xref: /openbmc/linux/net/ipv6/ip6_fib.c (revision 84d517f3)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 
36 #include <net/ip6_fib.h>
37 #include <net/ip6_route.h>
38 
39 #define RT6_DEBUG 2
40 
41 #if RT6_DEBUG >= 3
42 #define RT6_TRACE(x...) pr_debug(x)
43 #else
44 #define RT6_TRACE(x...) do { ; } while (0)
45 #endif
46 
47 static struct kmem_cache *fib6_node_kmem __read_mostly;
48 
49 enum fib_walk_state_t {
50 #ifdef CONFIG_IPV6_SUBTREES
51 	FWS_S,
52 #endif
53 	FWS_L,
54 	FWS_R,
55 	FWS_C,
56 	FWS_U
57 };
58 
59 struct fib6_cleaner_t {
60 	struct fib6_walker_t w;
61 	struct net *net;
62 	int (*func)(struct rt6_info *, void *arg);
63 	void *arg;
64 };
65 
66 static DEFINE_RWLOCK(fib6_walker_lock);
67 
68 #ifdef CONFIG_IPV6_SUBTREES
69 #define FWS_INIT FWS_S
70 #else
71 #define FWS_INIT FWS_L
72 #endif
73 
74 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
75 			      struct rt6_info *rt);
76 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
77 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
78 static int fib6_walk(struct fib6_walker_t *w);
79 static int fib6_walk_continue(struct fib6_walker_t *w);
80 
81 /*
82  *	A routing update causes an increase of the serial number on the
83  *	affected subtree. This allows for cached routes to be asynchronously
84  *	tested when modifications are made to the destination cache as a
85  *	result of redirects, path MTU changes, etc.
86  */
87 
88 static __u32 rt_sernum;
89 
90 static void fib6_gc_timer_cb(unsigned long arg);
91 
92 static LIST_HEAD(fib6_walkers);
93 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
94 
95 static inline void fib6_walker_link(struct fib6_walker_t *w)
96 {
97 	write_lock_bh(&fib6_walker_lock);
98 	list_add(&w->lh, &fib6_walkers);
99 	write_unlock_bh(&fib6_walker_lock);
100 }
101 
102 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
103 {
104 	write_lock_bh(&fib6_walker_lock);
105 	list_del(&w->lh);
106 	write_unlock_bh(&fib6_walker_lock);
107 }
108 static __inline__ u32 fib6_new_sernum(void)
109 {
110 	u32 n = ++rt_sernum;
111 	if ((__s32)n <= 0)
112 		rt_sernum = n = 1;
113 	return n;
114 }
115 
116 /*
117  *	Auxiliary address test functions for the radix tree.
118  *
119  *	These assume a 32bit processor (although it will work on
120  *	64bit processors)
121  */
122 
123 /*
124  *	test bit
125  */
126 #if defined(__LITTLE_ENDIAN)
127 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
128 #else
129 # define BITOP_BE32_SWIZZLE	0
130 #endif
131 
132 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
133 {
134 	const __be32 *addr = token;
135 	/*
136 	 * Here,
137 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
138 	 * is optimized version of
139 	 *	htonl(1 << ((~fn_bit)&0x1F))
140 	 * See include/asm-generic/bitops/le.h.
141 	 */
142 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
143 	       addr[fn_bit >> 5];
144 }
145 
146 static __inline__ struct fib6_node *node_alloc(void)
147 {
148 	struct fib6_node *fn;
149 
150 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
151 
152 	return fn;
153 }
154 
155 static __inline__ void node_free(struct fib6_node *fn)
156 {
157 	kmem_cache_free(fib6_node_kmem, fn);
158 }
159 
160 static __inline__ void rt6_release(struct rt6_info *rt)
161 {
162 	if (atomic_dec_and_test(&rt->rt6i_ref))
163 		dst_free(&rt->dst);
164 }
165 
166 static void fib6_link_table(struct net *net, struct fib6_table *tb)
167 {
168 	unsigned int h;
169 
170 	/*
171 	 * Initialize table lock at a single place to give lockdep a key,
172 	 * tables aren't visible prior to being linked to the list.
173 	 */
174 	rwlock_init(&tb->tb6_lock);
175 
176 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
177 
178 	/*
179 	 * No protection necessary, this is the only list mutatation
180 	 * operation, tables never disappear once they exist.
181 	 */
182 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
183 }
184 
185 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
186 
187 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
188 {
189 	struct fib6_table *table;
190 
191 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
192 	if (table) {
193 		table->tb6_id = id;
194 		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
195 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
196 		inet_peer_base_init(&table->tb6_peers);
197 	}
198 
199 	return table;
200 }
201 
202 struct fib6_table *fib6_new_table(struct net *net, u32 id)
203 {
204 	struct fib6_table *tb;
205 
206 	if (id == 0)
207 		id = RT6_TABLE_MAIN;
208 	tb = fib6_get_table(net, id);
209 	if (tb)
210 		return tb;
211 
212 	tb = fib6_alloc_table(net, id);
213 	if (tb)
214 		fib6_link_table(net, tb);
215 
216 	return tb;
217 }
218 
219 struct fib6_table *fib6_get_table(struct net *net, u32 id)
220 {
221 	struct fib6_table *tb;
222 	struct hlist_head *head;
223 	unsigned int h;
224 
225 	if (id == 0)
226 		id = RT6_TABLE_MAIN;
227 	h = id & (FIB6_TABLE_HASHSZ - 1);
228 	rcu_read_lock();
229 	head = &net->ipv6.fib_table_hash[h];
230 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
231 		if (tb->tb6_id == id) {
232 			rcu_read_unlock();
233 			return tb;
234 		}
235 	}
236 	rcu_read_unlock();
237 
238 	return NULL;
239 }
240 
241 static void __net_init fib6_tables_init(struct net *net)
242 {
243 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
244 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
245 }
246 #else
247 
248 struct fib6_table *fib6_new_table(struct net *net, u32 id)
249 {
250 	return fib6_get_table(net, id);
251 }
252 
253 struct fib6_table *fib6_get_table(struct net *net, u32 id)
254 {
255 	  return net->ipv6.fib6_main_tbl;
256 }
257 
258 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
259 				   int flags, pol_lookup_t lookup)
260 {
261 	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
262 }
263 
264 static void __net_init fib6_tables_init(struct net *net)
265 {
266 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
267 }
268 
269 #endif
270 
271 static int fib6_dump_node(struct fib6_walker_t *w)
272 {
273 	int res;
274 	struct rt6_info *rt;
275 
276 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
277 		res = rt6_dump_route(rt, w->args);
278 		if (res < 0) {
279 			/* Frame is full, suspend walking */
280 			w->leaf = rt;
281 			return 1;
282 		}
283 		WARN_ON(res == 0);
284 	}
285 	w->leaf = NULL;
286 	return 0;
287 }
288 
289 static void fib6_dump_end(struct netlink_callback *cb)
290 {
291 	struct fib6_walker_t *w = (void *)cb->args[2];
292 
293 	if (w) {
294 		if (cb->args[4]) {
295 			cb->args[4] = 0;
296 			fib6_walker_unlink(w);
297 		}
298 		cb->args[2] = 0;
299 		kfree(w);
300 	}
301 	cb->done = (void *)cb->args[3];
302 	cb->args[1] = 3;
303 }
304 
305 static int fib6_dump_done(struct netlink_callback *cb)
306 {
307 	fib6_dump_end(cb);
308 	return cb->done ? cb->done(cb) : 0;
309 }
310 
311 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
312 			   struct netlink_callback *cb)
313 {
314 	struct fib6_walker_t *w;
315 	int res;
316 
317 	w = (void *)cb->args[2];
318 	w->root = &table->tb6_root;
319 
320 	if (cb->args[4] == 0) {
321 		w->count = 0;
322 		w->skip = 0;
323 
324 		read_lock_bh(&table->tb6_lock);
325 		res = fib6_walk(w);
326 		read_unlock_bh(&table->tb6_lock);
327 		if (res > 0) {
328 			cb->args[4] = 1;
329 			cb->args[5] = w->root->fn_sernum;
330 		}
331 	} else {
332 		if (cb->args[5] != w->root->fn_sernum) {
333 			/* Begin at the root if the tree changed */
334 			cb->args[5] = w->root->fn_sernum;
335 			w->state = FWS_INIT;
336 			w->node = w->root;
337 			w->skip = w->count;
338 		} else
339 			w->skip = 0;
340 
341 		read_lock_bh(&table->tb6_lock);
342 		res = fib6_walk_continue(w);
343 		read_unlock_bh(&table->tb6_lock);
344 		if (res <= 0) {
345 			fib6_walker_unlink(w);
346 			cb->args[4] = 0;
347 		}
348 	}
349 
350 	return res;
351 }
352 
353 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
354 {
355 	struct net *net = sock_net(skb->sk);
356 	unsigned int h, s_h;
357 	unsigned int e = 0, s_e;
358 	struct rt6_rtnl_dump_arg arg;
359 	struct fib6_walker_t *w;
360 	struct fib6_table *tb;
361 	struct hlist_head *head;
362 	int res = 0;
363 
364 	s_h = cb->args[0];
365 	s_e = cb->args[1];
366 
367 	w = (void *)cb->args[2];
368 	if (!w) {
369 		/* New dump:
370 		 *
371 		 * 1. hook callback destructor.
372 		 */
373 		cb->args[3] = (long)cb->done;
374 		cb->done = fib6_dump_done;
375 
376 		/*
377 		 * 2. allocate and initialize walker.
378 		 */
379 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
380 		if (!w)
381 			return -ENOMEM;
382 		w->func = fib6_dump_node;
383 		cb->args[2] = (long)w;
384 	}
385 
386 	arg.skb = skb;
387 	arg.cb = cb;
388 	arg.net = net;
389 	w->args = &arg;
390 
391 	rcu_read_lock();
392 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
393 		e = 0;
394 		head = &net->ipv6.fib_table_hash[h];
395 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
396 			if (e < s_e)
397 				goto next;
398 			res = fib6_dump_table(tb, skb, cb);
399 			if (res != 0)
400 				goto out;
401 next:
402 			e++;
403 		}
404 	}
405 out:
406 	rcu_read_unlock();
407 	cb->args[1] = e;
408 	cb->args[0] = h;
409 
410 	res = res < 0 ? res : skb->len;
411 	if (res <= 0)
412 		fib6_dump_end(cb);
413 	return res;
414 }
415 
416 /*
417  *	Routing Table
418  *
419  *	return the appropriate node for a routing tree "add" operation
420  *	by either creating and inserting or by returning an existing
421  *	node.
422  */
423 
424 static struct fib6_node *fib6_add_1(struct fib6_node *root,
425 				     struct in6_addr *addr, int plen,
426 				     int offset, int allow_create,
427 				     int replace_required)
428 {
429 	struct fib6_node *fn, *in, *ln;
430 	struct fib6_node *pn = NULL;
431 	struct rt6key *key;
432 	int	bit;
433 	__be32	dir = 0;
434 	__u32	sernum = fib6_new_sernum();
435 
436 	RT6_TRACE("fib6_add_1\n");
437 
438 	/* insert node in tree */
439 
440 	fn = root;
441 
442 	do {
443 		key = (struct rt6key *)((u8 *)fn->leaf + offset);
444 
445 		/*
446 		 *	Prefix match
447 		 */
448 		if (plen < fn->fn_bit ||
449 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
450 			if (!allow_create) {
451 				if (replace_required) {
452 					pr_warn("Can't replace route, no match found\n");
453 					return ERR_PTR(-ENOENT);
454 				}
455 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
456 			}
457 			goto insert_above;
458 		}
459 
460 		/*
461 		 *	Exact match ?
462 		 */
463 
464 		if (plen == fn->fn_bit) {
465 			/* clean up an intermediate node */
466 			if (!(fn->fn_flags & RTN_RTINFO)) {
467 				rt6_release(fn->leaf);
468 				fn->leaf = NULL;
469 			}
470 
471 			fn->fn_sernum = sernum;
472 
473 			return fn;
474 		}
475 
476 		/*
477 		 *	We have more bits to go
478 		 */
479 
480 		/* Try to walk down on tree. */
481 		fn->fn_sernum = sernum;
482 		dir = addr_bit_set(addr, fn->fn_bit);
483 		pn = fn;
484 		fn = dir ? fn->right : fn->left;
485 	} while (fn);
486 
487 	if (!allow_create) {
488 		/* We should not create new node because
489 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
490 		 * I assume it is safe to require NLM_F_CREATE when
491 		 * REPLACE flag is used! Later we may want to remove the
492 		 * check for replace_required, because according
493 		 * to netlink specification, NLM_F_CREATE
494 		 * MUST be specified if new route is created.
495 		 * That would keep IPv6 consistent with IPv4
496 		 */
497 		if (replace_required) {
498 			pr_warn("Can't replace route, no match found\n");
499 			return ERR_PTR(-ENOENT);
500 		}
501 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
502 	}
503 	/*
504 	 *	We walked to the bottom of tree.
505 	 *	Create new leaf node without children.
506 	 */
507 
508 	ln = node_alloc();
509 
510 	if (!ln)
511 		return ERR_PTR(-ENOMEM);
512 	ln->fn_bit = plen;
513 
514 	ln->parent = pn;
515 	ln->fn_sernum = sernum;
516 
517 	if (dir)
518 		pn->right = ln;
519 	else
520 		pn->left  = ln;
521 
522 	return ln;
523 
524 
525 insert_above:
526 	/*
527 	 * split since we don't have a common prefix anymore or
528 	 * we have a less significant route.
529 	 * we've to insert an intermediate node on the list
530 	 * this new node will point to the one we need to create
531 	 * and the current
532 	 */
533 
534 	pn = fn->parent;
535 
536 	/* find 1st bit in difference between the 2 addrs.
537 
538 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
539 	   but if it is >= plen, the value is ignored in any case.
540 	 */
541 
542 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
543 
544 	/*
545 	 *		(intermediate)[in]
546 	 *	          /	   \
547 	 *	(new leaf node)[ln] (old node)[fn]
548 	 */
549 	if (plen > bit) {
550 		in = node_alloc();
551 		ln = node_alloc();
552 
553 		if (!in || !ln) {
554 			if (in)
555 				node_free(in);
556 			if (ln)
557 				node_free(ln);
558 			return ERR_PTR(-ENOMEM);
559 		}
560 
561 		/*
562 		 * new intermediate node.
563 		 * RTN_RTINFO will
564 		 * be off since that an address that chooses one of
565 		 * the branches would not match less specific routes
566 		 * in the other branch
567 		 */
568 
569 		in->fn_bit = bit;
570 
571 		in->parent = pn;
572 		in->leaf = fn->leaf;
573 		atomic_inc(&in->leaf->rt6i_ref);
574 
575 		in->fn_sernum = sernum;
576 
577 		/* update parent pointer */
578 		if (dir)
579 			pn->right = in;
580 		else
581 			pn->left  = in;
582 
583 		ln->fn_bit = plen;
584 
585 		ln->parent = in;
586 		fn->parent = in;
587 
588 		ln->fn_sernum = sernum;
589 
590 		if (addr_bit_set(addr, bit)) {
591 			in->right = ln;
592 			in->left  = fn;
593 		} else {
594 			in->left  = ln;
595 			in->right = fn;
596 		}
597 	} else { /* plen <= bit */
598 
599 		/*
600 		 *		(new leaf node)[ln]
601 		 *	          /	   \
602 		 *	     (old node)[fn] NULL
603 		 */
604 
605 		ln = node_alloc();
606 
607 		if (!ln)
608 			return ERR_PTR(-ENOMEM);
609 
610 		ln->fn_bit = plen;
611 
612 		ln->parent = pn;
613 
614 		ln->fn_sernum = sernum;
615 
616 		if (dir)
617 			pn->right = ln;
618 		else
619 			pn->left  = ln;
620 
621 		if (addr_bit_set(&key->addr, plen))
622 			ln->right = fn;
623 		else
624 			ln->left  = fn;
625 
626 		fn->parent = ln;
627 	}
628 	return ln;
629 }
630 
631 static inline bool rt6_qualify_for_ecmp(struct rt6_info *rt)
632 {
633 	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
634 	       RTF_GATEWAY;
635 }
636 
637 static int fib6_commit_metrics(struct dst_entry *dst,
638 			       struct nlattr *mx, int mx_len)
639 {
640 	struct nlattr *nla;
641 	int remaining;
642 	u32 *mp;
643 
644 	if (dst->flags & DST_HOST) {
645 		mp = dst_metrics_write_ptr(dst);
646 	} else {
647 		mp = kzalloc(sizeof(u32) * RTAX_MAX, GFP_KERNEL);
648 		if (!mp)
649 			return -ENOMEM;
650 		dst_init_metrics(dst, mp, 0);
651 	}
652 
653 	nla_for_each_attr(nla, mx, mx_len, remaining) {
654 		int type = nla_type(nla);
655 
656 		if (type) {
657 			if (type > RTAX_MAX)
658 				return -EINVAL;
659 
660 			mp[type - 1] = nla_get_u32(nla);
661 		}
662 	}
663 	return 0;
664 }
665 
666 /*
667  *	Insert routing information in a node.
668  */
669 
670 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
671 			    struct nl_info *info, struct nlattr *mx, int mx_len)
672 {
673 	struct rt6_info *iter = NULL;
674 	struct rt6_info **ins;
675 	int replace = (info->nlh &&
676 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
677 	int add = (!info->nlh ||
678 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
679 	int found = 0;
680 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
681 	int err;
682 
683 	ins = &fn->leaf;
684 
685 	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
686 		/*
687 		 *	Search for duplicates
688 		 */
689 
690 		if (iter->rt6i_metric == rt->rt6i_metric) {
691 			/*
692 			 *	Same priority level
693 			 */
694 			if (info->nlh &&
695 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
696 				return -EEXIST;
697 			if (replace) {
698 				found++;
699 				break;
700 			}
701 
702 			if (iter->dst.dev == rt->dst.dev &&
703 			    iter->rt6i_idev == rt->rt6i_idev &&
704 			    ipv6_addr_equal(&iter->rt6i_gateway,
705 					    &rt->rt6i_gateway)) {
706 				if (rt->rt6i_nsiblings)
707 					rt->rt6i_nsiblings = 0;
708 				if (!(iter->rt6i_flags & RTF_EXPIRES))
709 					return -EEXIST;
710 				if (!(rt->rt6i_flags & RTF_EXPIRES))
711 					rt6_clean_expires(iter);
712 				else
713 					rt6_set_expires(iter, rt->dst.expires);
714 				return -EEXIST;
715 			}
716 			/* If we have the same destination and the same metric,
717 			 * but not the same gateway, then the route we try to
718 			 * add is sibling to this route, increment our counter
719 			 * of siblings, and later we will add our route to the
720 			 * list.
721 			 * Only static routes (which don't have flag
722 			 * RTF_EXPIRES) are used for ECMPv6.
723 			 *
724 			 * To avoid long list, we only had siblings if the
725 			 * route have a gateway.
726 			 */
727 			if (rt_can_ecmp &&
728 			    rt6_qualify_for_ecmp(iter))
729 				rt->rt6i_nsiblings++;
730 		}
731 
732 		if (iter->rt6i_metric > rt->rt6i_metric)
733 			break;
734 
735 		ins = &iter->dst.rt6_next;
736 	}
737 
738 	/* Reset round-robin state, if necessary */
739 	if (ins == &fn->leaf)
740 		fn->rr_ptr = NULL;
741 
742 	/* Link this route to others same route. */
743 	if (rt->rt6i_nsiblings) {
744 		unsigned int rt6i_nsiblings;
745 		struct rt6_info *sibling, *temp_sibling;
746 
747 		/* Find the first route that have the same metric */
748 		sibling = fn->leaf;
749 		while (sibling) {
750 			if (sibling->rt6i_metric == rt->rt6i_metric &&
751 			    rt6_qualify_for_ecmp(sibling)) {
752 				list_add_tail(&rt->rt6i_siblings,
753 					      &sibling->rt6i_siblings);
754 				break;
755 			}
756 			sibling = sibling->dst.rt6_next;
757 		}
758 		/* For each sibling in the list, increment the counter of
759 		 * siblings. BUG() if counters does not match, list of siblings
760 		 * is broken!
761 		 */
762 		rt6i_nsiblings = 0;
763 		list_for_each_entry_safe(sibling, temp_sibling,
764 					 &rt->rt6i_siblings, rt6i_siblings) {
765 			sibling->rt6i_nsiblings++;
766 			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
767 			rt6i_nsiblings++;
768 		}
769 		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
770 	}
771 
772 	/*
773 	 *	insert node
774 	 */
775 	if (!replace) {
776 		if (!add)
777 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
778 
779 add:
780 		if (mx) {
781 			err = fib6_commit_metrics(&rt->dst, mx, mx_len);
782 			if (err)
783 				return err;
784 		}
785 		rt->dst.rt6_next = iter;
786 		*ins = rt;
787 		rt->rt6i_node = fn;
788 		atomic_inc(&rt->rt6i_ref);
789 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
790 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
791 
792 		if (!(fn->fn_flags & RTN_RTINFO)) {
793 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
794 			fn->fn_flags |= RTN_RTINFO;
795 		}
796 
797 	} else {
798 		if (!found) {
799 			if (add)
800 				goto add;
801 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
802 			return -ENOENT;
803 		}
804 		if (mx) {
805 			err = fib6_commit_metrics(&rt->dst, mx, mx_len);
806 			if (err)
807 				return err;
808 		}
809 		*ins = rt;
810 		rt->rt6i_node = fn;
811 		rt->dst.rt6_next = iter->dst.rt6_next;
812 		atomic_inc(&rt->rt6i_ref);
813 		inet6_rt_notify(RTM_NEWROUTE, rt, info);
814 		rt6_release(iter);
815 		if (!(fn->fn_flags & RTN_RTINFO)) {
816 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
817 			fn->fn_flags |= RTN_RTINFO;
818 		}
819 	}
820 
821 	return 0;
822 }
823 
824 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
825 {
826 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
827 	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
828 		mod_timer(&net->ipv6.ip6_fib_timer,
829 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
830 }
831 
832 void fib6_force_start_gc(struct net *net)
833 {
834 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
835 		mod_timer(&net->ipv6.ip6_fib_timer,
836 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
837 }
838 
839 /*
840  *	Add routing information to the routing tree.
841  *	<destination addr>/<source addr>
842  *	with source addr info in sub-trees
843  */
844 
845 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info,
846 	     struct nlattr *mx, int mx_len)
847 {
848 	struct fib6_node *fn, *pn = NULL;
849 	int err = -ENOMEM;
850 	int allow_create = 1;
851 	int replace_required = 0;
852 
853 	if (info->nlh) {
854 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
855 			allow_create = 0;
856 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
857 			replace_required = 1;
858 	}
859 	if (!allow_create && !replace_required)
860 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
861 
862 	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
863 			offsetof(struct rt6_info, rt6i_dst), allow_create,
864 			replace_required);
865 	if (IS_ERR(fn)) {
866 		err = PTR_ERR(fn);
867 		fn = NULL;
868 		goto out;
869 	}
870 
871 	pn = fn;
872 
873 #ifdef CONFIG_IPV6_SUBTREES
874 	if (rt->rt6i_src.plen) {
875 		struct fib6_node *sn;
876 
877 		if (!fn->subtree) {
878 			struct fib6_node *sfn;
879 
880 			/*
881 			 * Create subtree.
882 			 *
883 			 *		fn[main tree]
884 			 *		|
885 			 *		sfn[subtree root]
886 			 *		   \
887 			 *		    sn[new leaf node]
888 			 */
889 
890 			/* Create subtree root node */
891 			sfn = node_alloc();
892 			if (!sfn)
893 				goto st_failure;
894 
895 			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
896 			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
897 			sfn->fn_flags = RTN_ROOT;
898 			sfn->fn_sernum = fib6_new_sernum();
899 
900 			/* Now add the first leaf node to new subtree */
901 
902 			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
903 					rt->rt6i_src.plen,
904 					offsetof(struct rt6_info, rt6i_src),
905 					allow_create, replace_required);
906 
907 			if (IS_ERR(sn)) {
908 				/* If it is failed, discard just allocated
909 				   root, and then (in st_failure) stale node
910 				   in main tree.
911 				 */
912 				node_free(sfn);
913 				err = PTR_ERR(sn);
914 				goto st_failure;
915 			}
916 
917 			/* Now link new subtree to main tree */
918 			sfn->parent = fn;
919 			fn->subtree = sfn;
920 		} else {
921 			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
922 					rt->rt6i_src.plen,
923 					offsetof(struct rt6_info, rt6i_src),
924 					allow_create, replace_required);
925 
926 			if (IS_ERR(sn)) {
927 				err = PTR_ERR(sn);
928 				goto st_failure;
929 			}
930 		}
931 
932 		if (!fn->leaf) {
933 			fn->leaf = rt;
934 			atomic_inc(&rt->rt6i_ref);
935 		}
936 		fn = sn;
937 	}
938 #endif
939 
940 	err = fib6_add_rt2node(fn, rt, info, mx, mx_len);
941 	if (!err) {
942 		fib6_start_gc(info->nl_net, rt);
943 		if (!(rt->rt6i_flags & RTF_CACHE))
944 			fib6_prune_clones(info->nl_net, pn, rt);
945 	}
946 
947 out:
948 	if (err) {
949 #ifdef CONFIG_IPV6_SUBTREES
950 		/*
951 		 * If fib6_add_1 has cleared the old leaf pointer in the
952 		 * super-tree leaf node we have to find a new one for it.
953 		 */
954 		if (pn != fn && pn->leaf == rt) {
955 			pn->leaf = NULL;
956 			atomic_dec(&rt->rt6i_ref);
957 		}
958 		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
959 			pn->leaf = fib6_find_prefix(info->nl_net, pn);
960 #if RT6_DEBUG >= 2
961 			if (!pn->leaf) {
962 				WARN_ON(pn->leaf == NULL);
963 				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
964 			}
965 #endif
966 			atomic_inc(&pn->leaf->rt6i_ref);
967 		}
968 #endif
969 		dst_free(&rt->dst);
970 	}
971 	return err;
972 
973 #ifdef CONFIG_IPV6_SUBTREES
974 	/* Subtree creation failed, probably main tree node
975 	   is orphan. If it is, shoot it.
976 	 */
977 st_failure:
978 	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
979 		fib6_repair_tree(info->nl_net, fn);
980 	dst_free(&rt->dst);
981 	return err;
982 #endif
983 }
984 
985 /*
986  *	Routing tree lookup
987  *
988  */
989 
990 struct lookup_args {
991 	int			offset;		/* key offset on rt6_info	*/
992 	const struct in6_addr	*addr;		/* search key			*/
993 };
994 
995 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
996 				       struct lookup_args *args)
997 {
998 	struct fib6_node *fn;
999 	__be32 dir;
1000 
1001 	if (unlikely(args->offset == 0))
1002 		return NULL;
1003 
1004 	/*
1005 	 *	Descend on a tree
1006 	 */
1007 
1008 	fn = root;
1009 
1010 	for (;;) {
1011 		struct fib6_node *next;
1012 
1013 		dir = addr_bit_set(args->addr, fn->fn_bit);
1014 
1015 		next = dir ? fn->right : fn->left;
1016 
1017 		if (next) {
1018 			fn = next;
1019 			continue;
1020 		}
1021 		break;
1022 	}
1023 
1024 	while (fn) {
1025 		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1026 			struct rt6key *key;
1027 
1028 			key = (struct rt6key *) ((u8 *) fn->leaf +
1029 						 args->offset);
1030 
1031 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1032 #ifdef CONFIG_IPV6_SUBTREES
1033 				if (fn->subtree) {
1034 					struct fib6_node *sfn;
1035 					sfn = fib6_lookup_1(fn->subtree,
1036 							    args + 1);
1037 					if (!sfn)
1038 						goto backtrack;
1039 					fn = sfn;
1040 				}
1041 #endif
1042 				if (fn->fn_flags & RTN_RTINFO)
1043 					return fn;
1044 			}
1045 		}
1046 #ifdef CONFIG_IPV6_SUBTREES
1047 backtrack:
1048 #endif
1049 		if (fn->fn_flags & RTN_ROOT)
1050 			break;
1051 
1052 		fn = fn->parent;
1053 	}
1054 
1055 	return NULL;
1056 }
1057 
1058 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1059 			      const struct in6_addr *saddr)
1060 {
1061 	struct fib6_node *fn;
1062 	struct lookup_args args[] = {
1063 		{
1064 			.offset = offsetof(struct rt6_info, rt6i_dst),
1065 			.addr = daddr,
1066 		},
1067 #ifdef CONFIG_IPV6_SUBTREES
1068 		{
1069 			.offset = offsetof(struct rt6_info, rt6i_src),
1070 			.addr = saddr,
1071 		},
1072 #endif
1073 		{
1074 			.offset = 0,	/* sentinel */
1075 		}
1076 	};
1077 
1078 	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1079 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1080 		fn = root;
1081 
1082 	return fn;
1083 }
1084 
1085 /*
1086  *	Get node with specified destination prefix (and source prefix,
1087  *	if subtrees are used)
1088  */
1089 
1090 
1091 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1092 				       const struct in6_addr *addr,
1093 				       int plen, int offset)
1094 {
1095 	struct fib6_node *fn;
1096 
1097 	for (fn = root; fn ; ) {
1098 		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1099 
1100 		/*
1101 		 *	Prefix match
1102 		 */
1103 		if (plen < fn->fn_bit ||
1104 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1105 			return NULL;
1106 
1107 		if (plen == fn->fn_bit)
1108 			return fn;
1109 
1110 		/*
1111 		 *	We have more bits to go
1112 		 */
1113 		if (addr_bit_set(addr, fn->fn_bit))
1114 			fn = fn->right;
1115 		else
1116 			fn = fn->left;
1117 	}
1118 	return NULL;
1119 }
1120 
1121 struct fib6_node *fib6_locate(struct fib6_node *root,
1122 			      const struct in6_addr *daddr, int dst_len,
1123 			      const struct in6_addr *saddr, int src_len)
1124 {
1125 	struct fib6_node *fn;
1126 
1127 	fn = fib6_locate_1(root, daddr, dst_len,
1128 			   offsetof(struct rt6_info, rt6i_dst));
1129 
1130 #ifdef CONFIG_IPV6_SUBTREES
1131 	if (src_len) {
1132 		WARN_ON(saddr == NULL);
1133 		if (fn && fn->subtree)
1134 			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1135 					   offsetof(struct rt6_info, rt6i_src));
1136 	}
1137 #endif
1138 
1139 	if (fn && fn->fn_flags & RTN_RTINFO)
1140 		return fn;
1141 
1142 	return NULL;
1143 }
1144 
1145 
1146 /*
1147  *	Deletion
1148  *
1149  */
1150 
1151 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1152 {
1153 	if (fn->fn_flags & RTN_ROOT)
1154 		return net->ipv6.ip6_null_entry;
1155 
1156 	while (fn) {
1157 		if (fn->left)
1158 			return fn->left->leaf;
1159 		if (fn->right)
1160 			return fn->right->leaf;
1161 
1162 		fn = FIB6_SUBTREE(fn);
1163 	}
1164 	return NULL;
1165 }
1166 
1167 /*
1168  *	Called to trim the tree of intermediate nodes when possible. "fn"
1169  *	is the node we want to try and remove.
1170  */
1171 
1172 static struct fib6_node *fib6_repair_tree(struct net *net,
1173 					   struct fib6_node *fn)
1174 {
1175 	int children;
1176 	int nstate;
1177 	struct fib6_node *child, *pn;
1178 	struct fib6_walker_t *w;
1179 	int iter = 0;
1180 
1181 	for (;;) {
1182 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1183 		iter++;
1184 
1185 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1186 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1187 		WARN_ON(fn->leaf != NULL);
1188 
1189 		children = 0;
1190 		child = NULL;
1191 		if (fn->right)
1192 			child = fn->right, children |= 1;
1193 		if (fn->left)
1194 			child = fn->left, children |= 2;
1195 
1196 		if (children == 3 || FIB6_SUBTREE(fn)
1197 #ifdef CONFIG_IPV6_SUBTREES
1198 		    /* Subtree root (i.e. fn) may have one child */
1199 		    || (children && fn->fn_flags & RTN_ROOT)
1200 #endif
1201 		    ) {
1202 			fn->leaf = fib6_find_prefix(net, fn);
1203 #if RT6_DEBUG >= 2
1204 			if (!fn->leaf) {
1205 				WARN_ON(!fn->leaf);
1206 				fn->leaf = net->ipv6.ip6_null_entry;
1207 			}
1208 #endif
1209 			atomic_inc(&fn->leaf->rt6i_ref);
1210 			return fn->parent;
1211 		}
1212 
1213 		pn = fn->parent;
1214 #ifdef CONFIG_IPV6_SUBTREES
1215 		if (FIB6_SUBTREE(pn) == fn) {
1216 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1217 			FIB6_SUBTREE(pn) = NULL;
1218 			nstate = FWS_L;
1219 		} else {
1220 			WARN_ON(fn->fn_flags & RTN_ROOT);
1221 #endif
1222 			if (pn->right == fn)
1223 				pn->right = child;
1224 			else if (pn->left == fn)
1225 				pn->left = child;
1226 #if RT6_DEBUG >= 2
1227 			else
1228 				WARN_ON(1);
1229 #endif
1230 			if (child)
1231 				child->parent = pn;
1232 			nstate = FWS_R;
1233 #ifdef CONFIG_IPV6_SUBTREES
1234 		}
1235 #endif
1236 
1237 		read_lock(&fib6_walker_lock);
1238 		FOR_WALKERS(w) {
1239 			if (!child) {
1240 				if (w->root == fn) {
1241 					w->root = w->node = NULL;
1242 					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1243 				} else if (w->node == fn) {
1244 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1245 					w->node = pn;
1246 					w->state = nstate;
1247 				}
1248 			} else {
1249 				if (w->root == fn) {
1250 					w->root = child;
1251 					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1252 				}
1253 				if (w->node == fn) {
1254 					w->node = child;
1255 					if (children&2) {
1256 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1257 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1258 					} else {
1259 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1260 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1261 					}
1262 				}
1263 			}
1264 		}
1265 		read_unlock(&fib6_walker_lock);
1266 
1267 		node_free(fn);
1268 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1269 			return pn;
1270 
1271 		rt6_release(pn->leaf);
1272 		pn->leaf = NULL;
1273 		fn = pn;
1274 	}
1275 }
1276 
1277 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1278 			   struct nl_info *info)
1279 {
1280 	struct fib6_walker_t *w;
1281 	struct rt6_info *rt = *rtp;
1282 	struct net *net = info->nl_net;
1283 
1284 	RT6_TRACE("fib6_del_route\n");
1285 
1286 	/* Unlink it */
1287 	*rtp = rt->dst.rt6_next;
1288 	rt->rt6i_node = NULL;
1289 	net->ipv6.rt6_stats->fib_rt_entries--;
1290 	net->ipv6.rt6_stats->fib_discarded_routes++;
1291 
1292 	/* Reset round-robin state, if necessary */
1293 	if (fn->rr_ptr == rt)
1294 		fn->rr_ptr = NULL;
1295 
1296 	/* Remove this entry from other siblings */
1297 	if (rt->rt6i_nsiblings) {
1298 		struct rt6_info *sibling, *next_sibling;
1299 
1300 		list_for_each_entry_safe(sibling, next_sibling,
1301 					 &rt->rt6i_siblings, rt6i_siblings)
1302 			sibling->rt6i_nsiblings--;
1303 		rt->rt6i_nsiblings = 0;
1304 		list_del_init(&rt->rt6i_siblings);
1305 	}
1306 
1307 	/* Adjust walkers */
1308 	read_lock(&fib6_walker_lock);
1309 	FOR_WALKERS(w) {
1310 		if (w->state == FWS_C && w->leaf == rt) {
1311 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1312 			w->leaf = rt->dst.rt6_next;
1313 			if (!w->leaf)
1314 				w->state = FWS_U;
1315 		}
1316 	}
1317 	read_unlock(&fib6_walker_lock);
1318 
1319 	rt->dst.rt6_next = NULL;
1320 
1321 	/* If it was last route, expunge its radix tree node */
1322 	if (!fn->leaf) {
1323 		fn->fn_flags &= ~RTN_RTINFO;
1324 		net->ipv6.rt6_stats->fib_route_nodes--;
1325 		fn = fib6_repair_tree(net, fn);
1326 	}
1327 
1328 	if (atomic_read(&rt->rt6i_ref) != 1) {
1329 		/* This route is used as dummy address holder in some split
1330 		 * nodes. It is not leaked, but it still holds other resources,
1331 		 * which must be released in time. So, scan ascendant nodes
1332 		 * and replace dummy references to this route with references
1333 		 * to still alive ones.
1334 		 */
1335 		while (fn) {
1336 			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1337 				fn->leaf = fib6_find_prefix(net, fn);
1338 				atomic_inc(&fn->leaf->rt6i_ref);
1339 				rt6_release(rt);
1340 			}
1341 			fn = fn->parent;
1342 		}
1343 		/* No more references are possible at this point. */
1344 		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1345 	}
1346 
1347 	inet6_rt_notify(RTM_DELROUTE, rt, info);
1348 	rt6_release(rt);
1349 }
1350 
1351 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1352 {
1353 	struct net *net = info->nl_net;
1354 	struct fib6_node *fn = rt->rt6i_node;
1355 	struct rt6_info **rtp;
1356 
1357 #if RT6_DEBUG >= 2
1358 	if (rt->dst.obsolete > 0) {
1359 		WARN_ON(fn != NULL);
1360 		return -ENOENT;
1361 	}
1362 #endif
1363 	if (!fn || rt == net->ipv6.ip6_null_entry)
1364 		return -ENOENT;
1365 
1366 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1367 
1368 	if (!(rt->rt6i_flags & RTF_CACHE)) {
1369 		struct fib6_node *pn = fn;
1370 #ifdef CONFIG_IPV6_SUBTREES
1371 		/* clones of this route might be in another subtree */
1372 		if (rt->rt6i_src.plen) {
1373 			while (!(pn->fn_flags & RTN_ROOT))
1374 				pn = pn->parent;
1375 			pn = pn->parent;
1376 		}
1377 #endif
1378 		fib6_prune_clones(info->nl_net, pn, rt);
1379 	}
1380 
1381 	/*
1382 	 *	Walk the leaf entries looking for ourself
1383 	 */
1384 
1385 	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1386 		if (*rtp == rt) {
1387 			fib6_del_route(fn, rtp, info);
1388 			return 0;
1389 		}
1390 	}
1391 	return -ENOENT;
1392 }
1393 
1394 /*
1395  *	Tree traversal function.
1396  *
1397  *	Certainly, it is not interrupt safe.
1398  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1399  *	It means, that we can modify tree during walking
1400  *	and use this function for garbage collection, clone pruning,
1401  *	cleaning tree when a device goes down etc. etc.
1402  *
1403  *	It guarantees that every node will be traversed,
1404  *	and that it will be traversed only once.
1405  *
1406  *	Callback function w->func may return:
1407  *	0 -> continue walking.
1408  *	positive value -> walking is suspended (used by tree dumps,
1409  *	and probably by gc, if it will be split to several slices)
1410  *	negative value -> terminate walking.
1411  *
1412  *	The function itself returns:
1413  *	0   -> walk is complete.
1414  *	>0  -> walk is incomplete (i.e. suspended)
1415  *	<0  -> walk is terminated by an error.
1416  */
1417 
1418 static int fib6_walk_continue(struct fib6_walker_t *w)
1419 {
1420 	struct fib6_node *fn, *pn;
1421 
1422 	for (;;) {
1423 		fn = w->node;
1424 		if (!fn)
1425 			return 0;
1426 
1427 		if (w->prune && fn != w->root &&
1428 		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1429 			w->state = FWS_C;
1430 			w->leaf = fn->leaf;
1431 		}
1432 		switch (w->state) {
1433 #ifdef CONFIG_IPV6_SUBTREES
1434 		case FWS_S:
1435 			if (FIB6_SUBTREE(fn)) {
1436 				w->node = FIB6_SUBTREE(fn);
1437 				continue;
1438 			}
1439 			w->state = FWS_L;
1440 #endif
1441 		case FWS_L:
1442 			if (fn->left) {
1443 				w->node = fn->left;
1444 				w->state = FWS_INIT;
1445 				continue;
1446 			}
1447 			w->state = FWS_R;
1448 		case FWS_R:
1449 			if (fn->right) {
1450 				w->node = fn->right;
1451 				w->state = FWS_INIT;
1452 				continue;
1453 			}
1454 			w->state = FWS_C;
1455 			w->leaf = fn->leaf;
1456 		case FWS_C:
1457 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1458 				int err;
1459 
1460 				if (w->skip) {
1461 					w->skip--;
1462 					goto skip;
1463 				}
1464 
1465 				err = w->func(w);
1466 				if (err)
1467 					return err;
1468 
1469 				w->count++;
1470 				continue;
1471 			}
1472 skip:
1473 			w->state = FWS_U;
1474 		case FWS_U:
1475 			if (fn == w->root)
1476 				return 0;
1477 			pn = fn->parent;
1478 			w->node = pn;
1479 #ifdef CONFIG_IPV6_SUBTREES
1480 			if (FIB6_SUBTREE(pn) == fn) {
1481 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1482 				w->state = FWS_L;
1483 				continue;
1484 			}
1485 #endif
1486 			if (pn->left == fn) {
1487 				w->state = FWS_R;
1488 				continue;
1489 			}
1490 			if (pn->right == fn) {
1491 				w->state = FWS_C;
1492 				w->leaf = w->node->leaf;
1493 				continue;
1494 			}
1495 #if RT6_DEBUG >= 2
1496 			WARN_ON(1);
1497 #endif
1498 		}
1499 	}
1500 }
1501 
1502 static int fib6_walk(struct fib6_walker_t *w)
1503 {
1504 	int res;
1505 
1506 	w->state = FWS_INIT;
1507 	w->node = w->root;
1508 
1509 	fib6_walker_link(w);
1510 	res = fib6_walk_continue(w);
1511 	if (res <= 0)
1512 		fib6_walker_unlink(w);
1513 	return res;
1514 }
1515 
1516 static int fib6_clean_node(struct fib6_walker_t *w)
1517 {
1518 	int res;
1519 	struct rt6_info *rt;
1520 	struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1521 	struct nl_info info = {
1522 		.nl_net = c->net,
1523 	};
1524 
1525 	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1526 		res = c->func(rt, c->arg);
1527 		if (res < 0) {
1528 			w->leaf = rt;
1529 			res = fib6_del(rt, &info);
1530 			if (res) {
1531 #if RT6_DEBUG >= 2
1532 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1533 					 __func__, rt, rt->rt6i_node, res);
1534 #endif
1535 				continue;
1536 			}
1537 			return 0;
1538 		}
1539 		WARN_ON(res != 0);
1540 	}
1541 	w->leaf = rt;
1542 	return 0;
1543 }
1544 
1545 /*
1546  *	Convenient frontend to tree walker.
1547  *
1548  *	func is called on each route.
1549  *		It may return -1 -> delete this route.
1550  *		              0  -> continue walking
1551  *
1552  *	prune==1 -> only immediate children of node (certainly,
1553  *	ignoring pure split nodes) will be scanned.
1554  */
1555 
1556 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1557 			    int (*func)(struct rt6_info *, void *arg),
1558 			    int prune, void *arg)
1559 {
1560 	struct fib6_cleaner_t c;
1561 
1562 	c.w.root = root;
1563 	c.w.func = fib6_clean_node;
1564 	c.w.prune = prune;
1565 	c.w.count = 0;
1566 	c.w.skip = 0;
1567 	c.func = func;
1568 	c.arg = arg;
1569 	c.net = net;
1570 
1571 	fib6_walk(&c.w);
1572 }
1573 
1574 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1575 		    void *arg)
1576 {
1577 	struct fib6_table *table;
1578 	struct hlist_head *head;
1579 	unsigned int h;
1580 
1581 	rcu_read_lock();
1582 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1583 		head = &net->ipv6.fib_table_hash[h];
1584 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1585 			write_lock_bh(&table->tb6_lock);
1586 			fib6_clean_tree(net, &table->tb6_root,
1587 					func, 0, arg);
1588 			write_unlock_bh(&table->tb6_lock);
1589 		}
1590 	}
1591 	rcu_read_unlock();
1592 }
1593 
1594 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1595 {
1596 	if (rt->rt6i_flags & RTF_CACHE) {
1597 		RT6_TRACE("pruning clone %p\n", rt);
1598 		return -1;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1605 			      struct rt6_info *rt)
1606 {
1607 	fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1608 }
1609 
1610 /*
1611  *	Garbage collection
1612  */
1613 
1614 static struct fib6_gc_args
1615 {
1616 	int			timeout;
1617 	int			more;
1618 } gc_args;
1619 
1620 static int fib6_age(struct rt6_info *rt, void *arg)
1621 {
1622 	unsigned long now = jiffies;
1623 
1624 	/*
1625 	 *	check addrconf expiration here.
1626 	 *	Routes are expired even if they are in use.
1627 	 *
1628 	 *	Also age clones. Note, that clones are aged out
1629 	 *	only if they are not in use now.
1630 	 */
1631 
1632 	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1633 		if (time_after(now, rt->dst.expires)) {
1634 			RT6_TRACE("expiring %p\n", rt);
1635 			return -1;
1636 		}
1637 		gc_args.more++;
1638 	} else if (rt->rt6i_flags & RTF_CACHE) {
1639 		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1640 		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1641 			RT6_TRACE("aging clone %p\n", rt);
1642 			return -1;
1643 		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1644 			struct neighbour *neigh;
1645 			__u8 neigh_flags = 0;
1646 
1647 			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1648 			if (neigh) {
1649 				neigh_flags = neigh->flags;
1650 				neigh_release(neigh);
1651 			}
1652 			if (!(neigh_flags & NTF_ROUTER)) {
1653 				RT6_TRACE("purging route %p via non-router but gateway\n",
1654 					  rt);
1655 				return -1;
1656 			}
1657 		}
1658 		gc_args.more++;
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 static DEFINE_SPINLOCK(fib6_gc_lock);
1665 
1666 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1667 {
1668 	unsigned long now;
1669 
1670 	if (force) {
1671 		spin_lock_bh(&fib6_gc_lock);
1672 	} else if (!spin_trylock_bh(&fib6_gc_lock)) {
1673 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1674 		return;
1675 	}
1676 	gc_args.timeout = expires ? (int)expires :
1677 			  net->ipv6.sysctl.ip6_rt_gc_interval;
1678 
1679 	gc_args.more = icmp6_dst_gc();
1680 
1681 	fib6_clean_all(net, fib6_age, NULL);
1682 	now = jiffies;
1683 	net->ipv6.ip6_rt_last_gc = now;
1684 
1685 	if (gc_args.more)
1686 		mod_timer(&net->ipv6.ip6_fib_timer,
1687 			  round_jiffies(now
1688 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1689 	else
1690 		del_timer(&net->ipv6.ip6_fib_timer);
1691 	spin_unlock_bh(&fib6_gc_lock);
1692 }
1693 
1694 static void fib6_gc_timer_cb(unsigned long arg)
1695 {
1696 	fib6_run_gc(0, (struct net *)arg, true);
1697 }
1698 
1699 static int __net_init fib6_net_init(struct net *net)
1700 {
1701 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1702 
1703 	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1704 
1705 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1706 	if (!net->ipv6.rt6_stats)
1707 		goto out_timer;
1708 
1709 	/* Avoid false sharing : Use at least a full cache line */
1710 	size = max_t(size_t, size, L1_CACHE_BYTES);
1711 
1712 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1713 	if (!net->ipv6.fib_table_hash)
1714 		goto out_rt6_stats;
1715 
1716 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1717 					  GFP_KERNEL);
1718 	if (!net->ipv6.fib6_main_tbl)
1719 		goto out_fib_table_hash;
1720 
1721 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1722 	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1723 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1724 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1725 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1726 
1727 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1728 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1729 					   GFP_KERNEL);
1730 	if (!net->ipv6.fib6_local_tbl)
1731 		goto out_fib6_main_tbl;
1732 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1733 	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1734 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1735 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1736 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1737 #endif
1738 	fib6_tables_init(net);
1739 
1740 	return 0;
1741 
1742 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1743 out_fib6_main_tbl:
1744 	kfree(net->ipv6.fib6_main_tbl);
1745 #endif
1746 out_fib_table_hash:
1747 	kfree(net->ipv6.fib_table_hash);
1748 out_rt6_stats:
1749 	kfree(net->ipv6.rt6_stats);
1750 out_timer:
1751 	return -ENOMEM;
1752 }
1753 
1754 static void fib6_net_exit(struct net *net)
1755 {
1756 	rt6_ifdown(net, NULL);
1757 	del_timer_sync(&net->ipv6.ip6_fib_timer);
1758 
1759 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1760 	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1761 	kfree(net->ipv6.fib6_local_tbl);
1762 #endif
1763 	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1764 	kfree(net->ipv6.fib6_main_tbl);
1765 	kfree(net->ipv6.fib_table_hash);
1766 	kfree(net->ipv6.rt6_stats);
1767 }
1768 
1769 static struct pernet_operations fib6_net_ops = {
1770 	.init = fib6_net_init,
1771 	.exit = fib6_net_exit,
1772 };
1773 
1774 int __init fib6_init(void)
1775 {
1776 	int ret = -ENOMEM;
1777 
1778 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1779 					   sizeof(struct fib6_node),
1780 					   0, SLAB_HWCACHE_ALIGN,
1781 					   NULL);
1782 	if (!fib6_node_kmem)
1783 		goto out;
1784 
1785 	ret = register_pernet_subsys(&fib6_net_ops);
1786 	if (ret)
1787 		goto out_kmem_cache_create;
1788 
1789 	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1790 			      NULL);
1791 	if (ret)
1792 		goto out_unregister_subsys;
1793 out:
1794 	return ret;
1795 
1796 out_unregister_subsys:
1797 	unregister_pernet_subsys(&fib6_net_ops);
1798 out_kmem_cache_create:
1799 	kmem_cache_destroy(fib6_node_kmem);
1800 	goto out;
1801 }
1802 
1803 void fib6_gc_cleanup(void)
1804 {
1805 	unregister_pernet_subsys(&fib6_net_ops);
1806 	kmem_cache_destroy(fib6_node_kmem);
1807 }
1808 
1809 #ifdef CONFIG_PROC_FS
1810 
1811 struct ipv6_route_iter {
1812 	struct seq_net_private p;
1813 	struct fib6_walker_t w;
1814 	loff_t skip;
1815 	struct fib6_table *tbl;
1816 	__u32 sernum;
1817 };
1818 
1819 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1820 {
1821 	struct rt6_info *rt = v;
1822 	struct ipv6_route_iter *iter = seq->private;
1823 
1824 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1825 
1826 #ifdef CONFIG_IPV6_SUBTREES
1827 	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1828 #else
1829 	seq_puts(seq, "00000000000000000000000000000000 00 ");
1830 #endif
1831 	if (rt->rt6i_flags & RTF_GATEWAY)
1832 		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1833 	else
1834 		seq_puts(seq, "00000000000000000000000000000000");
1835 
1836 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1837 		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1838 		   rt->dst.__use, rt->rt6i_flags,
1839 		   rt->dst.dev ? rt->dst.dev->name : "");
1840 	iter->w.leaf = NULL;
1841 	return 0;
1842 }
1843 
1844 static int ipv6_route_yield(struct fib6_walker_t *w)
1845 {
1846 	struct ipv6_route_iter *iter = w->args;
1847 
1848 	if (!iter->skip)
1849 		return 1;
1850 
1851 	do {
1852 		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1853 		iter->skip--;
1854 		if (!iter->skip && iter->w.leaf)
1855 			return 1;
1856 	} while (iter->w.leaf);
1857 
1858 	return 0;
1859 }
1860 
1861 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1862 {
1863 	memset(&iter->w, 0, sizeof(iter->w));
1864 	iter->w.func = ipv6_route_yield;
1865 	iter->w.root = &iter->tbl->tb6_root;
1866 	iter->w.state = FWS_INIT;
1867 	iter->w.node = iter->w.root;
1868 	iter->w.args = iter;
1869 	iter->sernum = iter->w.root->fn_sernum;
1870 	INIT_LIST_HEAD(&iter->w.lh);
1871 	fib6_walker_link(&iter->w);
1872 }
1873 
1874 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1875 						    struct net *net)
1876 {
1877 	unsigned int h;
1878 	struct hlist_node *node;
1879 
1880 	if (tbl) {
1881 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1882 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1883 	} else {
1884 		h = 0;
1885 		node = NULL;
1886 	}
1887 
1888 	while (!node && h < FIB6_TABLE_HASHSZ) {
1889 		node = rcu_dereference_bh(
1890 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1891 	}
1892 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1893 }
1894 
1895 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1896 {
1897 	if (iter->sernum != iter->w.root->fn_sernum) {
1898 		iter->sernum = iter->w.root->fn_sernum;
1899 		iter->w.state = FWS_INIT;
1900 		iter->w.node = iter->w.root;
1901 		WARN_ON(iter->w.skip);
1902 		iter->w.skip = iter->w.count;
1903 	}
1904 }
1905 
1906 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1907 {
1908 	int r;
1909 	struct rt6_info *n;
1910 	struct net *net = seq_file_net(seq);
1911 	struct ipv6_route_iter *iter = seq->private;
1912 
1913 	if (!v)
1914 		goto iter_table;
1915 
1916 	n = ((struct rt6_info *)v)->dst.rt6_next;
1917 	if (n) {
1918 		++*pos;
1919 		return n;
1920 	}
1921 
1922 iter_table:
1923 	ipv6_route_check_sernum(iter);
1924 	read_lock(&iter->tbl->tb6_lock);
1925 	r = fib6_walk_continue(&iter->w);
1926 	read_unlock(&iter->tbl->tb6_lock);
1927 	if (r > 0) {
1928 		if (v)
1929 			++*pos;
1930 		return iter->w.leaf;
1931 	} else if (r < 0) {
1932 		fib6_walker_unlink(&iter->w);
1933 		return NULL;
1934 	}
1935 	fib6_walker_unlink(&iter->w);
1936 
1937 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1938 	if (!iter->tbl)
1939 		return NULL;
1940 
1941 	ipv6_route_seq_setup_walk(iter);
1942 	goto iter_table;
1943 }
1944 
1945 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1946 	__acquires(RCU_BH)
1947 {
1948 	struct net *net = seq_file_net(seq);
1949 	struct ipv6_route_iter *iter = seq->private;
1950 
1951 	rcu_read_lock_bh();
1952 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
1953 	iter->skip = *pos;
1954 
1955 	if (iter->tbl) {
1956 		ipv6_route_seq_setup_walk(iter);
1957 		return ipv6_route_seq_next(seq, NULL, pos);
1958 	} else {
1959 		return NULL;
1960 	}
1961 }
1962 
1963 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1964 {
1965 	struct fib6_walker_t *w = &iter->w;
1966 	return w->node && !(w->state == FWS_U && w->node == w->root);
1967 }
1968 
1969 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
1970 	__releases(RCU_BH)
1971 {
1972 	struct ipv6_route_iter *iter = seq->private;
1973 
1974 	if (ipv6_route_iter_active(iter))
1975 		fib6_walker_unlink(&iter->w);
1976 
1977 	rcu_read_unlock_bh();
1978 }
1979 
1980 static const struct seq_operations ipv6_route_seq_ops = {
1981 	.start	= ipv6_route_seq_start,
1982 	.next	= ipv6_route_seq_next,
1983 	.stop	= ipv6_route_seq_stop,
1984 	.show	= ipv6_route_seq_show
1985 };
1986 
1987 int ipv6_route_open(struct inode *inode, struct file *file)
1988 {
1989 	return seq_open_net(inode, file, &ipv6_route_seq_ops,
1990 			    sizeof(struct ipv6_route_iter));
1991 }
1992 
1993 #endif /* CONFIG_PROC_FS */
1994