1 /* 2 * Linux INET6 implementation 3 * Forwarding Information Database 4 * 5 * Authors: 6 * Pedro Roque <roque@di.fc.ul.pt> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Changes: 14 * Yuji SEKIYA @USAGI: Support default route on router node; 15 * remove ip6_null_entry from the top of 16 * routing table. 17 * Ville Nuorvala: Fixed routing subtrees. 18 */ 19 20 #define pr_fmt(fmt) "IPv6: " fmt 21 22 #include <linux/errno.h> 23 #include <linux/types.h> 24 #include <linux/net.h> 25 #include <linux/route.h> 26 #include <linux/netdevice.h> 27 #include <linux/in6.h> 28 #include <linux/init.h> 29 #include <linux/list.h> 30 #include <linux/slab.h> 31 32 #include <net/ipv6.h> 33 #include <net/ndisc.h> 34 #include <net/addrconf.h> 35 #include <net/lwtunnel.h> 36 #include <net/fib_notifier.h> 37 38 #include <net/ip6_fib.h> 39 #include <net/ip6_route.h> 40 41 static struct kmem_cache *fib6_node_kmem __read_mostly; 42 43 struct fib6_cleaner { 44 struct fib6_walker w; 45 struct net *net; 46 int (*func)(struct rt6_info *, void *arg); 47 int sernum; 48 void *arg; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct rt6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old; 95 96 do { 97 old = atomic_read(&net->ipv6.fib6_sernum); 98 new = old < INT_MAX ? old + 1 : 1; 99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 100 old, new) != old); 101 return new; 102 } 103 104 enum { 105 FIB6_NO_SERNUM_CHANGE = 0, 106 }; 107 108 void fib6_update_sernum(struct rt6_info *rt) 109 { 110 struct net *net = dev_net(rt->dst.dev); 111 struct fib6_node *fn; 112 113 fn = rcu_dereference_protected(rt->rt6i_node, 114 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 115 if (fn) 116 fn->fn_sernum = fib6_new_sernum(net); 117 } 118 119 /* 120 * Auxiliary address test functions for the radix tree. 121 * 122 * These assume a 32bit processor (although it will work on 123 * 64bit processors) 124 */ 125 126 /* 127 * test bit 128 */ 129 #if defined(__LITTLE_ENDIAN) 130 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 131 #else 132 # define BITOP_BE32_SWIZZLE 0 133 #endif 134 135 static __be32 addr_bit_set(const void *token, int fn_bit) 136 { 137 const __be32 *addr = token; 138 /* 139 * Here, 140 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 141 * is optimized version of 142 * htonl(1 << ((~fn_bit)&0x1F)) 143 * See include/asm-generic/bitops/le.h. 144 */ 145 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 146 addr[fn_bit >> 5]; 147 } 148 149 static struct fib6_node *node_alloc(struct net *net) 150 { 151 struct fib6_node *fn; 152 153 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 154 if (fn) 155 net->ipv6.rt6_stats->fib_nodes++; 156 157 return fn; 158 } 159 160 static void node_free_immediate(struct net *net, struct fib6_node *fn) 161 { 162 kmem_cache_free(fib6_node_kmem, fn); 163 net->ipv6.rt6_stats->fib_nodes--; 164 } 165 166 static void node_free_rcu(struct rcu_head *head) 167 { 168 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 169 170 kmem_cache_free(fib6_node_kmem, fn); 171 } 172 173 static void node_free(struct net *net, struct fib6_node *fn) 174 { 175 call_rcu(&fn->rcu, node_free_rcu); 176 net->ipv6.rt6_stats->fib_nodes--; 177 } 178 179 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt) 180 { 181 int cpu; 182 183 if (!non_pcpu_rt->rt6i_pcpu) 184 return; 185 186 for_each_possible_cpu(cpu) { 187 struct rt6_info **ppcpu_rt; 188 struct rt6_info *pcpu_rt; 189 190 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu); 191 pcpu_rt = *ppcpu_rt; 192 if (pcpu_rt) { 193 dst_dev_put(&pcpu_rt->dst); 194 dst_release(&pcpu_rt->dst); 195 *ppcpu_rt = NULL; 196 } 197 } 198 } 199 EXPORT_SYMBOL_GPL(rt6_free_pcpu); 200 201 static void fib6_free_table(struct fib6_table *table) 202 { 203 inetpeer_invalidate_tree(&table->tb6_peers); 204 kfree(table); 205 } 206 207 static void fib6_link_table(struct net *net, struct fib6_table *tb) 208 { 209 unsigned int h; 210 211 /* 212 * Initialize table lock at a single place to give lockdep a key, 213 * tables aren't visible prior to being linked to the list. 214 */ 215 spin_lock_init(&tb->tb6_lock); 216 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 217 218 /* 219 * No protection necessary, this is the only list mutatation 220 * operation, tables never disappear once they exist. 221 */ 222 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 223 } 224 225 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 226 227 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 228 { 229 struct fib6_table *table; 230 231 table = kzalloc(sizeof(*table), GFP_ATOMIC); 232 if (table) { 233 table->tb6_id = id; 234 rcu_assign_pointer(table->tb6_root.leaf, 235 net->ipv6.ip6_null_entry); 236 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 237 inet_peer_base_init(&table->tb6_peers); 238 } 239 240 return table; 241 } 242 243 struct fib6_table *fib6_new_table(struct net *net, u32 id) 244 { 245 struct fib6_table *tb; 246 247 if (id == 0) 248 id = RT6_TABLE_MAIN; 249 tb = fib6_get_table(net, id); 250 if (tb) 251 return tb; 252 253 tb = fib6_alloc_table(net, id); 254 if (tb) 255 fib6_link_table(net, tb); 256 257 return tb; 258 } 259 EXPORT_SYMBOL_GPL(fib6_new_table); 260 261 struct fib6_table *fib6_get_table(struct net *net, u32 id) 262 { 263 struct fib6_table *tb; 264 struct hlist_head *head; 265 unsigned int h; 266 267 if (id == 0) 268 id = RT6_TABLE_MAIN; 269 h = id & (FIB6_TABLE_HASHSZ - 1); 270 rcu_read_lock(); 271 head = &net->ipv6.fib_table_hash[h]; 272 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 273 if (tb->tb6_id == id) { 274 rcu_read_unlock(); 275 return tb; 276 } 277 } 278 rcu_read_unlock(); 279 280 return NULL; 281 } 282 EXPORT_SYMBOL_GPL(fib6_get_table); 283 284 static void __net_init fib6_tables_init(struct net *net) 285 { 286 fib6_link_table(net, net->ipv6.fib6_main_tbl); 287 fib6_link_table(net, net->ipv6.fib6_local_tbl); 288 } 289 #else 290 291 struct fib6_table *fib6_new_table(struct net *net, u32 id) 292 { 293 return fib6_get_table(net, id); 294 } 295 296 struct fib6_table *fib6_get_table(struct net *net, u32 id) 297 { 298 return net->ipv6.fib6_main_tbl; 299 } 300 301 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 302 int flags, pol_lookup_t lookup) 303 { 304 struct rt6_info *rt; 305 306 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags); 307 if (rt->dst.error == -EAGAIN) { 308 ip6_rt_put(rt); 309 rt = net->ipv6.ip6_null_entry; 310 dst_hold(&rt->dst); 311 } 312 313 return &rt->dst; 314 } 315 316 static void __net_init fib6_tables_init(struct net *net) 317 { 318 fib6_link_table(net, net->ipv6.fib6_main_tbl); 319 } 320 321 #endif 322 323 unsigned int fib6_tables_seq_read(struct net *net) 324 { 325 unsigned int h, fib_seq = 0; 326 327 rcu_read_lock(); 328 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 329 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 330 struct fib6_table *tb; 331 332 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 333 fib_seq += tb->fib_seq; 334 } 335 rcu_read_unlock(); 336 337 return fib_seq; 338 } 339 340 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net, 341 enum fib_event_type event_type, 342 struct rt6_info *rt) 343 { 344 struct fib6_entry_notifier_info info = { 345 .rt = rt, 346 }; 347 348 return call_fib6_notifier(nb, net, event_type, &info.info); 349 } 350 351 static int call_fib6_entry_notifiers(struct net *net, 352 enum fib_event_type event_type, 353 struct rt6_info *rt, 354 struct netlink_ext_ack *extack) 355 { 356 struct fib6_entry_notifier_info info = { 357 .info.extack = extack, 358 .rt = rt, 359 }; 360 361 rt->rt6i_table->fib_seq++; 362 return call_fib6_notifiers(net, event_type, &info.info); 363 } 364 365 struct fib6_dump_arg { 366 struct net *net; 367 struct notifier_block *nb; 368 }; 369 370 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg) 371 { 372 if (rt == arg->net->ipv6.ip6_null_entry) 373 return; 374 call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt); 375 } 376 377 static int fib6_node_dump(struct fib6_walker *w) 378 { 379 struct rt6_info *rt; 380 381 for_each_fib6_walker_rt(w) 382 fib6_rt_dump(rt, w->args); 383 w->leaf = NULL; 384 return 0; 385 } 386 387 static void fib6_table_dump(struct net *net, struct fib6_table *tb, 388 struct fib6_walker *w) 389 { 390 w->root = &tb->tb6_root; 391 spin_lock_bh(&tb->tb6_lock); 392 fib6_walk(net, w); 393 spin_unlock_bh(&tb->tb6_lock); 394 } 395 396 /* Called with rcu_read_lock() */ 397 int fib6_tables_dump(struct net *net, struct notifier_block *nb) 398 { 399 struct fib6_dump_arg arg; 400 struct fib6_walker *w; 401 unsigned int h; 402 403 w = kzalloc(sizeof(*w), GFP_ATOMIC); 404 if (!w) 405 return -ENOMEM; 406 407 w->func = fib6_node_dump; 408 arg.net = net; 409 arg.nb = nb; 410 w->args = &arg; 411 412 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 413 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 414 struct fib6_table *tb; 415 416 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 417 fib6_table_dump(net, tb, w); 418 } 419 420 kfree(w); 421 422 return 0; 423 } 424 425 static int fib6_dump_node(struct fib6_walker *w) 426 { 427 int res; 428 struct rt6_info *rt; 429 430 for_each_fib6_walker_rt(w) { 431 res = rt6_dump_route(rt, w->args); 432 if (res < 0) { 433 /* Frame is full, suspend walking */ 434 w->leaf = rt; 435 return 1; 436 } 437 438 /* Multipath routes are dumped in one route with the 439 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 440 * last sibling of this route (no need to dump the 441 * sibling routes again) 442 */ 443 if (rt->rt6i_nsiblings) 444 rt = list_last_entry(&rt->rt6i_siblings, 445 struct rt6_info, 446 rt6i_siblings); 447 } 448 w->leaf = NULL; 449 return 0; 450 } 451 452 static void fib6_dump_end(struct netlink_callback *cb) 453 { 454 struct net *net = sock_net(cb->skb->sk); 455 struct fib6_walker *w = (void *)cb->args[2]; 456 457 if (w) { 458 if (cb->args[4]) { 459 cb->args[4] = 0; 460 fib6_walker_unlink(net, w); 461 } 462 cb->args[2] = 0; 463 kfree(w); 464 } 465 cb->done = (void *)cb->args[3]; 466 cb->args[1] = 3; 467 } 468 469 static int fib6_dump_done(struct netlink_callback *cb) 470 { 471 fib6_dump_end(cb); 472 return cb->done ? cb->done(cb) : 0; 473 } 474 475 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 476 struct netlink_callback *cb) 477 { 478 struct net *net = sock_net(skb->sk); 479 struct fib6_walker *w; 480 int res; 481 482 w = (void *)cb->args[2]; 483 w->root = &table->tb6_root; 484 485 if (cb->args[4] == 0) { 486 w->count = 0; 487 w->skip = 0; 488 489 spin_lock_bh(&table->tb6_lock); 490 res = fib6_walk(net, w); 491 spin_unlock_bh(&table->tb6_lock); 492 if (res > 0) { 493 cb->args[4] = 1; 494 cb->args[5] = w->root->fn_sernum; 495 } 496 } else { 497 if (cb->args[5] != w->root->fn_sernum) { 498 /* Begin at the root if the tree changed */ 499 cb->args[5] = w->root->fn_sernum; 500 w->state = FWS_INIT; 501 w->node = w->root; 502 w->skip = w->count; 503 } else 504 w->skip = 0; 505 506 spin_lock_bh(&table->tb6_lock); 507 res = fib6_walk_continue(w); 508 spin_unlock_bh(&table->tb6_lock); 509 if (res <= 0) { 510 fib6_walker_unlink(net, w); 511 cb->args[4] = 0; 512 } 513 } 514 515 return res; 516 } 517 518 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 519 { 520 struct net *net = sock_net(skb->sk); 521 unsigned int h, s_h; 522 unsigned int e = 0, s_e; 523 struct rt6_rtnl_dump_arg arg; 524 struct fib6_walker *w; 525 struct fib6_table *tb; 526 struct hlist_head *head; 527 int res = 0; 528 529 s_h = cb->args[0]; 530 s_e = cb->args[1]; 531 532 w = (void *)cb->args[2]; 533 if (!w) { 534 /* New dump: 535 * 536 * 1. hook callback destructor. 537 */ 538 cb->args[3] = (long)cb->done; 539 cb->done = fib6_dump_done; 540 541 /* 542 * 2. allocate and initialize walker. 543 */ 544 w = kzalloc(sizeof(*w), GFP_ATOMIC); 545 if (!w) 546 return -ENOMEM; 547 w->func = fib6_dump_node; 548 cb->args[2] = (long)w; 549 } 550 551 arg.skb = skb; 552 arg.cb = cb; 553 arg.net = net; 554 w->args = &arg; 555 556 rcu_read_lock(); 557 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 558 e = 0; 559 head = &net->ipv6.fib_table_hash[h]; 560 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 561 if (e < s_e) 562 goto next; 563 res = fib6_dump_table(tb, skb, cb); 564 if (res != 0) 565 goto out; 566 next: 567 e++; 568 } 569 } 570 out: 571 rcu_read_unlock(); 572 cb->args[1] = e; 573 cb->args[0] = h; 574 575 res = res < 0 ? res : skb->len; 576 if (res <= 0) 577 fib6_dump_end(cb); 578 return res; 579 } 580 581 /* 582 * Routing Table 583 * 584 * return the appropriate node for a routing tree "add" operation 585 * by either creating and inserting or by returning an existing 586 * node. 587 */ 588 589 static struct fib6_node *fib6_add_1(struct net *net, 590 struct fib6_table *table, 591 struct fib6_node *root, 592 struct in6_addr *addr, int plen, 593 int offset, int allow_create, 594 int replace_required, 595 struct netlink_ext_ack *extack) 596 { 597 struct fib6_node *fn, *in, *ln; 598 struct fib6_node *pn = NULL; 599 struct rt6key *key; 600 int bit; 601 __be32 dir = 0; 602 603 RT6_TRACE("fib6_add_1\n"); 604 605 /* insert node in tree */ 606 607 fn = root; 608 609 do { 610 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 611 lockdep_is_held(&table->tb6_lock)); 612 key = (struct rt6key *)((u8 *)leaf + offset); 613 614 /* 615 * Prefix match 616 */ 617 if (plen < fn->fn_bit || 618 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 619 if (!allow_create) { 620 if (replace_required) { 621 NL_SET_ERR_MSG(extack, 622 "Can not replace route - no match found"); 623 pr_warn("Can't replace route, no match found\n"); 624 return ERR_PTR(-ENOENT); 625 } 626 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 627 } 628 goto insert_above; 629 } 630 631 /* 632 * Exact match ? 633 */ 634 635 if (plen == fn->fn_bit) { 636 /* clean up an intermediate node */ 637 if (!(fn->fn_flags & RTN_RTINFO)) { 638 RCU_INIT_POINTER(fn->leaf, NULL); 639 rt6_release(leaf); 640 } 641 642 return fn; 643 } 644 645 /* 646 * We have more bits to go 647 */ 648 649 /* Try to walk down on tree. */ 650 dir = addr_bit_set(addr, fn->fn_bit); 651 pn = fn; 652 fn = dir ? 653 rcu_dereference_protected(fn->right, 654 lockdep_is_held(&table->tb6_lock)) : 655 rcu_dereference_protected(fn->left, 656 lockdep_is_held(&table->tb6_lock)); 657 } while (fn); 658 659 if (!allow_create) { 660 /* We should not create new node because 661 * NLM_F_REPLACE was specified without NLM_F_CREATE 662 * I assume it is safe to require NLM_F_CREATE when 663 * REPLACE flag is used! Later we may want to remove the 664 * check for replace_required, because according 665 * to netlink specification, NLM_F_CREATE 666 * MUST be specified if new route is created. 667 * That would keep IPv6 consistent with IPv4 668 */ 669 if (replace_required) { 670 NL_SET_ERR_MSG(extack, 671 "Can not replace route - no match found"); 672 pr_warn("Can't replace route, no match found\n"); 673 return ERR_PTR(-ENOENT); 674 } 675 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 676 } 677 /* 678 * We walked to the bottom of tree. 679 * Create new leaf node without children. 680 */ 681 682 ln = node_alloc(net); 683 684 if (!ln) 685 return ERR_PTR(-ENOMEM); 686 ln->fn_bit = plen; 687 RCU_INIT_POINTER(ln->parent, pn); 688 689 if (dir) 690 rcu_assign_pointer(pn->right, ln); 691 else 692 rcu_assign_pointer(pn->left, ln); 693 694 return ln; 695 696 697 insert_above: 698 /* 699 * split since we don't have a common prefix anymore or 700 * we have a less significant route. 701 * we've to insert an intermediate node on the list 702 * this new node will point to the one we need to create 703 * and the current 704 */ 705 706 pn = rcu_dereference_protected(fn->parent, 707 lockdep_is_held(&table->tb6_lock)); 708 709 /* find 1st bit in difference between the 2 addrs. 710 711 See comment in __ipv6_addr_diff: bit may be an invalid value, 712 but if it is >= plen, the value is ignored in any case. 713 */ 714 715 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 716 717 /* 718 * (intermediate)[in] 719 * / \ 720 * (new leaf node)[ln] (old node)[fn] 721 */ 722 if (plen > bit) { 723 in = node_alloc(net); 724 ln = node_alloc(net); 725 726 if (!in || !ln) { 727 if (in) 728 node_free_immediate(net, in); 729 if (ln) 730 node_free_immediate(net, ln); 731 return ERR_PTR(-ENOMEM); 732 } 733 734 /* 735 * new intermediate node. 736 * RTN_RTINFO will 737 * be off since that an address that chooses one of 738 * the branches would not match less specific routes 739 * in the other branch 740 */ 741 742 in->fn_bit = bit; 743 744 RCU_INIT_POINTER(in->parent, pn); 745 in->leaf = fn->leaf; 746 atomic_inc(&rcu_dereference_protected(in->leaf, 747 lockdep_is_held(&table->tb6_lock))->rt6i_ref); 748 749 /* update parent pointer */ 750 if (dir) 751 rcu_assign_pointer(pn->right, in); 752 else 753 rcu_assign_pointer(pn->left, in); 754 755 ln->fn_bit = plen; 756 757 RCU_INIT_POINTER(ln->parent, in); 758 rcu_assign_pointer(fn->parent, in); 759 760 if (addr_bit_set(addr, bit)) { 761 rcu_assign_pointer(in->right, ln); 762 rcu_assign_pointer(in->left, fn); 763 } else { 764 rcu_assign_pointer(in->left, ln); 765 rcu_assign_pointer(in->right, fn); 766 } 767 } else { /* plen <= bit */ 768 769 /* 770 * (new leaf node)[ln] 771 * / \ 772 * (old node)[fn] NULL 773 */ 774 775 ln = node_alloc(net); 776 777 if (!ln) 778 return ERR_PTR(-ENOMEM); 779 780 ln->fn_bit = plen; 781 782 RCU_INIT_POINTER(ln->parent, pn); 783 784 if (addr_bit_set(&key->addr, plen)) 785 RCU_INIT_POINTER(ln->right, fn); 786 else 787 RCU_INIT_POINTER(ln->left, fn); 788 789 rcu_assign_pointer(fn->parent, ln); 790 791 if (dir) 792 rcu_assign_pointer(pn->right, ln); 793 else 794 rcu_assign_pointer(pn->left, ln); 795 } 796 return ln; 797 } 798 799 static bool rt6_qualify_for_ecmp(struct rt6_info *rt) 800 { 801 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) == 802 RTF_GATEWAY; 803 } 804 805 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc) 806 { 807 int i; 808 809 for (i = 0; i < RTAX_MAX; i++) { 810 if (test_bit(i, mxc->mx_valid)) 811 mp[i] = mxc->mx[i]; 812 } 813 } 814 815 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc) 816 { 817 if (!mxc->mx) 818 return 0; 819 820 if (dst->flags & DST_HOST) { 821 u32 *mp = dst_metrics_write_ptr(dst); 822 823 if (unlikely(!mp)) 824 return -ENOMEM; 825 826 fib6_copy_metrics(mp, mxc); 827 } else { 828 dst_init_metrics(dst, mxc->mx, false); 829 830 /* We've stolen mx now. */ 831 mxc->mx = NULL; 832 } 833 834 return 0; 835 } 836 837 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn, 838 struct net *net) 839 { 840 struct fib6_table *table = rt->rt6i_table; 841 842 if (atomic_read(&rt->rt6i_ref) != 1) { 843 /* This route is used as dummy address holder in some split 844 * nodes. It is not leaked, but it still holds other resources, 845 * which must be released in time. So, scan ascendant nodes 846 * and replace dummy references to this route with references 847 * to still alive ones. 848 */ 849 while (fn) { 850 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 851 lockdep_is_held(&table->tb6_lock)); 852 struct rt6_info *new_leaf; 853 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 854 new_leaf = fib6_find_prefix(net, table, fn); 855 atomic_inc(&new_leaf->rt6i_ref); 856 rcu_assign_pointer(fn->leaf, new_leaf); 857 rt6_release(rt); 858 } 859 fn = rcu_dereference_protected(fn->parent, 860 lockdep_is_held(&table->tb6_lock)); 861 } 862 } 863 } 864 865 /* 866 * Insert routing information in a node. 867 */ 868 869 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt, 870 struct nl_info *info, struct mx6_config *mxc, 871 struct netlink_ext_ack *extack) 872 { 873 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf, 874 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 875 struct rt6_info *iter = NULL; 876 struct rt6_info __rcu **ins; 877 struct rt6_info __rcu **fallback_ins = NULL; 878 int replace = (info->nlh && 879 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 880 int add = (!info->nlh || 881 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 882 int found = 0; 883 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 884 u16 nlflags = NLM_F_EXCL; 885 int err; 886 887 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 888 nlflags |= NLM_F_APPEND; 889 890 ins = &fn->leaf; 891 892 for (iter = leaf; iter; 893 iter = rcu_dereference_protected(iter->rt6_next, 894 lockdep_is_held(&rt->rt6i_table->tb6_lock))) { 895 /* 896 * Search for duplicates 897 */ 898 899 if (iter->rt6i_metric == rt->rt6i_metric) { 900 /* 901 * Same priority level 902 */ 903 if (info->nlh && 904 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 905 return -EEXIST; 906 907 nlflags &= ~NLM_F_EXCL; 908 if (replace) { 909 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 910 found++; 911 break; 912 } 913 if (rt_can_ecmp) 914 fallback_ins = fallback_ins ?: ins; 915 goto next_iter; 916 } 917 918 if (rt6_duplicate_nexthop(iter, rt)) { 919 if (rt->rt6i_nsiblings) 920 rt->rt6i_nsiblings = 0; 921 if (!(iter->rt6i_flags & RTF_EXPIRES)) 922 return -EEXIST; 923 if (!(rt->rt6i_flags & RTF_EXPIRES)) 924 rt6_clean_expires(iter); 925 else 926 rt6_set_expires(iter, rt->dst.expires); 927 iter->rt6i_pmtu = rt->rt6i_pmtu; 928 return -EEXIST; 929 } 930 /* If we have the same destination and the same metric, 931 * but not the same gateway, then the route we try to 932 * add is sibling to this route, increment our counter 933 * of siblings, and later we will add our route to the 934 * list. 935 * Only static routes (which don't have flag 936 * RTF_EXPIRES) are used for ECMPv6. 937 * 938 * To avoid long list, we only had siblings if the 939 * route have a gateway. 940 */ 941 if (rt_can_ecmp && 942 rt6_qualify_for_ecmp(iter)) 943 rt->rt6i_nsiblings++; 944 } 945 946 if (iter->rt6i_metric > rt->rt6i_metric) 947 break; 948 949 next_iter: 950 ins = &iter->rt6_next; 951 } 952 953 if (fallback_ins && !found) { 954 /* No ECMP-able route found, replace first non-ECMP one */ 955 ins = fallback_ins; 956 iter = rcu_dereference_protected(*ins, 957 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 958 found++; 959 } 960 961 /* Reset round-robin state, if necessary */ 962 if (ins == &fn->leaf) 963 fn->rr_ptr = NULL; 964 965 /* Link this route to others same route. */ 966 if (rt->rt6i_nsiblings) { 967 unsigned int rt6i_nsiblings; 968 struct rt6_info *sibling, *temp_sibling; 969 970 /* Find the first route that have the same metric */ 971 sibling = leaf; 972 while (sibling) { 973 if (sibling->rt6i_metric == rt->rt6i_metric && 974 rt6_qualify_for_ecmp(sibling)) { 975 list_add_tail(&rt->rt6i_siblings, 976 &sibling->rt6i_siblings); 977 break; 978 } 979 sibling = rcu_dereference_protected(sibling->rt6_next, 980 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 981 } 982 /* For each sibling in the list, increment the counter of 983 * siblings. BUG() if counters does not match, list of siblings 984 * is broken! 985 */ 986 rt6i_nsiblings = 0; 987 list_for_each_entry_safe(sibling, temp_sibling, 988 &rt->rt6i_siblings, rt6i_siblings) { 989 sibling->rt6i_nsiblings++; 990 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings); 991 rt6i_nsiblings++; 992 } 993 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings); 994 } 995 996 /* 997 * insert node 998 */ 999 if (!replace) { 1000 if (!add) 1001 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1002 1003 add: 1004 nlflags |= NLM_F_CREATE; 1005 err = fib6_commit_metrics(&rt->dst, mxc); 1006 if (err) 1007 return err; 1008 1009 rcu_assign_pointer(rt->rt6_next, iter); 1010 atomic_inc(&rt->rt6i_ref); 1011 rcu_assign_pointer(rt->rt6i_node, fn); 1012 rcu_assign_pointer(*ins, rt); 1013 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD, 1014 rt, extack); 1015 if (!info->skip_notify) 1016 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1017 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1018 1019 if (!(fn->fn_flags & RTN_RTINFO)) { 1020 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1021 fn->fn_flags |= RTN_RTINFO; 1022 } 1023 1024 } else { 1025 int nsiblings; 1026 1027 if (!found) { 1028 if (add) 1029 goto add; 1030 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1031 return -ENOENT; 1032 } 1033 1034 err = fib6_commit_metrics(&rt->dst, mxc); 1035 if (err) 1036 return err; 1037 1038 atomic_inc(&rt->rt6i_ref); 1039 rcu_assign_pointer(rt->rt6i_node, fn); 1040 rt->rt6_next = iter->rt6_next; 1041 rcu_assign_pointer(*ins, rt); 1042 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE, 1043 rt, extack); 1044 if (!info->skip_notify) 1045 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1046 if (!(fn->fn_flags & RTN_RTINFO)) { 1047 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1048 fn->fn_flags |= RTN_RTINFO; 1049 } 1050 nsiblings = iter->rt6i_nsiblings; 1051 iter->rt6i_node = NULL; 1052 fib6_purge_rt(iter, fn, info->nl_net); 1053 if (rcu_access_pointer(fn->rr_ptr) == iter) 1054 fn->rr_ptr = NULL; 1055 rt6_release(iter); 1056 1057 if (nsiblings) { 1058 /* Replacing an ECMP route, remove all siblings */ 1059 ins = &rt->rt6_next; 1060 iter = rcu_dereference_protected(*ins, 1061 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1062 while (iter) { 1063 if (iter->rt6i_metric > rt->rt6i_metric) 1064 break; 1065 if (rt6_qualify_for_ecmp(iter)) { 1066 *ins = iter->rt6_next; 1067 iter->rt6i_node = NULL; 1068 fib6_purge_rt(iter, fn, info->nl_net); 1069 if (rcu_access_pointer(fn->rr_ptr) == iter) 1070 fn->rr_ptr = NULL; 1071 rt6_release(iter); 1072 nsiblings--; 1073 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1074 } else { 1075 ins = &iter->rt6_next; 1076 } 1077 iter = rcu_dereference_protected(*ins, 1078 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1079 } 1080 WARN_ON(nsiblings != 0); 1081 } 1082 } 1083 1084 return 0; 1085 } 1086 1087 static void fib6_start_gc(struct net *net, struct rt6_info *rt) 1088 { 1089 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1090 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE))) 1091 mod_timer(&net->ipv6.ip6_fib_timer, 1092 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1093 } 1094 1095 void fib6_force_start_gc(struct net *net) 1096 { 1097 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1098 mod_timer(&net->ipv6.ip6_fib_timer, 1099 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1100 } 1101 1102 static void __fib6_update_sernum_upto_root(struct rt6_info *rt, 1103 int sernum) 1104 { 1105 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node, 1106 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1107 1108 /* paired with smp_rmb() in rt6_get_cookie_safe() */ 1109 smp_wmb(); 1110 while (fn) { 1111 fn->fn_sernum = sernum; 1112 fn = rcu_dereference_protected(fn->parent, 1113 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1114 } 1115 } 1116 1117 void fib6_update_sernum_upto_root(struct net *net, struct rt6_info *rt) 1118 { 1119 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1120 } 1121 1122 /* 1123 * Add routing information to the routing tree. 1124 * <destination addr>/<source addr> 1125 * with source addr info in sub-trees 1126 * Need to own table->tb6_lock 1127 */ 1128 1129 int fib6_add(struct fib6_node *root, struct rt6_info *rt, 1130 struct nl_info *info, struct mx6_config *mxc, 1131 struct netlink_ext_ack *extack) 1132 { 1133 struct fib6_table *table = rt->rt6i_table; 1134 struct fib6_node *fn, *pn = NULL; 1135 int err = -ENOMEM; 1136 int allow_create = 1; 1137 int replace_required = 0; 1138 int sernum = fib6_new_sernum(info->nl_net); 1139 1140 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt))) 1141 return -EINVAL; 1142 if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE)) 1143 return -EINVAL; 1144 1145 if (info->nlh) { 1146 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1147 allow_create = 0; 1148 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1149 replace_required = 1; 1150 } 1151 if (!allow_create && !replace_required) 1152 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1153 1154 fn = fib6_add_1(info->nl_net, table, root, 1155 &rt->rt6i_dst.addr, rt->rt6i_dst.plen, 1156 offsetof(struct rt6_info, rt6i_dst), allow_create, 1157 replace_required, extack); 1158 if (IS_ERR(fn)) { 1159 err = PTR_ERR(fn); 1160 fn = NULL; 1161 goto out; 1162 } 1163 1164 pn = fn; 1165 1166 #ifdef CONFIG_IPV6_SUBTREES 1167 if (rt->rt6i_src.plen) { 1168 struct fib6_node *sn; 1169 1170 if (!rcu_access_pointer(fn->subtree)) { 1171 struct fib6_node *sfn; 1172 1173 /* 1174 * Create subtree. 1175 * 1176 * fn[main tree] 1177 * | 1178 * sfn[subtree root] 1179 * \ 1180 * sn[new leaf node] 1181 */ 1182 1183 /* Create subtree root node */ 1184 sfn = node_alloc(info->nl_net); 1185 if (!sfn) 1186 goto failure; 1187 1188 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref); 1189 rcu_assign_pointer(sfn->leaf, 1190 info->nl_net->ipv6.ip6_null_entry); 1191 sfn->fn_flags = RTN_ROOT; 1192 1193 /* Now add the first leaf node to new subtree */ 1194 1195 sn = fib6_add_1(info->nl_net, table, sfn, 1196 &rt->rt6i_src.addr, rt->rt6i_src.plen, 1197 offsetof(struct rt6_info, rt6i_src), 1198 allow_create, replace_required, extack); 1199 1200 if (IS_ERR(sn)) { 1201 /* If it is failed, discard just allocated 1202 root, and then (in failure) stale node 1203 in main tree. 1204 */ 1205 node_free_immediate(info->nl_net, sfn); 1206 err = PTR_ERR(sn); 1207 goto failure; 1208 } 1209 1210 /* Now link new subtree to main tree */ 1211 rcu_assign_pointer(sfn->parent, fn); 1212 rcu_assign_pointer(fn->subtree, sfn); 1213 } else { 1214 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1215 &rt->rt6i_src.addr, rt->rt6i_src.plen, 1216 offsetof(struct rt6_info, rt6i_src), 1217 allow_create, replace_required, extack); 1218 1219 if (IS_ERR(sn)) { 1220 err = PTR_ERR(sn); 1221 goto failure; 1222 } 1223 } 1224 1225 if (!rcu_access_pointer(fn->leaf)) { 1226 atomic_inc(&rt->rt6i_ref); 1227 rcu_assign_pointer(fn->leaf, rt); 1228 } 1229 fn = sn; 1230 } 1231 #endif 1232 1233 err = fib6_add_rt2node(fn, rt, info, mxc, extack); 1234 if (!err) { 1235 __fib6_update_sernum_upto_root(rt, sernum); 1236 fib6_start_gc(info->nl_net, rt); 1237 } 1238 1239 out: 1240 if (err) { 1241 #ifdef CONFIG_IPV6_SUBTREES 1242 /* 1243 * If fib6_add_1 has cleared the old leaf pointer in the 1244 * super-tree leaf node we have to find a new one for it. 1245 */ 1246 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1247 lockdep_is_held(&table->tb6_lock)); 1248 if (pn != fn && pn_leaf == rt) { 1249 pn_leaf = NULL; 1250 RCU_INIT_POINTER(pn->leaf, NULL); 1251 atomic_dec(&rt->rt6i_ref); 1252 } 1253 if (pn != fn && !pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1254 pn_leaf = fib6_find_prefix(info->nl_net, table, pn); 1255 #if RT6_DEBUG >= 2 1256 if (!pn_leaf) { 1257 WARN_ON(!pn_leaf); 1258 pn_leaf = info->nl_net->ipv6.ip6_null_entry; 1259 } 1260 #endif 1261 atomic_inc(&pn_leaf->rt6i_ref); 1262 rcu_assign_pointer(pn->leaf, pn_leaf); 1263 } 1264 #endif 1265 goto failure; 1266 } 1267 return err; 1268 1269 failure: 1270 /* fn->leaf could be NULL if fn is an intermediate node and we 1271 * failed to add the new route to it in both subtree creation 1272 * failure and fib6_add_rt2node() failure case. 1273 * In both cases, fib6_repair_tree() should be called to fix 1274 * fn->leaf. 1275 */ 1276 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT))) 1277 fib6_repair_tree(info->nl_net, table, fn); 1278 /* Always release dst as dst->__refcnt is guaranteed 1279 * to be taken before entering this function 1280 */ 1281 dst_release_immediate(&rt->dst); 1282 return err; 1283 } 1284 1285 /* 1286 * Routing tree lookup 1287 * 1288 */ 1289 1290 struct lookup_args { 1291 int offset; /* key offset on rt6_info */ 1292 const struct in6_addr *addr; /* search key */ 1293 }; 1294 1295 static struct fib6_node *fib6_lookup_1(struct fib6_node *root, 1296 struct lookup_args *args) 1297 { 1298 struct fib6_node *fn; 1299 __be32 dir; 1300 1301 if (unlikely(args->offset == 0)) 1302 return NULL; 1303 1304 /* 1305 * Descend on a tree 1306 */ 1307 1308 fn = root; 1309 1310 for (;;) { 1311 struct fib6_node *next; 1312 1313 dir = addr_bit_set(args->addr, fn->fn_bit); 1314 1315 next = dir ? rcu_dereference(fn->right) : 1316 rcu_dereference(fn->left); 1317 1318 if (next) { 1319 fn = next; 1320 continue; 1321 } 1322 break; 1323 } 1324 1325 while (fn) { 1326 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1327 1328 if (subtree || fn->fn_flags & RTN_RTINFO) { 1329 struct rt6_info *leaf = rcu_dereference(fn->leaf); 1330 struct rt6key *key; 1331 1332 if (!leaf) 1333 goto backtrack; 1334 1335 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1336 1337 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1338 #ifdef CONFIG_IPV6_SUBTREES 1339 if (subtree) { 1340 struct fib6_node *sfn; 1341 sfn = fib6_lookup_1(subtree, args + 1); 1342 if (!sfn) 1343 goto backtrack; 1344 fn = sfn; 1345 } 1346 #endif 1347 if (fn->fn_flags & RTN_RTINFO) 1348 return fn; 1349 } 1350 } 1351 backtrack: 1352 if (fn->fn_flags & RTN_ROOT) 1353 break; 1354 1355 fn = rcu_dereference(fn->parent); 1356 } 1357 1358 return NULL; 1359 } 1360 1361 /* called with rcu_read_lock() held 1362 */ 1363 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr, 1364 const struct in6_addr *saddr) 1365 { 1366 struct fib6_node *fn; 1367 struct lookup_args args[] = { 1368 { 1369 .offset = offsetof(struct rt6_info, rt6i_dst), 1370 .addr = daddr, 1371 }, 1372 #ifdef CONFIG_IPV6_SUBTREES 1373 { 1374 .offset = offsetof(struct rt6_info, rt6i_src), 1375 .addr = saddr, 1376 }, 1377 #endif 1378 { 1379 .offset = 0, /* sentinel */ 1380 } 1381 }; 1382 1383 fn = fib6_lookup_1(root, daddr ? args : args + 1); 1384 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1385 fn = root; 1386 1387 return fn; 1388 } 1389 1390 /* 1391 * Get node with specified destination prefix (and source prefix, 1392 * if subtrees are used) 1393 * exact_match == true means we try to find fn with exact match of 1394 * the passed in prefix addr 1395 * exact_match == false means we try to find fn with longest prefix 1396 * match of the passed in prefix addr. This is useful for finding fn 1397 * for cached route as it will be stored in the exception table under 1398 * the node with longest prefix length. 1399 */ 1400 1401 1402 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1403 const struct in6_addr *addr, 1404 int plen, int offset, 1405 bool exact_match) 1406 { 1407 struct fib6_node *fn, *prev = NULL; 1408 1409 for (fn = root; fn ; ) { 1410 struct rt6_info *leaf = rcu_dereference(fn->leaf); 1411 struct rt6key *key; 1412 1413 /* This node is being deleted */ 1414 if (!leaf) { 1415 if (plen <= fn->fn_bit) 1416 goto out; 1417 else 1418 goto next; 1419 } 1420 1421 key = (struct rt6key *)((u8 *)leaf + offset); 1422 1423 /* 1424 * Prefix match 1425 */ 1426 if (plen < fn->fn_bit || 1427 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1428 goto out; 1429 1430 if (plen == fn->fn_bit) 1431 return fn; 1432 1433 prev = fn; 1434 1435 next: 1436 /* 1437 * We have more bits to go 1438 */ 1439 if (addr_bit_set(addr, fn->fn_bit)) 1440 fn = rcu_dereference(fn->right); 1441 else 1442 fn = rcu_dereference(fn->left); 1443 } 1444 out: 1445 if (exact_match) 1446 return NULL; 1447 else 1448 return prev; 1449 } 1450 1451 struct fib6_node *fib6_locate(struct fib6_node *root, 1452 const struct in6_addr *daddr, int dst_len, 1453 const struct in6_addr *saddr, int src_len, 1454 bool exact_match) 1455 { 1456 struct fib6_node *fn; 1457 1458 fn = fib6_locate_1(root, daddr, dst_len, 1459 offsetof(struct rt6_info, rt6i_dst), 1460 exact_match); 1461 1462 #ifdef CONFIG_IPV6_SUBTREES 1463 if (src_len) { 1464 WARN_ON(saddr == NULL); 1465 if (fn) { 1466 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1467 1468 if (subtree) { 1469 fn = fib6_locate_1(subtree, saddr, src_len, 1470 offsetof(struct rt6_info, rt6i_src), 1471 exact_match); 1472 } 1473 } 1474 } 1475 #endif 1476 1477 if (fn && fn->fn_flags & RTN_RTINFO) 1478 return fn; 1479 1480 return NULL; 1481 } 1482 1483 1484 /* 1485 * Deletion 1486 * 1487 */ 1488 1489 static struct rt6_info *fib6_find_prefix(struct net *net, 1490 struct fib6_table *table, 1491 struct fib6_node *fn) 1492 { 1493 struct fib6_node *child_left, *child_right; 1494 1495 if (fn->fn_flags & RTN_ROOT) 1496 return net->ipv6.ip6_null_entry; 1497 1498 while (fn) { 1499 child_left = rcu_dereference_protected(fn->left, 1500 lockdep_is_held(&table->tb6_lock)); 1501 child_right = rcu_dereference_protected(fn->right, 1502 lockdep_is_held(&table->tb6_lock)); 1503 if (child_left) 1504 return rcu_dereference_protected(child_left->leaf, 1505 lockdep_is_held(&table->tb6_lock)); 1506 if (child_right) 1507 return rcu_dereference_protected(child_right->leaf, 1508 lockdep_is_held(&table->tb6_lock)); 1509 1510 fn = FIB6_SUBTREE(fn); 1511 } 1512 return NULL; 1513 } 1514 1515 /* 1516 * Called to trim the tree of intermediate nodes when possible. "fn" 1517 * is the node we want to try and remove. 1518 * Need to own table->tb6_lock 1519 */ 1520 1521 static struct fib6_node *fib6_repair_tree(struct net *net, 1522 struct fib6_table *table, 1523 struct fib6_node *fn) 1524 { 1525 int children; 1526 int nstate; 1527 struct fib6_node *child; 1528 struct fib6_walker *w; 1529 int iter = 0; 1530 1531 for (;;) { 1532 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1533 lockdep_is_held(&table->tb6_lock)); 1534 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1535 lockdep_is_held(&table->tb6_lock)); 1536 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1537 lockdep_is_held(&table->tb6_lock)); 1538 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1539 lockdep_is_held(&table->tb6_lock)); 1540 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1541 lockdep_is_held(&table->tb6_lock)); 1542 struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1543 lockdep_is_held(&table->tb6_lock)); 1544 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1545 lockdep_is_held(&table->tb6_lock)); 1546 struct rt6_info *new_fn_leaf; 1547 1548 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1549 iter++; 1550 1551 WARN_ON(fn->fn_flags & RTN_RTINFO); 1552 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1553 WARN_ON(fn_leaf); 1554 1555 children = 0; 1556 child = NULL; 1557 if (fn_r) 1558 child = fn_r, children |= 1; 1559 if (fn_l) 1560 child = fn_l, children |= 2; 1561 1562 if (children == 3 || FIB6_SUBTREE(fn) 1563 #ifdef CONFIG_IPV6_SUBTREES 1564 /* Subtree root (i.e. fn) may have one child */ 1565 || (children && fn->fn_flags & RTN_ROOT) 1566 #endif 1567 ) { 1568 new_fn_leaf = fib6_find_prefix(net, table, fn); 1569 #if RT6_DEBUG >= 2 1570 if (!new_fn_leaf) { 1571 WARN_ON(!new_fn_leaf); 1572 new_fn_leaf = net->ipv6.ip6_null_entry; 1573 } 1574 #endif 1575 atomic_inc(&new_fn_leaf->rt6i_ref); 1576 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1577 return pn; 1578 } 1579 1580 #ifdef CONFIG_IPV6_SUBTREES 1581 if (FIB6_SUBTREE(pn) == fn) { 1582 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1583 RCU_INIT_POINTER(pn->subtree, NULL); 1584 nstate = FWS_L; 1585 } else { 1586 WARN_ON(fn->fn_flags & RTN_ROOT); 1587 #endif 1588 if (pn_r == fn) 1589 rcu_assign_pointer(pn->right, child); 1590 else if (pn_l == fn) 1591 rcu_assign_pointer(pn->left, child); 1592 #if RT6_DEBUG >= 2 1593 else 1594 WARN_ON(1); 1595 #endif 1596 if (child) 1597 rcu_assign_pointer(child->parent, pn); 1598 nstate = FWS_R; 1599 #ifdef CONFIG_IPV6_SUBTREES 1600 } 1601 #endif 1602 1603 read_lock(&net->ipv6.fib6_walker_lock); 1604 FOR_WALKERS(net, w) { 1605 if (!child) { 1606 if (w->node == fn) { 1607 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1608 w->node = pn; 1609 w->state = nstate; 1610 } 1611 } else { 1612 if (w->node == fn) { 1613 w->node = child; 1614 if (children&2) { 1615 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1616 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1617 } else { 1618 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1619 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1620 } 1621 } 1622 } 1623 } 1624 read_unlock(&net->ipv6.fib6_walker_lock); 1625 1626 node_free(net, fn); 1627 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1628 return pn; 1629 1630 RCU_INIT_POINTER(pn->leaf, NULL); 1631 rt6_release(pn_leaf); 1632 fn = pn; 1633 } 1634 } 1635 1636 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1637 struct rt6_info __rcu **rtp, struct nl_info *info) 1638 { 1639 struct fib6_walker *w; 1640 struct rt6_info *rt = rcu_dereference_protected(*rtp, 1641 lockdep_is_held(&table->tb6_lock)); 1642 struct net *net = info->nl_net; 1643 1644 RT6_TRACE("fib6_del_route\n"); 1645 1646 WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE); 1647 1648 /* Unlink it */ 1649 *rtp = rt->rt6_next; 1650 rt->rt6i_node = NULL; 1651 net->ipv6.rt6_stats->fib_rt_entries--; 1652 net->ipv6.rt6_stats->fib_discarded_routes++; 1653 1654 /* Flush all cached dst in exception table */ 1655 rt6_flush_exceptions(rt); 1656 1657 /* Reset round-robin state, if necessary */ 1658 if (rcu_access_pointer(fn->rr_ptr) == rt) 1659 fn->rr_ptr = NULL; 1660 1661 /* Remove this entry from other siblings */ 1662 if (rt->rt6i_nsiblings) { 1663 struct rt6_info *sibling, *next_sibling; 1664 1665 list_for_each_entry_safe(sibling, next_sibling, 1666 &rt->rt6i_siblings, rt6i_siblings) 1667 sibling->rt6i_nsiblings--; 1668 rt->rt6i_nsiblings = 0; 1669 list_del_init(&rt->rt6i_siblings); 1670 } 1671 1672 /* Adjust walkers */ 1673 read_lock(&net->ipv6.fib6_walker_lock); 1674 FOR_WALKERS(net, w) { 1675 if (w->state == FWS_C && w->leaf == rt) { 1676 RT6_TRACE("walker %p adjusted by delroute\n", w); 1677 w->leaf = rcu_dereference_protected(rt->rt6_next, 1678 lockdep_is_held(&table->tb6_lock)); 1679 if (!w->leaf) 1680 w->state = FWS_U; 1681 } 1682 } 1683 read_unlock(&net->ipv6.fib6_walker_lock); 1684 1685 /* If it was last route, expunge its radix tree node */ 1686 if (!rcu_access_pointer(fn->leaf)) { 1687 fn->fn_flags &= ~RTN_RTINFO; 1688 net->ipv6.rt6_stats->fib_route_nodes--; 1689 fn = fib6_repair_tree(net, table, fn); 1690 } 1691 1692 fib6_purge_rt(rt, fn, net); 1693 1694 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL); 1695 if (!info->skip_notify) 1696 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1697 rt6_release(rt); 1698 } 1699 1700 /* Need to own table->tb6_lock */ 1701 int fib6_del(struct rt6_info *rt, struct nl_info *info) 1702 { 1703 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node, 1704 lockdep_is_held(&rt->rt6i_table->tb6_lock)); 1705 struct fib6_table *table = rt->rt6i_table; 1706 struct net *net = info->nl_net; 1707 struct rt6_info __rcu **rtp; 1708 struct rt6_info __rcu **rtp_next; 1709 1710 #if RT6_DEBUG >= 2 1711 if (rt->dst.obsolete > 0) { 1712 WARN_ON(fn); 1713 return -ENOENT; 1714 } 1715 #endif 1716 if (!fn || rt == net->ipv6.ip6_null_entry) 1717 return -ENOENT; 1718 1719 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 1720 1721 /* remove cached dst from exception table */ 1722 if (rt->rt6i_flags & RTF_CACHE) 1723 return rt6_remove_exception_rt(rt); 1724 1725 /* 1726 * Walk the leaf entries looking for ourself 1727 */ 1728 1729 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 1730 struct rt6_info *cur = rcu_dereference_protected(*rtp, 1731 lockdep_is_held(&table->tb6_lock)); 1732 if (rt == cur) { 1733 fib6_del_route(table, fn, rtp, info); 1734 return 0; 1735 } 1736 rtp_next = &cur->rt6_next; 1737 } 1738 return -ENOENT; 1739 } 1740 1741 /* 1742 * Tree traversal function. 1743 * 1744 * Certainly, it is not interrupt safe. 1745 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 1746 * It means, that we can modify tree during walking 1747 * and use this function for garbage collection, clone pruning, 1748 * cleaning tree when a device goes down etc. etc. 1749 * 1750 * It guarantees that every node will be traversed, 1751 * and that it will be traversed only once. 1752 * 1753 * Callback function w->func may return: 1754 * 0 -> continue walking. 1755 * positive value -> walking is suspended (used by tree dumps, 1756 * and probably by gc, if it will be split to several slices) 1757 * negative value -> terminate walking. 1758 * 1759 * The function itself returns: 1760 * 0 -> walk is complete. 1761 * >0 -> walk is incomplete (i.e. suspended) 1762 * <0 -> walk is terminated by an error. 1763 * 1764 * This function is called with tb6_lock held. 1765 */ 1766 1767 static int fib6_walk_continue(struct fib6_walker *w) 1768 { 1769 struct fib6_node *fn, *pn, *left, *right; 1770 1771 /* w->root should always be table->tb6_root */ 1772 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 1773 1774 for (;;) { 1775 fn = w->node; 1776 if (!fn) 1777 return 0; 1778 1779 switch (w->state) { 1780 #ifdef CONFIG_IPV6_SUBTREES 1781 case FWS_S: 1782 if (FIB6_SUBTREE(fn)) { 1783 w->node = FIB6_SUBTREE(fn); 1784 continue; 1785 } 1786 w->state = FWS_L; 1787 #endif 1788 /* fall through */ 1789 case FWS_L: 1790 left = rcu_dereference_protected(fn->left, 1); 1791 if (left) { 1792 w->node = left; 1793 w->state = FWS_INIT; 1794 continue; 1795 } 1796 w->state = FWS_R; 1797 /* fall through */ 1798 case FWS_R: 1799 right = rcu_dereference_protected(fn->right, 1); 1800 if (right) { 1801 w->node = right; 1802 w->state = FWS_INIT; 1803 continue; 1804 } 1805 w->state = FWS_C; 1806 w->leaf = rcu_dereference_protected(fn->leaf, 1); 1807 /* fall through */ 1808 case FWS_C: 1809 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 1810 int err; 1811 1812 if (w->skip) { 1813 w->skip--; 1814 goto skip; 1815 } 1816 1817 err = w->func(w); 1818 if (err) 1819 return err; 1820 1821 w->count++; 1822 continue; 1823 } 1824 skip: 1825 w->state = FWS_U; 1826 /* fall through */ 1827 case FWS_U: 1828 if (fn == w->root) 1829 return 0; 1830 pn = rcu_dereference_protected(fn->parent, 1); 1831 left = rcu_dereference_protected(pn->left, 1); 1832 right = rcu_dereference_protected(pn->right, 1); 1833 w->node = pn; 1834 #ifdef CONFIG_IPV6_SUBTREES 1835 if (FIB6_SUBTREE(pn) == fn) { 1836 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1837 w->state = FWS_L; 1838 continue; 1839 } 1840 #endif 1841 if (left == fn) { 1842 w->state = FWS_R; 1843 continue; 1844 } 1845 if (right == fn) { 1846 w->state = FWS_C; 1847 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 1848 continue; 1849 } 1850 #if RT6_DEBUG >= 2 1851 WARN_ON(1); 1852 #endif 1853 } 1854 } 1855 } 1856 1857 static int fib6_walk(struct net *net, struct fib6_walker *w) 1858 { 1859 int res; 1860 1861 w->state = FWS_INIT; 1862 w->node = w->root; 1863 1864 fib6_walker_link(net, w); 1865 res = fib6_walk_continue(w); 1866 if (res <= 0) 1867 fib6_walker_unlink(net, w); 1868 return res; 1869 } 1870 1871 static int fib6_clean_node(struct fib6_walker *w) 1872 { 1873 int res; 1874 struct rt6_info *rt; 1875 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 1876 struct nl_info info = { 1877 .nl_net = c->net, 1878 }; 1879 1880 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 1881 w->node->fn_sernum != c->sernum) 1882 w->node->fn_sernum = c->sernum; 1883 1884 if (!c->func) { 1885 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 1886 w->leaf = NULL; 1887 return 0; 1888 } 1889 1890 for_each_fib6_walker_rt(w) { 1891 res = c->func(rt, c->arg); 1892 if (res == -1) { 1893 w->leaf = rt; 1894 res = fib6_del(rt, &info); 1895 if (res) { 1896 #if RT6_DEBUG >= 2 1897 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 1898 __func__, rt, 1899 rcu_access_pointer(rt->rt6i_node), 1900 res); 1901 #endif 1902 continue; 1903 } 1904 return 0; 1905 } else if (res == -2) { 1906 if (WARN_ON(!rt->rt6i_nsiblings)) 1907 continue; 1908 rt = list_last_entry(&rt->rt6i_siblings, 1909 struct rt6_info, rt6i_siblings); 1910 continue; 1911 } 1912 WARN_ON(res != 0); 1913 } 1914 w->leaf = rt; 1915 return 0; 1916 } 1917 1918 /* 1919 * Convenient frontend to tree walker. 1920 * 1921 * func is called on each route. 1922 * It may return -2 -> skip multipath route. 1923 * -1 -> delete this route. 1924 * 0 -> continue walking 1925 */ 1926 1927 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 1928 int (*func)(struct rt6_info *, void *arg), 1929 int sernum, void *arg) 1930 { 1931 struct fib6_cleaner c; 1932 1933 c.w.root = root; 1934 c.w.func = fib6_clean_node; 1935 c.w.count = 0; 1936 c.w.skip = 0; 1937 c.func = func; 1938 c.sernum = sernum; 1939 c.arg = arg; 1940 c.net = net; 1941 1942 fib6_walk(net, &c.w); 1943 } 1944 1945 static void __fib6_clean_all(struct net *net, 1946 int (*func)(struct rt6_info *, void *), 1947 int sernum, void *arg) 1948 { 1949 struct fib6_table *table; 1950 struct hlist_head *head; 1951 unsigned int h; 1952 1953 rcu_read_lock(); 1954 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 1955 head = &net->ipv6.fib_table_hash[h]; 1956 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 1957 spin_lock_bh(&table->tb6_lock); 1958 fib6_clean_tree(net, &table->tb6_root, 1959 func, sernum, arg); 1960 spin_unlock_bh(&table->tb6_lock); 1961 } 1962 } 1963 rcu_read_unlock(); 1964 } 1965 1966 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *), 1967 void *arg) 1968 { 1969 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg); 1970 } 1971 1972 static void fib6_flush_trees(struct net *net) 1973 { 1974 int new_sernum = fib6_new_sernum(net); 1975 1976 __fib6_clean_all(net, NULL, new_sernum, NULL); 1977 } 1978 1979 /* 1980 * Garbage collection 1981 */ 1982 1983 static int fib6_age(struct rt6_info *rt, void *arg) 1984 { 1985 struct fib6_gc_args *gc_args = arg; 1986 unsigned long now = jiffies; 1987 1988 /* 1989 * check addrconf expiration here. 1990 * Routes are expired even if they are in use. 1991 */ 1992 1993 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) { 1994 if (time_after(now, rt->dst.expires)) { 1995 RT6_TRACE("expiring %p\n", rt); 1996 return -1; 1997 } 1998 gc_args->more++; 1999 } 2000 2001 /* Also age clones in the exception table. 2002 * Note, that clones are aged out 2003 * only if they are not in use now. 2004 */ 2005 rt6_age_exceptions(rt, gc_args, now); 2006 2007 return 0; 2008 } 2009 2010 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2011 { 2012 struct fib6_gc_args gc_args; 2013 unsigned long now; 2014 2015 if (force) { 2016 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2017 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2018 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2019 return; 2020 } 2021 gc_args.timeout = expires ? (int)expires : 2022 net->ipv6.sysctl.ip6_rt_gc_interval; 2023 gc_args.more = 0; 2024 2025 fib6_clean_all(net, fib6_age, &gc_args); 2026 now = jiffies; 2027 net->ipv6.ip6_rt_last_gc = now; 2028 2029 if (gc_args.more) 2030 mod_timer(&net->ipv6.ip6_fib_timer, 2031 round_jiffies(now 2032 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2033 else 2034 del_timer(&net->ipv6.ip6_fib_timer); 2035 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2036 } 2037 2038 static void fib6_gc_timer_cb(struct timer_list *t) 2039 { 2040 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2041 2042 fib6_run_gc(0, arg, true); 2043 } 2044 2045 static int __net_init fib6_net_init(struct net *net) 2046 { 2047 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2048 int err; 2049 2050 err = fib6_notifier_init(net); 2051 if (err) 2052 return err; 2053 2054 spin_lock_init(&net->ipv6.fib6_gc_lock); 2055 rwlock_init(&net->ipv6.fib6_walker_lock); 2056 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2057 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2058 2059 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2060 if (!net->ipv6.rt6_stats) 2061 goto out_timer; 2062 2063 /* Avoid false sharing : Use at least a full cache line */ 2064 size = max_t(size_t, size, L1_CACHE_BYTES); 2065 2066 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2067 if (!net->ipv6.fib_table_hash) 2068 goto out_rt6_stats; 2069 2070 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2071 GFP_KERNEL); 2072 if (!net->ipv6.fib6_main_tbl) 2073 goto out_fib_table_hash; 2074 2075 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2076 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2077 net->ipv6.ip6_null_entry); 2078 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2079 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2080 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2081 2082 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2083 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2084 GFP_KERNEL); 2085 if (!net->ipv6.fib6_local_tbl) 2086 goto out_fib6_main_tbl; 2087 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2088 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2089 net->ipv6.ip6_null_entry); 2090 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2091 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2092 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2093 #endif 2094 fib6_tables_init(net); 2095 2096 return 0; 2097 2098 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2099 out_fib6_main_tbl: 2100 kfree(net->ipv6.fib6_main_tbl); 2101 #endif 2102 out_fib_table_hash: 2103 kfree(net->ipv6.fib_table_hash); 2104 out_rt6_stats: 2105 kfree(net->ipv6.rt6_stats); 2106 out_timer: 2107 fib6_notifier_exit(net); 2108 return -ENOMEM; 2109 } 2110 2111 static void fib6_net_exit(struct net *net) 2112 { 2113 unsigned int i; 2114 2115 del_timer_sync(&net->ipv6.ip6_fib_timer); 2116 2117 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2118 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2119 struct hlist_node *tmp; 2120 struct fib6_table *tb; 2121 2122 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2123 hlist_del(&tb->tb6_hlist); 2124 fib6_free_table(tb); 2125 } 2126 } 2127 2128 kfree(net->ipv6.fib_table_hash); 2129 kfree(net->ipv6.rt6_stats); 2130 fib6_notifier_exit(net); 2131 } 2132 2133 static struct pernet_operations fib6_net_ops = { 2134 .init = fib6_net_init, 2135 .exit = fib6_net_exit, 2136 }; 2137 2138 int __init fib6_init(void) 2139 { 2140 int ret = -ENOMEM; 2141 2142 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2143 sizeof(struct fib6_node), 2144 0, SLAB_HWCACHE_ALIGN, 2145 NULL); 2146 if (!fib6_node_kmem) 2147 goto out; 2148 2149 ret = register_pernet_subsys(&fib6_net_ops); 2150 if (ret) 2151 goto out_kmem_cache_create; 2152 2153 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2154 inet6_dump_fib, 0); 2155 if (ret) 2156 goto out_unregister_subsys; 2157 2158 __fib6_flush_trees = fib6_flush_trees; 2159 out: 2160 return ret; 2161 2162 out_unregister_subsys: 2163 unregister_pernet_subsys(&fib6_net_ops); 2164 out_kmem_cache_create: 2165 kmem_cache_destroy(fib6_node_kmem); 2166 goto out; 2167 } 2168 2169 void fib6_gc_cleanup(void) 2170 { 2171 unregister_pernet_subsys(&fib6_net_ops); 2172 kmem_cache_destroy(fib6_node_kmem); 2173 } 2174 2175 #ifdef CONFIG_PROC_FS 2176 2177 struct ipv6_route_iter { 2178 struct seq_net_private p; 2179 struct fib6_walker w; 2180 loff_t skip; 2181 struct fib6_table *tbl; 2182 int sernum; 2183 }; 2184 2185 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2186 { 2187 struct rt6_info *rt = v; 2188 struct ipv6_route_iter *iter = seq->private; 2189 2190 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen); 2191 2192 #ifdef CONFIG_IPV6_SUBTREES 2193 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen); 2194 #else 2195 seq_puts(seq, "00000000000000000000000000000000 00 "); 2196 #endif 2197 if (rt->rt6i_flags & RTF_GATEWAY) 2198 seq_printf(seq, "%pi6", &rt->rt6i_gateway); 2199 else 2200 seq_puts(seq, "00000000000000000000000000000000"); 2201 2202 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2203 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt), 2204 rt->dst.__use, rt->rt6i_flags, 2205 rt->dst.dev ? rt->dst.dev->name : ""); 2206 iter->w.leaf = NULL; 2207 return 0; 2208 } 2209 2210 static int ipv6_route_yield(struct fib6_walker *w) 2211 { 2212 struct ipv6_route_iter *iter = w->args; 2213 2214 if (!iter->skip) 2215 return 1; 2216 2217 do { 2218 iter->w.leaf = rcu_dereference_protected( 2219 iter->w.leaf->rt6_next, 2220 lockdep_is_held(&iter->tbl->tb6_lock)); 2221 iter->skip--; 2222 if (!iter->skip && iter->w.leaf) 2223 return 1; 2224 } while (iter->w.leaf); 2225 2226 return 0; 2227 } 2228 2229 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2230 struct net *net) 2231 { 2232 memset(&iter->w, 0, sizeof(iter->w)); 2233 iter->w.func = ipv6_route_yield; 2234 iter->w.root = &iter->tbl->tb6_root; 2235 iter->w.state = FWS_INIT; 2236 iter->w.node = iter->w.root; 2237 iter->w.args = iter; 2238 iter->sernum = iter->w.root->fn_sernum; 2239 INIT_LIST_HEAD(&iter->w.lh); 2240 fib6_walker_link(net, &iter->w); 2241 } 2242 2243 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2244 struct net *net) 2245 { 2246 unsigned int h; 2247 struct hlist_node *node; 2248 2249 if (tbl) { 2250 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2251 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2252 } else { 2253 h = 0; 2254 node = NULL; 2255 } 2256 2257 while (!node && h < FIB6_TABLE_HASHSZ) { 2258 node = rcu_dereference_bh( 2259 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2260 } 2261 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2262 } 2263 2264 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2265 { 2266 if (iter->sernum != iter->w.root->fn_sernum) { 2267 iter->sernum = iter->w.root->fn_sernum; 2268 iter->w.state = FWS_INIT; 2269 iter->w.node = iter->w.root; 2270 WARN_ON(iter->w.skip); 2271 iter->w.skip = iter->w.count; 2272 } 2273 } 2274 2275 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2276 { 2277 int r; 2278 struct rt6_info *n; 2279 struct net *net = seq_file_net(seq); 2280 struct ipv6_route_iter *iter = seq->private; 2281 2282 if (!v) 2283 goto iter_table; 2284 2285 n = rcu_dereference_bh(((struct rt6_info *)v)->rt6_next); 2286 if (n) { 2287 ++*pos; 2288 return n; 2289 } 2290 2291 iter_table: 2292 ipv6_route_check_sernum(iter); 2293 spin_lock_bh(&iter->tbl->tb6_lock); 2294 r = fib6_walk_continue(&iter->w); 2295 spin_unlock_bh(&iter->tbl->tb6_lock); 2296 if (r > 0) { 2297 if (v) 2298 ++*pos; 2299 return iter->w.leaf; 2300 } else if (r < 0) { 2301 fib6_walker_unlink(net, &iter->w); 2302 return NULL; 2303 } 2304 fib6_walker_unlink(net, &iter->w); 2305 2306 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2307 if (!iter->tbl) 2308 return NULL; 2309 2310 ipv6_route_seq_setup_walk(iter, net); 2311 goto iter_table; 2312 } 2313 2314 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2315 __acquires(RCU_BH) 2316 { 2317 struct net *net = seq_file_net(seq); 2318 struct ipv6_route_iter *iter = seq->private; 2319 2320 rcu_read_lock_bh(); 2321 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2322 iter->skip = *pos; 2323 2324 if (iter->tbl) { 2325 ipv6_route_seq_setup_walk(iter, net); 2326 return ipv6_route_seq_next(seq, NULL, pos); 2327 } else { 2328 return NULL; 2329 } 2330 } 2331 2332 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2333 { 2334 struct fib6_walker *w = &iter->w; 2335 return w->node && !(w->state == FWS_U && w->node == w->root); 2336 } 2337 2338 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2339 __releases(RCU_BH) 2340 { 2341 struct net *net = seq_file_net(seq); 2342 struct ipv6_route_iter *iter = seq->private; 2343 2344 if (ipv6_route_iter_active(iter)) 2345 fib6_walker_unlink(net, &iter->w); 2346 2347 rcu_read_unlock_bh(); 2348 } 2349 2350 static const struct seq_operations ipv6_route_seq_ops = { 2351 .start = ipv6_route_seq_start, 2352 .next = ipv6_route_seq_next, 2353 .stop = ipv6_route_seq_stop, 2354 .show = ipv6_route_seq_show 2355 }; 2356 2357 int ipv6_route_open(struct inode *inode, struct file *file) 2358 { 2359 return seq_open_net(inode, file, &ipv6_route_seq_ops, 2360 sizeof(struct ipv6_route_iter)); 2361 } 2362 2363 #endif /* CONFIG_PROC_FS */ 2364