xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 8c0b9ee8)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 
36 #include <net/ip6_fib.h>
37 #include <net/ip6_route.h>
38 
39 #define RT6_DEBUG 2
40 
41 #if RT6_DEBUG >= 3
42 #define RT6_TRACE(x...) pr_debug(x)
43 #else
44 #define RT6_TRACE(x...) do { ; } while (0)
45 #endif
46 
47 static struct kmem_cache *fib6_node_kmem __read_mostly;
48 
49 struct fib6_cleaner {
50 	struct fib6_walker w;
51 	struct net *net;
52 	int (*func)(struct rt6_info *, void *arg);
53 	int sernum;
54 	void *arg;
55 };
56 
57 static DEFINE_RWLOCK(fib6_walker_lock);
58 
59 #ifdef CONFIG_IPV6_SUBTREES
60 #define FWS_INIT FWS_S
61 #else
62 #define FWS_INIT FWS_L
63 #endif
64 
65 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
66 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
67 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
68 static int fib6_walk(struct fib6_walker *w);
69 static int fib6_walk_continue(struct fib6_walker *w);
70 
71 /*
72  *	A routing update causes an increase of the serial number on the
73  *	affected subtree. This allows for cached routes to be asynchronously
74  *	tested when modifications are made to the destination cache as a
75  *	result of redirects, path MTU changes, etc.
76  */
77 
78 static void fib6_gc_timer_cb(unsigned long arg);
79 
80 static LIST_HEAD(fib6_walkers);
81 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
82 
83 static void fib6_walker_link(struct fib6_walker *w)
84 {
85 	write_lock_bh(&fib6_walker_lock);
86 	list_add(&w->lh, &fib6_walkers);
87 	write_unlock_bh(&fib6_walker_lock);
88 }
89 
90 static void fib6_walker_unlink(struct fib6_walker *w)
91 {
92 	write_lock_bh(&fib6_walker_lock);
93 	list_del(&w->lh);
94 	write_unlock_bh(&fib6_walker_lock);
95 }
96 
97 static int fib6_new_sernum(struct net *net)
98 {
99 	int new, old;
100 
101 	do {
102 		old = atomic_read(&net->ipv6.fib6_sernum);
103 		new = old < INT_MAX ? old + 1 : 1;
104 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
105 				old, new) != old);
106 	return new;
107 }
108 
109 enum {
110 	FIB6_NO_SERNUM_CHANGE = 0,
111 };
112 
113 /*
114  *	Auxiliary address test functions for the radix tree.
115  *
116  *	These assume a 32bit processor (although it will work on
117  *	64bit processors)
118  */
119 
120 /*
121  *	test bit
122  */
123 #if defined(__LITTLE_ENDIAN)
124 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
125 #else
126 # define BITOP_BE32_SWIZZLE	0
127 #endif
128 
129 static __be32 addr_bit_set(const void *token, int fn_bit)
130 {
131 	const __be32 *addr = token;
132 	/*
133 	 * Here,
134 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
135 	 * is optimized version of
136 	 *	htonl(1 << ((~fn_bit)&0x1F))
137 	 * See include/asm-generic/bitops/le.h.
138 	 */
139 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
140 	       addr[fn_bit >> 5];
141 }
142 
143 static struct fib6_node *node_alloc(void)
144 {
145 	struct fib6_node *fn;
146 
147 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
148 
149 	return fn;
150 }
151 
152 static void node_free(struct fib6_node *fn)
153 {
154 	kmem_cache_free(fib6_node_kmem, fn);
155 }
156 
157 static void rt6_release(struct rt6_info *rt)
158 {
159 	if (atomic_dec_and_test(&rt->rt6i_ref))
160 		dst_free(&rt->dst);
161 }
162 
163 static void fib6_link_table(struct net *net, struct fib6_table *tb)
164 {
165 	unsigned int h;
166 
167 	/*
168 	 * Initialize table lock at a single place to give lockdep a key,
169 	 * tables aren't visible prior to being linked to the list.
170 	 */
171 	rwlock_init(&tb->tb6_lock);
172 
173 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
174 
175 	/*
176 	 * No protection necessary, this is the only list mutatation
177 	 * operation, tables never disappear once they exist.
178 	 */
179 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
180 }
181 
182 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
183 
184 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
185 {
186 	struct fib6_table *table;
187 
188 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
189 	if (table) {
190 		table->tb6_id = id;
191 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
192 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
193 		inet_peer_base_init(&table->tb6_peers);
194 	}
195 
196 	return table;
197 }
198 
199 struct fib6_table *fib6_new_table(struct net *net, u32 id)
200 {
201 	struct fib6_table *tb;
202 
203 	if (id == 0)
204 		id = RT6_TABLE_MAIN;
205 	tb = fib6_get_table(net, id);
206 	if (tb)
207 		return tb;
208 
209 	tb = fib6_alloc_table(net, id);
210 	if (tb)
211 		fib6_link_table(net, tb);
212 
213 	return tb;
214 }
215 
216 struct fib6_table *fib6_get_table(struct net *net, u32 id)
217 {
218 	struct fib6_table *tb;
219 	struct hlist_head *head;
220 	unsigned int h;
221 
222 	if (id == 0)
223 		id = RT6_TABLE_MAIN;
224 	h = id & (FIB6_TABLE_HASHSZ - 1);
225 	rcu_read_lock();
226 	head = &net->ipv6.fib_table_hash[h];
227 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
228 		if (tb->tb6_id == id) {
229 			rcu_read_unlock();
230 			return tb;
231 		}
232 	}
233 	rcu_read_unlock();
234 
235 	return NULL;
236 }
237 
238 static void __net_init fib6_tables_init(struct net *net)
239 {
240 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
241 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
242 }
243 #else
244 
245 struct fib6_table *fib6_new_table(struct net *net, u32 id)
246 {
247 	return fib6_get_table(net, id);
248 }
249 
250 struct fib6_table *fib6_get_table(struct net *net, u32 id)
251 {
252 	  return net->ipv6.fib6_main_tbl;
253 }
254 
255 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
256 				   int flags, pol_lookup_t lookup)
257 {
258 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
259 }
260 
261 static void __net_init fib6_tables_init(struct net *net)
262 {
263 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
264 }
265 
266 #endif
267 
268 static int fib6_dump_node(struct fib6_walker *w)
269 {
270 	int res;
271 	struct rt6_info *rt;
272 
273 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
274 		res = rt6_dump_route(rt, w->args);
275 		if (res < 0) {
276 			/* Frame is full, suspend walking */
277 			w->leaf = rt;
278 			return 1;
279 		}
280 	}
281 	w->leaf = NULL;
282 	return 0;
283 }
284 
285 static void fib6_dump_end(struct netlink_callback *cb)
286 {
287 	struct fib6_walker *w = (void *)cb->args[2];
288 
289 	if (w) {
290 		if (cb->args[4]) {
291 			cb->args[4] = 0;
292 			fib6_walker_unlink(w);
293 		}
294 		cb->args[2] = 0;
295 		kfree(w);
296 	}
297 	cb->done = (void *)cb->args[3];
298 	cb->args[1] = 3;
299 }
300 
301 static int fib6_dump_done(struct netlink_callback *cb)
302 {
303 	fib6_dump_end(cb);
304 	return cb->done ? cb->done(cb) : 0;
305 }
306 
307 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
308 			   struct netlink_callback *cb)
309 {
310 	struct fib6_walker *w;
311 	int res;
312 
313 	w = (void *)cb->args[2];
314 	w->root = &table->tb6_root;
315 
316 	if (cb->args[4] == 0) {
317 		w->count = 0;
318 		w->skip = 0;
319 
320 		read_lock_bh(&table->tb6_lock);
321 		res = fib6_walk(w);
322 		read_unlock_bh(&table->tb6_lock);
323 		if (res > 0) {
324 			cb->args[4] = 1;
325 			cb->args[5] = w->root->fn_sernum;
326 		}
327 	} else {
328 		if (cb->args[5] != w->root->fn_sernum) {
329 			/* Begin at the root if the tree changed */
330 			cb->args[5] = w->root->fn_sernum;
331 			w->state = FWS_INIT;
332 			w->node = w->root;
333 			w->skip = w->count;
334 		} else
335 			w->skip = 0;
336 
337 		read_lock_bh(&table->tb6_lock);
338 		res = fib6_walk_continue(w);
339 		read_unlock_bh(&table->tb6_lock);
340 		if (res <= 0) {
341 			fib6_walker_unlink(w);
342 			cb->args[4] = 0;
343 		}
344 	}
345 
346 	return res;
347 }
348 
349 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
350 {
351 	struct net *net = sock_net(skb->sk);
352 	unsigned int h, s_h;
353 	unsigned int e = 0, s_e;
354 	struct rt6_rtnl_dump_arg arg;
355 	struct fib6_walker *w;
356 	struct fib6_table *tb;
357 	struct hlist_head *head;
358 	int res = 0;
359 
360 	s_h = cb->args[0];
361 	s_e = cb->args[1];
362 
363 	w = (void *)cb->args[2];
364 	if (!w) {
365 		/* New dump:
366 		 *
367 		 * 1. hook callback destructor.
368 		 */
369 		cb->args[3] = (long)cb->done;
370 		cb->done = fib6_dump_done;
371 
372 		/*
373 		 * 2. allocate and initialize walker.
374 		 */
375 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
376 		if (!w)
377 			return -ENOMEM;
378 		w->func = fib6_dump_node;
379 		cb->args[2] = (long)w;
380 	}
381 
382 	arg.skb = skb;
383 	arg.cb = cb;
384 	arg.net = net;
385 	w->args = &arg;
386 
387 	rcu_read_lock();
388 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
389 		e = 0;
390 		head = &net->ipv6.fib_table_hash[h];
391 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
392 			if (e < s_e)
393 				goto next;
394 			res = fib6_dump_table(tb, skb, cb);
395 			if (res != 0)
396 				goto out;
397 next:
398 			e++;
399 		}
400 	}
401 out:
402 	rcu_read_unlock();
403 	cb->args[1] = e;
404 	cb->args[0] = h;
405 
406 	res = res < 0 ? res : skb->len;
407 	if (res <= 0)
408 		fib6_dump_end(cb);
409 	return res;
410 }
411 
412 /*
413  *	Routing Table
414  *
415  *	return the appropriate node for a routing tree "add" operation
416  *	by either creating and inserting or by returning an existing
417  *	node.
418  */
419 
420 static struct fib6_node *fib6_add_1(struct fib6_node *root,
421 				     struct in6_addr *addr, int plen,
422 				     int offset, int allow_create,
423 				     int replace_required, int sernum)
424 {
425 	struct fib6_node *fn, *in, *ln;
426 	struct fib6_node *pn = NULL;
427 	struct rt6key *key;
428 	int	bit;
429 	__be32	dir = 0;
430 
431 	RT6_TRACE("fib6_add_1\n");
432 
433 	/* insert node in tree */
434 
435 	fn = root;
436 
437 	do {
438 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
439 
440 		/*
441 		 *	Prefix match
442 		 */
443 		if (plen < fn->fn_bit ||
444 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
445 			if (!allow_create) {
446 				if (replace_required) {
447 					pr_warn("Can't replace route, no match found\n");
448 					return ERR_PTR(-ENOENT);
449 				}
450 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
451 			}
452 			goto insert_above;
453 		}
454 
455 		/*
456 		 *	Exact match ?
457 		 */
458 
459 		if (plen == fn->fn_bit) {
460 			/* clean up an intermediate node */
461 			if (!(fn->fn_flags & RTN_RTINFO)) {
462 				rt6_release(fn->leaf);
463 				fn->leaf = NULL;
464 			}
465 
466 			fn->fn_sernum = sernum;
467 
468 			return fn;
469 		}
470 
471 		/*
472 		 *	We have more bits to go
473 		 */
474 
475 		/* Try to walk down on tree. */
476 		fn->fn_sernum = sernum;
477 		dir = addr_bit_set(addr, fn->fn_bit);
478 		pn = fn;
479 		fn = dir ? fn->right : fn->left;
480 	} while (fn);
481 
482 	if (!allow_create) {
483 		/* We should not create new node because
484 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
485 		 * I assume it is safe to require NLM_F_CREATE when
486 		 * REPLACE flag is used! Later we may want to remove the
487 		 * check for replace_required, because according
488 		 * to netlink specification, NLM_F_CREATE
489 		 * MUST be specified if new route is created.
490 		 * That would keep IPv6 consistent with IPv4
491 		 */
492 		if (replace_required) {
493 			pr_warn("Can't replace route, no match found\n");
494 			return ERR_PTR(-ENOENT);
495 		}
496 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
497 	}
498 	/*
499 	 *	We walked to the bottom of tree.
500 	 *	Create new leaf node without children.
501 	 */
502 
503 	ln = node_alloc();
504 
505 	if (!ln)
506 		return ERR_PTR(-ENOMEM);
507 	ln->fn_bit = plen;
508 
509 	ln->parent = pn;
510 	ln->fn_sernum = sernum;
511 
512 	if (dir)
513 		pn->right = ln;
514 	else
515 		pn->left  = ln;
516 
517 	return ln;
518 
519 
520 insert_above:
521 	/*
522 	 * split since we don't have a common prefix anymore or
523 	 * we have a less significant route.
524 	 * we've to insert an intermediate node on the list
525 	 * this new node will point to the one we need to create
526 	 * and the current
527 	 */
528 
529 	pn = fn->parent;
530 
531 	/* find 1st bit in difference between the 2 addrs.
532 
533 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
534 	   but if it is >= plen, the value is ignored in any case.
535 	 */
536 
537 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
538 
539 	/*
540 	 *		(intermediate)[in]
541 	 *	          /	   \
542 	 *	(new leaf node)[ln] (old node)[fn]
543 	 */
544 	if (plen > bit) {
545 		in = node_alloc();
546 		ln = node_alloc();
547 
548 		if (!in || !ln) {
549 			if (in)
550 				node_free(in);
551 			if (ln)
552 				node_free(ln);
553 			return ERR_PTR(-ENOMEM);
554 		}
555 
556 		/*
557 		 * new intermediate node.
558 		 * RTN_RTINFO will
559 		 * be off since that an address that chooses one of
560 		 * the branches would not match less specific routes
561 		 * in the other branch
562 		 */
563 
564 		in->fn_bit = bit;
565 
566 		in->parent = pn;
567 		in->leaf = fn->leaf;
568 		atomic_inc(&in->leaf->rt6i_ref);
569 
570 		in->fn_sernum = sernum;
571 
572 		/* update parent pointer */
573 		if (dir)
574 			pn->right = in;
575 		else
576 			pn->left  = in;
577 
578 		ln->fn_bit = plen;
579 
580 		ln->parent = in;
581 		fn->parent = in;
582 
583 		ln->fn_sernum = sernum;
584 
585 		if (addr_bit_set(addr, bit)) {
586 			in->right = ln;
587 			in->left  = fn;
588 		} else {
589 			in->left  = ln;
590 			in->right = fn;
591 		}
592 	} else { /* plen <= bit */
593 
594 		/*
595 		 *		(new leaf node)[ln]
596 		 *	          /	   \
597 		 *	     (old node)[fn] NULL
598 		 */
599 
600 		ln = node_alloc();
601 
602 		if (!ln)
603 			return ERR_PTR(-ENOMEM);
604 
605 		ln->fn_bit = plen;
606 
607 		ln->parent = pn;
608 
609 		ln->fn_sernum = sernum;
610 
611 		if (dir)
612 			pn->right = ln;
613 		else
614 			pn->left  = ln;
615 
616 		if (addr_bit_set(&key->addr, plen))
617 			ln->right = fn;
618 		else
619 			ln->left  = fn;
620 
621 		fn->parent = ln;
622 	}
623 	return ln;
624 }
625 
626 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
627 {
628 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
629 	       RTF_GATEWAY;
630 }
631 
632 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
633 {
634 	int i;
635 
636 	for (i = 0; i < RTAX_MAX; i++) {
637 		if (test_bit(i, mxc->mx_valid))
638 			mp[i] = mxc->mx[i];
639 	}
640 }
641 
642 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
643 {
644 	if (!mxc->mx)
645 		return 0;
646 
647 	if (dst->flags & DST_HOST) {
648 		u32 *mp = dst_metrics_write_ptr(dst);
649 
650 		if (unlikely(!mp))
651 			return -ENOMEM;
652 
653 		fib6_copy_metrics(mp, mxc);
654 	} else {
655 		dst_init_metrics(dst, mxc->mx, false);
656 
657 		/* We've stolen mx now. */
658 		mxc->mx = NULL;
659 	}
660 
661 	return 0;
662 }
663 
664 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
665 			  struct net *net)
666 {
667 	if (atomic_read(&rt->rt6i_ref) != 1) {
668 		/* This route is used as dummy address holder in some split
669 		 * nodes. It is not leaked, but it still holds other resources,
670 		 * which must be released in time. So, scan ascendant nodes
671 		 * and replace dummy references to this route with references
672 		 * to still alive ones.
673 		 */
674 		while (fn) {
675 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
676 				fn->leaf = fib6_find_prefix(net, fn);
677 				atomic_inc(&fn->leaf->rt6i_ref);
678 				rt6_release(rt);
679 			}
680 			fn = fn->parent;
681 		}
682 		/* No more references are possible at this point. */
683 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
684 	}
685 }
686 
687 /*
688  *	Insert routing information in a node.
689  */
690 
691 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
692 			    struct nl_info *info, struct mx6_config *mxc)
693 {
694 	struct rt6_info *iter = NULL;
695 	struct rt6_info **ins;
696 	int replace = (info->nlh &&
697 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
698 	int add = (!info->nlh ||
699 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
700 	int found = 0;
701 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
702 	int err;
703 
704 	ins = &fn->leaf;
705 
706 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
707 		/*
708 		 *	Search for duplicates
709 		 */
710 
711 		if (iter->rt6i_metric == rt->rt6i_metric) {
712 			/*
713 			 *	Same priority level
714 			 */
715 			if (info->nlh &&
716 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
717 				return -EEXIST;
718 			if (replace) {
719 				found++;
720 				break;
721 			}
722 
723 			if (iter->dst.dev == rt->dst.dev &&
724 			    iter->rt6i_idev == rt->rt6i_idev &&
725 			    ipv6_addr_equal(&iter->rt6i_gateway,
726 					    &rt->rt6i_gateway)) {
727 				if (rt->rt6i_nsiblings)
728 					rt->rt6i_nsiblings = 0;
729 				if (!(iter->rt6i_flags & RTF_EXPIRES))
730 					return -EEXIST;
731 				if (!(rt->rt6i_flags & RTF_EXPIRES))
732 					rt6_clean_expires(iter);
733 				else
734 					rt6_set_expires(iter, rt->dst.expires);
735 				return -EEXIST;
736 			}
737 			/* If we have the same destination and the same metric,
738 			 * but not the same gateway, then the route we try to
739 			 * add is sibling to this route, increment our counter
740 			 * of siblings, and later we will add our route to the
741 			 * list.
742 			 * Only static routes (which don't have flag
743 			 * RTF_EXPIRES) are used for ECMPv6.
744 			 *
745 			 * To avoid long list, we only had siblings if the
746 			 * route have a gateway.
747 			 */
748 			if (rt_can_ecmp &&
749 			    rt6_qualify_for_ecmp(iter))
750 				rt->rt6i_nsiblings++;
751 		}
752 
753 		if (iter->rt6i_metric > rt->rt6i_metric)
754 			break;
755 
756 		ins = &iter->dst.rt6_next;
757 	}
758 
759 	/* Reset round-robin state, if necessary */
760 	if (ins == &fn->leaf)
761 		fn->rr_ptr = NULL;
762 
763 	/* Link this route to others same route. */
764 	if (rt->rt6i_nsiblings) {
765 		unsigned int rt6i_nsiblings;
766 		struct rt6_info *sibling, *temp_sibling;
767 
768 		/* Find the first route that have the same metric */
769 		sibling = fn->leaf;
770 		while (sibling) {
771 			if (sibling->rt6i_metric == rt->rt6i_metric &&
772 			    rt6_qualify_for_ecmp(sibling)) {
773 				list_add_tail(&rt->rt6i_siblings,
774 					      &sibling->rt6i_siblings);
775 				break;
776 			}
777 			sibling = sibling->dst.rt6_next;
778 		}
779 		/* For each sibling in the list, increment the counter of
780 		 * siblings. BUG() if counters does not match, list of siblings
781 		 * is broken!
782 		 */
783 		rt6i_nsiblings = 0;
784 		list_for_each_entry_safe(sibling, temp_sibling,
785 					 &rt->rt6i_siblings, rt6i_siblings) {
786 			sibling->rt6i_nsiblings++;
787 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
788 			rt6i_nsiblings++;
789 		}
790 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
791 	}
792 
793 	/*
794 	 *	insert node
795 	 */
796 	if (!replace) {
797 		if (!add)
798 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
799 
800 add:
801 		err = fib6_commit_metrics(&rt->dst, mxc);
802 		if (err)
803 			return err;
804 
805 		rt->dst.rt6_next = iter;
806 		*ins = rt;
807 		rt->rt6i_node = fn;
808 		atomic_inc(&rt->rt6i_ref);
809 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
810 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
811 
812 		if (!(fn->fn_flags & RTN_RTINFO)) {
813 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
814 			fn->fn_flags |= RTN_RTINFO;
815 		}
816 
817 	} else {
818 		if (!found) {
819 			if (add)
820 				goto add;
821 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
822 			return -ENOENT;
823 		}
824 
825 		err = fib6_commit_metrics(&rt->dst, mxc);
826 		if (err)
827 			return err;
828 
829 		*ins = rt;
830 		rt->rt6i_node = fn;
831 		rt->dst.rt6_next = iter->dst.rt6_next;
832 		atomic_inc(&rt->rt6i_ref);
833 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
834 		if (!(fn->fn_flags & RTN_RTINFO)) {
835 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
836 			fn->fn_flags |= RTN_RTINFO;
837 		}
838 		fib6_purge_rt(iter, fn, info->nl_net);
839 		rt6_release(iter);
840 	}
841 
842 	return 0;
843 }
844 
845 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
846 {
847 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
848 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
849 		mod_timer(&net->ipv6.ip6_fib_timer,
850 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
851 }
852 
853 void fib6_force_start_gc(struct net *net)
854 {
855 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
856 		mod_timer(&net->ipv6.ip6_fib_timer,
857 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
858 }
859 
860 /*
861  *	Add routing information to the routing tree.
862  *	<destination addr>/<source addr>
863  *	with source addr info in sub-trees
864  */
865 
866 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
867 	     struct nl_info *info, struct mx6_config *mxc)
868 {
869 	struct fib6_node *fn, *pn = NULL;
870 	int err = -ENOMEM;
871 	int allow_create = 1;
872 	int replace_required = 0;
873 	int sernum = fib6_new_sernum(info->nl_net);
874 
875 	if (info->nlh) {
876 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
877 			allow_create = 0;
878 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
879 			replace_required = 1;
880 	}
881 	if (!allow_create && !replace_required)
882 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
883 
884 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
885 			offsetof(struct rt6_info, rt6i_dst), allow_create,
886 			replace_required, sernum);
887 	if (IS_ERR(fn)) {
888 		err = PTR_ERR(fn);
889 		fn = NULL;
890 		goto out;
891 	}
892 
893 	pn = fn;
894 
895 #ifdef CONFIG_IPV6_SUBTREES
896 	if (rt->rt6i_src.plen) {
897 		struct fib6_node *sn;
898 
899 		if (!fn->subtree) {
900 			struct fib6_node *sfn;
901 
902 			/*
903 			 * Create subtree.
904 			 *
905 			 *		fn[main tree]
906 			 *		|
907 			 *		sfn[subtree root]
908 			 *		   \
909 			 *		    sn[new leaf node]
910 			 */
911 
912 			/* Create subtree root node */
913 			sfn = node_alloc();
914 			if (!sfn)
915 				goto st_failure;
916 
917 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
918 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
919 			sfn->fn_flags = RTN_ROOT;
920 			sfn->fn_sernum = sernum;
921 
922 			/* Now add the first leaf node to new subtree */
923 
924 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
925 					rt->rt6i_src.plen,
926 					offsetof(struct rt6_info, rt6i_src),
927 					allow_create, replace_required, sernum);
928 
929 			if (IS_ERR(sn)) {
930 				/* If it is failed, discard just allocated
931 				   root, and then (in st_failure) stale node
932 				   in main tree.
933 				 */
934 				node_free(sfn);
935 				err = PTR_ERR(sn);
936 				goto st_failure;
937 			}
938 
939 			/* Now link new subtree to main tree */
940 			sfn->parent = fn;
941 			fn->subtree = sfn;
942 		} else {
943 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
944 					rt->rt6i_src.plen,
945 					offsetof(struct rt6_info, rt6i_src),
946 					allow_create, replace_required, sernum);
947 
948 			if (IS_ERR(sn)) {
949 				err = PTR_ERR(sn);
950 				goto st_failure;
951 			}
952 		}
953 
954 		if (!fn->leaf) {
955 			fn->leaf = rt;
956 			atomic_inc(&rt->rt6i_ref);
957 		}
958 		fn = sn;
959 	}
960 #endif
961 
962 	err = fib6_add_rt2node(fn, rt, info, mxc);
963 	if (!err) {
964 		fib6_start_gc(info->nl_net, rt);
965 		if (!(rt->rt6i_flags & RTF_CACHE))
966 			fib6_prune_clones(info->nl_net, pn);
967 	}
968 
969 out:
970 	if (err) {
971 #ifdef CONFIG_IPV6_SUBTREES
972 		/*
973 		 * If fib6_add_1 has cleared the old leaf pointer in the
974 		 * super-tree leaf node we have to find a new one for it.
975 		 */
976 		if (pn != fn && pn->leaf == rt) {
977 			pn->leaf = NULL;
978 			atomic_dec(&rt->rt6i_ref);
979 		}
980 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
981 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
982 #if RT6_DEBUG >= 2
983 			if (!pn->leaf) {
984 				WARN_ON(pn->leaf == NULL);
985 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
986 			}
987 #endif
988 			atomic_inc(&pn->leaf->rt6i_ref);
989 		}
990 #endif
991 		dst_free(&rt->dst);
992 	}
993 	return err;
994 
995 #ifdef CONFIG_IPV6_SUBTREES
996 	/* Subtree creation failed, probably main tree node
997 	   is orphan. If it is, shoot it.
998 	 */
999 st_failure:
1000 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1001 		fib6_repair_tree(info->nl_net, fn);
1002 	dst_free(&rt->dst);
1003 	return err;
1004 #endif
1005 }
1006 
1007 /*
1008  *	Routing tree lookup
1009  *
1010  */
1011 
1012 struct lookup_args {
1013 	int			offset;		/* key offset on rt6_info	*/
1014 	const struct in6_addr	*addr;		/* search key			*/
1015 };
1016 
1017 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1018 				       struct lookup_args *args)
1019 {
1020 	struct fib6_node *fn;
1021 	__be32 dir;
1022 
1023 	if (unlikely(args->offset == 0))
1024 		return NULL;
1025 
1026 	/*
1027 	 *	Descend on a tree
1028 	 */
1029 
1030 	fn = root;
1031 
1032 	for (;;) {
1033 		struct fib6_node *next;
1034 
1035 		dir = addr_bit_set(args->addr, fn->fn_bit);
1036 
1037 		next = dir ? fn->right : fn->left;
1038 
1039 		if (next) {
1040 			fn = next;
1041 			continue;
1042 		}
1043 		break;
1044 	}
1045 
1046 	while (fn) {
1047 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1048 			struct rt6key *key;
1049 
1050 			key = (struct rt6key *) ((u8 *) fn->leaf +
1051 						 args->offset);
1052 
1053 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1054 #ifdef CONFIG_IPV6_SUBTREES
1055 				if (fn->subtree) {
1056 					struct fib6_node *sfn;
1057 					sfn = fib6_lookup_1(fn->subtree,
1058 							    args + 1);
1059 					if (!sfn)
1060 						goto backtrack;
1061 					fn = sfn;
1062 				}
1063 #endif
1064 				if (fn->fn_flags & RTN_RTINFO)
1065 					return fn;
1066 			}
1067 		}
1068 #ifdef CONFIG_IPV6_SUBTREES
1069 backtrack:
1070 #endif
1071 		if (fn->fn_flags & RTN_ROOT)
1072 			break;
1073 
1074 		fn = fn->parent;
1075 	}
1076 
1077 	return NULL;
1078 }
1079 
1080 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1081 			      const struct in6_addr *saddr)
1082 {
1083 	struct fib6_node *fn;
1084 	struct lookup_args args[] = {
1085 		{
1086 			.offset = offsetof(struct rt6_info, rt6i_dst),
1087 			.addr = daddr,
1088 		},
1089 #ifdef CONFIG_IPV6_SUBTREES
1090 		{
1091 			.offset = offsetof(struct rt6_info, rt6i_src),
1092 			.addr = saddr,
1093 		},
1094 #endif
1095 		{
1096 			.offset = 0,	/* sentinel */
1097 		}
1098 	};
1099 
1100 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1101 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1102 		fn = root;
1103 
1104 	return fn;
1105 }
1106 
1107 /*
1108  *	Get node with specified destination prefix (and source prefix,
1109  *	if subtrees are used)
1110  */
1111 
1112 
1113 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1114 				       const struct in6_addr *addr,
1115 				       int plen, int offset)
1116 {
1117 	struct fib6_node *fn;
1118 
1119 	for (fn = root; fn ; ) {
1120 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1121 
1122 		/*
1123 		 *	Prefix match
1124 		 */
1125 		if (plen < fn->fn_bit ||
1126 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1127 			return NULL;
1128 
1129 		if (plen == fn->fn_bit)
1130 			return fn;
1131 
1132 		/*
1133 		 *	We have more bits to go
1134 		 */
1135 		if (addr_bit_set(addr, fn->fn_bit))
1136 			fn = fn->right;
1137 		else
1138 			fn = fn->left;
1139 	}
1140 	return NULL;
1141 }
1142 
1143 struct fib6_node *fib6_locate(struct fib6_node *root,
1144 			      const struct in6_addr *daddr, int dst_len,
1145 			      const struct in6_addr *saddr, int src_len)
1146 {
1147 	struct fib6_node *fn;
1148 
1149 	fn = fib6_locate_1(root, daddr, dst_len,
1150 			   offsetof(struct rt6_info, rt6i_dst));
1151 
1152 #ifdef CONFIG_IPV6_SUBTREES
1153 	if (src_len) {
1154 		WARN_ON(saddr == NULL);
1155 		if (fn && fn->subtree)
1156 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1157 					   offsetof(struct rt6_info, rt6i_src));
1158 	}
1159 #endif
1160 
1161 	if (fn && fn->fn_flags & RTN_RTINFO)
1162 		return fn;
1163 
1164 	return NULL;
1165 }
1166 
1167 
1168 /*
1169  *	Deletion
1170  *
1171  */
1172 
1173 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1174 {
1175 	if (fn->fn_flags & RTN_ROOT)
1176 		return net->ipv6.ip6_null_entry;
1177 
1178 	while (fn) {
1179 		if (fn->left)
1180 			return fn->left->leaf;
1181 		if (fn->right)
1182 			return fn->right->leaf;
1183 
1184 		fn = FIB6_SUBTREE(fn);
1185 	}
1186 	return NULL;
1187 }
1188 
1189 /*
1190  *	Called to trim the tree of intermediate nodes when possible. "fn"
1191  *	is the node we want to try and remove.
1192  */
1193 
1194 static struct fib6_node *fib6_repair_tree(struct net *net,
1195 					   struct fib6_node *fn)
1196 {
1197 	int children;
1198 	int nstate;
1199 	struct fib6_node *child, *pn;
1200 	struct fib6_walker *w;
1201 	int iter = 0;
1202 
1203 	for (;;) {
1204 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1205 		iter++;
1206 
1207 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1208 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1209 		WARN_ON(fn->leaf != NULL);
1210 
1211 		children = 0;
1212 		child = NULL;
1213 		if (fn->right)
1214 			child = fn->right, children |= 1;
1215 		if (fn->left)
1216 			child = fn->left, children |= 2;
1217 
1218 		if (children == 3 || FIB6_SUBTREE(fn)
1219 #ifdef CONFIG_IPV6_SUBTREES
1220 		    /* Subtree root (i.e. fn) may have one child */
1221 		    || (children && fn->fn_flags & RTN_ROOT)
1222 #endif
1223 		    ) {
1224 			fn->leaf = fib6_find_prefix(net, fn);
1225 #if RT6_DEBUG >= 2
1226 			if (!fn->leaf) {
1227 				WARN_ON(!fn->leaf);
1228 				fn->leaf = net->ipv6.ip6_null_entry;
1229 			}
1230 #endif
1231 			atomic_inc(&fn->leaf->rt6i_ref);
1232 			return fn->parent;
1233 		}
1234 
1235 		pn = fn->parent;
1236 #ifdef CONFIG_IPV6_SUBTREES
1237 		if (FIB6_SUBTREE(pn) == fn) {
1238 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1239 			FIB6_SUBTREE(pn) = NULL;
1240 			nstate = FWS_L;
1241 		} else {
1242 			WARN_ON(fn->fn_flags & RTN_ROOT);
1243 #endif
1244 			if (pn->right == fn)
1245 				pn->right = child;
1246 			else if (pn->left == fn)
1247 				pn->left = child;
1248 #if RT6_DEBUG >= 2
1249 			else
1250 				WARN_ON(1);
1251 #endif
1252 			if (child)
1253 				child->parent = pn;
1254 			nstate = FWS_R;
1255 #ifdef CONFIG_IPV6_SUBTREES
1256 		}
1257 #endif
1258 
1259 		read_lock(&fib6_walker_lock);
1260 		FOR_WALKERS(w) {
1261 			if (!child) {
1262 				if (w->root == fn) {
1263 					w->root = w->node = NULL;
1264 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1265 				} else if (w->node == fn) {
1266 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1267 					w->node = pn;
1268 					w->state = nstate;
1269 				}
1270 			} else {
1271 				if (w->root == fn) {
1272 					w->root = child;
1273 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1274 				}
1275 				if (w->node == fn) {
1276 					w->node = child;
1277 					if (children&2) {
1278 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1279 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1280 					} else {
1281 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1282 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1283 					}
1284 				}
1285 			}
1286 		}
1287 		read_unlock(&fib6_walker_lock);
1288 
1289 		node_free(fn);
1290 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1291 			return pn;
1292 
1293 		rt6_release(pn->leaf);
1294 		pn->leaf = NULL;
1295 		fn = pn;
1296 	}
1297 }
1298 
1299 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1300 			   struct nl_info *info)
1301 {
1302 	struct fib6_walker *w;
1303 	struct rt6_info *rt = *rtp;
1304 	struct net *net = info->nl_net;
1305 
1306 	RT6_TRACE("fib6_del_route\n");
1307 
1308 	/* Unlink it */
1309 	*rtp = rt->dst.rt6_next;
1310 	rt->rt6i_node = NULL;
1311 	net->ipv6.rt6_stats->fib_rt_entries--;
1312 	net->ipv6.rt6_stats->fib_discarded_routes++;
1313 
1314 	/* Reset round-robin state, if necessary */
1315 	if (fn->rr_ptr == rt)
1316 		fn->rr_ptr = NULL;
1317 
1318 	/* Remove this entry from other siblings */
1319 	if (rt->rt6i_nsiblings) {
1320 		struct rt6_info *sibling, *next_sibling;
1321 
1322 		list_for_each_entry_safe(sibling, next_sibling,
1323 					 &rt->rt6i_siblings, rt6i_siblings)
1324 			sibling->rt6i_nsiblings--;
1325 		rt->rt6i_nsiblings = 0;
1326 		list_del_init(&rt->rt6i_siblings);
1327 	}
1328 
1329 	/* Adjust walkers */
1330 	read_lock(&fib6_walker_lock);
1331 	FOR_WALKERS(w) {
1332 		if (w->state == FWS_C && w->leaf == rt) {
1333 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1334 			w->leaf = rt->dst.rt6_next;
1335 			if (!w->leaf)
1336 				w->state = FWS_U;
1337 		}
1338 	}
1339 	read_unlock(&fib6_walker_lock);
1340 
1341 	rt->dst.rt6_next = NULL;
1342 
1343 	/* If it was last route, expunge its radix tree node */
1344 	if (!fn->leaf) {
1345 		fn->fn_flags &= ~RTN_RTINFO;
1346 		net->ipv6.rt6_stats->fib_route_nodes--;
1347 		fn = fib6_repair_tree(net, fn);
1348 	}
1349 
1350 	fib6_purge_rt(rt, fn, net);
1351 
1352 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1353 	rt6_release(rt);
1354 }
1355 
1356 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1357 {
1358 	struct net *net = info->nl_net;
1359 	struct fib6_node *fn = rt->rt6i_node;
1360 	struct rt6_info **rtp;
1361 
1362 #if RT6_DEBUG >= 2
1363 	if (rt->dst.obsolete > 0) {
1364 		WARN_ON(fn != NULL);
1365 		return -ENOENT;
1366 	}
1367 #endif
1368 	if (!fn || rt == net->ipv6.ip6_null_entry)
1369 		return -ENOENT;
1370 
1371 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1372 
1373 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1374 		struct fib6_node *pn = fn;
1375 #ifdef CONFIG_IPV6_SUBTREES
1376 		/* clones of this route might be in another subtree */
1377 		if (rt->rt6i_src.plen) {
1378 			while (!(pn->fn_flags & RTN_ROOT))
1379 				pn = pn->parent;
1380 			pn = pn->parent;
1381 		}
1382 #endif
1383 		fib6_prune_clones(info->nl_net, pn);
1384 	}
1385 
1386 	/*
1387 	 *	Walk the leaf entries looking for ourself
1388 	 */
1389 
1390 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1391 		if (*rtp == rt) {
1392 			fib6_del_route(fn, rtp, info);
1393 			return 0;
1394 		}
1395 	}
1396 	return -ENOENT;
1397 }
1398 
1399 /*
1400  *	Tree traversal function.
1401  *
1402  *	Certainly, it is not interrupt safe.
1403  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1404  *	It means, that we can modify tree during walking
1405  *	and use this function for garbage collection, clone pruning,
1406  *	cleaning tree when a device goes down etc. etc.
1407  *
1408  *	It guarantees that every node will be traversed,
1409  *	and that it will be traversed only once.
1410  *
1411  *	Callback function w->func may return:
1412  *	0 -> continue walking.
1413  *	positive value -> walking is suspended (used by tree dumps,
1414  *	and probably by gc, if it will be split to several slices)
1415  *	negative value -> terminate walking.
1416  *
1417  *	The function itself returns:
1418  *	0   -> walk is complete.
1419  *	>0  -> walk is incomplete (i.e. suspended)
1420  *	<0  -> walk is terminated by an error.
1421  */
1422 
1423 static int fib6_walk_continue(struct fib6_walker *w)
1424 {
1425 	struct fib6_node *fn, *pn;
1426 
1427 	for (;;) {
1428 		fn = w->node;
1429 		if (!fn)
1430 			return 0;
1431 
1432 		if (w->prune && fn != w->root &&
1433 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1434 			w->state = FWS_C;
1435 			w->leaf = fn->leaf;
1436 		}
1437 		switch (w->state) {
1438 #ifdef CONFIG_IPV6_SUBTREES
1439 		case FWS_S:
1440 			if (FIB6_SUBTREE(fn)) {
1441 				w->node = FIB6_SUBTREE(fn);
1442 				continue;
1443 			}
1444 			w->state = FWS_L;
1445 #endif
1446 		case FWS_L:
1447 			if (fn->left) {
1448 				w->node = fn->left;
1449 				w->state = FWS_INIT;
1450 				continue;
1451 			}
1452 			w->state = FWS_R;
1453 		case FWS_R:
1454 			if (fn->right) {
1455 				w->node = fn->right;
1456 				w->state = FWS_INIT;
1457 				continue;
1458 			}
1459 			w->state = FWS_C;
1460 			w->leaf = fn->leaf;
1461 		case FWS_C:
1462 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1463 				int err;
1464 
1465 				if (w->skip) {
1466 					w->skip--;
1467 					goto skip;
1468 				}
1469 
1470 				err = w->func(w);
1471 				if (err)
1472 					return err;
1473 
1474 				w->count++;
1475 				continue;
1476 			}
1477 skip:
1478 			w->state = FWS_U;
1479 		case FWS_U:
1480 			if (fn == w->root)
1481 				return 0;
1482 			pn = fn->parent;
1483 			w->node = pn;
1484 #ifdef CONFIG_IPV6_SUBTREES
1485 			if (FIB6_SUBTREE(pn) == fn) {
1486 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1487 				w->state = FWS_L;
1488 				continue;
1489 			}
1490 #endif
1491 			if (pn->left == fn) {
1492 				w->state = FWS_R;
1493 				continue;
1494 			}
1495 			if (pn->right == fn) {
1496 				w->state = FWS_C;
1497 				w->leaf = w->node->leaf;
1498 				continue;
1499 			}
1500 #if RT6_DEBUG >= 2
1501 			WARN_ON(1);
1502 #endif
1503 		}
1504 	}
1505 }
1506 
1507 static int fib6_walk(struct fib6_walker *w)
1508 {
1509 	int res;
1510 
1511 	w->state = FWS_INIT;
1512 	w->node = w->root;
1513 
1514 	fib6_walker_link(w);
1515 	res = fib6_walk_continue(w);
1516 	if (res <= 0)
1517 		fib6_walker_unlink(w);
1518 	return res;
1519 }
1520 
1521 static int fib6_clean_node(struct fib6_walker *w)
1522 {
1523 	int res;
1524 	struct rt6_info *rt;
1525 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1526 	struct nl_info info = {
1527 		.nl_net = c->net,
1528 	};
1529 
1530 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1531 	    w->node->fn_sernum != c->sernum)
1532 		w->node->fn_sernum = c->sernum;
1533 
1534 	if (!c->func) {
1535 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1536 		w->leaf = NULL;
1537 		return 0;
1538 	}
1539 
1540 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1541 		res = c->func(rt, c->arg);
1542 		if (res < 0) {
1543 			w->leaf = rt;
1544 			res = fib6_del(rt, &info);
1545 			if (res) {
1546 #if RT6_DEBUG >= 2
1547 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1548 					 __func__, rt, rt->rt6i_node, res);
1549 #endif
1550 				continue;
1551 			}
1552 			return 0;
1553 		}
1554 		WARN_ON(res != 0);
1555 	}
1556 	w->leaf = rt;
1557 	return 0;
1558 }
1559 
1560 /*
1561  *	Convenient frontend to tree walker.
1562  *
1563  *	func is called on each route.
1564  *		It may return -1 -> delete this route.
1565  *		              0  -> continue walking
1566  *
1567  *	prune==1 -> only immediate children of node (certainly,
1568  *	ignoring pure split nodes) will be scanned.
1569  */
1570 
1571 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1572 			    int (*func)(struct rt6_info *, void *arg),
1573 			    bool prune, int sernum, void *arg)
1574 {
1575 	struct fib6_cleaner c;
1576 
1577 	c.w.root = root;
1578 	c.w.func = fib6_clean_node;
1579 	c.w.prune = prune;
1580 	c.w.count = 0;
1581 	c.w.skip = 0;
1582 	c.func = func;
1583 	c.sernum = sernum;
1584 	c.arg = arg;
1585 	c.net = net;
1586 
1587 	fib6_walk(&c.w);
1588 }
1589 
1590 static void __fib6_clean_all(struct net *net,
1591 			     int (*func)(struct rt6_info *, void *),
1592 			     int sernum, void *arg)
1593 {
1594 	struct fib6_table *table;
1595 	struct hlist_head *head;
1596 	unsigned int h;
1597 
1598 	rcu_read_lock();
1599 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1600 		head = &net->ipv6.fib_table_hash[h];
1601 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1602 			write_lock_bh(&table->tb6_lock);
1603 			fib6_clean_tree(net, &table->tb6_root,
1604 					func, false, sernum, arg);
1605 			write_unlock_bh(&table->tb6_lock);
1606 		}
1607 	}
1608 	rcu_read_unlock();
1609 }
1610 
1611 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1612 		    void *arg)
1613 {
1614 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1615 }
1616 
1617 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1618 {
1619 	if (rt->rt6i_flags & RTF_CACHE) {
1620 		RT6_TRACE("pruning clone %p\n", rt);
1621 		return -1;
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1628 {
1629 	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1630 			FIB6_NO_SERNUM_CHANGE, NULL);
1631 }
1632 
1633 static void fib6_flush_trees(struct net *net)
1634 {
1635 	int new_sernum = fib6_new_sernum(net);
1636 
1637 	__fib6_clean_all(net, NULL, new_sernum, NULL);
1638 }
1639 
1640 /*
1641  *	Garbage collection
1642  */
1643 
1644 static struct fib6_gc_args
1645 {
1646 	int			timeout;
1647 	int			more;
1648 } gc_args;
1649 
1650 static int fib6_age(struct rt6_info *rt, void *arg)
1651 {
1652 	unsigned long now = jiffies;
1653 
1654 	/*
1655 	 *	check addrconf expiration here.
1656 	 *	Routes are expired even if they are in use.
1657 	 *
1658 	 *	Also age clones. Note, that clones are aged out
1659 	 *	only if they are not in use now.
1660 	 */
1661 
1662 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1663 		if (time_after(now, rt->dst.expires)) {
1664 			RT6_TRACE("expiring %p\n", rt);
1665 			return -1;
1666 		}
1667 		gc_args.more++;
1668 	} else if (rt->rt6i_flags & RTF_CACHE) {
1669 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1670 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1671 			RT6_TRACE("aging clone %p\n", rt);
1672 			return -1;
1673 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1674 			struct neighbour *neigh;
1675 			__u8 neigh_flags = 0;
1676 
1677 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1678 			if (neigh) {
1679 				neigh_flags = neigh->flags;
1680 				neigh_release(neigh);
1681 			}
1682 			if (!(neigh_flags & NTF_ROUTER)) {
1683 				RT6_TRACE("purging route %p via non-router but gateway\n",
1684 					  rt);
1685 				return -1;
1686 			}
1687 		}
1688 		gc_args.more++;
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 static DEFINE_SPINLOCK(fib6_gc_lock);
1695 
1696 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1697 {
1698 	unsigned long now;
1699 
1700 	if (force) {
1701 		spin_lock_bh(&fib6_gc_lock);
1702 	} else if (!spin_trylock_bh(&fib6_gc_lock)) {
1703 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1704 		return;
1705 	}
1706 	gc_args.timeout = expires ? (int)expires :
1707 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1708 
1709 	gc_args.more = icmp6_dst_gc();
1710 
1711 	fib6_clean_all(net, fib6_age, NULL);
1712 	now = jiffies;
1713 	net->ipv6.ip6_rt_last_gc = now;
1714 
1715 	if (gc_args.more)
1716 		mod_timer(&net->ipv6.ip6_fib_timer,
1717 			  round_jiffies(now
1718 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1719 	else
1720 		del_timer(&net->ipv6.ip6_fib_timer);
1721 	spin_unlock_bh(&fib6_gc_lock);
1722 }
1723 
1724 static void fib6_gc_timer_cb(unsigned long arg)
1725 {
1726 	fib6_run_gc(0, (struct net *)arg, true);
1727 }
1728 
1729 static int __net_init fib6_net_init(struct net *net)
1730 {
1731 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1732 
1733 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1734 
1735 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1736 	if (!net->ipv6.rt6_stats)
1737 		goto out_timer;
1738 
1739 	/* Avoid false sharing : Use at least a full cache line */
1740 	size = max_t(size_t, size, L1_CACHE_BYTES);
1741 
1742 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1743 	if (!net->ipv6.fib_table_hash)
1744 		goto out_rt6_stats;
1745 
1746 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1747 					  GFP_KERNEL);
1748 	if (!net->ipv6.fib6_main_tbl)
1749 		goto out_fib_table_hash;
1750 
1751 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1752 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1753 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1754 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1755 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1756 
1757 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1758 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1759 					   GFP_KERNEL);
1760 	if (!net->ipv6.fib6_local_tbl)
1761 		goto out_fib6_main_tbl;
1762 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1763 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1764 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1765 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1766 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1767 #endif
1768 	fib6_tables_init(net);
1769 
1770 	return 0;
1771 
1772 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1773 out_fib6_main_tbl:
1774 	kfree(net->ipv6.fib6_main_tbl);
1775 #endif
1776 out_fib_table_hash:
1777 	kfree(net->ipv6.fib_table_hash);
1778 out_rt6_stats:
1779 	kfree(net->ipv6.rt6_stats);
1780 out_timer:
1781 	return -ENOMEM;
1782 }
1783 
1784 static void fib6_net_exit(struct net *net)
1785 {
1786 	rt6_ifdown(net, NULL);
1787 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1788 
1789 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1790 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1791 	kfree(net->ipv6.fib6_local_tbl);
1792 #endif
1793 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1794 	kfree(net->ipv6.fib6_main_tbl);
1795 	kfree(net->ipv6.fib_table_hash);
1796 	kfree(net->ipv6.rt6_stats);
1797 }
1798 
1799 static struct pernet_operations fib6_net_ops = {
1800 	.init = fib6_net_init,
1801 	.exit = fib6_net_exit,
1802 };
1803 
1804 int __init fib6_init(void)
1805 {
1806 	int ret = -ENOMEM;
1807 
1808 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1809 					   sizeof(struct fib6_node),
1810 					   0, SLAB_HWCACHE_ALIGN,
1811 					   NULL);
1812 	if (!fib6_node_kmem)
1813 		goto out;
1814 
1815 	ret = register_pernet_subsys(&fib6_net_ops);
1816 	if (ret)
1817 		goto out_kmem_cache_create;
1818 
1819 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1820 			      NULL);
1821 	if (ret)
1822 		goto out_unregister_subsys;
1823 
1824 	__fib6_flush_trees = fib6_flush_trees;
1825 out:
1826 	return ret;
1827 
1828 out_unregister_subsys:
1829 	unregister_pernet_subsys(&fib6_net_ops);
1830 out_kmem_cache_create:
1831 	kmem_cache_destroy(fib6_node_kmem);
1832 	goto out;
1833 }
1834 
1835 void fib6_gc_cleanup(void)
1836 {
1837 	unregister_pernet_subsys(&fib6_net_ops);
1838 	kmem_cache_destroy(fib6_node_kmem);
1839 }
1840 
1841 #ifdef CONFIG_PROC_FS
1842 
1843 struct ipv6_route_iter {
1844 	struct seq_net_private p;
1845 	struct fib6_walker w;
1846 	loff_t skip;
1847 	struct fib6_table *tbl;
1848 	int sernum;
1849 };
1850 
1851 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1852 {
1853 	struct rt6_info *rt = v;
1854 	struct ipv6_route_iter *iter = seq->private;
1855 
1856 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1857 
1858 #ifdef CONFIG_IPV6_SUBTREES
1859 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1860 #else
1861 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1862 #endif
1863 	if (rt->rt6i_flags & RTF_GATEWAY)
1864 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1865 	else
1866 		seq_puts(seq, "00000000000000000000000000000000");
1867 
1868 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1869 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1870 		   rt->dst.__use, rt->rt6i_flags,
1871 		   rt->dst.dev ? rt->dst.dev->name : "");
1872 	iter->w.leaf = NULL;
1873 	return 0;
1874 }
1875 
1876 static int ipv6_route_yield(struct fib6_walker *w)
1877 {
1878 	struct ipv6_route_iter *iter = w->args;
1879 
1880 	if (!iter->skip)
1881 		return 1;
1882 
1883 	do {
1884 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1885 		iter->skip--;
1886 		if (!iter->skip && iter->w.leaf)
1887 			return 1;
1888 	} while (iter->w.leaf);
1889 
1890 	return 0;
1891 }
1892 
1893 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1894 {
1895 	memset(&iter->w, 0, sizeof(iter->w));
1896 	iter->w.func = ipv6_route_yield;
1897 	iter->w.root = &iter->tbl->tb6_root;
1898 	iter->w.state = FWS_INIT;
1899 	iter->w.node = iter->w.root;
1900 	iter->w.args = iter;
1901 	iter->sernum = iter->w.root->fn_sernum;
1902 	INIT_LIST_HEAD(&iter->w.lh);
1903 	fib6_walker_link(&iter->w);
1904 }
1905 
1906 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1907 						    struct net *net)
1908 {
1909 	unsigned int h;
1910 	struct hlist_node *node;
1911 
1912 	if (tbl) {
1913 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1914 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1915 	} else {
1916 		h = 0;
1917 		node = NULL;
1918 	}
1919 
1920 	while (!node && h < FIB6_TABLE_HASHSZ) {
1921 		node = rcu_dereference_bh(
1922 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1923 	}
1924 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1925 }
1926 
1927 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1928 {
1929 	if (iter->sernum != iter->w.root->fn_sernum) {
1930 		iter->sernum = iter->w.root->fn_sernum;
1931 		iter->w.state = FWS_INIT;
1932 		iter->w.node = iter->w.root;
1933 		WARN_ON(iter->w.skip);
1934 		iter->w.skip = iter->w.count;
1935 	}
1936 }
1937 
1938 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1939 {
1940 	int r;
1941 	struct rt6_info *n;
1942 	struct net *net = seq_file_net(seq);
1943 	struct ipv6_route_iter *iter = seq->private;
1944 
1945 	if (!v)
1946 		goto iter_table;
1947 
1948 	n = ((struct rt6_info *)v)->dst.rt6_next;
1949 	if (n) {
1950 		++*pos;
1951 		return n;
1952 	}
1953 
1954 iter_table:
1955 	ipv6_route_check_sernum(iter);
1956 	read_lock(&iter->tbl->tb6_lock);
1957 	r = fib6_walk_continue(&iter->w);
1958 	read_unlock(&iter->tbl->tb6_lock);
1959 	if (r > 0) {
1960 		if (v)
1961 			++*pos;
1962 		return iter->w.leaf;
1963 	} else if (r < 0) {
1964 		fib6_walker_unlink(&iter->w);
1965 		return NULL;
1966 	}
1967 	fib6_walker_unlink(&iter->w);
1968 
1969 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1970 	if (!iter->tbl)
1971 		return NULL;
1972 
1973 	ipv6_route_seq_setup_walk(iter);
1974 	goto iter_table;
1975 }
1976 
1977 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1978 	__acquires(RCU_BH)
1979 {
1980 	struct net *net = seq_file_net(seq);
1981 	struct ipv6_route_iter *iter = seq->private;
1982 
1983 	rcu_read_lock_bh();
1984 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
1985 	iter->skip = *pos;
1986 
1987 	if (iter->tbl) {
1988 		ipv6_route_seq_setup_walk(iter);
1989 		return ipv6_route_seq_next(seq, NULL, pos);
1990 	} else {
1991 		return NULL;
1992 	}
1993 }
1994 
1995 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1996 {
1997 	struct fib6_walker *w = &iter->w;
1998 	return w->node && !(w->state == FWS_U && w->node == w->root);
1999 }
2000 
2001 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2002 	__releases(RCU_BH)
2003 {
2004 	struct ipv6_route_iter *iter = seq->private;
2005 
2006 	if (ipv6_route_iter_active(iter))
2007 		fib6_walker_unlink(&iter->w);
2008 
2009 	rcu_read_unlock_bh();
2010 }
2011 
2012 static const struct seq_operations ipv6_route_seq_ops = {
2013 	.start	= ipv6_route_seq_start,
2014 	.next	= ipv6_route_seq_next,
2015 	.stop	= ipv6_route_seq_stop,
2016 	.show	= ipv6_route_seq_show
2017 };
2018 
2019 int ipv6_route_open(struct inode *inode, struct file *file)
2020 {
2021 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2022 			    sizeof(struct ipv6_route_iter));
2023 }
2024 
2025 #endif /* CONFIG_PROC_FS */
2026