1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux INET6 implementation 4 * Forwarding Information Database 5 * 6 * Authors: 7 * Pedro Roque <roque@di.fc.ul.pt> 8 * 9 * Changes: 10 * Yuji SEKIYA @USAGI: Support default route on router node; 11 * remove ip6_null_entry from the top of 12 * routing table. 13 * Ville Nuorvala: Fixed routing subtrees. 14 */ 15 16 #define pr_fmt(fmt) "IPv6: " fmt 17 18 #include <linux/bpf.h> 19 #include <linux/errno.h> 20 #include <linux/types.h> 21 #include <linux/net.h> 22 #include <linux/route.h> 23 #include <linux/netdevice.h> 24 #include <linux/in6.h> 25 #include <linux/init.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 29 #include <net/ip.h> 30 #include <net/ipv6.h> 31 #include <net/ndisc.h> 32 #include <net/addrconf.h> 33 #include <net/lwtunnel.h> 34 #include <net/fib_notifier.h> 35 36 #include <net/ip_fib.h> 37 #include <net/ip6_fib.h> 38 #include <net/ip6_route.h> 39 40 static struct kmem_cache *fib6_node_kmem __read_mostly; 41 42 struct fib6_cleaner { 43 struct fib6_walker w; 44 struct net *net; 45 int (*func)(struct fib6_info *, void *arg); 46 int sernum; 47 void *arg; 48 bool skip_notify; 49 }; 50 51 #ifdef CONFIG_IPV6_SUBTREES 52 #define FWS_INIT FWS_S 53 #else 54 #define FWS_INIT FWS_L 55 #endif 56 57 static struct fib6_info *fib6_find_prefix(struct net *net, 58 struct fib6_table *table, 59 struct fib6_node *fn); 60 static struct fib6_node *fib6_repair_tree(struct net *net, 61 struct fib6_table *table, 62 struct fib6_node *fn); 63 static int fib6_walk(struct net *net, struct fib6_walker *w); 64 static int fib6_walk_continue(struct fib6_walker *w); 65 66 /* 67 * A routing update causes an increase of the serial number on the 68 * affected subtree. This allows for cached routes to be asynchronously 69 * tested when modifications are made to the destination cache as a 70 * result of redirects, path MTU changes, etc. 71 */ 72 73 static void fib6_gc_timer_cb(struct timer_list *t); 74 75 #define FOR_WALKERS(net, w) \ 76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh) 77 78 static void fib6_walker_link(struct net *net, struct fib6_walker *w) 79 { 80 write_lock_bh(&net->ipv6.fib6_walker_lock); 81 list_add(&w->lh, &net->ipv6.fib6_walkers); 82 write_unlock_bh(&net->ipv6.fib6_walker_lock); 83 } 84 85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w) 86 { 87 write_lock_bh(&net->ipv6.fib6_walker_lock); 88 list_del(&w->lh); 89 write_unlock_bh(&net->ipv6.fib6_walker_lock); 90 } 91 92 static int fib6_new_sernum(struct net *net) 93 { 94 int new, old; 95 96 do { 97 old = atomic_read(&net->ipv6.fib6_sernum); 98 new = old < INT_MAX ? old + 1 : 1; 99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum, 100 old, new) != old); 101 return new; 102 } 103 104 enum { 105 FIB6_NO_SERNUM_CHANGE = 0, 106 }; 107 108 void fib6_update_sernum(struct net *net, struct fib6_info *f6i) 109 { 110 struct fib6_node *fn; 111 112 fn = rcu_dereference_protected(f6i->fib6_node, 113 lockdep_is_held(&f6i->fib6_table->tb6_lock)); 114 if (fn) 115 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net)); 116 } 117 118 /* 119 * Auxiliary address test functions for the radix tree. 120 * 121 * These assume a 32bit processor (although it will work on 122 * 64bit processors) 123 */ 124 125 /* 126 * test bit 127 */ 128 #if defined(__LITTLE_ENDIAN) 129 # define BITOP_BE32_SWIZZLE (0x1F & ~7) 130 #else 131 # define BITOP_BE32_SWIZZLE 0 132 #endif 133 134 static __be32 addr_bit_set(const void *token, int fn_bit) 135 { 136 const __be32 *addr = token; 137 /* 138 * Here, 139 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f) 140 * is optimized version of 141 * htonl(1 << ((~fn_bit)&0x1F)) 142 * See include/asm-generic/bitops/le.h. 143 */ 144 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) & 145 addr[fn_bit >> 5]; 146 } 147 148 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh) 149 { 150 struct fib6_info *f6i; 151 size_t sz = sizeof(*f6i); 152 153 if (with_fib6_nh) 154 sz += sizeof(struct fib6_nh); 155 156 f6i = kzalloc(sz, gfp_flags); 157 if (!f6i) 158 return NULL; 159 160 /* fib6_siblings is a union with nh_list, so this initializes both */ 161 INIT_LIST_HEAD(&f6i->fib6_siblings); 162 refcount_set(&f6i->fib6_ref, 1); 163 164 return f6i; 165 } 166 167 void fib6_info_destroy_rcu(struct rcu_head *head) 168 { 169 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu); 170 171 WARN_ON(f6i->fib6_node); 172 173 if (f6i->nh) 174 nexthop_put(f6i->nh); 175 else 176 fib6_nh_release(f6i->fib6_nh); 177 178 ip_fib_metrics_put(f6i->fib6_metrics); 179 kfree(f6i); 180 } 181 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu); 182 183 static struct fib6_node *node_alloc(struct net *net) 184 { 185 struct fib6_node *fn; 186 187 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC); 188 if (fn) 189 net->ipv6.rt6_stats->fib_nodes++; 190 191 return fn; 192 } 193 194 static void node_free_immediate(struct net *net, struct fib6_node *fn) 195 { 196 kmem_cache_free(fib6_node_kmem, fn); 197 net->ipv6.rt6_stats->fib_nodes--; 198 } 199 200 static void node_free_rcu(struct rcu_head *head) 201 { 202 struct fib6_node *fn = container_of(head, struct fib6_node, rcu); 203 204 kmem_cache_free(fib6_node_kmem, fn); 205 } 206 207 static void node_free(struct net *net, struct fib6_node *fn) 208 { 209 call_rcu(&fn->rcu, node_free_rcu); 210 net->ipv6.rt6_stats->fib_nodes--; 211 } 212 213 static void fib6_free_table(struct fib6_table *table) 214 { 215 inetpeer_invalidate_tree(&table->tb6_peers); 216 kfree(table); 217 } 218 219 static void fib6_link_table(struct net *net, struct fib6_table *tb) 220 { 221 unsigned int h; 222 223 /* 224 * Initialize table lock at a single place to give lockdep a key, 225 * tables aren't visible prior to being linked to the list. 226 */ 227 spin_lock_init(&tb->tb6_lock); 228 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1); 229 230 /* 231 * No protection necessary, this is the only list mutatation 232 * operation, tables never disappear once they exist. 233 */ 234 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]); 235 } 236 237 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 238 239 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id) 240 { 241 struct fib6_table *table; 242 243 table = kzalloc(sizeof(*table), GFP_ATOMIC); 244 if (table) { 245 table->tb6_id = id; 246 rcu_assign_pointer(table->tb6_root.leaf, 247 net->ipv6.fib6_null_entry); 248 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 249 inet_peer_base_init(&table->tb6_peers); 250 } 251 252 return table; 253 } 254 255 struct fib6_table *fib6_new_table(struct net *net, u32 id) 256 { 257 struct fib6_table *tb; 258 259 if (id == 0) 260 id = RT6_TABLE_MAIN; 261 tb = fib6_get_table(net, id); 262 if (tb) 263 return tb; 264 265 tb = fib6_alloc_table(net, id); 266 if (tb) 267 fib6_link_table(net, tb); 268 269 return tb; 270 } 271 EXPORT_SYMBOL_GPL(fib6_new_table); 272 273 struct fib6_table *fib6_get_table(struct net *net, u32 id) 274 { 275 struct fib6_table *tb; 276 struct hlist_head *head; 277 unsigned int h; 278 279 if (id == 0) 280 id = RT6_TABLE_MAIN; 281 h = id & (FIB6_TABLE_HASHSZ - 1); 282 rcu_read_lock(); 283 head = &net->ipv6.fib_table_hash[h]; 284 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 285 if (tb->tb6_id == id) { 286 rcu_read_unlock(); 287 return tb; 288 } 289 } 290 rcu_read_unlock(); 291 292 return NULL; 293 } 294 EXPORT_SYMBOL_GPL(fib6_get_table); 295 296 static void __net_init fib6_tables_init(struct net *net) 297 { 298 fib6_link_table(net, net->ipv6.fib6_main_tbl); 299 fib6_link_table(net, net->ipv6.fib6_local_tbl); 300 } 301 #else 302 303 struct fib6_table *fib6_new_table(struct net *net, u32 id) 304 { 305 return fib6_get_table(net, id); 306 } 307 308 struct fib6_table *fib6_get_table(struct net *net, u32 id) 309 { 310 return net->ipv6.fib6_main_tbl; 311 } 312 313 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6, 314 const struct sk_buff *skb, 315 int flags, pol_lookup_t lookup) 316 { 317 struct rt6_info *rt; 318 319 rt = pol_lookup_func(lookup, 320 net, net->ipv6.fib6_main_tbl, fl6, skb, flags); 321 if (rt->dst.error == -EAGAIN) { 322 ip6_rt_put_flags(rt, flags); 323 rt = net->ipv6.ip6_null_entry; 324 if (!(flags & RT6_LOOKUP_F_DST_NOREF)) 325 dst_hold(&rt->dst); 326 } 327 328 return &rt->dst; 329 } 330 331 /* called with rcu lock held; no reference taken on fib6_info */ 332 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6, 333 struct fib6_result *res, int flags) 334 { 335 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, 336 res, flags); 337 } 338 339 static void __net_init fib6_tables_init(struct net *net) 340 { 341 fib6_link_table(net, net->ipv6.fib6_main_tbl); 342 } 343 344 #endif 345 346 unsigned int fib6_tables_seq_read(struct net *net) 347 { 348 unsigned int h, fib_seq = 0; 349 350 rcu_read_lock(); 351 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 352 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 353 struct fib6_table *tb; 354 355 hlist_for_each_entry_rcu(tb, head, tb6_hlist) 356 fib_seq += tb->fib_seq; 357 } 358 rcu_read_unlock(); 359 360 return fib_seq; 361 } 362 363 static int call_fib6_entry_notifier(struct notifier_block *nb, 364 enum fib_event_type event_type, 365 struct fib6_info *rt, 366 struct netlink_ext_ack *extack) 367 { 368 struct fib6_entry_notifier_info info = { 369 .info.extack = extack, 370 .rt = rt, 371 }; 372 373 return call_fib6_notifier(nb, event_type, &info.info); 374 } 375 376 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb, 377 enum fib_event_type event_type, 378 struct fib6_info *rt, 379 unsigned int nsiblings, 380 struct netlink_ext_ack *extack) 381 { 382 struct fib6_entry_notifier_info info = { 383 .info.extack = extack, 384 .rt = rt, 385 .nsiblings = nsiblings, 386 }; 387 388 return call_fib6_notifier(nb, event_type, &info.info); 389 } 390 391 int call_fib6_entry_notifiers(struct net *net, 392 enum fib_event_type event_type, 393 struct fib6_info *rt, 394 struct netlink_ext_ack *extack) 395 { 396 struct fib6_entry_notifier_info info = { 397 .info.extack = extack, 398 .rt = rt, 399 }; 400 401 rt->fib6_table->fib_seq++; 402 return call_fib6_notifiers(net, event_type, &info.info); 403 } 404 405 int call_fib6_multipath_entry_notifiers(struct net *net, 406 enum fib_event_type event_type, 407 struct fib6_info *rt, 408 unsigned int nsiblings, 409 struct netlink_ext_ack *extack) 410 { 411 struct fib6_entry_notifier_info info = { 412 .info.extack = extack, 413 .rt = rt, 414 .nsiblings = nsiblings, 415 }; 416 417 rt->fib6_table->fib_seq++; 418 return call_fib6_notifiers(net, event_type, &info.info); 419 } 420 421 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt) 422 { 423 struct fib6_entry_notifier_info info = { 424 .rt = rt, 425 .nsiblings = rt->fib6_nsiblings, 426 }; 427 428 rt->fib6_table->fib_seq++; 429 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info); 430 } 431 432 struct fib6_dump_arg { 433 struct net *net; 434 struct notifier_block *nb; 435 struct netlink_ext_ack *extack; 436 }; 437 438 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg) 439 { 440 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE; 441 int err; 442 443 if (!rt || rt == arg->net->ipv6.fib6_null_entry) 444 return 0; 445 446 if (rt->fib6_nsiblings) 447 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event, 448 rt, 449 rt->fib6_nsiblings, 450 arg->extack); 451 else 452 err = call_fib6_entry_notifier(arg->nb, fib_event, rt, 453 arg->extack); 454 455 return err; 456 } 457 458 static int fib6_node_dump(struct fib6_walker *w) 459 { 460 int err; 461 462 err = fib6_rt_dump(w->leaf, w->args); 463 w->leaf = NULL; 464 return err; 465 } 466 467 static int fib6_table_dump(struct net *net, struct fib6_table *tb, 468 struct fib6_walker *w) 469 { 470 int err; 471 472 w->root = &tb->tb6_root; 473 spin_lock_bh(&tb->tb6_lock); 474 err = fib6_walk(net, w); 475 spin_unlock_bh(&tb->tb6_lock); 476 return err; 477 } 478 479 /* Called with rcu_read_lock() */ 480 int fib6_tables_dump(struct net *net, struct notifier_block *nb, 481 struct netlink_ext_ack *extack) 482 { 483 struct fib6_dump_arg arg; 484 struct fib6_walker *w; 485 unsigned int h; 486 int err = 0; 487 488 w = kzalloc(sizeof(*w), GFP_ATOMIC); 489 if (!w) 490 return -ENOMEM; 491 492 w->func = fib6_node_dump; 493 arg.net = net; 494 arg.nb = nb; 495 arg.extack = extack; 496 w->args = &arg; 497 498 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 499 struct hlist_head *head = &net->ipv6.fib_table_hash[h]; 500 struct fib6_table *tb; 501 502 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 503 err = fib6_table_dump(net, tb, w); 504 if (err) 505 goto out; 506 } 507 } 508 509 out: 510 kfree(w); 511 512 /* The tree traversal function should never return a positive value. */ 513 return err > 0 ? -EINVAL : err; 514 } 515 516 static int fib6_dump_node(struct fib6_walker *w) 517 { 518 int res; 519 struct fib6_info *rt; 520 521 for_each_fib6_walker_rt(w) { 522 res = rt6_dump_route(rt, w->args, w->skip_in_node); 523 if (res >= 0) { 524 /* Frame is full, suspend walking */ 525 w->leaf = rt; 526 527 /* We'll restart from this node, so if some routes were 528 * already dumped, skip them next time. 529 */ 530 w->skip_in_node += res; 531 532 return 1; 533 } 534 w->skip_in_node = 0; 535 536 /* Multipath routes are dumped in one route with the 537 * RTA_MULTIPATH attribute. Jump 'rt' to point to the 538 * last sibling of this route (no need to dump the 539 * sibling routes again) 540 */ 541 if (rt->fib6_nsiblings) 542 rt = list_last_entry(&rt->fib6_siblings, 543 struct fib6_info, 544 fib6_siblings); 545 } 546 w->leaf = NULL; 547 return 0; 548 } 549 550 static void fib6_dump_end(struct netlink_callback *cb) 551 { 552 struct net *net = sock_net(cb->skb->sk); 553 struct fib6_walker *w = (void *)cb->args[2]; 554 555 if (w) { 556 if (cb->args[4]) { 557 cb->args[4] = 0; 558 fib6_walker_unlink(net, w); 559 } 560 cb->args[2] = 0; 561 kfree(w); 562 } 563 cb->done = (void *)cb->args[3]; 564 cb->args[1] = 3; 565 } 566 567 static int fib6_dump_done(struct netlink_callback *cb) 568 { 569 fib6_dump_end(cb); 570 return cb->done ? cb->done(cb) : 0; 571 } 572 573 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb, 574 struct netlink_callback *cb) 575 { 576 struct net *net = sock_net(skb->sk); 577 struct fib6_walker *w; 578 int res; 579 580 w = (void *)cb->args[2]; 581 w->root = &table->tb6_root; 582 583 if (cb->args[4] == 0) { 584 w->count = 0; 585 w->skip = 0; 586 w->skip_in_node = 0; 587 588 spin_lock_bh(&table->tb6_lock); 589 res = fib6_walk(net, w); 590 spin_unlock_bh(&table->tb6_lock); 591 if (res > 0) { 592 cb->args[4] = 1; 593 cb->args[5] = READ_ONCE(w->root->fn_sernum); 594 } 595 } else { 596 int sernum = READ_ONCE(w->root->fn_sernum); 597 if (cb->args[5] != sernum) { 598 /* Begin at the root if the tree changed */ 599 cb->args[5] = sernum; 600 w->state = FWS_INIT; 601 w->node = w->root; 602 w->skip = w->count; 603 w->skip_in_node = 0; 604 } else 605 w->skip = 0; 606 607 spin_lock_bh(&table->tb6_lock); 608 res = fib6_walk_continue(w); 609 spin_unlock_bh(&table->tb6_lock); 610 if (res <= 0) { 611 fib6_walker_unlink(net, w); 612 cb->args[4] = 0; 613 } 614 } 615 616 return res; 617 } 618 619 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb) 620 { 621 struct rt6_rtnl_dump_arg arg = { .filter.dump_exceptions = true, 622 .filter.dump_routes = true }; 623 const struct nlmsghdr *nlh = cb->nlh; 624 struct net *net = sock_net(skb->sk); 625 unsigned int h, s_h; 626 unsigned int e = 0, s_e; 627 struct fib6_walker *w; 628 struct fib6_table *tb; 629 struct hlist_head *head; 630 int res = 0; 631 632 if (cb->strict_check) { 633 int err; 634 635 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb); 636 if (err < 0) 637 return err; 638 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) { 639 struct rtmsg *rtm = nlmsg_data(nlh); 640 641 if (rtm->rtm_flags & RTM_F_PREFIX) 642 arg.filter.flags = RTM_F_PREFIX; 643 } 644 645 w = (void *)cb->args[2]; 646 if (!w) { 647 /* New dump: 648 * 649 * 1. hook callback destructor. 650 */ 651 cb->args[3] = (long)cb->done; 652 cb->done = fib6_dump_done; 653 654 /* 655 * 2. allocate and initialize walker. 656 */ 657 w = kzalloc(sizeof(*w), GFP_ATOMIC); 658 if (!w) 659 return -ENOMEM; 660 w->func = fib6_dump_node; 661 cb->args[2] = (long)w; 662 } 663 664 arg.skb = skb; 665 arg.cb = cb; 666 arg.net = net; 667 w->args = &arg; 668 669 if (arg.filter.table_id) { 670 tb = fib6_get_table(net, arg.filter.table_id); 671 if (!tb) { 672 if (rtnl_msg_family(cb->nlh) != PF_INET6) 673 goto out; 674 675 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist"); 676 return -ENOENT; 677 } 678 679 if (!cb->args[0]) { 680 res = fib6_dump_table(tb, skb, cb); 681 if (!res) 682 cb->args[0] = 1; 683 } 684 goto out; 685 } 686 687 s_h = cb->args[0]; 688 s_e = cb->args[1]; 689 690 rcu_read_lock(); 691 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) { 692 e = 0; 693 head = &net->ipv6.fib_table_hash[h]; 694 hlist_for_each_entry_rcu(tb, head, tb6_hlist) { 695 if (e < s_e) 696 goto next; 697 res = fib6_dump_table(tb, skb, cb); 698 if (res != 0) 699 goto out_unlock; 700 next: 701 e++; 702 } 703 } 704 out_unlock: 705 rcu_read_unlock(); 706 cb->args[1] = e; 707 cb->args[0] = h; 708 out: 709 res = res < 0 ? res : skb->len; 710 if (res <= 0) 711 fib6_dump_end(cb); 712 return res; 713 } 714 715 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val) 716 { 717 if (!f6i) 718 return; 719 720 if (f6i->fib6_metrics == &dst_default_metrics) { 721 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC); 722 723 if (!p) 724 return; 725 726 refcount_set(&p->refcnt, 1); 727 f6i->fib6_metrics = p; 728 } 729 730 f6i->fib6_metrics->metrics[metric - 1] = val; 731 } 732 733 /* 734 * Routing Table 735 * 736 * return the appropriate node for a routing tree "add" operation 737 * by either creating and inserting or by returning an existing 738 * node. 739 */ 740 741 static struct fib6_node *fib6_add_1(struct net *net, 742 struct fib6_table *table, 743 struct fib6_node *root, 744 struct in6_addr *addr, int plen, 745 int offset, int allow_create, 746 int replace_required, 747 struct netlink_ext_ack *extack) 748 { 749 struct fib6_node *fn, *in, *ln; 750 struct fib6_node *pn = NULL; 751 struct rt6key *key; 752 int bit; 753 __be32 dir = 0; 754 755 RT6_TRACE("fib6_add_1\n"); 756 757 /* insert node in tree */ 758 759 fn = root; 760 761 do { 762 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 763 lockdep_is_held(&table->tb6_lock)); 764 key = (struct rt6key *)((u8 *)leaf + offset); 765 766 /* 767 * Prefix match 768 */ 769 if (plen < fn->fn_bit || 770 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) { 771 if (!allow_create) { 772 if (replace_required) { 773 NL_SET_ERR_MSG(extack, 774 "Can not replace route - no match found"); 775 pr_warn("Can't replace route, no match found\n"); 776 return ERR_PTR(-ENOENT); 777 } 778 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 779 } 780 goto insert_above; 781 } 782 783 /* 784 * Exact match ? 785 */ 786 787 if (plen == fn->fn_bit) { 788 /* clean up an intermediate node */ 789 if (!(fn->fn_flags & RTN_RTINFO)) { 790 RCU_INIT_POINTER(fn->leaf, NULL); 791 fib6_info_release(leaf); 792 /* remove null_entry in the root node */ 793 } else if (fn->fn_flags & RTN_TL_ROOT && 794 rcu_access_pointer(fn->leaf) == 795 net->ipv6.fib6_null_entry) { 796 RCU_INIT_POINTER(fn->leaf, NULL); 797 } 798 799 return fn; 800 } 801 802 /* 803 * We have more bits to go 804 */ 805 806 /* Try to walk down on tree. */ 807 dir = addr_bit_set(addr, fn->fn_bit); 808 pn = fn; 809 fn = dir ? 810 rcu_dereference_protected(fn->right, 811 lockdep_is_held(&table->tb6_lock)) : 812 rcu_dereference_protected(fn->left, 813 lockdep_is_held(&table->tb6_lock)); 814 } while (fn); 815 816 if (!allow_create) { 817 /* We should not create new node because 818 * NLM_F_REPLACE was specified without NLM_F_CREATE 819 * I assume it is safe to require NLM_F_CREATE when 820 * REPLACE flag is used! Later we may want to remove the 821 * check for replace_required, because according 822 * to netlink specification, NLM_F_CREATE 823 * MUST be specified if new route is created. 824 * That would keep IPv6 consistent with IPv4 825 */ 826 if (replace_required) { 827 NL_SET_ERR_MSG(extack, 828 "Can not replace route - no match found"); 829 pr_warn("Can't replace route, no match found\n"); 830 return ERR_PTR(-ENOENT); 831 } 832 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 833 } 834 /* 835 * We walked to the bottom of tree. 836 * Create new leaf node without children. 837 */ 838 839 ln = node_alloc(net); 840 841 if (!ln) 842 return ERR_PTR(-ENOMEM); 843 ln->fn_bit = plen; 844 RCU_INIT_POINTER(ln->parent, pn); 845 846 if (dir) 847 rcu_assign_pointer(pn->right, ln); 848 else 849 rcu_assign_pointer(pn->left, ln); 850 851 return ln; 852 853 854 insert_above: 855 /* 856 * split since we don't have a common prefix anymore or 857 * we have a less significant route. 858 * we've to insert an intermediate node on the list 859 * this new node will point to the one we need to create 860 * and the current 861 */ 862 863 pn = rcu_dereference_protected(fn->parent, 864 lockdep_is_held(&table->tb6_lock)); 865 866 /* find 1st bit in difference between the 2 addrs. 867 868 See comment in __ipv6_addr_diff: bit may be an invalid value, 869 but if it is >= plen, the value is ignored in any case. 870 */ 871 872 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr)); 873 874 /* 875 * (intermediate)[in] 876 * / \ 877 * (new leaf node)[ln] (old node)[fn] 878 */ 879 if (plen > bit) { 880 in = node_alloc(net); 881 ln = node_alloc(net); 882 883 if (!in || !ln) { 884 if (in) 885 node_free_immediate(net, in); 886 if (ln) 887 node_free_immediate(net, ln); 888 return ERR_PTR(-ENOMEM); 889 } 890 891 /* 892 * new intermediate node. 893 * RTN_RTINFO will 894 * be off since that an address that chooses one of 895 * the branches would not match less specific routes 896 * in the other branch 897 */ 898 899 in->fn_bit = bit; 900 901 RCU_INIT_POINTER(in->parent, pn); 902 in->leaf = fn->leaf; 903 fib6_info_hold(rcu_dereference_protected(in->leaf, 904 lockdep_is_held(&table->tb6_lock))); 905 906 /* update parent pointer */ 907 if (dir) 908 rcu_assign_pointer(pn->right, in); 909 else 910 rcu_assign_pointer(pn->left, in); 911 912 ln->fn_bit = plen; 913 914 RCU_INIT_POINTER(ln->parent, in); 915 rcu_assign_pointer(fn->parent, in); 916 917 if (addr_bit_set(addr, bit)) { 918 rcu_assign_pointer(in->right, ln); 919 rcu_assign_pointer(in->left, fn); 920 } else { 921 rcu_assign_pointer(in->left, ln); 922 rcu_assign_pointer(in->right, fn); 923 } 924 } else { /* plen <= bit */ 925 926 /* 927 * (new leaf node)[ln] 928 * / \ 929 * (old node)[fn] NULL 930 */ 931 932 ln = node_alloc(net); 933 934 if (!ln) 935 return ERR_PTR(-ENOMEM); 936 937 ln->fn_bit = plen; 938 939 RCU_INIT_POINTER(ln->parent, pn); 940 941 if (addr_bit_set(&key->addr, plen)) 942 RCU_INIT_POINTER(ln->right, fn); 943 else 944 RCU_INIT_POINTER(ln->left, fn); 945 946 rcu_assign_pointer(fn->parent, ln); 947 948 if (dir) 949 rcu_assign_pointer(pn->right, ln); 950 else 951 rcu_assign_pointer(pn->left, ln); 952 } 953 return ln; 954 } 955 956 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh, 957 const struct fib6_info *match, 958 const struct fib6_table *table) 959 { 960 int cpu; 961 962 if (!fib6_nh->rt6i_pcpu) 963 return; 964 965 /* release the reference to this fib entry from 966 * all of its cached pcpu routes 967 */ 968 for_each_possible_cpu(cpu) { 969 struct rt6_info **ppcpu_rt; 970 struct rt6_info *pcpu_rt; 971 972 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); 973 pcpu_rt = *ppcpu_rt; 974 975 /* only dropping the 'from' reference if the cached route 976 * is using 'match'. The cached pcpu_rt->from only changes 977 * from a fib6_info to NULL (ip6_dst_destroy); it can never 978 * change from one fib6_info reference to another 979 */ 980 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) { 981 struct fib6_info *from; 982 983 from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); 984 fib6_info_release(from); 985 } 986 } 987 } 988 989 struct fib6_nh_pcpu_arg { 990 struct fib6_info *from; 991 const struct fib6_table *table; 992 }; 993 994 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg) 995 { 996 struct fib6_nh_pcpu_arg *arg = _arg; 997 998 __fib6_drop_pcpu_from(nh, arg->from, arg->table); 999 return 0; 1000 } 1001 1002 static void fib6_drop_pcpu_from(struct fib6_info *f6i, 1003 const struct fib6_table *table) 1004 { 1005 /* Make sure rt6_make_pcpu_route() wont add other percpu routes 1006 * while we are cleaning them here. 1007 */ 1008 f6i->fib6_destroying = 1; 1009 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */ 1010 1011 if (f6i->nh) { 1012 struct fib6_nh_pcpu_arg arg = { 1013 .from = f6i, 1014 .table = table 1015 }; 1016 1017 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from, 1018 &arg); 1019 } else { 1020 struct fib6_nh *fib6_nh; 1021 1022 fib6_nh = f6i->fib6_nh; 1023 __fib6_drop_pcpu_from(fib6_nh, f6i, table); 1024 } 1025 } 1026 1027 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn, 1028 struct net *net) 1029 { 1030 struct fib6_table *table = rt->fib6_table; 1031 1032 /* Flush all cached dst in exception table */ 1033 rt6_flush_exceptions(rt); 1034 fib6_drop_pcpu_from(rt, table); 1035 1036 if (rt->nh && !list_empty(&rt->nh_list)) 1037 list_del_init(&rt->nh_list); 1038 1039 if (refcount_read(&rt->fib6_ref) != 1) { 1040 /* This route is used as dummy address holder in some split 1041 * nodes. It is not leaked, but it still holds other resources, 1042 * which must be released in time. So, scan ascendant nodes 1043 * and replace dummy references to this route with references 1044 * to still alive ones. 1045 */ 1046 while (fn) { 1047 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1048 lockdep_is_held(&table->tb6_lock)); 1049 struct fib6_info *new_leaf; 1050 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) { 1051 new_leaf = fib6_find_prefix(net, table, fn); 1052 fib6_info_hold(new_leaf); 1053 1054 rcu_assign_pointer(fn->leaf, new_leaf); 1055 fib6_info_release(rt); 1056 } 1057 fn = rcu_dereference_protected(fn->parent, 1058 lockdep_is_held(&table->tb6_lock)); 1059 } 1060 } 1061 } 1062 1063 /* 1064 * Insert routing information in a node. 1065 */ 1066 1067 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt, 1068 struct nl_info *info, 1069 struct netlink_ext_ack *extack) 1070 { 1071 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf, 1072 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1073 struct fib6_info *iter = NULL; 1074 struct fib6_info __rcu **ins; 1075 struct fib6_info __rcu **fallback_ins = NULL; 1076 int replace = (info->nlh && 1077 (info->nlh->nlmsg_flags & NLM_F_REPLACE)); 1078 int add = (!info->nlh || 1079 (info->nlh->nlmsg_flags & NLM_F_CREATE)); 1080 int found = 0; 1081 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); 1082 bool notify_sibling_rt = false; 1083 u16 nlflags = NLM_F_EXCL; 1084 int err; 1085 1086 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND)) 1087 nlflags |= NLM_F_APPEND; 1088 1089 ins = &fn->leaf; 1090 1091 for (iter = leaf; iter; 1092 iter = rcu_dereference_protected(iter->fib6_next, 1093 lockdep_is_held(&rt->fib6_table->tb6_lock))) { 1094 /* 1095 * Search for duplicates 1096 */ 1097 1098 if (iter->fib6_metric == rt->fib6_metric) { 1099 /* 1100 * Same priority level 1101 */ 1102 if (info->nlh && 1103 (info->nlh->nlmsg_flags & NLM_F_EXCL)) 1104 return -EEXIST; 1105 1106 nlflags &= ~NLM_F_EXCL; 1107 if (replace) { 1108 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) { 1109 found++; 1110 break; 1111 } 1112 fallback_ins = fallback_ins ?: ins; 1113 goto next_iter; 1114 } 1115 1116 if (rt6_duplicate_nexthop(iter, rt)) { 1117 if (rt->fib6_nsiblings) 1118 rt->fib6_nsiblings = 0; 1119 if (!(iter->fib6_flags & RTF_EXPIRES)) 1120 return -EEXIST; 1121 if (!(rt->fib6_flags & RTF_EXPIRES)) 1122 fib6_clean_expires(iter); 1123 else 1124 fib6_set_expires(iter, rt->expires); 1125 1126 if (rt->fib6_pmtu) 1127 fib6_metric_set(iter, RTAX_MTU, 1128 rt->fib6_pmtu); 1129 return -EEXIST; 1130 } 1131 /* If we have the same destination and the same metric, 1132 * but not the same gateway, then the route we try to 1133 * add is sibling to this route, increment our counter 1134 * of siblings, and later we will add our route to the 1135 * list. 1136 * Only static routes (which don't have flag 1137 * RTF_EXPIRES) are used for ECMPv6. 1138 * 1139 * To avoid long list, we only had siblings if the 1140 * route have a gateway. 1141 */ 1142 if (rt_can_ecmp && 1143 rt6_qualify_for_ecmp(iter)) 1144 rt->fib6_nsiblings++; 1145 } 1146 1147 if (iter->fib6_metric > rt->fib6_metric) 1148 break; 1149 1150 next_iter: 1151 ins = &iter->fib6_next; 1152 } 1153 1154 if (fallback_ins && !found) { 1155 /* No matching route with same ecmp-able-ness found, replace 1156 * first matching route 1157 */ 1158 ins = fallback_ins; 1159 iter = rcu_dereference_protected(*ins, 1160 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1161 found++; 1162 } 1163 1164 /* Reset round-robin state, if necessary */ 1165 if (ins == &fn->leaf) 1166 fn->rr_ptr = NULL; 1167 1168 /* Link this route to others same route. */ 1169 if (rt->fib6_nsiblings) { 1170 unsigned int fib6_nsiblings; 1171 struct fib6_info *sibling, *temp_sibling; 1172 1173 /* Find the first route that have the same metric */ 1174 sibling = leaf; 1175 notify_sibling_rt = true; 1176 while (sibling) { 1177 if (sibling->fib6_metric == rt->fib6_metric && 1178 rt6_qualify_for_ecmp(sibling)) { 1179 list_add_tail(&rt->fib6_siblings, 1180 &sibling->fib6_siblings); 1181 break; 1182 } 1183 sibling = rcu_dereference_protected(sibling->fib6_next, 1184 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1185 notify_sibling_rt = false; 1186 } 1187 /* For each sibling in the list, increment the counter of 1188 * siblings. BUG() if counters does not match, list of siblings 1189 * is broken! 1190 */ 1191 fib6_nsiblings = 0; 1192 list_for_each_entry_safe(sibling, temp_sibling, 1193 &rt->fib6_siblings, fib6_siblings) { 1194 sibling->fib6_nsiblings++; 1195 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings); 1196 fib6_nsiblings++; 1197 } 1198 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings); 1199 rt6_multipath_rebalance(temp_sibling); 1200 } 1201 1202 /* 1203 * insert node 1204 */ 1205 if (!replace) { 1206 if (!add) 1207 pr_warn("NLM_F_CREATE should be set when creating new route\n"); 1208 1209 add: 1210 nlflags |= NLM_F_CREATE; 1211 1212 /* The route should only be notified if it is the first 1213 * route in the node or if it is added as a sibling 1214 * route to the first route in the node. 1215 */ 1216 if (!info->skip_notify_kernel && 1217 (notify_sibling_rt || ins == &fn->leaf)) { 1218 enum fib_event_type fib_event; 1219 1220 if (notify_sibling_rt) 1221 fib_event = FIB_EVENT_ENTRY_APPEND; 1222 else 1223 fib_event = FIB_EVENT_ENTRY_REPLACE; 1224 err = call_fib6_entry_notifiers(info->nl_net, 1225 fib_event, rt, 1226 extack); 1227 if (err) { 1228 struct fib6_info *sibling, *next_sibling; 1229 1230 /* If the route has siblings, then it first 1231 * needs to be unlinked from them. 1232 */ 1233 if (!rt->fib6_nsiblings) 1234 return err; 1235 1236 list_for_each_entry_safe(sibling, next_sibling, 1237 &rt->fib6_siblings, 1238 fib6_siblings) 1239 sibling->fib6_nsiblings--; 1240 rt->fib6_nsiblings = 0; 1241 list_del_init(&rt->fib6_siblings); 1242 rt6_multipath_rebalance(next_sibling); 1243 return err; 1244 } 1245 } 1246 1247 rcu_assign_pointer(rt->fib6_next, iter); 1248 fib6_info_hold(rt); 1249 rcu_assign_pointer(rt->fib6_node, fn); 1250 rcu_assign_pointer(*ins, rt); 1251 if (!info->skip_notify) 1252 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); 1253 info->nl_net->ipv6.rt6_stats->fib_rt_entries++; 1254 1255 if (!(fn->fn_flags & RTN_RTINFO)) { 1256 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1257 fn->fn_flags |= RTN_RTINFO; 1258 } 1259 1260 } else { 1261 int nsiblings; 1262 1263 if (!found) { 1264 if (add) 1265 goto add; 1266 pr_warn("NLM_F_REPLACE set, but no existing node found!\n"); 1267 return -ENOENT; 1268 } 1269 1270 if (!info->skip_notify_kernel && ins == &fn->leaf) { 1271 err = call_fib6_entry_notifiers(info->nl_net, 1272 FIB_EVENT_ENTRY_REPLACE, 1273 rt, extack); 1274 if (err) 1275 return err; 1276 } 1277 1278 fib6_info_hold(rt); 1279 rcu_assign_pointer(rt->fib6_node, fn); 1280 rt->fib6_next = iter->fib6_next; 1281 rcu_assign_pointer(*ins, rt); 1282 if (!info->skip_notify) 1283 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE); 1284 if (!(fn->fn_flags & RTN_RTINFO)) { 1285 info->nl_net->ipv6.rt6_stats->fib_route_nodes++; 1286 fn->fn_flags |= RTN_RTINFO; 1287 } 1288 nsiblings = iter->fib6_nsiblings; 1289 iter->fib6_node = NULL; 1290 fib6_purge_rt(iter, fn, info->nl_net); 1291 if (rcu_access_pointer(fn->rr_ptr) == iter) 1292 fn->rr_ptr = NULL; 1293 fib6_info_release(iter); 1294 1295 if (nsiblings) { 1296 /* Replacing an ECMP route, remove all siblings */ 1297 ins = &rt->fib6_next; 1298 iter = rcu_dereference_protected(*ins, 1299 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1300 while (iter) { 1301 if (iter->fib6_metric > rt->fib6_metric) 1302 break; 1303 if (rt6_qualify_for_ecmp(iter)) { 1304 *ins = iter->fib6_next; 1305 iter->fib6_node = NULL; 1306 fib6_purge_rt(iter, fn, info->nl_net); 1307 if (rcu_access_pointer(fn->rr_ptr) == iter) 1308 fn->rr_ptr = NULL; 1309 fib6_info_release(iter); 1310 nsiblings--; 1311 info->nl_net->ipv6.rt6_stats->fib_rt_entries--; 1312 } else { 1313 ins = &iter->fib6_next; 1314 } 1315 iter = rcu_dereference_protected(*ins, 1316 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1317 } 1318 WARN_ON(nsiblings != 0); 1319 } 1320 } 1321 1322 return 0; 1323 } 1324 1325 static void fib6_start_gc(struct net *net, struct fib6_info *rt) 1326 { 1327 if (!timer_pending(&net->ipv6.ip6_fib_timer) && 1328 (rt->fib6_flags & RTF_EXPIRES)) 1329 mod_timer(&net->ipv6.ip6_fib_timer, 1330 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1331 } 1332 1333 void fib6_force_start_gc(struct net *net) 1334 { 1335 if (!timer_pending(&net->ipv6.ip6_fib_timer)) 1336 mod_timer(&net->ipv6.ip6_fib_timer, 1337 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval); 1338 } 1339 1340 static void __fib6_update_sernum_upto_root(struct fib6_info *rt, 1341 int sernum) 1342 { 1343 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node, 1344 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1345 1346 /* paired with smp_rmb() in fib6_get_cookie_safe() */ 1347 smp_wmb(); 1348 while (fn) { 1349 WRITE_ONCE(fn->fn_sernum, sernum); 1350 fn = rcu_dereference_protected(fn->parent, 1351 lockdep_is_held(&rt->fib6_table->tb6_lock)); 1352 } 1353 } 1354 1355 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt) 1356 { 1357 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net)); 1358 } 1359 1360 /* allow ipv4 to update sernum via ipv6_stub */ 1361 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i) 1362 { 1363 spin_lock_bh(&f6i->fib6_table->tb6_lock); 1364 fib6_update_sernum_upto_root(net, f6i); 1365 spin_unlock_bh(&f6i->fib6_table->tb6_lock); 1366 } 1367 1368 /* 1369 * Add routing information to the routing tree. 1370 * <destination addr>/<source addr> 1371 * with source addr info in sub-trees 1372 * Need to own table->tb6_lock 1373 */ 1374 1375 int fib6_add(struct fib6_node *root, struct fib6_info *rt, 1376 struct nl_info *info, struct netlink_ext_ack *extack) 1377 { 1378 struct fib6_table *table = rt->fib6_table; 1379 struct fib6_node *fn, *pn = NULL; 1380 int err = -ENOMEM; 1381 int allow_create = 1; 1382 int replace_required = 0; 1383 1384 if (info->nlh) { 1385 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE)) 1386 allow_create = 0; 1387 if (info->nlh->nlmsg_flags & NLM_F_REPLACE) 1388 replace_required = 1; 1389 } 1390 if (!allow_create && !replace_required) 1391 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n"); 1392 1393 fn = fib6_add_1(info->nl_net, table, root, 1394 &rt->fib6_dst.addr, rt->fib6_dst.plen, 1395 offsetof(struct fib6_info, fib6_dst), allow_create, 1396 replace_required, extack); 1397 if (IS_ERR(fn)) { 1398 err = PTR_ERR(fn); 1399 fn = NULL; 1400 goto out; 1401 } 1402 1403 pn = fn; 1404 1405 #ifdef CONFIG_IPV6_SUBTREES 1406 if (rt->fib6_src.plen) { 1407 struct fib6_node *sn; 1408 1409 if (!rcu_access_pointer(fn->subtree)) { 1410 struct fib6_node *sfn; 1411 1412 /* 1413 * Create subtree. 1414 * 1415 * fn[main tree] 1416 * | 1417 * sfn[subtree root] 1418 * \ 1419 * sn[new leaf node] 1420 */ 1421 1422 /* Create subtree root node */ 1423 sfn = node_alloc(info->nl_net); 1424 if (!sfn) 1425 goto failure; 1426 1427 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry); 1428 rcu_assign_pointer(sfn->leaf, 1429 info->nl_net->ipv6.fib6_null_entry); 1430 sfn->fn_flags = RTN_ROOT; 1431 1432 /* Now add the first leaf node to new subtree */ 1433 1434 sn = fib6_add_1(info->nl_net, table, sfn, 1435 &rt->fib6_src.addr, rt->fib6_src.plen, 1436 offsetof(struct fib6_info, fib6_src), 1437 allow_create, replace_required, extack); 1438 1439 if (IS_ERR(sn)) { 1440 /* If it is failed, discard just allocated 1441 root, and then (in failure) stale node 1442 in main tree. 1443 */ 1444 node_free_immediate(info->nl_net, sfn); 1445 err = PTR_ERR(sn); 1446 goto failure; 1447 } 1448 1449 /* Now link new subtree to main tree */ 1450 rcu_assign_pointer(sfn->parent, fn); 1451 rcu_assign_pointer(fn->subtree, sfn); 1452 } else { 1453 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn), 1454 &rt->fib6_src.addr, rt->fib6_src.plen, 1455 offsetof(struct fib6_info, fib6_src), 1456 allow_create, replace_required, extack); 1457 1458 if (IS_ERR(sn)) { 1459 err = PTR_ERR(sn); 1460 goto failure; 1461 } 1462 } 1463 1464 if (!rcu_access_pointer(fn->leaf)) { 1465 if (fn->fn_flags & RTN_TL_ROOT) { 1466 /* put back null_entry for root node */ 1467 rcu_assign_pointer(fn->leaf, 1468 info->nl_net->ipv6.fib6_null_entry); 1469 } else { 1470 fib6_info_hold(rt); 1471 rcu_assign_pointer(fn->leaf, rt); 1472 } 1473 } 1474 fn = sn; 1475 } 1476 #endif 1477 1478 err = fib6_add_rt2node(fn, rt, info, extack); 1479 if (!err) { 1480 if (rt->nh) 1481 list_add(&rt->nh_list, &rt->nh->f6i_list); 1482 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net)); 1483 fib6_start_gc(info->nl_net, rt); 1484 } 1485 1486 out: 1487 if (err) { 1488 #ifdef CONFIG_IPV6_SUBTREES 1489 /* 1490 * If fib6_add_1 has cleared the old leaf pointer in the 1491 * super-tree leaf node we have to find a new one for it. 1492 */ 1493 if (pn != fn) { 1494 struct fib6_info *pn_leaf = 1495 rcu_dereference_protected(pn->leaf, 1496 lockdep_is_held(&table->tb6_lock)); 1497 if (pn_leaf == rt) { 1498 pn_leaf = NULL; 1499 RCU_INIT_POINTER(pn->leaf, NULL); 1500 fib6_info_release(rt); 1501 } 1502 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) { 1503 pn_leaf = fib6_find_prefix(info->nl_net, table, 1504 pn); 1505 #if RT6_DEBUG >= 2 1506 if (!pn_leaf) { 1507 WARN_ON(!pn_leaf); 1508 pn_leaf = 1509 info->nl_net->ipv6.fib6_null_entry; 1510 } 1511 #endif 1512 fib6_info_hold(pn_leaf); 1513 rcu_assign_pointer(pn->leaf, pn_leaf); 1514 } 1515 } 1516 #endif 1517 goto failure; 1518 } else if (fib6_requires_src(rt)) { 1519 fib6_routes_require_src_inc(info->nl_net); 1520 } 1521 return err; 1522 1523 failure: 1524 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if: 1525 * 1. fn is an intermediate node and we failed to add the new 1526 * route to it in both subtree creation failure and fib6_add_rt2node() 1527 * failure case. 1528 * 2. fn is the root node in the table and we fail to add the first 1529 * default route to it. 1530 */ 1531 if (fn && 1532 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) || 1533 (fn->fn_flags & RTN_TL_ROOT && 1534 !rcu_access_pointer(fn->leaf)))) 1535 fib6_repair_tree(info->nl_net, table, fn); 1536 return err; 1537 } 1538 1539 /* 1540 * Routing tree lookup 1541 * 1542 */ 1543 1544 struct lookup_args { 1545 int offset; /* key offset on fib6_info */ 1546 const struct in6_addr *addr; /* search key */ 1547 }; 1548 1549 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root, 1550 struct lookup_args *args) 1551 { 1552 struct fib6_node *fn; 1553 __be32 dir; 1554 1555 if (unlikely(args->offset == 0)) 1556 return NULL; 1557 1558 /* 1559 * Descend on a tree 1560 */ 1561 1562 fn = root; 1563 1564 for (;;) { 1565 struct fib6_node *next; 1566 1567 dir = addr_bit_set(args->addr, fn->fn_bit); 1568 1569 next = dir ? rcu_dereference(fn->right) : 1570 rcu_dereference(fn->left); 1571 1572 if (next) { 1573 fn = next; 1574 continue; 1575 } 1576 break; 1577 } 1578 1579 while (fn) { 1580 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1581 1582 if (subtree || fn->fn_flags & RTN_RTINFO) { 1583 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1584 struct rt6key *key; 1585 1586 if (!leaf) 1587 goto backtrack; 1588 1589 key = (struct rt6key *) ((u8 *)leaf + args->offset); 1590 1591 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) { 1592 #ifdef CONFIG_IPV6_SUBTREES 1593 if (subtree) { 1594 struct fib6_node *sfn; 1595 sfn = fib6_node_lookup_1(subtree, 1596 args + 1); 1597 if (!sfn) 1598 goto backtrack; 1599 fn = sfn; 1600 } 1601 #endif 1602 if (fn->fn_flags & RTN_RTINFO) 1603 return fn; 1604 } 1605 } 1606 backtrack: 1607 if (fn->fn_flags & RTN_ROOT) 1608 break; 1609 1610 fn = rcu_dereference(fn->parent); 1611 } 1612 1613 return NULL; 1614 } 1615 1616 /* called with rcu_read_lock() held 1617 */ 1618 struct fib6_node *fib6_node_lookup(struct fib6_node *root, 1619 const struct in6_addr *daddr, 1620 const struct in6_addr *saddr) 1621 { 1622 struct fib6_node *fn; 1623 struct lookup_args args[] = { 1624 { 1625 .offset = offsetof(struct fib6_info, fib6_dst), 1626 .addr = daddr, 1627 }, 1628 #ifdef CONFIG_IPV6_SUBTREES 1629 { 1630 .offset = offsetof(struct fib6_info, fib6_src), 1631 .addr = saddr, 1632 }, 1633 #endif 1634 { 1635 .offset = 0, /* sentinel */ 1636 } 1637 }; 1638 1639 fn = fib6_node_lookup_1(root, daddr ? args : args + 1); 1640 if (!fn || fn->fn_flags & RTN_TL_ROOT) 1641 fn = root; 1642 1643 return fn; 1644 } 1645 1646 /* 1647 * Get node with specified destination prefix (and source prefix, 1648 * if subtrees are used) 1649 * exact_match == true means we try to find fn with exact match of 1650 * the passed in prefix addr 1651 * exact_match == false means we try to find fn with longest prefix 1652 * match of the passed in prefix addr. This is useful for finding fn 1653 * for cached route as it will be stored in the exception table under 1654 * the node with longest prefix length. 1655 */ 1656 1657 1658 static struct fib6_node *fib6_locate_1(struct fib6_node *root, 1659 const struct in6_addr *addr, 1660 int plen, int offset, 1661 bool exact_match) 1662 { 1663 struct fib6_node *fn, *prev = NULL; 1664 1665 for (fn = root; fn ; ) { 1666 struct fib6_info *leaf = rcu_dereference(fn->leaf); 1667 struct rt6key *key; 1668 1669 /* This node is being deleted */ 1670 if (!leaf) { 1671 if (plen <= fn->fn_bit) 1672 goto out; 1673 else 1674 goto next; 1675 } 1676 1677 key = (struct rt6key *)((u8 *)leaf + offset); 1678 1679 /* 1680 * Prefix match 1681 */ 1682 if (plen < fn->fn_bit || 1683 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) 1684 goto out; 1685 1686 if (plen == fn->fn_bit) 1687 return fn; 1688 1689 if (fn->fn_flags & RTN_RTINFO) 1690 prev = fn; 1691 1692 next: 1693 /* 1694 * We have more bits to go 1695 */ 1696 if (addr_bit_set(addr, fn->fn_bit)) 1697 fn = rcu_dereference(fn->right); 1698 else 1699 fn = rcu_dereference(fn->left); 1700 } 1701 out: 1702 if (exact_match) 1703 return NULL; 1704 else 1705 return prev; 1706 } 1707 1708 struct fib6_node *fib6_locate(struct fib6_node *root, 1709 const struct in6_addr *daddr, int dst_len, 1710 const struct in6_addr *saddr, int src_len, 1711 bool exact_match) 1712 { 1713 struct fib6_node *fn; 1714 1715 fn = fib6_locate_1(root, daddr, dst_len, 1716 offsetof(struct fib6_info, fib6_dst), 1717 exact_match); 1718 1719 #ifdef CONFIG_IPV6_SUBTREES 1720 if (src_len) { 1721 WARN_ON(saddr == NULL); 1722 if (fn) { 1723 struct fib6_node *subtree = FIB6_SUBTREE(fn); 1724 1725 if (subtree) { 1726 fn = fib6_locate_1(subtree, saddr, src_len, 1727 offsetof(struct fib6_info, fib6_src), 1728 exact_match); 1729 } 1730 } 1731 } 1732 #endif 1733 1734 if (fn && fn->fn_flags & RTN_RTINFO) 1735 return fn; 1736 1737 return NULL; 1738 } 1739 1740 1741 /* 1742 * Deletion 1743 * 1744 */ 1745 1746 static struct fib6_info *fib6_find_prefix(struct net *net, 1747 struct fib6_table *table, 1748 struct fib6_node *fn) 1749 { 1750 struct fib6_node *child_left, *child_right; 1751 1752 if (fn->fn_flags & RTN_ROOT) 1753 return net->ipv6.fib6_null_entry; 1754 1755 while (fn) { 1756 child_left = rcu_dereference_protected(fn->left, 1757 lockdep_is_held(&table->tb6_lock)); 1758 child_right = rcu_dereference_protected(fn->right, 1759 lockdep_is_held(&table->tb6_lock)); 1760 if (child_left) 1761 return rcu_dereference_protected(child_left->leaf, 1762 lockdep_is_held(&table->tb6_lock)); 1763 if (child_right) 1764 return rcu_dereference_protected(child_right->leaf, 1765 lockdep_is_held(&table->tb6_lock)); 1766 1767 fn = FIB6_SUBTREE(fn); 1768 } 1769 return NULL; 1770 } 1771 1772 /* 1773 * Called to trim the tree of intermediate nodes when possible. "fn" 1774 * is the node we want to try and remove. 1775 * Need to own table->tb6_lock 1776 */ 1777 1778 static struct fib6_node *fib6_repair_tree(struct net *net, 1779 struct fib6_table *table, 1780 struct fib6_node *fn) 1781 { 1782 int children; 1783 int nstate; 1784 struct fib6_node *child; 1785 struct fib6_walker *w; 1786 int iter = 0; 1787 1788 /* Set fn->leaf to null_entry for root node. */ 1789 if (fn->fn_flags & RTN_TL_ROOT) { 1790 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry); 1791 return fn; 1792 } 1793 1794 for (;;) { 1795 struct fib6_node *fn_r = rcu_dereference_protected(fn->right, 1796 lockdep_is_held(&table->tb6_lock)); 1797 struct fib6_node *fn_l = rcu_dereference_protected(fn->left, 1798 lockdep_is_held(&table->tb6_lock)); 1799 struct fib6_node *pn = rcu_dereference_protected(fn->parent, 1800 lockdep_is_held(&table->tb6_lock)); 1801 struct fib6_node *pn_r = rcu_dereference_protected(pn->right, 1802 lockdep_is_held(&table->tb6_lock)); 1803 struct fib6_node *pn_l = rcu_dereference_protected(pn->left, 1804 lockdep_is_held(&table->tb6_lock)); 1805 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf, 1806 lockdep_is_held(&table->tb6_lock)); 1807 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf, 1808 lockdep_is_held(&table->tb6_lock)); 1809 struct fib6_info *new_fn_leaf; 1810 1811 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter); 1812 iter++; 1813 1814 WARN_ON(fn->fn_flags & RTN_RTINFO); 1815 WARN_ON(fn->fn_flags & RTN_TL_ROOT); 1816 WARN_ON(fn_leaf); 1817 1818 children = 0; 1819 child = NULL; 1820 if (fn_r) { 1821 child = fn_r; 1822 children |= 1; 1823 } 1824 if (fn_l) { 1825 child = fn_l; 1826 children |= 2; 1827 } 1828 1829 if (children == 3 || FIB6_SUBTREE(fn) 1830 #ifdef CONFIG_IPV6_SUBTREES 1831 /* Subtree root (i.e. fn) may have one child */ 1832 || (children && fn->fn_flags & RTN_ROOT) 1833 #endif 1834 ) { 1835 new_fn_leaf = fib6_find_prefix(net, table, fn); 1836 #if RT6_DEBUG >= 2 1837 if (!new_fn_leaf) { 1838 WARN_ON(!new_fn_leaf); 1839 new_fn_leaf = net->ipv6.fib6_null_entry; 1840 } 1841 #endif 1842 fib6_info_hold(new_fn_leaf); 1843 rcu_assign_pointer(fn->leaf, new_fn_leaf); 1844 return pn; 1845 } 1846 1847 #ifdef CONFIG_IPV6_SUBTREES 1848 if (FIB6_SUBTREE(pn) == fn) { 1849 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 1850 RCU_INIT_POINTER(pn->subtree, NULL); 1851 nstate = FWS_L; 1852 } else { 1853 WARN_ON(fn->fn_flags & RTN_ROOT); 1854 #endif 1855 if (pn_r == fn) 1856 rcu_assign_pointer(pn->right, child); 1857 else if (pn_l == fn) 1858 rcu_assign_pointer(pn->left, child); 1859 #if RT6_DEBUG >= 2 1860 else 1861 WARN_ON(1); 1862 #endif 1863 if (child) 1864 rcu_assign_pointer(child->parent, pn); 1865 nstate = FWS_R; 1866 #ifdef CONFIG_IPV6_SUBTREES 1867 } 1868 #endif 1869 1870 read_lock(&net->ipv6.fib6_walker_lock); 1871 FOR_WALKERS(net, w) { 1872 if (!child) { 1873 if (w->node == fn) { 1874 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate); 1875 w->node = pn; 1876 w->state = nstate; 1877 } 1878 } else { 1879 if (w->node == fn) { 1880 w->node = child; 1881 if (children&2) { 1882 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1883 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT; 1884 } else { 1885 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state); 1886 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT; 1887 } 1888 } 1889 } 1890 } 1891 read_unlock(&net->ipv6.fib6_walker_lock); 1892 1893 node_free(net, fn); 1894 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn)) 1895 return pn; 1896 1897 RCU_INIT_POINTER(pn->leaf, NULL); 1898 fib6_info_release(pn_leaf); 1899 fn = pn; 1900 } 1901 } 1902 1903 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn, 1904 struct fib6_info __rcu **rtp, struct nl_info *info) 1905 { 1906 struct fib6_info *leaf, *replace_rt = NULL; 1907 struct fib6_walker *w; 1908 struct fib6_info *rt = rcu_dereference_protected(*rtp, 1909 lockdep_is_held(&table->tb6_lock)); 1910 struct net *net = info->nl_net; 1911 bool notify_del = false; 1912 1913 RT6_TRACE("fib6_del_route\n"); 1914 1915 /* If the deleted route is the first in the node and it is not part of 1916 * a multipath route, then we need to replace it with the next route 1917 * in the node, if exists. 1918 */ 1919 leaf = rcu_dereference_protected(fn->leaf, 1920 lockdep_is_held(&table->tb6_lock)); 1921 if (leaf == rt && !rt->fib6_nsiblings) { 1922 if (rcu_access_pointer(rt->fib6_next)) 1923 replace_rt = rcu_dereference_protected(rt->fib6_next, 1924 lockdep_is_held(&table->tb6_lock)); 1925 else 1926 notify_del = true; 1927 } 1928 1929 /* Unlink it */ 1930 *rtp = rt->fib6_next; 1931 rt->fib6_node = NULL; 1932 net->ipv6.rt6_stats->fib_rt_entries--; 1933 net->ipv6.rt6_stats->fib_discarded_routes++; 1934 1935 /* Reset round-robin state, if necessary */ 1936 if (rcu_access_pointer(fn->rr_ptr) == rt) 1937 fn->rr_ptr = NULL; 1938 1939 /* Remove this entry from other siblings */ 1940 if (rt->fib6_nsiblings) { 1941 struct fib6_info *sibling, *next_sibling; 1942 1943 /* The route is deleted from a multipath route. If this 1944 * multipath route is the first route in the node, then we need 1945 * to emit a delete notification. Otherwise, we need to skip 1946 * the notification. 1947 */ 1948 if (rt->fib6_metric == leaf->fib6_metric && 1949 rt6_qualify_for_ecmp(leaf)) 1950 notify_del = true; 1951 list_for_each_entry_safe(sibling, next_sibling, 1952 &rt->fib6_siblings, fib6_siblings) 1953 sibling->fib6_nsiblings--; 1954 rt->fib6_nsiblings = 0; 1955 list_del_init(&rt->fib6_siblings); 1956 rt6_multipath_rebalance(next_sibling); 1957 } 1958 1959 /* Adjust walkers */ 1960 read_lock(&net->ipv6.fib6_walker_lock); 1961 FOR_WALKERS(net, w) { 1962 if (w->state == FWS_C && w->leaf == rt) { 1963 RT6_TRACE("walker %p adjusted by delroute\n", w); 1964 w->leaf = rcu_dereference_protected(rt->fib6_next, 1965 lockdep_is_held(&table->tb6_lock)); 1966 if (!w->leaf) 1967 w->state = FWS_U; 1968 } 1969 } 1970 read_unlock(&net->ipv6.fib6_walker_lock); 1971 1972 /* If it was last route, call fib6_repair_tree() to: 1973 * 1. For root node, put back null_entry as how the table was created. 1974 * 2. For other nodes, expunge its radix tree node. 1975 */ 1976 if (!rcu_access_pointer(fn->leaf)) { 1977 if (!(fn->fn_flags & RTN_TL_ROOT)) { 1978 fn->fn_flags &= ~RTN_RTINFO; 1979 net->ipv6.rt6_stats->fib_route_nodes--; 1980 } 1981 fn = fib6_repair_tree(net, table, fn); 1982 } 1983 1984 fib6_purge_rt(rt, fn, net); 1985 1986 if (!info->skip_notify_kernel) { 1987 if (notify_del) 1988 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, 1989 rt, NULL); 1990 else if (replace_rt) 1991 call_fib6_entry_notifiers_replace(net, replace_rt); 1992 } 1993 if (!info->skip_notify) 1994 inet6_rt_notify(RTM_DELROUTE, rt, info, 0); 1995 1996 fib6_info_release(rt); 1997 } 1998 1999 /* Need to own table->tb6_lock */ 2000 int fib6_del(struct fib6_info *rt, struct nl_info *info) 2001 { 2002 struct net *net = info->nl_net; 2003 struct fib6_info __rcu **rtp; 2004 struct fib6_info __rcu **rtp_next; 2005 struct fib6_table *table; 2006 struct fib6_node *fn; 2007 2008 if (rt == net->ipv6.fib6_null_entry) 2009 return -ENOENT; 2010 2011 table = rt->fib6_table; 2012 fn = rcu_dereference_protected(rt->fib6_node, 2013 lockdep_is_held(&table->tb6_lock)); 2014 if (!fn) 2015 return -ENOENT; 2016 2017 WARN_ON(!(fn->fn_flags & RTN_RTINFO)); 2018 2019 /* 2020 * Walk the leaf entries looking for ourself 2021 */ 2022 2023 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) { 2024 struct fib6_info *cur = rcu_dereference_protected(*rtp, 2025 lockdep_is_held(&table->tb6_lock)); 2026 if (rt == cur) { 2027 if (fib6_requires_src(cur)) 2028 fib6_routes_require_src_dec(info->nl_net); 2029 fib6_del_route(table, fn, rtp, info); 2030 return 0; 2031 } 2032 rtp_next = &cur->fib6_next; 2033 } 2034 return -ENOENT; 2035 } 2036 2037 /* 2038 * Tree traversal function. 2039 * 2040 * Certainly, it is not interrupt safe. 2041 * However, it is internally reenterable wrt itself and fib6_add/fib6_del. 2042 * It means, that we can modify tree during walking 2043 * and use this function for garbage collection, clone pruning, 2044 * cleaning tree when a device goes down etc. etc. 2045 * 2046 * It guarantees that every node will be traversed, 2047 * and that it will be traversed only once. 2048 * 2049 * Callback function w->func may return: 2050 * 0 -> continue walking. 2051 * positive value -> walking is suspended (used by tree dumps, 2052 * and probably by gc, if it will be split to several slices) 2053 * negative value -> terminate walking. 2054 * 2055 * The function itself returns: 2056 * 0 -> walk is complete. 2057 * >0 -> walk is incomplete (i.e. suspended) 2058 * <0 -> walk is terminated by an error. 2059 * 2060 * This function is called with tb6_lock held. 2061 */ 2062 2063 static int fib6_walk_continue(struct fib6_walker *w) 2064 { 2065 struct fib6_node *fn, *pn, *left, *right; 2066 2067 /* w->root should always be table->tb6_root */ 2068 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT)); 2069 2070 for (;;) { 2071 fn = w->node; 2072 if (!fn) 2073 return 0; 2074 2075 switch (w->state) { 2076 #ifdef CONFIG_IPV6_SUBTREES 2077 case FWS_S: 2078 if (FIB6_SUBTREE(fn)) { 2079 w->node = FIB6_SUBTREE(fn); 2080 continue; 2081 } 2082 w->state = FWS_L; 2083 fallthrough; 2084 #endif 2085 case FWS_L: 2086 left = rcu_dereference_protected(fn->left, 1); 2087 if (left) { 2088 w->node = left; 2089 w->state = FWS_INIT; 2090 continue; 2091 } 2092 w->state = FWS_R; 2093 fallthrough; 2094 case FWS_R: 2095 right = rcu_dereference_protected(fn->right, 1); 2096 if (right) { 2097 w->node = right; 2098 w->state = FWS_INIT; 2099 continue; 2100 } 2101 w->state = FWS_C; 2102 w->leaf = rcu_dereference_protected(fn->leaf, 1); 2103 fallthrough; 2104 case FWS_C: 2105 if (w->leaf && fn->fn_flags & RTN_RTINFO) { 2106 int err; 2107 2108 if (w->skip) { 2109 w->skip--; 2110 goto skip; 2111 } 2112 2113 err = w->func(w); 2114 if (err) 2115 return err; 2116 2117 w->count++; 2118 continue; 2119 } 2120 skip: 2121 w->state = FWS_U; 2122 fallthrough; 2123 case FWS_U: 2124 if (fn == w->root) 2125 return 0; 2126 pn = rcu_dereference_protected(fn->parent, 1); 2127 left = rcu_dereference_protected(pn->left, 1); 2128 right = rcu_dereference_protected(pn->right, 1); 2129 w->node = pn; 2130 #ifdef CONFIG_IPV6_SUBTREES 2131 if (FIB6_SUBTREE(pn) == fn) { 2132 WARN_ON(!(fn->fn_flags & RTN_ROOT)); 2133 w->state = FWS_L; 2134 continue; 2135 } 2136 #endif 2137 if (left == fn) { 2138 w->state = FWS_R; 2139 continue; 2140 } 2141 if (right == fn) { 2142 w->state = FWS_C; 2143 w->leaf = rcu_dereference_protected(w->node->leaf, 1); 2144 continue; 2145 } 2146 #if RT6_DEBUG >= 2 2147 WARN_ON(1); 2148 #endif 2149 } 2150 } 2151 } 2152 2153 static int fib6_walk(struct net *net, struct fib6_walker *w) 2154 { 2155 int res; 2156 2157 w->state = FWS_INIT; 2158 w->node = w->root; 2159 2160 fib6_walker_link(net, w); 2161 res = fib6_walk_continue(w); 2162 if (res <= 0) 2163 fib6_walker_unlink(net, w); 2164 return res; 2165 } 2166 2167 static int fib6_clean_node(struct fib6_walker *w) 2168 { 2169 int res; 2170 struct fib6_info *rt; 2171 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w); 2172 struct nl_info info = { 2173 .nl_net = c->net, 2174 .skip_notify = c->skip_notify, 2175 }; 2176 2177 if (c->sernum != FIB6_NO_SERNUM_CHANGE && 2178 READ_ONCE(w->node->fn_sernum) != c->sernum) 2179 WRITE_ONCE(w->node->fn_sernum, c->sernum); 2180 2181 if (!c->func) { 2182 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE); 2183 w->leaf = NULL; 2184 return 0; 2185 } 2186 2187 for_each_fib6_walker_rt(w) { 2188 res = c->func(rt, c->arg); 2189 if (res == -1) { 2190 w->leaf = rt; 2191 res = fib6_del(rt, &info); 2192 if (res) { 2193 #if RT6_DEBUG >= 2 2194 pr_debug("%s: del failed: rt=%p@%p err=%d\n", 2195 __func__, rt, 2196 rcu_access_pointer(rt->fib6_node), 2197 res); 2198 #endif 2199 continue; 2200 } 2201 return 0; 2202 } else if (res == -2) { 2203 if (WARN_ON(!rt->fib6_nsiblings)) 2204 continue; 2205 rt = list_last_entry(&rt->fib6_siblings, 2206 struct fib6_info, fib6_siblings); 2207 continue; 2208 } 2209 WARN_ON(res != 0); 2210 } 2211 w->leaf = rt; 2212 return 0; 2213 } 2214 2215 /* 2216 * Convenient frontend to tree walker. 2217 * 2218 * func is called on each route. 2219 * It may return -2 -> skip multipath route. 2220 * -1 -> delete this route. 2221 * 0 -> continue walking 2222 */ 2223 2224 static void fib6_clean_tree(struct net *net, struct fib6_node *root, 2225 int (*func)(struct fib6_info *, void *arg), 2226 int sernum, void *arg, bool skip_notify) 2227 { 2228 struct fib6_cleaner c; 2229 2230 c.w.root = root; 2231 c.w.func = fib6_clean_node; 2232 c.w.count = 0; 2233 c.w.skip = 0; 2234 c.w.skip_in_node = 0; 2235 c.func = func; 2236 c.sernum = sernum; 2237 c.arg = arg; 2238 c.net = net; 2239 c.skip_notify = skip_notify; 2240 2241 fib6_walk(net, &c.w); 2242 } 2243 2244 static void __fib6_clean_all(struct net *net, 2245 int (*func)(struct fib6_info *, void *), 2246 int sernum, void *arg, bool skip_notify) 2247 { 2248 struct fib6_table *table; 2249 struct hlist_head *head; 2250 unsigned int h; 2251 2252 rcu_read_lock(); 2253 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { 2254 head = &net->ipv6.fib_table_hash[h]; 2255 hlist_for_each_entry_rcu(table, head, tb6_hlist) { 2256 spin_lock_bh(&table->tb6_lock); 2257 fib6_clean_tree(net, &table->tb6_root, 2258 func, sernum, arg, skip_notify); 2259 spin_unlock_bh(&table->tb6_lock); 2260 } 2261 } 2262 rcu_read_unlock(); 2263 } 2264 2265 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *), 2266 void *arg) 2267 { 2268 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false); 2269 } 2270 2271 void fib6_clean_all_skip_notify(struct net *net, 2272 int (*func)(struct fib6_info *, void *), 2273 void *arg) 2274 { 2275 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true); 2276 } 2277 2278 static void fib6_flush_trees(struct net *net) 2279 { 2280 int new_sernum = fib6_new_sernum(net); 2281 2282 __fib6_clean_all(net, NULL, new_sernum, NULL, false); 2283 } 2284 2285 /* 2286 * Garbage collection 2287 */ 2288 2289 static int fib6_age(struct fib6_info *rt, void *arg) 2290 { 2291 struct fib6_gc_args *gc_args = arg; 2292 unsigned long now = jiffies; 2293 2294 /* 2295 * check addrconf expiration here. 2296 * Routes are expired even if they are in use. 2297 */ 2298 2299 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) { 2300 if (time_after(now, rt->expires)) { 2301 RT6_TRACE("expiring %p\n", rt); 2302 return -1; 2303 } 2304 gc_args->more++; 2305 } 2306 2307 /* Also age clones in the exception table. 2308 * Note, that clones are aged out 2309 * only if they are not in use now. 2310 */ 2311 rt6_age_exceptions(rt, gc_args, now); 2312 2313 return 0; 2314 } 2315 2316 void fib6_run_gc(unsigned long expires, struct net *net, bool force) 2317 { 2318 struct fib6_gc_args gc_args; 2319 unsigned long now; 2320 2321 if (force) { 2322 spin_lock_bh(&net->ipv6.fib6_gc_lock); 2323 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) { 2324 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ); 2325 return; 2326 } 2327 gc_args.timeout = expires ? (int)expires : 2328 net->ipv6.sysctl.ip6_rt_gc_interval; 2329 gc_args.more = 0; 2330 2331 fib6_clean_all(net, fib6_age, &gc_args); 2332 now = jiffies; 2333 net->ipv6.ip6_rt_last_gc = now; 2334 2335 if (gc_args.more) 2336 mod_timer(&net->ipv6.ip6_fib_timer, 2337 round_jiffies(now 2338 + net->ipv6.sysctl.ip6_rt_gc_interval)); 2339 else 2340 del_timer(&net->ipv6.ip6_fib_timer); 2341 spin_unlock_bh(&net->ipv6.fib6_gc_lock); 2342 } 2343 2344 static void fib6_gc_timer_cb(struct timer_list *t) 2345 { 2346 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer); 2347 2348 fib6_run_gc(0, arg, true); 2349 } 2350 2351 static int __net_init fib6_net_init(struct net *net) 2352 { 2353 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ; 2354 int err; 2355 2356 err = fib6_notifier_init(net); 2357 if (err) 2358 return err; 2359 2360 /* Default to 3-tuple */ 2361 net->ipv6.sysctl.multipath_hash_fields = 2362 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK; 2363 2364 spin_lock_init(&net->ipv6.fib6_gc_lock); 2365 rwlock_init(&net->ipv6.fib6_walker_lock); 2366 INIT_LIST_HEAD(&net->ipv6.fib6_walkers); 2367 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0); 2368 2369 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL); 2370 if (!net->ipv6.rt6_stats) 2371 goto out_notifier; 2372 2373 /* Avoid false sharing : Use at least a full cache line */ 2374 size = max_t(size_t, size, L1_CACHE_BYTES); 2375 2376 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL); 2377 if (!net->ipv6.fib_table_hash) 2378 goto out_rt6_stats; 2379 2380 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl), 2381 GFP_KERNEL); 2382 if (!net->ipv6.fib6_main_tbl) 2383 goto out_fib_table_hash; 2384 2385 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN; 2386 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf, 2387 net->ipv6.fib6_null_entry); 2388 net->ipv6.fib6_main_tbl->tb6_root.fn_flags = 2389 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2390 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers); 2391 2392 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2393 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl), 2394 GFP_KERNEL); 2395 if (!net->ipv6.fib6_local_tbl) 2396 goto out_fib6_main_tbl; 2397 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL; 2398 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf, 2399 net->ipv6.fib6_null_entry); 2400 net->ipv6.fib6_local_tbl->tb6_root.fn_flags = 2401 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO; 2402 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers); 2403 #endif 2404 fib6_tables_init(net); 2405 2406 return 0; 2407 2408 #ifdef CONFIG_IPV6_MULTIPLE_TABLES 2409 out_fib6_main_tbl: 2410 kfree(net->ipv6.fib6_main_tbl); 2411 #endif 2412 out_fib_table_hash: 2413 kfree(net->ipv6.fib_table_hash); 2414 out_rt6_stats: 2415 kfree(net->ipv6.rt6_stats); 2416 out_notifier: 2417 fib6_notifier_exit(net); 2418 return -ENOMEM; 2419 } 2420 2421 static void fib6_net_exit(struct net *net) 2422 { 2423 unsigned int i; 2424 2425 del_timer_sync(&net->ipv6.ip6_fib_timer); 2426 2427 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) { 2428 struct hlist_head *head = &net->ipv6.fib_table_hash[i]; 2429 struct hlist_node *tmp; 2430 struct fib6_table *tb; 2431 2432 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) { 2433 hlist_del(&tb->tb6_hlist); 2434 fib6_free_table(tb); 2435 } 2436 } 2437 2438 kfree(net->ipv6.fib_table_hash); 2439 kfree(net->ipv6.rt6_stats); 2440 fib6_notifier_exit(net); 2441 } 2442 2443 static struct pernet_operations fib6_net_ops = { 2444 .init = fib6_net_init, 2445 .exit = fib6_net_exit, 2446 }; 2447 2448 int __init fib6_init(void) 2449 { 2450 int ret = -ENOMEM; 2451 2452 fib6_node_kmem = kmem_cache_create("fib6_nodes", 2453 sizeof(struct fib6_node), 0, 2454 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 2455 NULL); 2456 if (!fib6_node_kmem) 2457 goto out; 2458 2459 ret = register_pernet_subsys(&fib6_net_ops); 2460 if (ret) 2461 goto out_kmem_cache_create; 2462 2463 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL, 2464 inet6_dump_fib, 0); 2465 if (ret) 2466 goto out_unregister_subsys; 2467 2468 __fib6_flush_trees = fib6_flush_trees; 2469 out: 2470 return ret; 2471 2472 out_unregister_subsys: 2473 unregister_pernet_subsys(&fib6_net_ops); 2474 out_kmem_cache_create: 2475 kmem_cache_destroy(fib6_node_kmem); 2476 goto out; 2477 } 2478 2479 void fib6_gc_cleanup(void) 2480 { 2481 unregister_pernet_subsys(&fib6_net_ops); 2482 kmem_cache_destroy(fib6_node_kmem); 2483 } 2484 2485 #ifdef CONFIG_PROC_FS 2486 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v) 2487 { 2488 struct fib6_info *rt = v; 2489 struct ipv6_route_iter *iter = seq->private; 2490 struct fib6_nh *fib6_nh = rt->fib6_nh; 2491 unsigned int flags = rt->fib6_flags; 2492 const struct net_device *dev; 2493 2494 if (rt->nh) 2495 fib6_nh = nexthop_fib6_nh_bh(rt->nh); 2496 2497 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen); 2498 2499 #ifdef CONFIG_IPV6_SUBTREES 2500 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen); 2501 #else 2502 seq_puts(seq, "00000000000000000000000000000000 00 "); 2503 #endif 2504 if (fib6_nh->fib_nh_gw_family) { 2505 flags |= RTF_GATEWAY; 2506 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6); 2507 } else { 2508 seq_puts(seq, "00000000000000000000000000000000"); 2509 } 2510 2511 dev = fib6_nh->fib_nh_dev; 2512 seq_printf(seq, " %08x %08x %08x %08x %8s\n", 2513 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0, 2514 flags, dev ? dev->name : ""); 2515 iter->w.leaf = NULL; 2516 return 0; 2517 } 2518 2519 static int ipv6_route_yield(struct fib6_walker *w) 2520 { 2521 struct ipv6_route_iter *iter = w->args; 2522 2523 if (!iter->skip) 2524 return 1; 2525 2526 do { 2527 iter->w.leaf = rcu_dereference_protected( 2528 iter->w.leaf->fib6_next, 2529 lockdep_is_held(&iter->tbl->tb6_lock)); 2530 iter->skip--; 2531 if (!iter->skip && iter->w.leaf) 2532 return 1; 2533 } while (iter->w.leaf); 2534 2535 return 0; 2536 } 2537 2538 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter, 2539 struct net *net) 2540 { 2541 memset(&iter->w, 0, sizeof(iter->w)); 2542 iter->w.func = ipv6_route_yield; 2543 iter->w.root = &iter->tbl->tb6_root; 2544 iter->w.state = FWS_INIT; 2545 iter->w.node = iter->w.root; 2546 iter->w.args = iter; 2547 iter->sernum = READ_ONCE(iter->w.root->fn_sernum); 2548 INIT_LIST_HEAD(&iter->w.lh); 2549 fib6_walker_link(net, &iter->w); 2550 } 2551 2552 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl, 2553 struct net *net) 2554 { 2555 unsigned int h; 2556 struct hlist_node *node; 2557 2558 if (tbl) { 2559 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1; 2560 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist)); 2561 } else { 2562 h = 0; 2563 node = NULL; 2564 } 2565 2566 while (!node && h < FIB6_TABLE_HASHSZ) { 2567 node = rcu_dereference_bh( 2568 hlist_first_rcu(&net->ipv6.fib_table_hash[h++])); 2569 } 2570 return hlist_entry_safe(node, struct fib6_table, tb6_hlist); 2571 } 2572 2573 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter) 2574 { 2575 int sernum = READ_ONCE(iter->w.root->fn_sernum); 2576 2577 if (iter->sernum != sernum) { 2578 iter->sernum = sernum; 2579 iter->w.state = FWS_INIT; 2580 iter->w.node = iter->w.root; 2581 WARN_ON(iter->w.skip); 2582 iter->w.skip = iter->w.count; 2583 } 2584 } 2585 2586 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2587 { 2588 int r; 2589 struct fib6_info *n; 2590 struct net *net = seq_file_net(seq); 2591 struct ipv6_route_iter *iter = seq->private; 2592 2593 ++(*pos); 2594 if (!v) 2595 goto iter_table; 2596 2597 n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next); 2598 if (n) 2599 return n; 2600 2601 iter_table: 2602 ipv6_route_check_sernum(iter); 2603 spin_lock_bh(&iter->tbl->tb6_lock); 2604 r = fib6_walk_continue(&iter->w); 2605 spin_unlock_bh(&iter->tbl->tb6_lock); 2606 if (r > 0) { 2607 return iter->w.leaf; 2608 } else if (r < 0) { 2609 fib6_walker_unlink(net, &iter->w); 2610 return NULL; 2611 } 2612 fib6_walker_unlink(net, &iter->w); 2613 2614 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net); 2615 if (!iter->tbl) 2616 return NULL; 2617 2618 ipv6_route_seq_setup_walk(iter, net); 2619 goto iter_table; 2620 } 2621 2622 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos) 2623 __acquires(RCU_BH) 2624 { 2625 struct net *net = seq_file_net(seq); 2626 struct ipv6_route_iter *iter = seq->private; 2627 2628 rcu_read_lock_bh(); 2629 iter->tbl = ipv6_route_seq_next_table(NULL, net); 2630 iter->skip = *pos; 2631 2632 if (iter->tbl) { 2633 loff_t p = 0; 2634 2635 ipv6_route_seq_setup_walk(iter, net); 2636 return ipv6_route_seq_next(seq, NULL, &p); 2637 } else { 2638 return NULL; 2639 } 2640 } 2641 2642 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter) 2643 { 2644 struct fib6_walker *w = &iter->w; 2645 return w->node && !(w->state == FWS_U && w->node == w->root); 2646 } 2647 2648 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v) 2649 __releases(RCU_BH) 2650 { 2651 struct net *net = seq_file_net(seq); 2652 struct ipv6_route_iter *iter = seq->private; 2653 2654 if (ipv6_route_iter_active(iter)) 2655 fib6_walker_unlink(net, &iter->w); 2656 2657 rcu_read_unlock_bh(); 2658 } 2659 2660 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL) 2661 static int ipv6_route_prog_seq_show(struct bpf_prog *prog, 2662 struct bpf_iter_meta *meta, 2663 void *v) 2664 { 2665 struct bpf_iter__ipv6_route ctx; 2666 2667 ctx.meta = meta; 2668 ctx.rt = v; 2669 return bpf_iter_run_prog(prog, &ctx); 2670 } 2671 2672 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2673 { 2674 struct ipv6_route_iter *iter = seq->private; 2675 struct bpf_iter_meta meta; 2676 struct bpf_prog *prog; 2677 int ret; 2678 2679 meta.seq = seq; 2680 prog = bpf_iter_get_info(&meta, false); 2681 if (!prog) 2682 return ipv6_route_native_seq_show(seq, v); 2683 2684 ret = ipv6_route_prog_seq_show(prog, &meta, v); 2685 iter->w.leaf = NULL; 2686 2687 return ret; 2688 } 2689 2690 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2691 { 2692 struct bpf_iter_meta meta; 2693 struct bpf_prog *prog; 2694 2695 if (!v) { 2696 meta.seq = seq; 2697 prog = bpf_iter_get_info(&meta, true); 2698 if (prog) 2699 (void)ipv6_route_prog_seq_show(prog, &meta, v); 2700 } 2701 2702 ipv6_route_native_seq_stop(seq, v); 2703 } 2704 #else 2705 static int ipv6_route_seq_show(struct seq_file *seq, void *v) 2706 { 2707 return ipv6_route_native_seq_show(seq, v); 2708 } 2709 2710 static void ipv6_route_seq_stop(struct seq_file *seq, void *v) 2711 { 2712 ipv6_route_native_seq_stop(seq, v); 2713 } 2714 #endif 2715 2716 const struct seq_operations ipv6_route_seq_ops = { 2717 .start = ipv6_route_seq_start, 2718 .next = ipv6_route_seq_next, 2719 .stop = ipv6_route_seq_stop, 2720 .show = ipv6_route_seq_show 2721 }; 2722 #endif /* CONFIG_PROC_FS */ 2723