xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 static struct kmem_cache *fib6_node_kmem __read_mostly;
42 
43 struct fib6_cleaner {
44 	struct fib6_walker w;
45 	struct net *net;
46 	int (*func)(struct rt6_info *, void *arg);
47 	int sernum;
48 	void *arg;
49 };
50 
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
56 
57 static struct rt6_info *fib6_find_prefix(struct net *net,
58 					 struct fib6_table *table,
59 					 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 					  struct fib6_table *table,
62 					  struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
65 
66 /*
67  *	A routing update causes an increase of the serial number on the
68  *	affected subtree. This allows for cached routes to be asynchronously
69  *	tested when modifications are made to the destination cache as a
70  *	result of redirects, path MTU changes, etc.
71  */
72 
73 static void fib6_gc_timer_cb(struct timer_list *t);
74 
75 #define FOR_WALKERS(net, w) \
76 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77 
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79 {
80 	write_lock_bh(&net->ipv6.fib6_walker_lock);
81 	list_add(&w->lh, &net->ipv6.fib6_walkers);
82 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
83 }
84 
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86 {
87 	write_lock_bh(&net->ipv6.fib6_walker_lock);
88 	list_del(&w->lh);
89 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
90 }
91 
92 static int fib6_new_sernum(struct net *net)
93 {
94 	int new, old;
95 
96 	do {
97 		old = atomic_read(&net->ipv6.fib6_sernum);
98 		new = old < INT_MAX ? old + 1 : 1;
99 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 				old, new) != old);
101 	return new;
102 }
103 
104 enum {
105 	FIB6_NO_SERNUM_CHANGE = 0,
106 };
107 
108 void fib6_update_sernum(struct rt6_info *rt)
109 {
110 	struct net *net = dev_net(rt->dst.dev);
111 	struct fib6_node *fn;
112 
113 	fn = rcu_dereference_protected(rt->rt6i_node,
114 			lockdep_is_held(&rt->rt6i_table->tb6_lock));
115 	if (fn)
116 		fn->fn_sernum = fib6_new_sernum(net);
117 }
118 
119 /*
120  *	Auxiliary address test functions for the radix tree.
121  *
122  *	These assume a 32bit processor (although it will work on
123  *	64bit processors)
124  */
125 
126 /*
127  *	test bit
128  */
129 #if defined(__LITTLE_ENDIAN)
130 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
131 #else
132 # define BITOP_BE32_SWIZZLE	0
133 #endif
134 
135 static __be32 addr_bit_set(const void *token, int fn_bit)
136 {
137 	const __be32 *addr = token;
138 	/*
139 	 * Here,
140 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
141 	 * is optimized version of
142 	 *	htonl(1 << ((~fn_bit)&0x1F))
143 	 * See include/asm-generic/bitops/le.h.
144 	 */
145 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
146 	       addr[fn_bit >> 5];
147 }
148 
149 static struct fib6_node *node_alloc(struct net *net)
150 {
151 	struct fib6_node *fn;
152 
153 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
154 	if (fn)
155 		net->ipv6.rt6_stats->fib_nodes++;
156 
157 	return fn;
158 }
159 
160 static void node_free_immediate(struct net *net, struct fib6_node *fn)
161 {
162 	kmem_cache_free(fib6_node_kmem, fn);
163 	net->ipv6.rt6_stats->fib_nodes--;
164 }
165 
166 static void node_free_rcu(struct rcu_head *head)
167 {
168 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
169 
170 	kmem_cache_free(fib6_node_kmem, fn);
171 }
172 
173 static void node_free(struct net *net, struct fib6_node *fn)
174 {
175 	call_rcu(&fn->rcu, node_free_rcu);
176 	net->ipv6.rt6_stats->fib_nodes--;
177 }
178 
179 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
180 {
181 	int cpu;
182 
183 	if (!non_pcpu_rt->rt6i_pcpu)
184 		return;
185 
186 	for_each_possible_cpu(cpu) {
187 		struct rt6_info **ppcpu_rt;
188 		struct rt6_info *pcpu_rt;
189 
190 		ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
191 		pcpu_rt = *ppcpu_rt;
192 		if (pcpu_rt) {
193 			dst_dev_put(&pcpu_rt->dst);
194 			dst_release(&pcpu_rt->dst);
195 			*ppcpu_rt = NULL;
196 		}
197 	}
198 }
199 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
200 
201 static void fib6_free_table(struct fib6_table *table)
202 {
203 	inetpeer_invalidate_tree(&table->tb6_peers);
204 	kfree(table);
205 }
206 
207 static void fib6_link_table(struct net *net, struct fib6_table *tb)
208 {
209 	unsigned int h;
210 
211 	/*
212 	 * Initialize table lock at a single place to give lockdep a key,
213 	 * tables aren't visible prior to being linked to the list.
214 	 */
215 	spin_lock_init(&tb->tb6_lock);
216 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
217 
218 	/*
219 	 * No protection necessary, this is the only list mutatation
220 	 * operation, tables never disappear once they exist.
221 	 */
222 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
223 }
224 
225 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
226 
227 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
228 {
229 	struct fib6_table *table;
230 
231 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
232 	if (table) {
233 		table->tb6_id = id;
234 		rcu_assign_pointer(table->tb6_root.leaf,
235 				   net->ipv6.ip6_null_entry);
236 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
237 		inet_peer_base_init(&table->tb6_peers);
238 	}
239 
240 	return table;
241 }
242 
243 struct fib6_table *fib6_new_table(struct net *net, u32 id)
244 {
245 	struct fib6_table *tb;
246 
247 	if (id == 0)
248 		id = RT6_TABLE_MAIN;
249 	tb = fib6_get_table(net, id);
250 	if (tb)
251 		return tb;
252 
253 	tb = fib6_alloc_table(net, id);
254 	if (tb)
255 		fib6_link_table(net, tb);
256 
257 	return tb;
258 }
259 EXPORT_SYMBOL_GPL(fib6_new_table);
260 
261 struct fib6_table *fib6_get_table(struct net *net, u32 id)
262 {
263 	struct fib6_table *tb;
264 	struct hlist_head *head;
265 	unsigned int h;
266 
267 	if (id == 0)
268 		id = RT6_TABLE_MAIN;
269 	h = id & (FIB6_TABLE_HASHSZ - 1);
270 	rcu_read_lock();
271 	head = &net->ipv6.fib_table_hash[h];
272 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
273 		if (tb->tb6_id == id) {
274 			rcu_read_unlock();
275 			return tb;
276 		}
277 	}
278 	rcu_read_unlock();
279 
280 	return NULL;
281 }
282 EXPORT_SYMBOL_GPL(fib6_get_table);
283 
284 static void __net_init fib6_tables_init(struct net *net)
285 {
286 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
287 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
288 }
289 #else
290 
291 struct fib6_table *fib6_new_table(struct net *net, u32 id)
292 {
293 	return fib6_get_table(net, id);
294 }
295 
296 struct fib6_table *fib6_get_table(struct net *net, u32 id)
297 {
298 	  return net->ipv6.fib6_main_tbl;
299 }
300 
301 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
302 				   int flags, pol_lookup_t lookup)
303 {
304 	struct rt6_info *rt;
305 
306 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
307 	if (rt->dst.error == -EAGAIN) {
308 		ip6_rt_put(rt);
309 		rt = net->ipv6.ip6_null_entry;
310 		dst_hold(&rt->dst);
311 	}
312 
313 	return &rt->dst;
314 }
315 
316 static void __net_init fib6_tables_init(struct net *net)
317 {
318 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
319 }
320 
321 #endif
322 
323 unsigned int fib6_tables_seq_read(struct net *net)
324 {
325 	unsigned int h, fib_seq = 0;
326 
327 	rcu_read_lock();
328 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
329 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
330 		struct fib6_table *tb;
331 
332 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
333 			fib_seq += tb->fib_seq;
334 	}
335 	rcu_read_unlock();
336 
337 	return fib_seq;
338 }
339 
340 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
341 				    enum fib_event_type event_type,
342 				    struct rt6_info *rt)
343 {
344 	struct fib6_entry_notifier_info info = {
345 		.rt = rt,
346 	};
347 
348 	return call_fib6_notifier(nb, net, event_type, &info.info);
349 }
350 
351 static int call_fib6_entry_notifiers(struct net *net,
352 				     enum fib_event_type event_type,
353 				     struct rt6_info *rt,
354 				     struct netlink_ext_ack *extack)
355 {
356 	struct fib6_entry_notifier_info info = {
357 		.info.extack = extack,
358 		.rt = rt,
359 	};
360 
361 	rt->rt6i_table->fib_seq++;
362 	return call_fib6_notifiers(net, event_type, &info.info);
363 }
364 
365 struct fib6_dump_arg {
366 	struct net *net;
367 	struct notifier_block *nb;
368 };
369 
370 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
371 {
372 	if (rt == arg->net->ipv6.ip6_null_entry)
373 		return;
374 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
375 }
376 
377 static int fib6_node_dump(struct fib6_walker *w)
378 {
379 	struct rt6_info *rt;
380 
381 	for_each_fib6_walker_rt(w)
382 		fib6_rt_dump(rt, w->args);
383 	w->leaf = NULL;
384 	return 0;
385 }
386 
387 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
388 			    struct fib6_walker *w)
389 {
390 	w->root = &tb->tb6_root;
391 	spin_lock_bh(&tb->tb6_lock);
392 	fib6_walk(net, w);
393 	spin_unlock_bh(&tb->tb6_lock);
394 }
395 
396 /* Called with rcu_read_lock() */
397 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
398 {
399 	struct fib6_dump_arg arg;
400 	struct fib6_walker *w;
401 	unsigned int h;
402 
403 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
404 	if (!w)
405 		return -ENOMEM;
406 
407 	w->func = fib6_node_dump;
408 	arg.net = net;
409 	arg.nb = nb;
410 	w->args = &arg;
411 
412 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
413 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
414 		struct fib6_table *tb;
415 
416 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
417 			fib6_table_dump(net, tb, w);
418 	}
419 
420 	kfree(w);
421 
422 	return 0;
423 }
424 
425 static int fib6_dump_node(struct fib6_walker *w)
426 {
427 	int res;
428 	struct rt6_info *rt;
429 
430 	for_each_fib6_walker_rt(w) {
431 		res = rt6_dump_route(rt, w->args);
432 		if (res < 0) {
433 			/* Frame is full, suspend walking */
434 			w->leaf = rt;
435 			return 1;
436 		}
437 
438 		/* Multipath routes are dumped in one route with the
439 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
440 		 * last sibling of this route (no need to dump the
441 		 * sibling routes again)
442 		 */
443 		if (rt->rt6i_nsiblings)
444 			rt = list_last_entry(&rt->rt6i_siblings,
445 					     struct rt6_info,
446 					     rt6i_siblings);
447 	}
448 	w->leaf = NULL;
449 	return 0;
450 }
451 
452 static void fib6_dump_end(struct netlink_callback *cb)
453 {
454 	struct net *net = sock_net(cb->skb->sk);
455 	struct fib6_walker *w = (void *)cb->args[2];
456 
457 	if (w) {
458 		if (cb->args[4]) {
459 			cb->args[4] = 0;
460 			fib6_walker_unlink(net, w);
461 		}
462 		cb->args[2] = 0;
463 		kfree(w);
464 	}
465 	cb->done = (void *)cb->args[3];
466 	cb->args[1] = 3;
467 }
468 
469 static int fib6_dump_done(struct netlink_callback *cb)
470 {
471 	fib6_dump_end(cb);
472 	return cb->done ? cb->done(cb) : 0;
473 }
474 
475 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
476 			   struct netlink_callback *cb)
477 {
478 	struct net *net = sock_net(skb->sk);
479 	struct fib6_walker *w;
480 	int res;
481 
482 	w = (void *)cb->args[2];
483 	w->root = &table->tb6_root;
484 
485 	if (cb->args[4] == 0) {
486 		w->count = 0;
487 		w->skip = 0;
488 
489 		spin_lock_bh(&table->tb6_lock);
490 		res = fib6_walk(net, w);
491 		spin_unlock_bh(&table->tb6_lock);
492 		if (res > 0) {
493 			cb->args[4] = 1;
494 			cb->args[5] = w->root->fn_sernum;
495 		}
496 	} else {
497 		if (cb->args[5] != w->root->fn_sernum) {
498 			/* Begin at the root if the tree changed */
499 			cb->args[5] = w->root->fn_sernum;
500 			w->state = FWS_INIT;
501 			w->node = w->root;
502 			w->skip = w->count;
503 		} else
504 			w->skip = 0;
505 
506 		spin_lock_bh(&table->tb6_lock);
507 		res = fib6_walk_continue(w);
508 		spin_unlock_bh(&table->tb6_lock);
509 		if (res <= 0) {
510 			fib6_walker_unlink(net, w);
511 			cb->args[4] = 0;
512 		}
513 	}
514 
515 	return res;
516 }
517 
518 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
519 {
520 	struct net *net = sock_net(skb->sk);
521 	unsigned int h, s_h;
522 	unsigned int e = 0, s_e;
523 	struct rt6_rtnl_dump_arg arg;
524 	struct fib6_walker *w;
525 	struct fib6_table *tb;
526 	struct hlist_head *head;
527 	int res = 0;
528 
529 	s_h = cb->args[0];
530 	s_e = cb->args[1];
531 
532 	w = (void *)cb->args[2];
533 	if (!w) {
534 		/* New dump:
535 		 *
536 		 * 1. hook callback destructor.
537 		 */
538 		cb->args[3] = (long)cb->done;
539 		cb->done = fib6_dump_done;
540 
541 		/*
542 		 * 2. allocate and initialize walker.
543 		 */
544 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
545 		if (!w)
546 			return -ENOMEM;
547 		w->func = fib6_dump_node;
548 		cb->args[2] = (long)w;
549 	}
550 
551 	arg.skb = skb;
552 	arg.cb = cb;
553 	arg.net = net;
554 	w->args = &arg;
555 
556 	rcu_read_lock();
557 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
558 		e = 0;
559 		head = &net->ipv6.fib_table_hash[h];
560 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
561 			if (e < s_e)
562 				goto next;
563 			res = fib6_dump_table(tb, skb, cb);
564 			if (res != 0)
565 				goto out;
566 next:
567 			e++;
568 		}
569 	}
570 out:
571 	rcu_read_unlock();
572 	cb->args[1] = e;
573 	cb->args[0] = h;
574 
575 	res = res < 0 ? res : skb->len;
576 	if (res <= 0)
577 		fib6_dump_end(cb);
578 	return res;
579 }
580 
581 /*
582  *	Routing Table
583  *
584  *	return the appropriate node for a routing tree "add" operation
585  *	by either creating and inserting or by returning an existing
586  *	node.
587  */
588 
589 static struct fib6_node *fib6_add_1(struct net *net,
590 				    struct fib6_table *table,
591 				    struct fib6_node *root,
592 				    struct in6_addr *addr, int plen,
593 				    int offset, int allow_create,
594 				    int replace_required,
595 				    struct netlink_ext_ack *extack)
596 {
597 	struct fib6_node *fn, *in, *ln;
598 	struct fib6_node *pn = NULL;
599 	struct rt6key *key;
600 	int	bit;
601 	__be32	dir = 0;
602 
603 	RT6_TRACE("fib6_add_1\n");
604 
605 	/* insert node in tree */
606 
607 	fn = root;
608 
609 	do {
610 		struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
611 					    lockdep_is_held(&table->tb6_lock));
612 		key = (struct rt6key *)((u8 *)leaf + offset);
613 
614 		/*
615 		 *	Prefix match
616 		 */
617 		if (plen < fn->fn_bit ||
618 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
619 			if (!allow_create) {
620 				if (replace_required) {
621 					NL_SET_ERR_MSG(extack,
622 						       "Can not replace route - no match found");
623 					pr_warn("Can't replace route, no match found\n");
624 					return ERR_PTR(-ENOENT);
625 				}
626 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
627 			}
628 			goto insert_above;
629 		}
630 
631 		/*
632 		 *	Exact match ?
633 		 */
634 
635 		if (plen == fn->fn_bit) {
636 			/* clean up an intermediate node */
637 			if (!(fn->fn_flags & RTN_RTINFO)) {
638 				RCU_INIT_POINTER(fn->leaf, NULL);
639 				rt6_release(leaf);
640 			}
641 
642 			return fn;
643 		}
644 
645 		/*
646 		 *	We have more bits to go
647 		 */
648 
649 		/* Try to walk down on tree. */
650 		dir = addr_bit_set(addr, fn->fn_bit);
651 		pn = fn;
652 		fn = dir ?
653 		     rcu_dereference_protected(fn->right,
654 					lockdep_is_held(&table->tb6_lock)) :
655 		     rcu_dereference_protected(fn->left,
656 					lockdep_is_held(&table->tb6_lock));
657 	} while (fn);
658 
659 	if (!allow_create) {
660 		/* We should not create new node because
661 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
662 		 * I assume it is safe to require NLM_F_CREATE when
663 		 * REPLACE flag is used! Later we may want to remove the
664 		 * check for replace_required, because according
665 		 * to netlink specification, NLM_F_CREATE
666 		 * MUST be specified if new route is created.
667 		 * That would keep IPv6 consistent with IPv4
668 		 */
669 		if (replace_required) {
670 			NL_SET_ERR_MSG(extack,
671 				       "Can not replace route - no match found");
672 			pr_warn("Can't replace route, no match found\n");
673 			return ERR_PTR(-ENOENT);
674 		}
675 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
676 	}
677 	/*
678 	 *	We walked to the bottom of tree.
679 	 *	Create new leaf node without children.
680 	 */
681 
682 	ln = node_alloc(net);
683 
684 	if (!ln)
685 		return ERR_PTR(-ENOMEM);
686 	ln->fn_bit = plen;
687 	RCU_INIT_POINTER(ln->parent, pn);
688 
689 	if (dir)
690 		rcu_assign_pointer(pn->right, ln);
691 	else
692 		rcu_assign_pointer(pn->left, ln);
693 
694 	return ln;
695 
696 
697 insert_above:
698 	/*
699 	 * split since we don't have a common prefix anymore or
700 	 * we have a less significant route.
701 	 * we've to insert an intermediate node on the list
702 	 * this new node will point to the one we need to create
703 	 * and the current
704 	 */
705 
706 	pn = rcu_dereference_protected(fn->parent,
707 				       lockdep_is_held(&table->tb6_lock));
708 
709 	/* find 1st bit in difference between the 2 addrs.
710 
711 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
712 	   but if it is >= plen, the value is ignored in any case.
713 	 */
714 
715 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
716 
717 	/*
718 	 *		(intermediate)[in]
719 	 *	          /	   \
720 	 *	(new leaf node)[ln] (old node)[fn]
721 	 */
722 	if (plen > bit) {
723 		in = node_alloc(net);
724 		ln = node_alloc(net);
725 
726 		if (!in || !ln) {
727 			if (in)
728 				node_free_immediate(net, in);
729 			if (ln)
730 				node_free_immediate(net, ln);
731 			return ERR_PTR(-ENOMEM);
732 		}
733 
734 		/*
735 		 * new intermediate node.
736 		 * RTN_RTINFO will
737 		 * be off since that an address that chooses one of
738 		 * the branches would not match less specific routes
739 		 * in the other branch
740 		 */
741 
742 		in->fn_bit = bit;
743 
744 		RCU_INIT_POINTER(in->parent, pn);
745 		in->leaf = fn->leaf;
746 		atomic_inc(&rcu_dereference_protected(in->leaf,
747 				lockdep_is_held(&table->tb6_lock))->rt6i_ref);
748 
749 		/* update parent pointer */
750 		if (dir)
751 			rcu_assign_pointer(pn->right, in);
752 		else
753 			rcu_assign_pointer(pn->left, in);
754 
755 		ln->fn_bit = plen;
756 
757 		RCU_INIT_POINTER(ln->parent, in);
758 		rcu_assign_pointer(fn->parent, in);
759 
760 		if (addr_bit_set(addr, bit)) {
761 			rcu_assign_pointer(in->right, ln);
762 			rcu_assign_pointer(in->left, fn);
763 		} else {
764 			rcu_assign_pointer(in->left, ln);
765 			rcu_assign_pointer(in->right, fn);
766 		}
767 	} else { /* plen <= bit */
768 
769 		/*
770 		 *		(new leaf node)[ln]
771 		 *	          /	   \
772 		 *	     (old node)[fn] NULL
773 		 */
774 
775 		ln = node_alloc(net);
776 
777 		if (!ln)
778 			return ERR_PTR(-ENOMEM);
779 
780 		ln->fn_bit = plen;
781 
782 		RCU_INIT_POINTER(ln->parent, pn);
783 
784 		if (addr_bit_set(&key->addr, plen))
785 			RCU_INIT_POINTER(ln->right, fn);
786 		else
787 			RCU_INIT_POINTER(ln->left, fn);
788 
789 		rcu_assign_pointer(fn->parent, ln);
790 
791 		if (dir)
792 			rcu_assign_pointer(pn->right, ln);
793 		else
794 			rcu_assign_pointer(pn->left, ln);
795 	}
796 	return ln;
797 }
798 
799 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
800 {
801 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
802 	       RTF_GATEWAY;
803 }
804 
805 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
806 {
807 	int i;
808 
809 	for (i = 0; i < RTAX_MAX; i++) {
810 		if (test_bit(i, mxc->mx_valid))
811 			mp[i] = mxc->mx[i];
812 	}
813 }
814 
815 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
816 {
817 	if (!mxc->mx)
818 		return 0;
819 
820 	if (dst->flags & DST_HOST) {
821 		u32 *mp = dst_metrics_write_ptr(dst);
822 
823 		if (unlikely(!mp))
824 			return -ENOMEM;
825 
826 		fib6_copy_metrics(mp, mxc);
827 	} else {
828 		dst_init_metrics(dst, mxc->mx, false);
829 
830 		/* We've stolen mx now. */
831 		mxc->mx = NULL;
832 	}
833 
834 	return 0;
835 }
836 
837 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
838 			  struct net *net)
839 {
840 	struct fib6_table *table = rt->rt6i_table;
841 
842 	if (atomic_read(&rt->rt6i_ref) != 1) {
843 		/* This route is used as dummy address holder in some split
844 		 * nodes. It is not leaked, but it still holds other resources,
845 		 * which must be released in time. So, scan ascendant nodes
846 		 * and replace dummy references to this route with references
847 		 * to still alive ones.
848 		 */
849 		while (fn) {
850 			struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
851 					    lockdep_is_held(&table->tb6_lock));
852 			struct rt6_info *new_leaf;
853 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
854 				new_leaf = fib6_find_prefix(net, table, fn);
855 				atomic_inc(&new_leaf->rt6i_ref);
856 				rcu_assign_pointer(fn->leaf, new_leaf);
857 				rt6_release(rt);
858 			}
859 			fn = rcu_dereference_protected(fn->parent,
860 				    lockdep_is_held(&table->tb6_lock));
861 		}
862 	}
863 }
864 
865 /*
866  *	Insert routing information in a node.
867  */
868 
869 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
870 			    struct nl_info *info, struct mx6_config *mxc,
871 			    struct netlink_ext_ack *extack)
872 {
873 	struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
874 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
875 	struct rt6_info *iter = NULL;
876 	struct rt6_info __rcu **ins;
877 	struct rt6_info __rcu **fallback_ins = NULL;
878 	int replace = (info->nlh &&
879 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
880 	int add = (!info->nlh ||
881 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
882 	int found = 0;
883 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
884 	u16 nlflags = NLM_F_EXCL;
885 	int err;
886 
887 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
888 		nlflags |= NLM_F_APPEND;
889 
890 	ins = &fn->leaf;
891 
892 	for (iter = leaf; iter;
893 	     iter = rcu_dereference_protected(iter->rt6_next,
894 				lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
895 		/*
896 		 *	Search for duplicates
897 		 */
898 
899 		if (iter->rt6i_metric == rt->rt6i_metric) {
900 			/*
901 			 *	Same priority level
902 			 */
903 			if (info->nlh &&
904 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
905 				return -EEXIST;
906 
907 			nlflags &= ~NLM_F_EXCL;
908 			if (replace) {
909 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
910 					found++;
911 					break;
912 				}
913 				if (rt_can_ecmp)
914 					fallback_ins = fallback_ins ?: ins;
915 				goto next_iter;
916 			}
917 
918 			if (rt6_duplicate_nexthop(iter, rt)) {
919 				if (rt->rt6i_nsiblings)
920 					rt->rt6i_nsiblings = 0;
921 				if (!(iter->rt6i_flags & RTF_EXPIRES))
922 					return -EEXIST;
923 				if (!(rt->rt6i_flags & RTF_EXPIRES))
924 					rt6_clean_expires(iter);
925 				else
926 					rt6_set_expires(iter, rt->dst.expires);
927 				iter->rt6i_pmtu = rt->rt6i_pmtu;
928 				return -EEXIST;
929 			}
930 			/* If we have the same destination and the same metric,
931 			 * but not the same gateway, then the route we try to
932 			 * add is sibling to this route, increment our counter
933 			 * of siblings, and later we will add our route to the
934 			 * list.
935 			 * Only static routes (which don't have flag
936 			 * RTF_EXPIRES) are used for ECMPv6.
937 			 *
938 			 * To avoid long list, we only had siblings if the
939 			 * route have a gateway.
940 			 */
941 			if (rt_can_ecmp &&
942 			    rt6_qualify_for_ecmp(iter))
943 				rt->rt6i_nsiblings++;
944 		}
945 
946 		if (iter->rt6i_metric > rt->rt6i_metric)
947 			break;
948 
949 next_iter:
950 		ins = &iter->rt6_next;
951 	}
952 
953 	if (fallback_ins && !found) {
954 		/* No ECMP-able route found, replace first non-ECMP one */
955 		ins = fallback_ins;
956 		iter = rcu_dereference_protected(*ins,
957 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
958 		found++;
959 	}
960 
961 	/* Reset round-robin state, if necessary */
962 	if (ins == &fn->leaf)
963 		fn->rr_ptr = NULL;
964 
965 	/* Link this route to others same route. */
966 	if (rt->rt6i_nsiblings) {
967 		unsigned int rt6i_nsiblings;
968 		struct rt6_info *sibling, *temp_sibling;
969 
970 		/* Find the first route that have the same metric */
971 		sibling = leaf;
972 		while (sibling) {
973 			if (sibling->rt6i_metric == rt->rt6i_metric &&
974 			    rt6_qualify_for_ecmp(sibling)) {
975 				list_add_tail(&rt->rt6i_siblings,
976 					      &sibling->rt6i_siblings);
977 				break;
978 			}
979 			sibling = rcu_dereference_protected(sibling->rt6_next,
980 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
981 		}
982 		/* For each sibling in the list, increment the counter of
983 		 * siblings. BUG() if counters does not match, list of siblings
984 		 * is broken!
985 		 */
986 		rt6i_nsiblings = 0;
987 		list_for_each_entry_safe(sibling, temp_sibling,
988 					 &rt->rt6i_siblings, rt6i_siblings) {
989 			sibling->rt6i_nsiblings++;
990 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
991 			rt6i_nsiblings++;
992 		}
993 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
994 	}
995 
996 	/*
997 	 *	insert node
998 	 */
999 	if (!replace) {
1000 		if (!add)
1001 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1002 
1003 add:
1004 		nlflags |= NLM_F_CREATE;
1005 		err = fib6_commit_metrics(&rt->dst, mxc);
1006 		if (err)
1007 			return err;
1008 
1009 		rcu_assign_pointer(rt->rt6_next, iter);
1010 		atomic_inc(&rt->rt6i_ref);
1011 		rcu_assign_pointer(rt->rt6i_node, fn);
1012 		rcu_assign_pointer(*ins, rt);
1013 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
1014 					  rt, extack);
1015 		if (!info->skip_notify)
1016 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1017 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1018 
1019 		if (!(fn->fn_flags & RTN_RTINFO)) {
1020 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1021 			fn->fn_flags |= RTN_RTINFO;
1022 		}
1023 
1024 	} else {
1025 		int nsiblings;
1026 
1027 		if (!found) {
1028 			if (add)
1029 				goto add;
1030 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1031 			return -ENOENT;
1032 		}
1033 
1034 		err = fib6_commit_metrics(&rt->dst, mxc);
1035 		if (err)
1036 			return err;
1037 
1038 		atomic_inc(&rt->rt6i_ref);
1039 		rcu_assign_pointer(rt->rt6i_node, fn);
1040 		rt->rt6_next = iter->rt6_next;
1041 		rcu_assign_pointer(*ins, rt);
1042 		call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1043 					  rt, extack);
1044 		if (!info->skip_notify)
1045 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1046 		if (!(fn->fn_flags & RTN_RTINFO)) {
1047 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1048 			fn->fn_flags |= RTN_RTINFO;
1049 		}
1050 		nsiblings = iter->rt6i_nsiblings;
1051 		iter->rt6i_node = NULL;
1052 		fib6_purge_rt(iter, fn, info->nl_net);
1053 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1054 			fn->rr_ptr = NULL;
1055 		rt6_release(iter);
1056 
1057 		if (nsiblings) {
1058 			/* Replacing an ECMP route, remove all siblings */
1059 			ins = &rt->rt6_next;
1060 			iter = rcu_dereference_protected(*ins,
1061 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1062 			while (iter) {
1063 				if (iter->rt6i_metric > rt->rt6i_metric)
1064 					break;
1065 				if (rt6_qualify_for_ecmp(iter)) {
1066 					*ins = iter->rt6_next;
1067 					iter->rt6i_node = NULL;
1068 					fib6_purge_rt(iter, fn, info->nl_net);
1069 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1070 						fn->rr_ptr = NULL;
1071 					rt6_release(iter);
1072 					nsiblings--;
1073 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1074 				} else {
1075 					ins = &iter->rt6_next;
1076 				}
1077 				iter = rcu_dereference_protected(*ins,
1078 					lockdep_is_held(&rt->rt6i_table->tb6_lock));
1079 			}
1080 			WARN_ON(nsiblings != 0);
1081 		}
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1088 {
1089 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1090 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1091 		mod_timer(&net->ipv6.ip6_fib_timer,
1092 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1093 }
1094 
1095 void fib6_force_start_gc(struct net *net)
1096 {
1097 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1098 		mod_timer(&net->ipv6.ip6_fib_timer,
1099 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1100 }
1101 
1102 static void __fib6_update_sernum_upto_root(struct rt6_info *rt,
1103 					   int sernum)
1104 {
1105 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1106 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1107 
1108 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1109 	smp_wmb();
1110 	while (fn) {
1111 		fn->fn_sernum = sernum;
1112 		fn = rcu_dereference_protected(fn->parent,
1113 				lockdep_is_held(&rt->rt6i_table->tb6_lock));
1114 	}
1115 }
1116 
1117 void fib6_update_sernum_upto_root(struct net *net, struct rt6_info *rt)
1118 {
1119 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1120 }
1121 
1122 /*
1123  *	Add routing information to the routing tree.
1124  *	<destination addr>/<source addr>
1125  *	with source addr info in sub-trees
1126  *	Need to own table->tb6_lock
1127  */
1128 
1129 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1130 	     struct nl_info *info, struct mx6_config *mxc,
1131 	     struct netlink_ext_ack *extack)
1132 {
1133 	struct fib6_table *table = rt->rt6i_table;
1134 	struct fib6_node *fn, *pn = NULL;
1135 	int err = -ENOMEM;
1136 	int allow_create = 1;
1137 	int replace_required = 0;
1138 	int sernum = fib6_new_sernum(info->nl_net);
1139 
1140 	if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1141 		return -EINVAL;
1142 	if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1143 		return -EINVAL;
1144 
1145 	if (info->nlh) {
1146 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1147 			allow_create = 0;
1148 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1149 			replace_required = 1;
1150 	}
1151 	if (!allow_create && !replace_required)
1152 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1153 
1154 	fn = fib6_add_1(info->nl_net, table, root,
1155 			&rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1156 			offsetof(struct rt6_info, rt6i_dst), allow_create,
1157 			replace_required, extack);
1158 	if (IS_ERR(fn)) {
1159 		err = PTR_ERR(fn);
1160 		fn = NULL;
1161 		goto out;
1162 	}
1163 
1164 	pn = fn;
1165 
1166 #ifdef CONFIG_IPV6_SUBTREES
1167 	if (rt->rt6i_src.plen) {
1168 		struct fib6_node *sn;
1169 
1170 		if (!rcu_access_pointer(fn->subtree)) {
1171 			struct fib6_node *sfn;
1172 
1173 			/*
1174 			 * Create subtree.
1175 			 *
1176 			 *		fn[main tree]
1177 			 *		|
1178 			 *		sfn[subtree root]
1179 			 *		   \
1180 			 *		    sn[new leaf node]
1181 			 */
1182 
1183 			/* Create subtree root node */
1184 			sfn = node_alloc(info->nl_net);
1185 			if (!sfn)
1186 				goto failure;
1187 
1188 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1189 			rcu_assign_pointer(sfn->leaf,
1190 					   info->nl_net->ipv6.ip6_null_entry);
1191 			sfn->fn_flags = RTN_ROOT;
1192 
1193 			/* Now add the first leaf node to new subtree */
1194 
1195 			sn = fib6_add_1(info->nl_net, table, sfn,
1196 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1197 					offsetof(struct rt6_info, rt6i_src),
1198 					allow_create, replace_required, extack);
1199 
1200 			if (IS_ERR(sn)) {
1201 				/* If it is failed, discard just allocated
1202 				   root, and then (in failure) stale node
1203 				   in main tree.
1204 				 */
1205 				node_free_immediate(info->nl_net, sfn);
1206 				err = PTR_ERR(sn);
1207 				goto failure;
1208 			}
1209 
1210 			/* Now link new subtree to main tree */
1211 			rcu_assign_pointer(sfn->parent, fn);
1212 			rcu_assign_pointer(fn->subtree, sfn);
1213 		} else {
1214 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1215 					&rt->rt6i_src.addr, rt->rt6i_src.plen,
1216 					offsetof(struct rt6_info, rt6i_src),
1217 					allow_create, replace_required, extack);
1218 
1219 			if (IS_ERR(sn)) {
1220 				err = PTR_ERR(sn);
1221 				goto failure;
1222 			}
1223 		}
1224 
1225 		if (!rcu_access_pointer(fn->leaf)) {
1226 			atomic_inc(&rt->rt6i_ref);
1227 			rcu_assign_pointer(fn->leaf, rt);
1228 		}
1229 		fn = sn;
1230 	}
1231 #endif
1232 
1233 	err = fib6_add_rt2node(fn, rt, info, mxc, extack);
1234 	if (!err) {
1235 		__fib6_update_sernum_upto_root(rt, sernum);
1236 		fib6_start_gc(info->nl_net, rt);
1237 	}
1238 
1239 out:
1240 	if (err) {
1241 #ifdef CONFIG_IPV6_SUBTREES
1242 		/*
1243 		 * If fib6_add_1 has cleared the old leaf pointer in the
1244 		 * super-tree leaf node we have to find a new one for it.
1245 		 */
1246 		struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1247 					    lockdep_is_held(&table->tb6_lock));
1248 		if (pn != fn && pn_leaf == rt) {
1249 			pn_leaf = NULL;
1250 			RCU_INIT_POINTER(pn->leaf, NULL);
1251 			atomic_dec(&rt->rt6i_ref);
1252 		}
1253 		if (pn != fn && !pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1254 			pn_leaf = fib6_find_prefix(info->nl_net, table, pn);
1255 #if RT6_DEBUG >= 2
1256 			if (!pn_leaf) {
1257 				WARN_ON(!pn_leaf);
1258 				pn_leaf = info->nl_net->ipv6.ip6_null_entry;
1259 			}
1260 #endif
1261 			atomic_inc(&pn_leaf->rt6i_ref);
1262 			rcu_assign_pointer(pn->leaf, pn_leaf);
1263 		}
1264 #endif
1265 		goto failure;
1266 	}
1267 	return err;
1268 
1269 failure:
1270 	/* fn->leaf could be NULL if fn is an intermediate node and we
1271 	 * failed to add the new route to it in both subtree creation
1272 	 * failure and fib6_add_rt2node() failure case.
1273 	 * In both cases, fib6_repair_tree() should be called to fix
1274 	 * fn->leaf.
1275 	 */
1276 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1277 		fib6_repair_tree(info->nl_net, table, fn);
1278 	/* Always release dst as dst->__refcnt is guaranteed
1279 	 * to be taken before entering this function
1280 	 */
1281 	dst_release_immediate(&rt->dst);
1282 	return err;
1283 }
1284 
1285 /*
1286  *	Routing tree lookup
1287  *
1288  */
1289 
1290 struct lookup_args {
1291 	int			offset;		/* key offset on rt6_info	*/
1292 	const struct in6_addr	*addr;		/* search key			*/
1293 };
1294 
1295 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1296 				       struct lookup_args *args)
1297 {
1298 	struct fib6_node *fn;
1299 	__be32 dir;
1300 
1301 	if (unlikely(args->offset == 0))
1302 		return NULL;
1303 
1304 	/*
1305 	 *	Descend on a tree
1306 	 */
1307 
1308 	fn = root;
1309 
1310 	for (;;) {
1311 		struct fib6_node *next;
1312 
1313 		dir = addr_bit_set(args->addr, fn->fn_bit);
1314 
1315 		next = dir ? rcu_dereference(fn->right) :
1316 			     rcu_dereference(fn->left);
1317 
1318 		if (next) {
1319 			fn = next;
1320 			continue;
1321 		}
1322 		break;
1323 	}
1324 
1325 	while (fn) {
1326 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1327 
1328 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1329 			struct rt6_info *leaf = rcu_dereference(fn->leaf);
1330 			struct rt6key *key;
1331 
1332 			if (!leaf)
1333 				goto backtrack;
1334 
1335 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1336 
1337 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1338 #ifdef CONFIG_IPV6_SUBTREES
1339 				if (subtree) {
1340 					struct fib6_node *sfn;
1341 					sfn = fib6_lookup_1(subtree, args + 1);
1342 					if (!sfn)
1343 						goto backtrack;
1344 					fn = sfn;
1345 				}
1346 #endif
1347 				if (fn->fn_flags & RTN_RTINFO)
1348 					return fn;
1349 			}
1350 		}
1351 backtrack:
1352 		if (fn->fn_flags & RTN_ROOT)
1353 			break;
1354 
1355 		fn = rcu_dereference(fn->parent);
1356 	}
1357 
1358 	return NULL;
1359 }
1360 
1361 /* called with rcu_read_lock() held
1362  */
1363 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1364 			      const struct in6_addr *saddr)
1365 {
1366 	struct fib6_node *fn;
1367 	struct lookup_args args[] = {
1368 		{
1369 			.offset = offsetof(struct rt6_info, rt6i_dst),
1370 			.addr = daddr,
1371 		},
1372 #ifdef CONFIG_IPV6_SUBTREES
1373 		{
1374 			.offset = offsetof(struct rt6_info, rt6i_src),
1375 			.addr = saddr,
1376 		},
1377 #endif
1378 		{
1379 			.offset = 0,	/* sentinel */
1380 		}
1381 	};
1382 
1383 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1384 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1385 		fn = root;
1386 
1387 	return fn;
1388 }
1389 
1390 /*
1391  *	Get node with specified destination prefix (and source prefix,
1392  *	if subtrees are used)
1393  *	exact_match == true means we try to find fn with exact match of
1394  *	the passed in prefix addr
1395  *	exact_match == false means we try to find fn with longest prefix
1396  *	match of the passed in prefix addr. This is useful for finding fn
1397  *	for cached route as it will be stored in the exception table under
1398  *	the node with longest prefix length.
1399  */
1400 
1401 
1402 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1403 				       const struct in6_addr *addr,
1404 				       int plen, int offset,
1405 				       bool exact_match)
1406 {
1407 	struct fib6_node *fn, *prev = NULL;
1408 
1409 	for (fn = root; fn ; ) {
1410 		struct rt6_info *leaf = rcu_dereference(fn->leaf);
1411 		struct rt6key *key;
1412 
1413 		/* This node is being deleted */
1414 		if (!leaf) {
1415 			if (plen <= fn->fn_bit)
1416 				goto out;
1417 			else
1418 				goto next;
1419 		}
1420 
1421 		key = (struct rt6key *)((u8 *)leaf + offset);
1422 
1423 		/*
1424 		 *	Prefix match
1425 		 */
1426 		if (plen < fn->fn_bit ||
1427 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1428 			goto out;
1429 
1430 		if (plen == fn->fn_bit)
1431 			return fn;
1432 
1433 		prev = fn;
1434 
1435 next:
1436 		/*
1437 		 *	We have more bits to go
1438 		 */
1439 		if (addr_bit_set(addr, fn->fn_bit))
1440 			fn = rcu_dereference(fn->right);
1441 		else
1442 			fn = rcu_dereference(fn->left);
1443 	}
1444 out:
1445 	if (exact_match)
1446 		return NULL;
1447 	else
1448 		return prev;
1449 }
1450 
1451 struct fib6_node *fib6_locate(struct fib6_node *root,
1452 			      const struct in6_addr *daddr, int dst_len,
1453 			      const struct in6_addr *saddr, int src_len,
1454 			      bool exact_match)
1455 {
1456 	struct fib6_node *fn;
1457 
1458 	fn = fib6_locate_1(root, daddr, dst_len,
1459 			   offsetof(struct rt6_info, rt6i_dst),
1460 			   exact_match);
1461 
1462 #ifdef CONFIG_IPV6_SUBTREES
1463 	if (src_len) {
1464 		WARN_ON(saddr == NULL);
1465 		if (fn) {
1466 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1467 
1468 			if (subtree) {
1469 				fn = fib6_locate_1(subtree, saddr, src_len,
1470 					   offsetof(struct rt6_info, rt6i_src),
1471 					   exact_match);
1472 			}
1473 		}
1474 	}
1475 #endif
1476 
1477 	if (fn && fn->fn_flags & RTN_RTINFO)
1478 		return fn;
1479 
1480 	return NULL;
1481 }
1482 
1483 
1484 /*
1485  *	Deletion
1486  *
1487  */
1488 
1489 static struct rt6_info *fib6_find_prefix(struct net *net,
1490 					 struct fib6_table *table,
1491 					 struct fib6_node *fn)
1492 {
1493 	struct fib6_node *child_left, *child_right;
1494 
1495 	if (fn->fn_flags & RTN_ROOT)
1496 		return net->ipv6.ip6_null_entry;
1497 
1498 	while (fn) {
1499 		child_left = rcu_dereference_protected(fn->left,
1500 				    lockdep_is_held(&table->tb6_lock));
1501 		child_right = rcu_dereference_protected(fn->right,
1502 				    lockdep_is_held(&table->tb6_lock));
1503 		if (child_left)
1504 			return rcu_dereference_protected(child_left->leaf,
1505 					lockdep_is_held(&table->tb6_lock));
1506 		if (child_right)
1507 			return rcu_dereference_protected(child_right->leaf,
1508 					lockdep_is_held(&table->tb6_lock));
1509 
1510 		fn = FIB6_SUBTREE(fn);
1511 	}
1512 	return NULL;
1513 }
1514 
1515 /*
1516  *	Called to trim the tree of intermediate nodes when possible. "fn"
1517  *	is the node we want to try and remove.
1518  *	Need to own table->tb6_lock
1519  */
1520 
1521 static struct fib6_node *fib6_repair_tree(struct net *net,
1522 					  struct fib6_table *table,
1523 					  struct fib6_node *fn)
1524 {
1525 	int children;
1526 	int nstate;
1527 	struct fib6_node *child;
1528 	struct fib6_walker *w;
1529 	int iter = 0;
1530 
1531 	for (;;) {
1532 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1533 					    lockdep_is_held(&table->tb6_lock));
1534 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1535 					    lockdep_is_held(&table->tb6_lock));
1536 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1537 					    lockdep_is_held(&table->tb6_lock));
1538 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1539 					    lockdep_is_held(&table->tb6_lock));
1540 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1541 					    lockdep_is_held(&table->tb6_lock));
1542 		struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1543 					    lockdep_is_held(&table->tb6_lock));
1544 		struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1545 					    lockdep_is_held(&table->tb6_lock));
1546 		struct rt6_info *new_fn_leaf;
1547 
1548 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1549 		iter++;
1550 
1551 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1552 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1553 		WARN_ON(fn_leaf);
1554 
1555 		children = 0;
1556 		child = NULL;
1557 		if (fn_r)
1558 			child = fn_r, children |= 1;
1559 		if (fn_l)
1560 			child = fn_l, children |= 2;
1561 
1562 		if (children == 3 || FIB6_SUBTREE(fn)
1563 #ifdef CONFIG_IPV6_SUBTREES
1564 		    /* Subtree root (i.e. fn) may have one child */
1565 		    || (children && fn->fn_flags & RTN_ROOT)
1566 #endif
1567 		    ) {
1568 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1569 #if RT6_DEBUG >= 2
1570 			if (!new_fn_leaf) {
1571 				WARN_ON(!new_fn_leaf);
1572 				new_fn_leaf = net->ipv6.ip6_null_entry;
1573 			}
1574 #endif
1575 			atomic_inc(&new_fn_leaf->rt6i_ref);
1576 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1577 			return pn;
1578 		}
1579 
1580 #ifdef CONFIG_IPV6_SUBTREES
1581 		if (FIB6_SUBTREE(pn) == fn) {
1582 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1583 			RCU_INIT_POINTER(pn->subtree, NULL);
1584 			nstate = FWS_L;
1585 		} else {
1586 			WARN_ON(fn->fn_flags & RTN_ROOT);
1587 #endif
1588 			if (pn_r == fn)
1589 				rcu_assign_pointer(pn->right, child);
1590 			else if (pn_l == fn)
1591 				rcu_assign_pointer(pn->left, child);
1592 #if RT6_DEBUG >= 2
1593 			else
1594 				WARN_ON(1);
1595 #endif
1596 			if (child)
1597 				rcu_assign_pointer(child->parent, pn);
1598 			nstate = FWS_R;
1599 #ifdef CONFIG_IPV6_SUBTREES
1600 		}
1601 #endif
1602 
1603 		read_lock(&net->ipv6.fib6_walker_lock);
1604 		FOR_WALKERS(net, w) {
1605 			if (!child) {
1606 				if (w->node == fn) {
1607 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1608 					w->node = pn;
1609 					w->state = nstate;
1610 				}
1611 			} else {
1612 				if (w->node == fn) {
1613 					w->node = child;
1614 					if (children&2) {
1615 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1616 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1617 					} else {
1618 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1619 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1620 					}
1621 				}
1622 			}
1623 		}
1624 		read_unlock(&net->ipv6.fib6_walker_lock);
1625 
1626 		node_free(net, fn);
1627 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1628 			return pn;
1629 
1630 		RCU_INIT_POINTER(pn->leaf, NULL);
1631 		rt6_release(pn_leaf);
1632 		fn = pn;
1633 	}
1634 }
1635 
1636 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1637 			   struct rt6_info __rcu **rtp, struct nl_info *info)
1638 {
1639 	struct fib6_walker *w;
1640 	struct rt6_info *rt = rcu_dereference_protected(*rtp,
1641 				    lockdep_is_held(&table->tb6_lock));
1642 	struct net *net = info->nl_net;
1643 
1644 	RT6_TRACE("fib6_del_route\n");
1645 
1646 	WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1647 
1648 	/* Unlink it */
1649 	*rtp = rt->rt6_next;
1650 	rt->rt6i_node = NULL;
1651 	net->ipv6.rt6_stats->fib_rt_entries--;
1652 	net->ipv6.rt6_stats->fib_discarded_routes++;
1653 
1654 	/* Flush all cached dst in exception table */
1655 	rt6_flush_exceptions(rt);
1656 
1657 	/* Reset round-robin state, if necessary */
1658 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1659 		fn->rr_ptr = NULL;
1660 
1661 	/* Remove this entry from other siblings */
1662 	if (rt->rt6i_nsiblings) {
1663 		struct rt6_info *sibling, *next_sibling;
1664 
1665 		list_for_each_entry_safe(sibling, next_sibling,
1666 					 &rt->rt6i_siblings, rt6i_siblings)
1667 			sibling->rt6i_nsiblings--;
1668 		rt->rt6i_nsiblings = 0;
1669 		list_del_init(&rt->rt6i_siblings);
1670 	}
1671 
1672 	/* Adjust walkers */
1673 	read_lock(&net->ipv6.fib6_walker_lock);
1674 	FOR_WALKERS(net, w) {
1675 		if (w->state == FWS_C && w->leaf == rt) {
1676 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1677 			w->leaf = rcu_dereference_protected(rt->rt6_next,
1678 					    lockdep_is_held(&table->tb6_lock));
1679 			if (!w->leaf)
1680 				w->state = FWS_U;
1681 		}
1682 	}
1683 	read_unlock(&net->ipv6.fib6_walker_lock);
1684 
1685 	/* If it was last route, expunge its radix tree node */
1686 	if (!rcu_access_pointer(fn->leaf)) {
1687 		fn->fn_flags &= ~RTN_RTINFO;
1688 		net->ipv6.rt6_stats->fib_route_nodes--;
1689 		fn = fib6_repair_tree(net, table, fn);
1690 	}
1691 
1692 	fib6_purge_rt(rt, fn, net);
1693 
1694 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1695 	if (!info->skip_notify)
1696 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1697 	rt6_release(rt);
1698 }
1699 
1700 /* Need to own table->tb6_lock */
1701 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1702 {
1703 	struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1704 				    lockdep_is_held(&rt->rt6i_table->tb6_lock));
1705 	struct fib6_table *table = rt->rt6i_table;
1706 	struct net *net = info->nl_net;
1707 	struct rt6_info __rcu **rtp;
1708 	struct rt6_info __rcu **rtp_next;
1709 
1710 #if RT6_DEBUG >= 2
1711 	if (rt->dst.obsolete > 0) {
1712 		WARN_ON(fn);
1713 		return -ENOENT;
1714 	}
1715 #endif
1716 	if (!fn || rt == net->ipv6.ip6_null_entry)
1717 		return -ENOENT;
1718 
1719 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1720 
1721 	/* remove cached dst from exception table */
1722 	if (rt->rt6i_flags & RTF_CACHE)
1723 		return rt6_remove_exception_rt(rt);
1724 
1725 	/*
1726 	 *	Walk the leaf entries looking for ourself
1727 	 */
1728 
1729 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1730 		struct rt6_info *cur = rcu_dereference_protected(*rtp,
1731 					lockdep_is_held(&table->tb6_lock));
1732 		if (rt == cur) {
1733 			fib6_del_route(table, fn, rtp, info);
1734 			return 0;
1735 		}
1736 		rtp_next = &cur->rt6_next;
1737 	}
1738 	return -ENOENT;
1739 }
1740 
1741 /*
1742  *	Tree traversal function.
1743  *
1744  *	Certainly, it is not interrupt safe.
1745  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1746  *	It means, that we can modify tree during walking
1747  *	and use this function for garbage collection, clone pruning,
1748  *	cleaning tree when a device goes down etc. etc.
1749  *
1750  *	It guarantees that every node will be traversed,
1751  *	and that it will be traversed only once.
1752  *
1753  *	Callback function w->func may return:
1754  *	0 -> continue walking.
1755  *	positive value -> walking is suspended (used by tree dumps,
1756  *	and probably by gc, if it will be split to several slices)
1757  *	negative value -> terminate walking.
1758  *
1759  *	The function itself returns:
1760  *	0   -> walk is complete.
1761  *	>0  -> walk is incomplete (i.e. suspended)
1762  *	<0  -> walk is terminated by an error.
1763  *
1764  *	This function is called with tb6_lock held.
1765  */
1766 
1767 static int fib6_walk_continue(struct fib6_walker *w)
1768 {
1769 	struct fib6_node *fn, *pn, *left, *right;
1770 
1771 	/* w->root should always be table->tb6_root */
1772 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1773 
1774 	for (;;) {
1775 		fn = w->node;
1776 		if (!fn)
1777 			return 0;
1778 
1779 		switch (w->state) {
1780 #ifdef CONFIG_IPV6_SUBTREES
1781 		case FWS_S:
1782 			if (FIB6_SUBTREE(fn)) {
1783 				w->node = FIB6_SUBTREE(fn);
1784 				continue;
1785 			}
1786 			w->state = FWS_L;
1787 #endif
1788 			/* fall through */
1789 		case FWS_L:
1790 			left = rcu_dereference_protected(fn->left, 1);
1791 			if (left) {
1792 				w->node = left;
1793 				w->state = FWS_INIT;
1794 				continue;
1795 			}
1796 			w->state = FWS_R;
1797 			/* fall through */
1798 		case FWS_R:
1799 			right = rcu_dereference_protected(fn->right, 1);
1800 			if (right) {
1801 				w->node = right;
1802 				w->state = FWS_INIT;
1803 				continue;
1804 			}
1805 			w->state = FWS_C;
1806 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1807 			/* fall through */
1808 		case FWS_C:
1809 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1810 				int err;
1811 
1812 				if (w->skip) {
1813 					w->skip--;
1814 					goto skip;
1815 				}
1816 
1817 				err = w->func(w);
1818 				if (err)
1819 					return err;
1820 
1821 				w->count++;
1822 				continue;
1823 			}
1824 skip:
1825 			w->state = FWS_U;
1826 			/* fall through */
1827 		case FWS_U:
1828 			if (fn == w->root)
1829 				return 0;
1830 			pn = rcu_dereference_protected(fn->parent, 1);
1831 			left = rcu_dereference_protected(pn->left, 1);
1832 			right = rcu_dereference_protected(pn->right, 1);
1833 			w->node = pn;
1834 #ifdef CONFIG_IPV6_SUBTREES
1835 			if (FIB6_SUBTREE(pn) == fn) {
1836 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1837 				w->state = FWS_L;
1838 				continue;
1839 			}
1840 #endif
1841 			if (left == fn) {
1842 				w->state = FWS_R;
1843 				continue;
1844 			}
1845 			if (right == fn) {
1846 				w->state = FWS_C;
1847 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1848 				continue;
1849 			}
1850 #if RT6_DEBUG >= 2
1851 			WARN_ON(1);
1852 #endif
1853 		}
1854 	}
1855 }
1856 
1857 static int fib6_walk(struct net *net, struct fib6_walker *w)
1858 {
1859 	int res;
1860 
1861 	w->state = FWS_INIT;
1862 	w->node = w->root;
1863 
1864 	fib6_walker_link(net, w);
1865 	res = fib6_walk_continue(w);
1866 	if (res <= 0)
1867 		fib6_walker_unlink(net, w);
1868 	return res;
1869 }
1870 
1871 static int fib6_clean_node(struct fib6_walker *w)
1872 {
1873 	int res;
1874 	struct rt6_info *rt;
1875 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1876 	struct nl_info info = {
1877 		.nl_net = c->net,
1878 	};
1879 
1880 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1881 	    w->node->fn_sernum != c->sernum)
1882 		w->node->fn_sernum = c->sernum;
1883 
1884 	if (!c->func) {
1885 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1886 		w->leaf = NULL;
1887 		return 0;
1888 	}
1889 
1890 	for_each_fib6_walker_rt(w) {
1891 		res = c->func(rt, c->arg);
1892 		if (res == -1) {
1893 			w->leaf = rt;
1894 			res = fib6_del(rt, &info);
1895 			if (res) {
1896 #if RT6_DEBUG >= 2
1897 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1898 					 __func__, rt,
1899 					 rcu_access_pointer(rt->rt6i_node),
1900 					 res);
1901 #endif
1902 				continue;
1903 			}
1904 			return 0;
1905 		} else if (res == -2) {
1906 			if (WARN_ON(!rt->rt6i_nsiblings))
1907 				continue;
1908 			rt = list_last_entry(&rt->rt6i_siblings,
1909 					     struct rt6_info, rt6i_siblings);
1910 			continue;
1911 		}
1912 		WARN_ON(res != 0);
1913 	}
1914 	w->leaf = rt;
1915 	return 0;
1916 }
1917 
1918 /*
1919  *	Convenient frontend to tree walker.
1920  *
1921  *	func is called on each route.
1922  *		It may return -2 -> skip multipath route.
1923  *			      -1 -> delete this route.
1924  *		              0  -> continue walking
1925  */
1926 
1927 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1928 			    int (*func)(struct rt6_info *, void *arg),
1929 			    int sernum, void *arg)
1930 {
1931 	struct fib6_cleaner c;
1932 
1933 	c.w.root = root;
1934 	c.w.func = fib6_clean_node;
1935 	c.w.count = 0;
1936 	c.w.skip = 0;
1937 	c.func = func;
1938 	c.sernum = sernum;
1939 	c.arg = arg;
1940 	c.net = net;
1941 
1942 	fib6_walk(net, &c.w);
1943 }
1944 
1945 static void __fib6_clean_all(struct net *net,
1946 			     int (*func)(struct rt6_info *, void *),
1947 			     int sernum, void *arg)
1948 {
1949 	struct fib6_table *table;
1950 	struct hlist_head *head;
1951 	unsigned int h;
1952 
1953 	rcu_read_lock();
1954 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1955 		head = &net->ipv6.fib_table_hash[h];
1956 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1957 			spin_lock_bh(&table->tb6_lock);
1958 			fib6_clean_tree(net, &table->tb6_root,
1959 					func, sernum, arg);
1960 			spin_unlock_bh(&table->tb6_lock);
1961 		}
1962 	}
1963 	rcu_read_unlock();
1964 }
1965 
1966 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1967 		    void *arg)
1968 {
1969 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1970 }
1971 
1972 static void fib6_flush_trees(struct net *net)
1973 {
1974 	int new_sernum = fib6_new_sernum(net);
1975 
1976 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1977 }
1978 
1979 /*
1980  *	Garbage collection
1981  */
1982 
1983 static int fib6_age(struct rt6_info *rt, void *arg)
1984 {
1985 	struct fib6_gc_args *gc_args = arg;
1986 	unsigned long now = jiffies;
1987 
1988 	/*
1989 	 *	check addrconf expiration here.
1990 	 *	Routes are expired even if they are in use.
1991 	 */
1992 
1993 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1994 		if (time_after(now, rt->dst.expires)) {
1995 			RT6_TRACE("expiring %p\n", rt);
1996 			return -1;
1997 		}
1998 		gc_args->more++;
1999 	}
2000 
2001 	/*	Also age clones in the exception table.
2002 	 *	Note, that clones are aged out
2003 	 *	only if they are not in use now.
2004 	 */
2005 	rt6_age_exceptions(rt, gc_args, now);
2006 
2007 	return 0;
2008 }
2009 
2010 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2011 {
2012 	struct fib6_gc_args gc_args;
2013 	unsigned long now;
2014 
2015 	if (force) {
2016 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2017 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2018 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2019 		return;
2020 	}
2021 	gc_args.timeout = expires ? (int)expires :
2022 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2023 	gc_args.more = 0;
2024 
2025 	fib6_clean_all(net, fib6_age, &gc_args);
2026 	now = jiffies;
2027 	net->ipv6.ip6_rt_last_gc = now;
2028 
2029 	if (gc_args.more)
2030 		mod_timer(&net->ipv6.ip6_fib_timer,
2031 			  round_jiffies(now
2032 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2033 	else
2034 		del_timer(&net->ipv6.ip6_fib_timer);
2035 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2036 }
2037 
2038 static void fib6_gc_timer_cb(struct timer_list *t)
2039 {
2040 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2041 
2042 	fib6_run_gc(0, arg, true);
2043 }
2044 
2045 static int __net_init fib6_net_init(struct net *net)
2046 {
2047 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2048 	int err;
2049 
2050 	err = fib6_notifier_init(net);
2051 	if (err)
2052 		return err;
2053 
2054 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2055 	rwlock_init(&net->ipv6.fib6_walker_lock);
2056 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2057 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2058 
2059 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2060 	if (!net->ipv6.rt6_stats)
2061 		goto out_timer;
2062 
2063 	/* Avoid false sharing : Use at least a full cache line */
2064 	size = max_t(size_t, size, L1_CACHE_BYTES);
2065 
2066 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2067 	if (!net->ipv6.fib_table_hash)
2068 		goto out_rt6_stats;
2069 
2070 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2071 					  GFP_KERNEL);
2072 	if (!net->ipv6.fib6_main_tbl)
2073 		goto out_fib_table_hash;
2074 
2075 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2076 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2077 			   net->ipv6.ip6_null_entry);
2078 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2079 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2080 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2081 
2082 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2083 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2084 					   GFP_KERNEL);
2085 	if (!net->ipv6.fib6_local_tbl)
2086 		goto out_fib6_main_tbl;
2087 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2088 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2089 			   net->ipv6.ip6_null_entry);
2090 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2091 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2092 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2093 #endif
2094 	fib6_tables_init(net);
2095 
2096 	return 0;
2097 
2098 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2099 out_fib6_main_tbl:
2100 	kfree(net->ipv6.fib6_main_tbl);
2101 #endif
2102 out_fib_table_hash:
2103 	kfree(net->ipv6.fib_table_hash);
2104 out_rt6_stats:
2105 	kfree(net->ipv6.rt6_stats);
2106 out_timer:
2107 	fib6_notifier_exit(net);
2108 	return -ENOMEM;
2109 }
2110 
2111 static void fib6_net_exit(struct net *net)
2112 {
2113 	unsigned int i;
2114 
2115 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2116 
2117 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2118 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2119 		struct hlist_node *tmp;
2120 		struct fib6_table *tb;
2121 
2122 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2123 			hlist_del(&tb->tb6_hlist);
2124 			fib6_free_table(tb);
2125 		}
2126 	}
2127 
2128 	kfree(net->ipv6.fib_table_hash);
2129 	kfree(net->ipv6.rt6_stats);
2130 	fib6_notifier_exit(net);
2131 }
2132 
2133 static struct pernet_operations fib6_net_ops = {
2134 	.init = fib6_net_init,
2135 	.exit = fib6_net_exit,
2136 };
2137 
2138 int __init fib6_init(void)
2139 {
2140 	int ret = -ENOMEM;
2141 
2142 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2143 					   sizeof(struct fib6_node),
2144 					   0, SLAB_HWCACHE_ALIGN,
2145 					   NULL);
2146 	if (!fib6_node_kmem)
2147 		goto out;
2148 
2149 	ret = register_pernet_subsys(&fib6_net_ops);
2150 	if (ret)
2151 		goto out_kmem_cache_create;
2152 
2153 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2154 				   inet6_dump_fib, 0);
2155 	if (ret)
2156 		goto out_unregister_subsys;
2157 
2158 	__fib6_flush_trees = fib6_flush_trees;
2159 out:
2160 	return ret;
2161 
2162 out_unregister_subsys:
2163 	unregister_pernet_subsys(&fib6_net_ops);
2164 out_kmem_cache_create:
2165 	kmem_cache_destroy(fib6_node_kmem);
2166 	goto out;
2167 }
2168 
2169 void fib6_gc_cleanup(void)
2170 {
2171 	unregister_pernet_subsys(&fib6_net_ops);
2172 	kmem_cache_destroy(fib6_node_kmem);
2173 }
2174 
2175 #ifdef CONFIG_PROC_FS
2176 
2177 struct ipv6_route_iter {
2178 	struct seq_net_private p;
2179 	struct fib6_walker w;
2180 	loff_t skip;
2181 	struct fib6_table *tbl;
2182 	int sernum;
2183 };
2184 
2185 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2186 {
2187 	struct rt6_info *rt = v;
2188 	struct ipv6_route_iter *iter = seq->private;
2189 
2190 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2191 
2192 #ifdef CONFIG_IPV6_SUBTREES
2193 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2194 #else
2195 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2196 #endif
2197 	if (rt->rt6i_flags & RTF_GATEWAY)
2198 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2199 	else
2200 		seq_puts(seq, "00000000000000000000000000000000");
2201 
2202 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2203 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2204 		   rt->dst.__use, rt->rt6i_flags,
2205 		   rt->dst.dev ? rt->dst.dev->name : "");
2206 	iter->w.leaf = NULL;
2207 	return 0;
2208 }
2209 
2210 static int ipv6_route_yield(struct fib6_walker *w)
2211 {
2212 	struct ipv6_route_iter *iter = w->args;
2213 
2214 	if (!iter->skip)
2215 		return 1;
2216 
2217 	do {
2218 		iter->w.leaf = rcu_dereference_protected(
2219 				iter->w.leaf->rt6_next,
2220 				lockdep_is_held(&iter->tbl->tb6_lock));
2221 		iter->skip--;
2222 		if (!iter->skip && iter->w.leaf)
2223 			return 1;
2224 	} while (iter->w.leaf);
2225 
2226 	return 0;
2227 }
2228 
2229 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2230 				      struct net *net)
2231 {
2232 	memset(&iter->w, 0, sizeof(iter->w));
2233 	iter->w.func = ipv6_route_yield;
2234 	iter->w.root = &iter->tbl->tb6_root;
2235 	iter->w.state = FWS_INIT;
2236 	iter->w.node = iter->w.root;
2237 	iter->w.args = iter;
2238 	iter->sernum = iter->w.root->fn_sernum;
2239 	INIT_LIST_HEAD(&iter->w.lh);
2240 	fib6_walker_link(net, &iter->w);
2241 }
2242 
2243 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2244 						    struct net *net)
2245 {
2246 	unsigned int h;
2247 	struct hlist_node *node;
2248 
2249 	if (tbl) {
2250 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2251 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2252 	} else {
2253 		h = 0;
2254 		node = NULL;
2255 	}
2256 
2257 	while (!node && h < FIB6_TABLE_HASHSZ) {
2258 		node = rcu_dereference_bh(
2259 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2260 	}
2261 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2262 }
2263 
2264 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2265 {
2266 	if (iter->sernum != iter->w.root->fn_sernum) {
2267 		iter->sernum = iter->w.root->fn_sernum;
2268 		iter->w.state = FWS_INIT;
2269 		iter->w.node = iter->w.root;
2270 		WARN_ON(iter->w.skip);
2271 		iter->w.skip = iter->w.count;
2272 	}
2273 }
2274 
2275 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2276 {
2277 	int r;
2278 	struct rt6_info *n;
2279 	struct net *net = seq_file_net(seq);
2280 	struct ipv6_route_iter *iter = seq->private;
2281 
2282 	if (!v)
2283 		goto iter_table;
2284 
2285 	n = rcu_dereference_bh(((struct rt6_info *)v)->rt6_next);
2286 	if (n) {
2287 		++*pos;
2288 		return n;
2289 	}
2290 
2291 iter_table:
2292 	ipv6_route_check_sernum(iter);
2293 	spin_lock_bh(&iter->tbl->tb6_lock);
2294 	r = fib6_walk_continue(&iter->w);
2295 	spin_unlock_bh(&iter->tbl->tb6_lock);
2296 	if (r > 0) {
2297 		if (v)
2298 			++*pos;
2299 		return iter->w.leaf;
2300 	} else if (r < 0) {
2301 		fib6_walker_unlink(net, &iter->w);
2302 		return NULL;
2303 	}
2304 	fib6_walker_unlink(net, &iter->w);
2305 
2306 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2307 	if (!iter->tbl)
2308 		return NULL;
2309 
2310 	ipv6_route_seq_setup_walk(iter, net);
2311 	goto iter_table;
2312 }
2313 
2314 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2315 	__acquires(RCU_BH)
2316 {
2317 	struct net *net = seq_file_net(seq);
2318 	struct ipv6_route_iter *iter = seq->private;
2319 
2320 	rcu_read_lock_bh();
2321 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2322 	iter->skip = *pos;
2323 
2324 	if (iter->tbl) {
2325 		ipv6_route_seq_setup_walk(iter, net);
2326 		return ipv6_route_seq_next(seq, NULL, pos);
2327 	} else {
2328 		return NULL;
2329 	}
2330 }
2331 
2332 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2333 {
2334 	struct fib6_walker *w = &iter->w;
2335 	return w->node && !(w->state == FWS_U && w->node == w->root);
2336 }
2337 
2338 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2339 	__releases(RCU_BH)
2340 {
2341 	struct net *net = seq_file_net(seq);
2342 	struct ipv6_route_iter *iter = seq->private;
2343 
2344 	if (ipv6_route_iter_active(iter))
2345 		fib6_walker_unlink(net, &iter->w);
2346 
2347 	rcu_read_unlock_bh();
2348 }
2349 
2350 static const struct seq_operations ipv6_route_seq_ops = {
2351 	.start	= ipv6_route_seq_start,
2352 	.next	= ipv6_route_seq_next,
2353 	.stop	= ipv6_route_seq_stop,
2354 	.show	= ipv6_route_seq_show
2355 };
2356 
2357 int ipv6_route_open(struct inode *inode, struct file *file)
2358 {
2359 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2360 			    sizeof(struct ipv6_route_iter));
2361 }
2362 
2363 #endif /* CONFIG_PROC_FS */
2364