 * RTN_RTINFO will 740 * be off since that an address that chooses one of 741 * the branches would not match less specific routes 742 * in the other branch 743 */ 744 745 in->fn_bit = bit; 746 747 RCU_INIT_POINTER(in->parent, pn); 748 in->leaf = fn->leaf; 749 atomic_inc(&rcu_dereference_protected(in->leaf, 750 lockdep_is_held(&table->tb6_lock))->rt6i_ref); 751 752 /* update parent pointer */ 753 if (dir) 754 rcu_assign_pointer(pn->right, in); 755 else 756 rcu_assign_pointer(pn->left, in); 757 758 ln->fn_bit = plen; 759 760 RCU_INIT_POINTER(ln->parent, in); 761 rcu_assign_pointer(fn->parent, in); 762 763 if (addr_bit_set(addr, bit)) { 764 rcu_assign_pointer(in->right, ln); 765 rcu_assign_pointer(in->left, fn); 766 } else { 767 rcu_assign_pointer(in->left, ln); 768 rcu_assign_pointer(in->right, fn); 769 } 770 } else { /* plen <= bit */ 771 772 /* 773 * (new leaf node)[ln] 774 * / \ 775 * (old node)[fn] NULL 776 */ 777 778 ln = node_alloc(net); 779 780 if (!ln) 781 return ERR_PTR(-ENOMEM); 782 783 ln->fn_bit = plen; 784 785 RCU_INIT_POINTER(ln->parent, pn); 786 787 if (addr_bit_set(&key->addr, plen)) 788 RCU_INIT_POINTER(ln->right, fn); 789 else 790 RCU_INIT_POINTER(ln->left, fn); 791 792 rcu_assign_pointer(fn->parent, ln); 793 794 if (dir) 795 rcu_assign_pointer(pn->right, ln); 796 else 797 rcu_assign_pointer(pn->left, ln); 798 } 799 return ln; 800 } 801 802 static bool rt6_qualify_for_ecmp(struct rt6_info *rt) 803 { 804 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) == 805 RTF_GATEWAY; 806 } 807 808 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc) 809 { 810 int i; 811 812 for (i = 0; i < RTAX_MAX; i++) { 813 if (test_bit(i, mxc->mx_valid)) 814 mp[i] = mxc->mx[i]; 815 } 816 } 817 818 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc) 819 { 820 if (!mxc->mx) 821 return 0; 822 823 if (dst->flags & DST_HOST) { 824 u32 *mp = dst_metrics_write_ptr(dst); 825 826 if (unlikely(!mp)) 827 return -ENOMEM; 828 829 fib6_copy_metrics(mp, mxc); 830 } else { 831 dst_init_metrics(dst, mxc->mx, false); 832 833 /* We've stolen mx now. */ 834 mxc->mx = NULL; 835 } 836 837 return 0; 838 } 839 840 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn, 841 struct net *net) 842 { 843 struct fib6_table *table = rt->rt6i_table; 844 845 if (atomic_read(&rt->rt6i_ref) != 1) { 846 /* This route is used as dummy address holder in some split 847 * nodes. It is not leaked, but it still holds other resources, 848 * which must be released in time. So, scan ascendant nodes 849 * and replace dummy references to this route with references 850 * to still alive ones. 851 */ 852 while (fn) { 853 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 854 lockdep_is_held(&table->tb6_lock)); 855 struct rt6_info *new_leaf; 856 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 857 new_leaf = fib6_find_prefix(net, table, fn); 858 atomic_inc(&new_leaf->rt6i_ref); 859 rcu_assign_pointer(fn->leaf, new_leaf); 860 rt6_release(rt); 861 } 862 fn = rcu_dereference_protected(fn->parent, 863 lockdep_is_held(&table->tb6_lock)); 864 } 865 } 866 } 867 868 /* 869 * Insert routing information in a node. 870 */ 871 872 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 873 struct nl_info *info, struct mx6_config *mxc, 874 struct netlink_ext_ack *extack) 875 { 876 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 877 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 878 struct rt6_info *iter = NULL; 879 struct rt6_info __rcu **ins; 880 struct rt6_info __rcu **fallback_ins = NULL; 881 int replace = (info->nlh && 882 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 883 int add = (!info->nlh || 884 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 885 int found = 0; 886 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 887 u16 nlflags = NLM_F_EXCL; 888 int err; 889 890 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 891 nlflags |= NLM_F_APPEND; 892 893 ins = &fn->leaf; 894 895 for (iter = leaf; iter; 896 iter = rcu_dereference_protected(iter->dst.rt6_next, 897 lockdep_is_held(&rt->rt6i_table->tb6_lock))) { 898 /* 899 * Search for duplicates 900 */ 901 902 if (iter->rt6i_metric == rt->rt6i_metric) { 903 /* 904 * Same priority level 905 */ 906 if (info->nlh && 907 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 908 return -EEXIST; 909 910 nlflags &= ~NLM_F_EXCL; 911 if (replace) { 912 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 913 found++; 914 break; 915 } 916 if (rt_can_ecmp) 917 fallback_ins = fallback_ins ?: ins; 918 goto next_iter; 919 } 920 921 if (rt6_duplicate_nexthop(iter, rt)) { 922 if (rt->rt6i_nsiblings) 923 rt->rt6i_nsiblings = 0; 924 if (!(iter->rt6i_flags & RTF_EXPIRES)) 925 return -EEXIST; 926 if (!(rt->rt6i_flags & RTF_EXPIRES)) 927 rt6_clean_expires(iter); 928 else 929 rt6_set_expires(iter, rt->dst.expires); 930 iter->rt6i_pmtu = rt->rt6i_pmtu; 931 return -EEXIST; 932 } 933 /* If we have the same destination and the same metric, 934 * but not the same gateway, then the route we try to 935 * add is sibling to this route, increment our counter 936 * of siblings, and later we will add our route to the 937 * list. 938 * Only static routes (which don't have flag 939 * RTF_EXPIRES) are used for ECMPv6. 940 * 941 * To avoid long list, we only had siblings if the 942 * route have a gateway. 943 */ 944 if (rt_can_ecmp && 945 rt6_qualify_for_ecmp(iter)) 946 rt->rt6i_nsiblings++; 947 } 948 949 if (iter->rt6i_metric > rt->rt6i_metric) 950 break; 951 952 next_iter: 953 ins = &iter->dst.rt6_next; 954 } 955 956 if (fallback_ins && !found) { 957 /* No ECMP-able route found, replace first non-ECMP one */ 958 ins = fallback_ins; 959 iter = rcu_dereference_protected(*ins, 960 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 961 found++; 962 } 963 964 /* Reset round-robin state, if necessary */ 965 if (ins == &fn->leaf) 966 fn->rr_ptr = NULL; 967 968 /* Link this route to others same route. */ 969 if (rt->rt6i_nsiblings) { 970 unsigned int rt6i_nsiblings; 971 struct rt6_info *sibling, *temp_sibling; 972 973 /* Find the first route that have the same metric */ 974 sibling = leaf; 975 while (sibling) { 976 if (sibling->rt6i_metric == rt->rt6i_metric && 977 rt6_qualify_for_ecmp(sibling)) { 978 list_add_tail(&rt->rt6i_siblings, 979 &sibling->rt6i_siblings); 980 break; 981 } 982 sibling = rcu_dereference_protected(sibling->dst.rt6_next, 983 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 984 } 985 /* For each sibling in the list, increment the counter of 986 * siblings. BUG() if counters does not match, list of siblings 987 * is broken! 988 */ 989 rt6i_nsiblings = 0; 990 list_for_each_entry_safe(sibling, temp_sibling, 991 &rt->rt6i_siblings, rt6i_siblings) { 992 sibling->rt6i_nsiblings++; 993 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings); 994 rt6i_nsiblings++; 995 } 996 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings); 997 } 998 999 /* 1000 * insert node 1001 */ 1002 if (!replace) { 1003 if (!add) 1004 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1005 1006 add: 1007 nlflags |= NLM_F_CREATE; 1008 err = fib6_commit_metrics(&rt->dst, mxc); 1009 if (err) 1010 return err; 1011 1012 rcu_assign_pointer(rt->dst.rt6_next, iter); 1013 atomic_inc(&rt->rt6i_ref); 1014 rcu_assign_pointer(rt->rt6i_node, fn); 1015 rcu_assign_pointer(*ins, rt); 1016 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD, 1017 rt, extack); 1018 if (!info->skip_notify) 1019 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1020 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1021 1022 if (!(fn->fn_flags & RTN_RTINFO)) { 1023 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1024 fn->fn_flags |= RTN_RTINFO; 1025 } 1026 1027 } else { 1028 int nsiblings; 1029 1030 if (!found) { 1031 if (add) 1032 goto add; 1033 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1034 return -ENOENT; 1035 } 1036 1037 err = fib6_commit_metrics(&rt->dst, mxc); 1038 if (err) 1039 return err; 1040 1041 atomic_inc(&rt->rt6i_ref); 1042 rcu_assign_pointer(rt->rt6i_node, fn); 1043 rt->dst.rt6_next = iter->dst.rt6_next; 1044 rcu_assign_pointer(*ins, rt); 1045 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE, 1046 rt, extack); 1047 if (!info->skip_notify) 1048 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1049 if (!(fn->fn_flags & RTN_RTINFO)) { 1050 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1051 fn->fn_flags |= RTN_RTINFO; 1052 } 1053 nsiblings = iter->rt6i_nsiblings; 1054 iter->rt6i_node = NULL; 1055 fib6_purge_rt(iter, fn, info->nl_net); 1056 if (rcu_access_pointer(fn->rr_ptr) == iter) 1057 fn->rr_ptr = NULL; 1058 rt6_release(iter); 1059 1060 if (nsiblings) { 1061 /* Replacing an ECMP route, remove all siblings */ 1062 ins = &rt->dst.rt6_next; 1063 iter = rcu_dereference_protected(*ins, 1064 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1065 while (iter) { 1066 if (iter->rt6i_metric > rt->rt6i_metric) 1067 break; 1068 if (rt6_qualify_for_ecmp(iter)) { 1069 *ins = iter->dst.rt6_next; 1070 iter->rt6i_node = NULL; 1071 fib6_purge_rt(iter, fn, info->nl_net); 1072 if (rcu_access_pointer(fn->rr_ptr) == iter) 1073 fn->rr_ptr = NULL; 1074 rt6_release(iter); 1075 nsiblings--; 1076 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1077 } else { 1078 ins = &iter->dst.rt6_next; 1079 } 1080 iter = rcu_dereference_protected(*ins, 1081 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1082 } 1083 WARN_ON(nsiblings != 0); 1084 } 1085 } 1086 1087 return 0; 1088 } 1089 1090 static void fib6_start_gc(struct net *net, struct rt6_info *rt) 1091 { 1092 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1093 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE))) 1094 mod_timer(&net->ipv6.ip6_fib_timer, 1095 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1096 } 1097 1098 void fib6_force_start_gc(struct net *net) 1099 { 1100 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1101 mod_timer(&net->ipv6.ip6_fib_timer, 1102 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1103 } 1104 1105 static void fib6_update_sernum_upto_root(struct rt6_info *rt, 1106 int sernum) 1107 { 1108 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node, 1109 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1110 1111 /* paired with smp_rmb() in rt6_get_cookie_safe() */ 1112 smp_wmb(); 1113 while (fn) { 1114 fn->fn_sernum = sernum; 1115 fn = rcu_dereference_protected(fn->parent, 1116 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1117 } 1118 } 1119 1120 /* 1121 * Add routing information to the routing tree. 1122 * <destination addr>/<source addr> 1123 * with source addr info in sub-trees 1124 * Need to own table->tb6_lock 1125 */ 1126 1127 int fib6_add(struct fib6_node *root, struct rt6_info *rt, 1128 struct nl_info *info, struct mx6_config *mxc, 1129 struct netlink_ext_ack *extack) 1130 { 1131 struct fib6_table *table = rt->rt6i_table; 1132 struct fib6_node *fn, *pn = NULL; 1133 int err = -ENOMEM; 1134 int allow_create = 1; 1135 int replace_required = 0; 1136 int sernum = fib6_new_sernum(info->nl_net); 1137 1138 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt))) 1139 return -EINVAL; 1140 if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE)) 1141 return -EINVAL; 1142 1143 if (info->nlh) { 1144 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1145 allow_create = 0; 1146 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1147 replace_required = 1; 1148 } 1149 if (!allow_create && !replace_required) 1150 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1151 1152 fn = fib6_add_1(info->nl_net, table, root, 1153 &rt->rt6i_dst.addr, rt->rt6i_dst.plen, 1154 offsetof(struct rt6_info, rt6i_dst), allow_create, 1155 replace_required, extack); 1156 if (IS_ERR(fn)) { 1157 err = PTR_ERR(fn); 1158 fn = NULL; 1159 goto out; 1160 } 1161 1162 pn = fn; 1163 1164 #ifdef CONFIG_IPV6_SUBTREES 1165 if (rt->rt6i_src.plen) { 1166 struct fib6_node *sn; 1167 1168 if (!rcu_access_pointer(fn->subtree)) { 1169 struct fib6_node *sfn; 1170 1171 /* 1172 * Create subtree. 1173 * 1174 * fn[main tree] 1175 * | 1176 * sfn[subtree root] 1177 * \ 1178 * sn[new leaf node] 1179 */ 1180 1181 /* Create subtree root node */ 1182 sfn = node_alloc(info->nl_net); 1183 if (!sfn) 1184 goto failure; 1185 1186 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 1187 rcu_assign_pointer(sfn->leaf, 1188 info->nl_net->ipv6.ip6_null_entry); 1189 sfn->fn_flags = RTN_ROOT; 1190 1191 /* Now add the first leaf node to new subtree */ 1192 1193 sn = fib6_add_1(info->nl_net, table, sfn, 1194 &rt->rt6i_src.addr, rt->rt6i_src.plen, 1195 offsetof(struct rt6_info, rt6i_src), 1196 allow_create, replace_required, extack); 1197 1198 if (IS_ERR(sn)) { 1199 /* If it is failed, discard just allocated 1200 root, and then (in failure) stale node 1201 in main tree. 1202 */ 1203 node_free_immediate(info->nl_net, sfn); 1204 err = PTR_ERR(sn); 1205 goto failure; 1206 } 1207 1208 /* Now link new subtree to main tree */ 1209 rcu_assign_pointer(sfn->parent, fn); 1210 rcu_assign_pointer(fn->subtree, sfn); 1211 } else { 1212 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1213 &rt->rt6i_src.addr, rt->rt6i_src.plen, 1214 offsetof(struct rt6_info, rt6i_src), 1215 allow_create, replace_required, extack); 1216 1217 if (IS_ERR(sn)) { 1218 err = PTR_ERR(sn); 1219 goto failure; 1220 } 1221 } 1222 1223 if (!rcu_access_pointer(fn->leaf)) { 1224 atomic_inc(&rt->rt6i_ref); 1225 rcu_assign_pointer(fn->leaf, rt); 1226 } 1227 fn = sn; 1228 } 1229 #endif 1230 1231 err = fib6_add_rt2node(fn, rt, info, mxc, extack); 1232 if (!err) { 1233 fib6_update_sernum_upto_root(rt, sernum); 1234 fib6_start_gc(info->nl_net, rt); 1235 } 1236 1237 out: 1238 if (err) { 1239 #ifdef CONFIG_IPV6_SUBTREES 1240 /* 1241 * If fib6_add_1 has cleared the old leaf pointer in the 1242 * super-tree leaf node we have to find a new one for it. 1243 */ 1244 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1245 lockdep_is_held(&table->tb6_lock)); 1246 if (pn != fn && pn_leaf == rt) { 1247 pn_leaf = NULL; 1248 RCU_INIT_POINTER(pn->leaf, NULL); 1249 atomic_dec(&rt->rt6i_ref); 1250 } 1251 if (pn != fn && !pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1252 pn_leaf = fib6_find_prefix(info->nl_net, table, pn); 1253 #if RT6_DEBUG >= 2 1254 if (!pn_leaf) { 1255 WARN_ON(!pn_leaf); 1256 pn_leaf = info->nl_net->ipv6.ip6_null_entry; 1257 } 1258 #endif 1259 atomic_inc(&pn_leaf->rt6i_ref); 1260 rcu_assign_pointer(pn->leaf, pn_leaf); 1261 } 1262 #endif 1263 goto failure; 1264 } 1265 return err; 1266 1267 failure: 1268 /* fn->leaf could be NULL if fn is an intermediate node and we 1269 * failed to add the new route to it in both subtree creation 1270 * failure and fib6_add_rt2node() failure case. 1271 * In both cases, fib6_repair_tree() should be called to fix 1272 * fn->leaf. 1273 */ 1274 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 1275 fib6_repair_tree(info->nl_net, table, fn); 1276 /* Always release dst as dst->__refcnt is guaranteed 1277 * to be taken before entering this function 1278 */ 1279 dst_release_immediate(&rt->dst); 1280 return err; 1281 } 1282 1283 /* 1284 * Routing tree lookup 1285 * 1286 */ 1287 1288 struct lookup_args { 1289 int offset; /* key offset on rt6_info */ 1290 const struct in6_addr *addr; /* search key */ 1291 }; 1292 1293 static struct fib6_node *fib6_lookup_1(struct fib6_node *root, 1294 struct lookup_args *args) 1295 { 1296 struct fib6_node *fn; 1297 __be32 dir; 1298 1299 if (unlikely(args->offset == 0)) 1300 return NULL; 1301 1302 /* 1303 * Descend on a tree 1304 */ 1305 1306 fn = root; 1307 1308 for (;;) { 1309 struct fib6_node *next; 1310 1311 dir = addr_bit_set(args->addr, fn->fn_bit); 1312 1313 next = dir ? rcu_dereference(fn->right) : 1314 rcu_dereference(fn->left); 1315 1316 if (next) { 1317 fn = next; 1318 continue; 1319 } 1320 break; 1321 } 1322 1323 while (fn) { 1324 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1325 1326 if (subtree || fn->fn_flags & RTN_RTINFO) { 1327 struct rt6_info *leaf = rcu_dereference(fn->leaf); 1328 struct rt6key *key; 1329 1330 if (!leaf) 1331 goto backtrack; 1332 1333 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1334 1335 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1336 #ifdef CONFIG_IPV6_SUBTREES 1337 if (subtree) { 1338 struct fib6_node *sfn; 1339 sfn = fib6_lookup_1(subtree, args + 1); 1340 if (!sfn) 1341 goto backtrack; 1342 fn = sfn; 1343 } 1344 #endif 1345 if (fn->fn_flags & RTN_RTINFO) 1346 return fn; 1347 } 1348 } 1349 backtrack: 1350 if (fn->fn_flags & RTN_ROOT) 1351 break; 1352 1353 fn = rcu_dereference(fn->parent); 1354 } 1355 1356 return NULL; 1357 } 1358 1359 /* called with rcu_read_lock() held 1360 */ 1361 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 1362 const struct in6_addr *saddr) 1363 { 1364 struct fib6_node *fn; 1365 struct lookup_args args[] = { 1366 { 1367 .offset = offsetof(struct rt6_info, rt6i_dst), 1368 .addr = daddr, 1369 }, 1370 #ifdef CONFIG_IPV6_SUBTREES 1371 { 1372 .offset = offsetof(struct rt6_info, rt6i_src), 1373 .addr = saddr, 1374 }, 1375 #endif 1376 { 1377 .offset = 0, /* sentinel */ 1378 } 1379 }; 1380 1381 fn = fib6_lookup_1(root, daddr ? args : args + 1); 1382 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1383 fn = root; 1384 1385 return fn; 1386 } 1387 1388 /* 1389 * Get node with specified destination prefix (and source prefix, 1390 * if subtrees are used) 1391 * exact_match == true means we try to find fn with exact match of 1392 * the passed in prefix addr 1393 * exact_match == false means we try to find fn with longest prefix 1394 * match of the passed in prefix addr. This is useful for finding fn 1395 * for cached route as it will be stored in the exception table under 1396 * the node with longest prefix length. 1397 */ 1398 1399 1400 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1401 const struct in6_addr *addr, 1402 int plen, int offset, 1403 bool exact_match) 1404 { 1405 struct fib6_node *fn, *prev = NULL; 1406 1407 for (fn = root; fn ; ) { 1408 struct rt6_info *leaf = rcu_dereference(fn->leaf); 1409 struct rt6key *key; 1410 1411 /* This node is being deleted */ 1412 if (!leaf) { 1413 if (plen <= fn->fn_bit) 1414 goto out; 1415 else 1416 goto next; 1417 } 1418 1419 key = (struct rt6key *)((u8 *)leaf + offset); 1420 1421 /* 1422 * Prefix match 1423 */ 1424 if (plen < fn->fn_bit || 1425 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1426 goto out; 1427 1428 if (plen == fn->fn_bit) 1429 return fn; 1430 1431 prev = fn; 1432 1433 next: 1434 /* 1435 * We have more bits to go 1436 */ 1437 if (addr_bit_set(addr, fn->fn_bit)) 1438 fn = rcu_dereference(fn->right); 1439 else 1440 fn = rcu_dereference(fn->left); 1441 } 1442 out: 1443 if (exact_match) 1444 return NULL; 1445 else 1446 return prev; 1447 } 1448 1449 struct fib6_node *fib6_locate(struct fib6_node *root, 1450 const struct in6_addr *daddr, int dst_len, 1451 const struct in6_addr *saddr, int src_len, 1452 bool exact_match) 1453 { 1454 struct fib6_node *fn; 1455 1456 fn = fib6_locate_1(root, daddr, dst_len, 1457 offsetof(struct rt6_info, rt6i_dst), 1458 exact_match); 1459 1460 #ifdef CONFIG_IPV6_SUBTREES 1461 if (src_len) { 1462 WARN_ON(saddr == NULL); 1463 if (fn) { 1464 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1465 1466 if (subtree) { 1467 fn = fib6_locate_1(subtree, saddr, src_len, 1468 offsetof(struct rt6_info, rt6i_src), 1469 exact_match); 1470 } 1471 } 1472 } 1473 #endif 1474 1475 if (fn && fn->fn_flags & RTN_RTINFO) 1476 return fn; 1477 1478 return NULL; 1479 } 1480 1481 1482 /* 1483 * Deletion 1484 * 1485 */ 1486 1487 static struct rt6_info *fib6_find_prefix(struct net *net, 1488 struct fib6_table *table, 1489 struct fib6_node *fn) 1490 { 1491 struct fib6_node *child_left, *child_right; 1492 1493 if (fn->fn_flags & RTN_ROOT) 1494 return net->ipv6.ip6_null_entry; 1495 1496 while (fn) { 1497 child_left = rcu_dereference_protected(fn->left, 1498 lockdep_is_held(&table->tb6_lock)); 1499 child_right = rcu_dereference_protected(fn->right, 1500 lockdep_is_held(&table->tb6_lock)); 1501 if (child_left) 1502 return rcu_dereference_protected(child_left->leaf, 1503 lockdep_is_held(&table->tb6_lock)); 1504 if (child_right) 1505 return rcu_dereference_protected(child_right->leaf, 1506 lockdep_is_held(&table->tb6_lock)); 1507 1508 fn = FIB6_SUBTREE(fn); 1509 } 1510 return NULL; 1511 } 1512 1513 /* 1514 * Called to trim the tree of intermediate nodes when possible. "fn" 1515 * is the node we want to try and remove. 1516 * Need to own table->tb6_lock 1517 */ 1518 1519 static struct fib6_node *fib6_repair_tree(struct net *net, 1520 struct fib6_table *table, 1521 struct fib6_node *fn) 1522 { 1523 int children; 1524 int nstate; 1525 struct fib6_node *child; 1526 struct fib6_walker *w; 1527 int iter = 0; 1528 1529 for (;;) { 1530 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1531 lockdep_is_held(&table->tb6_lock)); 1532 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1533 lockdep_is_held(&table->tb6_lock)); 1534 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1535 lockdep_is_held(&table->tb6_lock)); 1536 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1537 lockdep_is_held(&table->tb6_lock)); 1538 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1539 lockdep_is_held(&table->tb6_lock)); 1540 struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1541 lockdep_is_held(&table->tb6_lock)); 1542 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1543 lockdep_is_held(&table->tb6_lock)); 1544 struct rt6_info *new_fn_leaf; 1545 1546 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1547 iter++; 1548 1549 WARN_ON(fn->fn_flags & RTN_RTINFO); 1550 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1551 WARN_ON(fn_leaf); 1552 1553 children = 0; 1554 child = NULL; 1555 if (fn_r) 1556 child = fn_r, children |= 1; 1557 if (fn_l) 1558 child = fn_l, children |= 2; 1559 1560 if (children == 3 || FIB6_SUBTREE(fn) 1561 #ifdef CONFIG_IPV6_SUBTREES 1562 /* Subtree root (i.e. fn) may have one child */ 1563 || (children && fn->fn_flags & RTN_ROOT) 1564 #endif 1565 ) { 1566 new_fn_leaf = fib6_find_prefix(net, table, fn); 1567 #if RT6_DEBUG >= 2 1568 if (!new_fn_leaf) { 1569 WARN_ON(!new_fn_leaf); 1570 new_fn_leaf = net->ipv6.ip6_null_entry; 1571 } 1572 #endif 1573 atomic_inc(&new_fn_leaf->rt6i_ref); 1574 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1575 return pn; 1576 } 1577 1578 #ifdef CONFIG_IPV6_SUBTREES 1579 if (FIB6_SUBTREE(pn) == fn) { 1580 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1581 RCU_INIT_POINTER(pn->subtree, NULL); 1582 nstate = FWS_L; 1583 } else { 1584 WARN_ON(fn->fn_flags & RTN_ROOT); 1585 #endif 1586 if (pn_r == fn) 1587 rcu_assign_pointer(pn->right, child); 1588 else if (pn_l == fn) 1589 rcu_assign_pointer(pn->left, child); 1590 #if RT6_DEBUG >= 2 1591 else 1592 WARN_ON(1); 1593 #endif 1594 if (child) 1595 rcu_assign_pointer(child->parent, pn); 1596 nstate = FWS_R; 1597 #ifdef CONFIG_IPV6_SUBTREES 1598 } 1599 #endif 1600 1601 read_lock(&net->ipv6.fib6_walker_lock); 1602 FOR_WALKERS(net, w) { 1603 if (!child) { 1604 if (w->node == fn) { 1605 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1606 w->node = pn; 1607 w->state = nstate; 1608 } 1609 } else { 1610 if (w->node == fn) { 1611 w->node = child; 1612 if (children&2) { 1613 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1614 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1615 } else { 1616 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1617 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1618 } 1619 } 1620 } 1621 } 1622 read_unlock(&net->ipv6.fib6_walker_lock); 1623 1624 node_free(net, fn); 1625 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1626 return pn; 1627 1628 RCU_INIT_POINTER(pn->leaf, NULL); 1629 rt6_release(pn_leaf); 1630 fn = pn; 1631 } 1632 } 1633 1634 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1635 struct rt6_info __rcu **rtp, struct nl_info *info) 1636 { 1637 struct fib6_walker *w; 1638 struct rt6_info *rt = rcu_dereference_protected(*rtp, 1639 lockdep_is_held(&table->tb6_lock)); 1640 struct net *net = info->nl_net; 1641 1642 RT6_TRACE("fib6_del_route\n"); 1643 1644 WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE); 1645 1646 /* Unlink it */ 1647 *rtp = rt->dst.rt6_next; 1648 rt->rt6i_node = NULL; 1649 net->ipv6.rt6_stats->fib_rt_entries--; 1650 net->ipv6.rt6_stats->fib_discarded_routes++; 1651 1652 /* Flush all cached dst in exception table */ 1653 rt6_flush_exceptions(rt); 1654 1655 /* Reset round-robin state, if necessary */ 1656 if (rcu_access_pointer(fn->rr_ptr) == rt) 1657 fn->rr_ptr = NULL; 1658 1659 /* Remove this entry from other siblings */ 1660 if (rt->rt6i_nsiblings) { 1661 struct rt6_info *sibling, *next_sibling; 1662 1663 list_for_each_entry_safe(sibling, next_sibling, 1664 &rt->rt6i_siblings, rt6i_siblings) 1665 sibling->rt6i_nsiblings--; 1666 rt->rt6i_nsiblings = 0; 1667 list_del_init(&rt->rt6i_siblings); 1668 } 1669 1670 /* Adjust walkers */ 1671 read_lock(&net->ipv6.fib6_walker_lock); 1672 FOR_WALKERS(net, w) { 1673 if (w->state == FWS_C && w->leaf == rt) { 1674 RT6_TRACE("walker %p adjusted by delroute\n", w); 1675 w->leaf = rcu_dereference_protected(rt->dst.rt6_next, 1676 lockdep_is_held(&table->tb6_lock)); 1677 if (!w->leaf) 1678 w->state = FWS_U; 1679 } 1680 } 1681 read_unlock(&net->ipv6.fib6_walker_lock); 1682 1683 /* If it was last route, expunge its radix tree node */ 1684 if (!rcu_access_pointer(fn->leaf)) { 1685 fn->fn_flags &= ~RTN_RTINFO; 1686 net->ipv6.rt6_stats->fib_route_nodes--; 1687 fn = fib6_repair_tree(net, table, fn); 1688 } 1689 1690 fib6_purge_rt(rt, fn, net); 1691 1692 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL); 1693 if (!info->skip_notify) 1694 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1695 rt6_release(rt); 1696 } 1697 1698 /* Need to own table->tb6_lock */ 1699 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1700 { 1701 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node, 1702 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1703 struct fib6_table *table = rt->rt6i_table; 1704 struct net *net = info->nl_net; 1705 struct rt6_info __rcu **rtp; 1706 struct rt6_info __rcu **rtp_next; 1707 1708 #if RT6_DEBUG >= 2 1709 if (rt->dst.obsolete > 0) { 1710 WARN_ON(fn); 1711 return -ENOENT; 1712 } 1713 #endif 1714 if (!fn || rt == net->ipv6.ip6_null_entry) 1715 return -ENOENT; 1716 1717 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1718 1719 /* remove cached dst from exception table */ 1720 if (rt->rt6i_flags & RTF_CACHE) 1721 return rt6_remove_exception_rt(rt); 1722 1723 /* 1724 * Walk the leaf entries looking for ourself 1725 */ 1726 1727 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 1728 struct rt6_info *cur = rcu_dereference_protected(*rtp, 1729 lockdep_is_held(&table->tb6_lock)); 1730 if (rt == cur) { 1731 fib6_del_route(table, fn, rtp, info); 1732 return 0; 1733 } 1734 rtp_next = &cur->dst.rt6_next; 1735 } 1736 return -ENOENT; 1737 } 1738 1739 /* 1740 * Tree traversal function. 1741 * 1742 * Certainly, it is not interrupt safe. 1743 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1744 * It means, that we can modify tree during walking 1745 * and use this function for garbage collection, clone pruning, 1746 * cleaning tree when a device goes down etc. etc. 1747 * 1748 * It guarantees that every node will be traversed, 1749 * and that it will be traversed only once. 1750 * 1751 * Callback function w->func may return: 1752 * 0 -> continue walking. 1753 * positive value -> walking is suspended (used by tree dumps, 1754 * and probably by gc, if it will be split to several slices) 1755 * negative value -> terminate walking. 1756 * 1757 * The function itself returns: 1758 * 0 -> walk is complete. 1759 * >0 -> walk is incomplete (i.e. suspended) 1760 * <0 -> walk is terminated by an error. 1761 * 1762 * This function is called with tb6_lock held. 1763 */ 1764 1765 static int fib6_walk_continue(struct fib6_walker *w) 1766 { 1767 struct fib6_node *fn, *pn, *left, *right; 1768 1769 /* w->root should always be table->tb6_root */ 1770 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 1771 1772 for (;;) { 1773 fn = w->node; 1774 if (!fn) 1775 return 0; 1776 1777 switch (w->state) { 1778 #ifdef CONFIG_IPV6_SUBTREES 1779 case FWS_S: 1780 if (FIB6_SUBTREE(fn)) { 1781 w->node = FIB6_SUBTREE(fn); 1782 continue; 1783 } 1784 w->state = FWS_L; 1785 #endif 1786 /* fall through */ 1787 case FWS_L: 1788 left = rcu_dereference_protected(fn->left, 1); 1789 if (left) { 1790 w->node = left; 1791 w->state = FWS_INIT; 1792 continue; 1793 } 1794 w->state = FWS_R; 1795 /* fall through */ 1796 case FWS_R: 1797 right = rcu_dereference_protected(fn->right, 1); 1798 if (right) { 1799 w->node = right; 1800 w->state = FWS_INIT; 1801 continue; 1802 } 1803 w->state = FWS_C; 1804 w->leaf = rcu_dereference_protected(fn->leaf, 1); 1805 /* fall through */ 1806 case FWS_C: 1807 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 1808 int err; 1809 1810 if (w->skip) { 1811 w->skip--; 1812 goto skip; 1813 } 1814 1815 err = w->func(w); 1816 if (err) 1817 return err; 1818 1819 w->count++; 1820 continue; 1821 } 1822 skip: 1823 w->state = FWS_U; 1824 /* fall through */ 1825 case FWS_U: 1826 if (fn == w->root) 1827 return 0; 1828 pn = rcu_dereference_protected(fn->parent, 1); 1829 left = rcu_dereference_protected(pn->left, 1); 1830 right = rcu_dereference_protected(pn->right, 1); 1831 w->node = pn; 1832 #ifdef CONFIG_IPV6_SUBTREES 1833 if (FIB6_SUBTREE(pn) == fn) { 1834 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1835 w->state = FWS_L; 1836 continue; 1837 } 1838 #endif 1839 if (left == fn) { 1840 w->state = FWS_R; 1841 continue; 1842 } 1843 if (right == fn) { 1844 w->state = FWS_C; 1845 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 1846 continue; 1847 } 1848 #if RT6_DEBUG >= 2 1849 WARN_ON(1); 1850 #endif 1851 } 1852 } 1853 } 1854 1855 static int fib6_walk(struct net *net, struct fib6_walker *w) 1856 { 1857 int res; 1858 1859 w->state = FWS_INIT; 1860 w->node = w->root; 1861 1862 fib6_walker_link(net, w); 1863 res = fib6_walk_continue(w); 1864 if (res <= 0) 1865 fib6_walker_unlink(net, w); 1866 return res; 1867 } 1868 1869 static int fib6_clean_node(struct fib6_walker *w) 1870 { 1871 int res; 1872 struct rt6_info *rt; 1873 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 1874 struct nl_info info = { 1875 .nl_net = c->net, 1876 }; 1877 1878 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 1879 w->node->fn_sernum != c->sernum) 1880 w->node->fn_sernum = c->sernum; 1881 1882 if (!c->func) { 1883 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 1884 w->leaf = NULL; 1885 return 0; 1886 } 1887 1888 for_each_fib6_walker_rt(w) { 1889 res = c->func(rt, c->arg); 1890 if (res < 0) { 1891 w->leaf = rt; 1892 res = fib6_del(rt, &info); 1893 if (res) { 1894 #if RT6_DEBUG >= 2 1895 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 1896 __func__, rt, 1897 rcu_access_pointer(rt->rt6i_node), 1898 res); 1899 #endif 1900 continue; 1901 } 1902 return 0; 1903 } 1904 WARN_ON(res != 0); 1905 } 1906 w->leaf = rt; 1907 return 0; 1908 } 1909 1910 /* 1911 * Convenient frontend to tree walker. 1912 * 1913 * func is called on each route. 1914 * It may return -1 -> delete this route. 1915 * 0 -> continue walking 1916 */ 1917 1918 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1919 int (*func)(struct rt6_info *, void *arg), 1920 int sernum, void *arg) 1921 { 1922 struct fib6_cleaner c; 1923 1924 c.w.root = root; 1925 c.w.func = fib6_clean_node; 1926 c.w.count = 0; 1927 c.w.skip = 0; 1928 c.func = func; 1929 c.sernum = sernum; 1930 c.arg = arg; 1931 c.net = net; 1932 1933 fib6_walk(net, &c.w); 1934 } 1935 1936 static void __fib6_clean_all(struct net *net, 1937 int (*func)(struct rt6_info *, void *), 1938 int sernum, void *arg) 1939 { 1940 struct fib6_table *table; 1941 struct hlist_head *head; 1942 unsigned int h; 1943 1944 rcu_read_lock(); 1945 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1946 head = &net->ipv6.fib_table_hash[h]; 1947 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 1948 spin_lock_bh(&table->tb6_lock); 1949 fib6_clean_tree(net, &table->tb6_root, 1950 func, sernum, arg); 1951 spin_unlock_bh(&table->tb6_lock); 1952 } 1953 } 1954 rcu_read_unlock(); 1955 } 1956 1957 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *), 1958 void *arg) 1959 { 1960 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg); 1961 } 1962 1963 static void fib6_flush_trees(struct net *net) 1964 { 1965 int new_sernum = fib6_new_sernum(net); 1966 1967 __fib6_clean_all(net, NULL, new_sernum, NULL); 1968 } 1969 1970 /* 1971 * Garbage collection 1972 */ 1973 1974 static int fib6_age(struct rt6_info *rt, void *arg) 1975 { 1976 struct fib6_gc_args *gc_args = arg; 1977 unsigned long now = jiffies; 1978 1979 /* 1980 * check addrconf expiration here. 1981 * Routes are expired even if they are in use. 1982 */ 1983 1984 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) { 1985 if (time_after(now, rt->dst.expires)) { 1986 RT6_TRACE("expiring %p\n", rt); 1987 return -1; 1988 } 1989 gc_args->more++; 1990 } 1991 1992 /* Also age clones in the exception table. 1993 * Note, that clones are aged out 1994 * only if they are not in use now. 1995 */ 1996 rt6_age_exceptions(rt, gc_args, now); 1997 1998 return 0; 1999 } 2000 2001 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2002 { 2003 struct fib6_gc_args gc_args; 2004 unsigned long now; 2005 2006 if (force) { 2007 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2008 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2009 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2010 return; 2011 } 2012 gc_args.timeout = expires ? (int)expires : 2013 net->ipv6.sysctl.ip6_rt_gc_interval; 2014 gc_args.more = 0; 2015 2016 fib6_clean_all(net, fib6_age, &gc_args); 2017 now = jiffies; 2018 net->ipv6.ip6_rt_last_gc = now; 2019 2020 if (gc_args.more) 2021 mod_timer(&net->ipv6.ip6_fib_timer, 2022 round_jiffies(now 2023 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2024 else 2025 del_timer(&net->ipv6.ip6_fib_timer); 2026 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2027 } 2028 2029 static void fib6_gc_timer_cb(struct timer_list *t) 2030 { 2031 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2032 2033 fib6_run_gc(0, arg, true); 2034 } 2035 2036 static int __net_init fib6_net_init(struct net *net) 2037 { 2038 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2039 int err; 2040 2041 err = fib6_notifier_init(net); 2042 if (err) 2043 return err; 2044 2045 spin_lock_init(&net->ipv6.fib6_gc_lock); 2046 rwlock_init(&net->ipv6.fib6_walker_lock); 2047 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2048 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2049 2050 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2051 if (!net->ipv6.rt6_stats) 2052 goto out_timer; 2053 2054 /* Avoid false sharing : Use at least a full cache line */ 2055 size = max_t(size_t, size, L1_CACHE_BYTES); 2056 2057 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2058 if (!net->ipv6.fib_table_hash) 2059 goto out_rt6_stats; 2060 2061 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2062 GFP_KERNEL); 2063 if (!net->ipv6.fib6_main_tbl) 2064 goto out_fib_table_hash; 2065 2066 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2067 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2068 net->ipv6.ip6_null_entry); 2069 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2070 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2071 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2072 2073 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2074 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2075 GFP_KERNEL); 2076 if (!net->ipv6.fib6_local_tbl) 2077 goto out_fib6_main_tbl; 2078 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2079 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2080 net->ipv6.ip6_null_entry); 2081 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2082 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2083 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2084 #endif 2085 fib6_tables_init(net); 2086 2087 return 0; 2088 2089 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2090 out_fib6_main_tbl: 2091 kfree(net->ipv6.fib6_main_tbl); 2092 #endif 2093 out_fib_table_hash: 2094 kfree(net->ipv6.fib_table_hash); 2095 out_rt6_stats: 2096 kfree(net->ipv6.rt6_stats); 2097 out_timer: 2098 fib6_notifier_exit(net); 2099 return -ENOMEM; 2100 } 2101 2102 static void fib6_net_exit(struct net *net) 2103 { 2104 unsigned int i; 2105 2106 rt6_ifdown(net, NULL); 2107 del_timer_sync(&net->ipv6.ip6_fib_timer); 2108 2109 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2110 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2111 struct hlist_node *tmp; 2112 struct fib6_table *tb; 2113 2114 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2115 hlist_del(&tb->tb6_hlist); 2116 fib6_free_table(tb); 2117 } 2118 } 2119 2120 kfree(net->ipv6.fib_table_hash); 2121 kfree(net->ipv6.rt6_stats); 2122 fib6_notifier_exit(net); 2123 } 2124 2125 static struct pernet_operations fib6_net_ops = { 2126 .init = fib6_net_init, 2127 .exit = fib6_net_exit, 2128 }; 2129 2130 int __init fib6_init(void) 2131 { 2132 int ret = -ENOMEM; 2133 2134 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2135 sizeof(struct fib6_node), 2136 0, SLAB_HWCACHE_ALIGN, 2137 NULL); 2138 if (!fib6_node_kmem) 2139 goto out; 2140 2141 ret = register_pernet_subsys(&fib6_net_ops); 2142 if (ret) 2143 goto out_kmem_cache_create; 2144 2145 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib, 2146 0); 2147 if (ret) 2148 goto out_unregister_subsys; 2149 2150 __fib6_flush_trees = fib6_flush_trees; 2151 out: 2152 return ret; 2153 2154 out_unregister_subsys: 2155 unregister_pernet_subsys(&fib6_net_ops); 2156 out_kmem_cache_create: 2157 kmem_cache_destroy(fib6_node_kmem); 2158 goto out; 2159 } 2160 2161 void fib6_gc_cleanup(void) 2162 { 2163 unregister_pernet_subsys(&fib6_net_ops); 2164 kmem_cache_destroy(fib6_node_kmem); 2165 } 2166 2167 #ifdef CONFIG_PROC_FS 2168 2169 struct ipv6_route_iter { 2170 struct seq_net_private p; 2171 struct fib6_walker w; 2172 loff_t skip; 2173 struct fib6_table *tbl; 2174 int sernum; 2175 }; 2176 2177 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2178 { 2179 struct rt6_info *rt = v; 2180 struct ipv6_route_iter *iter = seq->private; 2181 2182 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen); 2183 2184 #ifdef CONFIG_IPV6_SUBTREES 2185 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen); 2186 #else 2187 seq_puts(seq, "00000000000000000000000000000000 00 "); 2188 #endif 2189 if (rt->rt6i_flags & RTF_GATEWAY) 2190 seq_printf(seq, "%pi6", &rt->rt6i_gateway); 2191 else 2192 seq_puts(seq, "00000000000000000000000000000000"); 2193 2194 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2195 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt), 2196 rt->dst.__use, rt->rt6i_flags, 2197 rt->dst.dev ? rt->dst.dev->name : ""); 2198 iter->w.leaf = NULL; 2199 return 0; 2200 } 2201 2202 static int ipv6_route_yield(struct fib6_walker *w) 2203 { 2204 struct ipv6_route_iter *iter = w->args; 2205 2206 if (!iter->skip) 2207 return 1; 2208 2209 do { 2210 iter->w.leaf = rcu_dereference_protected( 2211 iter->w.leaf->dst.rt6_next, 2212 lockdep_is_held(&iter->tbl->tb6_lock)); 2213 iter->skip--; 2214 if (!iter->skip && iter->w.leaf) 2215 return 1; 2216 } while (iter->w.leaf); 2217 2218 return 0; 2219 } 2220 2221 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2222 struct net *net) 2223 { 2224 memset(&iter->w, 0, sizeof(iter->w)); 2225 iter->w.func = ipv6_route_yield; 2226 iter->w.root = &iter->tbl->tb6_root; 2227 iter->w.state = FWS_INIT; 2228 iter->w.node = iter->w.root; 2229 iter->w.args = iter; 2230 iter->sernum = iter->w.root->fn_sernum; 2231 INIT_LIST_HEAD(&iter->w.lh); 2232 fib6_walker_link(net, &iter->w); 2233 } 2234 2235 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2236 struct net *net) 2237 { 2238 unsigned int h; 2239 struct hlist_node *node; 2240 2241 if (tbl) { 2242 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2243 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2244 } else { 2245 h = 0; 2246 node = NULL; 2247 } 2248 2249 while (!node && h < FIB6_TABLE_HASHSZ) { 2250 node = rcu_dereference_bh( 2251 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2252 } 2253 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2254 } 2255 2256 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2257 { 2258 if (iter->sernum != iter->w.root->fn_sernum) { 2259 iter->sernum = iter->w.root->fn_sernum; 2260 iter->w.state = FWS_INIT; 2261 iter->w.node = iter->w.root; 2262 WARN_ON(iter->w.skip); 2263 iter->w.skip = iter->w.count; 2264 } 2265 } 2266 2267 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2268 { 2269 int r; 2270 struct rt6_info *n; 2271 struct net *net = seq_file_net(seq); 2272 struct ipv6_route_iter *iter = seq->private; 2273 2274 if (!v) 2275 goto iter_table; 2276 2277 n = rcu_dereference_bh(((struct rt6_info *)v)->dst.rt6_next); 2278 if (n) { 2279 ++*pos; 2280 return n; 2281 } 2282 2283 iter_table: 2284 ipv6_route_check_sernum(iter); 2285 spin_lock_bh(&iter->tbl->tb6_lock); 2286 r = fib6_walk_continue(&iter->w); 2287 spin_unlock_bh(&iter->tbl->tb6_lock); 2288 if (r > 0) { 2289 if (v) 2290 ++*pos; 2291 return iter->w.leaf; 2292 } else if (r < 0) { 2293 fib6_walker_unlink(net, &iter->w); 2294 return NULL; 2295 } 2296 fib6_walker_unlink(net, &iter->w); 2297 2298 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2299 if (!iter->tbl) 2300 return NULL; 2301 2302 ipv6_route_seq_setup_walk(iter, net); 2303 goto iter_table; 2304 } 2305 2306 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2307 __acquires(RCU_BH) 2308 { 2309 struct net *net = seq_file_net(seq); 2310 struct ipv6_route_iter *iter = seq->private; 2311 2312 rcu_read_lock_bh(); 2313 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2314 iter->skip = *pos; 2315 2316 if (iter->tbl) { 2317 ipv6_route_seq_setup_walk(iter, net); 2318 return ipv6_route_seq_next(seq, NULL, pos); 2319 } else { 2320 return NULL; 2321 } 2322 } 2323 2324 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2325 { 2326 struct fib6_walker *w = &iter->w; 2327 return w->node && !(w->state == FWS_U && w->node == w->root); 2328 } 2329 2330 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2331 __releases(RCU_BH) 2332 { 2333 struct net *net = seq_file_net(seq); 2334 struct ipv6_route_iter *iter = seq->private; 2335 2336 if (ipv6_route_iter_active(iter)) 2337 fib6_walker_unlink(net, &iter->w); 2338 2339 rcu_read_unlock_bh(); 2340 } 2341 2342 static const struct seq_operations ipv6_route_seq_ops = { 2343 .start = ipv6_route_seq_start, 2344 .next = ipv6_route_seq_next, 2345 .stop = ipv6_route_seq_stop, 2346 .show = ipv6_route_seq_show 2347 }; 2348 2349 int ipv6_route_open(struct inode *inode, struct file *file) 2350 { 2351 return seq_open_net(inode, file, &ipv6_route_seq_ops, 2352 sizeof(struct ipv6_route_iter)); 2353 } 2354 2355 #endif /* CONFIG_PROC_FS */ 2356