xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/ndisc.h>
35 #include <net/addrconf.h>
36 #include <net/lwtunnel.h>
37 #include <net/fib_notifier.h>
38 
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41 
42 static struct kmem_cache *fib6_node_kmem __read_mostly;
43 
44 struct fib6_cleaner {
45 	struct fib6_walker w;
46 	struct net *net;
47 	int (*func)(struct fib6_info *, void *arg);
48 	int sernum;
49 	void *arg;
50 	bool skip_notify;
51 };
52 
53 #ifdef CONFIG_IPV6_SUBTREES
54 #define FWS_INIT FWS_S
55 #else
56 #define FWS_INIT FWS_L
57 #endif
58 
59 static struct fib6_info *fib6_find_prefix(struct net *net,
60 					 struct fib6_table *table,
61 					 struct fib6_node *fn);
62 static struct fib6_node *fib6_repair_tree(struct net *net,
63 					  struct fib6_table *table,
64 					  struct fib6_node *fn);
65 static int fib6_walk(struct net *net, struct fib6_walker *w);
66 static int fib6_walk_continue(struct fib6_walker *w);
67 
68 /*
69  *	A routing update causes an increase of the serial number on the
70  *	affected subtree. This allows for cached routes to be asynchronously
71  *	tested when modifications are made to the destination cache as a
72  *	result of redirects, path MTU changes, etc.
73  */
74 
75 static void fib6_gc_timer_cb(struct timer_list *t);
76 
77 #define FOR_WALKERS(net, w) \
78 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
79 
80 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
81 {
82 	write_lock_bh(&net->ipv6.fib6_walker_lock);
83 	list_add(&w->lh, &net->ipv6.fib6_walkers);
84 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
85 }
86 
87 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
88 {
89 	write_lock_bh(&net->ipv6.fib6_walker_lock);
90 	list_del(&w->lh);
91 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
92 }
93 
94 static int fib6_new_sernum(struct net *net)
95 {
96 	int new, old;
97 
98 	do {
99 		old = atomic_read(&net->ipv6.fib6_sernum);
100 		new = old < INT_MAX ? old + 1 : 1;
101 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
102 				old, new) != old);
103 	return new;
104 }
105 
106 enum {
107 	FIB6_NO_SERNUM_CHANGE = 0,
108 };
109 
110 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
111 {
112 	struct fib6_node *fn;
113 
114 	fn = rcu_dereference_protected(f6i->fib6_node,
115 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
116 	if (fn)
117 		fn->fn_sernum = fib6_new_sernum(net);
118 }
119 
120 /*
121  *	Auxiliary address test functions for the radix tree.
122  *
123  *	These assume a 32bit processor (although it will work on
124  *	64bit processors)
125  */
126 
127 /*
128  *	test bit
129  */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE	0
134 #endif
135 
136 static __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138 	const __be32 *addr = token;
139 	/*
140 	 * Here,
141 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142 	 * is optimized version of
143 	 *	htonl(1 << ((~fn_bit)&0x1F))
144 	 * See include/asm-generic/bitops/le.h.
145 	 */
146 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147 	       addr[fn_bit >> 5];
148 }
149 
150 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags)
151 {
152 	struct fib6_info *f6i;
153 
154 	f6i = kzalloc(sizeof(*f6i), gfp_flags);
155 	if (!f6i)
156 		return NULL;
157 
158 	f6i->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags);
159 	if (!f6i->rt6i_pcpu) {
160 		kfree(f6i);
161 		return NULL;
162 	}
163 
164 	INIT_LIST_HEAD(&f6i->fib6_siblings);
165 	atomic_inc(&f6i->fib6_ref);
166 
167 	return f6i;
168 }
169 
170 void fib6_info_destroy_rcu(struct rcu_head *head)
171 {
172 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
173 	struct rt6_exception_bucket *bucket;
174 
175 	WARN_ON(f6i->fib6_node);
176 
177 	bucket = rcu_dereference_protected(f6i->rt6i_exception_bucket, 1);
178 	if (bucket) {
179 		f6i->rt6i_exception_bucket = NULL;
180 		kfree(bucket);
181 	}
182 
183 	if (f6i->rt6i_pcpu) {
184 		int cpu;
185 
186 		for_each_possible_cpu(cpu) {
187 			struct rt6_info **ppcpu_rt;
188 			struct rt6_info *pcpu_rt;
189 
190 			ppcpu_rt = per_cpu_ptr(f6i->rt6i_pcpu, cpu);
191 			pcpu_rt = *ppcpu_rt;
192 			if (pcpu_rt) {
193 				dst_dev_put(&pcpu_rt->dst);
194 				dst_release(&pcpu_rt->dst);
195 				*ppcpu_rt = NULL;
196 			}
197 		}
198 
199 		free_percpu(f6i->rt6i_pcpu);
200 	}
201 
202 	lwtstate_put(f6i->fib6_nh.nh_lwtstate);
203 
204 	if (f6i->fib6_nh.nh_dev)
205 		dev_put(f6i->fib6_nh.nh_dev);
206 
207 	ip_fib_metrics_put(f6i->fib6_metrics);
208 
209 	kfree(f6i);
210 }
211 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
212 
213 static struct fib6_node *node_alloc(struct net *net)
214 {
215 	struct fib6_node *fn;
216 
217 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
218 	if (fn)
219 		net->ipv6.rt6_stats->fib_nodes++;
220 
221 	return fn;
222 }
223 
224 static void node_free_immediate(struct net *net, struct fib6_node *fn)
225 {
226 	kmem_cache_free(fib6_node_kmem, fn);
227 	net->ipv6.rt6_stats->fib_nodes--;
228 }
229 
230 static void node_free_rcu(struct rcu_head *head)
231 {
232 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
233 
234 	kmem_cache_free(fib6_node_kmem, fn);
235 }
236 
237 static void node_free(struct net *net, struct fib6_node *fn)
238 {
239 	call_rcu(&fn->rcu, node_free_rcu);
240 	net->ipv6.rt6_stats->fib_nodes--;
241 }
242 
243 static void fib6_free_table(struct fib6_table *table)
244 {
245 	inetpeer_invalidate_tree(&table->tb6_peers);
246 	kfree(table);
247 }
248 
249 static void fib6_link_table(struct net *net, struct fib6_table *tb)
250 {
251 	unsigned int h;
252 
253 	/*
254 	 * Initialize table lock at a single place to give lockdep a key,
255 	 * tables aren't visible prior to being linked to the list.
256 	 */
257 	spin_lock_init(&tb->tb6_lock);
258 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
259 
260 	/*
261 	 * No protection necessary, this is the only list mutatation
262 	 * operation, tables never disappear once they exist.
263 	 */
264 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
265 }
266 
267 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
268 
269 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
270 {
271 	struct fib6_table *table;
272 
273 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
274 	if (table) {
275 		table->tb6_id = id;
276 		rcu_assign_pointer(table->tb6_root.leaf,
277 				   net->ipv6.fib6_null_entry);
278 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
279 		inet_peer_base_init(&table->tb6_peers);
280 	}
281 
282 	return table;
283 }
284 
285 struct fib6_table *fib6_new_table(struct net *net, u32 id)
286 {
287 	struct fib6_table *tb;
288 
289 	if (id == 0)
290 		id = RT6_TABLE_MAIN;
291 	tb = fib6_get_table(net, id);
292 	if (tb)
293 		return tb;
294 
295 	tb = fib6_alloc_table(net, id);
296 	if (tb)
297 		fib6_link_table(net, tb);
298 
299 	return tb;
300 }
301 EXPORT_SYMBOL_GPL(fib6_new_table);
302 
303 struct fib6_table *fib6_get_table(struct net *net, u32 id)
304 {
305 	struct fib6_table *tb;
306 	struct hlist_head *head;
307 	unsigned int h;
308 
309 	if (id == 0)
310 		id = RT6_TABLE_MAIN;
311 	h = id & (FIB6_TABLE_HASHSZ - 1);
312 	rcu_read_lock();
313 	head = &net->ipv6.fib_table_hash[h];
314 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
315 		if (tb->tb6_id == id) {
316 			rcu_read_unlock();
317 			return tb;
318 		}
319 	}
320 	rcu_read_unlock();
321 
322 	return NULL;
323 }
324 EXPORT_SYMBOL_GPL(fib6_get_table);
325 
326 static void __net_init fib6_tables_init(struct net *net)
327 {
328 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
329 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
330 }
331 #else
332 
333 struct fib6_table *fib6_new_table(struct net *net, u32 id)
334 {
335 	return fib6_get_table(net, id);
336 }
337 
338 struct fib6_table *fib6_get_table(struct net *net, u32 id)
339 {
340 	  return net->ipv6.fib6_main_tbl;
341 }
342 
343 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
344 				   const struct sk_buff *skb,
345 				   int flags, pol_lookup_t lookup)
346 {
347 	struct rt6_info *rt;
348 
349 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
350 	if (rt->dst.error == -EAGAIN) {
351 		ip6_rt_put(rt);
352 		rt = net->ipv6.ip6_null_entry;
353 		dst_hold(&rt->dst);
354 	}
355 
356 	return &rt->dst;
357 }
358 
359 /* called with rcu lock held; no reference taken on fib6_info */
360 struct fib6_info *fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
361 			      int flags)
362 {
363 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, flags);
364 }
365 
366 static void __net_init fib6_tables_init(struct net *net)
367 {
368 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
369 }
370 
371 #endif
372 
373 unsigned int fib6_tables_seq_read(struct net *net)
374 {
375 	unsigned int h, fib_seq = 0;
376 
377 	rcu_read_lock();
378 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
379 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
380 		struct fib6_table *tb;
381 
382 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
383 			fib_seq += tb->fib_seq;
384 	}
385 	rcu_read_unlock();
386 
387 	return fib_seq;
388 }
389 
390 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
391 				    enum fib_event_type event_type,
392 				    struct fib6_info *rt)
393 {
394 	struct fib6_entry_notifier_info info = {
395 		.rt = rt,
396 	};
397 
398 	return call_fib6_notifier(nb, net, event_type, &info.info);
399 }
400 
401 static int call_fib6_entry_notifiers(struct net *net,
402 				     enum fib_event_type event_type,
403 				     struct fib6_info *rt,
404 				     struct netlink_ext_ack *extack)
405 {
406 	struct fib6_entry_notifier_info info = {
407 		.info.extack = extack,
408 		.rt = rt,
409 	};
410 
411 	rt->fib6_table->fib_seq++;
412 	return call_fib6_notifiers(net, event_type, &info.info);
413 }
414 
415 struct fib6_dump_arg {
416 	struct net *net;
417 	struct notifier_block *nb;
418 };
419 
420 static void fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
421 {
422 	if (rt == arg->net->ipv6.fib6_null_entry)
423 		return;
424 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
425 }
426 
427 static int fib6_node_dump(struct fib6_walker *w)
428 {
429 	struct fib6_info *rt;
430 
431 	for_each_fib6_walker_rt(w)
432 		fib6_rt_dump(rt, w->args);
433 	w->leaf = NULL;
434 	return 0;
435 }
436 
437 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
438 			    struct fib6_walker *w)
439 {
440 	w->root = &tb->tb6_root;
441 	spin_lock_bh(&tb->tb6_lock);
442 	fib6_walk(net, w);
443 	spin_unlock_bh(&tb->tb6_lock);
444 }
445 
446 /* Called with rcu_read_lock() */
447 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
448 {
449 	struct fib6_dump_arg arg;
450 	struct fib6_walker *w;
451 	unsigned int h;
452 
453 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
454 	if (!w)
455 		return -ENOMEM;
456 
457 	w->func = fib6_node_dump;
458 	arg.net = net;
459 	arg.nb = nb;
460 	w->args = &arg;
461 
462 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
463 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
464 		struct fib6_table *tb;
465 
466 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
467 			fib6_table_dump(net, tb, w);
468 	}
469 
470 	kfree(w);
471 
472 	return 0;
473 }
474 
475 static int fib6_dump_node(struct fib6_walker *w)
476 {
477 	int res;
478 	struct fib6_info *rt;
479 
480 	for_each_fib6_walker_rt(w) {
481 		res = rt6_dump_route(rt, w->args);
482 		if (res < 0) {
483 			/* Frame is full, suspend walking */
484 			w->leaf = rt;
485 			return 1;
486 		}
487 
488 		/* Multipath routes are dumped in one route with the
489 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
490 		 * last sibling of this route (no need to dump the
491 		 * sibling routes again)
492 		 */
493 		if (rt->fib6_nsiblings)
494 			rt = list_last_entry(&rt->fib6_siblings,
495 					     struct fib6_info,
496 					     fib6_siblings);
497 	}
498 	w->leaf = NULL;
499 	return 0;
500 }
501 
502 static void fib6_dump_end(struct netlink_callback *cb)
503 {
504 	struct net *net = sock_net(cb->skb->sk);
505 	struct fib6_walker *w = (void *)cb->args[2];
506 
507 	if (w) {
508 		if (cb->args[4]) {
509 			cb->args[4] = 0;
510 			fib6_walker_unlink(net, w);
511 		}
512 		cb->args[2] = 0;
513 		kfree(w);
514 	}
515 	cb->done = (void *)cb->args[3];
516 	cb->args[1] = 3;
517 }
518 
519 static int fib6_dump_done(struct netlink_callback *cb)
520 {
521 	fib6_dump_end(cb);
522 	return cb->done ? cb->done(cb) : 0;
523 }
524 
525 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
526 			   struct netlink_callback *cb)
527 {
528 	struct net *net = sock_net(skb->sk);
529 	struct fib6_walker *w;
530 	int res;
531 
532 	w = (void *)cb->args[2];
533 	w->root = &table->tb6_root;
534 
535 	if (cb->args[4] == 0) {
536 		w->count = 0;
537 		w->skip = 0;
538 
539 		spin_lock_bh(&table->tb6_lock);
540 		res = fib6_walk(net, w);
541 		spin_unlock_bh(&table->tb6_lock);
542 		if (res > 0) {
543 			cb->args[4] = 1;
544 			cb->args[5] = w->root->fn_sernum;
545 		}
546 	} else {
547 		if (cb->args[5] != w->root->fn_sernum) {
548 			/* Begin at the root if the tree changed */
549 			cb->args[5] = w->root->fn_sernum;
550 			w->state = FWS_INIT;
551 			w->node = w->root;
552 			w->skip = w->count;
553 		} else
554 			w->skip = 0;
555 
556 		spin_lock_bh(&table->tb6_lock);
557 		res = fib6_walk_continue(w);
558 		spin_unlock_bh(&table->tb6_lock);
559 		if (res <= 0) {
560 			fib6_walker_unlink(net, w);
561 			cb->args[4] = 0;
562 		}
563 	}
564 
565 	return res;
566 }
567 
568 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
569 {
570 	const struct nlmsghdr *nlh = cb->nlh;
571 	struct net *net = sock_net(skb->sk);
572 	struct rt6_rtnl_dump_arg arg = {};
573 	unsigned int h, s_h;
574 	unsigned int e = 0, s_e;
575 	struct fib6_walker *w;
576 	struct fib6_table *tb;
577 	struct hlist_head *head;
578 	int res = 0;
579 
580 	if (cb->strict_check) {
581 		int err;
582 
583 		err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
584 		if (err < 0)
585 			return err;
586 	} else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
587 		struct rtmsg *rtm = nlmsg_data(nlh);
588 
589 		arg.filter.flags = rtm->rtm_flags & (RTM_F_PREFIX|RTM_F_CLONED);
590 	}
591 
592 	/* fib entries are never clones */
593 	if (arg.filter.flags & RTM_F_CLONED)
594 		goto out;
595 
596 	w = (void *)cb->args[2];
597 	if (!w) {
598 		/* New dump:
599 		 *
600 		 * 1. hook callback destructor.
601 		 */
602 		cb->args[3] = (long)cb->done;
603 		cb->done = fib6_dump_done;
604 
605 		/*
606 		 * 2. allocate and initialize walker.
607 		 */
608 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
609 		if (!w)
610 			return -ENOMEM;
611 		w->func = fib6_dump_node;
612 		cb->args[2] = (long)w;
613 	}
614 
615 	arg.skb = skb;
616 	arg.cb = cb;
617 	arg.net = net;
618 	w->args = &arg;
619 
620 	if (arg.filter.table_id) {
621 		tb = fib6_get_table(net, arg.filter.table_id);
622 		if (!tb) {
623 			if (arg.filter.dump_all_families)
624 				goto out;
625 
626 			NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
627 			return -ENOENT;
628 		}
629 
630 		if (!cb->args[0]) {
631 			res = fib6_dump_table(tb, skb, cb);
632 			if (!res)
633 				cb->args[0] = 1;
634 		}
635 		goto out;
636 	}
637 
638 	s_h = cb->args[0];
639 	s_e = cb->args[1];
640 
641 	rcu_read_lock();
642 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
643 		e = 0;
644 		head = &net->ipv6.fib_table_hash[h];
645 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
646 			if (e < s_e)
647 				goto next;
648 			res = fib6_dump_table(tb, skb, cb);
649 			if (res != 0)
650 				goto out_unlock;
651 next:
652 			e++;
653 		}
654 	}
655 out_unlock:
656 	rcu_read_unlock();
657 	cb->args[1] = e;
658 	cb->args[0] = h;
659 out:
660 	res = res < 0 ? res : skb->len;
661 	if (res <= 0)
662 		fib6_dump_end(cb);
663 	return res;
664 }
665 
666 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
667 {
668 	if (!f6i)
669 		return;
670 
671 	if (f6i->fib6_metrics == &dst_default_metrics) {
672 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
673 
674 		if (!p)
675 			return;
676 
677 		refcount_set(&p->refcnt, 1);
678 		f6i->fib6_metrics = p;
679 	}
680 
681 	f6i->fib6_metrics->metrics[metric - 1] = val;
682 }
683 
684 /*
685  *	Routing Table
686  *
687  *	return the appropriate node for a routing tree "add" operation
688  *	by either creating and inserting or by returning an existing
689  *	node.
690  */
691 
692 static struct fib6_node *fib6_add_1(struct net *net,
693 				    struct fib6_table *table,
694 				    struct fib6_node *root,
695 				    struct in6_addr *addr, int plen,
696 				    int offset, int allow_create,
697 				    int replace_required,
698 				    struct netlink_ext_ack *extack)
699 {
700 	struct fib6_node *fn, *in, *ln;
701 	struct fib6_node *pn = NULL;
702 	struct rt6key *key;
703 	int	bit;
704 	__be32	dir = 0;
705 
706 	RT6_TRACE("fib6_add_1\n");
707 
708 	/* insert node in tree */
709 
710 	fn = root;
711 
712 	do {
713 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
714 					    lockdep_is_held(&table->tb6_lock));
715 		key = (struct rt6key *)((u8 *)leaf + offset);
716 
717 		/*
718 		 *	Prefix match
719 		 */
720 		if (plen < fn->fn_bit ||
721 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
722 			if (!allow_create) {
723 				if (replace_required) {
724 					NL_SET_ERR_MSG(extack,
725 						       "Can not replace route - no match found");
726 					pr_warn("Can't replace route, no match found\n");
727 					return ERR_PTR(-ENOENT);
728 				}
729 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
730 			}
731 			goto insert_above;
732 		}
733 
734 		/*
735 		 *	Exact match ?
736 		 */
737 
738 		if (plen == fn->fn_bit) {
739 			/* clean up an intermediate node */
740 			if (!(fn->fn_flags & RTN_RTINFO)) {
741 				RCU_INIT_POINTER(fn->leaf, NULL);
742 				fib6_info_release(leaf);
743 			/* remove null_entry in the root node */
744 			} else if (fn->fn_flags & RTN_TL_ROOT &&
745 				   rcu_access_pointer(fn->leaf) ==
746 				   net->ipv6.fib6_null_entry) {
747 				RCU_INIT_POINTER(fn->leaf, NULL);
748 			}
749 
750 			return fn;
751 		}
752 
753 		/*
754 		 *	We have more bits to go
755 		 */
756 
757 		/* Try to walk down on tree. */
758 		dir = addr_bit_set(addr, fn->fn_bit);
759 		pn = fn;
760 		fn = dir ?
761 		     rcu_dereference_protected(fn->right,
762 					lockdep_is_held(&table->tb6_lock)) :
763 		     rcu_dereference_protected(fn->left,
764 					lockdep_is_held(&table->tb6_lock));
765 	} while (fn);
766 
767 	if (!allow_create) {
768 		/* We should not create new node because
769 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
770 		 * I assume it is safe to require NLM_F_CREATE when
771 		 * REPLACE flag is used! Later we may want to remove the
772 		 * check for replace_required, because according
773 		 * to netlink specification, NLM_F_CREATE
774 		 * MUST be specified if new route is created.
775 		 * That would keep IPv6 consistent with IPv4
776 		 */
777 		if (replace_required) {
778 			NL_SET_ERR_MSG(extack,
779 				       "Can not replace route - no match found");
780 			pr_warn("Can't replace route, no match found\n");
781 			return ERR_PTR(-ENOENT);
782 		}
783 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
784 	}
785 	/*
786 	 *	We walked to the bottom of tree.
787 	 *	Create new leaf node without children.
788 	 */
789 
790 	ln = node_alloc(net);
791 
792 	if (!ln)
793 		return ERR_PTR(-ENOMEM);
794 	ln->fn_bit = plen;
795 	RCU_INIT_POINTER(ln->parent, pn);
796 
797 	if (dir)
798 		rcu_assign_pointer(pn->right, ln);
799 	else
800 		rcu_assign_pointer(pn->left, ln);
801 
802 	return ln;
803 
804 
805 insert_above:
806 	/*
807 	 * split since we don't have a common prefix anymore or
808 	 * we have a less significant route.
809 	 * we've to insert an intermediate node on the list
810 	 * this new node will point to the one we need to create
811 	 * and the current
812 	 */
813 
814 	pn = rcu_dereference_protected(fn->parent,
815 				       lockdep_is_held(&table->tb6_lock));
816 
817 	/* find 1st bit in difference between the 2 addrs.
818 
819 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
820 	   but if it is >= plen, the value is ignored in any case.
821 	 */
822 
823 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
824 
825 	/*
826 	 *		(intermediate)[in]
827 	 *	          /	   \
828 	 *	(new leaf node)[ln] (old node)[fn]
829 	 */
830 	if (plen > bit) {
831 		in = node_alloc(net);
832 		ln = node_alloc(net);
833 
834 		if (!in || !ln) {
835 			if (in)
836 				node_free_immediate(net, in);
837 			if (ln)
838 				node_free_immediate(net, ln);
839 			return ERR_PTR(-ENOMEM);
840 		}
841 
842 		/*
843 		 * new intermediate node.
844 		 * RTN_RTINFO will
845 		 * be off since that an address that chooses one of
846 		 * the branches would not match less specific routes
847 		 * in the other branch
848 		 */
849 
850 		in->fn_bit = bit;
851 
852 		RCU_INIT_POINTER(in->parent, pn);
853 		in->leaf = fn->leaf;
854 		atomic_inc(&rcu_dereference_protected(in->leaf,
855 				lockdep_is_held(&table->tb6_lock))->fib6_ref);
856 
857 		/* update parent pointer */
858 		if (dir)
859 			rcu_assign_pointer(pn->right, in);
860 		else
861 			rcu_assign_pointer(pn->left, in);
862 
863 		ln->fn_bit = plen;
864 
865 		RCU_INIT_POINTER(ln->parent, in);
866 		rcu_assign_pointer(fn->parent, in);
867 
868 		if (addr_bit_set(addr, bit)) {
869 			rcu_assign_pointer(in->right, ln);
870 			rcu_assign_pointer(in->left, fn);
871 		} else {
872 			rcu_assign_pointer(in->left, ln);
873 			rcu_assign_pointer(in->right, fn);
874 		}
875 	} else { /* plen <= bit */
876 
877 		/*
878 		 *		(new leaf node)[ln]
879 		 *	          /	   \
880 		 *	     (old node)[fn] NULL
881 		 */
882 
883 		ln = node_alloc(net);
884 
885 		if (!ln)
886 			return ERR_PTR(-ENOMEM);
887 
888 		ln->fn_bit = plen;
889 
890 		RCU_INIT_POINTER(ln->parent, pn);
891 
892 		if (addr_bit_set(&key->addr, plen))
893 			RCU_INIT_POINTER(ln->right, fn);
894 		else
895 			RCU_INIT_POINTER(ln->left, fn);
896 
897 		rcu_assign_pointer(fn->parent, ln);
898 
899 		if (dir)
900 			rcu_assign_pointer(pn->right, ln);
901 		else
902 			rcu_assign_pointer(pn->left, ln);
903 	}
904 	return ln;
905 }
906 
907 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
908 				const struct fib6_table *table)
909 {
910 	int cpu;
911 
912 	/* release the reference to this fib entry from
913 	 * all of its cached pcpu routes
914 	 */
915 	for_each_possible_cpu(cpu) {
916 		struct rt6_info **ppcpu_rt;
917 		struct rt6_info *pcpu_rt;
918 
919 		ppcpu_rt = per_cpu_ptr(f6i->rt6i_pcpu, cpu);
920 		pcpu_rt = *ppcpu_rt;
921 		if (pcpu_rt) {
922 			struct fib6_info *from;
923 
924 			from = rcu_dereference_protected(pcpu_rt->from,
925 					     lockdep_is_held(&table->tb6_lock));
926 			rcu_assign_pointer(pcpu_rt->from, NULL);
927 			fib6_info_release(from);
928 		}
929 	}
930 }
931 
932 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
933 			  struct net *net)
934 {
935 	struct fib6_table *table = rt->fib6_table;
936 
937 	if (atomic_read(&rt->fib6_ref) != 1) {
938 		/* This route is used as dummy address holder in some split
939 		 * nodes. It is not leaked, but it still holds other resources,
940 		 * which must be released in time. So, scan ascendant nodes
941 		 * and replace dummy references to this route with references
942 		 * to still alive ones.
943 		 */
944 		while (fn) {
945 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
946 					    lockdep_is_held(&table->tb6_lock));
947 			struct fib6_info *new_leaf;
948 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
949 				new_leaf = fib6_find_prefix(net, table, fn);
950 				atomic_inc(&new_leaf->fib6_ref);
951 
952 				rcu_assign_pointer(fn->leaf, new_leaf);
953 				fib6_info_release(rt);
954 			}
955 			fn = rcu_dereference_protected(fn->parent,
956 				    lockdep_is_held(&table->tb6_lock));
957 		}
958 
959 		if (rt->rt6i_pcpu)
960 			fib6_drop_pcpu_from(rt, table);
961 	}
962 }
963 
964 /*
965  *	Insert routing information in a node.
966  */
967 
968 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
969 			    struct nl_info *info,
970 			    struct netlink_ext_ack *extack)
971 {
972 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
973 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
974 	struct fib6_info *iter = NULL;
975 	struct fib6_info __rcu **ins;
976 	struct fib6_info __rcu **fallback_ins = NULL;
977 	int replace = (info->nlh &&
978 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
979 	int add = (!info->nlh ||
980 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
981 	int found = 0;
982 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
983 	u16 nlflags = NLM_F_EXCL;
984 	int err;
985 
986 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
987 		nlflags |= NLM_F_APPEND;
988 
989 	ins = &fn->leaf;
990 
991 	for (iter = leaf; iter;
992 	     iter = rcu_dereference_protected(iter->fib6_next,
993 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
994 		/*
995 		 *	Search for duplicates
996 		 */
997 
998 		if (iter->fib6_metric == rt->fib6_metric) {
999 			/*
1000 			 *	Same priority level
1001 			 */
1002 			if (info->nlh &&
1003 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
1004 				return -EEXIST;
1005 
1006 			nlflags &= ~NLM_F_EXCL;
1007 			if (replace) {
1008 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1009 					found++;
1010 					break;
1011 				}
1012 				if (rt_can_ecmp)
1013 					fallback_ins = fallback_ins ?: ins;
1014 				goto next_iter;
1015 			}
1016 
1017 			if (rt6_duplicate_nexthop(iter, rt)) {
1018 				if (rt->fib6_nsiblings)
1019 					rt->fib6_nsiblings = 0;
1020 				if (!(iter->fib6_flags & RTF_EXPIRES))
1021 					return -EEXIST;
1022 				if (!(rt->fib6_flags & RTF_EXPIRES))
1023 					fib6_clean_expires(iter);
1024 				else
1025 					fib6_set_expires(iter, rt->expires);
1026 
1027 				if (rt->fib6_pmtu)
1028 					fib6_metric_set(iter, RTAX_MTU,
1029 							rt->fib6_pmtu);
1030 				return -EEXIST;
1031 			}
1032 			/* If we have the same destination and the same metric,
1033 			 * but not the same gateway, then the route we try to
1034 			 * add is sibling to this route, increment our counter
1035 			 * of siblings, and later we will add our route to the
1036 			 * list.
1037 			 * Only static routes (which don't have flag
1038 			 * RTF_EXPIRES) are used for ECMPv6.
1039 			 *
1040 			 * To avoid long list, we only had siblings if the
1041 			 * route have a gateway.
1042 			 */
1043 			if (rt_can_ecmp &&
1044 			    rt6_qualify_for_ecmp(iter))
1045 				rt->fib6_nsiblings++;
1046 		}
1047 
1048 		if (iter->fib6_metric > rt->fib6_metric)
1049 			break;
1050 
1051 next_iter:
1052 		ins = &iter->fib6_next;
1053 	}
1054 
1055 	if (fallback_ins && !found) {
1056 		/* No ECMP-able route found, replace first non-ECMP one */
1057 		ins = fallback_ins;
1058 		iter = rcu_dereference_protected(*ins,
1059 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1060 		found++;
1061 	}
1062 
1063 	/* Reset round-robin state, if necessary */
1064 	if (ins == &fn->leaf)
1065 		fn->rr_ptr = NULL;
1066 
1067 	/* Link this route to others same route. */
1068 	if (rt->fib6_nsiblings) {
1069 		unsigned int fib6_nsiblings;
1070 		struct fib6_info *sibling, *temp_sibling;
1071 
1072 		/* Find the first route that have the same metric */
1073 		sibling = leaf;
1074 		while (sibling) {
1075 			if (sibling->fib6_metric == rt->fib6_metric &&
1076 			    rt6_qualify_for_ecmp(sibling)) {
1077 				list_add_tail(&rt->fib6_siblings,
1078 					      &sibling->fib6_siblings);
1079 				break;
1080 			}
1081 			sibling = rcu_dereference_protected(sibling->fib6_next,
1082 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1083 		}
1084 		/* For each sibling in the list, increment the counter of
1085 		 * siblings. BUG() if counters does not match, list of siblings
1086 		 * is broken!
1087 		 */
1088 		fib6_nsiblings = 0;
1089 		list_for_each_entry_safe(sibling, temp_sibling,
1090 					 &rt->fib6_siblings, fib6_siblings) {
1091 			sibling->fib6_nsiblings++;
1092 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1093 			fib6_nsiblings++;
1094 		}
1095 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1096 		rt6_multipath_rebalance(temp_sibling);
1097 	}
1098 
1099 	/*
1100 	 *	insert node
1101 	 */
1102 	if (!replace) {
1103 		if (!add)
1104 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1105 
1106 add:
1107 		nlflags |= NLM_F_CREATE;
1108 
1109 		err = call_fib6_entry_notifiers(info->nl_net,
1110 						FIB_EVENT_ENTRY_ADD,
1111 						rt, extack);
1112 		if (err)
1113 			return err;
1114 
1115 		rcu_assign_pointer(rt->fib6_next, iter);
1116 		atomic_inc(&rt->fib6_ref);
1117 		rcu_assign_pointer(rt->fib6_node, fn);
1118 		rcu_assign_pointer(*ins, rt);
1119 		if (!info->skip_notify)
1120 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1121 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1122 
1123 		if (!(fn->fn_flags & RTN_RTINFO)) {
1124 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1125 			fn->fn_flags |= RTN_RTINFO;
1126 		}
1127 
1128 	} else {
1129 		int nsiblings;
1130 
1131 		if (!found) {
1132 			if (add)
1133 				goto add;
1134 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1135 			return -ENOENT;
1136 		}
1137 
1138 		err = call_fib6_entry_notifiers(info->nl_net,
1139 						FIB_EVENT_ENTRY_REPLACE,
1140 						rt, extack);
1141 		if (err)
1142 			return err;
1143 
1144 		atomic_inc(&rt->fib6_ref);
1145 		rcu_assign_pointer(rt->fib6_node, fn);
1146 		rt->fib6_next = iter->fib6_next;
1147 		rcu_assign_pointer(*ins, rt);
1148 		if (!info->skip_notify)
1149 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1150 		if (!(fn->fn_flags & RTN_RTINFO)) {
1151 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1152 			fn->fn_flags |= RTN_RTINFO;
1153 		}
1154 		nsiblings = iter->fib6_nsiblings;
1155 		iter->fib6_node = NULL;
1156 		fib6_purge_rt(iter, fn, info->nl_net);
1157 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1158 			fn->rr_ptr = NULL;
1159 		fib6_info_release(iter);
1160 
1161 		if (nsiblings) {
1162 			/* Replacing an ECMP route, remove all siblings */
1163 			ins = &rt->fib6_next;
1164 			iter = rcu_dereference_protected(*ins,
1165 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1166 			while (iter) {
1167 				if (iter->fib6_metric > rt->fib6_metric)
1168 					break;
1169 				if (rt6_qualify_for_ecmp(iter)) {
1170 					*ins = iter->fib6_next;
1171 					iter->fib6_node = NULL;
1172 					fib6_purge_rt(iter, fn, info->nl_net);
1173 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1174 						fn->rr_ptr = NULL;
1175 					fib6_info_release(iter);
1176 					nsiblings--;
1177 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1178 				} else {
1179 					ins = &iter->fib6_next;
1180 				}
1181 				iter = rcu_dereference_protected(*ins,
1182 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1183 			}
1184 			WARN_ON(nsiblings != 0);
1185 		}
1186 	}
1187 
1188 	return 0;
1189 }
1190 
1191 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1192 {
1193 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1194 	    (rt->fib6_flags & RTF_EXPIRES))
1195 		mod_timer(&net->ipv6.ip6_fib_timer,
1196 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1197 }
1198 
1199 void fib6_force_start_gc(struct net *net)
1200 {
1201 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1202 		mod_timer(&net->ipv6.ip6_fib_timer,
1203 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1204 }
1205 
1206 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1207 					   int sernum)
1208 {
1209 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1210 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1211 
1212 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1213 	smp_wmb();
1214 	while (fn) {
1215 		fn->fn_sernum = sernum;
1216 		fn = rcu_dereference_protected(fn->parent,
1217 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1218 	}
1219 }
1220 
1221 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1222 {
1223 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1224 }
1225 
1226 /*
1227  *	Add routing information to the routing tree.
1228  *	<destination addr>/<source addr>
1229  *	with source addr info in sub-trees
1230  *	Need to own table->tb6_lock
1231  */
1232 
1233 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1234 	     struct nl_info *info, struct netlink_ext_ack *extack)
1235 {
1236 	struct fib6_table *table = rt->fib6_table;
1237 	struct fib6_node *fn, *pn = NULL;
1238 	int err = -ENOMEM;
1239 	int allow_create = 1;
1240 	int replace_required = 0;
1241 	int sernum = fib6_new_sernum(info->nl_net);
1242 
1243 	if (info->nlh) {
1244 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1245 			allow_create = 0;
1246 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1247 			replace_required = 1;
1248 	}
1249 	if (!allow_create && !replace_required)
1250 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1251 
1252 	fn = fib6_add_1(info->nl_net, table, root,
1253 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1254 			offsetof(struct fib6_info, fib6_dst), allow_create,
1255 			replace_required, extack);
1256 	if (IS_ERR(fn)) {
1257 		err = PTR_ERR(fn);
1258 		fn = NULL;
1259 		goto out;
1260 	}
1261 
1262 	pn = fn;
1263 
1264 #ifdef CONFIG_IPV6_SUBTREES
1265 	if (rt->fib6_src.plen) {
1266 		struct fib6_node *sn;
1267 
1268 		if (!rcu_access_pointer(fn->subtree)) {
1269 			struct fib6_node *sfn;
1270 
1271 			/*
1272 			 * Create subtree.
1273 			 *
1274 			 *		fn[main tree]
1275 			 *		|
1276 			 *		sfn[subtree root]
1277 			 *		   \
1278 			 *		    sn[new leaf node]
1279 			 */
1280 
1281 			/* Create subtree root node */
1282 			sfn = node_alloc(info->nl_net);
1283 			if (!sfn)
1284 				goto failure;
1285 
1286 			atomic_inc(&info->nl_net->ipv6.fib6_null_entry->fib6_ref);
1287 			rcu_assign_pointer(sfn->leaf,
1288 					   info->nl_net->ipv6.fib6_null_entry);
1289 			sfn->fn_flags = RTN_ROOT;
1290 
1291 			/* Now add the first leaf node to new subtree */
1292 
1293 			sn = fib6_add_1(info->nl_net, table, sfn,
1294 					&rt->fib6_src.addr, rt->fib6_src.plen,
1295 					offsetof(struct fib6_info, fib6_src),
1296 					allow_create, replace_required, extack);
1297 
1298 			if (IS_ERR(sn)) {
1299 				/* If it is failed, discard just allocated
1300 				   root, and then (in failure) stale node
1301 				   in main tree.
1302 				 */
1303 				node_free_immediate(info->nl_net, sfn);
1304 				err = PTR_ERR(sn);
1305 				goto failure;
1306 			}
1307 
1308 			/* Now link new subtree to main tree */
1309 			rcu_assign_pointer(sfn->parent, fn);
1310 			rcu_assign_pointer(fn->subtree, sfn);
1311 		} else {
1312 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1313 					&rt->fib6_src.addr, rt->fib6_src.plen,
1314 					offsetof(struct fib6_info, fib6_src),
1315 					allow_create, replace_required, extack);
1316 
1317 			if (IS_ERR(sn)) {
1318 				err = PTR_ERR(sn);
1319 				goto failure;
1320 			}
1321 		}
1322 
1323 		if (!rcu_access_pointer(fn->leaf)) {
1324 			if (fn->fn_flags & RTN_TL_ROOT) {
1325 				/* put back null_entry for root node */
1326 				rcu_assign_pointer(fn->leaf,
1327 					    info->nl_net->ipv6.fib6_null_entry);
1328 			} else {
1329 				atomic_inc(&rt->fib6_ref);
1330 				rcu_assign_pointer(fn->leaf, rt);
1331 			}
1332 		}
1333 		fn = sn;
1334 	}
1335 #endif
1336 
1337 	err = fib6_add_rt2node(fn, rt, info, extack);
1338 	if (!err) {
1339 		__fib6_update_sernum_upto_root(rt, sernum);
1340 		fib6_start_gc(info->nl_net, rt);
1341 	}
1342 
1343 out:
1344 	if (err) {
1345 #ifdef CONFIG_IPV6_SUBTREES
1346 		/*
1347 		 * If fib6_add_1 has cleared the old leaf pointer in the
1348 		 * super-tree leaf node we have to find a new one for it.
1349 		 */
1350 		if (pn != fn) {
1351 			struct fib6_info *pn_leaf =
1352 				rcu_dereference_protected(pn->leaf,
1353 				    lockdep_is_held(&table->tb6_lock));
1354 			if (pn_leaf == rt) {
1355 				pn_leaf = NULL;
1356 				RCU_INIT_POINTER(pn->leaf, NULL);
1357 				fib6_info_release(rt);
1358 			}
1359 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1360 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1361 							   pn);
1362 #if RT6_DEBUG >= 2
1363 				if (!pn_leaf) {
1364 					WARN_ON(!pn_leaf);
1365 					pn_leaf =
1366 					    info->nl_net->ipv6.fib6_null_entry;
1367 				}
1368 #endif
1369 				fib6_info_hold(pn_leaf);
1370 				rcu_assign_pointer(pn->leaf, pn_leaf);
1371 			}
1372 		}
1373 #endif
1374 		goto failure;
1375 	}
1376 	return err;
1377 
1378 failure:
1379 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1380 	 * 1. fn is an intermediate node and we failed to add the new
1381 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1382 	 * failure case.
1383 	 * 2. fn is the root node in the table and we fail to add the first
1384 	 * default route to it.
1385 	 */
1386 	if (fn &&
1387 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1388 	     (fn->fn_flags & RTN_TL_ROOT &&
1389 	      !rcu_access_pointer(fn->leaf))))
1390 		fib6_repair_tree(info->nl_net, table, fn);
1391 	return err;
1392 }
1393 
1394 /*
1395  *	Routing tree lookup
1396  *
1397  */
1398 
1399 struct lookup_args {
1400 	int			offset;		/* key offset on fib6_info */
1401 	const struct in6_addr	*addr;		/* search key			*/
1402 };
1403 
1404 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1405 					    struct lookup_args *args)
1406 {
1407 	struct fib6_node *fn;
1408 	__be32 dir;
1409 
1410 	if (unlikely(args->offset == 0))
1411 		return NULL;
1412 
1413 	/*
1414 	 *	Descend on a tree
1415 	 */
1416 
1417 	fn = root;
1418 
1419 	for (;;) {
1420 		struct fib6_node *next;
1421 
1422 		dir = addr_bit_set(args->addr, fn->fn_bit);
1423 
1424 		next = dir ? rcu_dereference(fn->right) :
1425 			     rcu_dereference(fn->left);
1426 
1427 		if (next) {
1428 			fn = next;
1429 			continue;
1430 		}
1431 		break;
1432 	}
1433 
1434 	while (fn) {
1435 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1436 
1437 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1438 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1439 			struct rt6key *key;
1440 
1441 			if (!leaf)
1442 				goto backtrack;
1443 
1444 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1445 
1446 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1447 #ifdef CONFIG_IPV6_SUBTREES
1448 				if (subtree) {
1449 					struct fib6_node *sfn;
1450 					sfn = fib6_node_lookup_1(subtree,
1451 								 args + 1);
1452 					if (!sfn)
1453 						goto backtrack;
1454 					fn = sfn;
1455 				}
1456 #endif
1457 				if (fn->fn_flags & RTN_RTINFO)
1458 					return fn;
1459 			}
1460 		}
1461 backtrack:
1462 		if (fn->fn_flags & RTN_ROOT)
1463 			break;
1464 
1465 		fn = rcu_dereference(fn->parent);
1466 	}
1467 
1468 	return NULL;
1469 }
1470 
1471 /* called with rcu_read_lock() held
1472  */
1473 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1474 				   const struct in6_addr *daddr,
1475 				   const struct in6_addr *saddr)
1476 {
1477 	struct fib6_node *fn;
1478 	struct lookup_args args[] = {
1479 		{
1480 			.offset = offsetof(struct fib6_info, fib6_dst),
1481 			.addr = daddr,
1482 		},
1483 #ifdef CONFIG_IPV6_SUBTREES
1484 		{
1485 			.offset = offsetof(struct fib6_info, fib6_src),
1486 			.addr = saddr,
1487 		},
1488 #endif
1489 		{
1490 			.offset = 0,	/* sentinel */
1491 		}
1492 	};
1493 
1494 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1495 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1496 		fn = root;
1497 
1498 	return fn;
1499 }
1500 
1501 /*
1502  *	Get node with specified destination prefix (and source prefix,
1503  *	if subtrees are used)
1504  *	exact_match == true means we try to find fn with exact match of
1505  *	the passed in prefix addr
1506  *	exact_match == false means we try to find fn with longest prefix
1507  *	match of the passed in prefix addr. This is useful for finding fn
1508  *	for cached route as it will be stored in the exception table under
1509  *	the node with longest prefix length.
1510  */
1511 
1512 
1513 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1514 				       const struct in6_addr *addr,
1515 				       int plen, int offset,
1516 				       bool exact_match)
1517 {
1518 	struct fib6_node *fn, *prev = NULL;
1519 
1520 	for (fn = root; fn ; ) {
1521 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1522 		struct rt6key *key;
1523 
1524 		/* This node is being deleted */
1525 		if (!leaf) {
1526 			if (plen <= fn->fn_bit)
1527 				goto out;
1528 			else
1529 				goto next;
1530 		}
1531 
1532 		key = (struct rt6key *)((u8 *)leaf + offset);
1533 
1534 		/*
1535 		 *	Prefix match
1536 		 */
1537 		if (plen < fn->fn_bit ||
1538 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1539 			goto out;
1540 
1541 		if (plen == fn->fn_bit)
1542 			return fn;
1543 
1544 		prev = fn;
1545 
1546 next:
1547 		/*
1548 		 *	We have more bits to go
1549 		 */
1550 		if (addr_bit_set(addr, fn->fn_bit))
1551 			fn = rcu_dereference(fn->right);
1552 		else
1553 			fn = rcu_dereference(fn->left);
1554 	}
1555 out:
1556 	if (exact_match)
1557 		return NULL;
1558 	else
1559 		return prev;
1560 }
1561 
1562 struct fib6_node *fib6_locate(struct fib6_node *root,
1563 			      const struct in6_addr *daddr, int dst_len,
1564 			      const struct in6_addr *saddr, int src_len,
1565 			      bool exact_match)
1566 {
1567 	struct fib6_node *fn;
1568 
1569 	fn = fib6_locate_1(root, daddr, dst_len,
1570 			   offsetof(struct fib6_info, fib6_dst),
1571 			   exact_match);
1572 
1573 #ifdef CONFIG_IPV6_SUBTREES
1574 	if (src_len) {
1575 		WARN_ON(saddr == NULL);
1576 		if (fn) {
1577 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1578 
1579 			if (subtree) {
1580 				fn = fib6_locate_1(subtree, saddr, src_len,
1581 					   offsetof(struct fib6_info, fib6_src),
1582 					   exact_match);
1583 			}
1584 		}
1585 	}
1586 #endif
1587 
1588 	if (fn && fn->fn_flags & RTN_RTINFO)
1589 		return fn;
1590 
1591 	return NULL;
1592 }
1593 
1594 
1595 /*
1596  *	Deletion
1597  *
1598  */
1599 
1600 static struct fib6_info *fib6_find_prefix(struct net *net,
1601 					 struct fib6_table *table,
1602 					 struct fib6_node *fn)
1603 {
1604 	struct fib6_node *child_left, *child_right;
1605 
1606 	if (fn->fn_flags & RTN_ROOT)
1607 		return net->ipv6.fib6_null_entry;
1608 
1609 	while (fn) {
1610 		child_left = rcu_dereference_protected(fn->left,
1611 				    lockdep_is_held(&table->tb6_lock));
1612 		child_right = rcu_dereference_protected(fn->right,
1613 				    lockdep_is_held(&table->tb6_lock));
1614 		if (child_left)
1615 			return rcu_dereference_protected(child_left->leaf,
1616 					lockdep_is_held(&table->tb6_lock));
1617 		if (child_right)
1618 			return rcu_dereference_protected(child_right->leaf,
1619 					lockdep_is_held(&table->tb6_lock));
1620 
1621 		fn = FIB6_SUBTREE(fn);
1622 	}
1623 	return NULL;
1624 }
1625 
1626 /*
1627  *	Called to trim the tree of intermediate nodes when possible. "fn"
1628  *	is the node we want to try and remove.
1629  *	Need to own table->tb6_lock
1630  */
1631 
1632 static struct fib6_node *fib6_repair_tree(struct net *net,
1633 					  struct fib6_table *table,
1634 					  struct fib6_node *fn)
1635 {
1636 	int children;
1637 	int nstate;
1638 	struct fib6_node *child;
1639 	struct fib6_walker *w;
1640 	int iter = 0;
1641 
1642 	/* Set fn->leaf to null_entry for root node. */
1643 	if (fn->fn_flags & RTN_TL_ROOT) {
1644 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1645 		return fn;
1646 	}
1647 
1648 	for (;;) {
1649 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1650 					    lockdep_is_held(&table->tb6_lock));
1651 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1652 					    lockdep_is_held(&table->tb6_lock));
1653 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1654 					    lockdep_is_held(&table->tb6_lock));
1655 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1656 					    lockdep_is_held(&table->tb6_lock));
1657 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1658 					    lockdep_is_held(&table->tb6_lock));
1659 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1660 					    lockdep_is_held(&table->tb6_lock));
1661 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1662 					    lockdep_is_held(&table->tb6_lock));
1663 		struct fib6_info *new_fn_leaf;
1664 
1665 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1666 		iter++;
1667 
1668 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1669 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1670 		WARN_ON(fn_leaf);
1671 
1672 		children = 0;
1673 		child = NULL;
1674 		if (fn_r)
1675 			child = fn_r, children |= 1;
1676 		if (fn_l)
1677 			child = fn_l, children |= 2;
1678 
1679 		if (children == 3 || FIB6_SUBTREE(fn)
1680 #ifdef CONFIG_IPV6_SUBTREES
1681 		    /* Subtree root (i.e. fn) may have one child */
1682 		    || (children && fn->fn_flags & RTN_ROOT)
1683 #endif
1684 		    ) {
1685 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1686 #if RT6_DEBUG >= 2
1687 			if (!new_fn_leaf) {
1688 				WARN_ON(!new_fn_leaf);
1689 				new_fn_leaf = net->ipv6.fib6_null_entry;
1690 			}
1691 #endif
1692 			fib6_info_hold(new_fn_leaf);
1693 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1694 			return pn;
1695 		}
1696 
1697 #ifdef CONFIG_IPV6_SUBTREES
1698 		if (FIB6_SUBTREE(pn) == fn) {
1699 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1700 			RCU_INIT_POINTER(pn->subtree, NULL);
1701 			nstate = FWS_L;
1702 		} else {
1703 			WARN_ON(fn->fn_flags & RTN_ROOT);
1704 #endif
1705 			if (pn_r == fn)
1706 				rcu_assign_pointer(pn->right, child);
1707 			else if (pn_l == fn)
1708 				rcu_assign_pointer(pn->left, child);
1709 #if RT6_DEBUG >= 2
1710 			else
1711 				WARN_ON(1);
1712 #endif
1713 			if (child)
1714 				rcu_assign_pointer(child->parent, pn);
1715 			nstate = FWS_R;
1716 #ifdef CONFIG_IPV6_SUBTREES
1717 		}
1718 #endif
1719 
1720 		read_lock(&net->ipv6.fib6_walker_lock);
1721 		FOR_WALKERS(net, w) {
1722 			if (!child) {
1723 				if (w->node == fn) {
1724 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1725 					w->node = pn;
1726 					w->state = nstate;
1727 				}
1728 			} else {
1729 				if (w->node == fn) {
1730 					w->node = child;
1731 					if (children&2) {
1732 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1733 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1734 					} else {
1735 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1736 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1737 					}
1738 				}
1739 			}
1740 		}
1741 		read_unlock(&net->ipv6.fib6_walker_lock);
1742 
1743 		node_free(net, fn);
1744 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1745 			return pn;
1746 
1747 		RCU_INIT_POINTER(pn->leaf, NULL);
1748 		fib6_info_release(pn_leaf);
1749 		fn = pn;
1750 	}
1751 }
1752 
1753 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1754 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1755 {
1756 	struct fib6_walker *w;
1757 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1758 				    lockdep_is_held(&table->tb6_lock));
1759 	struct net *net = info->nl_net;
1760 
1761 	RT6_TRACE("fib6_del_route\n");
1762 
1763 	/* Unlink it */
1764 	*rtp = rt->fib6_next;
1765 	rt->fib6_node = NULL;
1766 	net->ipv6.rt6_stats->fib_rt_entries--;
1767 	net->ipv6.rt6_stats->fib_discarded_routes++;
1768 
1769 	/* Flush all cached dst in exception table */
1770 	rt6_flush_exceptions(rt);
1771 
1772 	/* Reset round-robin state, if necessary */
1773 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1774 		fn->rr_ptr = NULL;
1775 
1776 	/* Remove this entry from other siblings */
1777 	if (rt->fib6_nsiblings) {
1778 		struct fib6_info *sibling, *next_sibling;
1779 
1780 		list_for_each_entry_safe(sibling, next_sibling,
1781 					 &rt->fib6_siblings, fib6_siblings)
1782 			sibling->fib6_nsiblings--;
1783 		rt->fib6_nsiblings = 0;
1784 		list_del_init(&rt->fib6_siblings);
1785 		rt6_multipath_rebalance(next_sibling);
1786 	}
1787 
1788 	/* Adjust walkers */
1789 	read_lock(&net->ipv6.fib6_walker_lock);
1790 	FOR_WALKERS(net, w) {
1791 		if (w->state == FWS_C && w->leaf == rt) {
1792 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1793 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1794 					    lockdep_is_held(&table->tb6_lock));
1795 			if (!w->leaf)
1796 				w->state = FWS_U;
1797 		}
1798 	}
1799 	read_unlock(&net->ipv6.fib6_walker_lock);
1800 
1801 	/* If it was last route, call fib6_repair_tree() to:
1802 	 * 1. For root node, put back null_entry as how the table was created.
1803 	 * 2. For other nodes, expunge its radix tree node.
1804 	 */
1805 	if (!rcu_access_pointer(fn->leaf)) {
1806 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1807 			fn->fn_flags &= ~RTN_RTINFO;
1808 			net->ipv6.rt6_stats->fib_route_nodes--;
1809 		}
1810 		fn = fib6_repair_tree(net, table, fn);
1811 	}
1812 
1813 	fib6_purge_rt(rt, fn, net);
1814 
1815 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1816 	if (!info->skip_notify)
1817 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1818 	fib6_info_release(rt);
1819 }
1820 
1821 /* Need to own table->tb6_lock */
1822 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1823 {
1824 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1825 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1826 	struct fib6_table *table = rt->fib6_table;
1827 	struct net *net = info->nl_net;
1828 	struct fib6_info __rcu **rtp;
1829 	struct fib6_info __rcu **rtp_next;
1830 
1831 	if (!fn || rt == net->ipv6.fib6_null_entry)
1832 		return -ENOENT;
1833 
1834 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1835 
1836 	/*
1837 	 *	Walk the leaf entries looking for ourself
1838 	 */
1839 
1840 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1841 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
1842 					lockdep_is_held(&table->tb6_lock));
1843 		if (rt == cur) {
1844 			fib6_del_route(table, fn, rtp, info);
1845 			return 0;
1846 		}
1847 		rtp_next = &cur->fib6_next;
1848 	}
1849 	return -ENOENT;
1850 }
1851 
1852 /*
1853  *	Tree traversal function.
1854  *
1855  *	Certainly, it is not interrupt safe.
1856  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1857  *	It means, that we can modify tree during walking
1858  *	and use this function for garbage collection, clone pruning,
1859  *	cleaning tree when a device goes down etc. etc.
1860  *
1861  *	It guarantees that every node will be traversed,
1862  *	and that it will be traversed only once.
1863  *
1864  *	Callback function w->func may return:
1865  *	0 -> continue walking.
1866  *	positive value -> walking is suspended (used by tree dumps,
1867  *	and probably by gc, if it will be split to several slices)
1868  *	negative value -> terminate walking.
1869  *
1870  *	The function itself returns:
1871  *	0   -> walk is complete.
1872  *	>0  -> walk is incomplete (i.e. suspended)
1873  *	<0  -> walk is terminated by an error.
1874  *
1875  *	This function is called with tb6_lock held.
1876  */
1877 
1878 static int fib6_walk_continue(struct fib6_walker *w)
1879 {
1880 	struct fib6_node *fn, *pn, *left, *right;
1881 
1882 	/* w->root should always be table->tb6_root */
1883 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1884 
1885 	for (;;) {
1886 		fn = w->node;
1887 		if (!fn)
1888 			return 0;
1889 
1890 		switch (w->state) {
1891 #ifdef CONFIG_IPV6_SUBTREES
1892 		case FWS_S:
1893 			if (FIB6_SUBTREE(fn)) {
1894 				w->node = FIB6_SUBTREE(fn);
1895 				continue;
1896 			}
1897 			w->state = FWS_L;
1898 #endif
1899 			/* fall through */
1900 		case FWS_L:
1901 			left = rcu_dereference_protected(fn->left, 1);
1902 			if (left) {
1903 				w->node = left;
1904 				w->state = FWS_INIT;
1905 				continue;
1906 			}
1907 			w->state = FWS_R;
1908 			/* fall through */
1909 		case FWS_R:
1910 			right = rcu_dereference_protected(fn->right, 1);
1911 			if (right) {
1912 				w->node = right;
1913 				w->state = FWS_INIT;
1914 				continue;
1915 			}
1916 			w->state = FWS_C;
1917 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1918 			/* fall through */
1919 		case FWS_C:
1920 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1921 				int err;
1922 
1923 				if (w->skip) {
1924 					w->skip--;
1925 					goto skip;
1926 				}
1927 
1928 				err = w->func(w);
1929 				if (err)
1930 					return err;
1931 
1932 				w->count++;
1933 				continue;
1934 			}
1935 skip:
1936 			w->state = FWS_U;
1937 			/* fall through */
1938 		case FWS_U:
1939 			if (fn == w->root)
1940 				return 0;
1941 			pn = rcu_dereference_protected(fn->parent, 1);
1942 			left = rcu_dereference_protected(pn->left, 1);
1943 			right = rcu_dereference_protected(pn->right, 1);
1944 			w->node = pn;
1945 #ifdef CONFIG_IPV6_SUBTREES
1946 			if (FIB6_SUBTREE(pn) == fn) {
1947 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1948 				w->state = FWS_L;
1949 				continue;
1950 			}
1951 #endif
1952 			if (left == fn) {
1953 				w->state = FWS_R;
1954 				continue;
1955 			}
1956 			if (right == fn) {
1957 				w->state = FWS_C;
1958 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1959 				continue;
1960 			}
1961 #if RT6_DEBUG >= 2
1962 			WARN_ON(1);
1963 #endif
1964 		}
1965 	}
1966 }
1967 
1968 static int fib6_walk(struct net *net, struct fib6_walker *w)
1969 {
1970 	int res;
1971 
1972 	w->state = FWS_INIT;
1973 	w->node = w->root;
1974 
1975 	fib6_walker_link(net, w);
1976 	res = fib6_walk_continue(w);
1977 	if (res <= 0)
1978 		fib6_walker_unlink(net, w);
1979 	return res;
1980 }
1981 
1982 static int fib6_clean_node(struct fib6_walker *w)
1983 {
1984 	int res;
1985 	struct fib6_info *rt;
1986 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1987 	struct nl_info info = {
1988 		.nl_net = c->net,
1989 		.skip_notify = c->skip_notify,
1990 	};
1991 
1992 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1993 	    w->node->fn_sernum != c->sernum)
1994 		w->node->fn_sernum = c->sernum;
1995 
1996 	if (!c->func) {
1997 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1998 		w->leaf = NULL;
1999 		return 0;
2000 	}
2001 
2002 	for_each_fib6_walker_rt(w) {
2003 		res = c->func(rt, c->arg);
2004 		if (res == -1) {
2005 			w->leaf = rt;
2006 			res = fib6_del(rt, &info);
2007 			if (res) {
2008 #if RT6_DEBUG >= 2
2009 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2010 					 __func__, rt,
2011 					 rcu_access_pointer(rt->fib6_node),
2012 					 res);
2013 #endif
2014 				continue;
2015 			}
2016 			return 0;
2017 		} else if (res == -2) {
2018 			if (WARN_ON(!rt->fib6_nsiblings))
2019 				continue;
2020 			rt = list_last_entry(&rt->fib6_siblings,
2021 					     struct fib6_info, fib6_siblings);
2022 			continue;
2023 		}
2024 		WARN_ON(res != 0);
2025 	}
2026 	w->leaf = rt;
2027 	return 0;
2028 }
2029 
2030 /*
2031  *	Convenient frontend to tree walker.
2032  *
2033  *	func is called on each route.
2034  *		It may return -2 -> skip multipath route.
2035  *			      -1 -> delete this route.
2036  *		              0  -> continue walking
2037  */
2038 
2039 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2040 			    int (*func)(struct fib6_info *, void *arg),
2041 			    int sernum, void *arg, bool skip_notify)
2042 {
2043 	struct fib6_cleaner c;
2044 
2045 	c.w.root = root;
2046 	c.w.func = fib6_clean_node;
2047 	c.w.count = 0;
2048 	c.w.skip = 0;
2049 	c.func = func;
2050 	c.sernum = sernum;
2051 	c.arg = arg;
2052 	c.net = net;
2053 	c.skip_notify = skip_notify;
2054 
2055 	fib6_walk(net, &c.w);
2056 }
2057 
2058 static void __fib6_clean_all(struct net *net,
2059 			     int (*func)(struct fib6_info *, void *),
2060 			     int sernum, void *arg, bool skip_notify)
2061 {
2062 	struct fib6_table *table;
2063 	struct hlist_head *head;
2064 	unsigned int h;
2065 
2066 	rcu_read_lock();
2067 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2068 		head = &net->ipv6.fib_table_hash[h];
2069 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2070 			spin_lock_bh(&table->tb6_lock);
2071 			fib6_clean_tree(net, &table->tb6_root,
2072 					func, sernum, arg, skip_notify);
2073 			spin_unlock_bh(&table->tb6_lock);
2074 		}
2075 	}
2076 	rcu_read_unlock();
2077 }
2078 
2079 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2080 		    void *arg)
2081 {
2082 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2083 }
2084 
2085 void fib6_clean_all_skip_notify(struct net *net,
2086 				int (*func)(struct fib6_info *, void *),
2087 				void *arg)
2088 {
2089 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2090 }
2091 
2092 static void fib6_flush_trees(struct net *net)
2093 {
2094 	int new_sernum = fib6_new_sernum(net);
2095 
2096 	__fib6_clean_all(net, NULL, new_sernum, NULL, false);
2097 }
2098 
2099 /*
2100  *	Garbage collection
2101  */
2102 
2103 static int fib6_age(struct fib6_info *rt, void *arg)
2104 {
2105 	struct fib6_gc_args *gc_args = arg;
2106 	unsigned long now = jiffies;
2107 
2108 	/*
2109 	 *	check addrconf expiration here.
2110 	 *	Routes are expired even if they are in use.
2111 	 */
2112 
2113 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2114 		if (time_after(now, rt->expires)) {
2115 			RT6_TRACE("expiring %p\n", rt);
2116 			return -1;
2117 		}
2118 		gc_args->more++;
2119 	}
2120 
2121 	/*	Also age clones in the exception table.
2122 	 *	Note, that clones are aged out
2123 	 *	only if they are not in use now.
2124 	 */
2125 	rt6_age_exceptions(rt, gc_args, now);
2126 
2127 	return 0;
2128 }
2129 
2130 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2131 {
2132 	struct fib6_gc_args gc_args;
2133 	unsigned long now;
2134 
2135 	if (force) {
2136 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2137 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2138 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2139 		return;
2140 	}
2141 	gc_args.timeout = expires ? (int)expires :
2142 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2143 	gc_args.more = 0;
2144 
2145 	fib6_clean_all(net, fib6_age, &gc_args);
2146 	now = jiffies;
2147 	net->ipv6.ip6_rt_last_gc = now;
2148 
2149 	if (gc_args.more)
2150 		mod_timer(&net->ipv6.ip6_fib_timer,
2151 			  round_jiffies(now
2152 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2153 	else
2154 		del_timer(&net->ipv6.ip6_fib_timer);
2155 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2156 }
2157 
2158 static void fib6_gc_timer_cb(struct timer_list *t)
2159 {
2160 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2161 
2162 	fib6_run_gc(0, arg, true);
2163 }
2164 
2165 static int __net_init fib6_net_init(struct net *net)
2166 {
2167 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2168 	int err;
2169 
2170 	err = fib6_notifier_init(net);
2171 	if (err)
2172 		return err;
2173 
2174 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2175 	rwlock_init(&net->ipv6.fib6_walker_lock);
2176 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2177 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2178 
2179 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2180 	if (!net->ipv6.rt6_stats)
2181 		goto out_timer;
2182 
2183 	/* Avoid false sharing : Use at least a full cache line */
2184 	size = max_t(size_t, size, L1_CACHE_BYTES);
2185 
2186 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2187 	if (!net->ipv6.fib_table_hash)
2188 		goto out_rt6_stats;
2189 
2190 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2191 					  GFP_KERNEL);
2192 	if (!net->ipv6.fib6_main_tbl)
2193 		goto out_fib_table_hash;
2194 
2195 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2196 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2197 			   net->ipv6.fib6_null_entry);
2198 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2199 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2200 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2201 
2202 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2203 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2204 					   GFP_KERNEL);
2205 	if (!net->ipv6.fib6_local_tbl)
2206 		goto out_fib6_main_tbl;
2207 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2208 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2209 			   net->ipv6.fib6_null_entry);
2210 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2211 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2212 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2213 #endif
2214 	fib6_tables_init(net);
2215 
2216 	return 0;
2217 
2218 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2219 out_fib6_main_tbl:
2220 	kfree(net->ipv6.fib6_main_tbl);
2221 #endif
2222 out_fib_table_hash:
2223 	kfree(net->ipv6.fib_table_hash);
2224 out_rt6_stats:
2225 	kfree(net->ipv6.rt6_stats);
2226 out_timer:
2227 	fib6_notifier_exit(net);
2228 	return -ENOMEM;
2229 }
2230 
2231 static void fib6_net_exit(struct net *net)
2232 {
2233 	unsigned int i;
2234 
2235 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2236 
2237 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2238 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2239 		struct hlist_node *tmp;
2240 		struct fib6_table *tb;
2241 
2242 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2243 			hlist_del(&tb->tb6_hlist);
2244 			fib6_free_table(tb);
2245 		}
2246 	}
2247 
2248 	kfree(net->ipv6.fib_table_hash);
2249 	kfree(net->ipv6.rt6_stats);
2250 	fib6_notifier_exit(net);
2251 }
2252 
2253 static struct pernet_operations fib6_net_ops = {
2254 	.init = fib6_net_init,
2255 	.exit = fib6_net_exit,
2256 };
2257 
2258 int __init fib6_init(void)
2259 {
2260 	int ret = -ENOMEM;
2261 
2262 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2263 					   sizeof(struct fib6_node),
2264 					   0, SLAB_HWCACHE_ALIGN,
2265 					   NULL);
2266 	if (!fib6_node_kmem)
2267 		goto out;
2268 
2269 	ret = register_pernet_subsys(&fib6_net_ops);
2270 	if (ret)
2271 		goto out_kmem_cache_create;
2272 
2273 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2274 				   inet6_dump_fib, 0);
2275 	if (ret)
2276 		goto out_unregister_subsys;
2277 
2278 	__fib6_flush_trees = fib6_flush_trees;
2279 out:
2280 	return ret;
2281 
2282 out_unregister_subsys:
2283 	unregister_pernet_subsys(&fib6_net_ops);
2284 out_kmem_cache_create:
2285 	kmem_cache_destroy(fib6_node_kmem);
2286 	goto out;
2287 }
2288 
2289 void fib6_gc_cleanup(void)
2290 {
2291 	unregister_pernet_subsys(&fib6_net_ops);
2292 	kmem_cache_destroy(fib6_node_kmem);
2293 }
2294 
2295 #ifdef CONFIG_PROC_FS
2296 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2297 {
2298 	struct fib6_info *rt = v;
2299 	struct ipv6_route_iter *iter = seq->private;
2300 	const struct net_device *dev;
2301 
2302 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2303 
2304 #ifdef CONFIG_IPV6_SUBTREES
2305 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2306 #else
2307 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2308 #endif
2309 	if (rt->fib6_flags & RTF_GATEWAY)
2310 		seq_printf(seq, "%pi6", &rt->fib6_nh.nh_gw);
2311 	else
2312 		seq_puts(seq, "00000000000000000000000000000000");
2313 
2314 	dev = rt->fib6_nh.nh_dev;
2315 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2316 		   rt->fib6_metric, atomic_read(&rt->fib6_ref), 0,
2317 		   rt->fib6_flags, dev ? dev->name : "");
2318 	iter->w.leaf = NULL;
2319 	return 0;
2320 }
2321 
2322 static int ipv6_route_yield(struct fib6_walker *w)
2323 {
2324 	struct ipv6_route_iter *iter = w->args;
2325 
2326 	if (!iter->skip)
2327 		return 1;
2328 
2329 	do {
2330 		iter->w.leaf = rcu_dereference_protected(
2331 				iter->w.leaf->fib6_next,
2332 				lockdep_is_held(&iter->tbl->tb6_lock));
2333 		iter->skip--;
2334 		if (!iter->skip && iter->w.leaf)
2335 			return 1;
2336 	} while (iter->w.leaf);
2337 
2338 	return 0;
2339 }
2340 
2341 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2342 				      struct net *net)
2343 {
2344 	memset(&iter->w, 0, sizeof(iter->w));
2345 	iter->w.func = ipv6_route_yield;
2346 	iter->w.root = &iter->tbl->tb6_root;
2347 	iter->w.state = FWS_INIT;
2348 	iter->w.node = iter->w.root;
2349 	iter->w.args = iter;
2350 	iter->sernum = iter->w.root->fn_sernum;
2351 	INIT_LIST_HEAD(&iter->w.lh);
2352 	fib6_walker_link(net, &iter->w);
2353 }
2354 
2355 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2356 						    struct net *net)
2357 {
2358 	unsigned int h;
2359 	struct hlist_node *node;
2360 
2361 	if (tbl) {
2362 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2363 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2364 	} else {
2365 		h = 0;
2366 		node = NULL;
2367 	}
2368 
2369 	while (!node && h < FIB6_TABLE_HASHSZ) {
2370 		node = rcu_dereference_bh(
2371 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2372 	}
2373 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2374 }
2375 
2376 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2377 {
2378 	if (iter->sernum != iter->w.root->fn_sernum) {
2379 		iter->sernum = iter->w.root->fn_sernum;
2380 		iter->w.state = FWS_INIT;
2381 		iter->w.node = iter->w.root;
2382 		WARN_ON(iter->w.skip);
2383 		iter->w.skip = iter->w.count;
2384 	}
2385 }
2386 
2387 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2388 {
2389 	int r;
2390 	struct fib6_info *n;
2391 	struct net *net = seq_file_net(seq);
2392 	struct ipv6_route_iter *iter = seq->private;
2393 
2394 	if (!v)
2395 		goto iter_table;
2396 
2397 	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2398 	if (n) {
2399 		++*pos;
2400 		return n;
2401 	}
2402 
2403 iter_table:
2404 	ipv6_route_check_sernum(iter);
2405 	spin_lock_bh(&iter->tbl->tb6_lock);
2406 	r = fib6_walk_continue(&iter->w);
2407 	spin_unlock_bh(&iter->tbl->tb6_lock);
2408 	if (r > 0) {
2409 		if (v)
2410 			++*pos;
2411 		return iter->w.leaf;
2412 	} else if (r < 0) {
2413 		fib6_walker_unlink(net, &iter->w);
2414 		return NULL;
2415 	}
2416 	fib6_walker_unlink(net, &iter->w);
2417 
2418 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2419 	if (!iter->tbl)
2420 		return NULL;
2421 
2422 	ipv6_route_seq_setup_walk(iter, net);
2423 	goto iter_table;
2424 }
2425 
2426 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2427 	__acquires(RCU_BH)
2428 {
2429 	struct net *net = seq_file_net(seq);
2430 	struct ipv6_route_iter *iter = seq->private;
2431 
2432 	rcu_read_lock_bh();
2433 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2434 	iter->skip = *pos;
2435 
2436 	if (iter->tbl) {
2437 		ipv6_route_seq_setup_walk(iter, net);
2438 		return ipv6_route_seq_next(seq, NULL, pos);
2439 	} else {
2440 		return NULL;
2441 	}
2442 }
2443 
2444 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2445 {
2446 	struct fib6_walker *w = &iter->w;
2447 	return w->node && !(w->state == FWS_U && w->node == w->root);
2448 }
2449 
2450 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2451 	__releases(RCU_BH)
2452 {
2453 	struct net *net = seq_file_net(seq);
2454 	struct ipv6_route_iter *iter = seq->private;
2455 
2456 	if (ipv6_route_iter_active(iter))
2457 		fib6_walker_unlink(net, &iter->w);
2458 
2459 	rcu_read_unlock_bh();
2460 }
2461 
2462 const struct seq_operations ipv6_route_seq_ops = {
2463 	.start	= ipv6_route_seq_start,
2464 	.next	= ipv6_route_seq_next,
2465 	.stop	= ipv6_route_seq_stop,
2466 	.show	= ipv6_route_seq_show
2467 };
2468 #endif /* CONFIG_PROC_FS */
2469