xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 95188aaf)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13 
14 /*
15  * 	Changes:
16  * 	Yuji SEKIYA @USAGI:	Support default route on router node;
17  * 				remove ip6_null_entry from the top of
18  * 				routing table.
19  * 	Ville Nuorvala:		Fixed routing subtrees.
20  */
21 
22 #define pr_fmt(fmt) "IPv6: " fmt
23 
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33 
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37 
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40 
41 #define RT6_DEBUG 2
42 
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48 
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50 
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54 	FWS_S,
55 #endif
56 	FWS_L,
57 	FWS_R,
58 	FWS_C,
59 	FWS_U
60 };
61 
62 struct fib6_cleaner_t
63 {
64 	struct fib6_walker_t w;
65 	struct net *net;
66 	int (*func)(struct rt6_info *, void *arg);
67 	void *arg;
68 };
69 
70 static DEFINE_RWLOCK(fib6_walker_lock);
71 
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77 
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79 			      struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84 
85 /*
86  *	A routing update causes an increase of the serial number on the
87  *	affected subtree. This allows for cached routes to be asynchronously
88  *	tested when modifications are made to the destination cache as a
89  *	result of redirects, path MTU changes, etc.
90  */
91 
92 static __u32 rt_sernum;
93 
94 static void fib6_gc_timer_cb(unsigned long arg);
95 
96 static LIST_HEAD(fib6_walkers);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
98 
99 static inline void fib6_walker_link(struct fib6_walker_t *w)
100 {
101 	write_lock_bh(&fib6_walker_lock);
102 	list_add(&w->lh, &fib6_walkers);
103 	write_unlock_bh(&fib6_walker_lock);
104 }
105 
106 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
107 {
108 	write_lock_bh(&fib6_walker_lock);
109 	list_del(&w->lh);
110 	write_unlock_bh(&fib6_walker_lock);
111 }
112 static __inline__ u32 fib6_new_sernum(void)
113 {
114 	u32 n = ++rt_sernum;
115 	if ((__s32)n <= 0)
116 		rt_sernum = n = 1;
117 	return n;
118 }
119 
120 /*
121  *	Auxiliary address test functions for the radix tree.
122  *
123  *	These assume a 32bit processor (although it will work on
124  *	64bit processors)
125  */
126 
127 /*
128  *	test bit
129  */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE	0
134 #endif
135 
136 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138 	const __be32 *addr = token;
139 	/*
140 	 * Here,
141 	 * 	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 	 * is optimized version of
143 	 *	htonl(1 << ((~fn_bit)&0x1F))
144 	 * See include/asm-generic/bitops/le.h.
145 	 */
146 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 	       addr[fn_bit >> 5];
148 }
149 
150 static __inline__ struct fib6_node * node_alloc(void)
151 {
152 	struct fib6_node *fn;
153 
154 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
155 
156 	return fn;
157 }
158 
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161 	kmem_cache_free(fib6_node_kmem, fn);
162 }
163 
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166 	if (atomic_dec_and_test(&rt->rt6i_ref))
167 		dst_free(&rt->dst);
168 }
169 
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
171 {
172 	unsigned int h;
173 
174 	/*
175 	 * Initialize table lock at a single place to give lockdep a key,
176 	 * tables aren't visible prior to being linked to the list.
177 	 */
178 	rwlock_init(&tb->tb6_lock);
179 
180 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
181 
182 	/*
183 	 * No protection necessary, this is the only list mutatation
184 	 * operation, tables never disappear once they exist.
185 	 */
186 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
187 }
188 
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
190 
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
192 {
193 	struct fib6_table *table;
194 
195 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
196 	if (table) {
197 		table->tb6_id = id;
198 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200 		inet_peer_base_init(&table->tb6_peers);
201 	}
202 
203 	return table;
204 }
205 
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208 	struct fib6_table *tb;
209 
210 	if (id == 0)
211 		id = RT6_TABLE_MAIN;
212 	tb = fib6_get_table(net, id);
213 	if (tb)
214 		return tb;
215 
216 	tb = fib6_alloc_table(net, id);
217 	if (tb)
218 		fib6_link_table(net, tb);
219 
220 	return tb;
221 }
222 
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225 	struct fib6_table *tb;
226 	struct hlist_head *head;
227 	unsigned int h;
228 
229 	if (id == 0)
230 		id = RT6_TABLE_MAIN;
231 	h = id & (FIB6_TABLE_HASHSZ - 1);
232 	rcu_read_lock();
233 	head = &net->ipv6.fib_table_hash[h];
234 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
235 		if (tb->tb6_id == id) {
236 			rcu_read_unlock();
237 			return tb;
238 		}
239 	}
240 	rcu_read_unlock();
241 
242 	return NULL;
243 }
244 
245 static void __net_init fib6_tables_init(struct net *net)
246 {
247 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
248 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
249 }
250 #else
251 
252 struct fib6_table *fib6_new_table(struct net *net, u32 id)
253 {
254 	return fib6_get_table(net, id);
255 }
256 
257 struct fib6_table *fib6_get_table(struct net *net, u32 id)
258 {
259 	  return net->ipv6.fib6_main_tbl;
260 }
261 
262 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
263 				   int flags, pol_lookup_t lookup)
264 {
265 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
266 }
267 
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 }
272 
273 #endif
274 
275 static int fib6_dump_node(struct fib6_walker_t *w)
276 {
277 	int res;
278 	struct rt6_info *rt;
279 
280 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
281 		res = rt6_dump_route(rt, w->args);
282 		if (res < 0) {
283 			/* Frame is full, suspend walking */
284 			w->leaf = rt;
285 			return 1;
286 		}
287 		WARN_ON(res == 0);
288 	}
289 	w->leaf = NULL;
290 	return 0;
291 }
292 
293 static void fib6_dump_end(struct netlink_callback *cb)
294 {
295 	struct fib6_walker_t *w = (void*)cb->args[2];
296 
297 	if (w) {
298 		if (cb->args[4]) {
299 			cb->args[4] = 0;
300 			fib6_walker_unlink(w);
301 		}
302 		cb->args[2] = 0;
303 		kfree(w);
304 	}
305 	cb->done = (void*)cb->args[3];
306 	cb->args[1] = 3;
307 }
308 
309 static int fib6_dump_done(struct netlink_callback *cb)
310 {
311 	fib6_dump_end(cb);
312 	return cb->done ? cb->done(cb) : 0;
313 }
314 
315 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
316 			   struct netlink_callback *cb)
317 {
318 	struct fib6_walker_t *w;
319 	int res;
320 
321 	w = (void *)cb->args[2];
322 	w->root = &table->tb6_root;
323 
324 	if (cb->args[4] == 0) {
325 		w->count = 0;
326 		w->skip = 0;
327 
328 		read_lock_bh(&table->tb6_lock);
329 		res = fib6_walk(w);
330 		read_unlock_bh(&table->tb6_lock);
331 		if (res > 0) {
332 			cb->args[4] = 1;
333 			cb->args[5] = w->root->fn_sernum;
334 		}
335 	} else {
336 		if (cb->args[5] != w->root->fn_sernum) {
337 			/* Begin at the root if the tree changed */
338 			cb->args[5] = w->root->fn_sernum;
339 			w->state = FWS_INIT;
340 			w->node = w->root;
341 			w->skip = w->count;
342 		} else
343 			w->skip = 0;
344 
345 		read_lock_bh(&table->tb6_lock);
346 		res = fib6_walk_continue(w);
347 		read_unlock_bh(&table->tb6_lock);
348 		if (res <= 0) {
349 			fib6_walker_unlink(w);
350 			cb->args[4] = 0;
351 		}
352 	}
353 
354 	return res;
355 }
356 
357 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
358 {
359 	struct net *net = sock_net(skb->sk);
360 	unsigned int h, s_h;
361 	unsigned int e = 0, s_e;
362 	struct rt6_rtnl_dump_arg arg;
363 	struct fib6_walker_t *w;
364 	struct fib6_table *tb;
365 	struct hlist_head *head;
366 	int res = 0;
367 
368 	s_h = cb->args[0];
369 	s_e = cb->args[1];
370 
371 	w = (void *)cb->args[2];
372 	if (!w) {
373 		/* New dump:
374 		 *
375 		 * 1. hook callback destructor.
376 		 */
377 		cb->args[3] = (long)cb->done;
378 		cb->done = fib6_dump_done;
379 
380 		/*
381 		 * 2. allocate and initialize walker.
382 		 */
383 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
384 		if (!w)
385 			return -ENOMEM;
386 		w->func = fib6_dump_node;
387 		cb->args[2] = (long)w;
388 	}
389 
390 	arg.skb = skb;
391 	arg.cb = cb;
392 	arg.net = net;
393 	w->args = &arg;
394 
395 	rcu_read_lock();
396 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
397 		e = 0;
398 		head = &net->ipv6.fib_table_hash[h];
399 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
400 			if (e < s_e)
401 				goto next;
402 			res = fib6_dump_table(tb, skb, cb);
403 			if (res != 0)
404 				goto out;
405 next:
406 			e++;
407 		}
408 	}
409 out:
410 	rcu_read_unlock();
411 	cb->args[1] = e;
412 	cb->args[0] = h;
413 
414 	res = res < 0 ? res : skb->len;
415 	if (res <= 0)
416 		fib6_dump_end(cb);
417 	return res;
418 }
419 
420 /*
421  *	Routing Table
422  *
423  *	return the appropriate node for a routing tree "add" operation
424  *	by either creating and inserting or by returning an existing
425  *	node.
426  */
427 
428 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
429 				     int addrlen, int plen,
430 				     int offset, int allow_create,
431 				     int replace_required)
432 {
433 	struct fib6_node *fn, *in, *ln;
434 	struct fib6_node *pn = NULL;
435 	struct rt6key *key;
436 	int	bit;
437 	__be32	dir = 0;
438 	__u32	sernum = fib6_new_sernum();
439 
440 	RT6_TRACE("fib6_add_1\n");
441 
442 	/* insert node in tree */
443 
444 	fn = root;
445 
446 	do {
447 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
448 
449 		/*
450 		 *	Prefix match
451 		 */
452 		if (plen < fn->fn_bit ||
453 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
454 			if (!allow_create) {
455 				if (replace_required) {
456 					pr_warn("Can't replace route, no match found\n");
457 					return ERR_PTR(-ENOENT);
458 				}
459 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
460 			}
461 			goto insert_above;
462 		}
463 
464 		/*
465 		 *	Exact match ?
466 		 */
467 
468 		if (plen == fn->fn_bit) {
469 			/* clean up an intermediate node */
470 			if (!(fn->fn_flags & RTN_RTINFO)) {
471 				rt6_release(fn->leaf);
472 				fn->leaf = NULL;
473 			}
474 
475 			fn->fn_sernum = sernum;
476 
477 			return fn;
478 		}
479 
480 		/*
481 		 *	We have more bits to go
482 		 */
483 
484 		/* Try to walk down on tree. */
485 		fn->fn_sernum = sernum;
486 		dir = addr_bit_set(addr, fn->fn_bit);
487 		pn = fn;
488 		fn = dir ? fn->right: fn->left;
489 	} while (fn);
490 
491 	if (!allow_create) {
492 		/* We should not create new node because
493 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
494 		 * I assume it is safe to require NLM_F_CREATE when
495 		 * REPLACE flag is used! Later we may want to remove the
496 		 * check for replace_required, because according
497 		 * to netlink specification, NLM_F_CREATE
498 		 * MUST be specified if new route is created.
499 		 * That would keep IPv6 consistent with IPv4
500 		 */
501 		if (replace_required) {
502 			pr_warn("Can't replace route, no match found\n");
503 			return ERR_PTR(-ENOENT);
504 		}
505 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
506 	}
507 	/*
508 	 *	We walked to the bottom of tree.
509 	 *	Create new leaf node without children.
510 	 */
511 
512 	ln = node_alloc();
513 
514 	if (!ln)
515 		return ERR_PTR(-ENOMEM);
516 	ln->fn_bit = plen;
517 
518 	ln->parent = pn;
519 	ln->fn_sernum = sernum;
520 
521 	if (dir)
522 		pn->right = ln;
523 	else
524 		pn->left  = ln;
525 
526 	return ln;
527 
528 
529 insert_above:
530 	/*
531 	 * split since we don't have a common prefix anymore or
532 	 * we have a less significant route.
533 	 * we've to insert an intermediate node on the list
534 	 * this new node will point to the one we need to create
535 	 * and the current
536 	 */
537 
538 	pn = fn->parent;
539 
540 	/* find 1st bit in difference between the 2 addrs.
541 
542 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
543 	   but if it is >= plen, the value is ignored in any case.
544 	 */
545 
546 	bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
547 
548 	/*
549 	 *		(intermediate)[in]
550 	 *	          /	   \
551 	 *	(new leaf node)[ln] (old node)[fn]
552 	 */
553 	if (plen > bit) {
554 		in = node_alloc();
555 		ln = node_alloc();
556 
557 		if (!in || !ln) {
558 			if (in)
559 				node_free(in);
560 			if (ln)
561 				node_free(ln);
562 			return ERR_PTR(-ENOMEM);
563 		}
564 
565 		/*
566 		 * new intermediate node.
567 		 * RTN_RTINFO will
568 		 * be off since that an address that chooses one of
569 		 * the branches would not match less specific routes
570 		 * in the other branch
571 		 */
572 
573 		in->fn_bit = bit;
574 
575 		in->parent = pn;
576 		in->leaf = fn->leaf;
577 		atomic_inc(&in->leaf->rt6i_ref);
578 
579 		in->fn_sernum = sernum;
580 
581 		/* update parent pointer */
582 		if (dir)
583 			pn->right = in;
584 		else
585 			pn->left  = in;
586 
587 		ln->fn_bit = plen;
588 
589 		ln->parent = in;
590 		fn->parent = in;
591 
592 		ln->fn_sernum = sernum;
593 
594 		if (addr_bit_set(addr, bit)) {
595 			in->right = ln;
596 			in->left  = fn;
597 		} else {
598 			in->left  = ln;
599 			in->right = fn;
600 		}
601 	} else { /* plen <= bit */
602 
603 		/*
604 		 *		(new leaf node)[ln]
605 		 *	          /	   \
606 		 *	     (old node)[fn] NULL
607 		 */
608 
609 		ln = node_alloc();
610 
611 		if (!ln)
612 			return ERR_PTR(-ENOMEM);
613 
614 		ln->fn_bit = plen;
615 
616 		ln->parent = pn;
617 
618 		ln->fn_sernum = sernum;
619 
620 		if (dir)
621 			pn->right = ln;
622 		else
623 			pn->left  = ln;
624 
625 		if (addr_bit_set(&key->addr, plen))
626 			ln->right = fn;
627 		else
628 			ln->left  = fn;
629 
630 		fn->parent = ln;
631 	}
632 	return ln;
633 }
634 
635 /*
636  *	Insert routing information in a node.
637  */
638 
639 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
640 			    struct nl_info *info)
641 {
642 	struct rt6_info *iter = NULL;
643 	struct rt6_info **ins;
644 	int replace = (info->nlh &&
645 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
646 	int add = (!info->nlh ||
647 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
648 	int found = 0;
649 
650 	ins = &fn->leaf;
651 
652 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
653 		/*
654 		 *	Search for duplicates
655 		 */
656 
657 		if (iter->rt6i_metric == rt->rt6i_metric) {
658 			/*
659 			 *	Same priority level
660 			 */
661 			if (info->nlh &&
662 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
663 				return -EEXIST;
664 			if (replace) {
665 				found++;
666 				break;
667 			}
668 
669 			if (iter->dst.dev == rt->dst.dev &&
670 			    iter->rt6i_idev == rt->rt6i_idev &&
671 			    ipv6_addr_equal(&iter->rt6i_gateway,
672 					    &rt->rt6i_gateway)) {
673 				if (rt->rt6i_nsiblings)
674 					rt->rt6i_nsiblings = 0;
675 				if (!(iter->rt6i_flags & RTF_EXPIRES))
676 					return -EEXIST;
677 				if (!(rt->rt6i_flags & RTF_EXPIRES))
678 					rt6_clean_expires(iter);
679 				else
680 					rt6_set_expires(iter, rt->dst.expires);
681 				return -EEXIST;
682 			}
683 			/* If we have the same destination and the same metric,
684 			 * but not the same gateway, then the route we try to
685 			 * add is sibling to this route, increment our counter
686 			 * of siblings, and later we will add our route to the
687 			 * list.
688 			 * Only static routes (which don't have flag
689 			 * RTF_EXPIRES) are used for ECMPv6.
690 			 *
691 			 * To avoid long list, we only had siblings if the
692 			 * route have a gateway.
693 			 */
694 			if (rt->rt6i_flags & RTF_GATEWAY &&
695 			    !(rt->rt6i_flags & RTF_EXPIRES) &&
696 			    !(iter->rt6i_flags & RTF_EXPIRES))
697 				rt->rt6i_nsiblings++;
698 		}
699 
700 		if (iter->rt6i_metric > rt->rt6i_metric)
701 			break;
702 
703 		ins = &iter->dst.rt6_next;
704 	}
705 
706 	/* Reset round-robin state, if necessary */
707 	if (ins == &fn->leaf)
708 		fn->rr_ptr = NULL;
709 
710 	/* Link this route to others same route. */
711 	if (rt->rt6i_nsiblings) {
712 		unsigned int rt6i_nsiblings;
713 		struct rt6_info *sibling, *temp_sibling;
714 
715 		/* Find the first route that have the same metric */
716 		sibling = fn->leaf;
717 		while (sibling) {
718 			if (sibling->rt6i_metric == rt->rt6i_metric) {
719 				list_add_tail(&rt->rt6i_siblings,
720 					      &sibling->rt6i_siblings);
721 				break;
722 			}
723 			sibling = sibling->dst.rt6_next;
724 		}
725 		/* For each sibling in the list, increment the counter of
726 		 * siblings. BUG() if counters does not match, list of siblings
727 		 * is broken!
728 		 */
729 		rt6i_nsiblings = 0;
730 		list_for_each_entry_safe(sibling, temp_sibling,
731 					 &rt->rt6i_siblings, rt6i_siblings) {
732 			sibling->rt6i_nsiblings++;
733 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
734 			rt6i_nsiblings++;
735 		}
736 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
737 	}
738 
739 	/*
740 	 *	insert node
741 	 */
742 	if (!replace) {
743 		if (!add)
744 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
745 
746 add:
747 		rt->dst.rt6_next = iter;
748 		*ins = rt;
749 		rt->rt6i_node = fn;
750 		atomic_inc(&rt->rt6i_ref);
751 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
752 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
753 
754 		if (!(fn->fn_flags & RTN_RTINFO)) {
755 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
756 			fn->fn_flags |= RTN_RTINFO;
757 		}
758 
759 	} else {
760 		if (!found) {
761 			if (add)
762 				goto add;
763 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
764 			return -ENOENT;
765 		}
766 		*ins = rt;
767 		rt->rt6i_node = fn;
768 		rt->dst.rt6_next = iter->dst.rt6_next;
769 		atomic_inc(&rt->rt6i_ref);
770 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
771 		rt6_release(iter);
772 		if (!(fn->fn_flags & RTN_RTINFO)) {
773 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
774 			fn->fn_flags |= RTN_RTINFO;
775 		}
776 	}
777 
778 	return 0;
779 }
780 
781 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
782 {
783 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
784 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
785 		mod_timer(&net->ipv6.ip6_fib_timer,
786 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
787 }
788 
789 void fib6_force_start_gc(struct net *net)
790 {
791 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
792 		mod_timer(&net->ipv6.ip6_fib_timer,
793 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
794 }
795 
796 /*
797  *	Add routing information to the routing tree.
798  *	<destination addr>/<source addr>
799  *	with source addr info in sub-trees
800  */
801 
802 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
803 {
804 	struct fib6_node *fn, *pn = NULL;
805 	int err = -ENOMEM;
806 	int allow_create = 1;
807 	int replace_required = 0;
808 
809 	if (info->nlh) {
810 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
811 			allow_create = 0;
812 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
813 			replace_required = 1;
814 	}
815 	if (!allow_create && !replace_required)
816 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
817 
818 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
819 			rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
820 			allow_create, replace_required);
821 
822 	if (IS_ERR(fn)) {
823 		err = PTR_ERR(fn);
824 		goto out;
825 	}
826 
827 	pn = fn;
828 
829 #ifdef CONFIG_IPV6_SUBTREES
830 	if (rt->rt6i_src.plen) {
831 		struct fib6_node *sn;
832 
833 		if (!fn->subtree) {
834 			struct fib6_node *sfn;
835 
836 			/*
837 			 * Create subtree.
838 			 *
839 			 *		fn[main tree]
840 			 *		|
841 			 *		sfn[subtree root]
842 			 *		   \
843 			 *		    sn[new leaf node]
844 			 */
845 
846 			/* Create subtree root node */
847 			sfn = node_alloc();
848 			if (!sfn)
849 				goto st_failure;
850 
851 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
852 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
853 			sfn->fn_flags = RTN_ROOT;
854 			sfn->fn_sernum = fib6_new_sernum();
855 
856 			/* Now add the first leaf node to new subtree */
857 
858 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
859 					sizeof(struct in6_addr), rt->rt6i_src.plen,
860 					offsetof(struct rt6_info, rt6i_src),
861 					allow_create, replace_required);
862 
863 			if (IS_ERR(sn)) {
864 				/* If it is failed, discard just allocated
865 				   root, and then (in st_failure) stale node
866 				   in main tree.
867 				 */
868 				node_free(sfn);
869 				err = PTR_ERR(sn);
870 				goto st_failure;
871 			}
872 
873 			/* Now link new subtree to main tree */
874 			sfn->parent = fn;
875 			fn->subtree = sfn;
876 		} else {
877 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
878 					sizeof(struct in6_addr), rt->rt6i_src.plen,
879 					offsetof(struct rt6_info, rt6i_src),
880 					allow_create, replace_required);
881 
882 			if (IS_ERR(sn)) {
883 				err = PTR_ERR(sn);
884 				goto st_failure;
885 			}
886 		}
887 
888 		if (!fn->leaf) {
889 			fn->leaf = rt;
890 			atomic_inc(&rt->rt6i_ref);
891 		}
892 		fn = sn;
893 	}
894 #endif
895 
896 	err = fib6_add_rt2node(fn, rt, info);
897 	if (!err) {
898 		fib6_start_gc(info->nl_net, rt);
899 		if (!(rt->rt6i_flags & RTF_CACHE))
900 			fib6_prune_clones(info->nl_net, pn, rt);
901 	}
902 
903 out:
904 	if (err) {
905 #ifdef CONFIG_IPV6_SUBTREES
906 		/*
907 		 * If fib6_add_1 has cleared the old leaf pointer in the
908 		 * super-tree leaf node we have to find a new one for it.
909 		 */
910 		if (pn != fn && pn->leaf == rt) {
911 			pn->leaf = NULL;
912 			atomic_dec(&rt->rt6i_ref);
913 		}
914 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
915 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
916 #if RT6_DEBUG >= 2
917 			if (!pn->leaf) {
918 				WARN_ON(pn->leaf == NULL);
919 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
920 			}
921 #endif
922 			atomic_inc(&pn->leaf->rt6i_ref);
923 		}
924 #endif
925 		dst_free(&rt->dst);
926 	}
927 	return err;
928 
929 #ifdef CONFIG_IPV6_SUBTREES
930 	/* Subtree creation failed, probably main tree node
931 	   is orphan. If it is, shoot it.
932 	 */
933 st_failure:
934 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
935 		fib6_repair_tree(info->nl_net, fn);
936 	dst_free(&rt->dst);
937 	return err;
938 #endif
939 }
940 
941 /*
942  *	Routing tree lookup
943  *
944  */
945 
946 struct lookup_args {
947 	int			offset;		/* key offset on rt6_info	*/
948 	const struct in6_addr	*addr;		/* search key			*/
949 };
950 
951 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
952 					struct lookup_args *args)
953 {
954 	struct fib6_node *fn;
955 	__be32 dir;
956 
957 	if (unlikely(args->offset == 0))
958 		return NULL;
959 
960 	/*
961 	 *	Descend on a tree
962 	 */
963 
964 	fn = root;
965 
966 	for (;;) {
967 		struct fib6_node *next;
968 
969 		dir = addr_bit_set(args->addr, fn->fn_bit);
970 
971 		next = dir ? fn->right : fn->left;
972 
973 		if (next) {
974 			fn = next;
975 			continue;
976 		}
977 		break;
978 	}
979 
980 	while (fn) {
981 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
982 			struct rt6key *key;
983 
984 			key = (struct rt6key *) ((u8 *) fn->leaf +
985 						 args->offset);
986 
987 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
988 #ifdef CONFIG_IPV6_SUBTREES
989 				if (fn->subtree)
990 					fn = fib6_lookup_1(fn->subtree, args + 1);
991 #endif
992 				if (!fn || fn->fn_flags & RTN_RTINFO)
993 					return fn;
994 			}
995 		}
996 
997 		if (fn->fn_flags & RTN_ROOT)
998 			break;
999 
1000 		fn = fn->parent;
1001 	}
1002 
1003 	return NULL;
1004 }
1005 
1006 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1007 			       const struct in6_addr *saddr)
1008 {
1009 	struct fib6_node *fn;
1010 	struct lookup_args args[] = {
1011 		{
1012 			.offset = offsetof(struct rt6_info, rt6i_dst),
1013 			.addr = daddr,
1014 		},
1015 #ifdef CONFIG_IPV6_SUBTREES
1016 		{
1017 			.offset = offsetof(struct rt6_info, rt6i_src),
1018 			.addr = saddr,
1019 		},
1020 #endif
1021 		{
1022 			.offset = 0,	/* sentinel */
1023 		}
1024 	};
1025 
1026 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1027 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1028 		fn = root;
1029 
1030 	return fn;
1031 }
1032 
1033 /*
1034  *	Get node with specified destination prefix (and source prefix,
1035  *	if subtrees are used)
1036  */
1037 
1038 
1039 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1040 					const struct in6_addr *addr,
1041 					int plen, int offset)
1042 {
1043 	struct fib6_node *fn;
1044 
1045 	for (fn = root; fn ; ) {
1046 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1047 
1048 		/*
1049 		 *	Prefix match
1050 		 */
1051 		if (plen < fn->fn_bit ||
1052 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1053 			return NULL;
1054 
1055 		if (plen == fn->fn_bit)
1056 			return fn;
1057 
1058 		/*
1059 		 *	We have more bits to go
1060 		 */
1061 		if (addr_bit_set(addr, fn->fn_bit))
1062 			fn = fn->right;
1063 		else
1064 			fn = fn->left;
1065 	}
1066 	return NULL;
1067 }
1068 
1069 struct fib6_node * fib6_locate(struct fib6_node *root,
1070 			       const struct in6_addr *daddr, int dst_len,
1071 			       const struct in6_addr *saddr, int src_len)
1072 {
1073 	struct fib6_node *fn;
1074 
1075 	fn = fib6_locate_1(root, daddr, dst_len,
1076 			   offsetof(struct rt6_info, rt6i_dst));
1077 
1078 #ifdef CONFIG_IPV6_SUBTREES
1079 	if (src_len) {
1080 		WARN_ON(saddr == NULL);
1081 		if (fn && fn->subtree)
1082 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1083 					   offsetof(struct rt6_info, rt6i_src));
1084 	}
1085 #endif
1086 
1087 	if (fn && fn->fn_flags & RTN_RTINFO)
1088 		return fn;
1089 
1090 	return NULL;
1091 }
1092 
1093 
1094 /*
1095  *	Deletion
1096  *
1097  */
1098 
1099 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1100 {
1101 	if (fn->fn_flags & RTN_ROOT)
1102 		return net->ipv6.ip6_null_entry;
1103 
1104 	while (fn) {
1105 		if (fn->left)
1106 			return fn->left->leaf;
1107 		if (fn->right)
1108 			return fn->right->leaf;
1109 
1110 		fn = FIB6_SUBTREE(fn);
1111 	}
1112 	return NULL;
1113 }
1114 
1115 /*
1116  *	Called to trim the tree of intermediate nodes when possible. "fn"
1117  *	is the node we want to try and remove.
1118  */
1119 
1120 static struct fib6_node *fib6_repair_tree(struct net *net,
1121 					   struct fib6_node *fn)
1122 {
1123 	int children;
1124 	int nstate;
1125 	struct fib6_node *child, *pn;
1126 	struct fib6_walker_t *w;
1127 	int iter = 0;
1128 
1129 	for (;;) {
1130 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1131 		iter++;
1132 
1133 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1134 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1135 		WARN_ON(fn->leaf != NULL);
1136 
1137 		children = 0;
1138 		child = NULL;
1139 		if (fn->right) child = fn->right, children |= 1;
1140 		if (fn->left) child = fn->left, children |= 2;
1141 
1142 		if (children == 3 || FIB6_SUBTREE(fn)
1143 #ifdef CONFIG_IPV6_SUBTREES
1144 		    /* Subtree root (i.e. fn) may have one child */
1145 		    || (children && fn->fn_flags & RTN_ROOT)
1146 #endif
1147 		    ) {
1148 			fn->leaf = fib6_find_prefix(net, fn);
1149 #if RT6_DEBUG >= 2
1150 			if (!fn->leaf) {
1151 				WARN_ON(!fn->leaf);
1152 				fn->leaf = net->ipv6.ip6_null_entry;
1153 			}
1154 #endif
1155 			atomic_inc(&fn->leaf->rt6i_ref);
1156 			return fn->parent;
1157 		}
1158 
1159 		pn = fn->parent;
1160 #ifdef CONFIG_IPV6_SUBTREES
1161 		if (FIB6_SUBTREE(pn) == fn) {
1162 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1163 			FIB6_SUBTREE(pn) = NULL;
1164 			nstate = FWS_L;
1165 		} else {
1166 			WARN_ON(fn->fn_flags & RTN_ROOT);
1167 #endif
1168 			if (pn->right == fn) pn->right = child;
1169 			else if (pn->left == fn) pn->left = child;
1170 #if RT6_DEBUG >= 2
1171 			else
1172 				WARN_ON(1);
1173 #endif
1174 			if (child)
1175 				child->parent = pn;
1176 			nstate = FWS_R;
1177 #ifdef CONFIG_IPV6_SUBTREES
1178 		}
1179 #endif
1180 
1181 		read_lock(&fib6_walker_lock);
1182 		FOR_WALKERS(w) {
1183 			if (!child) {
1184 				if (w->root == fn) {
1185 					w->root = w->node = NULL;
1186 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1187 				} else if (w->node == fn) {
1188 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1189 					w->node = pn;
1190 					w->state = nstate;
1191 				}
1192 			} else {
1193 				if (w->root == fn) {
1194 					w->root = child;
1195 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1196 				}
1197 				if (w->node == fn) {
1198 					w->node = child;
1199 					if (children&2) {
1200 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1201 						w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1202 					} else {
1203 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1204 						w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1205 					}
1206 				}
1207 			}
1208 		}
1209 		read_unlock(&fib6_walker_lock);
1210 
1211 		node_free(fn);
1212 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1213 			return pn;
1214 
1215 		rt6_release(pn->leaf);
1216 		pn->leaf = NULL;
1217 		fn = pn;
1218 	}
1219 }
1220 
1221 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1222 			   struct nl_info *info)
1223 {
1224 	struct fib6_walker_t *w;
1225 	struct rt6_info *rt = *rtp;
1226 	struct net *net = info->nl_net;
1227 
1228 	RT6_TRACE("fib6_del_route\n");
1229 
1230 	/* Unlink it */
1231 	*rtp = rt->dst.rt6_next;
1232 	rt->rt6i_node = NULL;
1233 	net->ipv6.rt6_stats->fib_rt_entries--;
1234 	net->ipv6.rt6_stats->fib_discarded_routes++;
1235 
1236 	/* Reset round-robin state, if necessary */
1237 	if (fn->rr_ptr == rt)
1238 		fn->rr_ptr = NULL;
1239 
1240 	/* Remove this entry from other siblings */
1241 	if (rt->rt6i_nsiblings) {
1242 		struct rt6_info *sibling, *next_sibling;
1243 
1244 		list_for_each_entry_safe(sibling, next_sibling,
1245 					 &rt->rt6i_siblings, rt6i_siblings)
1246 			sibling->rt6i_nsiblings--;
1247 		rt->rt6i_nsiblings = 0;
1248 		list_del_init(&rt->rt6i_siblings);
1249 	}
1250 
1251 	/* Adjust walkers */
1252 	read_lock(&fib6_walker_lock);
1253 	FOR_WALKERS(w) {
1254 		if (w->state == FWS_C && w->leaf == rt) {
1255 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1256 			w->leaf = rt->dst.rt6_next;
1257 			if (!w->leaf)
1258 				w->state = FWS_U;
1259 		}
1260 	}
1261 	read_unlock(&fib6_walker_lock);
1262 
1263 	rt->dst.rt6_next = NULL;
1264 
1265 	/* If it was last route, expunge its radix tree node */
1266 	if (!fn->leaf) {
1267 		fn->fn_flags &= ~RTN_RTINFO;
1268 		net->ipv6.rt6_stats->fib_route_nodes--;
1269 		fn = fib6_repair_tree(net, fn);
1270 	}
1271 
1272 	if (atomic_read(&rt->rt6i_ref) != 1) {
1273 		/* This route is used as dummy address holder in some split
1274 		 * nodes. It is not leaked, but it still holds other resources,
1275 		 * which must be released in time. So, scan ascendant nodes
1276 		 * and replace dummy references to this route with references
1277 		 * to still alive ones.
1278 		 */
1279 		while (fn) {
1280 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1281 				fn->leaf = fib6_find_prefix(net, fn);
1282 				atomic_inc(&fn->leaf->rt6i_ref);
1283 				rt6_release(rt);
1284 			}
1285 			fn = fn->parent;
1286 		}
1287 		/* No more references are possible at this point. */
1288 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1289 	}
1290 
1291 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1292 	rt6_release(rt);
1293 }
1294 
1295 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1296 {
1297 	struct net *net = info->nl_net;
1298 	struct fib6_node *fn = rt->rt6i_node;
1299 	struct rt6_info **rtp;
1300 
1301 #if RT6_DEBUG >= 2
1302 	if (rt->dst.obsolete>0) {
1303 		WARN_ON(fn != NULL);
1304 		return -ENOENT;
1305 	}
1306 #endif
1307 	if (!fn || rt == net->ipv6.ip6_null_entry)
1308 		return -ENOENT;
1309 
1310 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1311 
1312 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1313 		struct fib6_node *pn = fn;
1314 #ifdef CONFIG_IPV6_SUBTREES
1315 		/* clones of this route might be in another subtree */
1316 		if (rt->rt6i_src.plen) {
1317 			while (!(pn->fn_flags & RTN_ROOT))
1318 				pn = pn->parent;
1319 			pn = pn->parent;
1320 		}
1321 #endif
1322 		fib6_prune_clones(info->nl_net, pn, rt);
1323 	}
1324 
1325 	/*
1326 	 *	Walk the leaf entries looking for ourself
1327 	 */
1328 
1329 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1330 		if (*rtp == rt) {
1331 			fib6_del_route(fn, rtp, info);
1332 			return 0;
1333 		}
1334 	}
1335 	return -ENOENT;
1336 }
1337 
1338 /*
1339  *	Tree traversal function.
1340  *
1341  *	Certainly, it is not interrupt safe.
1342  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1343  *	It means, that we can modify tree during walking
1344  *	and use this function for garbage collection, clone pruning,
1345  *	cleaning tree when a device goes down etc. etc.
1346  *
1347  *	It guarantees that every node will be traversed,
1348  *	and that it will be traversed only once.
1349  *
1350  *	Callback function w->func may return:
1351  *	0 -> continue walking.
1352  *	positive value -> walking is suspended (used by tree dumps,
1353  *	and probably by gc, if it will be split to several slices)
1354  *	negative value -> terminate walking.
1355  *
1356  *	The function itself returns:
1357  *	0   -> walk is complete.
1358  *	>0  -> walk is incomplete (i.e. suspended)
1359  *	<0  -> walk is terminated by an error.
1360  */
1361 
1362 static int fib6_walk_continue(struct fib6_walker_t *w)
1363 {
1364 	struct fib6_node *fn, *pn;
1365 
1366 	for (;;) {
1367 		fn = w->node;
1368 		if (!fn)
1369 			return 0;
1370 
1371 		if (w->prune && fn != w->root &&
1372 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1373 			w->state = FWS_C;
1374 			w->leaf = fn->leaf;
1375 		}
1376 		switch (w->state) {
1377 #ifdef CONFIG_IPV6_SUBTREES
1378 		case FWS_S:
1379 			if (FIB6_SUBTREE(fn)) {
1380 				w->node = FIB6_SUBTREE(fn);
1381 				continue;
1382 			}
1383 			w->state = FWS_L;
1384 #endif
1385 		case FWS_L:
1386 			if (fn->left) {
1387 				w->node = fn->left;
1388 				w->state = FWS_INIT;
1389 				continue;
1390 			}
1391 			w->state = FWS_R;
1392 		case FWS_R:
1393 			if (fn->right) {
1394 				w->node = fn->right;
1395 				w->state = FWS_INIT;
1396 				continue;
1397 			}
1398 			w->state = FWS_C;
1399 			w->leaf = fn->leaf;
1400 		case FWS_C:
1401 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1402 				int err;
1403 
1404 				if (w->skip) {
1405 					w->skip--;
1406 					continue;
1407 				}
1408 
1409 				err = w->func(w);
1410 				if (err)
1411 					return err;
1412 
1413 				w->count++;
1414 				continue;
1415 			}
1416 			w->state = FWS_U;
1417 		case FWS_U:
1418 			if (fn == w->root)
1419 				return 0;
1420 			pn = fn->parent;
1421 			w->node = pn;
1422 #ifdef CONFIG_IPV6_SUBTREES
1423 			if (FIB6_SUBTREE(pn) == fn) {
1424 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1425 				w->state = FWS_L;
1426 				continue;
1427 			}
1428 #endif
1429 			if (pn->left == fn) {
1430 				w->state = FWS_R;
1431 				continue;
1432 			}
1433 			if (pn->right == fn) {
1434 				w->state = FWS_C;
1435 				w->leaf = w->node->leaf;
1436 				continue;
1437 			}
1438 #if RT6_DEBUG >= 2
1439 			WARN_ON(1);
1440 #endif
1441 		}
1442 	}
1443 }
1444 
1445 static int fib6_walk(struct fib6_walker_t *w)
1446 {
1447 	int res;
1448 
1449 	w->state = FWS_INIT;
1450 	w->node = w->root;
1451 
1452 	fib6_walker_link(w);
1453 	res = fib6_walk_continue(w);
1454 	if (res <= 0)
1455 		fib6_walker_unlink(w);
1456 	return res;
1457 }
1458 
1459 static int fib6_clean_node(struct fib6_walker_t *w)
1460 {
1461 	int res;
1462 	struct rt6_info *rt;
1463 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1464 	struct nl_info info = {
1465 		.nl_net = c->net,
1466 	};
1467 
1468 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1469 		res = c->func(rt, c->arg);
1470 		if (res < 0) {
1471 			w->leaf = rt;
1472 			res = fib6_del(rt, &info);
1473 			if (res) {
1474 #if RT6_DEBUG >= 2
1475 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1476 					 __func__, rt, rt->rt6i_node, res);
1477 #endif
1478 				continue;
1479 			}
1480 			return 0;
1481 		}
1482 		WARN_ON(res != 0);
1483 	}
1484 	w->leaf = rt;
1485 	return 0;
1486 }
1487 
1488 /*
1489  *	Convenient frontend to tree walker.
1490  *
1491  *	func is called on each route.
1492  *		It may return -1 -> delete this route.
1493  *		              0  -> continue walking
1494  *
1495  *	prune==1 -> only immediate children of node (certainly,
1496  *	ignoring pure split nodes) will be scanned.
1497  */
1498 
1499 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1500 			    int (*func)(struct rt6_info *, void *arg),
1501 			    int prune, void *arg)
1502 {
1503 	struct fib6_cleaner_t c;
1504 
1505 	c.w.root = root;
1506 	c.w.func = fib6_clean_node;
1507 	c.w.prune = prune;
1508 	c.w.count = 0;
1509 	c.w.skip = 0;
1510 	c.func = func;
1511 	c.arg = arg;
1512 	c.net = net;
1513 
1514 	fib6_walk(&c.w);
1515 }
1516 
1517 void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1518 		    int prune, void *arg)
1519 {
1520 	struct fib6_table *table;
1521 	struct hlist_head *head;
1522 	unsigned int h;
1523 
1524 	rcu_read_lock();
1525 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1526 		head = &net->ipv6.fib_table_hash[h];
1527 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1528 			read_lock_bh(&table->tb6_lock);
1529 			fib6_clean_tree(net, &table->tb6_root,
1530 					func, prune, arg);
1531 			read_unlock_bh(&table->tb6_lock);
1532 		}
1533 	}
1534 	rcu_read_unlock();
1535 }
1536 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1537 		    int prune, void *arg)
1538 {
1539 	struct fib6_table *table;
1540 	struct hlist_head *head;
1541 	unsigned int h;
1542 
1543 	rcu_read_lock();
1544 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1545 		head = &net->ipv6.fib_table_hash[h];
1546 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1547 			write_lock_bh(&table->tb6_lock);
1548 			fib6_clean_tree(net, &table->tb6_root,
1549 					func, prune, arg);
1550 			write_unlock_bh(&table->tb6_lock);
1551 		}
1552 	}
1553 	rcu_read_unlock();
1554 }
1555 
1556 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1557 {
1558 	if (rt->rt6i_flags & RTF_CACHE) {
1559 		RT6_TRACE("pruning clone %p\n", rt);
1560 		return -1;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1567 			      struct rt6_info *rt)
1568 {
1569 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1570 }
1571 
1572 /*
1573  *	Garbage collection
1574  */
1575 
1576 static struct fib6_gc_args
1577 {
1578 	int			timeout;
1579 	int			more;
1580 } gc_args;
1581 
1582 static int fib6_age(struct rt6_info *rt, void *arg)
1583 {
1584 	unsigned long now = jiffies;
1585 
1586 	/*
1587 	 *	check addrconf expiration here.
1588 	 *	Routes are expired even if they are in use.
1589 	 *
1590 	 *	Also age clones. Note, that clones are aged out
1591 	 *	only if they are not in use now.
1592 	 */
1593 
1594 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1595 		if (time_after(now, rt->dst.expires)) {
1596 			RT6_TRACE("expiring %p\n", rt);
1597 			return -1;
1598 		}
1599 		gc_args.more++;
1600 	} else if (rt->rt6i_flags & RTF_CACHE) {
1601 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1602 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1603 			RT6_TRACE("aging clone %p\n", rt);
1604 			return -1;
1605 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1606 			struct neighbour *neigh;
1607 			__u8 neigh_flags = 0;
1608 
1609 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1610 			if (neigh) {
1611 				neigh_flags = neigh->flags;
1612 				neigh_release(neigh);
1613 			}
1614 			if (!(neigh_flags & NTF_ROUTER)) {
1615 				RT6_TRACE("purging route %p via non-router but gateway\n",
1616 					  rt);
1617 				return -1;
1618 			}
1619 		}
1620 		gc_args.more++;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static DEFINE_SPINLOCK(fib6_gc_lock);
1627 
1628 void fib6_run_gc(unsigned long expires, struct net *net)
1629 {
1630 	if (expires != ~0UL) {
1631 		spin_lock_bh(&fib6_gc_lock);
1632 		gc_args.timeout = expires ? (int)expires :
1633 			net->ipv6.sysctl.ip6_rt_gc_interval;
1634 	} else {
1635 		if (!spin_trylock_bh(&fib6_gc_lock)) {
1636 			mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1637 			return;
1638 		}
1639 		gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1640 	}
1641 
1642 	gc_args.more = icmp6_dst_gc();
1643 
1644 	fib6_clean_all(net, fib6_age, 0, NULL);
1645 
1646 	if (gc_args.more)
1647 		mod_timer(&net->ipv6.ip6_fib_timer,
1648 			  round_jiffies(jiffies
1649 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1650 	else
1651 		del_timer(&net->ipv6.ip6_fib_timer);
1652 	spin_unlock_bh(&fib6_gc_lock);
1653 }
1654 
1655 static void fib6_gc_timer_cb(unsigned long arg)
1656 {
1657 	fib6_run_gc(0, (struct net *)arg);
1658 }
1659 
1660 static int __net_init fib6_net_init(struct net *net)
1661 {
1662 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1663 
1664 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1665 
1666 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1667 	if (!net->ipv6.rt6_stats)
1668 		goto out_timer;
1669 
1670 	/* Avoid false sharing : Use at least a full cache line */
1671 	size = max_t(size_t, size, L1_CACHE_BYTES);
1672 
1673 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1674 	if (!net->ipv6.fib_table_hash)
1675 		goto out_rt6_stats;
1676 
1677 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1678 					  GFP_KERNEL);
1679 	if (!net->ipv6.fib6_main_tbl)
1680 		goto out_fib_table_hash;
1681 
1682 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1683 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1684 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1685 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1686 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1687 
1688 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1689 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1690 					   GFP_KERNEL);
1691 	if (!net->ipv6.fib6_local_tbl)
1692 		goto out_fib6_main_tbl;
1693 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1694 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1695 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1696 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1697 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1698 #endif
1699 	fib6_tables_init(net);
1700 
1701 	return 0;
1702 
1703 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1704 out_fib6_main_tbl:
1705 	kfree(net->ipv6.fib6_main_tbl);
1706 #endif
1707 out_fib_table_hash:
1708 	kfree(net->ipv6.fib_table_hash);
1709 out_rt6_stats:
1710 	kfree(net->ipv6.rt6_stats);
1711 out_timer:
1712 	return -ENOMEM;
1713  }
1714 
1715 static void fib6_net_exit(struct net *net)
1716 {
1717 	rt6_ifdown(net, NULL);
1718 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1719 
1720 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1721 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1722 	kfree(net->ipv6.fib6_local_tbl);
1723 #endif
1724 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1725 	kfree(net->ipv6.fib6_main_tbl);
1726 	kfree(net->ipv6.fib_table_hash);
1727 	kfree(net->ipv6.rt6_stats);
1728 }
1729 
1730 static struct pernet_operations fib6_net_ops = {
1731 	.init = fib6_net_init,
1732 	.exit = fib6_net_exit,
1733 };
1734 
1735 int __init fib6_init(void)
1736 {
1737 	int ret = -ENOMEM;
1738 
1739 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1740 					   sizeof(struct fib6_node),
1741 					   0, SLAB_HWCACHE_ALIGN,
1742 					   NULL);
1743 	if (!fib6_node_kmem)
1744 		goto out;
1745 
1746 	ret = register_pernet_subsys(&fib6_net_ops);
1747 	if (ret)
1748 		goto out_kmem_cache_create;
1749 
1750 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1751 			      NULL);
1752 	if (ret)
1753 		goto out_unregister_subsys;
1754 out:
1755 	return ret;
1756 
1757 out_unregister_subsys:
1758 	unregister_pernet_subsys(&fib6_net_ops);
1759 out_kmem_cache_create:
1760 	kmem_cache_destroy(fib6_node_kmem);
1761 	goto out;
1762 }
1763 
1764 void fib6_gc_cleanup(void)
1765 {
1766 	unregister_pernet_subsys(&fib6_net_ops);
1767 	kmem_cache_destroy(fib6_node_kmem);
1768 }
1769